
Department of Informatics
Programming Theory

Master Thesis

Novice Difficulties with
Language Constructs

Alexander Hoem Rosbach

July 2013

Abstract

Programming is a difficult skill to learn, and programming courses have
high dropout rates. In this thesis we study the problems that students have
during their first introductory programming course at The University of
Bergen. We inspect the solutions that they submit for the given assignments,
and look at the frequency of the different kinds of mistakes in their work.

We present a problem taxonomy that we use to classify the mistakes
found to be the most common, and conclude that a significant part of
the problems are observable misconceptions. We introduce a web-based
tool, Javis, that we have developed to aid the students with these kinds of
problems.

Based on the experience and knowledge gained during this work we
present a proposal of a grading by annotation scheme. This scheme is specif-
ically designed to increase the quality of the feedback given to students
on their submitted work and provide valuable feedback to the teachers
regarding the problems that their students have.

Acknowledgements

Foremost, I want to thank my supervisor Anya Helene Bagge for providing
the initial inspiration for the thesis, and contribution of ideas, support and
advice during my work.

I would also like to thank May-Lill Bagge for her reviews and feedback
of my work. Her non computer science perspective and input was a great
help.

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Questions . 2
1.3 Related Work . 3
1.4 Thesis Structure and Outline 3

1.4.1 Outline . 4

2 Learning Programming 7
2.1 Programming Skills . 8
2.2 The Challenges . 9
2.3 Student Problem Taxonomy 11

2.3.1 Concept-based problems 12
2.3.2 Knowledge-based problems 13

2.4 INF100 Course . 14

3 Study Design and Problem Taxonomy 17
3.1 Study Description . 17
3.2 Data Set . 18
3.3 Problem Taxonomy – Most common problems 20

3.3.1 �wrngcond – Wrong condition 20
3.3.2 �bdrycond – Boundary case condition 21
3.3.3 � loopcreate – Loop instantiation problem 22
3.3.4 �cmplxctrls – Unnecessarily complicated 24
3.3.5 � nocall – Missing method call(s) 25
3.3.6 � wrnggrpng – Incorrect grouping 26

i

3.3.7 � badar it – Erroneous arithmetic 27
3.3.8 � boolaccum – Accumulate boolean 28

4 Result Analysis 31
4.1 Lazy students? . 31
4.2 Most common problems . 32
4.3 Parameter passing and references 34
4.4 Conditions . 35
4.5 Loop constructs . 36
4.6 Method calls . 37
4.7 Concept-based problems . 37
4.8 Conclusion . 39

5 Tool Assistance – Javis 41
5.1 Requirements . 41
5.2 Implementation . 43

5.2.1 Java evaluation . 44
5.2.2 Abstract syntax tree 45

5.3 Tool Design . 45
5.3.1 Design concepts . 46
5.3.2 Evaluation . 49

5.4 Visualisation Examples . 51
5.4.1 Step by step evaluation 51
5.4.2 Nested scopes . 53
5.4.3 Parameter passing . 54

5.5 Related Work . 54
5.6 Conclusion . 56

6 Proposal: Grading by Annotation 57
6.1 Annotation Syntax . 58
6.2 Grading . 59

6.2.1 File annotations . 59
6.2.2 Meta annotations . 60
6.2.3 Problem annotations 60

6.3 Collecting the Data . 63

7 Conclusion 67
7.1 Status Summary . 67
7.2 Future Work . 68

7.2.1 Javis . 68
7.2.2 Grading by annotation 69

ii

A Student problems 71

B Annotation occurences 75

Bibliography 77

iii

List of Figures

1.1 Graduated students relative to admitted students the theo-
retical starting year. 2

3.1 Inspected student solutions. 18
3.2 Decrease of submitted solutions throughout the semester. . . 19
3.3 Problem taxonomy . 20

4.1 The most common problems among the students. 33
4.2 Students who had parameter passing problems. 34
4.3 Students who had problems with conditional expressions. . 36
4.4 Domain model (UML class diag.) of semester assignment 2. 37
4.5 Students with problems from the concept-based and knowledge-

based categories. 38

5.1 Javis with a Java program loaded. 44
5.2 Simplified domain model (UML class diag.) of Javis 46
5.3 Scope stack example . 48
5.4 AST of int number = 5 + 3; 50
5.5 Example of step by step evaluation. 53
5.6 Nested scope example . 54
5.7 Example of parameter passing 55

v

List of Tables

6.1 File annotations . 60
6.2 Meta annotations . 61
6.3 Variable problem annotations 62
6.4 Conditional expression problem annotations 62
6.5 Method call problem annotations 63
6.6 Scope problem annotations 64
6.7 Control structure problem annotations 65

vii

Chapter 1

Introduction

In this chapter we explain the background and motivation for our work,
present our research goals and give an outline of the thesis.

1.1 Background and Motivation

Learning to program is a difficult task that many students struggle with and
fail to complete. Programming courses are generally regarded as difficult
and many first year programming students perform much more poorly
than hoped for [18] in these courses, resulting in high dropout rates [9, 24].
Our department offer two bachelor programmes, Computer Science1 and
Computer Technology2, and compared to the number of students admitted
to the programmes, very few students graduate the scheduled graduation
year (see Fig. 1.1).

In the capacity as a teaching assistant in the introductory programming
course (INF1004) at the University of Bergen, the author has observed
the struggle of the students first hand. By assisting the students at lab
sessions and grading their submitted solutions to assignments, the author
has observed a multitude of problems and difficulties. This motivated
us to investigate this more in depth, and we especially wanted to see if
some problems were as widespread as they seemed to be, and if particular
problems persisted throughout the semester.

1http://www.uib.no/studyprogramme/BAMN-DVIT
2http://www.uib.no/studyprogramme/BAMN-DTEK
3The University of Bergen
4http://www.uib.no/course/INF100

1

0 10 20 30 40 50 60

2008

2009

2010

2011

2012

42

31

57

42

47

8

8

16

16

5

Students

Graduated Admitted 3 years earlier

Figure 1.1: Number of students that graduated each year (2008-2012) relative
to the number of students admitted to the study programmes the theoretical
starting year (UoB3).

1.2 Research Questions

Our plan is to study the problems that students learning Java as their
first programming language struggle with. We aim to identify and study
mistakes, misconceptions and unsolved requirements in the solutions that
the students submit to assignments given in the introductory programming
course at the University of Bergen. Studying these problems, we then want
to find out if:

• some problems are more common than others.

• particular problems, such as parameter passing and references is as
common a problem as our experience suggest.

• problem occurrences can be related to misconceptions or missing
knowledge.

Based on the experience and knowledge we gain in that study, we intend
to develop a proposal of how to grade student assignments and collect data
about problem occurrences, without increasing the workload or degrading
the quality of the feedback to the students. This grading scheme can provide
the teachers with valuable knowledge, as they then are able to address the
most common misconceptions among the students.

2

Students often have incorrect conceptions of programming concepts [5,
16]. Our hypothesis is that a significant part of these misconceptions can be
observed using the right techniques. Du Boulay et al. [10] suggests that how
the programming language affect the computer should be supported with
some kind of concrete tool which allows the interaction to be observed.
We support this and believe that with an easy to use tool with proper
visualisation of how programs actually work, step-by-step, the students
themselves will be able to identify and understand these kinds of problems.
We intend to develop such a tool.

1.3 Related Work

Lathinen et al. [14] analyses a survey of students and teachers opinions of
which elements they consider difficult when learning programming. Parts
of this survey is strongly related to what we look at in this thesis, though we
have chosen other methods of gathering data and we have a more narrow
focus. Robins et al. [24] reviews much research regarding learning and
teaching of programming and present a discussion of the findings. Spohrer
and Soloway [27] present an empirical study of the general belief of novice
mistakes.

Johnson et al. [12] developed a bug classification scheme that relate
bugs to program constructions and underlying misconceptions and Spohrer
et al. [26] created a problem-dependent classification scheme based on
Johnsons scheme. Our grading scheme (Chapter 6), and its taxonomy
(Section 2.3), has similarities with both classification schemes, it relates
problematic code segments both to the problem description (requirements)
and the language constructs. We then discuss and connect problems with
plausible underlying misconceptions.

1.4 Thesis Structure and Outline

To introduce the problem domain of this thesis we start with a discussion of
the learning process of programming, where we look into the skills that the
students must learn and the challenges that they will meet in the process.
Based on that discussion and previous research regarding classification of
student problems, we specify a student problem taxonomy that separates
problems based on their underlying reasons. The two categories of problems
that we look into are those that can be related to observable misconcep-
tions, concept-based, and those that can be related to missing knowledge or

3

understanding, knowledge-based.
To answer the research questions of this thesis we inspected Java pro-

grams developed by students, and annotated all the problems that we found.
We then study the data generated by the annotations to identify the most
common problems of the students, and classify them in our taxonomy. With
the classification of the most common problems we aim to verify that a
significant part of the students’ problems are concept-based, which we argue
that the students can identify and understand themselves, with the proper
assistance. We then look into particular problems and study the annotation
data in detail.

To aid the students in identifying and understanding the concept-based
problems, we have developed a visualisation tool which we present, and
provide example executions of.

We then present a proposal of a grading by annotation scheme, that is
based on the work in the other parts of this thesis.

1.4.1 Outline

A brief description of the contents of each chapter:

Chapter 2: Learning programming In this chapter we first discuss the
skills that the students must master when learning programming, and the
challenges they will encounter in the process. Then we specify a taxonomy
that we have used to classify the most common problems of the students.
We end the chapter with a description of the curriculum and organisation
of the introductory programming course taught at our department.

Chapter 3: Study design and Problem taxonomy In this chapter we first
give a description of the design of our study, and describe the data set used.
Then we provide a thorough description of each of the problems we found
were most common, and a list of plausible underlying reasons for them.

Chapter 4: Result analysis In this chapter we analyse the results of our
study. First we describe the total amount of data we gathered, then we
present and discuss our findings.

Chapter 5: Tool assistance – Javis In this chapter we present a tool that we
are developing for students. We describe the requirements and intentions
of the tool, and provide some examples of its use.

4

Chapter 6: Grading by annotation In this chapter we present a grading by
annotation scheme that we have developed. We based it on the experience
gained during the research for this thesis, and we describe how to use it,
extend it and collect the data.

Chapter 7: Conclusion In this chapter we give a status summary of the
work in this thesis, and we briefly explore the possibilities and future work
of the grading by annotation scheme and Javis.

5

6

Chapter 2

Learning Programming

Learning programming is a complicated task that requires the student
to acquire a lot of new and interconnected knowledge. This makes the
teaching of programming a serious challenge for educators. With respect
to the curriculum, different teaching methods, order of the topics and so
on, they have many choices. Even the seemingly simple choice of which
language to teach is a tough one:

• Should one teach programming using a dedicated learning language,
or one in use in the industry?

• From which paradigm should one choose the language; functional,
imperative or object-oriented?

• If object-oriented; should imperative (procedural) features or objects
be taught first?

We gave this brief introduction into the teaching of introductory program-
ming to inform the reader that the teaching methodologies of programming
are disputed. We do not consider this further in this thesis, as we take
another perspective on the challenges of teaching and learning program-
ming, instead we refer the interested reader to the extensive research in this
area. For example Robins et al. [24] for a review and discussion on learning
and teaching programming, Dale [8] for a survey on CS1 content practices,
Schulte & Bennedsen [25] for a study of what is taught in CS1 and Bailie et
al. [4] for a panel discussion of the object first approach.

In this chapter we discuss what goals the student should reach during
the learning process and the difficulties the students encounter along the
way. Then we present and discuss the problem taxonomy that we use in
this thesis to classify the typical problems students have. Following that we

7

give a thorough description of the CS1 equivalent course, INF100, offered
at our department.

2.1 Programming Skills

The end-goal of students learning programming are very different, and
depends primarily on what they are planning to use the skill for. Some are
interested in applying the skill within academia, some as developers, others
learn out of curiosity. No matter what end-goal though, it is fair to say that
the student should be able to express solutions for typical computer-solvable
problems in the language he or she is learning.

First off, this requires that the student must learn the language itself, that
is, the syntax and semantics of the necessary language features (constructs).
By necessary features, we argue that it is not required that the student learns
all the features of the language initially, as there are many (depending on
the language) operators, keywords and constructs that are not immediately
needed. Typically bitwise operators,exception-handling constructs,generics,
polymorphism and inheritance are such more complicated and not initially
needed features. Though some languages may force you to teach them early,
e.g. Java forces exception-handling quite early.

In addition to learning the semantics of the language constructs, the
student should also learn typical ways of applying them. In literature this
is often referred to as schemas, or sometimes plans, depending on the
author [24]. We only use the term schema, and we use it to refer to a certain
way of combining language constructs to solve specific problems, i.e. a
schema may be a way of combining language constructs to calculate the
sum of the numbers in a list (array) or read and validate user input etc.
These trivial schemas will give the student both a better conception of the
construct semantics, and knowledge of actual usage.

