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Abstract

The main objective of this thesis was to use molecular dynamics to investigate the

methane interactions with zeolite, specifically the Linde Type A-3A, alongside with

an investigation into the use of polynomial path integration for water in zeolite.

This thesis is a part of a larger collaboration between the separation group at the

University of Bergen and Statoil, with the main goal of explaining the reduced

lifetime of zeolites.

This thesis continued from the work done by the separation group at the

University of Bergen. The then used model was suspect to wrongly describe the

methane zeolite interactions. Consequently, a new model was tried in order to

correctly describe the interactions. The obtained diffusion coefficients for the old

and new model, have been compared to reported literature values for a counter-ion

free zeolite A. The new model shows an excellent agreement with these values, for

a loading of 8 molecules/cavity or more. A simulation using the new model in

Linde Type A-3A zeolite, shows that potassium blocks all methane motion in the

structure. Furthermore, it was observed that potassium motion, at 500 K under

the influence of methane, can lead to unblocking of the 8T-window. This leads us

to formulate a hypothesis for the reduced lifetime of LTA-3A zeolite.

Polynomial path integration was performed for water in zeolite. This was

computational difficult, due to the different forces in the multi-specie system. The

results revealed that different paths from ideal gas towards real gas gave large

differences in the estimated excess Helmholtz energy. Other methods can thus be

better suited for this purpose, for example the particle insertion method.
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Chapter 1

Introduction

This chapter briefly gives the background for this master thesis, the scientific

method and the objectives.

1.1 Background

The world is in a constant energy demand, a demand which until better solutions

are discovered, is largely covered by fossil fuel. Fossil fuel is a non-renewable energy

source which means that the energy sources, as they are spent, are moving farther

away from the consumer into new and challenging climates. One important fossil

fuel is natural gas, primarily consisting of methane with impurities depending on

the properties of the reservoir. Norway is a large producer of natural gas from

the natural gas reservoirs on the continental shelf. The natural gas from the fields

in the North Sea and Norwegian Sea is compressed at terminals and sent to the

continent through different pipelines. The fields in the Barents Sea are located

outside this network and the gas is transported by boat. To do the transport in an

efficient and environmental friendly way, the natural gas is liquefied to LNG reduc-

ing the volume 600 times. This process takes place at the LNG terminal located at

Melkøya outside Hammerfest. Water removal is crucial in the production of LNG

in order to prevent hydrate or ice from clogging the equipment. The dehydration

at Melkøya uses adsorption with zeolites to process the gas from the Snøhvit field

and two other fields. The zeolite pellets are designed to have a lifetime of ∼ 5

years, but under operating conditions the pellets have to be replaced every 2-3

years. This is costly due to process down time. Analysis of the adsorbent indicate

1



Chapter 1. Introduction

high amount of liquid and thermally degraded triethylene glycol(TEG)[1].

A collaboration between the group for thermodynamic modeling (THEMOD)

at the University of Bergen and Statoil, the operator of the plant, has been es-

tablished. The joint effort aims on investigating the reduced lifetime of zeolites.

The THEMOD group, lead by Professor Bjørn Kvamme, is dedicated the task of

providing the microscopic insight that can shed light on the macroscopic observa-

tion. Results from a preliminary part of this ongoing work have been presented at

InMoTher 2012[1, 2], and at the EIGHTEENTH SYMPOSIUM ON THERMO-

PHYSICAL PROPERTIES. Some of the results indicate that the methane model

does not give the true picture of the methane zeolite interaction, in contrast the

water model performs well. A Ph.D study on TEG and zeolites is also in progress.

1.2 Scientific method

Of well-established theoretical methods suitable for addressing the nano-scale be-

havior of these zeolite systems molecular dynamics (MD) and Monte Carlo (MC)

are the only ones based on atomistic interactions, which is a necessity for under-

standing how the different basic elements of the zeolite structure contributes in

the separation. The scientific method used in the work mention above is molecular

dynamics, a method well suited to obtain knowledge into how a microscopic sys-

tem evolves through time. This evolution is connected to thermodynamics and the

macroscopic observations through statistical mechanics. Monte Carlo techniques

have been applied frequently to similar systems, but is not designed for process

kinetics. The essence of Monte Carlo is random sampling. Thus, important con-

figuration for the microscopic understanding can be missed. The pure size of the

system rules out Ab initio methods, but it can be used to characterize individual

species in the system. Molecular dynamics have the advantage of giving both dy-

namics properties and observable averages at the same time, it is thus well suited

for this thesis. Furthermore it also gives the possible to continue on the work done

by Jensen et al. [1, 2].

2



Chapter 1. Introduction

1.3 Objectives

The main objective of this thesis is to investigate the methane interactions with

zeolite, specifically the Linde Type A-3Å, alongside with an investigation into the

use of polynomial path integration for water in zeolite.

3





Chapter 2

Natural gas processing

This chapter gives a short introduction into natural gas processing, emphasizing the

technology used at Snøhvit while other possible technologies are discussed briefly.

The discussion is superficial with the goal of giving a process overview, before

moving into zeolites in the next chapter

2.1 Snøhvit

Snøhvit uses a fluid cascade process(MFC)[3] to liquefy natural gas. The dry gas

enters the process at pressure and temperature of about 61.5 bar and 284 K, respec-

tively. Two precooling steps separates out the natural gas liquids (NGL), before

liquefaction, subcooling and expansion results in the final LNG product. The LNG

product keeps a temperature of ∼110 K and a pressure of ∼55.1 bar[4]. Upstream

there are several processes taking place to ensure that LNG can be produced and

shipped to the marked. Offshore the natural gas is injected with a hydrate in-

hibitor, for this process monoethylene glycol(MEG)[3]. The gas is then received

by an onshore slug catcher before it is flashed in an inlet separator to remove con-

densate. The MEG is recovered from these two steps and sent back offshore for

re-injection. The toxic mercury is removed before the sour gases, carbon dioxide

and hydrogen sulfide, are removed to prevent corrosion in equipment, meet health

and environmental requirements and prevent crystallization in the cryogenic step,

[5, Chapter 7]. The CO2 is subsequently stored beneath the reservoir to prevent

global warming. The last step before the natural gas moves into the MFC process

is to reduce the water content to a concentration where ice and hydrate formation

5
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do not represent a problem in the following treatment and transport. Typically

the water content in the natural gas pre-liquefaction needs to be ∼ 0.5 ppmv[6].

To achieve this the dehydration process at Snøhvit use adsorption in a column

packed with the potassium form of zeolite A.

2.2 Natural gas dehydration

Natural gas dehydration by adsorption is generally an expensive process applied

when a high purity product is required, for example production of LNG. Ad-

sorption using zeolites can achieve water contents down to ∼ 0.03 ppmv. The

adsorption can also be performed using activated alumina or silica gel. Activated

alumina can reach water contents of ∼1ppmv, but is more difficult to regenerate.

Silica gel can be regenerated but is less effective with a water content in the dry

gas of ∼10ppmv. The most used dehydration method in the industry is absorption

using different glycols, usually triethylene glycol (TEG). The absorption method

is cheaper than using adsorption, and usually used when pipeline transportation

is possible. With a high solvent circulation, absorption can achieve water con-

tents down to ∼ 20 ppmv. Using a Drizo process or injecting dry gas into the

glycol reboiler will further improve the solvent purity, leading to more efficient

dehydration. Nevertheless, using a glycol solution of 99.97% purity will result in

a dewpoint around 200K, which is still too high for LNG production [5, Chapter

7]. Another drawback with absorption is the freezing point of TEG, in its pure

form, at 266 K[7]. Continued circulation is then needed to prevent clogging when

operating in cold climates.

2.3 Gas adsorption

The adsorption process is performed with two fixed beds packed with the adsor-

bent, see Figure 2.1. One bed is responsible for dehydrating the wet gas, while

the other is regenerating. Wet gas enters the operating column on top to prevent

fluidization of the bed. After a given time interval, governed by the break through

time, the adsorbent approaches saturation. The wet gas is then switched towards

the regenerated bed. Under the regeneration process the bed is purged with hot

6
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inert or purified gas. This provides thermal energy for desorption and also trans-

ports the adsorbate out of the bed. The purge gas can be reused by flashing or

cooling. This process is known as temperature swing adsorption and at Snøhvit

conducted at Tadsorption=∼298 K and Tdesorption=∼503 K using purging with dry

gas. Another alternative would be to use pressure swing adsorption, reducing the

pressure when regeneration takes place, but this process is not suited when the

adsorbate has large affinity for the adsorbent.

The bed is packed with zeolite pellets that usually come in cylindrical or spher-

ical forms with a common diameter of 0.5-0.6 mm, other shapes are also possible.

The size and shapes of the pellets are used to reduce the pressure drop over the

bed, while the actual zeolite crystal, responsible for the adsorption, is only 1-5 µm

[8].

Figure 2.1: Two adsorbers, one used for dehydration while the other is regen-
erated. The columns are filled with spherical zeolite pellets.

2.4 Zeolite pellet

The zeolite pellet consists of a binder material that holds the zeolite crystals. The

materials used in the zeolite binder reported by Sircar and Myers [8] is clay, alu-

mina or polymers. Other materials are also used and this is often a well-kept

secret of the producer. The binder should be optimized for the specific process.

I.e. the adsorption of molecules in the binder should be weak compared to the

zeolite crystal. If this is not done the binder can retain some of the components,

leading to reduced capacity. For example the use of alumina in the binder could

trap heavy hydrocarbons[5, Chapter 7].

Large meso- and macropores are often produced in the zeolite pellet by includ-

ing organic substances that is combusted in the baking of the pellet. The purpose

7
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of these large pores is to improve the transport of adsorbate to the zeolite crystals.

An illustration of a zeolite pellet is shown in Figure 2.2 [8].

Meso−macropore
in Binder

Zeolite crystal

Binder

Zeolite P ellet

Figure 2.2: Illustration of a zeolite pellet, scales are out of proportions and
some molecules are also included. By zooming into the zeolite crystal the water
molecules trapped in a zeolite KA crystal can be observed.
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Chapter 3

Zeolites

An introduction to zeolites follows below, underlining the zeolite A form.

3.1 History

Zeolites are natural occurring minerals, first discovered by the Swedish mineralo-

gist A.F Cronstedt in 1756. The name zeolite is Greek and means boiling stone,

from the immense water loss observed when heating zeolites. The practical use

of zeolites was first recognized in the early 20th century, earlier the zeolites were

mostly used in jewelry. Alongside with the desiccant properties of zeolites, re-

versible ion-exchange was discovered as an important property to exploit. The

industrial use was kicked off when the Union Carbide Corporation discovered how

to synthesize zeolites from a low-temperature hydrothermal process. This made

it possible to create zeolites of different forms depending on the area of use. The

Linde Corporation developed one of the most known zeolites, the synthetic zeolite

A[9].

3.2 Structure

Zeolites are microporous crystalline aluminosilicates, consisting of [SiO4]
−4 and

[AlO4]
−5 tetrahedra usually written TO4 (T=Si, Al) [10]. The TO4’s form the

zeolite host structure, that different types of guest molecules can inhabit, that will

9
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change the zeolite characteristics. The number of guest molecules are determined

by the number of [AlO4]
−5 included in the framework. Due to the substitution of

Si4+ with Al3+, a residual negative charge is left on the oxygen framework. This

is compensated by guest ions balancing the negative charge[9, Chapter 3].

3.2.1 Host

TO4 tetrahedrons are the primary building unit (PBUs) in the zeolite , forming

secondary building units (SBUs) [11]. The SBUs build together then makes up a

composite building unit (CBU) [12] and CBUs put together forms a zeolite unit

cell. Zeolite A follows the Loewensteins[13] rule with alternating Al-O-Si linkage,

unit-cell sides of ≈24.55[14] and chemical formula Mn+
96
n

Si96Al96O384, M indicates a

counter-ion. One unit-cell is composed of 8 α-cavities [15], see figure 3.1, connected

through the 8T-rings. The α-cavity is formed by twelve 4T-rings, eight 6T-rings

and six 8T-rings ([4126886]), see figure 3.2. The α-cavity has a diameter of 11.4

Å[9, p.36] and is also known as LTA CBU. The cubic arrangement of the α-cavities

makes one β-cage([4668]) in the middle of the α-cavities, connected to the α-cavity

through 6T-rings. The 4T-rings on a β-cage are connected to a 4T-ring of an

inverted β-cage. Altogether there are 8 β-cages in one unit-cell [16]. The double

4T-ring(d4r CBU) connecting the β-cages also connects the α-cavities diagonally.

The word cage is used when no guest-molecule larger than water can enter, and

is based on the largest ring size being a 6T-ring. While cavity is used when larger

guest molecules can enter, for a more complete description see [9, 17, 18]. The

chemical formula for the host structure in zeolite A gives a residual negative charge

of -96 e, which needs to be balanced by counter-ions.

3.2.2 Guest-ions

The mostly used counter-ions in LTA zeolite are potassium, sodium and a mixture

of calcium and sodium. The potassium form is known as LTA-3A, the sodium

form is known as LTA-4A, and the calcium sodium mixture known as LTA-5A.

These zeolites are also known under the names zeolite KA, zeolite NaA and zeolite

NaCaA. There are also other forms with magnesium, silver etc. but only the forms

mention above is discussed. In a LTA unit-cell there are three main sites preferred

by the counter-ions. Site I is at the 6T-ring displaced into the α-cavity, site II is
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Chapter 3. Zeolites

in the middle of the 8T-ring near the plane of the ring, and site III is in the 4T-

ring displaced into the α-cavity [19], see Figure 3.2. The size of the counter-ion

and the placement at site II will consequently determine the size of the largest

open window in the zeolite. The largest window is given by the calcium/sodium

exchanged LTA, as indicated by the name ∼5 Å. This is caused by the divalent

calcium filling site I before site II, leaving some of the 8T-rings open. The site

at the 4T-ring is the least favorable and filled last [20, 21]. For the monovalent

cations all the II sites are taken and the sodium form leaves a largest opening of

∼4 Å, while LTA-3A has an opening of ∼3 Å due to the larger potassium ion.

Figure 3.1: α-cavity in zeolite A, with windows marked on the inside and TO4

linkage sticking out.

