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ii



Abstract

This master thesis focuses on collective behaviour of the Quark Gluon Plasma,
created at the Large Hadron Collider at CERN.

We calculate analytically and semi-analytically the transverse momen-
tum and rapidity dependence of the flow components v1 and v2. The most
important result here is that the global flow component v1 is predicted to no
longer peak at negative rapidities for the LHC energies, due to a rotational
effect from the initial angular momentum of the system. However, this will
be overshadowed by initial state fluctuations of the center of mass rapid-
ity, that appear as the positions of the nucleons fluctuate in the transverse
plane. This smoothing out by initial state fluctuations is then included in
the expressions of v1 and v2.

Then we investigate how the Time Projection Chamber (TPC) and the
Zero Degree Calorimeter (ZDC) detector limitations will distort the mea-
sures of the center of mass rapidity yCM and pseudorapidity ηCM . We show
how it is possible to simulate the system after a 1.38 + 1.38 A·GeV Pb + Pb
collision with an impact parameter b = 0.5bmax. The post-collision particles
were assumed to follow a pion-Jüttner distribution, emitted from a single
or several thermal sources at temperature T = 0.1 GeV. The TPC detector
limitation of pseudorapidity η < 0.9 is then taken into account. We also
model the ZDC detector response by implementing in our simulation that
the ZDC can only detect single neutrons, as charged fragments are deflected
by magnetic fields. The TPC and ZDC will then report a yCM that is only a
fraction of what would be detected by an ideal Large Array Detector (LAD).
The conclusion is that the detector distortions have to be taken into account
to avoid underestimating the yCM . We also provide a graph showing the
expected yZDCCM vs ηTPCCM as this could later be compared to experimental
data.
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Glossary

b impact parameter
η pseudorapidity
φ azimuth angle
p⊥ transverse momentum
T temperature
v1 global flow component
v2 elliptic flow component
y rapidity

LAD Large Acceptance Detector
LHC Large Hadron Collider
QGP Quark Gluon Plasma
TPC Time Projection Chamber
ZDC Zero Degree Calorimeter
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Chapter 1

Introduction

Significance of the subject

As theoretical physics becomes more and more specialized, it is more im-
portant than ever to not lose track of the role every small bit of research
plays in the big picture. This thesis focuses on the collective behaviour
of quark-gluon-plasma (QGP) created in a heavy-ion collision in the Large
Hadron Collider (LHC) at CERN, Switzerland. This experiment recreates
the properties of the Universe between 10−12s to 10−6s after the Big Bang.
A better understanding of the behaviour of the QGP as we find it in LHC
will therefore give us precious information about how the Universe acted in
the very very beginning of time.

Quarks and gluons are elementary particles that together make up hadronic
matter. Baryons are hadrons that are made up of three quarks, like the ev-
eryday proton or neutron, whereas mesons are made up of one quark and one
antiquark. Under ambient temperature and pressure, the quarks and gluons
are held tightly together by the strong nuclear force, which is hundred times
stronger than the electromagnetic force and as much as 1040 times stronger
than the Gravitational Force. However, the Strong Nuclear Force is re-
stricted to subatomic distances, thus confining quarks and gluons together
in hadrons. Due to a characteristic of this force called the “Asymptotic
Freedom”, the strength of this force diminishes when the energy increases
[1]. Thanks to the extreme energy density created in a heavy ion collision
at the LHC, these tight bounds are broken and the free quarks and gluons
float around each other in a plasma state. After a short span of time known
as the freeze-out time, these elementary particles recombine and there are
no more free quarks or gluons.

This recombination happens so fast that it is impossible to measure the
existence and the properties of the plasma directly. Therefore the experi-
ments are designed so that they measure collective properties of the matter
after the freeze-out time, and we then have to calculate indirectly how the
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2 CHAPTER 1. INTRODUCTION

plasma-state has influenced these final observables.

It is possible to work with these collisions in a number of ways, attacking
them from different angles. The theoretical physics team at University of
Bergen uses the hydrodynamic approach, and it is this approach that I used
in my master project. As will be further explained in chapter 2 concerning
the theoretical framework of the hydrodynamic model, we use certain con-
servation laws and approximate distributions to predict the behaviour of the
QGP. My contribution has been to program this in a computer program,
and thus simulate the QGP after the collision. From this simulation I have
retracted certain variables that can be compared directly to the observables
measured in the experiments. In order to make these data fit as good as
possible, I have to take into account that the detectors at ALICE are not
perfect and their imperfection will influence the measures.

Structure of the thesis

The first part of my thesis is an explanation of the theoretical fundamentals
of the physics behind high energy heavy energy ion collisions. I will discuss
the basis of the hydrodynamical model, and the assumptions that are made
when modelling the system.

Secondly I will give a brief description of the LHC collider experiment,
and introduce the Time Projection Chamber (TPC) and the Zero Degree
Calorimeter (ZDC) in the ALICE detector. This is imperative for under-
standing the following simulations.

Then I will explain the significance of the collective flow components v1
and v2, and the controversy which appears between theory and experiment.
Using the notion of initial state fluctuations I will try to explain the apparent
discrepancy between the theoretical predictions of the rapidity dependence
of the v1, and the actual measurements at the LHC. This part of my thesis is
based on a talk I gave at the TORIC Network workshop, Crete, September
2011, which again was based on the article Fluid dynamical prediction of
changed v1 flow at energies available at the LHC [2], published by my super-
visor in 2011. I will also use arguments from the article Flow Components
and initial state CM fluctuations [3], published by my supervisor in 2012
and of which I was a co-author.

After this I will describe the method I used in order to simulate the
measures of center of mass rapidity by the TPC and ZDC at the LHC, in
order to evaluate to what extent detector properties will distort the mea-
sures. In my simulations I will depart from the Jüttner distribution of an
ideal pion gas, impose the detector limitations and compare the result with
what would have been measured by an Large Acceptance Detector (LAD).
This part is mainly based on a still unpublished article I co-wrote with my
supervisor in the spring 2012 [4].
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In the end I will summarize the knowledge I have aspired during my year
as a master student, and suggest areas of further investigation.

I have also included in the annex the publication where I am a co-author,
as well as the source code for my simulation.
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Chapter 2

Theoretical fundamentals

This chapter is based on the textbook Relativistic Heavy Ion Collisions [5] by
my advisor Prof. László P. Csernai. Here I will give a general presentation
of the kinetic theory upon which we have based our calculations. I will first
introduce the necessary notations and conventions, and then I will explain
why we have chosen to use a hydrodynamical approach to the QGP. The
main focus of this chapter, is to show how we can start with the Jüttner
distribution function for an ideal pion gas, apply the three fundamental
conservation laws across a freeze out (FO) hypersurface, and in the end
deduct the characteristics of the QGP.

2.1 Notations and conventions

In order to understand the rest of this thesis it is necessary to be familiar
with some basic definitions from the field of high energy physics.

2.1.1 Natural units

We have chosen to work with a natural unit system where c = h̄ = 1

2.1.2 Contravariant and covariant 4-vectors

As the energies of the system increase, it is mandatory to use a relativistic
approach, and we therefore use a 4-vector to describe each particle, with 3
spatial and one time coordinate:

Contravariant 4-vector: xν = (t, ~r),

Contravariant 4-velocity: uν = (γ, γ~v)

Covariant 4-vector: xν = (t,−~r)
Covariant 4-velocity: uν = (γ,−γ~v),

with γ = 1√
1−~v2 , so that uνuν = 1

5



6 CHAPTER 2. THEORETICAL FUNDAMENTALS

To pass from a contravariant to a covariant 4-vector and vice versa, we
use the metric tensor defined as gνµ = gνµ = diag(1,−1,−1,−1), so that
xν = gνµxν .

Many of the measurables after a heavy ion collision can be calculated
based on the momentum of the particles. In a 4-vector convention the 4-
momentum of a particle is pν = (p0, ~p) = (E, ~p), normalized as

pνpν =
∑

ν

(pνpν) = (p0)2 − ~p2 = m2

2.1.3 Rapidity

The rapidity is calculated from the components of the momentum and ve-
locity parallel to the beam of the accelerator, as well as the total energy,
using this formula:

y =
1

2
log

E + Pz
E − Pz

= arctan vz

This quantity is approximately similar to the velocity at non-relativistic
velocities. As the energies of the system increase, the velocity can only
approach c, while the rapidity can take all values from − inf to + inf. This
is illustrated by figure 2.1. Due to the mathematical proprieties of the
log operator, the rapidities of two systems are additive, and the Lorentz
transformation of rapidity y1 in system 1 and y2 in system 2 is y1 + y2 of
the total system!

Figure 2.1: The rapidity vs the component of the velocity parallel to the
beam [5]

As the energy E of the system can be difficult to measure directly, we
also use the pseudorapidity η which is calculated from the longitudinal mo-
mentum and total momentum of the system.

η =
1

2
log
|P |+ Pz
|P | − Pz

For high energies where the kinetic energy is much greater than the rest
mass of the projectile, we assume η ≈ y.
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2.1.4 Particle 4-current

The particle 4-current Nµ is a macroscopic quantity that can be calculated
from the distribution function, and is in other words the 4-vector resulting
from combining the particle 4-flow n(x) =

∫
d3pf(x, p) and the particle

4-current ~j(x) =
∫
d3p ~p

p0
f(x, p)

Nµ(x) =

∫
d3p

p0
pµf(x, p) = (n(x),~j(x))

2.1.5 Energy momentum tensor

The energy momentum tensor T νµ includes the rest mass of the particle as
well as the kinetic energy, but does not take into account the action of an
external field.

Tµν =

∫
d3p

p0
pµpνf(x, p)

Its components are the following: T 00 (energy density), 1
cT

i0 (momentum
density), cT 0i (energy flow) and finally the momentum flow tensor T ik with
i and k taking the values 1, 2, 3.

If use e and P for the energy and pressure, then for a perfect fluid in the
Local Rest (LR) frame:

Tµν = (e+ P )uµuν − Pgµν

2.2 Hydrodynamical model

There are several ways in which it is possible to model the quark gluon
plasma. One well established approach is the non-perturbative Lattice
Quantum Chromodynamics. However, due to the complexity of the sys-
tem involved in the calculation, the Lattice-QCD simulations tend to be
overwhelmingly heavy and can only be thoroughly performed using power-
ful supercomputers.

Therefore we chose to use the hydrodynamical approach when modelling
the QGP. The idea behind is to treat the nuclear matter as a continuous
medium assumed in local thermodynamic equilibrium, and thus use the
equation of motion for ideal fluid dynamics in order to describe the evolution
of the system. The QGP is then treated as a fluid in motion, with a certain
viscosity, compressibility etc.

2.2.1 Relativistic Boltzmann Transport Equation

The relativistic Boltzmann Transport Equation (RBTE) is used to describe
the statistical distribution of particles in a non-equilibrium statistical sys-
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tem at relativistic energies. It describes the particle conservation in a in-
finitesimal volume centred around x, and a particle with momentum p and
distribution function f that collides with a particle with momentum p1 and
distribution function f1. The momentum and distribution function after the
collision is labelled with a ′.

pµδµf(x, p) =
1

2

∫
d3p1
p01

d3p′
p′0

d3p′1
p′01

[f ′f ′1W (p′, p′1|p, p1)− ff1W (p, p1|p′, p′1)]

Here δmu is the 4-derivative, and the distribution function f will be
further investigated in the next section.

2.2.2 Distribution function of a pion-Jüttner gas

For a heterogeneous system with small gradients, we use the Jüttner dis-
tribution as a zeroth order approximation for perfect fluid dynamics, also
called ”Relativistic Boltzmann” distribution, for a particle at point x:

fJuttner(p) =
1

(2π h̄)3
exp

µ(x)− pνuν
T

where uν is the velocity of the system and y0 is the boost rapidity of the
source. µ is the chemical potential and T is the temperature. For an ideal
pion gas the chemical potential µ equals zero.