The next basic skill is the ability to properly interpret a problem descrip-
tion and generate a general notion of how to solve the problem. We do not
however, recommend writing down an explicit solution in natural language
and then translating that into the programming language. Spohrer and
Soloway [27] argue that this may be a pitfall of possible misconceptions, as
some natural language words are used as keywords for constructs in the
programming language and do not necessarily have the expected semantics.
Using this notion, or mental image, the student should then be able to
express a procedural plan of how to apply a combination of schemas in a
sequence that ultimately solves the problem. Depending on the size and
complexity of the problem, it might be necessary to first divide it into smaller

8

problems.
Linn and Dalbey [15] propose that given a good learning environment the

student should achieve the following “chain of cognitive accomplishments”:

1. Language features; understanding the semantics of the language
structures.

2. Design skills; the ability to plan procedurally, apply schemas/plans,
test and reformulate code.

3. Problem-solving skills; application of knowledge and strategies, in
a way that is abstracted from the specific language being taught, i.e.
able to apply it with other languages and settings.

It is possible to teach these skills separately without depending on the
previous skill, e.g. teaching a schema for calculating the average of a list of
numbers without using programming language examples. However we
argue that the order given in this chain is important and should be followed
by educators. This will provide the students with the means to experiment
and observe that the schema works when applied using the respective
constructs.

The ACT models by Anderson [2] suggest that abstract representations of
knowledge cannot be learned directly, they can only be learned by practicing
the operations on which they are based. The process of experimenting
and observing consequences, learning-by-doing, is very important when
learning programming and should be a primary focus. This will give the
student a feel of accomplishment and improve the student’s conception of
how it works.

Though we do recommend selecting subsets of constructs and follow
the chain individually for them, e.g. selecting the if-statement, variables and
user input calls, providing the student with schemas for these and skills to
solve user input validation problems and actions based on the input. This
way the student is able to achieve the full chain of knowledge for individual
subsets quite early and gain experience with them.

2.2 The Challenges

In the process of learning programming the students will encounter many
difficulties and challenges. Du Boulay [10] describes a list of five overlapping
problem domains, that we describe in detail below:

1. General orientation. What programs are, and how they work.

9

2. The notional machine. How a language interacts with the computer.

3. Notation. Language syntax and semantics.

4. Structures. Possess and understand schemas.

5. Pragmatics. Planning, developing, testing, debugging etc.

General orientation (1) The understanding of what programs are, that
they can be used to solve problems and what kinds of problems are solvable.
Within the learning environment students are provided with problems to
solve, these are implicitly solvable, and we argue that this is a challenge that
may become more challenging later, outside the confines of the learning
environment.

The notional machine (2) Du Boulay [10] describes this as:

An idealized, conceptual computer whose properties are implied
by the constructs in the programming language employed.

That is, having a correct understanding of how the language constructs
affect the computer, e.g. correct mental models of how an array is stored
and accessed in memory, how references work etc. It is important to note
that different languages have different models, though some are similar.
This may be one of the most challenging parts of programming. The student
may have a model that works in many cases, or even most, but have
some cases where it breaks down and behaves unexpectedly. It is very
difficult for the student to identify mistakes that are caused by this, since
the entire conception of how the constructs work is tied to this model. It
is improbable that the student even will suspect that the reason a section
of the program does not work as intended is because the model that the
student has observed to be correct in all previous cases really is incorrect.

Notation (3) The correct understanding of the syntax and semantics
of the language. That is being able to express the language constructs
syntactically correct and understanding the semantics of them. Any proper
IDE1 will provide the student with valuable assistance in the form of syntax
highlighting, code formatting and active syntax error reporting. The error
reporting removes some of the need for the student to interpret compile
errors (which may seem very cryptic). The IDE reports errors by highlighting

1Integrated Development Environment

10

the location and providing an error message for any syntax errors. Syntax
highlighting (color and emphasis) and formatting will make the code
easier for the student to read and differentiate between language keywords,
literals, variables etc., making the whole task of writing syntactically correct
programs a lot easier.

Spohrer and Soloway [27] conclude that misconceptions about language
constructs does not seem to be as widespread as is generally believed.
Though the semantics of the constructs may prove a bit challenging at times,
the student should be provided with good explanations from the course
literature and lectures.

Structures (4) Knowledge of schemas that can be applied to solve small
sub-goals of a problem, when and where to apply them and how to combine
them. Understanding a schema properly, i.e. being able to apply it for
problems not entirely the same as those given as examples, may prove
difficult, and combining or nesting them; even more difficult. It requires the
student to understand that the schema is a general solution, and understand
the inner-parts of it, and being able to mold it to the problem at hand.

Pragmatics (5) Planning, developing, testing, debugging etc. are skills
that are developed with experience and will be a challenge throughout the
process of learning programming.

We use some of these problem domains in Section 2.3 where we specify
a problem taxonomy for student mistakes. Problems in the notional machine
domain and parts of the problems in the structures domain are related to
misconceptions that are important for the concept-based category. While
problems in the notation domain and other problems in the structures domain
are related to missing knowledge and fall into the knowledge-based category.

2.3 Student Problem Taxonomy

The mistakes of students are many and diverse, and though they on the sur-
face may seem to be the same problem, e.g. by having the same consequence
and appear in an equivalent location, there may be very different underlying
reasons. The same can be said vice versa, some mistakes may have the same
root cause but appear in different locations, or have different consequences.
This makes the classification of student mistakes quite complicated and

11

require a lot of interpretation.

In this section we present the taxonomy scheme that we use in this thesis.
We base our work on that of Spohrer and Soloway [27] who built a taxonomy
for student problems where they classified mistakes into two categories,
construct-based problems and plan composition problems. These categories they
describe as not mutually exclusive or exhaustive. To determine which
category problems should be placed in, they identified plausible underlying
causes for the problems and used them as determinants.
We use some of the causes that Spohrer and Soloway identified, refine
some of them and provide additional ones that we have identified, as
determinants for our taxonomy. However, we have chosen other categories,
concept-based problems and knowledge-based problems.

Brooks [6] describes the program comprehension process as expectation
driven by creation, confirmation and refinement of hypotheses. This is what
we attempt to capture with the concept-based problem category. Problems
that can be identified and rooted out by creating hypotheses and confirm
or refine them.

2.3.1 Concept-based problems

Typical concept-based problems are those that are related to incorrect schema
applications or misconceptions of the notional machine. Problems we
classify as concept-based are those where the student should be able to
understand the mistake by observing the behaviour of the program. With
a combination of reading, manually tracing the code and observing the
results of executing the program, while experimenting with the data set,
the student should be able to locate and correct these mistakes. Instances of
these problems are expressions, statements or constructs in a program that
are either unnecessary and does not affect the result of the program, or in
some way prevent the program from working as it should.

I) Incorrect notional machine. An incorrect notional machine may have
unexpected obscure consequences that may be challenging to notice
and understand. Though difficult, they are identifiable by observing
the behaviour of the program.

II) Natural language translation. The student may devise a solution to a
problem in natural language. Translating from natural language to
the programming language is not straight forward, and may cause
problems for the student. Observing the behaviour of the program,

12

the student should be able to identify that it behaves differently than
expected.

III) Misconception of construct semantics. The student may possess some
conception of construct semantics that is incorrect, but seems to be
correct based on previous experience. This may be an almost correct
conception, that has some special case(s) it does not cover, or it may
be based only on trivial cases and fail when more complicated parts
of the semantics matter, e.g. evaluation order. These mistakes are
observable, as the student has a correct intention, but failed to apply
the construct due to some misconception.

IV) Specialisation problem. The student may find it challenging to apply the
general schema correctly to a concrete problem. When customising
the schema to the particular situation at hand, the student may deviate
slightly from the correct application and create an incorrect solution.
These mistakes should be observable as the student has a correct
understanding of the schema and knows what is intended.

V) Test data. The data set the student is executing the program with may
not be good enough to expose the problem, and if it was supplied
with the assignment, the student has no reason to suspect that it is
insufficient.

2.3.2 Knowledge-based problems

Knowledge-based problems are those situations where the student does not
have the proper knowledge or understanding to solve a problem. This may
be due to lack of schemas to apply, or an inadequate understanding of them
(thus not able to apply them). Instances of these problems may be segments
in a program that the student has either left completely blank or placed an
empty skeleton of a schema. Other examples of instances may be a dynamic
problem solved in a static way, with the consequence that they only work
for the given example data set.

I) Interpretation of specification. Correct interpretation of the assignment
specification may be challenging. Explicit requirements may be ne-
glected or perceived incorrectly and implicit requirements may be
missed.

II) Schema knowledge. The student may not possess the necessary schemas
or adequate conceptions of the schemas to solve the problem.

13

III) Existing environment. Students may find it difficult to express their
intention using the relevant existing parts of the program environment,
e.g. identifying the correct variables and methods to use.

2.4 INF100 Course

INF100, our CS1-equivalent course, gives a thorough introduction to pro-
gramming and is a mandatory course in both bachelor degrees offered
at our department. The course, or an equivalent course, is a prerequisite
for all other programming courses taught at our department. Though it is
primarily aimed at computer science students, it is also offered and even
recommended to students of other natural science degrees, and especially
to Mathematics and Physics. This means that there is a lot of diversity in
the students background, skill and motivation, and that the progress of the
course must be adjusted accordingly. The primary motivation of the course
is to teach students how to use a programming language to solve problems
with a computer and doing so in a general sense. By that we mean that even
though the course teaches one language, namely Java, it aims at doing it
in such a way that the students learn the “programming way of thinking”
and hence will be equipped with the knowledge to learn and use other
languages as well.

Curriculum

We now provide a chronological list of the curriculum of INF100, which is
reflected in both the lectures and the assignments given in the course.

1. Imperative language features. The first part, about one third, of the
curriculum focuses on the basic concepts and constructs of imperative
languages, e.g. variables, data types, expressions, control flow, arrays,
input/output and assignment. The students will in addition be in
contact with, and use, objects in this part, which is due to Java’s strong
object-oriented nature. That means that a quick introduction to objects
and data abstraction is required (and given) in this part, as well.

2. Objects. About one third into the curriculum the focus will shift
towards object-oriented-programming, where object communication,
inheritance and polymorphism will be introduced. This is primarily a
theoretical introduction and little to no focus will be given inheritance
and polymorphism in the course assignments.

14

3. Algorithms. About half way into the curriculum algorithms, e.g. search-
ing and sorting, will be introduced, followed by abstract data types
and dynamic data types, e.g. linked lists etc.

4. Recursion. Then recursion and recursive algorithms are presented,
which also is given little to no attention in the assignments.

5. Exception handling. Towards the end exception handling is introduced
both in the lectures and in assignments, followed by file- and stream
handling.

6. GUI. Graphical user interfaces may be given a short introduction, if
there is interest and available time for it.

Organisation

There is a heavy emphasis on learning by doing in the course, which is
reflected by the many mandatory assignments and available lab sessions.
We strongly encourage the students to attend at least one of the five lab ses-
sions offered each week. If there is room, they may attend multiple sessions.
In these sessions it is envisaged that the students will work on their current
course assignment, and it is encouraged that they co-operate and help each
other. At each session a teaching assistant will assist the students with
their problems, and preferably in an educational way. The assistants are all
talented and experienced students who have come further in their studies,
many at the end of their bachelor degree and some are working on their mas-
ter thesis. There are however no special requirements to pedagogical skills or
education, though the Psychological faculty offer them a course in pedagogy.

In total there are ten assignments, of which seven are exercises and
three are larger mandatory semester assignments. The exercises are only
graded with a pass or fail, though the teaching assistant grading it will
provide comments for the work. Of these, the student must pass at least
five, but is required to submit something for all of them – even if it is an
empty submission. The larger semester assignments are all graded with an
individual score, where the total score of all three counts 30% towards the
final grade in the course.

15

16

Chapter 3

Study Design and Problem
Taxonomy

The goal of this study is to identify and study the specific problems that
students may encounter while learning programming, and the frequency
of them. To achieve this we performed an empirical study by inspecting
the source code written by the students for the assignments given in the
INF100 course. We were interested in all kinds of problems and solutions,
both syntactic and semantic.

In this chapter we first describe how we collected the data, and the size
of the data set. Then we describe and classify some of the most frequent
occurring problems using the taxonomy described in Section 2.3.

3.1 Study Description

The data we collected had to be represented in such a way that we would
be able to analyse it in many different ways, without the need to inspect
the programs multiple times. We found that by annotating any interesting
expressions, statements or segments with an identifier, we could scan the
files for these annotations afterwards and insert the information into a
database. A database provided us with a powerful query language that we
could use to retrieve the data and build interesting queries with. Each entry
in the database contains a student identifier (anonymous), assignment, file,
exact line where the problem occurs and the problem identifier. Storing
the data in this way also enabled us to verify the results later, extract code
snippets and make the data available for later research.

Before we began inspecting the student submissions we created an initial
list of typical student problems, based on our previous educational work,

17

Ex1 Ex2 Ex3 Sem1 Ex4 Ex5 Sem2 Ex6 Ex7 Sem3

0

25

50

75

100

125

150

175

Inspected Others

Figure 3.1: Inspected student solutions.

and gave them each a unique identifier. However, during the process of
annotating the source code we discovered other kinds of problems, that we
had not initially foreseen, and also had to change some of the initial ones as
they were either too general or too specific. See Appendix A for a complete
list of the annotations used.