11



Chapter 3. Zeolites

Figure 3.2: One unit-cell of LTA-3A zeolite, composed of K96Si96Al96O384.
The figure is showing 8 α-cavities, 1 β-cage in the middle behind the double
4T-ring. The double 4T-ring is diagonally connecting the α-cavities, while 7
inverted β-cages are partially shown.

3.3 Stability

Zeolites are metastable species, meaning they can exist in less stable states than

the most stable state for long periods of time. This can be used to explain why

zeolite A does not occur in nature. Some zeolites can be extremely sensitive

to heat, and change structure even at room temperature. Zeolites can also be

sensitive to critical water loss, which can occur over a large temperature range.

This can cause the zeolite to change form, structurally collapse, or recrystallize

into a non-zeolite material. The counter-ions in zeolites can easily be exchanged

with other ions, because of this ability zeolites are widely used in detergent. The

sodium ions in zeolite are then exchanged with calcium ions in water to soften the

water. The framework atoms can also be exchanged by exposing the structure to

12



Chapter 3. Zeolites

acid or bases containing the wanted ion, for example aluminium hydroxide. This

is how the Si:Al ratio is changed in order to facilitate counter-ions.

Zeolite A is stable up to at least 973 K, but readily dissolves in acids as the

amorphous aluminium reacts. This increases the Si:Al ratio and the counter ions

escapes the structure. In contact with, even a dilute, alkaline solutions zeolite A

can transform and if the exposure lasts for months it can dissolve[9, Chapter 8].

3.4 Production

Zeolite A is usually produced by first creating the zeolite NaA. This can be

done from mixing sodium hydroxide with different silicate minerals containing

aluminium, for example kaolinites[22]. Another option is to use sodium silicate,

aluminium trihydrate and sodium hydroxide. This forms a gel which is crystal-

lized and filtered, followed by exchanging the sodium ions with the wanted ions

need to produce a given zeolite characteristic. When the wanted zeolite crystals

are formed they are bound together using a binder material.

The other forms of zeolite A are formed from the zeolite NaA, thus they can

often contain traces of sodium. As stated by Dyer [9] the zeolite KA is often a

partially exchanged NaKA zeolite.

3.5 Physical principles of the method

Zeolites are called molecular sieves because of the size or steric exclusion of some

molecules, referred to as mode I. Small molecules will see the whole volume of the

zeolite pellet, while larger molecules is restricted to a moving through the binder.

In practice most gas separation is performed using thermodynamic selectivity.

This is the difference in attraction two molecules feels towards the zeolite structure,

referred to as mode II. As an example, equally sized polar and non-polar molecules

entering the zeolite structure, will lead to the polar molecules interacting strongly

with the high charge densities found at the cationic sites, while the non-polar

molecules are not hindered by the electric field. The adsorption to the zeolite

framework is weak in comparison to the cationic sites because of lower charge

density. The thermodynamic selectivity is governed by the difference between

bulk gas state and the adsorbed state, through the thermodynamic strive towards

13
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equilibrium. The result of these two modes combined, is a kinetic selectivity given

by the individual flux of each component divided by the total flux. This gives

dynamic local mole-fractions at every position in the structure.

Dehydration of natural gas performed by LTA-3A is an example of exclusion

of the larger methane molecule from the zeolite structure, while the smaller water

molecule can enter the pores and adsorb[8, 9]. The LTA-4A zeolite uses both

modes, as the methane molecules can enter through the 8T-ring, while water can

use both the 8T-ring and the 6T-ring. When the molecules have entered, water

feels a strong attraction to the zeolite, while the non-polar methane is less hindered.

Table 3.1: Different modes for gas separation.

I
Size or steric exclusion of a certain component caused
by the largest open windows in the zeolite being smaller
than the size of the component.

II

Thermodynamic selectivity when all components can
enter the zeolite structure, but some components have
stronger affinity for adsorption, and hence lower diffu-
sion through the zeolite, until all adsorption sites are
taken.
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Chapter 4

Thermodynamics and statistical

mechanics

This chapter starts with a short introduction to the science of thermodynamics,

before it moves into the microscopic world of statistical mechanics used to describe

the macroscopic world of thermodynamics.

4.1 Thermodynamics

Thermodynamics is a set of laws concerning everyday observations. If a bottle of

cold beverage is given sufficient time in a room it takes the same temperature as

the room, which can be observed by a thermometer. Thus, if two systems are in

thermal equilibrium, and one of the systems is in thermal equilibrium with a third

system, then all three systems are in thermal equilibrium. This is known as the

first statement of thermodynamics called the 0th law. While driving a steam engine

it is observed that internal energy is converted to heat, and heat converted to work,

this is the 1st Law of thermodynamics, stating that energy is conserved. A third

observation, the 2nd Law of thermodynamics, is that heat is flows spontaneously

from a hot system in thermal contact with a colder system. The 2nd Law puts a

constrain on the 1st Law, saying that heat cannot be completely converted to work.

The development of thermodynamics was started in the 1700’s to explain the steam

engines. The modern formulation came with J.W.Gibbs and gives the macroscopic

explanation of energy, work and heat. The last law of thermodynamics, the third,

gives the definition of absolute temperature at 0 K in a perfect crystal.
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4.1.1 Thermodynamic potentials

The 1st Law of thermodynamics gives the change in the internal energy in a system

as the sum of the heat and work added or abstracted, see Eq. (4.1).

dU = δQ+ δW (4.1)

The internal energy is a state variable, meaning independent of the path between

two states. Work and heat are path variables, dependent on the path between

two states. The work term can include different terms, in this thesis focus is on

mechanical and chemical work. The heat term is connected to the 2nd Law of

thermodynamics through the definition of entropy.

dS =
δQrev

T
>
δQirrev

T
(4.2)

In Eq. (4.2) the terms reversible and irreversible appear. The reversible change is

one that always stays in equilibrium with the surroundings. This means it follows

a path of infinitesimal small changes between an initial state and a final state. An

irreversible change is a spontaneous change where the system feels the influence

of the surroundings instantaneously. A good example is a gas in a cylinder held

under a piston with a weight on top. The system is in equilibrium at the initial

state, if the whole weight is removed the gas instantaneously feels the external

pressure and a spontaneous process takes place. In contrast, if one decreases the

mass of the weight with an infinitesimal small change of mass over an infinite time,

the system will always stay in equilibrium with the surroundings and the change

is reversible. This means that one can also add an infinitesimal small mass and

recover the old state. The reversible change serves as a reference state for a real

spontaneous process.

The energy of the universe is constant. So if the definition of entropy is ap-

plied, it follows that the change in entropy always is larger than zero, and equal

to zero in equilibrium. This is the 2nd Law of thermodynamics, Eq. (4.3).

dS ≥ 0 (4.3)

Starting from the 1st Law of thermodynamics, for a reversible change and a one

component system, the internal energy is given as a function of the extensive

variables entropy(S), volume(V) and number of particles(N), meaning we have
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a function U(S,V,N) given in Eq. (4.4). From Gibb’s phase rule for extensive

variables one also knows that only c+2 variables can be determined, with c equal to

the number of components in the system, there is only one component in Eq. (4.4).

An extensive variable is one that depends on the size of the system, in contrast to

an intensive variable which is independent of the size of the system.

dU = T︸︷︷︸
∂U
∂S

dS −P︸︷︷︸
∂U
∂V

dV +µ︸︷︷︸
∂U
∂N

dN (4.4)

The 1st Law give information on the internal energy of the system, but will not

directly give information on the work possible to extract. From the 2nd Law,

Eq. (4.3), it is known that a spontaneous process will maximize its entropy and

minimize its energy until equilibrium. Just as a ball falling to the ground minimizes

it is energy, while giving of heat and increasing the entropy. It would therefore be

favorable with a function that contains the same information as the 1st Law, but

in terms of other variables. Rearranging the 1st Law gives S(U,V,N), see Eq. (4.5).

dS =
1

T
dU +

P

T
dV − µ

T
dN (4.5)

The disadvantage with entropy, as a thermodynamic potential, is that it lacks

practical applications, since few natural systems are held under constant energy.

Nonetheless, it makes a good foundation for statistical mechanics, as entropy is the

natural potential to the microcanonical ensemble. The microcanonical ensemble

will be discussed more in subsection 4.2, furthermore it is also the natural ensemble

in a molecular dynamic simulation[23, p. 454], to be discussed in Chapter 5.

Temperature is a variable that is easy to observe, furthermore many real

processes occur under constant temperature (or at least close to constant). So

expressing the 1st Law in terms of temperature instead of entropy will through

a Legendre transformation[24, p. 87-89] give the familiar Helmholtz-potential, or

Helmholtz free energy.

A(N, V, T ) = U(V,N, S(T ))− ∂U

∂S
S = U − TS

with the differential:
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dA = d(U − TS) = −S︸︷︷︸
∂A
∂T

dT −P︸︷︷︸
∂A
∂V

dV +µ︸︷︷︸
∂A
∂N

dN (4.6)

From Eq. (4.6) one can see that the Helmholtz free energy is the energy poten-

tial minus the irreversible losses due to entropy generation. Thus, it represents

the available energy in the system. The Helmholtz potential contains the same

information as entropy, but more easily accessed. In similar ways one can con-

tinue deriving other potentials depending on the available variables. Legendre

transformation of the Helmholtz-potential from V→P gives Gibb’s free energy, G,

and Legendre transformation of Helmholtz-potential from N→ µ gives the grand

potential, φ. Knowing the potential makes it possible to calculate all equations of

state from the partial derivative of the potential. As an example, pressure is the

negative partial derivative of Helmholtz energy with regards to volume, which is

shown in Eq. (4.6).

4.1.2 Equilibrium

A system moves towards equilibrium through maximizing entropy and correspond-

ingly then minimizing energy. Hence the direction towards equilibrium is in the

minimum of the free energy where the change in the potential is zero. In an iso-

lated equilibrated system with two phases and one component the following case

is true:

U1 + U2 = Utot = constant S1 + S2 = Smax = constant

V 1 + V 2 = Vtot = constant N1 +N2 = Ntot = constant

Thus using Eq. (4.4)

d
(
U1 + U2

)
=
(
T 1 − T 2

)
dS1 +

(
P 1 − P 2

)
dV 1 +

(
µ1 − µ2

)
dN1 = 0

Because there are no constraints on each phase, only on the total system. It follows

that the above can only be true when Eq. (4.7) is true, where c components,

j=1,...,c, have been included. For a real system the pressure is replaced with the
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fugacity.

T 1 = T 2 = ... = T p P 1 = P 2 = ... = P p µ1
j = µ2

j = ... = µpj (4.7)

In equilibrium it follows from Gibb’s phase rule for intensive variables, that c+2-p

intensive variables determines the system. When the system is not in equilibrium

knowledge of the intensive properties of each phase shows the direction towards

equilibrium[24, Chapter 2-3].

4.2 Statistical mechanics

The laws of thermodynamics are macroscopic laws and changes to thermodynamic

variables can be measured by different methods. The origin of the macroscopically

observable property changes, in thermodynamics, is related to a microscopic world

of small particles. These particles are in this thesis limited to atoms building up

molecules. The description of the microscopic world is given by statistical mechan-

ics, without this description thermodynamics would only be a phenomenological

theory. It was Ludwig Boltzmann and J. Willard Gibb’s that established the

foundation for classical statistical mechanics in the late 19th century, they used

classical mechanics to describe the motion of particles. In light of the quantum

mechanics developed in the early 20th century, the classical description of particles

can only be considered an approximation when the particles are not competing to

get into the same energy states. In this case the quantum statistics, Fermi-Dirac

and Bose-Einstein distributions, can be approximated by the Boltzmann distribu-

tion from classical statistical mechanics [24, p.311].

Classical statistical mechanics are, as the name suggests, based on the formu-

lations given by Sir Isaac Newton. Newton’s Law says that the force F exerted

by the object is equal to the acceleration of the object multiplied by the mass

of the object, this can also be given by the time derivative of momentum. The

use of momentum is practical when moving into phase space as energy is speci-

fied by the particles positions and momentums. An important characteristic of a

classical system is that the space related to momentums (translational, rotational,

intramolecular) is orthonormal to the volumetric space representing the interac-

tions between atoms and molecules as function or relative positions.

The total energy of a microscopic system is written as the sum of kinetic and

potential energy. It is practical to define the Hamiltonian as this sum Eq. (4.8),
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and use momentum and position as variables. One has to consider all the par-

ticles, so the sum in Eq. (4.8) runs over N particles, with the momentum vector

p given by px,py,pz and position vector r given by position qx, qy, qz so a total

of 6N variables are needed to determine the energy of the system. In Eq. (4.8)

r ≡ r1, .., rN and p ≡ p1, ..,pN .

H (p, r, t) = K + U =
N∑
i=1

p2i (t)

2mi

+ U (r, t) (4.8)

The equation of motion follows from the Hamiltonian as 6N first order ODE’s

ṙi =
∂H (p, r, t)

∂pi
=
pi (t)

mi

ṗi = −∂H (p, r, t)

∂ri
= −∂U (r, t)

∂ri
= F i (4.9)

The time derivative of the first line in Eq. (4.9) substituted in the second line

recovers Newton’s 2nd Law. The second line in Eq. (4.9) follows from the forces

being conservative and derivable from the gradient of a scalar potential energy

function, see Eq. (4.10).

F i (r, t) = −∇iU (r, t) (4.10)

The energy space is a 6N dimensional space given by momentum and position.

This space is known as phase space and each point in phase space is known as

one energy state or microstate. If the system is not in equilibrium phase pace

will also be time dependent. With 6N variables that can be time dependent, and

often consisting of particle numbers in the range of 1023, it would seem to be

an impossible task to find an analytical solution to this problem. The statistical

mechanic solution is to apply the ensemble theory, another solution is given by

obtaining a numerical solution to a smaller, but representative part of the system.

The last solution is the way of molecular dynamics, to be discussed in detail in

Chapter 5.