2.2.3 Freeze out (FO) hypersurface

Due to the high pressure in the colliding fireball, the system will expand.
When the particles reach the detector after a collision, they are independent,
as the system has expanded until the gas is so diluted that there is no
mutual interaction between the particles. This break up or freeze out process
is continuous, but when simulating the collision it is more convenient to
construct an artificial freeze out hypersurface in the 4-dimensional space
time. This hypersurface can be timelike, and its contravariant normal dσu

then points in the time-direction. It can also be spacelike with a co-variant
normal, and the freeze out process will therefore happen simultaneously at
different places. In the following we will consider a timelike hypersurface.
This is illustrated in figure 2.2.

Before reaching the freeze out hypersurface, the particles are interacting
according to the laws of fluid dynamics. After the FO, the particles no longer
interact, and they can be modelled as an ideal gas. It is also possible to
create a more advanced transition, calculating the temperature etc. at each
point in space-time, and then impose the FO hypersurface at for example a
critical temperature.
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Figure 2.2: From [6]. a) shows the FO hypersurface in a 2-dimensional space-
time with a timelike normal. b) shows the timelike and spacelike normal
vectors at a space-time point xµ. c) shows a space-like normal vector.

At the FO instant the particles in the interacting gas all have a cer-
tain thermal distribution which has to be accounted with and added to the
velocity components of the ideal gas after the transition.

2.2.4 Conservation laws across FO

There are certain conservation laws that need to be followed across the FO
hypersurface. The particle 4-current Nµ needs to be conserved, as well as
the energy-momentum tensor Tµν (see definitions in sections 2.1.4 and 2.1.5).

In order to verify if the FO hypersurface is physically possible, we cal-
culate the entropy on each side, and if the entropy is decreasing we need to
chose a new FO hypersurface.

[Nµdσµ] = 0 [Tµνdσµ] = 0 dS ≥ 0

If the proprieties of the interacting fluid is known, then these conser-
vation laws produce a set of equations that can be used to calculate the
properties of the ideal non interacting gas after the transition, like temper-
ature T , chemical potential µ and elliptic flow.
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Figure 2.3: The FO hypersurface in a 2D space-time.

2.3 Particle in Cell - PIC Hydrodynamical model

The Particle in Cell (PIC) model is used as a tool for numerical simulation
of the collision. The system is divided in many cells, where all the particles
inside one cell i are randomly generated to follow the distribution function
f(xi, p). As the system evolves and expands, the number of cells filled with
matter increases. Since each marker particle carries a fixed charge, the total
charge of the system will be conserved during the expansion.

2.4 Impact parameter b and centrality

The impact parameter is defined as the distance from the center of the target
to the center of the projectile (or the distance between the centers of the
two projectiles). If b = 0 then the collision is perfectly head on and 100%
central. If b = bmax then the projectiles did not collide. Collision with b
close to bmax are called peripheral collisions. See figure 2.4 for illustration.
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Figure 2.4: Taken from [5]. The impact parameter is perpendicular to the
beam direction. P is the projectile, T is the target.

2.5 Center of mass rapidity fluctuations ∆yCM

2.5.1 Physical explanation

By initial state fluctuations we refer to the event by event fluctuations of the
participant nucleon number from projectile and target. These fluctuations
may arise from two different mechanisms [2]:

The first is that the particles do not have a fixed position in the partic-
ipant or transverse plane. Therefore, two similar collisions of Pb+Pb with
the same impact parameter, may have different number of nucleons in the
participant zone, as the positions of the nucleons are not fixed.

Another reason for the fluctuations may be that even though the projec-
tile nucleons are located in the participant zone, they may avoid colliding
with target nucleons, and will therefore become spectators instead of par-
ticipants.

It is not obvious how to model the initial state. One assumption about
our system that will greatly influence the resulting center of mass rapidity
fluctuations is to which degree we can consider it to be tightly bound. Is
it possible to assume that the extra momentum in one direction or the
other may be shared by all the participants that are closely connected, or
should we rather let the non-paired nuclei carry this momentum ”on their
own”, without affecting the rest of the participants? If we chose the latter,
then there will be a less important change in the collective rapidity. In the
following of this thesis, we assume a tightly bound system, as this agrees
more with the experimental results for the Pb+Pb reaction at the LHC
energy of 1.38 + 1.38 A·TeV.
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2.5.2 Calculation of ∆yCM

Assuming a tightly bound system and applying the conservation of momen-
tum, we find that the fluctuating number of participants is connected to the
fluctuating center of mass rapidity by the following equation:

NpartmN sinh(∆yCM ) = ∆NpartmN sinh(y0)

HereNpart is the number of particles participating in the collision, whereas
mN is the mass of each nucleon. ∆yCM is the center of mass rapidity fluc-
tuation, and y0 is the rapidity of the beam. Rearranging this equation we
get:

∆yCM = arcsinh[sinh(y0)∆Npart/Npart] (2.1)

This equation shows that the center of mass rapidity fluctuations will
increase for peripheral collisions, where fewer particles will take part in the
collision. At these large impact parameters the flow asymmetry is very
strong, at the same time there are few participants nucleons. ∆yCM will
also increase with increasing beam rapidities y0, as there will be a stronger
impact and each nucleon will carry more momentum.

For a Pb+Pb reaction at b = 0.7bmax collision at the LHC energy of
1.38 + 1.38 A·TeV, assuming a tightly bound system, we can make the
following calculation [18]:

If one nucleon from the projectile nucleus is not absorbed into the partic-
ipant matter, then ∆yCM = 1. For b = 0.7bmax, the number of participant
nucleons is Npart = 32.7 + 32.7 = 65.4. For a symmetric collision, the lab
frame beam rapidity is y0 ≈ 8. We insert this information into equation 2.1
and find ∆yCM = 3.8.

This calculation gives an idea of the importance of understanding and
taking into account the initial state fluctuations. We will come back to this
analysis in chapters 4 and 5.

2.6 Measurables

When modelling the system particle for particle, the measurables are directly
calculated from the ideal gas distribution function after the FO hypersurface.
Important measurables are the rapidity distribution of the particles, the
transverse momentum spectra, the collective flow (ie the elliptic flow) and
the average transverse momentum [5].

Chapter 4 of this thesis will discuss more profoundly the rapidity distri-
bution of the particles as well as the collective flow components.



Chapter 3

Experimental setup

3.1 Large Hadron Collider (LHC) and ALICE at
CERN

The Large Hadron Collider (LHC) particle accelerator was built by CERN
(the European Organisation for Nuclear Research) between 1998 and 2008,
and is designed to investigate the conditions in the universe just after the
Big Bang [7]. This is done by colliding two beams of heavy ions at high
energies. There are in total 6 detectors connected to this experiment, and
this thesis discusses the ALICE detector which focuses on the quark-gluon-
plasma state of matter. ALICE stands for A Large Ion Collider Experiment
and consists of several sub-detectors, that can be seen in figure 3.1. We
will focus on the Time Projection Chamber (TPC) and on the Zero Degree
Calorimeter (ZDC), and on the Pb + Pb collision at 1.38 +1.38 A·TeV.

13
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Figure 3.1: A schematic view of the ALICE detector, image from the ALICE
collaboration.

3.2 Time Projection Chamber (TPC)

The TPC is designed to track charged particles and identify the different
kind of particles that are created during the collision. As the particle mul-
tiplicity can be very high in a LHC energy Pb + Pb collision, the TPC has
to be able to trace many particles simultaneously. It functions in many way
as a bubble chamber, where charged particles will ionize gas atoms in the
chamber, and the liberated electrons will be attracted towards the anodes
of the detector. Here the small electrical signal will be amplified, and read
out by 557 568 pads in the multi-wire proportional chambers (MWPC) in
the cathode plane [8].

There are two restrictions to the TPC detector. Firstly, it only detects
charged particles, as neutral particles will not ionize the atoms in the gas
chamber. Secondly, it can only measure particles with η < 0.9.
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Figure 3.2: Schematic drawing of the rapidity acceptance range of the TPC
detector

3.3 Zero Degree Calorimeters (ZDC) detector prop-
erties

The ZDC detectors are located along the beam line at 115 meters from
the interaction point, as can be seen in figure 3.1. They detect the energy
of the spectator nucleons, and this information is used to determine the
overlap region and to determine if the collision was peripheral or central [9].
It consists of heavy metal plates made of tungsten for detecting neutrons
(and brass for detecting protons), surrounded by a matrix of quartz fibres.
When neutrons (or protons) hit the brass or tungsten, a shower of particles is
emitted, and crossing a fibre this shower will created light, which is converted
to an electrical signal using a photomultiplier at the end of the fibre [9]. The
amplitude of this signal is proportional to the energy carried by the detected
spectators.

The major restriction of the ZDC is that it only detects uncharged neu-
trons. Charged particles will be deflected away from beam direction by
magnetic fields. The fraction of the spectators that are single neutrons de-
pends on the impact parameter of the collision, and the ZDC detected energy
will only be proportional to the spectator energy for central collisions. Ref.
[10] studies this relation in detail.
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Chapter 4

Collective flow components
v1 and v2

This chapter is based on the article Flow components and initial state CM
fluctuations [3] published by my supervisor in 2012, and of which I was an
co-author, and on the talk Change of v1 flow at LHC due to rotation that I
gave at the at the TORIC network workshop at Crete in September 2011,
which again was based on my supervisors article from 2011, Fluid dynamical
prediction of changed v1 flow at energies available at the LHC [2].

The constituent quark number scaling with the flow measurements indi-
cates that the collective flow is a result of interactions in the QGP phase, and
thus the freeze out happens before the hadronisation of the quarks and glu-
ons [11]. The measurement of the collective flow components will therefore
give valuable information about the properties of the quark gluon plasma.

This flow is evidenced by the asymmetric azimuthal distribution around
the beam axis:

d3N

dydptdφ
=

1

2π

d2N

dydpt
[1 + 2v1(y, pt) cos(φ)+ 2v2(y, pt) cos(2φ) + · · · ]

Here y is the rapidity and pt is the transverse momentum. φ designates
the azimuth angle in the transverse plane with respect to impact parameter
vector, ~b [2]. This is illustrated in figure 4.1.

The functions v1, v2 etc. are the collective flow components. In a perfect
fluid with no interaction between its components, after a perfectly symmetric
collision, all these collective flow components should equal zero. When the
flow components differ from zero, they give us valuable information about
the properties of the QGP.

In this chapter we will first find the general analytic expressions for the
p⊥ and y dependence of a flow component vn. Then we will apply these

17
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Figure 4.1: φ is the azimuth angle in the transverse plane with respect to
the impact parameter vector, ~b

results on the elliptic flow component v2 and the global flow component v1.
After that we will introduce the notion of initial state fluctuations from the
nucleon positions in the transverse plane, and we will discuss the effect this
will have on the flow component. In the end we introduce a new function vs1
that can be used to separate the contribution of random fluctuations from
the global flow.

4.1 Flow component calculation

Here we will show how it is possible to use the distribution function of the
system after freeze out, together with the Cooper-Frye formula in order to
calculate the flow parameters. The first part of the calculations is based on
the arguments of [11].