3.2 Data Set

We have a large number of submissions available from just one semester of
the course INF100. In total 182 students enrolled for the course and there
were 3 semester assignments and 7 exercises during the course. This sums
up to a total of 1820 submitted solutions, if all the students had submitted a
solution for all the assignments. However since a portion of the students
dropped out during the course, and they were only required to pass 5 out of
the 7 exercises, there was slightly fewer submissions, approximately 1400.

This was still a large number of submissions, and we did not have
the time and resources to inspect all of these. We had to limit the set of
submissions to inspect (see Fig. 3.1) and we began by selecting a subset of
the students, based on their performance on the semester assignments, of

18

Ex3 Sem1 Ex5 Sem2 Ex7 Sem3
0

20

40

60

80

100

Assignments

St
ud

en
ts

Semester
Exercises

Figure 3.2: Decrease of submitted solutions throughout the semester.

which we would inspect the submitted assignments. Any student scoring
strictly less than 25 out of 30 (∼ 85%) points on any of the three semester
assignments would be added to the set. The reason why we chose this limit
was that most of the submissions scoring higher than 25 points had very
few mistakes, and they were mostly superficial.

This gave us a set of 79 students, which still was a too large amount of
data for us to inspect. We then proceeded to limit the data set by selecting
six assignments to inspect. The first two exercises were trivial introductions
to programming, and had little value to us as they only involve simple
arithmetics in a Hello World way. The three semester assignments were
sure choices, and to close the time gap between them we chose the three
exercises that were given before each semester assignment.

In Fig. 3.2 we present the number of students, from the subset we selected,
who submitted solutions for the selected assignments. The decrease of
students who submitted solutions for the semester assignments are all
students who dropped out of the course, i.e. 20 students dropped out
between semester assignment 1 and 3. For the exercises however, the
decrease is mostly because the students are only required to submit solutions
to five of them. Exercise 7 was especially affected by this.

19

Concept-based Knowledge-based

Loop instantiation problem

Unnecessarily complicated

Wrong condition

Boundary case condition

Missing method call

Incorrect grouping

Erroneous arithmetic

Accumulate boolean

C:I
C:II
C:III
C:IV
C:V

- Incorrect notional machine
- Natural language translation
- Misconception of construct semantics
- Specialisation problem
- Test data

K:I
K:II
K:III

- Interpretation of specification
- Schema knowledge
- Existing environment

C:II,III,V

C:II,V

C:I,III,IV

C:II
K:I,III

K:I-III

K:II,III

C:V K:I,III

K:I

K:I

K:I,III
C:IV

K:I,III

Primary

Secondary

Figure 3.3: Problem taxonomy

3.3 Problem Taxonomy – Most common problems

In this section we give a thorough description of the most frequent occurring
problems and then we classify (see Fig. 3.3) them using the taxonomy
described in Section 2.3. Together these problems account for more than half
of all problem occurrences (see Section 4.7) and by classifying these we may
be able to suggest actions that can be taken with respect to the teaching. For
each problem we provide a general description, concrete examples and, if
necessary, actual code samples. To classify the problems we have identified
a list of plausible underlying causes for each problem and an argument is
given for why those causes are plausible. Appendix A is a valuable resource
throughout this section.

3.3.1 �wrngcond – Wrong condition

Any conditional expression that in some way is incorrect may be counted as
a wrong condition problem. However the annotation is mutually exclusive

20

with those annotations that consider special cases of incorrect conditional
expressions, e.g. 20

7�bdrycond. Except for 20
7�bdrycond, we did not identify any other

special cases of conditional expression problems that were common enough
to deserve their own annotation. Though we do recommend adding anno-
tations for any kind of conditional expression, e.g. tautology conditions,
that seems to be common.

Occurrences of this problem are primarily incorrect conditional expres-
sions in if-sentences, though there are a few occurrences in loop-constructs.
Typical occurrences of this problem are conditions that are wrong because
they use an incorrect operator, connective or method call. Concrete exam-
ples of this problem are solutions that check for reference equality instead
of object equality, or overcomplicated conditions that render the solution
incorrect, etc.
We suggest these plausible underlying reasons:

1. Interpretation of specification. The students may find it difficult to
extract the correct conditions from the specification. It requires them
to understand the given specification in its entirety, and they may
miss the implicit conditions.

2. Natural language translation. Not all logical expressions expressed
in natural language can be directly mapped to the programming
language. Conditions may change meaning and parts may be lost in
translation.

3. Existing environment. The student may find it difficult to combine the
relevant existing state of the program into a correct conditional expres-
sion. This often leads to overcomplicated or conflicting expressions.

The underlying reasons we identified for this problem are determinants
from both the concept-based problem and the knowledge-based problem
categories. Though the majority of the determinants are for the knowledge-
based problems, we argue that it is uncertain what category is primary and
secondary and choose both categories.

3.3.2 �bdrycond – Boundary case condition

Any conditional expression that evaluates incorrectly for some boundary
case, either by going out of bounds or being too restrictive, e.g. incorrectly
included or excluded boundary elements in a range. A concrete example
of this is a condition that uses the inclusive less-than operator instead of
the strictly less-than. This might result in an attempt at accessing an index

21

outside of an array, or a guard that accepts too little or too much of a number
range. As a consequence the program might suffer of index-out-of-bounds
errors for arrays. Listing 3.1 is a typical example of this kind of problem.

Listing 3.1: Boundary case sample 7

1 int[] numbers = new int[10];

2 for(int i = 0; i <= numbers.length; i++){

3 numbers[i] = i;

4 }

We suggest these plausible underlying reasons:

1. Specialisation problem. Identifying the correct boundary points may be
challenging for the student when instantiating a schema.

2. Incorrect notional machine. The student may possess an incorrect con-
ception of how the conditional expression relates to the environment,
e.g. a model where the initial array-index is one-based instead of the
actual zero-based.

3. Misconception of construct semantics. The student may have an incorrect
understanding of how the language construct works, e.g. at what point
the condition of a loop is validated or when the update statement of a
for-loop is executed (or even what kinds of expressions that should be
used as update statements). Du Boulay [10] notes that the automatic
increment of the counter variable may be problematic.

4. Interpretation of specification. Students may have interpreted the pro-
gram specification incorrectly, e.g. not perceived correctly if it should
be an inclusive or exclusive condition.

These reasons are mostly determinants in the concept-based problem
category, though (4) belongs to the knowledge-based problem category, and
we argue that this problem should be classified primarily as a concept-based
problem, and secondarily as a knowledge-based problem.

3.3.3 � loop
create – Loop instantiation problem

Any situation where the student has had trouble instantiating a loop-
construct to solve a given task, is counted as a loop instantiation problem.
Occurrences of this problem are situations where:

• The student has either not been able to instantiate a loop, or did not
realise that one was needed, often leaving that part unsolved or given
a hard coded solution.

22

• The student has only partly instantiated a loop, often the most trivial
loop-construct schema.

• The student has instantiated a loop that is far away from a working
solution, often with conditions and bodies that does not resemble a
solution in any way.

Though situations where the student has solved the problem in a static
manual way are not counted, these are counted as 20

6� manloop. Listing 3.2 is an
example of a case where the student has either not been able to instanti-
ate a loop or did not properly understand the semantics of the existing
environment and failed to see why line 7 would not compile.

Listing 3.2: Missing loop 7

1 //Field variable representing shares in percentage

2 double[] shares = {30.0,25.0,10.0};

3 /**

4 * @return the remaining share in percentage.

5 */

6 public double getShareOfOther(){

7 double otherShare = 100 - shares;

8 return otherShare;

9 }

We suggest these plausible underlying reasons:

1. Schema knowledge. The student may not possess the necessary schemas
to instantiate a loop construct to solve a particular problem, or may
not understand how the schemas work and is not able to use them for
any other cases than the default.

2. Existing environment. To combine the existing knowledge of the pro-
gram and use the state of the environment when instantiating a loop
construct may be very difficult. To realise which methods/functions
and/or variables that should be utilised, requires a good overview of
the program and a good conception of the semantics of them.

3. Interpretation of specification. In some cases the requirement that speci-
fies the need for a loop-construct may be less obvious and the student
may miss it.

All the underlying reasons we identified for this problem are determi-
nants from the knowledge-based category, and we argue that it should be
classified as a knowledge-based problem.

23

3.3.4 �cmplxctrls – Unnecessarily complicated

Instances of this problem are those situations where the student devise an
overcomplicated solution that may or may not work. These code segments
may be very difficult to understand, even for the student at the time of
writing, and if it should prove to not work as intended it is very difficult
to identify exactly what is incorrect. Many instances of this problem could
in some situations, with a more thorough inspection and communication
with the student, have been annotated with other more specific annotations.
Typically these are complicated structures that may be any combination of
the following (or other less frequent examples):

• Deeply nested blocks.
• Repetition of large segments of code.
• Conditional structures with individual branches for each possible case

the student can imagine, even though they may not be relevant or
should have the same result/consequence.

Listing 3.3 is an example of an unnecessarily repeated code segment
that could easily be removed with some arithmetic or by performing the
conditional difference calculation first. This implementation does not follow
the specification completely either, it misses the case where time1 is equal
to time2.

Listing 3.3: Repeated code 7

1 if(time1 > time2){

2 int difference = time1 - time2;

3 /*

4 ...

5 Code segment that prints out the difference

6 converted to hours, minutes and seconds.

7 ...

8 */

9 }

10 else if(time1 < time2){

11 int difference = time2 - time1;

12 /*

13 ...

14 Exact same code segment.

15 ...

16 */

17 }

We have identified the following plausible underlying reasons:

24

1. Schema knowledge. The student may not possess or understand the
schemas necessary to instantiate sensible conditional structures, pre-
vent repetition etc.

2. Existing environment. The student needs a good understanding of
the environment, and its state, to be able to prevent the creation of
unnecessary complicated structures. To prevent repetition the student
needs to identify what separates the different cases, and how to exploit
this knowledge to combine the segments.

Both the determinants we have identified and listed above are from
the knowledge-based category, and we argue that it should be classified as
a knowledge-based problem. However, in some cases there may be another
underlying reason for this problem, namely if the student fears to change
something that to some degree may fulfill the requirements.

3.3.5 � no
call – Missing method call(s)

Any situation where the student has omitted a necessary, or useful, method
call is counted as a missing method call problem. In some situations the
student has still managed to create a working solution by re-inventing the
wheel, i.e. implementing the functionality of the method specifically for
that situation, and in others the student may have left out that part of the
solution entirely. When solving assignments given in a course, the student
will in some cases be provided with methods (or classes) and/or information
about any library methods that could be useful.
We have identified the following plausible underlying reasons:

1. Existing environment. The student needs a good overview of the existing
program structure and the available library methods to be able to
avoid this problem. Using this knowledge the student must be able to
realise the possibility of calling a method in a given situation, and be
able to identify which method.

2. Interpretation of specification. The student may not have perceived the
specification correctly and in turn does not realise that there should
be a certain method call in that situation.

3. Test data. The student may not be able to realise that there is a problem
if the data set the student is executing the program with does not
expose that the method(s) was not called.

25

Two of the determinants identified for this problem, (1) and (2), are
for the knowledge-based category and the third is for the concept-based
category. We argue that it is more likely that the student does not realise
there is a missing method call due to insufficient test data than incorrect
conception of the specification, and classify this as both a concept-based
problem and a knowledge-based problem.

3.3.6 � wrnggrpng – Incorrect grouping

Any situation where the student has incorrectly connected, or failed to con-
nect, constructs and/or statements is counted as incorrect grouping problem.
Typical examples of this are:

• Incorrectly connected,or failed to connect,multiple if-constructs (using
the else-connective).

• Omitted to place those statements that should be the “else-case” in an
else-block, i.e. placed in such a way that they do not depend on the
if-construct.

• Placed the result action of a search schema in the body of the loop,
resulting in that the action that should be performed on the result of
the search, is performed each iteration instead.

• Placed a statement that also should depend on the condition of an
if-structure, outside of that block.

Listing 3.4: else connective 7

1 if(player1Winner){

2 System.out.println(‘‘something funny’’);

3 }

4 if(player2Winner){

5 System.out.println(‘‘an angry message’’);

6 }

7 else {

8 System.out.println(‘‘something sad’’);

9 }

We have identified the following plausible underlying reasons:

1. Misconception of construct semantics. The student may not properly
understand how the if-construct connects using the else-statement,
and consequently fails to connect them. This may be an understanding
where sequential if-statements automatically connect (as if there was
an else-statement connecting them) and that any else-statement at

26

the end of the sequence is the branch that is entered if none of the
previous if-statement branches are entered.

2. Natural language translation. A plan of conditional actions may be
expressed correctly in the natural language of the student, but in such
a way that it does not directly map to the programming language.
Listing 3.4 implements these requirements “If player1 wins print
something funny, if player2 wins print something sad, otherwise print
an angry message”. The student has implemented the requirements by
directly mapping the natural language solution into the programming
language and the angry message will only be printed if player2 does
not win.

3. Interpretation of specification. It may be challenging for the student to
perceive the specification as it is intended, especially regarding implicit
requirements. In many cases the requirement that the calculated result
of a program should not be printed if input validation fails, is often
implicit and many students does not realise that.

4. Test data. The test data the student is using may not expose that there
is a problem with the current structure, e.g. the data set might be so
small that there is only one iteration of the search loop and the result
action is only evaluated once.