4.2.1 Ensemble theory and ergodicity

Ensemble theory is based on the concept that a thermodynamic observed value

is the average of the microscopic properties of the system. In the case of a given
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thermodynamic potential one can construct an ensemble of identical macroscopic

systems, see Figure 4.1, described by different microscopic variables. The average

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

NVT

Figure 4.1: Canonical ensemble, each subsystem is described by its own ar-
rangement of microscopic variables corresponding to the same observed macro-
scopic variables

of the ensemble is then connected to the time average through the ergodic hypoth-

esis. It has not been possible to prove the ergodicity of a system but it is possible

through the Liouville theorem and the Liouville equation. The Liouville theorem

shows that a phase space volume at t=0 will be conserved at t=t, which is shown

illustratively in Figure 4.2. The Liouville equation shows that the phase space

distribution is conserved along a path in phase space. Thus, f(Γ0)dΓ0=f(Γt)dΓt

with f(Γ0) being the distribution function, see Eq. (4.24), and dΓ a phase space

element. In an equilibrium system the observables are static, the time dependence

in the Hamiltonian is removed leading to ∂f
∂t

= 0. The ensemble average can then

be performed at any point in time[25, Chapter 2.4].

A Hamiltonian independent of time, H (p, r), following an ergodic trajec-

tory will sample all microstates in the ensemble when time goes to infinity, see

Eq. (4.11). For a large system this integral cannot be solved, thus the best solu-

tion is a numerical approach. This is done in molecular dynamics, representing

a method to obtain both ensemble averages and dynamic properties, see Chap-

ter 5. Furthermore, it is not necessary for the Hamiltonian to be independent of

time. This is the way of non-equilibrium molecular dynamics, but this is beyond

the scope of this thesis[25, Chapter 13]. All simulations have been done using

equilibrium molecular dynamics.

〈A〉time =
1

t

∫ t

0

dtA (p( t )r( t ))
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〈A〉ensemble = lim
t→∞
〈A〉time (4.11)

p

q

p

q

time= ttime= 0

Figure 4.2: Luiville’s theorem, the volume element at t=0 can spread out in
phase space but has to contract in other dimensions to preserve the volume.
The right hand side phase space volume is distorted due to the chaotic nature
of a dynamical system.

4.2.2 Macroscopic microscopic connection

Ludwig Boltzmann made a postulate that in an equilibrium ensemble of constant

E,V,N, known as a microcanonical ensemble, entropy is proportional to the log-

arithm of the total number of microstates, Ω, in the system. This is the basic

connection between the macroscopic and microscopic world. The proportionality

constant is known as Boltzmann’s constant, and Ω is the microcanonical partition

function, see Eq. (4.12).

S (E, V,N) = kbln (Ω (E, V,N)) (4.12)

The connection between the microscopic and macroscopic world gives a funda-

mental insight into the concept of heat and work. The microcanonical partition

function is derived by putting one constrain on the ensemble. This is the constrain

that the number of systems in phase space must sum up to the number of system

in the ensemble, which is the same as saying that the probability must sum up

to one. The canonical ensemble is a constrained microcanonical ensemble, where
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the average energy must be the sum of the weighted energy of all microstates,

see Eq. (4.13). N is the number of systems in the ensemble, ni is the number of

systems in one microstate, the sum runs over all microstates and Ei is the energy

in microstate i.

U = 〈E〉 =
∑
i

ni
N︸︷︷︸
pi

Ei (4.13)

Eq. (4.13) shows the basic idea of statistical mechanics. The most probable dis-

tribution of systems over phase space is found by maximizing the distribution

function while applying the constrains through Lagrange multipliers. This gives

the phase space density, and the denominator, the total number of microstates,

is known as the partition function which can be connected to the potential cor-

responding to the given ensemble, see Table 4.1. Eq. (4.13) can be compared

to Eq. (4.4) to give a microscopic understanding of heat and work, taking the

differential of Eq. (4.13) gives.

dU =
∑
i

Eidpi︸ ︷︷ ︸
δQ

+
∑
i

pidEi︸ ︷︷ ︸
δW

This shows that that adding or removing heat changes the probability of finding

a system within a given energy level, meaning that the distribution of systems

over phase space changes while the energy levels stays constant. Work can then

be seen as an ordered change where the distribution of systems over phase space

stays constant, but the energy levels changes[26].

As mentioned in the thermodynamic part, Chapter 4.1, all the thermodynamic

potentials contains the same information, thus it is possible to move from entropy

to another potential. Another connection comes through the Laplace transforma-

tion of the partition functions [24, p.189-194]. For example the Laplace trans-

formation of the microcanonical partition function gives the canonical partition

function. It can then be shown that in the thermodynamic limit of N → ∞
the observed values in one ensemble is the most probable in another ensemble.

This is an advantage because the microcanonical partition function needs the so-

lution of an N-dimensional sphere, in the other potentials the dimensions can be

factorized, leading to a simpler solution. The partition functions are connected

to the potential describing the ensemble, this connection is summarized in Table
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4.1. The microcanonical ensemble serves as the foundation for the other ensem-

bles, the canonical ensemble is the weighted ensemble of numerous microcanonical

ensembles with different energies, corresponding to the same temperature. The

grand canonical ensemble is again the weighted ensemble of many different canon-

ical ensembles with different particle numbers, but same chemical potential. The

open system, grand canonical potential, depends on a single extensive variable,

V, in combination with the Euler relation it directly leads to the equation of

state φ = −PV . It must be mentioned that this is just a short introduction to

thermodynamics and statistical mechanics, more details on the thermodynamic

potentials, phase space and the partition functions can be found in any text book

on thermodynamic and statistical mechanics, two such books are Greiner et al.

[24] and Tuckerman [25].

Table 4.1: The macroscopic microscopic connection for different ensembles.

Potential Observed Partition Connection
variables function

S EVN Ω S = kblnΩ
A NVT Z A = -kbT lnZ
G NPT ∆ G = -kbT ln∆
φ µVT Z φ = -kbT lnZ
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4.3 Energy in a microscopic system

The Hamiltonian in Eq. (4.8) is as mentioned earlier, the sum of the kinetic and

potential energy. The average kinetic energy is through statistical mechanics con-

nected to the temperature of the system. To be more specific, the equipartition

theorem states that the average kinetic energy will distribute evenly between each

degree of freedom in the system. The number of degrees of freedom depends on

how the molecules are built up. Monoatomic molecules have only translational

degrees of freedom. For di-atomic and larger molecules the degrees of freedom are

summarized in Table 4.2. The average of each degree of freedom will through the

equipartition theorem have a thermal energy of
1

2
kbT [27, Chapter 2.5.3].

Table 4.2: Internal degrees of freedom for linear and non-linear molecules, n
is the number of atoms in the molecule.

Linear non-linear
molecule molecule

Translation 3 3
Rotation 2 3
Vibration 3n-5 3n-6

The potential energy can be divided into bonded intramolecular interaction be-

tween atoms in molecules, and non-bonded intermolecular interactions. The non-

bonded interactions can be simplified by using a united-atom model. This assigns

one site to the whole molecule or functional groups in the molecule. This will re-

duce the internal degrees of freedom, but is faster to calculate. The total potential

energy can be written as a sum of all the interaction as done in Eq. (4.14).

U = Ubonded + Unon−bonded (4.14)

From Eq. (4.10) it is clear that the ability to describe a real system depends on

selecting a potential energy function describing the interactions correctly. There

are many different potentials to choose from, and alongside with the ability to

describe reality one must consider how easy it computes.
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4.3.1 Bonded interactions

The bonded interactions can be divided into bond-stretching, angular-bending and

dihedral-twisting. The stretching of a covalent bond is most realistic describe by

the Morse potential, consisting of an exponential term and two fitting constants.

Another solution is to do a Taylor expansion around the equilibrium bond length,

truncating the expansion after the third term and setting the constant to zero.

This leads to Hook’s law given in Eq. (4.15), and illustrated in Figure 4.3. In

Eq. (4.15) Ka is the bonded force constant and req is the equilibrium distance

between the two atoms.

Ub =
1

2
Kb(r − re) (4.15)

r

Figure 4.3: Harmonic spring to describe the covalent bond between two atoms.

As long as the bond length does not deviate too much from the equilibrium length

it is sufficient with the first non-zero term in the Taylor expansion. The Harmonic

potential is then usually chosen over the Morse-potential because it is faster to

compute[28, p.20].

Hook’s law can also be used to model the angular bending between three

atoms. A spring is then attached to the covalent bonds two atoms form with a

third atom, as illustrated in Figure 4.4.

The energy is then given by Eq. (4.16), where Ka is the angular force constant

and θeq is the equilibrium angle between the two atoms.

Ua =
1

2
Ka(θ − θe) (4.16)

The harmonic potential is used to model the bonded interactions in this Thesis.

The functional form of dihedral bending is not mentioned because there are no

dihedral angels modelled in this thesis. The zeolite structure is considered to be

fixed in space, and only modelled with non-bonded interactions.
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θ

Figure 4.4: Angular bending modelled with a harmonic spring.

4.3.2 Non-bonded interactions

The non-bonded interactions are forces between atoms that are not connected by

covalent bonds. The type of interactions depends on the species interacting. Figure

4.5 shows repulsion between two atoms with a collision diameter of σ separated

by a distance rij. The force F ji is equal in magnitude but opposite in direction

to the force F ij, from Newton’s 3rd law.

A common approximation is to consider only two-body interactions, because

of the tremendous task of evaluating the influence of 2,3,4,...,N-1 atoms onto atom

A1,2,...,N . This can give some error, especially for polar species, so often the average

of the third-order terms and higher are incorporated into the two-body interactions

by experimental fitting, or including a correction to the calculations. The non-

bonded interaction can then be written as a Ui =
∑N

j 6=i Uij.

i j

σi σ j

+

Fi j Fji

ri j =| ri− r j |

Figure 4.5: Intermolecular repulsion between two non-bonded particles sepa-
rated by a distance r.
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The non-bonded interactions depend primarily on the distance between the species.

At small distances the Pauli repulsion from overlapping electron orbitals will dom-

inate. Its not possible to derive a dependency on the distance for the Pauli re-

pulsion, although it can be justified. The exact wave function for the hydrogen

atom is an exponential function, so the electron density will approximately fall

off exponentially with distance. As the distance increases, other forces becomes

important, of course depending on the properties of the atoms [29, p.23-29].

Interactions between two permanent dipoles gives a temperature dependent

(±1/r3) term, which will depend on the orientation of the two molecules. The

most probable alignment is found by Boltzmann averaging all energies from the

different orientations. The energy distance dependency is then (−1/r6). The

dipole-dipole interaction is also known as Keesom force.

Forces from a dipole interacting with a polarizable specie is known as Debye

force, and comes from a dipole inducing a dipole in the polarizable specie. The

interaction will be attractive, since the polarizability is positive and the average

orientation is obtained using the Boltzmann distribution, giving the same distance

dependency as the Keesom force.

As electrons moves around they can cause an instantaneous uneven charge

distribution around the nucleus. These differences in electron density create an

induced dipole, which can induce a dipole in a neighboring specie. The induced

dipole - induced dipole interaction is just the leading term in which the energy is

approximated to, the quadrupole and multipole terms follow behind. This force is

known as London dispersion and together with the Keesom and Debye forces com-

monly summarized as van der Waals forces which decays proportional to (1/r6).

This is also the basis for the attractive parts of typical efficient pair poten-

tials. As mentioned in the start of the section, in the real world more than the

two atoms in consideration will determine the interactions energy. This type of

multi-particle dependency will be accounted for in quantum mechanics ab initio

modeling. But these types of calculations are extremely computationally demand-

ing and not suitable for realistic scales of systems which may contain everything

from a few molecules up to several thousand. In this context it is therefore impor-

tant to consider the potentials of interactions, Section 4.3.3, as ’efficient’ average

pair interaction energies which will contain some average contributions from higher

order interactions due to surrounding particles. This will of course induce some

reduction in applicability to other surroundings than what they were originally
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derived for this can be resolved by fitting to some experimental data for real sys-

tems.

The last force to be considered is the electrostatic force between charges, also

called Coulomb force. This can be charges on ions or partial charges on molecules.

For ions the charge comes from the quest to achieve octet, meaning filling of outer

shell. In this case an atom with high electronegativity steals an electron from an

atom with low electronegativity, and the charges appears as integers of e. Partial

charges are used to account for an electron spending more time in a specific part of

the molecule. This is governed by the difference in electronegativity between the

bonded atoms. Charles Coulomb found in the late 18th century that the energy

from charge-charge interactions falls off with (1/r).

To summarize one can divide the non-bonded potential energy into two parts,

energy falling off with (1/r6) or faster, from short-range forces, and energy falling

of slower from electrostatic forces, also called long range forces. In molecular dy-

namics the temperature of the system and the positions of the molecules follow

from the simulation, so both the Keesom and Debye forces will be incorporated

into the electrostatic forces since it is not necessary to perform the Boltzmann

averaging. The non-bonded energy will then be given by Eq. (4.17).

Unon−bonded = UPauli repulsion − ULondon dispersion︸ ︷︷ ︸
Short−range

+UElectrostatic︸ ︷︷ ︸
Long−range

(4.17)

The models for the short-range interactions and long-range interaction will now

be investigated, but emphasis will be on the short-range interactions.

4.3.3 Models for short-range interactions

The most used potential to model short-range interaction is the Lennard-Jones

potential, which was developed in 1924 by Jones [30]. He proposed to model the

Van der Waals forces by a repulsive and an attractive part each given by the inverse

of the distance raised in some exponent. The parameters are the collision diameter,

σ, the well depth, ε, and a constant depending on the selected exponents. Because

the attractive part depends on the (1/r6) of distance, the most used form of the

Lennard-Jones potential has the exponents 12-6, known as the Lennard-Jones 12-

6 potential, see Eq. (4.18). The exponent of the repulsive part is put to twelve

because of the simplicity of taking the square of the attractive part. The values
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of the two exponents give the constant value on the right hand-side in Eq. (4.18),

which for the 12-6 LJ gives the constant 4.

UShort−range = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(4.18)

The clear weakness of the Lennard-Jones potential is the repulsive part. Hill [31]

stated that the Lennard-Jones form is not satisfactory when U >> 0. He then

proposed that equation 1 in Hill [31] would give a better description for spherical

non-polar molecules, the same form was also proposed by Buckingham [32]. The

potential is therefore know as Hill or Buckingham potential, see Eq. (4.19). This

is the form for the Buckingham potential used in the simulation part of this thesis,

see Table 6.1 and Table 6.4.

UShort−range = Ae−
rij
ρ − C

r6ij
(4.19)

The Buckingham potential can also be written in a more informatory way, see

Eq. (4.20) [23, p.36].