In order to take the kinematic average of a quantity named C(~x, ~p), we
do the following integrals:

〈C〉 =

∫
d3x

∫
d3p f(~x, ~p) C(~x, ~p)

∫
d3x

∫
d3p f(~x, ~p)

, (4.1)

here f(~x, ~p) is the distribution function for one particle as introduced in
chapter 1. The global flow components v1 and v2 are defined by the following
cinematic averages:

v2 =

〈
p2x − p2y
p2⊥

〉
(4.2)
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v1 =

〈
px
p⊥

〉
(4.3)

where p⊥ is the transverse momentum: p⊥ =
√
p2x + p2y. We can now use

the definition of φ mentioned in the introduction of this chapter together
with the identity cos 2φ = cos2 φ − sin2 ψ to find the following relation:

cos 2φ =
p2x
p2⊥
− p2y
p2⊥

The flow components can then be expressed by:

v2 =

〈
p2x − p2y
p2⊥

〉
= 〈cos(2φ)〉 , (4.4)

v1 =

〈
px
p⊥

〉
= 〈cos(φ)〉 , (4.5)

Inserting these expressions into the above definition of a kinematic av-
erage, we get a general formula for the nth flow component as:

vn =

∫
d3x

2π∫

0

dφ

∞∫

−∞

dpz

∞∫

0

dp⊥p⊥ f(~p) cosnφ

∫
d3x

2π∫

0

dφ

∞∫

−∞

dpz

∞∫

0

dp⊥p⊥ f(~p)

, (4.6)

We can simplify this integral by taking into account our Particle In Cell
(PIC) model which was studied in section 2.3. This model distributes the
number of particles Ni of our system into N cells with a constant volume
Vi = V0 using the distribution function fi(~x, ~p). Inside a cell i the distribu-
tion function does not depend on the x coordinate, and the integral d3x can
therefore be done separately:

vn =

N∑

i=1

Vi

2π∫

0

dφ

∞∫

−∞

dpz

∞∫

0

dp⊥p⊥ f
i(~p) cosnφ

N∑

i=1

Vi

2π∫

0

dφ

∞∫

−∞

dpz

∞∫

0

dp⊥p⊥ f
i(~p)

, (4.7)

In order to get an analytic expression for the flow components vn(pt) and
vn(y) , we have to make some assumptions: Firstly, we impose a freeze out
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hypersurface as described in section 2.2.3. This FO hypersurface is assumed
to be constant in time, which means that the transition from quark gluon
plasma to the post freeze out gas is happening simultaneously in the whole
collision volume. Also, we assume that the particles after the freeze out will
only consist of massless pions, and we use the distribution function of an
ideal Jüttner gas to describe them:

f iJuttner(~p) =
1

(2π h̄)3
exp

{
µi − γi

(
pi0 − ~p~vi

)

Ti

}

= Ai exp





−γi
(√

m2
⊥ + p2z − vizpz

)

Ti





× exp

{
γip⊥vi⊥cos(φ− φi0)

Ti

}
(4.8)

Here uµi is the flow 4-velocity of the particles in cell i. In order to
facilitate the calculations, we chose to rewrite its components as:

uµi = γi(1, vix, v
i
y, v

i
z) = γi(1, ~vi⊥, v

i
z)

The normalization factor Ai is defined by:

Ai =
1

(2πh̄)3
exp

(
µi

T

)

As we assume the gas to consist of massless pions, the transverse mass
is defined by m2

⊥ = m2 + p2⊥ = p⊥ and the chemical potential µi = 0, and
Ai is therefore a constant for each cell i.

4.1.1 Transverse momentum dependence of the flow

Equation 4.7 above gives the kinematic average vn = 〈cos(nφ)〉, where the
average is taken over the whole configuration space. If we instead want to
find the p⊥ dependency of the vn component, we do not integrate over p⊥,
and get:

vn (p⊥) =

N∑

i=1

Vi

2π∫

0

dφ

∞∫

−∞

dpz f
i(~p) cosnφ

N∑

i=1

Vi

2π∫

0

dφ

∞∫

−∞

dpz f
i(~p)

, (4.9)



4.1. FLOW COMPONENT CALCULATION 21

We then insert the expression for the Jüttner distribution function as
found in section 4.8, and in order to make the equation less charged, we
take into account that the volume Vi is constant for each cell, so the factor
N∑
i=1

Vi will cancel in the nominator and denominator. We also write the

component of the momentum which is parallel to the velocity of the cell as
pv = p⊥ cos(φ − φ0), where φ0 denotes the angle between the direction of
the cell velocity and the x-axis. Equation 4.9 then becomes:

vn(p⊥) =

2π∫
0

dφ
∞∫
−∞

dpz exp[−γi(
√
m2
⊥+p

2
z−vizpz)/Ti] exp[γip⊥vi⊥cos(φ−φi0)/Ti] cosnφ

2π∫
0

dφ
∞∫
−∞

dpz exp[−γi(
√
m2
⊥+p

2
z−vizpz)/Ti] exp[γip⊥vi⊥cos(φ−φi0)/Ti]

(4.10)

The denominator (named Vn(p⊥)) of this equation can be written as two
separate integrals:

Vn(p⊥) =

2π∫

0

dφ cosnφ exp
γp⊥v⊥cos(φ−φ0)

T

∞∫

−∞

dpz exp
γ(vzpz −

√
m2
⊥ + p2z)

T

=⇒ Vn(p⊥) = Dn(p⊥) ·B(p⊥) (4.11)

The Dn(p⊥) integral can be expressed using a Bessel function In and is
therefore possible to calculate analytically:

Dn(p⊥) = 2πIn(γv⊥p⊥/T )cos(nφ0) , (4.12)

The calculation of B(p⊥) is less straightforward, but possible. We start
by separating the expression into:

B(p⊥) = b(p⊥, vz) + b(p⊥,−vz), (4.13)

where b(p⊥, vz) is

b(p⊥, vz) =

∞∫

0

dpz exp





−γ
(√

m2
⊥ + p2z − vzpz

)

T




.

Now we can use a change of variables t =
√
m2
⊥ + p2z − vzpz to get

b(p⊥, vz) =

∞∫

m⊥

dt e−γt/T


 vz

1−v2z
+

1

1−v2z
t√

t2 −m2
⊥(1−v2z)


 , .
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This again can be inserted into equation 4.13, and we get, using a Bessel
function K1:

B(m⊥) =
2m⊥√
1−v2z

K1

(
γm⊥

√
1−v2z

T
,
γm⊥
T

)
− 2m⊥|vz|e−

γpt
T

1− v2z
.

So, the final, analytic expression for the transverse momentum depen-
dence of the flow is

vn (p⊥) =

N∑

i=1

ViAiB(i,mi
⊥)In(γivi⊥p⊥/Ti) cosnφi0

N∑

i=1

ViAiB(i,mi
⊥)I0(γ

ivi⊥p⊥/Ti)

(4.14)

4.1.2 Rapidity dependence of the flow

In order to calculate the rapidity dependence of the flow, let us recall that
p0 = m⊥ cosh y, pz = m⊥ sinh y, and correspondingly dpz = m⊥ cosh y dy.
Then the Jüttner distribution can be rewritten in terms of rapidity as

f iJuttner( ~p⊥, y) = Ai exp

{
−γ

i
⊥m⊥ cosh (y − yi0)

Ti

}

× exp

{
γi⊥p⊥ṽ

i
⊥cos(φ− φi0)
Ti

}
, (4.15)

where yi0 is the flow rapidity, and we have also rewritten the flow 4-

velocity in the following way: uµi = γi⊥(cosh yi0, sinh yi0,
~̃v
i
⊥), with ~̃vi⊥ =

~vi⊥/
√

1− (viz)
2, γi⊥ = 1/

√
1− (ṽi⊥)2.

Leaving y-dependence in flow definition, (4.7), ”unintegrated”, we obtain
the following equation:

vn (y) =

N∑

i=1

Vi

2π∫

0

dφ

∞∫

0

dp⊥p⊥m⊥ f
i( ~p⊥, y) cosnφ

N∑

i=1

Vi

2π∫

0

dφ

∞∫

0

dp⊥p⊥m⊥ f
i( ~p⊥, y)

. (4.16)

Here the sums over volumes cancel each other out, as explained in the
above section, as Vi = V0 is constant for all cells. Unfortunately the φ
and p⊥ integrals do not factorize in eq. (4.16), and only the φ integral can



4.2. V2 COLLECTIVE FLOW: ELLIPTIC FLOW 23

be performed analytically. Using eq. (4.12) we obtain the semi-analytic
expression of the rapidity dependence of the flow components:

vn(y) =
Jn(y,~v i, T i)cos(nφi0)

J0(y,~v
i, T i)

, (4.17)

where

Jn(y,~v i, T i) =

∫ ∞

0
dp⊥p⊥m⊥In(γi⊥ṽ

i
⊥p⊥/T

i)

× exp
{
−γi⊥m⊥ cosh(y − yi0)/T i

}
. (4.18)

4.2 v2 collective flow: Elliptic flow

v2 is called the elliptic flow component. v2(pt) is observed to be larger at
the LHC than at lower energies [12], and thus reveals a strongly interacting
quark gluon plasma. The elliptic flow is the transverse expansion in the
reaction plane as a result of the almond-shaped initial overlap zone of the
projectile and target [13]. In more central collisions, the random initial state
fluctuations will overshadow this effect, and it is not possible to measure a
significant elliptic flow.

4.2.1 Transverse momentum dependence of the elliptic flow

The calculated v2(pt) distributions are similar to the experimental trends
both in the magnitude and the centrality dependence, especially at the
smaller centralities [12]. For illustration one calculated v2(pt)-distribution
is presented in Fig. 4.2 [2].

4.2.2 Rapidity dependence of the elliptic flow

The calculated v2 parameter versus the rapidity y, using equation 4.16,
is shown in Fig. 4.3. As we can see the v1 is relatively large and easily
measurable in the experimental rapidity range |y| ≤ 0.9, reaching a central
value approaching the experimental one. This curve is calculated including
contributions from all rapidities. The central dip is a consequence of the
constant time FO for an ideally symmetric FD initial state [2]. At t=8
fm/c many particles have already left the impact zone. As we will see later
random initial state fluctuations smooth out these structures.
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Figure 4.2: From [2]. The v2 versus the transverse momentum pt for b =
0.7bmax, at t = 8 fm/c FO time. This analytic result is comparable to the
experiment for at 40-50 % centrality

Figure 4.3: From [2] The v2 versus the rapidity, y for b = 0.7bmax, at t = 8
fm/c FO time. The v2(y) curve shows a local minimum at central rapidity.
The local minimum for central rapidity is a result of the constant time FO,
as most particles have already left the impact zone.
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4.3 v1 global collective flow

The v1 component is also named anti-flow as it peaked at negative rapidities
at SPS and RHIC [14, 15]. However, at higher energies at the LHC, we
expect the v1 flow to peak in the positive direction for positive rapidities,
and in the negative direction for negative rapidities, and it should thus no
longer be an anti-flow. The accurate measurement of this flow can help to
reveal information about transport properties and the pressure of the QGP
[2].

The initial state of the system just after a non-central collision is tilted,
and the flow velocity distribution will cause the system to rotate, see fig-
ure. 4.4. The direction of the strongest pressure gradient is upwards for
backwards moving matter (negative rapidity) and downwards for forward
moving matter (positive rapidity), and this suggests a v1 flow that will peak
at negative rapidities.

At higher energies, however, the distribution of the flow velocity of the
initial state will rotate the system further, and this initial angular momen-
tum will make the strongest pressure gradient rotate to the upward direction
for forward moving particles and to the downward direction for backward
moving particles before the system freeze out, and the particles finally hit
the detectors. This is illustrated in figure 4.5.