The majority of the underlying reasons identified for this problem are
determinants from the concept-based problem category, and we argue that
this problem should be classified primarily as a concept-based problem and
secondarily as a knowledge-based problem.

3.3.7 � badar it – Erroneous arithmetic

Any arithmetic expression that is incorrect with respect to the given as-
signment is counted as erroneous arithmetic. Common occurrences of this
problem is when the student needs to calculate the difference between
two numbers, and neglects that the result might be negative. The student
may realise the problem but fail to find a correct solution, often statically
multiplying by −1 or finding the absolute values of the individual terms
instead of the entire expression. Other occurrences of this problem may be
that the student fails to understand exactly what the numbers represent,
what denominator they have and/or what they count.
We have identified the following plausible underlying reasons:

27

1. Test data. The test data the student is using may not expose that there
is a problem with the arithmetics, e.g. no case where calculating the
difference will give a negative result.

2. Existing environment. The student may not possess the necessary
understanding of the existing environment and fails to see the correct
semantics of a number, e.g. incorrect denominator.

3. Interpretation of specification. The student may not have understood
the specification correctly, e.g. choosing the wrong representation of a
value.

4. Natural language translation. The experience the student has with
arithmetics is likely purely statical and the dynamic behaviour of
arithmetical expressions in a programming language may be chal-
lenging and may make it difficult for the student to translate the
expressions.

The underlying reasons identified for this problem are determinants
from both the concept-based and knowledge-based problem categories,
and we argue that it is uncertain if one of them is more dominant than the
other, and choose to classify this problem as both a concept-based problem
and a knowledge-based problem.

3.3.8 � boolaccum – Accumulate boolean

Instances of this problem are situations where the student has neglected, or
failed to, accumulate a result boolean when performing an operation on a
list of elements. The operation that is performed on each element returns a
boolean value that represents failure or success. This boolean value should
be accumulated by the loop-construct iterating over the list of elements in a
way that detects any failure, see Listing 3.5.

Listing 3.5: Boolean accumulate 3

1 boolean success = true;

2 for(Recipe r: getRecipes()){

3 if(!r.printToFile())

4 success = false;

5 //or the reduced way

6 success = success && r.printToFile();

7 }

8 System.out.println(‘‘Success? ’’ + success);

28

We have identified the following plausible underlying reasons:

1. Existing environment. The student may not realise that the operation
performed on the elements returns a boolean value representing its
success, and fails to realise that there should be an accumulation.

2. Interpretation of specification. The student may not have perceived that
the resulting boolean expression should consider the operations.

3. Specialisation problem. The student may not have been able to express
how to accumulate the boolean correctly.

The majority of the identified underlying reasons are from the knowledge-
based category, (1) and (2), though we argue that (3) is more likely because
the student is syntactically forced to have a boolean return expression in
the method implementation. This should provide the student with a reason
to investigate how that value should be calculated, which should limit the
number of students having (1) and (2) as underlying reasons. We argue
that it is primarily a concept-based problem and secondarily a knowledge-based
problem.

29

30

Chapter 4

Result Analysis

In our study we inspected and annotated the source code of 349 solutions
submitted by the 79 selected students, for the six selected assignments. A
total of 2395 annotations across 920 files. Of these 1185 are meta annotations
that describes if the files:

• do not compile (6�comperr).
• contain methods that are not implemented (5�unsolvprob).
• are not implemented at all (7� notimpl).
• sufficiently solve the problem, or displays sufficient understanding of

how (1�pass).
• do not sufficiently solve the problem (2�fa il).
• are changed in a way that breaks the premise of the assignment (4�chngexer).

We did not have strict requirements for the pass annotation (1�pass), so any
file where the student was able to display how the problem should be solved
to a satisfying degree, was annotated. Even some files that did not compile
(42) was annotated with pass. The pass (1�pass) and fail (2�fa il) annotations
are mutually exclusive. There were only 94 files annotated with fail, and
the rest, 808, was annotated with pass.

There were 1210 problem annotations divided among 52 different an-
notation kinds. Some of these annotations had very few occurrences and
are not necessarily referred to, and if they are, it is in relation to some other
problem that they are relevant for.

4.1 Lazy students?

While we studied the gathered data we noticed that as many as 49 of the 79
students had at least one file annotated with 5�unsolvprob , missing implementation

31

of a method. In total 83 files was annotated with 5�unsolvprob and in 17 files there
were multiple occurrences (i.e. multiple missing methods). In addition 14
students had files that were not implemented at all, 7� notimpl, in total 20 files.
We can only share our suspicions of why there were such a significant part
of the submitted solutions that was not implemented. In our opinion there
are two reasons that seems to be the most plausible.

1. The student may have speculated in how much of the assignment
that were necessary to implement to achieve a passing grade.

2. The student did not possess the knowledge to be able to provide a
solution for the missing parts.

If lazy students (1) was the reason why some of the submitted solutions
were missing parts, we may have reasons to suspect that this may have
been an underlying reason for other problems identified in the student
submitted solutions as well. This especially applies to those situations
where the solution was missing some part, e.g. 40

2� loopcreate (loop instantiation
problem). Though it may be possible that the student would have chosen
to implement the skipped parts if the student had enough experience and
knowledge such that the implementation would require less work and time.

We give this argument to caution the reader that the following analysis
may be affected by this, and to make the reader aware that we did have this
in mind when we performed the analysis.

4.2 Most common problems

In Fig. 4.1 we present a chart of the most common problems among the
students, i.e. those problems that the most students were registered having.
Conditions, overcomplicated solutions, loop-constructs and method calls
are those problems that, by the data we collected, were the most common
problems. In the chart there are also some annotations regarding unnecessary
expressions, statements and placement:

• 10
1�xtravar , unnecessary variable.

• 10
4� predecl, unnecessarily pre-declared variable.

• 30
4�booleql , checking boolean expression for equality with boolean literal.

These three are only indicators that shows that the student may have
some misconception of the semantics or the notional machine, and we have
only gathered them under the idiom problem annotation for convenience. The

32

0 10 20 30 40 50 60

BdryCond

WrngCond

PreDecl

XtraVar

LoopCreate

CmplxCtrls

BoolEql

NoCall

58

55

44

43

31

40

39

37

28

17

17

14

11

2

8

7

#students
Repeated Once

Figure 4.1: The most common problems among the students.

students are quickly rid of the 30
4�booleql and 10
4� predecl misconceptions,

most likely due to good feedback from the teaching assistants, as they are
primarily only a “problem” in semester assignment 1 (and exercise 3 as well
for 10

4� predecl). The occurrences of 10
1�xtravar are more thinly spread across the

assignments, though most frequent in exercise 5 and semester assignment
2. We argue that the most plausible reason for this “problem” is that it is
some remnant of some plan or previous attempt to implement a solution,
and that the student most likely has forgotten the existence of the variable.

Conditional expressions is a concept that our data shows was a big
challenge for many students. The most common kind of conditional expres-
sion problem was incorrect boundary case conditions, 20

7�bdrycond , which
as many as 58 students were registered having problems with. In addition
55 students were registered having trouble with conditions in general,

30
3�wrngcond , that is those that does not fall into a special category (like

boundary case). Most of the students (48) who had troubles with boundary
case conditions also had troubles with conditions in general. Respectively
28 and 17 students were registered with 20

7�bdrycond and 30
3�wrngcond across multiple

assignments.

We registered 40 students that created overcomplicated solutions, 20
2�cmplxctrls

, though only two students created such solutions in multiple assign-
ments. In many cases it is plausible that the reason that these kinds of
solutions are submitted is that the student fears to change something that

33

0 20 40 60 80 100

Ex3

Sem1

Ex5

Sem2

Ex7

Sem3

Percentage of students

Figure 4.2: Students who had parameter passing problems (� wrngassgn, �glblvars,
� argscope, � frmlparam).

seems to work, even though it might be clear that the code segment is very
complicated and/or repetitive. We also suggest that it is plausible that this
is a problem that students have with newly learned concepts, and that with
experience they will learn to apply the concepts properly.

4.3 Parameter passing and references

Our experience in teaching suggested that the concepts of parameter passing
and references would be a significant and common problem in the submitted
student solutions. However this was not the case, and in fact very few
students were registered as having difficulties with parameter passing, and
none were registered having troubles with references. See Fig. 4.2 for the
frequencies of parameter passing problems.

The teaching assistants reported that parameter passing was a hot topic
in their lab sessions. If we consider this in relation to the low frequency
of this problem in the submitted solutions, we may come the conclusion
that the teaching assistants were successfully able to teach the students
this concept. Though there is also the possibility of assistance from other
students.

There is one interesting case though (12
1�parampass), 22 students seem

to have a small misconception regarding how parameter passing works.
In some cases when they write method call statements, they declare an

34

unnecessary variable on the line above the method call with the same name
as the formal parameter of the method. In the last two assignments the
complexity of the domain model increased significantly, which we suggest
is the reason why this problem only occurs in those assignments ()
and why the frequency is high.

We suggest that a reason for the lack of reference problems and the low
frequency of parameter passing problems might be related to the design
of the given assignments. Situations where references could have been a
problem in the assignments were all related to immutable objects like String,
Integer etc.

4.4 Conditions

Problems related to conditional expressions, both in if-sentences and loop-
constructs, was very common among the students, see Fig. 4.3. Semester
assignment 3 was the most difficult assignment given during the course,
and not only did it stress most of the previously learned topics, it also
required the students to implement a total order relation-method (com-
pareTo from the Comparable interface). Almost all, 93.2%, of the selected
students who submitted a solution for this assignment had some trouble
with conditional expressions. If we also take into account the problem of
accumulating a boolean value (30

6� boolaccum), there was only one student who
did not have problems. Exercise 3 and semester assignment 1 both had an
introductory focus on if-sentences and loop-constructs, though the students
were required to interpret, and understand, specifications for these struc-
tures, and instantiate them in the implementation. In these assignments few
students had difficulties and most were able to express correct conditional
expressions. We argue that this may show that the students are able to
identify situations where these structures are required and at least able
to interpret the concrete specifications of the conditions. But when the
specifications and conditions grow more complex in the later assignments
the students experience difficulties.

A large part of the solutions submitted for exercise 5 and semester
assignment 2 also had mistakes related to conditions, respectively 83.3%
and 55.8%. The listed goals of these assignments are respectively Objects
and methods and Classes and objects, but there are few identified problems
related to these – which may suggest that the actual focus of the assignment
was incorrect.

35

0 20 40 60 80 100

Ex3

Sem1

Ex5

Sem2

Ex7

Sem3

Percentage of students

Figure 4.3: Students who had problems with conditional expressions (�bdrycond,
� xtracond, �uglyif , �wrngcond , �almstcrrct).

4.5 Loop constructs

Implementing programs that requires loop constructs is a challenge for
most novices, and bugs are more common in relation with these constructs
than with other common tasks like input, output, syntax/block structure
and overall planning [26]. This is reflected in our results as well, during
the course 82.2% of the selected students had troubles related to loop
constructs, either with the condition or the instantiation of the construct.
The assignments where the most students struggled with loop constructs
was exercise 5 and semester assignment 2 and 3, .

Semester assignment 2 In this assignment 74% of the selected students
that submitted a solution struggled with loop constructs. The focus of this
assignment was Classes and objects but there was a frequent need for loop-
constructs, and the nesting between the provided Java classes was quite deep
for a novice. This may have caused the students to have difficulties when
creating the mental model of how the classes and objects communicate. The
given classes were Client, Recipe, RecipePart and Ingredient, see Fig. 4.4.
A Recipe object has a list of RecipePart objects, which in turn has a specific
Ingredient object associated with it and the Ingredient object has an array
of nutritions. In addition the main-method in the Client class has a list
of Recipe objects. This provides many locations where loop-constructs are
needed to traverse the data structure, and even some where the need is not

36

Recipe

RecipePart
+amount: double

Ingredient
+nutritions: double[]

Client

parts
0..*

recipes
0..*

Figure 4.4: Domain model (UML class diag.) of semester assignment 2.

specified directly, which may explain why the problem is more common in
this assignment than others.

4.6 Method calls

During the course 60.1% of the selected students had misconceptions or
difficulties with method calls. These problems were most common in
semester assignment 3, where 59.3% of the selected students who submitted
a solution had troubles. Most of the problems that the students had were
situations where a necessary method call was missing (28� nocall), which
46.8% of the selected students struggled with. In many of these cases the
students had re-implemented the responsibility of the method by writing a
copy of the method body (presumably unknowing) at the location where
the method call should have been, and thus met the requirements of the
assignment. In other cases the program did not perform the task of the
method, and did not meet the requirements.

There was also other problems related to method calls, though quite rare.
A few students struggled with correctly specifying method calls, where
both syntax and choosing which expressions to pass as arguments (26�stat iccall

and 29� badcall) were problematic. Other cases were more subtle and did not
affect the solution in any way, e.g. repeated calls to observer methods (22�xtracall,

23�unusdval -s and 24�unusdval -o).