UShort−range =


−∞ when rij → 0

ε

[
6

α− 6
· eα(1−

rij
rm

) − α

α− 6

(
rm
rij

)6
]

when rij > λrm
(4.20)

Where ε is the well depth, same as in Eq. (4.18), rm is the distance where the

potential energy takes a minimum at −ε. This means that the repulsive and

attractive forces are equal. λrm is the distance where the Buckingham potential

takes a non-physical maximum as the repulsive part goes towards a constant value.

The Lennard-Jones potential can also be written in terms of rm because

rm = 6
√

2σ. This form is often used, as done in equation 2, Hill [31]. The difference

in the Lennard-Jones and Buckingham potential can then easily be visualized, see

Figure 4.6. Except from difference in the functional form of the Buckingham and

Lennard-Jones equations, the only difference is the parameter α controlling the

steepness of the Buckingham potential. An α of 12 gives the same attractive force

as the Lennard-Jones potential.
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Figure 4.6: Plot of Buckingham potential and 12-6 Lennard-Jones potential,
with same rm and same well depth, see Appendix A for script.

As one can see from Figure 4.6 the Buckingham potential gives a softer repul-

sion at close distances. It has been shown that this is a more true description of

the van der Waals forces, compared with the Lennard-Jones potential, Hart and

Rappe [33].

The values of the parameters in the non-bonded interactions are usually ob-

tained through empirical fitting to experimental data or fitting to quantum me-

chanical calculations. A force-field describing the energy of a system will not

necessarily correctly describe the diffusion, so care must be taken in the selection

process. Usually one considers the force field for pure species, although parameters

for mixtures are also used. From the pure force field parameters the interactions

between mixtures follows from the combining-rules or mixing-rules. The use of

mixing-rules avoids the need to fit a specific set of parameters to all pair types in

the simulation.
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4.3.4 Mixing-rules

The most frequently used mixing-rule in literature is the Lorentz-Berthelot rule.

The well-depth, εij, of the type-type interaction is taken as the geometric mean, see

first line Eq. (4.21), and the collision diameter, σij, is obtained as the arithmetic

mean, see second lineEq. (4.21).

εij =
√
εiiεjj

σij =
σii + σjj

2
(4.21)

The Lorentz-Berthelot mixing-rule is widely used because of the simplicity of the

expressions. The geometric mean of the well-depth arises from behavior close

to critical point. While the arithmetic mean is just the average of the collision

distance between the two spheres, the later can only be considered valid for hard-

spheres[34]. A number of different mixing-rules have been proposed, which can

improve the results for a specific system. Good and Hope [35] proposed use the

geometric mean for all parameters in the Lennard-Jones potential, and for the

Buckingham potential as well. This is the mixing-rules used for the Buckingham

potential in this thesis, summarized in Eq. (4.22). Because of the large amount

of available mixing rules one should keep in mind that different mixing-rules can

improve the calculations. The main objective must always be to build a model

that describes reality in a correct manner.

Aij =
√
AiiAjj

ρij =
√
ρiiρjj

Cij =
√
CiiCjj (4.22)
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4.3.5 Long-range interactions

There are several ways to model the long-range interactions, depending on how

the electrostatics is defined. One possibility is to use the electronegativity to

determine the charge, thus the electronegativity becomes the parameter describing

the interactions. Another alternative is to define a charge polarization for the

bonds, and use orientation vectors between two dipoles[23, p.40]. The simplest

and most used way is to assign fixed charges and model them using Coulomb’s

law. The energy from charge-charge interactions is then given by the Coulomb

potential Eq. (4.23).

ULong−range =
qiqj

4πε0rij
(4.23)

Where qi and qj are the elementary charges at point i and point j, ε0 is the per-

mittivity of free space, and rij is the distance between the charges.

4.4 Calculations of observables

Starting in the canonical ensemble the total partition function Z is given in

Eq. (4.24).

Z (N, V, T ) =
1

N !h3N

∫
e−βH (p,r)dNpdNr (4.24)

Where N! is the Gibb’s correction factor for identical particles and h3N is the

required volume for a quantum mechanical state transferred to classical phase

space[24]. The kinetic term in the Hamiltonian contains information of the ideal

system, while the potential energy determines the particular properties of a real

system. Thus, integrating Eq. (4.24) over all momentum reveals the advantage of

the canonical partition function over the microcanonical. The momentum integral

is a Gaussian integral where the 3N dimensions factorizes. The solution to this

integral gives Eq. (4.25).

Z (N, V, T ) =
1

N !λ3Nt

∫
e−βU(r1,..,rN )dNr︸ ︷︷ ︸

Z

(4.25)
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λt is the thermal wave length, which can be used to check if quantum mechanics

can be approximated by classical mechanics. This is the case when
V

N
>> λt =

h2

2πmkBT
. When U (r) = 0 the integral over positions simply gives the volume of

the container and the ideal gas law is recovered. The integral over position can

be denoted as the configurational partition function z. The ensemble average of

any coordinate-dependent function will then follow. The probability of finding a

particle N at a point rN in a volume element drN is thus given by Eq. (4.26).

PN (r1, .., rN) dNr =
e−βU(r1,..,rN )

Z
dNr (4.26)

The free energies or thermodynamic potentials are as mentioned earlier state vari-

ables and connected to the partition functions, see Table 4.1. The difference

between two states 1 and 2 is ∆A21 = A2 − A1. This macroscopic difference is

microscopically given by the ratio of the partition functions. The momentum in-

tegration cancels out, leaving the ratio of the configurational partition function,

see Eq. (4.27).

∆A21 = −kBT ln
(
Z2

Z1

)
= −kBT ln

(
Z2

Z1

)
(4.27)
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Molecular dynamics

This chapter gives a short introduction to molecular dynamics with emphasis on

the tools used in the computational part of this thesis.

5.1 Computing molecules

There exist mainly two strategies in order to obtain a numerical solution to a

microscopic system, the one used in this thesis and mentioned earlier in Chapter

4 is molecular dynamics, the other is Monte Carlo. Monte Carlo is a stochas-

tic approach which probes phase space for the minimum energy configuration by

randomly moving particles around. Molecular dynamics is a deterministic way of

probing phase space.

In order to get the ensemble average from Eq. (4.11), the system needs to be

evolved towards infinity. This is of course not possible and fortunately not needed

either. It is sufficient to sample the most probable microstates, although fasci-

nating information can be found in the less probable states. Molecular dynamics

replaces the integral in Eq. (4.11) with the sum over the discrete steps taken in

the numerical solution. This gives the time average in Eq. (5.1), with t=n∆t, n is

the number of discrete steps and ∆t is the step size .

〈A〉time =
1

t

t∑
A (p( t ), r( t )) (5.1)

The total needed runtime will depend on the system in question, but it must be

long enough to ensure that the dynamic changes have damped out. This means
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that the system average should not contain any memory of startup and adjustment

into stability. The average of a given number of steps is then equal to the average of

the next set of steps. Molecular dynamics is thus performed with an equilibration

run into stability, followed by a production run giving the averages.

5.1.1 Time algorithms

In order to obtain the numerical solution a time integrator is needed. There exist

several ways to solve the second order ODE’s following from Newton’s second law,

among others the Runge-Kutta method or a predictor-corrector method. These

methods can be used to solve ODE’s, but are not well suited for molecular dy-

namics. Among several desirable qualities of the integration scheme, the energy

conservation and the time reversibility are needed to obtain a physical solution[36,

p.76]. The simplest way to acquire an algorithm with these properties is through

a Taylor expansion [37], if this is done by the means of two third order Taylor

expansions around the starting position at t=0. One expansion is moving forward

in time to step n+1, see Eq. (5.2), and the second is moving back in time to step

n-1, see Eq. (5.3). The final result after summing the two expansions is the Verlet

algorithm, which is a fast time-reversible scheme for integrating Newton’s second

law where the errors cancels.

rn+1 = rn +
∂rn
∂t︸︷︷︸

ṙ=vn

∆t+
1

2!

∂2rn
∂t2︸ ︷︷ ︸
r̈=an

∆t2 +
1

3!

∂3rn
∂t3

∆t3 +O
(
∆t4
)︸ ︷︷ ︸

error

(5.2)

rn−1 = rn −
∂rn
∂t

∆t+
1

2!

∂2rn
∂t2

∆t2 − 1

3!

∂3rn
∂t3

∆t3 +O
(
∆t4
)

(5.3)

Summing and rearranging.

rn+1 = 2rn − rn−1 + r̈n∆t2 +O
(
∆t4
)

(5.4)

One disadvantage with the Verlet scheme is that the velocity is not given straight

forward, it needs to be collected from the positions at n+1 and n-1. This is done

by taking the difference of Eq. (5.2) and Eq. (5.3) and rearranging with regards

to velocity, see Eq. (5.5).
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ṙn =
rn+1 + rn−1

2∆t
+
O (∆t3)

∆t
(5.5)

This gives an error of ∆t2 in the velocity for one iteration. On a large time-scale

of n iterations this error will grow, demanding even smaller time-steps. The error

in the velocity calculation will be squared in the kinetic energy leading to poor

energy conservation.

O(t) = O(n∆t2) = O(
t

∆t
∆t2) = O(t∆t)

One way to improve the velocity calculation is to reduce Newton second law into

two first order ODE’s, respectively velocity and acceleration. Then do a Taylor

expansion of velocity at t=0 and combine with Eq. (5.2). This will increase the

truncation error in the position by one order of magnitude, but at the same time

decrease the error in the velocity by the same amount. This is done by approximat-

ing the third derivative of position by doing a Taylor expansion of the acceleration

Eq. (5.7), and leads to the familiar velocity-Verlet algorithm[23, p.452], following

below.

ṙn+1 = ṙn + r̈n∆t+

...
r n
2 n

∆t2 +O
(
∆t3
)

(5.6)

r̈n+1 = r̈n +
...
r n∆t+O

(
∆t2
)

(5.7)

Rearranging Eq. (5.7) with respect to the third order derivative of position gives.

...
r n
2

=
r̈n+1 − r̈n

2∆t
+O (∆t) (5.8)

By truncating Eq. (5.2) after the second term and inserting Eq. (5.8) into Eq. (5.6)

the velocity verlet algorithm Eq. (5.9) is obtained.

ṙn+1 = ṙn +
r̈n+1 + r̈n

2
∆t+O

(
∆t3
)

rn+1 = rn + ṙn∆t+
r̈n
2

∆t+O
(
∆t3
)

(5.9)

The velocity Verlet conserves the kinetic energy better than the verlet algorithm

by using the average force, of step n and n+1, to compute the velocity.
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The above integration schemes uses a single time step for all forces in the sys-

tem. If the system consists of forces from a light atom oscillating in a bond to

long-range electrostatics, a large time-step will cover the slow long-range forces,

but will not cover the fast forces in the bond. A short time step will be computa-

tional expensive as the change in the slow forces are small. This is a disadvantage

for the single time step, but an advantage that can be exploited if the velocity Ver-

let is derived in a more powerful way. Utilizing the Liouville operator to propagate

the system through time makes it possible to separate the fast forces from the slow

forces. The forces are then factorized using the Trotter theorem[25, Appendix C].

This procedure is known as the RESPA-algorithm and makes it possible to do

multiple time-scale integration while preserving the reversibility of the system.

Leading to one time scale δt for the fast forces and a time scale ∆t for the slow

forces. With an integer number of small time steps, δt, in one long time step,

∆t. The multiple time scales obtained with RESPA-algorithm leads to the veloc-

ity verlet algorithm given in Eq. (5.9). More information on multiple time-scale

integration is given in [25, Chapter 3.11].

5.1.2 Ensembles in molecular dynamics

As discussed in Chapter 4, one often want to perform the calculation in other

ensembles than the microcanonical, because the observed values are easier to mea-

sure. This represents a challenge for molecular dynamics, which by probing the

constant energy surface is naturally connected the microcanonical ensemble. There

exists several ways to solve this, if the goal is to perform a NVT simulation. The

easiest way to keep the temperature constant would be to scale the velocities at

each time step to achieve the desired temperature. This procedure is known as

velocity scaling and is beneficial when starting a simulation, as one can obtain

better velocities and positions for the particles. This procedure does not follow an

ergodic trajectory through phase space and will thus not reproduce a canonical en-

semble. Although several procedures have been developed to keep the temperature

constant, for example the Anderson thermostat and the Berendsen thermostat, it

is the Nosé-Hoover thermostat that has ended up as the main temperature con-

trolling tool in molecular dynamics. To produce a canonical ensemble the system

Hamiltonian must be allowed to change, as long as the temperature of the sys-

tem corresponds to the given temperature and the total energy of system and

surroundings are constant. The Nosé-Hoover thermostat has been shown to have
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this capability and can reproduce the canonical ensemble, the equation of motion

is given in Eq. (5.10).

ṙi =
pi
mi

ṗi = F i (r)− p2η
Q
pi

ṗη =
N∑
i=1

p2i
mi

− dNkBT (5.10)

Where pη is a ”friction” or coupling term which exchange energy with the reservoir

to keep the temperature in the system constant, second line Eq. (5.10). The dNkbT

term is the canonical average temperature over d dimensions. From the third line in

Eq. (5.10) one can see that the driving force for the ”friction” term is the difference

between the instantaneous kinetic energy of the system and the canonical average.

The η term, which is equal to η̇ =
pη
Q

was included by Martyna et al. [38] for

analysis. This leads to a conserved energy of the form given in Eq. (5.11) [25,

p.184]. The prime indicates that this is a non-Hamiltonian equation, because the

equation of motion cannot be derived directly from it.

H ‘NH (p, η, r, pη) = H (p, r)︸ ︷︷ ︸
system

+
p2η
2Q

+ dNkbTη︸ ︷︷ ︸
Heat reservoir

(5.11)

The Nosé-Hoover Hamiltonian is a sum of two parts, the system Hamiltonian,

equal to the Hamiltonian in Eq. (4.8) giving the complete microscopic descrip-

tion of the system, and a non-Hamiltonian part constituting the heat-bath. The

variables describing the heat-bath are fictional variables, because the microscopic

description of the surroundings are of no importance as long as the Nosé-Hoover

Hamiltonian generates the canonical distribution. The analyses done by Tucker-

man [25] shows that the Nosé-Hoover dynamics is able to produce the canonical

distribution, when Eq. (5.11) is the only conserved quantity. If the system also

has to follow Newton’s third law then the Nosé-Hoover dynamics fails. In this

case the canonical distribution can be achieved by including a Nosé-Hoover chain

of thermostats. The crucial variable to tune in the Nosé-Hoover formalism is the

’mass’ Q of the thermostat, which can be given in terms of the relaxation time,

τ , see Eq. (5.12) [39]. A proper choice of the relaxation time is needed for the
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systems to have an ergodic trajectory through phase space, see Kuznetsova and

Kvamme [40].