4.3.1 Transverse momentum dependence of the global col-
lective flow

As v1 is an antisymmetric function of pz (or y), the pz-integrated v1(p⊥)
value must vanish. In order to still be able to analyse this aspect of v1, we
introduce a new, symmetrized function vs1. This function is constructed by
reversing the p⊥ direction of backward going particles before doing the y
integral. vs1 is then a small, but non-vanishing function, and is less sensitive
to random fluctuations [16, 2].

vS1 (p⊥) =

N∑

i=1

2πViAiD(i,mi
⊥)In(γivi⊥p⊥/Ti) cosnφi0

N∑

i=1

2πViAiB(i,mi
⊥)I0(γ

ivi⊥p⊥/Ti)

, (4.19)

where

D(i,mi
⊥) = e−γ

imi⊥/T
i 2vz
1− v2z

T i

γi
. (4.20)

The trace of vs1(p⊥) is the solid line in figure 4.6.
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4.3.2 Rapidity dependence of the global collective flow

The analytically calculated v1 parameter versus the rapidity y, from equa-
tion 4.16 is shown in Fig. 4.7. As we can see the v1 is relatively large and
easily measurable in the experimental rapidity range |y| ≤ 0.9. The most
important change with respect to the similar simulations for RHIC [15] is
that the v1 now peaks in ”forward” direction, i.e., the positive (negative)
peak appears now at positive (negative) rapidity.

There are two problems with these predictions. First, the v1 component
measured at RHIC was about 5 times smaller than the predicted values from
our Fluid Dynamical calculations [2, 17]. Second, the recent measures of the
v1-flow at the high energies of the LHC shows that it still peaks in a negative
direction , contrary to our predictions. Both of these discrepancies with our
theory can be explained by taking into account the initial state fluctuations
of the system, explained in the following section.
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Figure 4.4: From [2]. Initial distribution of the energy density (GeV/fm3)
for a 1.38+1.38 A.TeV Pb+Pb collision 4 fm/c after the impact.
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Figure 4.5: From [2]. Distribution of the energy density (GeV/fm3) for a
1.38+1.38 A.TeV Pb+Pb collision 12 fm/c after the impact.
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Figure 4.6: From [2]. vS1 from eq. (4.19) versus the transverse momentum,
pt for b = 0.7bmax, at t = 8 fm/c FO time.

Figure 4.7: From [2]. v1 versus the rapidity y for b = 0.7bmax, at t = 8 fm/c
FO time. This is the trace of the semianalytical eq. (4.17); We observe the
v1 to peak at positive rapidity, no more anti-flow.
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4.4 Effect of initial state fluctuations

Here I will explain how our predicted global collective flow may be dimin-
ished as well as completely overshadowed by longitudinal initial fluctuations.
This section is building on the theoretical fundaments of the initial state
fluctuations from section 2.5.

When the initial state fluctuations are not taken into account, there are
important discrepancies between the theoretical simulations and the exper-
imental collision data of the global collective flow v1. For lower energies
at the SPS and RHIC the fluid dynamical models still predict the v1 to
be an anti-flow, peaking at negative rapidity values [14, 15]. The position
of the peaks agreed with experimental measures, but the peaks were much
smaller than the predicted values [14, 17]. At the RHIC for 62.4 + 62.4 and
200 A·GeV, the v1 was measured to be about 5 times smaller than the FD
prediction.

We therefore need to update our model.

4.4.1 Effect on y dependence

As studied in section 2.5, the center of mass rapidity will have bigger fluc-
tuations in peripheral collisions and at high beam rapidities. Due to the
assymetry of v1(y), these fluctuations will be most important at central ra-
pidities. The v1 changes sharply around y = 0, whereas ∆yCM follows a
symmetric distribution centred around y = 0. Figure 4.8 illustrates the
resulting smoothing effect of these fluctuations.

To analyse the consequences of these longitudinal rapidity fluctuations,
we added a rapidity distribution dy to the rapidity of each cell with < dy >=
0, 1, 2, so that yCM followed a Gaussian distribution centred at yCM = 0 [2].
The case, dy = 0, returned the original ideally symmetric fluid dynamical
solution, which overestimates the measured or expected data.

Figure 4.8: The first graph shows v1(y) when no CM rapidity fluctuations are
taken into account. The second graphs shows the v1(y) traced for different
center of mass rapidities. The dotted line in the third graph shows the
average of all the different v1(y) traces. The axis are empty as these graphs
are only for illustration, and not to scale.
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This leads to the following final expression for the rapidity dependence
of the flow components:

vn(y) =

N∑

i=1

ViRn(y,~v i, T i)cos(nφi0)

N∑

i=1

ViR0(y,~v
i, T i)

, (4.21)

where

Rn(y,~v i, T i) =
1√

2πδy2

∫ ∞

−∞
dy′ exp

{
−(y − y′)2

2δy2

}
× Jn(y′, ~v i, T i) cosh y′

and Jn(y′, ~v i, T i) is given by eq. (4.18).

The dash-dotted lines in fig. 4.9 and fig. 4.10 show how the fluctuations
reduce v1(y) at central rapidities and widens out the central dip in v2(y).

Figure 4.9: From [2]. v1 versus the rapidity y for b = 0.7bmax, at t = 8
fm/c FO time. The solid line is calculated using eq. (4.17), and the dashed
line takes into account initial CM rapidity fluctuations.

4.4.2 Effect on p⊥ dependence

In principle, there should be no effect of the CM rapidity fluctuations on the
transverse momentum dependence of the flow components. This is because
we should anyway integrate y from −∞ to +∞. However, this does not
apply in realistic situations, as the TPC detector only detects particles whose
rapidity is in the range −0.9 ≤ y ≤ 0.9. We therefore have to include this
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Figure 4.10: From [2]. v2 versus the rapidity y for b = 0.7bmax, at t = 8
fm/c FO time. The solid line is calculated using eq. (4.17), whereas the
dotted lines take into account the initial CM rapidity fluctuations.

into our calculations of vS1 (pt) and v2(pt). The coefficient B(mi
⊥) in our

semi-analytic equation 4.14 will therefore change to:

B(i, p⊥) =
m⊥√
2πδy2

0.9∫

−0.9

dy

∫ ∞

−∞
dy′ cosh y′

× exp

{
−γ

i
⊥m⊥ cosh (y′−yi0)

Ti

}
exp

{
−(y−y′)2

2δy2

}
.(4.22)

The predicted effect of these CM rapidity fluctuations on the symmetrised
global collective flow can be observed in figure 4.6.

4.4.3 Isolating the random fluctuation effect on v1

It is possible to isolate the contribution from random fluctuations on the v1
by separating the vs1 into odd and even components, as was done in [2]. As
v1 is Global Mirror Asymmetric, then all even components should vanish.
Therefore, only the initial state random fluctuations can be responsible for
any Mirror Symmetric part and a non-zero v1(pt). Since the initial state
fluctuations are random, there should be no difference between its even and
odd parts. Ref. [2] then concludes that

vS,odd1 (p⊥) = vS,fluct1 (p⊥) (4.23)

vS1 (p⊥) = vS,even1 (p⊥)− vS,odd1 (p⊥) (4.24)
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The vS1 function is therefore really useful for analysing the nature of the
global collective flow.



Chapter 5

TPC and ZDC C.M. rapidity
detection

This part of my thesis is based on an unpublished article regarding the TPC
and ZDC detector restrictions that I co-wrote with my supervisor the Spring
of 2012 [4].

In this chapter we will show how we can simulate the pion gas after the
collision and extract from the data the C.M. rapidity and pseudorapidity as
it would be measured by the ZDC and the TPC.

It is very interesting to find the correlation between the pseudorapidity
detected by the Time Projection Chamber (TPC) and the rapidity detected
by the Zero Degree Calorimeter (ZDC). The two detectors have different lim-
itations, and for small rapidities the ZDC is assumed to measure the rapidity
without any cut in the rapidity range. However, the ZDC will only detect
single neutrons spectators that are not bound in charged nuclear fragments
which may be deflected away from the beam direction by the applied mag-
netic fields. If it is possible to establish a correlation between the rapidity
measured by these two detectors, we could estimate the C.M. rapidity of the
participants event by event, and identify the impact of random fluctuations
in the spectator sizes and energies.

5.1 One source

In order to simulate the detection of the particles by the TPC, we generated
the momentum of 500 particles following a Jüttner pion distribution.

f iJuttner(p) =
C

(2π h̄)3
exp

pνi uν,i
T

We assumed a thermal system with temperature T. µi is the chemical
potential of the source cell, i, and as an ideal quark gluon plasma is a pion
gas, the chemical potential equals zero.

33
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The velocity 4-vector is given by uν,i = (cosh(y), 0, 0, sinh(y)), with no
velocity in the transverse direction. Here y designates the boost rapidity of
the source which was varied in the longitudinal (z) direction, due to initial
state fluctuations of the positions of the nucleons, and thus of the number
of participants from the target or the projectile.

As both the TPC and ZDC detectors have detected center of mass ra-
pidity fluctuations not exceeding -0.5 and +0.5 for a 1.38+1.38 A.TeV pe-
ripheral collision [18], we have chosen to carry out our simulations in this
range.

As the inverse of this equation is not know, we generate the momenta by
first taking the integral of the Jüttner distribution, which shows the cumu-
lative distributions of the momenta, going from 0 to 1 (as f i is normalized
to unity [5]). We define

g(pz) =

∞∫

−∞

∞∫

−∞

pz∫

−∞

f iJuttner(p) d
3p, where g ∈ [0, 1].

Then we generate 500 random numbers between 0 and 1 and find the cor-
responding momentum for each [19]. The result is 500 momenta following
the given Jüttner distribution! See Fig. 5.1 for illustration.

Figure 5.1: The cumulative Jüttner distribution function of momentum
g(pz) for a pion gas. The red line shows the calculated cumulative func-
tion, whereas the green dots show the randomly generated 500 momenta
corresponding to the randomly generated numbers ranging from 0 to 1. The
temperature is T = 100 MeV and the chemical potential is zero.
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5.2 Extended source, or many sources

Figure 5.2: The top figure shows a single source with different source boost
rapidities y0. The second figure shows 11 individual sources equally spaced,
but the common boost rapidity may still change.

Now, if we want to know what is the detector response to a combined
source like this if we boost it by ycm, then we need to repeat this method
for all boost rapidities from -0.5 to +0.5 as shown on Fig. 5.2. This is a
much more demanding calculation, but as more momenta are generated, we
obtain a better statistical average which is much less affected by random
numerical fluctuations.

5.3 TPC ∆yCM calculations

As explained in chapter 2, the pseudorapidity of the sources and of each
pion is calculated from the momentum following this formula:

η =
1

2
log
|P |+ Pz
|P | − Pz

= ln(cot
φ

2
) = arctan vz (5.1)

The TPC does not detect particles where |η| > 0.9 [8]. Then only the
particles with |η| < 0.9 are counted and contribute to the center of mass
pseudorapidity ηcm.

5.4 ZDC ∆yCM calculations

These following paragraphs are based on [10] and on an unpublished work in
progress [4]. At the considered LHC Pb+Pb reaction, the beam rapidity is
y0 = 7.986, the energy per nucleon is εN = 1.38 TeV, and the total energy of
the whole system with participants and spectators is Etot = AtotεN = 208×
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2.76 TeV. At these high energies the momentum of the spectators is the same
as their energy with rather good approximation, |Ea| = |Ma| and |Ec| =
|Mc|. Furthermore the energy and momentum conservation gives then the
energy and momentum of the participants, Eb and Mb, as [10]:

Eb = Ab mB⊥ cosh(yB) = Etot − Ea − Ec ,
Mb = Ab mB⊥ sinh(yB) = −(Ma +Mc) (5.2)

where Ab = Atot − Aa − Ac is the net baryon number of the participants,
where from the baryon charge of the original colliding nuclei, Atot = 2APb =
208 + 208 = 416, we subtract the net baryon charge of projectile and target
spectators, Aa, Ac, Ea and Ec can in principle be measured by the ZDCs.
Then using

Etot = 2APbmN cosh(y0) and mN = 938.8 MeV/c2 ,

and dividing the second of eq. (5.2) by the first we can determine the rapidity
of the participant subsystem B. As the total rapidity of the spectators
should cancel each other out, the rapidity of subsystem B should equal the
rapidity of the participant system [10].

yCME ≈ yB =

(
Ma +Mc

Etot−Ea−Ec

)
. (5.3)

Ref [18] gives the same relation, but only by assuming that the fluctua-
tions of the number of participant is negligible compared to the total number
of participants.