4.7 Concept-based problems

If we disregard the annotations that signify unnecessary expressions, state-
ments and placement, then the most common problems, both in occurrences
and the number of students that had them, were those that we described in

37

Ex3 Sem1 Ex5 Sem2 Ex7 Sem3
0

20

40

60

80

100

Assignment

Pe
rc

en
ta

ge
of

st
ud

en
ts

Concept-based Knowledge-based

Figure 4.5: Students with problems from the concept-based and knowledge-
based categories.

our taxonomy, Section 3.3. As mentioned previously there was in total 1210
occurrences of problem annotations, of these 314 was of the unnecessary kind
(described in Section 4.2) – yielding 896 problem occurrences. The most
common problems accounted for 560 of these occurrences, which is more
than half of the problem occurrences. Below we have listed the problem
annotations by the classification specified in Section 3.3 (disregarding the
secondary category).

• Concept-based problems. 20
7�bdrycond, 30
3�wrngcond , 28� nocall, 20
4� wrnggrpng, 30
6� boolaccum, 25� badar it.

• Knowledge-based problems. 30
3�wrngcond , 40
2� loopcreate, 20
2�cmplxctrls, 28� nocall, 25� badar it.

Three of these problems (30
3�wrngcond , 28� nocall, 25� badar it) are in both categories, and

thus 61 students are associated with both categories – 66 students in total
are associated with both. Individually there are 70 students associated with
each category. In Fig. 4.5 we present, for each assignment, the percentage of
students who had problems from the two categories. Notice that for most
assignments, all except for exercise 3 and semester assignment 1, there were
more students who had concept-based problems, and there was slightly more
occurrences of problems from this category as well, 435 against 358. Based
on the results that we have presented it is not possible to conclude that
one of the categories is more important than the other, though that is not

38

our intention either. What we can conclude is that the concept-based problem
category is an important one, and that improving the environment that the
student has available to discover and learn about these mistakes likely will
yield better results.

4.8 Conclusion

The research goals that we set in Section 1.2 were:

1. Are some problems more common than others?

2. Are parameter passing and reference problems as common as our
experience suggested?

3. How do problems relate to misconceptions and missing knowledge?

We have found that some problems are more common than others, and
that the two most common problems are related to conditional expressions,

20
7�bdrycond and 30
3�wrngcond . These are also most prone to repetition.

Parameter passing and references are not as common as we expected, at
least not for the assignments that we inspected in this study. Though we
do suspect that this may be because the assignments are not particularly
challenging regarding these subjects, and that it would be a more common
problem if the assignments had given this more attention. However more
attention on these subjects may translate to less attention on other subjects.

To relate problems to misconceptions and missing knowledge we used
the taxonomy we described in Section 2.3. The category concept-based
problems cover problems that are related to misconceptions, and the category
knowledge-based problems cover those related to missing knowledge. We
found that there were many occurrences of problems from both categories,
that they are both important and that we cannot argue that one is more
important than the other. This confirms our hypothesis that a significant
part of the problems are related to misconceptions.

39

40

Chapter 5

Tool Assistance – Javis

In Section 4.7 we concluded that a significant part of the problems identified
in the students submitted solutions were concept-based problems. An impor-
tant property of the problems that we classify as concept-based, is that the
students themselves can observe and identify them using the correct tech-
niques. Du Boulay et al. [10] suggest that a concrete tool that students can
observe their mental model (notional machine) with, is useful. Ma et al. [17]
found evidence suggesting that a teaching model based on visualisation can
help students develop correct mental models of programming concepts.

Experienced programmers use a combination of unit tests, debuggers
and manual tracing of code to identify and fix bugs of this sort [24]. For
many students learning their first programming language these techniques
are a significant challenge, and at a time when learning the language syntax
and semantics is enough of a challenge on its own. “Novices are frequently
poor at tracing/tracking code”, Perkins et. al. [23].

In this chapter we specify and describe a tool, Javis1, that we are de-
veloping, which is designed specifically to assist students learning Java
as their first programming language. With Javis, we aim to provide the
user with an easy way to debug and visualise the execution and evaluation
of Java programs. We emphasise that it is aimed at students learning the
elementary language features, and that it will not be feature complete with
the Java Virtual Machine, nor with a full-featured debugger.

5.1 Requirements

In order for Javis to be accessible to all potential users it is not to be tied to any
specific platform nor require an installation, as most computers available

1http://www.javis-tool.org

41

at educational institutions have limited user access rights. Typically many
introductory Java programs communicate with the user through a command
line interface (CLI), this may be an overwhelming interface for students. To
encourage use of Javis, from the very beginning, it must be intuitive to use,
have a small learning curve and offer a less frightening interface than a CLI.

One of the most important features of a debugger is breakpoints and step
by step execution of statements, Javis provides this in a simpler form. We
believe that step by step evaluation of statements, and their sub-expressions,
without the use of breakpoints will provide a user interface that is easier to
understand.

The lack of the breakpoint feature may in some situations lead to tedious
interaction with the tool. To remedy this Javis should provide the user
with the ability to adjust the precision of the step by step evaluation, i.e.
which kinds of expressions to visualise or not to visualise the evaluation
of. In addition the user should be able to execute individual methods, and
be prompted in an intuitive way to supply the arguments for the called
method. Allen et al. [1] suggest this ability to call individual methods,
without writing a block of code for it in the main-method, may prove to be
a valuable feature for beginner programmers.

Some of the basic language features of Java will not be adequately visu-
alised by step by step evaluation and highlighting, e.g. parameter passing,
scopes, method calls, flow of loop constructs, variables and references. If
these are not properly visualised the users will be left relying on their own
conception of how they work. The visualisation of correct semantics is one
of the primary intentions of Javis, and these language features must be
visualised in a satisfactory way.

List of requirements:

1. Non-functional requirements:

(a) Must have a simple and intuitive user interface.

(b) Must require no special knowledge to use.

(c) Must be platform (o/s, software etc.) independent.

(d) Must require no installation.

(e) Only need to provide an entry-level support of the Java language
features.

2. Functional requirements:

(a) Must provide a step by step evaluation of expressions and sub-
expressions.

42

i. The user should be able to set the precision of the evaluation
visualisation.

(b) Must provide a view for text output through System.out, and
input through System.in.

(c) The user must be able to provide argument expressions for method
calls (e.g. the String array for the main-method).

(d) Should provide the possibility of calling individual methods,
without executing the main-method.

(e) There should be an intuitive visualisation of special language
features.

i. Parameter passing
ii. Scopes

iii. Method calls
iv. Flow of loop-constructs
v. Variables, distinction between primitive and reference values.

5.2 Implementation

We are developing Javis as a web-application written in Dart [11], and
the source code is available at GitHub2. A Dart web application requires
no installation for the user and is platform independent, which conforms
to the requirements 1c and 1d. Dart is a language that is currently still in
development, by Google, and targets modern desktop and mobile browsers.
Dart web applications can run natively in a Dart virtual machine or be
compiled to JavaScript. The Dart to JavaScript compiler is aware of the
differences between the JavaScript engines in use today and takes that
into account when compiling. A significant benefit of using a client-side
language like Dart is that it requires little resources to provide the service.
There are other languages that offer similar properties as Dart, such as
TypeScript3 and CoffeeScript4, but the benefits between them are heavily
debated and there is little literature on the subject – the choice is merely left
to preference. The user interface depends only on HTML5 (Fig. 5.1).

2http://github.com/mapster/JavaEvaluator
3http://www.typescriptlang.org
4http://coffeescript.org

43

Figure 5.1: Javis with a Java program loaded.

5.2.1 Java evaluation

We have developed our own Java evaluator in Dart for Javis. Developing
our own evaluator provides us with full access to the entire environment
and stack of the executing Java program. The requirements that we have
set for Javis specifies that it should visualise scopes, parameter passing,
method calls, and provide a step by step evaluation and the possibility
of calling individual methods (requirements 2e, 2a and 2d), which all are
difficult to achieve without this access.

A significant challenge with implementing our own Java evaluator
is achieving complete compliance with the Oracle JVM. However Javis
only needs to support entry-level Java language features (requirement 1e).
Additionally we can argue that it is not necessarily important to comply
completely with the Java Specification, as long as the language construct
semantics are the same. For example, the representation of primitive number
types will in most situations not be an important requirement, as the
evaluator is only intended to execute novice programs and the difference of
representation will not matter, except if the student or an exercise is testing

44

the limits of for example the float type. We have however designed the
evaluator in such a way that it is possible to achieve this requirement later
if needed.

Security issues, and the no installation requirement (1d), also influenced
our decision to develop our own evaluator. If Javis were to depend on a JVM
to debug student submitted Java programs, it would require either using a
client-side or a server-side JVM. Server-side execution of unverified and
untrusted source code, that potentially is malicious, could result in severe
security threats for the service provider. Executing untrusted data on an
interpreter is first on OWASP’s5 2013 Top 10 list of critical web application
security flaws. Client-side execution means providing a Java Applet in the
web-browser, but that requires installation of the Java plug-in.

5.2.2 Abstract syntax tree

Javis relies on the Java Compiler Tree API [20] to parse and build the Abstract
Syntax Tree (AST) used by the evaluator. We have developed a Java Web
Service that through the visitor pattern provided by the Compiler Tree API
transforms Java Source Code to an AST represented as JSON [7]. The source
code of this service is available at GitHub6. This API provides us with an
AST that is guaranteed to comply with the Java Language Specification [21],
and any compile time errors and warnings will be available. Our evaluator
has no type safety mechanisms, and relies entirely on this service.

5.3 Tool Design

The simplified domain model (class diagram) in Fig. 5.2 illustrates the
most central classes of Javis, and their dependencies. To provide a general
overview of Javis we have left out many important classes that represents
the sub-elements of the environment, execution and the abstract syntax
tree. The Program class represents the top-level of the AST of the submitted
Java program, and has a list of CompilationUnit objects, which represents
Java files. Each kind of node in the AST has a corresponding class in
our AST representation. The objects in the AST representation are not
changed during an execution, and can be used for multiple executions
without rebuilding. The Runner class is the connection between the user
interface and the execution of the Java program. It is initially responsible for

5https://www.owasp.org/index.php/Top 10 2013-A1-Injection
6http://github.com/mapster/StaticAnalysis

45

Figure 5.2: Simplified domain model (UML class diag.) of Javis

setting up the environment and loading the submitted classes, and during
the execution it passes statements fetched from the environment to the
evaluator. Method calls triggers loading of statements into the statement
queue in the environment, which for all Java programs initially is a call
to the main-method. The Environment class needs an association with the
evaluator to be able to instantiate new objects of classes, this is because
it needs to evaluate both the instance variables with initialisers and the
constructor statements. The Evaluator class in turn has an association with
the environment so that it can look up the identifiers and member selects that
denotes method calls, variables etc.

5.3.1 Design concepts

In this section we describe important concepts in Java, and how we have
represented them in Javis.

Namespace

Both Java packages and Java classes are namespaces, both represented
internally by their own classes, that adheres to the following rules. Package
names are given in a hierarchical manner such that a package may contain
other packages, as well as classes. Classes may however only contain

46

definitions of other classes. The levels of the hierarchy are separated with
the period character, e.g. the ArrayList class belongs to the java.utilpackage
and has the fully qualified name java.util.ArrayList. Each member in a
namespace must have a distinct name within that namespace, e.g. there
cannot exist both a class and a package named String in the same package.
Compilation units (Java source files) that do not declare a package belongs
to the default package. Members of the default package cannot be referenced
outside that package since the package has no name.

Identifier

An identifier is a node in the AST that represents a lookup in the current
namespace and scope. The identifier have different meanings in different
contexts, and may be a lookup for a variable, method, class etc. A new
object-node may use an identifier to denote the class it is to create an instance
of, this class must be available in the current namespace. Similarly a method
call-node may use an Identifier to denote the method to call, this method
must also be in the current namespace. And last but not least an identifier is
in the most common case a lookup for a variable.

Member Select

A member select is a node in the AST that represents a lookup into another
namespace or scope. The node consists of two parts, the owner (or parent)
and the member. The owner can be defined by either a member select or an
identifier, but the member must be an identifier. A fully qualified class name
used in a new object-statement is an example of a member select, that in many
cases are trees of member select statements. The member select have different
meanings in different contexts, and may be a lookup to instance variables
or methods on an object, static variables or methods for a class, a class in a
package hierarchy etc.

Scope

The scope term denotes the context where the identifier of an entity is available
for lookup. For example the scope of a variable declared in a method body
is the part of the method-body that lexically follows the declaration. This
variable will also be available in any sub-scope of the method-body, that
lexically follows the declaration, e.g. the then-block of an if-statement.

A compilation unit may contain import declarations that denote, by
a fully qualified name, a class that is made available in the scope of the

47

unit. It is also possible to declare an import that makes all the members of a
package available in the scope, except for packages, e.g. import java.util.*;.
In addition a third kind of import declaration exist, static import. These
declarations make static members of a class available in the scope. It is
however important to note that any member made available through
import declarations are only available inside the scope of the compilation
unit.

In the description of Scope stack we describe the internal representation
of scopes.