Q = dNkbτ
2 (5.12)

The isobaric-isothermal ensemble can be created in a way similar to the canonical

ensemble. By introducing fictional variables responsible for changing the system

volume so the system pressure remains constant i.e. the system is connected to a

work reservoir alongside with the heat reservoir. The grand-canonical ensemble is

created by connecting the system to a particle reservoir alongside with the heat

reservoir.

5.1.3 Periodic boundary conditions

Molecular dynamics usually employs the periodic boundary conditions, in order

to avoid the problem of how the system interacts at the boundaries. The system

is surrounded by an infinite number of identical copies. When one molecule leaves

one image it enters a new identical simulation box, in which an identical molecule

has moved over to the next periodic image, this is illustrated in Figure 5.1. Con-

sequently a molecule leaving the simulation box at one side will just reenter the

box on the other side when visualized. The total box will mathematically be

given by n = {nxLx,nyLy,nzLz}, with L giving the initial box size in Cartesian

space, and the integer vectors nx, ny, nz = Z giving the simulation box when

nx, ny, nz = 0 and the copies when nx, ny, nz 6= 0. It would also be computa-

tional expensive to evaluate the pair-interactions over all distances, so a cut-off

distance is employed and only the interactions within cut-off distance is evaluated.

This is shown in figure 5.1, alongside with the nearest image convention. Nearest

image convention means that a particle in the simulation box interacts with the

particles in the next periodic image if the particle in this image is within cut-off

distance. The cut-off distance alone will significantly improve the computational

speed, because of the need to evaluate if the particles are within cut-off or not, so

one more tool is needed. This tool is the neighbor list also called Verlet list, all

neighbors of a particle i within a distance Rcut + δ is then determined and saved

at the start of the simulation. The displacement of the particles from the initial

position is determined at each time step and if this displacement for one particle

is larger than δ
2

the list needs to be updated. Using a cut-off distance represents
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r
cut

δ

Figure 5.1: Figure showing the use of periodic boundary conditions, the sim-
ulation box is shown to the left. This box is surrounded by identical boxes
shown in two dimensions to the right. The cut off distance for evaluating the
short-range forces are indicated by the circle, alongside with the nearest image
convention. δ is the distance between the two circles and determines how often
the neighbor list should be updated.

no problem for the short-range interactions, if the cut-off is long enough. These

interactions tend towards zero with (1/r6), and will thus disappear, see Figure 4.6.

For the long-range interactions a cut off distance will represents a problem. If the

distribution of particles are assumed to be homogeneous, the number of particles

will grow as N =
4

3
πr3ρN . The electrostatic energy falling off with (1/r) will thus

diverge with r2. The truncating at a cut-off distance will in this case invoke a

large error in the calculations and introduce a discontinuity in the forces.

5.1.3.1 Ewald summation

The problem mention above is in this thesis handled with the Ewald summation

method. The total long-range electrostatic energy is given by summing Eq. (4.23)

over all images and all particles, see Eq. (5.13)

41



Chapter 5. Molecular dynamics

ULong−range =
qi

4πε0

n=∞∑
n=−∞

N∑
j=1

qj
|rij + n| (5.13)

As the sum in Eq. (5.13) is periodic and runs to ∞ it would take a large compu-

tational effort to evaluate it. This is eased out by evaluating the electrostatics up

to cut-off and then Fourier transform the interactions beyond cut-off into k-space

or reciprocal space. To do this, the distance dependency is written using the error

function.
1

r
=
erfc (αr)

r
+
erf (αr)

r
(5.14)

The α has units Å−1 and is in this case a parameter which tunes the range the

error function is non-negligible. erfc(αr) is the complementary function to erf(αr)

and the sum erf(αr)+erfc(αr)=1. The complementary function will decay rapidly

with increasing distance, this term can be incorporated into the short-range inter-

actions evaluated within cut-off distance. The second term in Eq. (5.14) represents

the interactions beyond cut-off distance, and is thus the term that is left in the

long-range interaction. It still takes a large computational effort to evaluate this

expression, but the advantage is that the error function can be expanded in a

Fourier series. The long-range interactions in real space will be short-range in

reciprocal space, thus saving computational resources.

n=∞∑
n=−∞

erf (α|r + n|)
r + n

=
1

V

∑
g

Cge
−ig·r

with the expansion coefficients Cg

Cg =
4π

|g|2 e
−|g|2

4α2 (5.15)

g =
2πn

L
is the reciprocal space vectors. It would be impossible to evaluate the

infinite sum of all g but as the exponential factor in the expansion coefficients tends

quickly towards zero with increasing numbers of g. The sum can be truncated with

a finite number of |g| ≤ gmax such that the exponential factor is negligible. The

total formula for the Ewald summation would take an extensive derivation to arrive

at, so the reader is redirected to [25, Appendix B] or Kuznetsova and rn Kvamme

[41]. The discussion in this thesis is ended by the fact that one can write the total

Uelectrostatic = Ureal + Ureciprocal − Uself . Where Ureal is the evaluated in real space

alongside with the Lennard-Jones or Buckingham contribution and the remaining
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long-range electrostatic is evaluated in Fourier space, Uself is the correction for

self-interactions.

5.2 Calculations in molecular dynamics

This is a short overview of the calculation possible from the molecular dynamic

simulations.

5.2.1 Free energy

The free energy difference was given in Eq. (4.27) as the ratio of the partition

functions. This is reduced to the ratio of the configurational partition functions

when the momentum integration cancels. Since molecular dynamics calculates

averages of phase space, but does not give direct access to the full partition function

one need another approach. One approach suited for molecular dynamics is the

free energy perturbation formula[25, p.316], but this is only possible if the energy

difference of state 2 and state 1 is small. Another solution is to introduce a

switching variable, λ, changing between 0 and 1, thus creating intermediate states.

In this case a new potential energy function is defined as the sum of the potential

energy function of state 1 and for state 2, each multiplied by a switching function.

Since the parts of the potential energy decays differently the switching variable

can be extended with an exponential factor, a procedure known as known as

polynomial path[42]. In this way the slow decaying parts of the potential is faster

switched towards the second state avoiding that the repulsive part of the potential

is switched off to fast, compared to the attractive part. If this was not the case

one would risk the particles clumping together. For potentials with an exponential

repulsive part as in Eq. (4.19) Kuznetsova and Kvamme [43] found that including

an exponential coupling function improved the calculations. The total Helmholtz

free energy difference is then written as in Eq. (5.16)[43].

Eq. (5.16)

A1 − A0 =

∫ 1

0

∑
ki

kiλ
ki−1 〈Ui〉λ +

kexp
λ

〈 ρ

λkexp
rUexp

〉
λ
dλ (5.16)

43



Chapter 5. Molecular dynamics

Where ki is the lambda exponents on potentials decaying with 1
ri

where i runs

over the different parts of the potentials i.e. 12, 6 and 1. kexp is the lambda

exponent on the lambda used in the Uexp = e
− ρr

λkexp . The lambda subscript on

the average bracket indicates the specific lambda value used in the simulations

which the average is taken on. Each term in the integral is equal to the ensemble

average of the partial derivative of the potential energy with respect to λ. Which

again is equal the partial derivative of Helmholtz energy with respect to lambda,

this connection comes from the connection in Table 4.1, and the derivation is

shown in [25, Chapter 8.2]. Integrating from λ = 0 to λ = 1 gives the free energy

difference. Where A0 in this case is an ideal system, meaning that the potential

energy U0 = 0, while A1 is a real system. So the ideal system is slowly transformed

to a real system when λ → 1. The difference in the free energy then gives the

excess or residual free energy, respectively depending on if the reference state is

liquid or gas. The polynomial path integration has an advantage over temperature

integration because fewer simulations are needed. Temperature integration takes

typically ten simulations from the target temperature up to a temperature where

molecule interactions are negligible. At high temperature one can get into trouble

with a Buckingham type potential, as the high kinetic energy can overcome the

maximum value of the repulsive part of the potential. The particles will then

experience an unphysical infinite attraction when rij < λr, see Figure 4.6, not the

same lambda as the one used in the polynomial path integration. The polynomial

path integration typically need 3 or 5 simulations at different lambda values, it is

thus faster to perform and computational less expensive.
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5.2.2 Radial Distribution Function

From Eq. (4.26) it is possible to derive a n-particle correlation function, the spe-

cial case when n=2 is called a pair-correlation function. From the pair-correlation

function the radial distribution function follows by considering the relative center-

of-mass coordinates of particle 1 and particle 2, and change to polar-coordinates

before integrating over all angles. The radial distribution function can be con-

nected to scattering intensities from neutron or x-ray measurements yielding a

way to compare the observed structure to the calculated one. It can be imple-

mented in a molecular dynamics code as done in [44], or in the visualization and

analyzing tools as done in [45]. The functional form of the radial distribution

function, g (r), is given in a simplified form in Eq. (5.17). The more rigorous

form derived from statistical mechanics can be found in [25, p.154] and the form

implemented in molecular dynamics in Levine et al. [45].

g (r) =
〈N (r)〉

4πN
V
r2dr

(5.17)

Where r denotes the radial distance and dr is the shell, the nominator gives the av-

erage number of atoms in a the shell dr. The shells dr are illustrated in Figure 5.2.

Figure 5.2: Illustration of the distribution
of particles around a central particle. The
number of particles in each shell dr a dis-
tance r from the central particle is counted
in each time frame from a molecular dy-
namic simulation and then averaged over the
number of frames.

The denominator is the normalization

to an ideal system, so in the case of

g (r)=1 there will be no structural or-

dering. A plot of a radial distribution

function is shown in Figure 5.3. The

zero probability of finding a particle

at short distances is due to the repul-

sive part of the potential energy, while

the first peak is due to the attractive

part of the potential which coordinates

a first shell of particles around a cen-

tral particle. This shell repulses some

of the particles at longer distances giv-

ing the first minima before a second

shell forms. As the distance increases

the g (r) settles to one and the poten-

tial energy tends towards zero, see Figure 4.6. Integrating the radial distribution
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function over all distances gives the number of particles in the system, while in-

tegration to the first minima gives the number of particles in the first shell. The

radial distribution function can also be used to determine the second virial coeffi-

cient in the virial equation of state.

1

g
(r
)

r

Figure 5.3: Radial distribution function from an illustration run of liquid
methane using the MDynamix 5.1 package [44] to obtain the trajectories, the
radial distribution function was calculated using vmd [45, 46] and plotted in
MATLAB [47].
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5.2.3 The diffusion coefficient

The diffusion coefficient is a measure of the tendency particles have to drift through

a system under the action of a constant external force, Tuckerman [25, Chapter

13.3.2]. The diffusion coefficient can be derived from both experimental studies,

and from molecular dynamics. Therefore many molecular dynamic simulations

aim on collecting this property, giving a good foundation to validate performed

simulation against literature values. From a molecular dynamic simulation there

exists two ways to obtain the diffusion coefficient. The first is from the velocity

autocorrelation function [25, p.509] and the second is from the Einstein relation

between the diffusion coefficient and the average mean square displacement. The

latter is used in this thesis and given by Eq. (5.18).

Ds =
1

2d
lim
t→∞

d

dt

1

N

N∑
i=1

〈
|ri (t)− ri (0)|2

〉
︸ ︷︷ ︸

MSD

(5.18)

Where Ds is the self-diffusion coefficient and d is the number of dimensions equal

to 3 in the case of diffusion in x, y and z directions. MSD is the mean square

displacement, equal to the squared distance a particle i has travelled between t=0

and t=t averaged over all particles. As the particles starts travelling in the system

they travel in one direction until they encounter other particles. This ballistic

behavior gives a mean square displacement proportional to t2. The true random

walk starts when the particles are encountering other particles that make them

change positions randomly. In this case the MSD plot will be proportional to

t. The diffusion coefficient is then given from the derivative of the mean square

displace averaged over time and dimensions, see Eq. (5.18).
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Chapter 6

Computational details

The following section gives an introduction to the previous work done in the THE-

MOD group which this work continued from. Furthermore, the development and

testing of the new methane-zeolite model is explained, alongside with simulations

details and analysis performed in this work.

6.1 Introduction

The work done by Jensen et al. [1, 2] was the starting point for the molecular

dynamics simulations performed in this work. Jensen et al. [1, 2] used the potas-

sium model of Jackson and Catlow [48], potassium in faujasite, alongside with the

host-structure and water model of Faux et al. [16]. Faux et al. [16] transferred

interatomic potentials for related systems, to create a model for hydrated and de-

hydrated zeolite NaA. Faux et al. [16] based his work on the work done by Jackson

and Catlow [48] on the zeolite NaA structure, and the water-zeolite work done by

Leherte et al. [49] on water in ferrierite. The water-water interactions are described

by the SPC/E model of Berendsen et al. [50]. The hydrated zeolite KA model use

the Lennard-Jones potential for all interactions except K+ − Ow, K+ − Ozeo and

Ozeo−Ow that use the Buckingham potential. This is the model used throughout

the investigation of polynomial path integration for water in zeolite KA .

To describe the methane-zeolite and methane-methane interactions, Jensen

et al. [1] used the methane model of Jorgensen et al. [51], and the Lorentz-

Berthelot mixing rules. Results obtained by Jensen et al. [1] indicated that the

OPLS methane sphere, even though it correctly describes bulk methane, was too
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big to correctly describe the zeolite-methane interactions. This thesis continue the

investigation of methane-zeolite interactions.