At these high rapidities, Ma = Ea and Mc = −Ec, so we can get the
C.M. rapidity of the participant system yB. If the two spectator residues
would have identical energy this rapidity would be zero, but as mentioned
above, due to EbE fluctuations this identity is only true on the average and
not for each event.

5.4.1 Method

The problem is that the ZDCs detect only neutrons from the spectator frag-
ments, and this is significantly less than the real energy and momentum of
the spectators. Furthermore, pre-equilibrium emitted high energy particles
will not be part of the participant system. Still we can assume that the
energy measured by the ZDCs is approximately proportional with the real
energy of the spectators.

To estimate the effect of this detector sensitivity, let us analyse events
at a fixed impact parameter or in a given centrality bin. As an example
assume that the impact parameter is b = 0.5bmax = RPb. Then assuming
a sharp nuclear surface and sharp cut between spectators and participants
(similarly to the Glauber model), the system size is Atot = 416, the size of
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the participant subsystem is Ab = 176, while on the average the sizes of
spectators are < Aa >=< Ac >= 120. The energy is divided among the
subsystems according the same ratios.

However, due to random fluctuations the sizes of projectile and target
spectators may fluctuate around these averages, together with the corre-
sponding spectator energies and momenta, which lead to event by event
c.m. rapidity changes for the participant system.

How large are these spectator size fluctuations and the corresponding
c.m. rapidity fluctuation is a physical question. If there would be no size
fluctuation, there would not be rapidity fluctuations either. As mentioned
in the introduction to this chapter, we chose to use center of mass rapidity
fluctuations between -0.5 and +0.5.

Using the geometric consideration Eb = Etot − Ea − Ec we can directly
obtain the c.m. rapidity from the measured energies, Ea and Ec, from eq.
(5.3), as well as we can obtain Ea (and Ec), if yCME is known.

Defining the argument of arth in eq. (5.3)

x =
Ea − Ec

Etot − Ea − Ec
(5.4)

and knowing Eb from geometric considerations for a given impact pa-
rameter we get the spectator energies as

Ea =
1

2
[Etot + (x− 1)Eb] ,

Ec = Etot − Eb − Ea . (5.5)

At the same time from

ycm = arth(x) =
1

2
ln

1 + x

1− x

we get that e2ycm = (1 + x)/(1− x) and then

x =
[
e2ycm − 1

]
/
[
e2ycm + 1

]
.

Thus we can insert x into equation (5.5) and we can get the energies Ea, Ec
for a given ycm = yCME .

This way we can generate an ideal sample for {ycm, Ea, Ec} event by
event. For this sample one could recover the original < ycm > and its
variance, and the corresponding spectator energies Ea, Ec, which would then
correspond to the total energies of spectators at points a and c.

Thus, this way the ZDCs would represent an ideal LAD.

The detectors, however, measure smaller energies both due to detector
acceptance and due to the not-measured protons and charged nuclear frag-
ments.
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5.4.2 ZDC detector limitations

We can simulate this effect, by taking the original ideal sample {ycm, Ea, Ec}
which corresponded to a set of {ycm} values, and generate another sample
{E′a, E′c} by considering the acceptance of the ZDCs. These events would
show smaller observed energies, {E′a, E′c} which would lead to reduced ycm
values.

If Ea and Eb are attenuated by a factor of q, the E′a = qEa and E′b = qEb.
Equation 5.4 then becomes:

x′ ≡ q(Ea − Ec)
Etot − q(Ea + Ec) < qx

⇒ yCMZDC = y′CM < yCM

Table 1 in [10] gives a detailed overview of the ZDC detector performance
for the whole range of impact parameters. As we have assumed above a semi-
peripheral collision with b = 0.5bmax = RPb, and according to this table,
the number of single neutrons arriving at the ZDC detector is 32.6, out of
a total 77.6 participant neutrons. Taking into account that only 126 of the
208 nucleons of the Pb ion are neutrons, and assuming that each nucleon
carries the same amount of energy, we find that only 25% of the total energy
of the spectators is detected by the ZDC!

Assuming q = 0.25 and inserting equation 5.2 into equation 5.3 , we get

yCMZDC ≈ arth

(
0.25 · δAmB⊥ cosh(yB)

Etot − 0.25 · (Aa +Ac) mB⊥ sinh(yB)

)
(5.6)

5.5 Results

Using equation 5.6 for yCMZDC and equation 5.1 for ηCMTPC as well as the sim-
ulation methods described in section 5.3 and 5.4, we can trace the center
of mass rapidity/pseudorapidity for the different detectors. We have also
traced yCMLAD, which is the rapidity as it would be measured by an Large
Array Detector, that is an ideal detector with no rapidity cut that measures
all type of particles. It is interesting to compare yCMZDC and ηCMTPC to yCMLAD
to see how distorted the results are from the detector limitations

5.5.1 Simulation of detected C.M. (pseudo)-rapidities vs C.M.
rapidity

Figure 5.3 shows the predicted detection of rapidity and pseudorapidity
for the ZDC, the TPC and an ideal LAD versus the actual yCM of the
distribution, for a single thermal source of T = 0.1 GeV emitting 500 pions
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Figure 5.3: C.M. rapidity and pseudorapidity simulated measures from the
ZDC, the TPC and an ideal LAD versus the actual yCM of the distribution,
for a single thermal source of T = 0.1 GeV emitting 500 pions following the
Jüttner distribution

following the Jüttner distribution explained in section 2.2.2. As expected,
we see that the ideal LAD measures closely follows the yCM values, as the
LAD measures the rapidity of all particles and has no cut in the rapidity
range.

The TPC on the other hand only detects a fraction of the particles
and will then underestimate the C.M. pseudorapidity. We observe that the
gap between ηCMTPC and yCMLAD increases with increasing C.M. rapidity, as for
higher C.M. rapidities there will be more pions with an individual rapidity
exceeding 0.9, and thus not detected by the TPC. In order to analyse this
effect more closely, we have also plotted in figure 5.4 the number of pions
that are detected by the TPC for different C.M. rapidities. We see that the
multiplicity detected is at a maximum at yCM = 0 but decreases rapidly for
increasing |yCM |.

Back to figure 5.3, we see that the yCMZDC is by far the detector that
underestimates the most the C.M. rapidity. This is according to the fact
that the ZDC only measures a fraction of the particles from the collision, as
thoroughly explained in section 5.4.

The fluctuations on the graphs in figure 5.3 are a result of numerical
random fluctuations, as the momentum of the particles was generated ac-
cording to the method described in section 5.3. In order to minimize these
fluctuations we have also simulated an extended source, or many sources,
also explained in 5.3. Here we have simulated a source extending over 0.2
rapidities, emitting in total 10 times 500 pions. The result can be observed
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in figure 5.5. As there are 10 times more particles generated, the random
numerical fluctuations cancel each other out and the curves are therefore
much smoother. The trace of ηCMTPC is now shown to saturate at higher yCM ,
as when yCM increases, many of the new rapidities that are generated will
exceed the TPC detection limit of As |ycm| < 0.9. The TPC detector is
therefore showing a non-linear distortion.

From this trace we roughly estimate the relation between the three dif-
ferent measures for small C.M. fluctuations as

ηCMTPC ≈
1

5
yCMZDC ≈

1

2
yCMLAD

.
These relations will of course change as the C.M. rapidity increases. The

conclusion of this study is that if the physical limitations of the detectors
are not taken into account, then the measured ycm will be underestimated.

Figure 5.4: Number of pions from a thermal source described by the Jüttner
distribution with a source temperature of T = 0.1GeV and a source rapidity
yCM . In total 500 particles are generated randomly following this distribu-
tion and the number of particles falling in the acceptance range of the TPC
decreases with increasing yCM .

5.5.2 ZDC C.M. rapidity vs TPC C.M. pseudorapidity

As we need to be able to compare our data with experimental results, we
have also included a trace of yCMZDC vs ηCMTPC , as it should be possible to make
this trace from experimental measures from the TPC and ZDC detectors.

This trace is found in figure 5.6, and shows a non-linear relation between
the two detectors. This can be explained by the saturation of the TPC
measures for higher yCM values.
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Figure 5.5: The pseudorapidity ηCM of the center of mass of 500 randomly
generated pions from 10 thermal sources ranging over 0.2 rapidities at T =
0.1GeV vs the source boost rapidity. Contrary to the case for only one
source, there are now more emitted and therefore more detected particles,
and much of the random fluctuations cancel each other out.

Figure 5.6: The correlation between η as measured by the TPC with an
acceptance range of |η| < 0.9 and η as measured by the ZDC without any
cut, for 10 thermal sources of T = 0.1 GeV each with an individual boost
rapidity uniformly distributed in the range y ∈ [−0.5, 0.5].
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Chapter 6

Conclusion and outlook

In this thesis we have studied different aspects of heavy ion collisions, focus-
ing on the analytical and semi-analytical calculations of the flow components
v1 and v2 and on the TPC and ZDC detector limitations in the ALICE de-
tector at the LHC, CERN.

Regarding the rapidity dependence of the global collective flow compo-
nent v1, we predict that it will no longer peak at negative rapidities for
the LHC energies, due to the rotational effect from the initial angular mo-
mentum of the system. However, this will be overshadowed by initial state
fluctuations of the center of mass rapidity that appear as the positions of
the nucleons fluctuate in the transverse plane. Analysing the odd and even
components of the function vs1, we separated the contribution on v1 from
the global flow and from random initial state fluctuations.

For the TPC and ZDC measures of the C.M. rapidity and pseudorapidity,
we found that the detector distortions have to be taken into account to avoid
underestimating the measures. It will be interesting to compare our graph
showing yZDCCM vs yTPCCM to experimental data from the ALICE collaboration.

During my year as a master student, I have gained insight into the physics
behind and the experiments surrounding Heavy Ion Collisions. I have ap-
proached this field using analytic calculations, but also I have understood
how important it is to include real life limitations into the theoretical frame-
work. In the calculations of the collective flow components I studied the
effect of initial state fluctuations, and in the simulation of the C.M. rapidity
detection by the TPC and ZDC, I had to take into account the detector
physical properties.

Interesting areas for further investigation would for example be to do
the same simulations but for different impact parameters than b = 0.5bmax.
It would also be interesting to change the distribution function, to take into
account hadronization before the Freeze Out hypersurface.
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The strong elliptic flow effect was indicated by the LHC heavy ion ex-
periments [1]. This effect exceeded the results obtained by the former lower
energy measurements. Strong equilibration and thermalization phenomenon
was expected to arise in the collisions. The directed flow v1 was also mea-
sured by ALICE six months later [2].

RHIC and LHC results indicate that the flow has two origins [2, 3]:
(i) the global collective (GC) flow correlated with the reaction plane of the
event (EP), and (ii) the random fluctuation (RF) flow of all vn varieties,
where the corresponding symmetry axes (e.g., for v1 and v3) have no corre-
lation with the reaction plane EP, instead they are observed with respect to
a participant plane (PP) event-by-event (EbE) [4,5]. The participant planes
are different for the neighboring flow harmonics.

Here, we discuss the behavior of the first type, (i), of these flow phe-
nomena, the GC flow, which is the weakest at RHIC and LHC energies. We
will also discuss, how to separate the global v1 flow, from the one produced
by EbE RFs of the initial state, (ii). Fluctuations, which do not follow the
required symmetries can be removed, but this may not be sufficient. If we
know the general features of fluctuations, this may help. If we know the
features of some well defined disturbing effects, we might exploit this to our
advantage.