Scope stack

The scope stack is our representation of how nested scopes make out the
complete scope for the next statement to be evaluated. In Fig. 5.3 the
different gradients represent the different scopes, and the darker the deeper
it is nested. For each scope in the stack all the brighter scopes are available.
This should be familiar for most programmers. There are however, different
kinds of scopes that follow different rules. For example, it is allowed to
declare variables in method scopes that overshadow class level variables,
but it is not allowed to declare variables in inner block scopes of method
scopes (e.g. if blocks) that overshadows those declared in the method scope.

public class Test {
 static int a = 30;

 static void function(int b){
 int c = 5;
 if(true){
 int d = 3;
 }
 }
}

Figure 5.3: Scope stack example

Call stack

The call stack is our representation of the stack of active methods. Every
action in a Java program is somehow initialised by a method, with the
main-method at the root. Method-call statements place a new method-body
onto the stack. Each method placed onto the stack has its own scope stack
associated with it. For example a static method has its parent class as root

48

of the scope stack, which makes any static variables and methods in that
class available, second it has a scope for the method-body which initially
contains all the formal parameter variables for the method, initialised with
the arguments passed by the method call.

5.3.2 Evaluation

In this section we describe in detail how the evaluation is performed by
Javis, and how it is represented internally. The class diagram of Javis in
Fig. 5.2 may be helpful when reading this.

Evaluation of a step is triggered by a click event on the step button in
the user interface, which the step() method of the UserInterface class is
connected to. The method performs the tasks necessary to update the view
of the user interface, and pass the control to the step()method in the Runner
instance. The Runner instance then calls the popStatement()method in the
Environment instance, and then passes the returned value to a call to the
eval()method in the Evaluator instance.

Listing 5.1: EvalTree pseudo-code

1 class EvalTree {

2 List subExprs;

3 List evaledExprs;

4 Function effectMethod;

5

6 dynamic execute(){

7 while(not subExprs.empty and

8 subExprs.first is Literal)

9 evaledExprs.add(subExprs.removeFirst())

10

11 if(not subExprs.empty){

12 subExprs.first = subExprs.first.execute();

13 if(subExprs.first is not EvalTree)

14 evaledExprs.add(subExprs.removeFirst());

15

16 return this;

17 }

18 return effectMethod(evaledExprs);

19 }

20 }

The eval() method accepts any statement, expression or literal node
from the AST and pattern matches it on the node type. Literal nodes

49

node type: primitive type
 value: int

node type: variable
 declaration

node type: identifier
 value: number

node type: binary operator
 value: plus

node type: int literal
 value: 5

node type: int literal
 value: 3

le
ft
 o
pe
ra
nd

right operand

ty
pe

initialiser

name

Figure 5.4: AST of int number = 5 + 3;

are directly converted to the internal value representation and returned.
For statement and expression nodes the Evaluator creates an internal
intermediary representation of the node’s expression tree using the EvalTree
class (Listing 5.1). EvalTree has three field variables, subExprs, evaledExprs
and effectMethod. Where subExprs is a list of non evaluated sub-expressions,
and evaledExprs is a list of evaluated sub-expressions. The effectMethod
is a Dart function closure that performs the task/effect of the statement or
expression that an EvalTree object represents, e.g. if a variable declaration
is represented then the method declares that variable in the environment.
The execute()method performs the actual evaluation, with the first task
of evaluating the elements in the subExprs list and moving them to the
evaledExprs list. Any literal nodes in the subExprs list is moved directly to
the evaledExprs list, without regarding it as a step. When the subExprs list
is empty, it calls the effectMethod closure with the evaledExprs list as the
argument. An EvalTree object may require multiple steps, and will return
itself until the evaluation is completed.

A concrete example where a Java program is loaded into Javis where the
next statement in the statement queue of the environment is int number = 5 + 3;
becomes as illustrated in Fig. 5.4. Only the variable declaration node and
it’s initialiser node will be represented as EvalTree objects.

1. Step button click event.

(a) The statement is removed from the queue and passed to the
eval()method.

(b) An EvalTree object is created to represent the variable declara-
tion, with a Dart function closure that declares a variable in the

50

environment with the name given by the child node name, and
the child node initialiser as the only element in the subExprs list.

(c) execute() is called on the EvalTree object, which has the initialiser
node in the subExprs list.

(d) The eval() method is called with the initialiser node as the
argument.

(e) An EvalTree object is created to represent the binary operator node,
with a Dart function closure that adds the operands and returns
the sum, and the operand child nodes in the subExprs list.

(f) execute() is called on the object, which has literal nodes in the
subExprs list, these are immediately moved to the evaledExprs
list.

(g) The effectMethod closure is called with the evaledExprs list as
argument, and it’s return value (8) is returned.

(h) Back in the execute()method of the variable declaration EvalTree
object, the return value of the initialiser object is moved from the
subExprs list to the evaledExprs list.

(i) Control returns to the user interface.

2. Second step button click event.

(a) Evaluation of the variable declaration object continues, and
execute() is called.

(b) The subExprs list is now empty, and the effectMethod closure is
called with the evaledExprs list as argument.

(c) The variable number is declared in the environment with the
value 8.

(d) Control returns to the user interface.

5.4 Visualisation Examples

In this section we show some illustrations that Javis provides, or will
provide, for the learning students.

5.4.1 Step by step evaluation

In Fig. 5.5 we illustrate the step by step evaluation that Javis provide. The
illustration is of a simple Java program that only has one relevant scope

51

and no method calls, except for the initial main-method call. For more
complex programs Javis provides a view that presents the entire scope stack
of the method currently on the top of the call stack. The scope stacks for
any other methods on the call stack are available for the user to expand
as well. In the figure we have only included the evaluation of the first
occurring assignment x = 5;, and left out the two subsequent ones in order
to avoid repetition (step 4 and 10). By highlighting, Javis clearly visualise
the evaluation of each sub-expression in the expression tree of the current
statement. The result of the evaluation (of each expression) is presented to
the right of the current statement in a distinct style to clearly visualise that
it is a result of an evaluation, and to prevent the user from confusing it with
the actual statement. If the expression is a variable then the corresponding
identifier is highlighted in the scope view to the right. In the next step the
result of the evaluation replaces the expression, again in a distinct style.
This replacement is performed for any kind of expression, except for literals.
When Javis has successfully completed the evaluation of a statement and
moves on to the next, the altered statement is replaced with the original.

52

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = x * 3;
 int z = 3 + 5 * (x + y);
 }
}

main()
x: 5

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = x * 3;
 int z = 3 + 5 * (x + y);
 }
}

main()
x: 5

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = 5 * 3;
 int z = 3 + 5 * (x + y);
 }
}

main()
x: 5
y: 15

5

15

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = x * 3;
 int z = 3 + 5 * (x + y);
 }
}

main()
x: 5
y: 15

5

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = x * 3;
 int z = 3 + 5 * (5 + y);
 }
}

main()
x: 5
y: 15

15

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = x * 3;
 int z = 3 + 5 * (5 + 15);
 }
}

main()
x: 5
y: 15

20

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = x * 3;
 int z = 3 + 5 * 20;
 }
}

main()
x: 5
y: 15

100

public class Test {
 public static void main(String[] args){
 int x = 5;
 int y = x * 3;
 int z = 3 + 100;
 }
}

main()
x: 5
y: 15
z: 103103

Step 1

Step 2

Step 3

Step 5

Step 6

Step 7

Step 8

Step 9

Figure 5.5: Example of step by step evaluation.

5.4.2 Nested scopes

Fig. 5.6 illustrate how Javis visualises the scopes of nested blocks. In step 1
the variable outer is declared in the scope of the main() method, to help
illustrate how the nested scopes are visualised. In step 2 the condition
of the if-statement evaluates to true, the then-block is entered and a new

53

public class Test {
 public static void main(String[] args){
 int outer = 4;
 if(true){
 int inner = 5;
 }
 }
}

main()

Step 1

outer: 4

public class Test {
 public static void main(String[] args){
 int outer = 4;
 if(true){
 int inner = 5;
 }
 }
}

main()

Step 2

outer: 4

public class Test {
 public static void main(String[] args){
 int outer = 4;
 if(true){
 int inner = 5;
 }
 }
}

main()

Step 3

outer: 4
inner: 5

Figure 5.6: Nested scope example

block scope is put on the scope stack (visualised by the line below the outer
identifier). The variable inner is declared in step 3 and is displayed in the
nested scope in the scope view.

5.4.3 Parameter passing

In Fig. 5.7 we illustrate how we have planned that Javis will visualise
parameter passing for method calls. First, step 1, the tool visualise evaluation
of all, if any, arguments in the method call statement. When all the arguments
are evaluated the method call is evaluated and the corresponding method is
highlighted. In step 3 the visualisation of the actual parameter passing begins.
In turn, stepwise, each formal parameter is highlighted for evaluation, an
arrow is drawn between the argument and the formal parameter, and a
corresponding identifier is listed in the scope view. The two following steps
illustrate a statement that requires look up of the formal parameter in the
environment.

5.5 Related Work

There exists several systems and tools that have similar goals and/or provide
similar functionality to Javis. Among these systems BlueJ [13] and DrJava [1]
is perhaps the most relevant ones.

54

public class Test {
 public static void main(String[] args){
 f(5);
 }
 void static f(int a){
 int x = a;
 }
}

main()

Step 2

public class Test {
 public static void main(String[] args){
 f(5);
 }
 void static f(int a){
 int x = a;
 }
}

main()

Step 3

f()
a: 5

+

public class Test {
 public static void main(String[] args){
 f(2+3);
 }
 void static f(int a){
 int x = a;
 }
}

main()

Step 4

f()
a: 5
x: 5

+

5

public class Test {
 public static void main(String[] args){
 f(2+3);
 }
 void static f(int a){
 int x = a;
 }
}

main()

Step 1

5

Figure 5.7: Example of parameter passing

BlueJ is an integrated development environment designed for teaching
and learning object-oriented programming. The IDE provides a Unified
Modelling Language (UML) class diagram that visualise the application
structure, direct method calls from the user interface and a breakpoint
dependent debugger. We believe that BlueJ’s user interface may be too
complicated for many students, as there a many different modules to
understand how to use and on top of the primary goal that is learning the
Java programming language, they are required to learn the semantics of
UML. The debugger only provides a stepwise evaluation of statements, not
the entire expression tree as Javis provide, and has poor visualisation of the
connected scopes.

DrJava is a programming environment for Java that has an integrated
Java interpreter (interactions pane). The interpreter provides a read-eval-
print loop (REPL) interface with Java. Through this interface the user is
able to create Java expressions and statements that directly access and use
the Java classes, and their members (methods and variables), currently in
development (requires compilation).

55

5.6 Conclusion

Javis is targeted at students learning Java as their first programming lan-
guage, with little or no experience with programming and using complicated
software. Understanding why a program segment does not work as in-
tended, and where it fails, is not an easy task for these unexperienced
students. We believe that the assistance our tool provides is valuable and
that it may reduce the frequency of many of the concept-based problems. The
availability that a web application features and our focus on usability and
simplicity is important for the success of Javis.

56

Chapter 6

Proposal: Grading by Annotation

In this chapter we specify a grading by annotation scheme that we propose
as a tool for teaching assistants. We have developed it based on our work
in this thesis.

During the research that we performed for this thesis we gained expe-
rience and knowledge about what kinds of problems that do occur, and
we identified what kinds of situations that require special kinds of anno-
tations. At our department the teaching assistants grade assignments by
reading and testing the submitted solutions. The feedback to the students
depends on the type of assignment. For exercises, the students are given
a pass or a fail, with a short comment that describes any problems. For
semester assignments the teaching assistants fill out a form where they
for each of the requirements of the assignment give a score between zero
and the maximum attainable score, there is also a comment field for each
requirement. The detail of the feedback for exercise assignments is quite
low, and it may require a lot of text to describe what exactly is wrong and
where the problem is located. For semester assignments the feedback may
be a lot more specific regarding location, depending on how specific the
requirement is formulated.

With our proposed scheme the teaching assistants annotate the exact
locations of the problems in the submitted solutions, with annotations that
describes the problems. This way the students will have an easier task of
connecting the feedback with the problems. It also makes it significantly
easier for the teaching assistants to give feedback to the students, and
especially regarding lesser problems that with a large workload might be
ignored. Though in some situations a comment is necessary to provide
adequate feedback, this is also supported by our scheme.

An important feature of this scheme is that the graded solutions can
be scanned for annotation occurrences, and a database can be built from

57

the results. This extracted data can be studied by the teachers or used for
research. There are many things that the teachers can learn by studying
this data, e.g. they can identify the most common problems of the previous
assignment and adjust their lectures and future assignments accordingly.

6.1 Annotation Syntax

The syntax we have chosen for our annotation scheme supports a comma
separated list of annotations and an optional comment for each location.
In addition it is possible to include the optional brace parentheses to mark
segments of code that the annotation describes. Listing 6.1 includes all the
possible syntax elements, notice the brace closure at line 3. The two optional
elements do not depend on each other, and one or the other, both or none
can be left out.

In this proposal we have used numbers to represent the identities of
annotations, and in the comma separated list of annotations these numbers
are inserted for <anno-id>. Other syntax schemes can be used as identifiers
as well, e.g. named annotations.

Listing 6.1: Syntax of grading by annotation

1 //#[<anno-id>,...](<comment >){

2 <code segment>

3 //#}

In Listing 6.2 we have given a list of two annotation identifiers, and have
not included any of the optional elements. The semantics of this annotation
is that the file has no implementation for any of the assigned requirements,
and that the part of the assignment that is this file, is considered as failed.
Notice that both normal and brace parentheses are not present. The bare
minimum of an annotation is a list with one annotation identifier.