Several models were investigated to describe the methane-zeolite interaction

among others the 5-site methane model used by Catlow et al. [52], the model

of Garcia-Sanchez et al. [53], which use the OPLS model for methane but has

a different model for the zeolite structure. Because the model by Jackson and

Catlow [48] has been frequently used due to the ability to reproduce experimental

measurement and also contained parameters for potassium in zeolite, it was not

desired to change the zeolite model. Jackson and Catlow [48] used the Buckingham

potential, it was thus tempting to use these original parameters and change the

pure methane potential. The model of Tsuzuki et al. [54] was chosen for methane

because of the ability to reproduce pure methane diffusion. Furthermore, the idea

was that a Buckingham potential, in the close confinement of a zeolite structure,

would better describe the repulsion between the zeolite structure and the methane

guest molecules compared to a LJ-model. To my knowledge a pure Buckingham

potential between guest molecules and host zeolite has never been used before, at

least not for methane in zeolite A. The main reason for this is the computational

expense of a Buckingham potential, usually the Lennard-Jones potential is used

by fitting to experimental data of zeolite and guest molecule. This was not a pos-

sibility, due to the lack of experimental data, although Statoil plans on starting

an experimental plant using the zeolite KA.

The work in this thesis can be divided into two parts, one part that consists

of testing the methane potential in zeolite and a short investigation into methane

zeolite KA interactions. The other part consists of checking if it is possible to

use polynomial path integration to obtain excess energy for water in zeolite. The

testing of the Buckingham potential for methane in zeolite was done on a LTA

zeolite without counter-ions, denoted as LTA−96, because of the large amount of

data published on this type of system. The LTA−96 is practical because it reveals

the effect the counter-ions have when included in the simulation. Although, it is

hypothetical because of the unbalanced charge, there have been reported experi-

mental values for low methane loading in a high silicon zeolite A[55]. The LTA−96

should not be confused with the LTASi zeolite where aluminium has been replaced

by silicon.
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6.2 The methane zeolite model

The different parameters for the model tried in this thesis follows below, and starts

with the parameters for methane from Tsuzuki et al. [54], given in Table 6.1.

Table 6.1: Five-site Buckingham parameters for methane, from Tsuzuki et al.
[54].

A ρ C(
kJ
mol

)
(Å) (kJ ·Å

6

mol
)

C 7924 0.371 1880.83
H 8807 0.298 216.35

From the reported reduction factor of the C-H bond length in Tsuzuki et al. [54],

the positions of the hydrogen atoms was calculated using polar coordinates. The

xyz-coordinates used in the simulations are given in Table 6.2.

Table 6.2: xyz-coordinates for methane, from Tsuzuki et al. [54].

x y z
(Å) (Å) (Å)

C 0.000 0.000 0.000
H1 0.000 0.000 0.942
H2 0.888 0.000 -0.314
H3 -0.444 -0.769 -0.314
H4 0.444 0.769 -0.314

Tsuzuki et al. [54] used a rigid methane molecule which reduces the internal de-

grees of freedom to translation and rotation. To include vibration, the bonded

parameters of Catlow et al. [52] was also implemented, these are given in Table

6.3.

Table 6.3: Bonded parameter for methane, from Catlow et al. [52].

Bond Angle

re Kb θ Ka

(Å)
(

kJ

mol·Å2

)
(◦)

(
kJ

mol·rad2
)

C-H 0.942 2991.0 H-C-H 109.47 327.08
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Jackson and Catlow [48] reported three different models for the zeolite structure,

the model used in this thesis is the fixed framework model from Table 1 in Jackson

and Catlow [48]. These parameters are given as the pair-potential against oxygen.

To implement the methane model of Tsuzuki et al. [54] the pure potentials were

obtained using the mixing rules of Eq. (4.22), see Table 6.4. The pure zeolite

parameters could then be mixed with the methane parameters using the same

rules. The charges were taken from the work of Faux et al. [16].

Table 6.4: Buckingham parameters for LTA3A zeolite, from Jackson and Cat-
low [48].

A ρ C Charge(
kJ
mol

)
(Å) (kJ ·Å

6

mol
) (e)

Si 4229.6 0.801 0.00 3.70000
Al 9038.5 0.600 0.00 2.77500
O 2196384.5 0.149 2690.00 -1.86875
K 4241.0 0.879 386.57 1.00000

6.3 Software and Hardware

The molecular dynamics program used in this thesis was a modified version of the

open-source code MDynaMix Package version 5.1[44, 56]. The modifications was

done by Professor Tatiana Kuznetsova who added support for the Buckingham

potential Eq. (4.19), alongside with output in Protein Data Bank (.PDB) format.

Bjørnar Jensen, who works as Ph.D student at the Institute for Physics and Tech-

nology at University of Bergen, added polynomial path integration according to

Eq. (5.16) and the option to define specific pair-interactions through a force field

(.ffield) file. The .ffield was needed in the water-zeolite simulations and the OPLS

methane-zeolite simulations.

The fortran code from MDynaMix has some features that limit its usefulness

when performing simulations of a zeolite system. First of all, it was not possible

to use a flexible zeolite model because the current code does not handle bonds

over the periodic images. The fixed zeolite structure caused the program to report

incorrect translation temperature, the reason for this is the velocity averaging

over all particles, even the fixed ones. Furthermore, the program treated each

site in the zeolite structure as one molecule, thus the non-bonded interactions
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between sites in the zeolite structure was calculated. This lead to incorrect val-

ues for the total energy, because the zeolite structure should been treated as one

molecule. Consequently the program calculated incorrect pressure from the en-

ergy. Nonetheless, when specific properties of the guest molecules are considered,

these are calculated separately and not affected by problems caused by the fixed

zeolite framework. Furthermore, because all simulations have been performed in

the canonical ensemble, the pressure has only informative value.

All simulations were performed on the Cray system hexagon[57].

6.4 The simulations

The MD51 package needs several input files containing the computational setup

for the simulation. The .mmol files contain the force-field and the structure data

of each of the species, while the mixing-rules are given in a separate file. A .start

file contains the positions of all the species at the start of the simulation. The

last file is the .input file with the setup for molecular dynamics, as discussed in

Chapter 6. In the case of water or OPLS methane in zeolite a .ffield file is also

used. The path to obtaining results from a molecular dynamics simulation can be

divided into three parts, creating the initial start-up files, running the simulations

and analyzing the results.

6.4.1 Building the simulations

The coordinates for the atoms in the zeolite structure was kindly shared by Bjørnar

Jensen, who collected them from the IZA-SC [58] based on the work by Pluth and

Smith [59]. When counter-ions were included in the simulation all the 64 sites in

the 6T-windows and 24 sites in the 8T-windows was filled, while 8 of the sites at the

4T-window displaced into the α-cavity was filled, this work was done by Bjørnar

Jensen. The parameters for zeolite, according to Faux et al. [16], and OPLS

methane was also shared by Bjørnar Jensen, through a .ffield file. The parameters

for the counter-ion were removed from this file, to create the simulation of OPLS

methane in counter-ion free zeolite.

The zeolite structure was filled with methane using the VMD [46] solvation

tool, this tool fills the simulation box with water, which then was replaced with

methane. Because methane is too big to enter the β-cages, water molecules at these
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positions were deleted, this was done using the VMD selection tool. This was a

time consuming process that ended up with 66 methane molecules located in the

eight α-cavities. Simulations were performed using both the Tsuzuki-model and

the OPLS-model. The same center mass positions was used for both models, and

the hydrogen atoms in the Tsuzuki-model added using the MOL−COM startup

option in MD51. This option reads in the center of mass positions and adds sites

according to the positions specified in the .mmol file.

Garćıa-Sánchez et al. [60] reported, from molecular dynamics simulations, the

diffusion of methane for fifteen different loadings, ranging from 1 methane pr α-

cavity to 15 methane pr α-cavity. To compare the Tsuzuki-model to these values,

a total of thirteen simulations were created, this could not have been done within

reasonable time using the simple selection procedure. Therefore, a tcl script taken

from the NAMD tutorial page[61] was slightly modified for the purpose of putting

water molecules into an α-cavity. The script’s original purpose was to immerse a

molecule in a water sphere. This sphere was put into a for-loop, which changed the

diameter, while an if-statement was responsible for writing out the positions of the

water molecules, when the needed number was achieved. The modified script, was

first run on a selection of one α-cavity, and then the water molecules were copied

to the other cavities. The obtained initial positions were often in non-favorable

places, this meant that the C-H bond in the Tsuzuki-model, could be stretched too

far. Therefore, the simulations were first run with the OPLS-methane sphere until

better positions were obtained. Typically this took about 100000 steps, with a time

step of 0.01 fs using velocity scaling to control the temperature. Garćıa-Sánchez

et al. [60] stated they had replaced the aluminium atoms with silicon atoms, when

they create the LTASi simulation, as a consequence of this, one simulation with

the aluminium site replaced with silicon was also built.

The same modified water sphere script, was used for filling the zeolite structure

with water. 224 water molecules was put into the α-cavities, to create a fully

hydrated unit-cell. The simulation was then run for 500 ps to equilibrate the

system and obtain better starting positions, using velocity scaling, a long time

step of 0.1 fs and a short time step of 0.01 fs.
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6.4.2 Running the simulations

All simulations were performed using a cubic 24.55 Å PBC box. The electro-

statics was treated using Ewald summation, with a Ewald convergence parameter

α = 2.8rcut, see Eq. (5.14), and 9 terms in the reciprocal part, according to the

recommended values in the MD51 user manual [56]. A rcut of 12 Å was used for

the short-range forces i.e. the Lennard-Jones, Buckingham and real-space part of

electrostatics, when using the long time step. For the short-time step a rcut of 6

Å was used.

Diffusion of methane

The methane simulations used a long time step of 0.5 fs. The Tsuzuki-model

used a small time step of 0.005 fs, due to the C-H bond, while the OPLS-model

used a small time step of 0.05 fs. All methane simulations were performed in the

canonical ensemble using a separate Nosè-Hoover thermostat for each specie, and a

relaxation time of 15 fs. The temperature in the simulations was set to 500K, this is

the temperature Garćıa-Sánchez et al. [60] used, and also close to the temperature,

503 K, used under regeneration at Snøhvit. The trajectory was dumped every 50

fs and an equilibration run of 500 ps was used before any calculations on diffusion

was performed. Except for the two smallest systems, the 24 methane and the 32

methane, for which a 1 ns equilibrium run was used. The simulations with 66

methane molecules are summarized in Table 6.5.

Table 6.5: The simulations performed with 66 methane molecules in one unit-
cell of zeolite A.

Methane zeolite Time CPU‘s
ffield structure (ns)

OPLS LTA−96 1.5 32
Tsuzuki LTA−96 1.5 32
Tsuzuki LTASi 1.5 32
Tsuzuki LTA-3A 5 32

The 5 ns simulation of methane in LTA-3A zeolite used a computational time of

∼121 hours. The run length of the simulations used in comparison to the data

reported by Garćıa-Sánchez et al. [60] are given in Table 6.6. The small systems

achieved a run time of 5 ns, needed to obtain a good measure of diffusion, in ∼ 96

55



Chapter 6. Computational details

hours. As the loading increased so did the computational time, at the same time

the diffusion also increased up to a loading of 72 methane molecules. This meant

that less run time was needed for the systems with high diffusion. The largest

system with 120 methane molecules took ∼ 141 hours to run.

Table 6.6: The simulations performed with Tsuzuki methane molecules in one
unit-cell of LTA−96

Simulation Time CPU‘s
(number of methanes) (ns)

24 5 32
32 5 32
40 5 32
48 5 32
56 3 32
64 3 32
72 2.5 32
80 2.5 32
88 2.5 32
96 3 32
104 3 48
112 3 48
120 3.5 48
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PPTI for water in zeolite

The Polynomial path integration for water in zeolite was performed for λ equal to

0.1125, 0.5 and 0.8875. 224 water molecules were simulated in a constant zeolite

unit-cell. The temperature was set to 298 K ±5 K using separate velocity scaling.

One control run using the Noseé-Hoover thermostat was also performed. The

runtime was set to 50 ps to check the scaling of the electrostatic exponent, K1.

The other exponents was held constant at K6=3, K12=4 and Kexp=0.25. Further

runs were performed for 2 ns, with K1=2, while K6 and K12 was changed. The

average in the 50 ps runs was taken after 15 ps, while the 2 ns runs was averaged

after 500 ps. The exponents K1=2, K6=3, K12=4 and Kexp=0.25 was used both

for the short runs and the long runs, to check the equilibration of the system.

These exponents correspond to the best results obtained for CO2 by Kuznetsova

and Kvamme [43]. The simulations are summarized in Table 6.7, where each set

of exponents corresponds to three simulations, one at each λ-value, giving a total

of 21 simulations. The exponent K1=1 was also used for three simulations, but is

not included because the simulation at λ=0.1125 crashed after 50 ps.

Table 6.7: Simulations performed with polynomial path integration for water.
The total simulation time is given in the first column, with the averaging started
from the time in the parentheses. The exponents for each part the potential are
given in the following order electrostatic, attractive LJ/Buckingham, repulsive
LJ and repulsive Buckingham.

Time(ps) K1 K6 K12 Kexp

50(15)
2 3 4 0.25
3 3 4 0.25
4 3 4 0.25

2000(500)

2 2 3 0.25
2 2 4 0.25
2 3 4 0.25
2 4 4 0.25
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6.5 Analysing the results

The resulting trajectories from the simulations were analyzed using VMD [46].

The PBC unwrap tool in VMD was used to remove the periodic boundary con-

ditions, which was needed to obtain the correct mean square displacement. The

root mean square displacement(RMSD) tool in VMD was used to obtain a plot of

RMSD against frame number. The density profiles were obtained from the VMD

Density Profile Tool(beta) [62]. The results were plotted and analyzed with MAT-

LAB [47], see Appendice B for MSD script.

The polynomial path integration was performed by fitting a Piecewise Cu-

bic Hermite Interpolating Polynomial (PCHIP) of stepsize 0.0001 and using the

trapezoidal numerical integration MATLAB [47]. There is of course some error

connected with this approach, as an example integrating x2 from 0 to 6 gave an

error of 50.0 ppm compared to the analytic solution.
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Results and discussion

This chapter starts with the 66 methane simulations, before it moves on to testing

the new model and comparing results to literature values. This ends up with a

hypothesis for the reduced lifetime of the zeolites. The last part in this section is

the PP-TI simulations of water in zeolites.