Collective global flow in non-central collisions leads to the asymmetric
azimuthal distributions, quantified by the functions vn(y, pt) in the expan-
sion

d3N

dydptdφ
=

1

2π

d2N

dydpt
[1 + 2v1(y, pt) cos(φ) + 2v2(y, pt) cos(2φ) + · · · ] ,

(1)
where y is the rapidity, pt is the transverse momentum, and φ is the az-
imuthal angle in the transverse plane with respect to the impact parameter
vector, ~b. The observed large v2(pt) has important consequences. It indi-
cates that QGP is strongly interacting and, at the same time, it also indicates
that QGP is a nearly perfect fluid with minimal shear viscosity at the phase
transition point [6, 7].

In a recent perfect-fluid dynamical model calculation [8], with small nu-
merical viscosity and dissipation (see Fig. 1), we have shown that the energy
density distribution in the reaction plane, 6–8 fm/c after the formation of
fluid dynamics, is strongly rotated with respect to the initial configuration,
due to the large initial angular momentum, so that the direction of strongest
transverse expansion points to Θ = 75◦(255◦). Thus, the upward moving
matter is moving now forward and the downward moving matter backward,
in contrast to what happens at RHIC and SPS energies. The substantial
angular momentum is most visible at large impact parameters, b > 0.6 bmax,
or for centrality exceeding 50%.
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Fig. 1. The entropy per baryon estimated in the fluid-dynamics (FD) model
with the cell sizes dx = 0.4375–0.35 fm, and different impact parameters
b = 0.5–0.8 bmax. The value of entropy per baryon increases with larger cells, be-
cause the numerical viscosity is larger in bigger cells. At late stages (t > 8–10 fm/c)
the matter is dilute; in a large part of the volume the pressure vanishes and the
applicability of the FD approach gradually ceases.

In the simplest approach, we assume a constant time FO hypersurface.
The transition from pre FO QGP to post FO ideal massless pion Jüttner
gas is calculated according to the method described in Ref. [9], satisfying
the conservation laws. In this way, for each fluid cell, i, we obtain a post
FO flow velocity, ~vi = (~vt

i, viz), and temperature, T i, as parameters of the
gas. We calculate the flow observables from the contribution of these post
FO contributions cell by cell.

The flow parameters, for example v2, can be calculated from the final
post FO distribution by the Cooper–Frye formula. Assuming a constant time
FO hypersurface, we obtain simple expressions for final observables, follow-
ing the arguments of Refs. [10, 11]. Thus the expression for the transverse
momentum dependence of the flow is

vn (p⊥) =

N∑

i=1

ViAiB
(
i,mi

⊥
)
In
(
γivi⊥p⊥/Ti

)
cosnφi0

N∑

i=1

ViAiB
(
i,mi

⊥
)
I0
(
γivi⊥p⊥/Ti

)
, (2)

where

Ai =
1

(2π~)3
exp

(
µi

T

)
=

ni
4πm2TiK2(m/Ti)

,
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µi is the chemical potential of the given particle type in the cell i, ni is
the density in the cell, uµi is a cell flow 4-velocity: uµi = γi(1, vix, v

i
y, v

i
z)

= γi(1,vi
⊥, v

i
z), m2

⊥ = m2 + p2⊥, and Ti is a temperature of the given cell.
Furthermore,

B(m⊥) =
2m⊥√
1−v2z

K1

(
γm⊥

√
1−v2z

T
,
γm⊥
T

)
− 2m⊥|vz|e−

γpt
T

1− v2z
,

where Kn(z, w) = 2nn!
(2n)!z

−n ∫∞
w dx(x2 − z2)n−1/2e−x is the modified Bessel

function of the second kind.
The calculated v2(pt) distributions are similar to the experimental trends

both in the magnitude and the centrality dependence. The pt-dependence
is also similar, especially at the smaller centralities.

As v1 is an antisymmetric function of y, the y-integrated v1(pt) value
must vanish. In our calculation this is realized to an accuracy better than
10−16. Considering this obvious asymmetry, we propose to construct a sym-
metrized function, vS1 , reversing the ~pt direction of backward going (y < 0)
particles. In this way, we get a non-vanishing vS1 (pt) function, which will be
less sensitive to the initial state fluctuations,

vS1 (p⊥) =

cells∑
i

2D
(
~v i, T i, p⊥

)
I1
(
γivitp⊥/T

i
)
cos
(
φi0
)

cells∑
i
B (~v i, T i, p⊥) I0

(
γivitp⊥/T i

) , (3)

where D(~v, T, p⊥) = e−γp⊥/T vz
1−v2z

T
γ . The vS1 (p⊥) parameter calculated in

this way is shown in Fig. 2.
The ALICE team has made a symmetry analysis of the v1 flow compo-

nents. The even and odd rapidity combinations gave almost identical v1(pt)
distributions [2], indicating that the global azimuthal symmetry does not
influence the measured data, thus the measured azimuthal asymmetry must
originate from random initial fluctuations. These results were based on data
with 0–80% centrality percentage, where the central and semi-central col-
lisions may show azimuthal fluctuations, which originate exclusively from
random fluctuations. However, we can gain information about the pt de-
pendence of the global directed flow, if we repeat the same analysis, i.e.,
we make separation into even and odd components, for the vS1 (pt) function
introduced above in Eq. (3).

We have also evaluated the rapidity dependence of the v1 flow compo-
nent. Due to the sufficiently strong rotation of the initial state at the present
LHC energy, the earlier “anti-flow” peak rotates forward, before the expan-
sion overwhelms the rotation effect, and so the v1 flow peak appears at small,
but forward rapidities.
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Fig. 2. The vS1 parameter calculated for the ideal massless pion Jüttner gas, versus
the transverse momentum pt for b = 0.5 (0.7) bmax at the FO time t = 10 (8) fm/c,
shown as the thin/blue (thick/red) line. The magnitude of vS1 is increasing with
the impact parameter and it is about 3% at b = 0.7 bmax.

The calculated v1 parameter versus the rapidity y is shown in Fig. 3. As
we can see the v1 is relatively large and easily measurable in the experimental
rapidity range |y| ≤ 0.8, reaching a peak of 26% at y = ±0.5. The most
important change with respect to the similar simulations for RHIC [13] is
that the v1 now peaks in forward direction, i.e., the positive (negative) peak
appears now at positive (negative) rapidity.
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Fig. 3. The v1 parameter calculated for ideal massless pion Jüttner gas versus the
rapidity y for b = 0.7bmax at t = 8 fm/c FO time. The curve represents semi
analytical calculations. The v1 peak appears at positive rapidity, in contrast to
lower energy calculations and measurements. This is a consequence of the stronger
rotation of the expanding system at higher beam energy.
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At lower energies, in the same FD model calculations we obtained that
the v1 peaks in the backward direction (3rd-flow component) [12, 13], with
a magnitude of about 5% and 2–3% for 158 and 65 + 65AGeV energies,
respectively. The position of the peaks also moved from |y| ≈ 1.5 to |y| ≈ 0.5
with the energy increasing from SPS to RHIC. Experimentally, the 3rd-
flow component was indeed measured at these energies [12,14], although the
peak values were smaller. Especially at the RHIC energies, where the highest
values were v1 ≈ 0.6% and 0.2% for for 65 + 65 and 100+100AGeV energies,
respectively. The peaks appeared at |y| ≈ 1 around the far end of the
acceptance of the central TPC. Thus, at RHIC the v1 magnitude was about
5 times smaller than the FD prediction. Also, the move towards the more
central rapidities was weaker in the experiment than in FD calculations.

The reason for such a disagreement is the effect of initial state fluctua-
tions, which may be decisive in the case of v1 due to the sharp change around
y = 0.

Initial state fluctuations may arise from the event-to-event fluctuations
of nucleon positions in the transverse, participant plane. Fluctuations may
also arise from individual nucleon–nucleon collisions in an event, so that
even if a projectile nucleon is within the transverse domain of participants,
it may not collide with any of the target nucleons, and may not become a
participant. The effect of these fluctuations on different flow component has
been recently analyzed, see for example [15,16].

In both cases, the experimental cuts on the rapidity range lead to an
increase of the asymmetry. Now, it should not be forgotten that v2(pt) and
vS1 (pt), constructed from the observables within the limited rapidity range,
will be affected by the initial CM rapidity fluctuations. One can expect that
the vS1 (pt) will be very much reduced, because, as we have seen, the CM
rapidity fluctuations smooth out the strong v1 peaks at central rapidities
and strongly reduce the v1 magnitude to be integrated up.

Interestingly, the initial yCM-fluctuations lead to some increase of the
elliptic flow, v2(pt), putting it in a reasonable agreement with the ALICE
data [1], see Fig. 4 and, please, note that no fine-tuning was done. At the
same time, yCM-fluctuations strongly reduce vS1 (pt). Thus, we predict for
the LHC the vS1 (pt) flow parameters to be about 0.5–1%.

Other works have addressed the directed flow problem at RHIC ener-
gies [17, 18]. In these works, the initial state was not obtained from a dy-
namical model but these were parameterizations based on some assumptions.
The initial flow velocity distributions were taken to be longitudinal Bjorken
scaling flow solutions, identical at each point of the transverse plane. The
transverse mass distribution was determined based on the Glauber model,
while the longitudinal distribution was parametrized in different ways and
this determined the angular momentum of the of the initial configuration.
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Fig. 4. The v2 parameter calculated for ideal massless pion Jüttner gas, versus the
transverse momentum pt for b = 0.7bmax, at t = 8 fm/c FO time. The magnitude
of v2 is comparable to the observed v2 at 40–50% centrality. See the text for more
explanations of different curves.

Both models gave a forward peaking directed flow for RHIC energies (where
the experiments observed the anti-flow). In Ref. [18] this initial state was
“tilted”, and this could already reproduce the experimental anti-flow. The
problem is that these parametrized states can hardly be reproduced in dy-
namical models starting from the pre-collision space-time configuration.

Our FD simulations of the LHC heavy ion collisions suggest that the
collective directed flow v1(y) and a newly introduced vS1 (pt) function can
and should be measured [19], although these are strongly suppressed due to
initial state yCM-fluctuations (see Fig. 2). For the first time in hydrodynam-
ical calculations we see that the v1 global flow can change the direction to
forward, in contrast to what happened at lower energies. This is a result of
our tilted and moving initial state [20], in which the effective “angular mo-
mentum” from the increasing beam momentum is superseding the expansion
driven by the pressure. We have also proposed a new method to distinguish
contributions to v1(pt) from global flow (i) and from random fluctuations in
the initial state (ii). The method is based on vS1 (pt) function.
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Appendix B

Computer code

1 clear a l l
2 close a l l
3 clc
4 s t a r t=t ic ;
5
6 mu l t i p l i c i t y =500;
7 T=0.1; % GeV
8 rap ex t r =0.5 ;
9

10 %Extended source
11 sou r c e l eng th =10;
12 source extrem =0.2;
13 s ou r c e v e c t o r=linspace(− source extrem , source extrem ,

s ou r c e l eng th ) ;
14 s ou r c e s t ep =(2∗ source extrem ) /( source l eng th −1) ;
15 r a p i d i t y v e c t o r=−r ap ex t r : s ou r c e s t ep : r ap ex t r ;
16 r ap i d i t y l e n g t h=length ( r a p i d i t y v e c t o r ) ;
17
18 g=zeros (1 , mu l t i p l i c i t y ) ;
19 pz i=zeros (1 , mu l t i p l i c i t y ) ;
20 Pz=zeros (1 , r a p i d i t y l e n g t h ) ;
21 Pz cut=zeros (1 , r a p i d i t y l e n g t h ) ;
22 Pt=zeros (1 , r a p i d i t y l e n g t h ) ;
23 Pt cut=zeros (1 , r a p i d i t y l e n g t h ) ;
24 P=zeros (1 , r a p i d i t y l e n g t h ) ;
25 P cut=zeros (1 , r a p i d i t y l e n g t h ) ;
26 l ength pcut=zeros (1 , r a p i d i t y l e n g t h ) ; % Number o f p a r t i c l e s l e f t

a f t e r the cut f o r the whole source , f o r each r a p i d i t y
27
28 bouda r i e s d i v i s i o n =200;
29
30 %% f ind the momentums f o r a l l p o s s i b l e ( r a p i d i t i e s+source

r a p i d i t i e s )
31 boos t vec=−(r ap ex t r+source extrem ) : s ou r c e s t ep : ( r ap ex t r+

source extrem ) ;
32 boo s t l eng th=length ( boos t vec ) ;
33 pzi sum=zeros (1 , boo s t l eng th ) ; pi sum=zeros (1 , boo s t l eng th ) ;