Listing 6.2: Annotation without comment and braces

1 //#[3,5]

2 class Recipe {

3 ...

4 }

58

6.2 Grading

We have three types of annotations in our scheme, file annotations, problem
annotations and meta annotations. A combination of these three should be
used when grading and providing feedback to the students. In addition we
suggest that the teaching assistants provide comments, using the syntax of
our scheme, whenever it is necessary in order to provide the best possible
feedback.

The list of annotations in this proposal is not final, and we do recommend
that the teaching assistants in collaboration with the lecturer extend it with
more annotations when necessary. We emphasise that any addition should
be discussed, and that an updated list should be kept available at all times.
You will notice that the identifier we have given to the annotations follow a
pattern, file annotations have numbers ranging from 1 to 7, meta annotations
from 20 to 28 and each of the different problem annotation categories has
its own x00-x99 interval. We have chosen to number the annotations in
this way to make it easy to differentiate the different annotation categories,
and we have chosen a large interval so that it is possible to add additional
annotations while keeping the category meaning.

6.2.1 File annotations

File annotations describes files and their contents, with the primary purpose
of stating if the file contains adequately good implementations to pass or
not. We have divided the file annotations into two types, grade and meta. In
Table 6.1 we have listed the different annotations with a short description
for each. Each file of a submitted solution that the student should have
implemented something in, must have a grade annotation. The file and
its contents can be further described using the meta annotations listed
in the table. We recommend that all these annotations, except for 4-non-
implemented-method, be placed near the top of the file, and preferably on
the line above the public class of the file. The 4-non-implemented-method
annotation should, if possible, be placed on the line above any methods it
applies to.

The meta annotations provide a more detailed description about submit-
ted files, e.g. if some method is not implemented, contains compile errors
etc. Combining grade and meta annotations may often provide valuable
information, especially related to research. A good example is Fail combined
with File not implemented, which clearly state that the reason that it was
graded with fail is because nothing was implemented, and not some other
reason like that it was a bad implementation.

59

Grade
1 Pass The file solves the given problem suffi-

ciently.
2 Almost fail The file barely solves the given problem,

and is almost marked as fail.
3 Fail The file does not solve the given prob-

lem sufficiently.
Meta

4 Non implemented method The following method has not been im-
plemented.

5 File not implemented This file contains no implementations,
except for those provided with the as-
signment.

6 Changed assignment The structure that was given as a
premise with the assignment has been
changed. (e.g. the parameter list of a
method has been changed)

7 Compile error The file does not compile.

Table 6.1: File annotations

6.2.2 Meta annotations

Meta annotations are used to further describe the nature of a problem, and
must always be connected with a problem annotation when used. In Table 6.2
we have provided a list of the annotations that we found necessary in
the work we did for this thesis. An example of how meta annotations are
intended to be used is a situation where a conditional expression is incorrect
because the wrong logical connective was used, which should be annotated
with 201-incorrect condition and 22-incorrect logic (see Table 6.4 and Table 6.2).

6.2.3 Problem annotations

Problem annotations mark occurrences of mistakes, possible misconceptions,
uncovered requirements etc. We have created a list of annotations based on
our work in this thesis, and our previous educational experience. They are
categorised based on what they relate to:

1. Variables - Table 6.3

2. Conditions - Table 6.4

60

20 Incorrect arithmetics Arithmetical expression that is does not
solve the problem.

21 Wrong operator Use an incorrect operator.
22 Incorrect logic Incorrect because of the logic applied.
23 Missing case Incorrect because it does not cover all cases.
24 Unnecessary Unnecessary to provide a correct solution.
25 Breaking Causes the program to break the solution.
26 Repeating Repetition that should not be here.
27 Reference/object

equality
Used reference equality instead of object
equality, or vice versa.

28 Static/instance
confusion

Used static access instead of instance access,
or vice versa.

Table 6.2: Meta annotations

3. Method calls - Table 6.5

4. Scopes - Table 6.6

5. Control structures - Table 6.7

The annotations are intended to describe entire problems, and it should
not be necessary to use multiple annotations to describe the same problem.
Situations where multiple problems are present will occur, and when
grading one should attempt to see if there is a primary problem, and not
focus on the minor ones.

Listing 6.3: Multiple problems 7

1 void removeDuplicates(){

2 //#[204]

3 for(int i = 0; i <= size; i++){

4 int j = i + 1;

5 //#[508]{

6 //#[201]

7 if(parts[i] == parts[j]){

8 parts[i].weight += parts[j].weight;

9 remove(j);

10 }

11 //#}

12 }

13 }

61

101 Unnecessary variable Declared an unnecessary variable.
102 Incorrect type Declared an incorrect or less suitable type

for a variable.
103 Wrong location Declared a variable in a wrong, or less suit-

able, location.
104 Bad name Declared a variable with a name that does

not fit, or badly describes, its purpose.
105 Incorrect assignment Incorrect assignment to a variable.
106 Should have referred

to a variable
The statement or expression contains a sub-
expression that is the same as one previ-
ously assigned to a variable.

Table 6.3: Variable problem annotations

201 Incorrect condition The conditional expression is incorrect.
202 Almost correct condition The conditional expression is almost

correct.
203 Unnecessary condition The conditional expression, or sub-

expression, is unnecessary.
204 Boundary case condition Incorrect boundary case expression.

(e.g. less-than-or-equal to operated in-
stead of strictly-less-than).

Table 6.4: Conditional expression problem annotations

Listing 6.3 is such a situation where multiple problems are present,
but there is one larger problem that overshadows the others. The example
is extracted from a student submitted solution, that was inspected in the
research we presented previously in this thesis. A short description and a
class diagram of the assignment is given in Section 4.5. The requirement
given in the assignment of the method removeDuplicates() is that it should
combine and remove any duplicate RecipePart objects in the list parts,
i.e. if they have the same ingredient then their weight should be added
and one of the parts removed. The submitted solution contains multiple
problems, incorrect boundary case condition on line 3, incorrect condition
on line 7 and most important, a missing nested loop-construct. It is likely
that the student did not understand how to nest loop-constructs to remove
all the duplicates, and that the presence of the two incorrect conditions is a
consequence of that. We recommend that the teaching assistants discuss
their choices during the semester, and attempt to find a common reasoning.

62

301 Repeated method call This method call is unnecessarily repeated.
302 Unused return value The returned value of this method call, to

an observer-method, is not assigned to a
variable, and does not affect the outcome
of the program.

303 Incorrect method call The method call is incorrect or incorrectly
specified. (e.g. it is a call to the wrong
method, contains incorrect arguments etc.)

304 Missing method call There should be a method call at this loca-
tion.

Table 6.5: Method call problem annotations

6.3 Collecting the Data

One of the most important reasons to choose this grading scheme is to
be able to study what problems the students have, how frequent they are,
correlations between the problems etc. To do this the graded solutions must
be scanned for occurrences of annotations, and the results gathered in a
database. In the study we performed in this thesis we saved additional data
with the annotation identifier:

• Assignment identifier.

• Student identifier (Anonymous if necessary).

• Filename (requires that all submitted solutions have the exact same
name for all the files).

• Line number of mistake.

This level of detail allowed us to analyse the data in many interesting ways,
see Chapter 4, and there are many more possibilities.

To be able to collect all these details we kept a folder structure, with one
folder for each assignment that contained one folder for each student. Then
we developed a simple BASH script that scanned the files for annotations,
and through the folder structure created SQL insert statements with all the
details listed above. Additionally we suggest that the tool checks that the
scanned files adheres to the specified rules by checking that:

• the file has a pass or fail annotation.

• that any file with the fail annotation also has at least one other
annotation, to guarantee feedback to the student.

63

401 Wrong variable Referring to a variable from the wrong
namespace or scope, e.g. assignment to a
formal parameter instead of a field variable
etc.

402 Global variable Declared a global variable to pass a value
across namespaces and/or scopes.

403 Non-existing variable Referring to a variable not available in the
current scope, e.g. undeclared, declared
in a child scope, declared in the calling
scope, formal parameter of a method in
the method call’s scope etc.

404 Parameter passing Misconception of parameter passing se-
mantics, e.g. referring to a variable passed
as an argument instead of the formal pa-
rameter it was passed to, declaring a vari-
able with the same name as a formal pa-
rameter etc.

Table 6.6: Scope problem annotations

• that mutually exclusive annotations do not occur together.

• that all annotations that are used, are declared.

64

501 Complicated
structure

The following control structure is overly
complicated, difficult to understand or
does not resemble a solution that would
solve the assigned problem etc.

502 Incorrect grouping Incorrect placement of braces, incorrectly
nested structures, incorrectly connected
structures (if-else) etc.

503 Missing if-sentence The following program segment should be
guarded by an if-sentence.

504 Breaking if-sentence The following program segment should
not be guarded by an if-sentence.

505 Loop/if confusion The following program segment has a loop-
construct instead of an if-sentence, or vice
versa.

506 Manually solved a
loop problem

The following manually solved program
segment should be solved using a loop-
construct.

507 Incorrect use of a loop The following program segment should
not be solved using a loop-construct.

508 Loop instantiation
problem

The following problem should be solved
with a loop, and it is either missing or in-
correctly instantiated.

509 Missing statement or
structure

There should be control statement or struc-
ture here.

Table 6.7: Control structure problem annotations

65

66

Chapter 7

Conclusion

7.1 Status Summary

The primary goals for this thesis were:

1. Develop a Java visualisation tool to assist students in their learning
process.

2. Study concrete student problems, in order to be able to target the tool
1 at real-world problems faced by students.

3. Design a grading by annotation scheme, in order to support 2 and as
an aid in future grading.

We reached goal 2 by performing an empirical study, where we inspected
349 student submitted solutions, and annotated any problems we found.
The annotated solutions was scanned and the results was inserted into a
database for study. Among the students who submitted a solution that we
inspected, we found that:

• 60% struggled with method calls in general.

• 47% had solutions that were missing necessary method calls in their
solutions.

• 82% had troubles related to loop constructs.

• 93% had incorrect conditional expressions.

• contrary to our initial hypothesis, none had mistakes related to refer-
ences.

67

• 20% had solutions that had mistakes related to parameter passing.

We defined a problem taxonomy where problems are classified as
knowledge-based or concept-based by looking at the plausible underlying
reasons for the problems. Knowledge-based problems are those that can be
related to lack of knowledge or understanding, and concept-based problems
are those that can be related to observable misconceptions of constructs and
how they affect the computer. By classifying the problems that we found
were the most common, we could conclude that a significant part of the
students’ problems were concept-based, hence observable. We argue that
with the right aid while programming, the students can be able to find and
solve these problems themselves.

Based on the experience and knowledge we gained during the work
for goal 2 we developed a grading by annotation scheme, and we consider
goal 3 as reached. It is designed to be used in introductory programming
courses as the primary channel for feedback to the students, and as a tool
to collect data about the problems the students have. Through this scheme
the teachers can collect valuable feedback of how their lectures affect the
students’ performance on assignments and if the assignments have the
correct focus.

Goal 1 is not finished, but many of the sub goals are reached and we plan
to reach most of the other sub goals before the WCRE conference of 20131.
We do have an implementation that can evaluate all the basic language
features, except for loop constructs. It is primarily visualisation features
that are missing.

7.2 Future Work

In this section we briefly explore the possibilities and future work of both
Javis and the grading by annotation scheme.

7.2.1 Javis

The tool and the AST transformation web service are both at a prototype
stage. In this section, we describe the future work for these components.

• AST transformation web service.

– Restructure as a servlet [22] that can be deployed in a Java Servlet
container, e.g. Tomcat [3], GlassFish [19].

1http://wcre.wikidot.com/2013

68

– Support transformation of all Java language constructs.

– Improve documentation.

– Handle compiler errors.

• Javis.

– Implement all the specified requirements.

– Improve documentation.

– Improve compliance with the Java Language Specification [21].

– Add support for editing submitted source code.

– Add support for assigning values to variables of running pro-
grams.

– Implement visualisation of references.

We encourage others to study if there are advantages of using Javis as
an aid while learning Java.

7.2.2 Grading by annotation

We believe that our scheme is ready to be used in a course. Different
institutions have different ways of teaching introductory programming,
and we recommend any users of the scheme to adapt, refine and improve it
to fit with the requirements of their situation. During the semester, when the
grading of an assignment is complete, this scheme provides the educators
with the possibility to study the problems that the students had, and we
recommend that this advantage is used actively. The educators can analyse
the problems of an assignment, and then adapt the following lectures and
assignments to focus on these challenges – actively checking if this improves
the situation.

We also encourage research into student problems using the data made
available through the use of this scheme. It would be interesting to study
the results of our study in relation to other semesters of INF100 at our
department, and equivalent courses at other institutions as well. There may
also exist interesting correlations that can be studied pertaining student
problems, we were unfortunately not able to do this, since our data set is
quite small.

69

70

Appendix A

Student problems

ID Name Description

1�pass Pass File that solves the given problem, or
displays sufficient understanding of how.

2�fa il Fail File that does not solve the given problem,
nor display sufficient understanding of
how.

3�poorundr Poor understanding Locations or files where the student
displays a poor understanding of either the
problem or the code written.