7.1 MSD for the 66 methane simulations

Four simulations were performed with 66 methane molecules in zeolite A. One

simulation using the OPLS methane model and the [16] zeolite model without

counter-ions. While two simulations, without counter-ions, were performed with

the Tsuzuki methane model and the zeolite model given in Table 6.4, only differing

by the aluminium sites being replaced with silicon. The last simulation included

potassium and was performed with the Tsuzuki methane model and the full zeolite

model given in Table 6.4.

7.1.1 Comparing OPLS and Tsuzuki methane

The plot of the mean square displacement using the OPLS-model, is shown in

Figure 7.1, it tends quickly towards a plateau value of ∼23 Å2. Over time it

oscillates around this value with a small positive slope of 0.001 Å
2

ps
, this translates
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into a diffusion coefficient of ∼ 1.7·10−12m
2

s
. The static mean square displacement

is an indication of a solid [63], and the methane molecules permanently resided in

the α-cavities they started in. The diffusion coefficient can be compared to the

reported values of Garćıa-Sánchez et al. [60], which for a loading of 9 methane

molecules pr α-cavity reported a diffusion in the range of 5 ·10−9m
2

s
. This clearly

shows that the repulsive interactions between the zeolite structure and the methane

molecules are too strong, preventing any inter-cavity motion. In comparison using

the, Tsuzuki-model alongside with the parameters in Table 6.4 for the zeolite

structure, the mean square displacement is increasing linearly with time, meaning

that the methane molecules exhibit a liquid like behavior, see Figure 7.2. The

linear fit is quite good in molecular dynamic context, with a R2=0.9931. The

slope of the fitted line gives a diffusion coefficient ∼ 5.6 ·10−9m
2

s
, which is close to

the reported values of Garćıa-Sánchez et al. [60]. This is also the highest calculated

diffusion for the Tsuzuki-model, but due to the short runtime, it is not included

in the following comparison with literature values.

7.1.2 Comparing LTA−96 and LTASi for the Tsuzuki model

When the aluminium site is replaced with silicon the diffusion coefficient is ∼ 3.6

·10−9m
2

s
, see Figure 7.3. This can be explain by the silicon site having a stronger

repulsion at intermediate distance, due to a larger ρ parameter. The larger ρ

gives a less step repulsion, compared to the aluminium site. When pure specie

interactions are considered, the aluminium site only overtakes the silicon site, at

a distance below ∼1.8 Å due to the larger A parameter, see Table 6.4.

This simulation was done to check the model for the zeolite structure. Garćıa-

Sánchez et al. [60] denoted the zeolite as LTASi, which from their explanation is

a LTA-4A zeolite without counter-ions and aluminium replaced with silicon. The

potential used for the LTA-4A zeolite, is based on the parameters in the work of

Dubbeldam et al. [64], with the full potential given in Garcia-Sanchez et al. [65].

Dubbeldam et al. [64] used a Kiselev et al. [66] approach where all interactions

are moved towards the oxygen atoms. The argument for such an approach is that

the oxygen sites are sticking out into the ring, see Figure 3.1, and thus shields the

other sites. The parameters in Garcia-Sanchez et al. [65] use the same Lennard-

Jones for OSi and OAl, only differing in the charges at the sites. Charges on the

structure have no influence on the non-polar OPLS methane sphere. So in reality

the simulations have been performed on a zeolite A without counter-ions. This
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explains why the LTA−96 simulation gives a better result than the LTASi.

Figure 7.1: Mean square displace-
ment using the OPLS model for
methane in LTA−96.

Figure 7.2: Mean square displace-
ment using the Tsuzuki model for
methane in LTA−96.

Figure 7.3: Mean square displace-
ment using the Tsuzuki model for
methane in LTASi.

Figure 7.4: Mean square displace-
ment using the Tsuzuki model for
methane in LTA-3A.

Remarks for Figure 7.1 to 7.4: The shaded area is the residual from the fit

of the linear line. The diffusion coefficient is given in all MSD plot in the right

corner with units m2

s
. The slope and the standard deviation in the slope are given

in units of Å
2

s
.
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7.1.3 MSD for methane in LTA-3A

The mean square displacement in Figure 7.4, shows that the methane molecules

are locked in positions ∼4 Å, from the starting positions, and inter-cavity motion

is non-existing. This is in agreement with the steric exclusion of methane being the

working method of zeolite KA in natural gas dehydration, and means that methane

will move through the zeolite binder. It must be mentioned, that the simulation

in itself, is a proof for the simulation setup to be highly unlikely. The simulation

showed that the methane molecules are not able to move inside the zeolite crystal,

thus they will not be able to enter it when the 8T-window is blocked. The next

generation of simulations should thus focus on an interfacial system.

The temperature plot for the simulation of 66 methane molecules inside zeolite

KA is shown in Figure 7.8, following after the discussion in Section 7.2. The

partition of energy between rotational and vibrational degrees of freedom has

clearly improved compared to the LTA−96 simulations, see Figure 7.5 to 7.7. This

is due to the potassium ions blocking the 8T-window, in doing so, the methane

molecules cannot pass through the energy barrier, and the energy is divided more

evenly.
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7.2 Runtime of the simulations

The calculated MSD plots for a loading ranging from 3 to 15 methane molecules per

α-cavity, are given in Appendix C. The MSD from the simulation of 24 methane

molecules shows a lot of noise indicating that the molecules are moving around the

same position for long periods of time. To obtain a good diffusion measurement

it would have been beneficial with a longer runtime. For this reason simulations

with fewer molecules were not performed, as the computational time would not

fit within the time limit of this thesis. The mean square displacement for the 40

methane system shows the typical ballistic behavior in the start of the simulation,

before the random walk starts. With increasing particle numbers, the particles

start the collisions earlier, and the ballistic behavior disappears from the plots,

see Figure C.4 to C.12. These plots show a good linear fit with R2 ≈ 0.99. The

exception is the 120 methane simulation, where the MSD, see Figure C.13, is static

indicating that the methane molecules have taken a highly ordered arrangement

inside the cavities. The loading of 15 methane molecules pr α-cavity occupies all

the sites leaving no possibility for inter-cavity motion, this was also pointed out by

Beerdsen et al. [67]. Figure 7.5 shows that the methane temperature has settled

down within ±5 K of 500 K for the 24 methane simulation. This variation is nat-

ural around the observed value in the canonical ensemble. The system rotational

and vibrational temperatures are separated with large fluctuations, this is typical

for a system containing high energy barriers [25, p 98-99]. When one molecule

passes through the energy barrier it will have a large influence on the temperature

of the system, because the small number of molecules to average over. For this

reason an equilibrium run of 1 ns was used for the two smallest systems, if possible

even longer runs would have been performed, especially for the 24 methane sys-

tem. The result from that simulation is not reliable, and should only be used as

an indication to the magnitude of diffusion. The equipartition of energy improved

with larger number of molecules, see Figure 7.5 to 7.7, because the energy barrier

of the 8T window had less influence on the system. Thus, an equilibrium run

of 500 ps was used for the 40 methane simulations and larger, this is the same

equilibrium time as Sega et al. [68] used for water in a confined geometry. For all

simulations the runtime has been weighted between the need for long production

runs to obtain diffusion measurements, and the need for long equilibrium runs for

the system to divide the energy evenly.
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Figure 7.5: Temperature varia-
tions throughout the 5000 ps run of
24 methane molecules in LTA−96.
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Figure 7.6: Temperature varia-
tions throughout the 2500 ps run of
64 methane molecules in LTA−96.
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Figure 7.7: Temperature varia-
tions throughout the 3500 ps run of
120 methane molecules in LTA−96.
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Figure 7.8: Temperature varia-
tions throughout the 5000 ps run of
66 methane molecules in LTA-3A.

Remarks for Figure 7.5 to 7.8: The vertical line is when production run was

started. TCH4 is the methane temperature, Trot is the rotational temperature of

methane and Tint is the internal temperature of methane.

64



Chapter 7. Results and discussion

7.3 Comparing the Tsuzuki-model to literature

values

Figure 7.9 shows the obtained diffusion for the thirteen simulations performed in

zeolite A without counter-ions. The figure also shows the approximated values

reported by Garćıa-Sánchez et al. [60], using the force field of Dubbeldam et al.

[64]. The diffusion in this work, for LTA−96, is highly dependent on loading,

differing from the values of Garćıa-Sánchez et al. [60] with as much as ∼ 2 ·10−9m
2

s
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Figure 7.9: Diffusion of methane in
LTA−96 as a function of loading. Compared
to the values of Garćıa-Sánchez et al. [60],
which used the force field of Dubbeldam
et al. [64].

at a loading below 8 methane molecules/α-

cavity. With a loading of 8 methane

molecules/α-cavity or more the dif-

ference is small, the reason is the

strong Arrhenius dependency in this

work. The diffusion increases exponen-

tially faster with loading, than the val-

ues reported by Garćıa-Sánchez et al.

[60]. Both models show the highest

diffusion with a loading of 9 methane

molecules/α-cavity. With higher load-

ing the diffusion decreases linearly as

the sites becomes occupied. The ini-

tial increase in diffusion is due to the

replacement of methane-zeolite interac-

tions with methane-methane repulsion

that pushes the methane molecules through the 8T-window. The decrease in diffu-

sion is caused by the filling of sites in the cavities, leaving fewer sites for molecules

moving between cavities.

The force field in the original work of Dubbeldam et al. [64] was compared to

experimental data for heat of adsorption and Henry coefficient with good agree-

ment for alkanes in zeolite MFI. Garćıa-Sánchez et al. [60] also performed sim-

ulations with calcium, i.e. LTA-5A, using the same zeolite structure framework

as for the counter-ion free simulations. The rigid framework was compared to

two different flexible models, which he then compared to experimental data for

methane in LTA-5A. Garćıa-Sánchez et al. [60] stated that for a single methane

in LTA-5A the diffusion for one of the flexible models is in reasonable agreement
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with experimental data, while the other is underestimating the diffusion. The rigid

model underestimated the diffusion at low loading, but with increasing loading the

difference between the flexible and the rigid models are small.

The values in Figure 7.9 can also be compared to the reported values of De-

montis and Suffritti [69]. This study investigated methane diffusion at a loading

of 1, 3 and 6 methane molecules/α-cavity, in flexible zeolite NaA with different

number of counter-ions. The reported values are ∼ 2.5 ·10−9m
2

s
,∼ 3.1 ·10−9m

2

s

and ∼ 4.6 ·10−9m
2

s
respectively for the different methane loadings and the tem-

perature in the simulation was close to 360 K. These values are higher than the

values obtained in this work. The reason is the flexible framework, which has a

larger influence on the diffusion when the loading is low, and the zeolite energy

barrier for diffusion high. This energy barrier decreases with increasing loading, as

pointed out in Beerdsen et al. [67], this explains why the difference in the obtained

values are small at high loading. Demontis and Suffritti [69] compared the perfor-

mance of the force field to experimental data on methane diffusion in zeolite ZK4

at low loading. The performed simulations underestimated the diffusion with two

orders of magnitude. Furthermore, the values in this work can also be compared

to the values reported by Dubbeldam et al. [70], which also used the force-field of

Dubbeldam et al. [64]. These simulations were performed at 600 K and are just

slightly higher than the values reported by Garćıa-Sánchez et al. [60]. It would

therefore be interesting to see how the model in this work performs at different

temperatures.

From the comparison with literature values it is clear that the model in this

work underestimates the methane diffusion at low loading compared to published

models. These models then again, underestimate the methane diffusion at low

loading compared to experimental data. One can thus expect that the model in

this work, will underestimate the diffusion at low loading, compared to experi-

mental studies.
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7.4 Comparing the structural results

7.4.1 Radial distribution functions

The radial distribution function for the simulations of methane in LTA−96, see

Table 6.6, alongside with the two simulations with 66 methane molecules in LTA−96

and LTA-3A, see Table 6.5, are given in Figure 7.10. The figure shows for all

simulations, except the LTA-3A simulation, that the distance of exclusion is ∼3 Å.

With increasing number of methane molecules, the probability of finding another

methane at longer distances increases. Compared to the diffusion in Figure 7.9,

the diffusion is highest when g(r) approaches the ideal system, beyond ∼6 Å. The

diffusion decreases with the formation of a second shell, beyond 6 Å , this shell

restricts the inter-cavity motion. The influence of the counter-ions, in the LTA-

3A system, is shown by the exclusion distance of ∼2.6 Å. The compression of the

methane molecules, are also observed with increasing methane numbers in LTA−96,

but not to such an extent. The radial distribution function for methane in LTA-

3A shows a highly ordered structure, compared to the systems without counter-

ions. The probability of finding a methane within the first shell is over twice that

observed without counter-ions. The first peak is then followed by small oscillations,

instead of the large exclusion seen in the LTA−96 simulations. The reason for this,

is the counter-ions pushing the methane molecules together, reducing the free

space of motion inside the α-cavity.

The methane-methane RDF can be compared to the work Kumar et al. [71]

did on zeolite NaCaA. They found for a loading of one methane per α-cavity,

an eminent peak at 4.1 Å. This can be compared to peak of the 24 methane

simulation in LTA−96, which is slightly shifted below 4 Å. The peak in this work

is much broader and higher reflecting the higher temperature, 500K versus 150K,

and the higher loading respectively. Furthermore, one can do a comparison to the

work done by Demontis and Suffritti [72]. The simulations was done for methane

in LTASi, at loadings of 1, 7 and 15 methane molecules/α-cavity. They found the

first prominent peak ranging from 3.84 Å(1 molecule) to 3.70 Å(15 molecules),

which is close to 3.65 Å observed for 15 methane molecules pr α-cavity is this

work. They also reported that a well-defined second peak, starts to rise at about

6.5 Å, for loadings higher than 6 molecules/cavity. This is also observed in this

work, for the 56 methane simulation to the 120 methane simulation. The peak

falls approximately at 6.55Åfor the 104 methane simulation, and 6.35Åfor the 120
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methane simulation. The peaks in this work is higher and narrower, than in the

work of Demontis and Suffritti [72], which reflects the lower temperature of 357

K.
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Figure 7.10: Radial distribution function for methane, center of mass- center
of mass, in LTA-zeolite. The legends indicates the number of methane molecules
in the simulation. Just numbers corresponds to LTA-zeolite without counter-
ions i.e. LTA−96, while the last graph with 3A-66 is with counter-ions i.e.
LTA-3A zeolite. Notice: the y-axis in the three last plots goes to 9, instead of
4 in the above plots.
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7.5 Density profiles and trajectories

7.5.1 LTA−96

The density profiles, see Figure 7.11, show the pronounced effect increasing loading

has on the methane zeolite system. The 24-methane system shows a concentrated

density in the α-cavities, with large fluctuations. The fluctuations mean that the

methane molecules are free to move inside the cavities, but the lack of density

around the 8T-windows, show that they rarely move between the cavities. The

peaks are more prominent in the systems with 48 and 72 methane molecules, where

the formations of two more peaks at the 6T-windows are shown as well. The den-

sity has now stretched through the 8T-windows, with large fluctuations for the

72 methane system, reflecting that the molecules can move quite freely through

the windows, compared to the less dense systems. The 96-methane system shows

a small density peak on both sides of the 8T-window, while the other peaks are

more prominent. This reflects that the methane molecules are starting to find a

highly ordered structure inside the cavities.