57
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pz i cut sum=zeros (1 , boo s t l eng th ) ; p i cut sum=zeros (1 ,
boo s t l eng th ) ;

34
35 for b=1: boo s t l eng th
36
37 % Fract b ( b )=(exp (2∗ pseudorap )−1) . / ( exp (2∗ pseudorap )+1) ;
38
39 boost=boos t vec (b) ;
40 u0=cosh ( boost ) ; ut=0; uz=sinh ( boost ) ;
41
42 pttemp min=0;
43 pttemp max=50;
44 pztemp extremit i e s =50;
45 pztemp min=−pztemp extremit i e s ;
46 pztemp max=pztemp extremit i e s ;
47
48 f = @(pz , pt )exp(−(u0∗sqrt ( pt .∗ pt+pz .∗ pz )−uz∗pz−ut∗pt ) /T) ;
49 C f=1/dblquad ( f , pztemp min , pztemp max , pttemp min , pttemp max )

; %norma l i za t ion
50
51 %% Ca l cu l a t e boundar ies
52 f min = C f ∗exp(−(u0∗sqrt ( pttemp min .∗ pttemp min+pztemp min

.∗ pztemp min )−uz∗pztemp min−ut∗pttemp min ) /T) ;
53 while f min<C f / bouda r i e s d i v i s i o n ;
54 pztemp min=pztemp min+abs ( pztemp min ) / b ouda r i e s d i v i s i o n

;
55 f min = C f ∗exp(−(u0∗sqrt ( pttemp min .∗ pttemp min+

pztemp min .∗ pztemp min )−uz∗pztemp min−ut∗pttemp min ) /
T) ;

56 end
57
58 f max = C f ∗exp(−(u0∗sqrt ( pttemp min .∗ pttemp min+pztemp max

.∗ pztemp max )−uz∗pztemp max−ut∗pttemp min ) /T) ;
59 while f max<C f / bouda r i e s d i v i s i o n ;
60 pztemp max=pztemp max−pztemp max/ bouda r i e s d i v i s i o n ;
61 f max = C f ∗exp(−(u0∗sqrt ( pttemp min .∗ pttemp min+

pztemp max .∗ pztemp max )−uz∗pztemp max−ut∗pttemp min ) /
T) ;

62 end
63
64 pztemp=linspace ( pztemp min , pztemp max , mu l t i p l i c i t y ) ;
65
66 f t = C f ∗exp(−(u0∗sqrt ( pttemp max .∗ pttemp max )−ut∗

pttemp max ) /T) ;
67 while f t<C f / bouda r i e s d i v i s i o n ;
68 for indz=1: mu l t i p l i c i t y
69 pz=pztemp ( indz ) ;
70 f t ( indz ) = C f ∗exp(−(u0∗sqrt ( pttemp max .∗ pttemp max

+pz .∗ pz )−uz∗pz−ut∗pttemp max ) /T) ;
71 end
72 f t=max( f t ) ;
73 pttemp max=pttemp max−pttemp max /5 ;
74 end
75 pttemp=linspace ( pttemp min , pttemp max , mu l t i p l i c i t y ) ;
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76
77 f = @(pz , pt )exp(−(u0∗sqrt ( pt .∗ pt+pz .∗ pz )−uz∗pz−ut∗pt ) /T) ;
78 C f=1/dblquad ( f , pztemp min , pztemp max , pttemp min , pttemp max )

; %norma l i za t ion wi th new boundar ies
79 f = @(pz , pt ) C f ∗exp(−(u0∗sqrt ( pt .∗ pt+pz .∗ pz )−uz∗pz−ut∗pt ) /T)

;
80
81 %% Ca l cu l a t e and p l o t the d i s t r i b u t i o n func t i on f
82 f f=zeros ( mu l t i p l i c i t y ) ;
83 for indz=1: mu l t i p l i c i t y
84 pz=pztemp ( indz ) ;
85 for indt =1: mu l t i p l i c i t y
86 pt=pttemp ( indt ) ;
87 f f ( indt , indz )=C f ∗exp(−(u0∗sqrt ( pt∗pt+pz∗pz )−uz∗pz−

ut∗pt ) /T) ;
88 end
89 end
90
91 %% Find g ( x ) numer ica l l y
92 g (2 )=dblquad ( f , pztemp min , pztemp (2) , pttemp min , pttemp max ) ;
93 for indz=3: mu l t i p l i c i t y
94 g ( indz )=g ( indz−1)+dblquad ( f , pztemp ( indz−1) , pztemp ( indz ) ,

pttemp min , pttemp max ) ;
95 end
96
97 %% Generate p z i from g num , the in v e r s e o f the cumula t ive

d i s t r i b u t i o n o f f ( pz )
98 u i=rand (1 , mu l t i p l i c i t y ) ; %random number uni formly

d i s t r i b u t e d [ 0 , 1 ]
99 i =1; j =2;

100
101 while i<mu l t i p l i c i t y+1
102 i f ui ( i )<g ( j )
103 pz i ( i )=(pztemp ( j )+pztemp ( j−1) ) /2 ; i=i +1; j =2;
104 else
105 i f j<mu l t i p l i c i t y ; j=j +1;
106 else
107 pz i ( i )=pztemp ( mu l t i p l i c i t y ) ; i=i +1; j =2;
108 end
109 end
110 end
111 pz i=sort ( pz i ) ;
112 u i=sort ( u i ) ;
113
114 % f i g u r e (8)
115 % p l o t ( pztemp , g , ’−b ’ )
116 % hold on
117 % p l o t ( pz i , ui , ’∗ k ’ )
118 % x l a b e l ( ’\ f o n t s i z e {20} pz ’ )
119 % y l a b e l ( ’\ f o n t s i z e {20} g ( pz ) ’ )
120 % png ( [ ’ f i g u r e s / g boos t ’ , num2str ( boos t ) ] )
121 % se t ( gca , ’ FontSize ’ , 20)
122
123
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124 %% Find dN dpz ( p z i )
125 % N= 2∗ p i d o u b l e i n t e g r a l ( p t ∗ f ) dpt dpz
126 % dN/dpz = 2∗ p i ∗ pt ∗ f dpt
127 dN dpz=zeros (1 , mu l t i p l i c i t y ) ;
128 h=zeros ( mu l t i p l i c i t y ) ;
129 for indz=1: mu l t i p l i c i t y
130 pzvar=pz i ( indz ) ;
131 p t f=@( pt ) C f ∗pt .∗exp(−(u0∗sqrt ( pt .∗ pt+pzvar .∗ pzvar )−uz∗

pzvar−ut∗pt ) /T) ; % ???
132 h (2 , indz )=quad( ptf , pttemp min , pttemp (2) ) ;
133 for indt =3: mu l t i p l i c i t y
134 ptvar=pttemp ( indt ) ;
135 p tva r be f o r e=pttemp ( indt −1) ;
136 h( indt , indz )=h( indt −1, indz )+quad( ptf , p tvar be fo r e ,

ptvar ) ; %in t e g r a t e p t f wi th pt
137 end
138 end
139 % dN dpz=h( mu l t i p l i c i t y , : ) ;
140 % dN dpz=dN dpz/max( dN dpz ) ;
141 % t dN dpz = toc
142 % f i g u r e
143 % p l o t ( pz i , dN dpz , ’ r ∗ ’ )
144 % x l a b e l ( ’ pz ’ )
145 % y l a b e l ( ’dN / dpz ’ )
146
147 %% Generate p t i from the inv e r s e o f the cumula t ive

d i s t r i b u t i o n o f h
148 p t i=zeros (1 , mu l t i p l i c i t y ) ;
149 j =2; %j i s the i nd i c e o f the pttemp vec t o r
150 indz=1; %Sta r t by chos ing the 1 s t p lane ( pz

, h ) to work on
151 w=rand∗max(h ( : , indz ) ) ; %random number uni formly d i s t r i b u t e d

between 0 and the max o f h f o r t ha t s p e c i a l pz ! ! ! %%
lu r e r l i t t p denne ! ! !

152
153 while indz<mu l t i p l i c i t y
154 i f w < h( j , indz )
155 p t i ( indz )=(pttemp ( j )+pttemp ( j−1) ) /2 ;
156 indz=indz+1;
157 j =2;
158 w=rand∗max(h ( : , indz ) ) ; %genera te new w ! ! !
159 else
160 i f j<mu l t i p l i c i t y %I f we are not ye t a t the end o f

the pt vec tor , we go to the next p t e lement
161 j=j +1;
162 else
163 p t i ( indz )=pttemp max ;
164 indz=indz+1;
165 j =2; % I f we are at the end o f the j v e c t o r

and go on to a new pz p lane ! ! !
166 w=rand∗max(h ( : , indz ) ) ; %genera te new w ! ! !
167 end
168 end
169 end
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170
171 % f i g u r e (6)
172 % [PZ,PT]=meshgrid ( pztemp , pttemp ) ; % VELDIG rart ,

h v i s v i b y t t e r r e k k e f l g e n p d i s s e b l i r de t h e l t k r i s e
! ! ! !

173 % mesh(PT,PZ, h )
174 % x l a b e l ( ’ pttemp ’ )
175 % y l a b e l ( ’ pztemp ’ )
176 % z l a b e l ( ’ h ’ )
177 % view (0 ,90)
178 % png ( [ ’ f i g u r e s /h / ’ , num2str ( b ) , ’ ’ , num2str ( r ap e x t r )

, ’ ’ , num2str ( s ou r c e l e n g t h ) , ’ ’ , num2str ( source ex trem )
, ’ T’ , num2str (T) , ’GeV mult ’ , num2str ( m u l t i p l i c i t y ) , ’ h
’ ] )

179 %
180 %% Ca l cu l a t e the t o t a l momentum fo r a l l p a r t i c l e s
181 p i i=sqrt ( ( pz i .∗ pz i+p t i .∗ p t i ) ) ;
182 pseudorap=0.5∗ log ( ( p i i+pz i ) . / ( p i i−pz i ) ) ;
183 pseudorap=pseudorap ( find (abs ( pseudorap )<99999) ) ;
184 p z i c u t=pz i ( find (abs ( pseudorap ) <.9) ) ; %The cu t t i n g

c ond t i t i on i s t h a t the pz o f one event shou ld be l e s s
than 0.8

185 p t i c u t=pt i ( find (abs ( pseudorap ) <.9) ) ;
186 p i cu t=sqrt ( ( p z i c u t .∗ pz i c u t+p t i c u t .∗ p t i c u t ) ) ;
187
188 E f r a c t i =(exp(2∗ pseudorap )−1) . / ( exp(2∗ pseudorap )+1) ;
189
190 cu t l eng th (b)=length ( p z i c u t ) ;
191
192 pzi sum (b)=sum( pz i ) ; pi sum (b)=sum( p i i ) ; pz i cut sum (b)=sum(

p z i c u t ) ; p i cut sum (b)=sum( p i c u t ) ;
193
194 pseudorap cm i=pseudorap ;
195 pseudorap cm cut i =0.5∗ log ( ( p i c u t+pz i c u t ) . / ( p i cut−pz i c u t