4�chngexer Changed the
assignment

The student has changed (or removed)
parts of pre-defined code for the
assignment, i.e. removing methods to
in-line them, changed parameter list etc.

5�unsolvprob Unsolved problem
part

Missing implementation of a method, or
large segment, of the assigned problem.

6�comperr Compile error File that does not compile.

7� notimpl Not implemented File that is not implemented at all.

8�hardcode Hard-coded solution Part of a problem solved by circumventing
the specified way to solve the problem by
writing a fixed solution.

9�synerr Syntax error File or location with syntax error.

21�badop Wrong/non-existing
operator

Usage of a non-existing or wrong operator
for that problem.

71

ID Name Description
22�xtracall Repeated method

calls
Unnecessary repeated method calls, first
without using the return value, followed by
another call where the return value is used
(e.g. assigned).

23�unusdval -s Unused return value
(static)

Calls a static method without using the
returned value.

24�unusdval -o Unused return value
(object)

Calls a method on an immutable object (e.g.
String) without using the return value.

25� badar it Erroneous arithmetic Arithmetic that does not solve the given
problem.

26�stat iccall Instance method in a
static way

Attempted to call an instance method in a
static way, with the object in question as an
additional argument.

27� noret Missing return
statement

Method without return statements at all
possible paths.

28� nocall Missing method
call(s)

Lack of understanding of which method
calls that should have been called at that
location.

29� badcall Incorrectly specified
method call

Lack of understanding how to correctly
specify a method call.

30� typeprom Error due to type
promotion

Lack of understanding how automatic type
promotion affects the results of an
expression.
Variables

10
1�xtravar Unnecessary Declared unnecessary variable(s)

10
2� badtype Less suitable type Declared a variable with a less suitable

type, e.g. double to hold an integer value.

10
3�unusdvar Unused Declared unused variable(s)

10
4� predecl Pre-declared Unnecessarily pre-declared variables.

10
5� xtraassgn Unnecessary

assignment
Unnecessary assignment to a variable.

10
6� loopcntrs Multiple loop

counters
Declared multiple loop counter variables
for non-nested loops in the same scope.

10
7� uglyassgn Breaking assignment Assignment that breaks the intended

functionality.

72

ID Name Description

10
9�shortname One-letter variable

names
Using many variables with one-letter
names.

11
0� rptexpr Restating expression

stored in variable
Copy-paste of expression assigned to a
variable instead of referring to the variable

11
1� wrngassgn Assignment to local

variable
Assigned a value to a local variable with
the intention of affecting a variable in the
calling scope, e.g. assigning a value to a
parameter variable with the same name as a
variable in the calling scope.

11
2�glblvars Global variables Declaring global static variables to access

values from the calling scope instead of
using the intended parameter transmission.

11
3� wrngscope - i Inner scope variables Refers to variables from an inner scope

11
4�arraysntx Primitive/array

confusion
Refers to a variable using array syntax or to
an array without the correct syntax.

11
5�callsntx Variable/method

confusion
Refers to a variable using method call
syntax.

11
6� wrngscope -s Sum variable Declares the sum variable in the wrong

scope, i.e. declaring it inside the scope of
the loop iterating over an array.

11
7�wrngtype Wrong type Declared a variable of the wrong type.

11
8� wrngassgn Assignment Lack of understanding of what value to

assign to a variable

11
9� argscope Calling scope

variable
Refers (illegally) to the variable from the
calling scope that was used as an argument,
instead of referring to the formal parameter
variable.

12
0�undclvar Undeclared variable Refers to undeclared variable.

12
1�parampass Same name as formal

parameter
Declared a local variable with the same
name as a formal parameter variable of the
method called in one of the following lines.

12
2� frmlparam Non-existing formal

parameter
Attempts to pass a non-existing variable
with the same name as a formal parameter
variable of the method being called as an
argument, instead of the existing variable.

73

ID Name Description
12

3� selfassgn Assignment of self Assigns a variable or array position to itself,
or an expression that was just assigned.

Control structures

20
2�cmplxctrls Unnecessarily

complicated
Using control structures in a very
complicated way.

20
3�i f /loopconf Loop/if confusion Used a loop instead of an if-sentence, or

vice versa.

20
4� wrnggrpng Incorrect grouping Incorrect placement of braces, incorrectly

nested, incorrect if-else combination.

20
6� manloop Manual loop problem Manually solved a loop problem, in most

cases this also counts as a hard-coded
solution.

20
7�bdrycond Boundary case

condition
Incorrect boundary case condition, applies
to conditions of both if-sentences and loops.

20
8�wrngloop Incorrect use of a loop Attempted to solve a problem with a loop,

that has to be solved in another way.
If statements

30
1� xtracond Unnecessary

condition
A condition or if-sentence that does not
affect the results of the solution.

30
2�uglyif Breaking sentence An if-sentence that breaks the behaviour of

the solution.

30
3�wrngcond Incorrect condition An incorrect condition that breaks the

solution.

30
4�booleql Boolean equality Conditional expression that is checked for

equality with a boolean literal.

30
5�almstcrrct Almost correct Some parts of the conditional expression is
correct.

30
6� boolaccum Accumulate boolean Does not accumulate the boolean value as

the problem description specifies, i.e. check
if all parts of a loop was successful.

Loop statements

40
1�unscryloop Unnecessary loop Used a loop where it should not be used,

without breaking the results.

40
2� loopcreate Loop instantiation
problem

The student has not understood how to
solve the problem using a loop, and left it
unsolved.

74

Appendix B

Annotation occurences

Annotation Total occurrences Students Files Students repeated

1�pass 808 79 808 75

2�fa il 94 43 94 16

3�poorundr 26 16 22 2

4�chngexer 9 9 9 0

5�unsolvprob 103 46 83 18

6�comperr 79 33 79 11

7� notimpl 20 14 20 3

8�hardcode 31 16 29 2

9�synerr 46 15 22 3

21�badop 7 7 7 0

22�xtracall 9 8 8 0

23�unusdval -s 4 4 4 0

24�unusdval -o 8 7 8 0

25� badar it 45 29 43 9

26�stat iccall 1 1 1 0

27� noret 5 4 4 0

28� nocall 75 37 52 7

29� badcall 35 17 23 4

30� typeprom 12 11 11 0

10
1�xtravar 81 43 76 14

10
2� badtype 10 8 9 0

10
3�unusdvar 3 3 3 0

10
4� predecl 99 44 97 17

10
5� xtraassgn 10 10 10 0

75

Annotation Total occurrences Students Files Students repeated

10
6� loopcntrs 13 13 13 0

10
7� uglyassgn 20 14 16 1

10
9�shortname 25 20 24 0

11
0� rptexpr 4 4 4 0

11
1� wrngassgn 20 12 14 2

11
2�glblvars 1 1 1 0

11
3� wrngscope - i 4 3 3 0

11
4�arraysntx 8 5 7 1

11
5�callsntx 2 2 2 0

11
6� wrngscope -s 1 1 1 0

11
7�wrngtype 5 5 5 0

11
8� wrngassgn 8 5 7 1

11
9� argscope 1 1 1 0

12
0�undclvar 7 5 5 0

12
1�parampass 27 22 27 4

12
2� frmlparam 2 2 2 0

12
3� selfassgn 11 9 10 0

20
2�cmplxctrls 53 40 48 2

20
3�i f /loopconf 7 4 4 0

20
4� wrnggrpng 39 30 36 3

20
6� manloop 27 16 27 0

20
7�bdrycond 119 58 100 28

20
8�wrngloop 7 6 6 0

30
1� xtracond 14 11 12 1

30
2�uglyif 3 3 3 0

30
3�wrngcond 113 55 80 17

30
4�booleql 69 39 49 8

30
5�almstcrrct 16 15 16 1

30
6� boolaccum 44 29 30 0

40
1�unscryloop 28 19 22 3

40
2� loopcreate 72 42 62 11

76

Bibliography

[1] E. Allen, R. Cartwright, and B. Stoler. DrJava: a lightweight pedagogic
environment for Java. SIGCSE Bull., 34(1):137–141, Feb. 2002.

[2] J. Anderson. The Architecture of Cognition. Cognitive science series.
Lawrence Erlbaum Associates, 1996.

[3] Apache Software Foundation. Apache Tomcat, 2013.

[4] F. Bailie, M. Courtney, K. Murray, R. Schiaffino, and S. Tuohy. Objects
first - does it work? J. Comput. Sci. Coll., 19(2):303–305, Dec. 2003.

[5] P. Bayman and R. E. Mayer. A diagnosis of beginning programmers’
misconceptions of basic programming statements. Commun. ACM,
26(9):677–679, Sept. 1983.

[6] R. Brooks. Towards a theory of the comprehension of computer
programs. International Journal of Man-Machine Studies, 18(6):543–554,
1983.

[7] D. Crockford. The application/json Media Type for JavaScript Object
Notation (JSON). Technical Report RFC 4627, Network Working Group,
2006.

[8] N. Dale. Content and Emphasis in CS1. The SIGCSE Bulletin, 37(4):69–
73, 2005.

[9] P. J. Denning and A. McGettrick. Recentering computer science.
Commun. ACM, 48(11):15–19, Nov. 2005.

[10] B. du Boulay. Some difficulties of learning to program. In E. Soloway
and J. Spohrer, editors, Studying the novice programmer, pages 283–299,
1989.

[11] Google, Inc. The Dart programming language, July 2013.

77

[12] W. L. Johnson, E. Soloway, B. Cutler, and S. Draper. Bug catalogue: I.
Technical Report 286, Department of Computer Science, Yale University,
New Haven, CT, 1983.

[13] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ system
and its pedagogy. Computer Science Education, 13(4):249–268, 2003.

[14] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen. A study of the diffi-
culties of novice programmers. Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education -
ITiCSE ’05, page 14, 2005.

[15] M. Linn and J. Dalbey. Cognitive consequences of programming
instruction. In E. Soloway and J. Spohrer, editors, Studying the novice
programmer, pages 57–81, 1989.

[16] L. Ma, J. Ferguson, M. Roper, and M. Wood. Investigating the viability
of mental models held by novice programmers. SIGCSE Bull., 39(1):499–
503, Mar. 2007.

[17] L. Ma, J. D. Ferguson, M. Roper, I. Ross, and M. Wood. Using cognitive
conflict and visualisation to improve mental models held by novice
programmers. SIGCSE Bull., 40(1):342–346, Mar. 2008.

[18] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D.
Kolikant, C. Laxer, L. Thomas, I. Utting, and T. Wilusz. A multi-national,
multi-institutional study of assessment of programming skills of first-
year cs students. SIGCSE Bull., 33(4):125–180, Dec. 2001.

[19] Oracle, Inc. GlassFish, 2013.

[20] Oracle, Inc. Java Compiler Tree API, 2013.

[21] Oracle, Inc. Java Language Specification, 2013.

[22] Oracle, Inc. Java Servlet Technology, 2013.

[23] D. N. Perkins, C. Hancock, R. Hobbs, F. Martin, and R. Simmons.
Conditions of learning in novice programmers. Journal of Educational
Computing Research, 2(1):37–55, 1986.

[24] A. Robins, J. Rountree, and N. Rountree. Learning and teaching
programming: A review and discussion. Computer Science Education,
pages 37–41, April 2003.

78

[25] C. Schulte and J. Bennedsen. What do teachers teach in introduc-
tory programming? Proceedings of the 2006 international workshop on
Computing education research - ICER ’06, page 17, 2006.

[26] J. Spohrer, E. Soloway, and E. Pope. A goal/plan analysis of buggy
Pascal programs. In E. Soloway and J. Spohrer, editors, Studying the
novice programmer, pages 355–399, 1989.

[27] J. C. Spohrer and E. Soloway. Novice mistakes: are the folk wisdoms
correct? Communications of the ACM, 29(7):624–632, July 1986.

79

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Research Questions
	Related Work
	Thesis Structure and Outline
	Outline

	Learning Programming
	Programming Skills
	The Challenges
	Student Problem Taxonomy
	Concept-based problems
	Knowledge-based problems

	INF100 Course

	Study Design and Problem Taxonomy
	Study Description
	Data Set
	Problem Taxonomy – Most common problems
	18condwrng – Wrong condition
	18condbdry – Boundary case condition
	18createloop – Loop instantiation problem
	18ctrlscmplx – Unnecessarily complicated
	18callno – Missing method call(s)
	18grpngwrng – Incorrect grouping
	18aritbad – Erroneous arithmetic
	18accumbool – Accumulate boolean

	Result Analysis
	Lazy students?
	Most common problems
	Parameter passing and references
	Conditions
	Loop constructs
	Method calls
	Concept-based problems
	Conclusion

	Tool Assistance – Javis
	Requirements
	Implementation
	Java evaluation
	Abstract syntax tree

	Tool Design
	Design concepts
	Evaluation

	Visualisation Examples
	Step by step evaluation
	Nested scopes
	Parameter passing

	Related Work
	Conclusion

	Proposal: Grading by Annotation
	Annotation Syntax
	Grading
	File annotations
	Meta annotations
	Problem annotations

	Collecting the Data

	Conclusion
	Status Summary
	Future Work
	Javis
	Grading by annotation

	Student problems
	Annotation occurences
	Bibliography