) ) ;
196 pseudorap cm sum (b)=mean( pseudorap cm i ( 1 : mu l t i p l i c i t y −1) ) ;
197 pseudorap cm cut sum (b)=mean( pseudorap cm cut i ) ;
198 Ef rac t b (b)=mean( E f r a c t i ) ;
199
200
201 %pzi sum ( b )=mean( p z i ) ; pi sum ( b )=mean( p i i ) ; p z i cu t sum ( b )=

mean( p z i c u t ) ; p i cu t sum ( b )=mean( p i c u t ) ;
202 %% Progress bar
203 clc
204 prog r e s s=b/ boo s t l eng th ;
205 t ime passed=toc ( s t a r t ) ;
206 min passed=f loor ( t ime passed /60) ;
207 s e c pa s s ed=time passed−min passed ∗60 ;
208 t im e l e f t=t ime passed / prog r e s s − t ime passed ;
209 m in l e f t=f loor ( t im e l e f t /60) ;
210 s e c l e f t=t ime l e f t−min l e f t ∗60 ;
211 disp ( [ ’ p rog r e s s ’ ,num2str( p rog r e s s ∗100 , ’%4.0 f ’ ) , ’%, time

e lapsed ’ ,num2str( min passed , ’%4.0 f ’ ) , ’m ’ ,num2str(
s ec passed , ’%4.0 f ’ ) , ’ s , e s t imated time remaining ’ ,
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num2str( m in l e f t , ’%4.0 f ’ ) , ’m ’ ,num2str( s e c l e f t , ’%4.0 f ’ ) ,
’ s ’ ] )

212
213 end
214
215
216 %% Run through a l l r a p i d i t i e s (main loop )
217 for r=1: r a p i d i t y l e n g t h
218 l eng th pcu t s=zeros (1 , s ou r c e l eng th ) ; % Number o f p a r t i c l e s

t h a t are l e f t a f t e r the cut f o r each po in t o f the source
219 Sz=zeros (1 , s ou r c e l eng th ) ; % Sum of a l l p z i f o r

each po in t o f the source , cumula t ive
220 S=zeros (1 , s ou r c e l eng th ) ; % Sum of a l l p i f o r

each po in t o f the source , cumula t ive
221 Sz cut=zeros (1 , s ou r c e l eng th ) ; % Sum of a l l p z i cut

f o r each po in t o f the source , cumula t ive
222 S cut=zeros (1 , s ou r c e l eng th ) ; % Sum of a l l p i cut

f o r each po in t o f the source , cumula t ive
223
224 for s=1: s ou r c e l eng th
225
226 % s i s the i nd i c e o f the po in t in one extended source
227 Sz ( s )=pzi sum ( s+r−1) ; Sz cut ( s )=pz i cut sum ( s+r−1) ;
228 S( s )=pi sum ( s+r−1) ; S cut ( s )=pi cut sum ( s+r−1) ;
229 Pseudo ( s )=pseudorap cm sum ( s+r−1) ;
230 Pseudo cut ( s )=pseudorap cm cut sum ( s+r−1) ;
231 E f rac t i on ( s )=Ef rac t b ( s+r−1) ;
232
233 l eng th pcu t s ( s )=cu t l eng th ( s+r−1) ; % leng t h o f the cut

p z i v e c t o r f o r each po in t o f an extended source
234 end % End of source loop
235 Pz( r )=sum( Sz ) ;
236 Pz cut ( r )=sum( Sz cut ) ;
237 P( r )=sum(S) ;
238 P cut ( r )=sum( S cut ) ;
239
240 PPseudo ( r )=sum( Pseudo ) ;
241 PPseudo cut ( r )=sum( Pseudo cut ) ;
242 Efract ion sum ( r )=mean( E f ra c t i on ) ;
243
244 l ength pcut ( r )=sum( l e ng th pcu t s ) ; % number o f po in t s l e f t

a f t e r cut , f o r each r a p i d i t y
245 end % End of r a p i d i t y loop
246
247 %% Plot f i g u r e s
248 pseudorap cm LAD=0.5∗ log ( (P+Pz) . / (P−Pz) ) ;
249 Etot=576000; % GeV
250 Npart=176; %Number o f p a r t i c i p a n t s in the c o l l i s i o n
251 Ntot=416; %Total number o f p a r t i c l e s ( pa r t i c pan t s+sp e c t a t o r s )
252 Nspect=Ntot−Npart ; % Number o f s p e c t a t o r s
253 y0=7.986; %Total r a p i d i t y o f c o l l i s i o n
254 mn=0.9388; %Mass o f each nucleon , in GeV
255 a t t f a c t =0.2545; %Attenuat ion fac to r , par t o f s p e c t a t o r s t ha t

the ZDC can d e t e c t ( r e f t a b l e 1 in l a s z l o s l a s t paper )
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256
257 Espect=Nspect∗mn∗cosh ( y0 ) ;
258 dN=Npart ∗(tanh ( r a p i d i t y v e c t o r ) /tanh ( y0 ) ) ;
259 Ea Ec=dN∗mn∗sinh ( y0 ) ;
260
261 %rap cm ZDC=atanh ( Efract ion sum ) ;
262 rap cm LAD=0.5∗ log ( ( cosh ( r a p i d i t y v e c t o r )+sinh ( r a p i d i t y v e c t o r ) )

. / ( cosh ( r a p i d i t y v e c t o r )−sinh ( r a p i d i t y v e c t o r ) ) ) ;
263 pseudorap cm TPC=0.5∗ log ( ( P cut+Pz cut ) . / ( P cut−Pz cut ) ) ;
264 rap cm ZDC=atanh ( a t t f a c t ∗(Ea Ec ) /( Etot−a t t f a c t ∗Espect ) ) ;
265 %rap cm ZDC=atanh ( s inh ( r a p i d i t y v e c t o r ) /( Etot −0.65∗Etot ∗ f a c t o r ) )

;
266
267 save ( [ ’ mult i source T ’ ,num2str(T) , ’ mult ’ ,num2str( mu l t i p l i c i t y ) , ’

r a p i d i t y l e n g t h ’ ,num2str( r a p i d i t y l e n g t h ) ] ’ )
268
269
270 close a l l
271
272 f igure (1 )
273 plot ( pseudorap cm TPC , pseudorap cm LAD , ’ ∗ ’ )
274 xlabel ( ’ \ f o n t s i z e {20}\ e t a {\ f o n t s i z e {18}TPC} ’ )
275 ylabel ( ’ \ f o n t s i z e {20}\ e t a {\ f o n t s i z e {18}LAD} ’ )
276 axis ( [−0.5 0 .5 −1 1 ] )
277 grid on
278 set (gca , ’ FontSize ’ , 20)
279 png ( [ ’ f i g u r e s /multisource TpcLad T ’ ,num2str(T) , ’ mult ’ ,num2str(

mu l t i p l i c i t y ) , ’ r a p i d i t y l e n g t h ’ ,num2str( r a p i d i t y l e n g t h ) ] )
280
281 f igure (2 )
282 plot ( pseudorap cm TPC , rap cm ZDC , ’ ∗ ’ )
283 xlabel ( ’ \ f o n t s i z e {20}\ e t a {\ f o n t s i z e {18}TPC} ’ )
284 ylabel ( ’ \ f o n t s i z e {20} y {\ f o n t s i z e {18}ZDC} ’ )
285 axis ( [−0.5 0 .5 −0.1 0 . 1 ] )
286 grid on
287 set (gca , ’ FontSize ’ , 20)
288 png ( [ ’ f i g u r e s /multisource TpcZdc T ’ ,num2str(T) , ’ mult ’ ,num2str(

mu l t i p l i c i t y ) , ’ r a p i d i t y l e n g t h ’ ,num2str( r a p i d i t y l e n g t h ) ] )
289
290 f igure (3 )
291 plot ( r ap i d i t y v e c t o r , pseudorap cm LAD , ’ ∗b ’ , ’ MarkerSize ’ , 10)
292 hold on
293 plot ( r ap i d i t y v e c t o r , pseudorap cm TPC , ’ s ’ , ’ LineWidth ’ ,2 , ’

MarkerEdgeColor ’ , ’ k ’ , ’ MarkerFaceColor ’ , ’ g ’ , ’ MarkerSize ’ , 10)
294 plot ( r ap i d i t y v e c t o r , rap cm ZDC , ’ . r ’ , ’ MarkerSize ’ ,10 , ’ LineWidth ’

, 3 )
295 xlabel ( ’ \ f o n t s i z e {20} y {cm} ’ )
296 %y l a b e l ( ’\ f o n t s i z e {20}measured \ e t a {cm} ’ )
297 legend ( ’ \ f o n t s i z e {20}\ e t a {LAD} ’ , ’ \ f o n t s i z e {20}\ e t a {TPC} ’ , ’ \

f o n t s i z e {20} y {ZDC} ’ , ’ l o c a t i o n ’ , ’ NorthWest ’ )
298 %t i t l e ( [ ’T= ’ , num2str (T) , ’ GeV, m u l t i p l i c i t y= ’ , num2str (

m u l t i p l i c i t y ) , ’ source l e n g t h = ’ , num2str ( s ou r c e l e n g t h ) , ’
source e x t r em i t i e s = ’ , num2str ( source ex trem ) ] )

299 axis ([−( r ap ex t r ) ( r ap ex t r ) −( r ap ex t r ) ( r ap ex t r ) ] )
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300 axis square
301 set (gca , ’ FontSize ’ , 20)
302 png ( [ ’ f i g u r e s /multisource RapVsPseu ’ ,num2str(T) , ’ mult ’ ,num2str(

mu l t i p l i c i t y ) , ’ r a p i d i t y l e n g t h ’ ,num2str( r a p i d i t y l e n g t h ) ] )
303
304 f igure (5 )
305 plot ( r ap i d i t y v e c t o r , l ength pcut , ’ LineWidth ’ , 2 )
306 xlabel ( ’ \ f o n t s i z e {20} y {cm} ’ )
307 ylabel ( ’ \ f o n t s i z e {20} TPC detected mu l t i p l i c i t y ’ )
308 %t i t l e ( [ ’T= ’ , num2str (T) , ’ GeV, m u l t i p l i c i t y= ’ , num2str (

m u l t i p l i c i t y ) ] )
309 set (gca , ’ FontSize ’ , 20)
310 png ( [ ’ f i g u r e s /mult i source T ’ ,num2str(T) , ’ mult ’ ,num2str(

mu l t i p l i c i t y ) , ’ r a p i d i t y l e n g t h ’ ,num2str( r a p i d i t y l e n g t h ) ] )
311
312 f igure (6 )
313 plot ( pseudorap cm TPC , length pcut , ’ ∗ ’ )
314 xlabel ( ’ \ f o n t s i z e {20} y {cm, TPC} ’ )
315 ylabel ( ’ \ f o n t s i z e {20} TPC detected mu l t i p l i c i t y ’ )
316 %t i t l e ( [ ’T= ’ , num2str (T) , ’ GeV, m u l t i p l i c i t y= ’ , num2str (

m u l t i p l i c i t y ) ] )
317 set (gca , ’ FontSize ’ , 20)
318 png ( [ ’ f i g u r e s /mult i source T ’ ,num2str(T) , ’ mult ’ ,num2str(

mu l t i p l i c i t y ) , ’ r a p i d i t y l e n g t h ’ ,num2str( r a p i d i t y l e n g t h ) ] )
319
320 t ime passed=toc ( s t a r t ) ;
321 min passed=f loor ( t ime passed /60) ;
322 s e c pa s s ed=time passed−min passed ∗60 ;
323 clc
324 disp ( [ ’ p rog r e s s 100%, t o t a l time o f c a l c u l a t i o n ’ ,num2str(

min passed , ’%4.0 f ’ ) , ’m ’ ,num2str( s ec passed , ’%4.0 f ’ ) , ’ s ’ ] )
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