Figure 7.11: Density profiles in LTA−96 projected on to the z-axis, the shaded
area shows the standard deviation. The legends show the number of methane
molecules in the simulation, while the vertical solid line shows the position
of the 8-window in the middle of the unit-cell. The second 8T-window is not
marked but is at ∼ -11 Å, due to the periodic boundary conditions. The density-
profiles have a resolution of 0.1 Å, and is averaged from t=1 ns to t=1.5 ns with
a stepsize of 50 fs.
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The density profile for the 120-methane system is shown in Figure 7.13, alongside

with the trajectories for the methane molecules in Figure 7.14. Furthermore, the

occupancy plot in Figure 7.12 display that there are six preferred sites for the

Figure 7.12: The figure looks through a
8T-window and shows with lines the space
occupied by methane inside a α-cavity, av-
eraged from t=1 ns to 1.3 ns step size 50 ps,
and loading 15 methane molecules/cavity.
The 8T-windows are only partially shown
on each side.

methane molecules behind each of the

8T-windows, alongside with eight posi-

tions at the center of the 6T-windows

displaced into the cavity. One more site

is found in the middle of the cavity,

so in total there are fifteen preferred

positions in one α-cavity. The density

profile is identical for all axes, indicat-

ing that the distribution is equal in all

cavities. The static mean square dis-

placement in Figure C.13 indicates that

there are no available sites in the sys-

tem. These results are in agreement

with the results of Loriso et al. [73], De-

montis and Suffritti [72] and Beerdsen

et al. [67]. Loriso et al. [73] work was

on rare gases, but they expected small

molecules at high loading to exhibit an

ordered structure, solid like, in zeolite A. Forming a distorted face-centered cube

with a central atom, this was confirmed by the work Demontis and Suffritti [72]

did on methane in zeolite ZK4, the all-silica analog to zeolite A.
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Figure 7.13: Density profiles for the 120 methane system in
LTA−96, the legends show the axis which the density is projected
on to. The density-profile has a resolution of 0.1 Å, and is
averaged from t=1 ns to t=1.5 ns with a stepsize of 50 fs.

Figure 7.14: The figure shows the positions of 120 methane
molecules from t=0.5 ns to t=1 ns with a step size of 50 ps. The
dashed lines works as a guide to the eye in order to identify the
density peaks in Figure 7.13.71
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7.5.2 LTA-3A

In one α-cavity there are fourteen preferred potassium sites, see Figure 3.2, these

partially coincides with the fifteen methane sites. Consequently it was observed

that at a most, two potassium ions were pushed into the β-cage, this is shown

in Figure 7.15. The long trajectory, shown on the right hand side, into the β-

cage is from the potassium ion interacting with the 9 methane molecules/α-cavity.

Figure 7.15: Trajectory for
potassium, colored purple, in
zeolite A. Plotted from T=0 to
T=50 ps and step size 50 fs, the
initial position is shown in blue.

While the short trajectory into the β-cage is from a

potassium interacting with 8 methane/α-cavity. It

was also observed that the other 9 methane cavity,

lead to a long potassium trajectory into a β-cage.

With two potassium ions located in the β-cage,

the four remaining potassium ions are pushed out

of 6T-window and slightly into the α-cavities, as

shown in Figure 7.15. This lead again to a com-

pression of the methane molecules in the α-cavity,

shown in the lower left of the yx-plane, in Figure

7.16. This then drove the methane molecules in

this cavity, to push out the potassium ion located

in the 8T-window. The density profile, see Figure

7.16, projected onto the y-axis shows the resulting

methane density peak in the 8T-window. In all the plane pictures it is clear that

methane seeks the positions in front of the 6T-windows when possible, because the

easiest option is to push the 6T-potassium ions into the β-cage, compared to a nar-

rower 4T-window and a methane blocked 8T-window. This indicates how a defect

in the zeolite KA can form. If sufficient numbers of 8T-windows are unblocked,

the methane molecules will be able to move into the zeolite structure. In this case

the residence time of methane in the zeolite pellet will be drastically changed, due

to the revealed volume of the zeolite crystal. Furthermore, if methane has the

possibility to move into the zeolite crystal, this will also change the residence time

of water in the crystal. Altogether, this can lead to insufficient dehydration of the

natural gas.

Despite of the chicken and egg dilemma the simulation setup poses, see Section

7.1.3, the importance of the unblocking means this needs to be further investigated.
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Figure 7.16: The density profiles for methane in LTA-3A are shown on the
left side, while the figures on the right side show the trajectories from t=0
ps to t=1000 ps with a step size of 10 ps. The methane molecules are colored
black, and potassium ions purple. The initial positions of the potassium ions are
shown in blue. Only the general behavior is shown in the right hand side figures,
some details are missing due to overlapping trajectories from the dimension not
shown.
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7.6 Potassium motion

7.6.1 Simulation observations

The 6T-rings are in the first 500 fs of the simulation unblocked, due to potassium

ions moving into the β-cage under the influence of methane. With these sites

open, and as the simulation progressed, the methane molecules gradually pushed

a potassium ion in the 8T-ring out of its position. This potassium then moved

to the position at the 6T-ring, leaving the 8T-ring open. This happened 530 ps

out in the simulation, and is shown in Figure 7.17. This was the only episode of

potassium leaving the 8T-window in the 5 ns simulation. The methane molecule

that moved into the 8T-ring was kept from moving into the next α-cavity, by the

methane molecules residing to this cavity due to the potassium ions still blocking

the five surrounding windows. Furthermore, it was observed that a potassium ion

initially located behind the 4T-window moved to a vacant spot at the 6T-window,

this is shown in Figure 7.18 and happened 50 ps out in the simulation.

Figure 7.17: Correlated
motion between 8T and 6T
potassium ions

Figure 7.18: Correlated
motion between 4T and 6T
potassium ions

Remarks for Figure 7.17 and Figure 7.18: The initial positions for the potas-

sium ions are colored blue, while the trajectories are purple. The other molecules

are left out for easier visualization. Different step sizes have been used for Figure

7.17 to avoid overlapping trajectories, while Figure 7.18 is plotted every 50 fs.
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7.6.2 Validating the observations

The high cationic motion observed in the simulation seems physical, when com-

pared to experiments and molecular dynamics simulations. Lim and Grey [74]

found experimentally considerable counter-ion motion in zeolite NaY and zeolite

NaX, especially for dehydrated samples. Consequently, it was discovered four sites

for the hydrated sample and five sites for the dehydrated sample, Lim and Grey

[74] explained this by water stabilizing the sites. The water stabilization of zeolites

was also pointed out in the book of Dyer [9]. The jump of a potassium ion into

the β-cage and the correlated motion of a potassium located at the 4T window

towards the empty 6T-window has been experimentally proven by Schoonheydt,

R. A. [75], who investigated zeolite X and zeolite Y. Schoonheydt, R. A. [75] stated

that for these zeolites, this trend could only be shown to exist at temperatures

above 400 K. The same trend has been observed by researchers who used molec-

ular dynamics Gren et al. [76]; with the authors investigating water-zeolite NaA

interface at 300 K. Pluth and Smith [77] found experimentally low occupancy of

potassium in the β-cage of the dehydrated zeolite KA. Zeolite simulations per-

formed in this work have thus, pinpointed yet another fascinating phenomenon,

the correlation between a potassium located at the 6T-ring moving into the β-

cage, and potassium ion located at the 8T-ring taking the vacated spot. Both the

existence of potassium in the β-cages, and the correlated motion between the 4T

potassium ions and the 6T potassium ions have been proven experimentally at

high temperatures. Furthermore, water stabilization of the sites has been shown

experimentally to have an important role in determining the number of available

counter-ion sites in the zeolite crystal. This leads us to formulate the following

conjectures:

Hypothesis. A critical dehydration of the zeolite crystals, caused by an excessively

high regeneration temperature during desorption, can be an important reason be-

hind the drastically reduced lifetime of the zeolites, due to the changes caused by

the unblocking of the 8T-windows.
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7.7 Polynomial path integration for water

The polynomial path integration was performed for water in zeolite, to investigate

the possibility of obtaining a measurement for excess Helmholtz free energy. All

the simulations are summarized in table 6.7. The work was started from trying the

K1 exponents 2, 3 and 4, for a simulation time of 50 ps. The resulting integrands,〈
∂U
∂λ

〉
λ
, are plotted in Figure 7.20 with the excess Helmholtz free energy given in

Table 7.1. Velocity scaling was used to control the temperature. This did not give

any large difference in the calculated values compared to the use of a Nosé-Hoover

thermostat for a short runtime of 50 ps, see Figure 7.20. The obtained excess en-

ergy of velocity scaling was only 13.25 ppm smaller than the value obtained with

the Nosé-Hoover thermostat.

This can be explained by velocity scaling being able to approximate the canon-

ical distribution in configurational space. Although the lack of canonical distri-

bution in momentum space, can yield different values for the potential energy, as

pointed out by Kuznetsova and Kvamme [43]. Hence, large deviation in the excess

energy is possible for longer runs. Nonetheless, for comparative purposes, with

the limited time in this thesis, the 50 ps runs can cast light on the use of different

exponents. From Figure 7.20 one can see an increase in the integrand curvature,

Figure 7.19: Abnormal bond stretching in
water caused by scaling the repulsive part
of the potential faster then the electrostatic
part. The length of the stretched bond is ∼6
Å, while the equilibrium O-H bond length in
SPC water is 1 Å.

when the K1 exponent is changed from

2 to 4. This means that the cre-

ation of real particles is confined to spe-

cific intervals of the coupling parame-

ter, instead of spreading out over the

whole interval when the curvature is

reduced. This indicates that the ex-

ponent, K1=1, could perform better.

This was investigated, but the simula-

tion ran into the classical problem of

reducing the repulsion too fast, leading

to too high electrostatic interaction at

λ=0.1125. This consequently crashed the simulation after 6.3 ps. The reason

was an abnormal stretch of the O-H bonds in the water molecules, see Figure

7.19, it was thus not an option to use the exponent K1. The exponent K1=2, in

spite of the large error ±18.27 kJ/mol at λ=0.1125, gave the best distribution of

real particle creation over the set of λ-values. Furthermore, the exponents K1=2,
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K6=3, K12=4 and Kexp=0.25 was the set that gave the best results in the work of

Kuznetsova and Kvamme [43]. Mezei [42] obtained good results with K1=2, K6=2

and K12=4 for SPC water, the exponential coupling function was later introduced

by Kuznetsova and Kvamme [43].

Thus, the investigation continued into varying the K6 and K12 exponents using

the long runtime of 2 ns. At the same time the short runtime of 50 ps was checked

against the long runtime. The longer runtime reduced the error in the calcula-

tion, showing that the 50 ps run was not long enough to properly equilibrate the

system. Nonetheless, the 50 ps runs give an indication to how the water zeolite

system will behave when the electrostatic is scaled, as it was intended to. In the

50 ps simulations there were large variation in the excess Helmholtz free energy,

see in Table 7.1 and the curves of Figure 7.20. These variations are even more

prominent for the scaling of the repulsive and attractive parts of the Lennard-Jones

potential. The set of exponents that Mezei [42] used for pure SPC water, gave a

convex curve for SPC water in zeolite resulting in an excess Helmholtz free energy

of -66.70 kJ/mol, almost twice the value obtained from the next set of exponents,

which was the one used by Kuznetsova and Kvamme [43]. The set of exponents

Table 7.1: The obtained values
from integrating over λ in Figure
7.20. The exponents not given
are constant, K6=3, K12=4 and
Kexp = 0.25.

K1 Aexcess Error

( kJ
mol

) ( kJ
mol

)

2 -37.48 ±7.28

3 -15.10 ±2.34

4 -5.10 ±2.98

Table 7.2: The obtained values
from integrating over λ in Figure
7.21. The exponents not given are
constant, K1=2, and Kexp = 0.25.

K6 K12 Aexcess Error

( kJ
mol

) ( kJ
mol

)

2 3 -20.53 ±0.93

2 4 -66.70 ±1.43

3 4 -38.76 ±1.21

4 4 -33.25 ±1.31

K1=2, K6=2, K12=3 and Kexp=0.25 gave an even creation of real particles over

the λ-range, in spite of this, one has to consider the inconsistency in the obtained

values from different sets of exponents. Both Kuznetsova and Kvamme [43] and

Mezei [42], disregardless of the exponents used, obtained consistent results for the

excess Helmholtz free energy. This can be explained by the Helmholtz free energy

being a state variable, and thus independent for the path towards real particles.

This was not observed over the different exponents tried in this work.
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Chapter 7. Results and discussion

The reason for this failure can be too short simulation time leading to im-

proper equilibration or the lack of ergodicity in momentum space due to the use of

velocity scaling. Velocity scaling does not seem to be the influencing factor, as the

Nosé-Hoover simulation is almost identical to the same velocity scaled simulation,

see Figure 7.20, with just 13.55 ppm smaller excess energy. The effect of improper

equilibration gives at the most 9.77 kJ/mol difference, between the 50 ps run and

the 2 ns run, and as such can be a contributing factor. But the average energy of

the simulations, have settled close to each other differing only 1.28 kJ/mol.

The large variation of interactions in the multi-specie system seems to be the

influencing factor. Kuznetsova and Kvamme [43] and Mezei [42] did their work

on pure bulk systems, thus the number of unique configurations is smaller than

for a water-zeolite system. From the simulations performed, it is clear that the

configuration space mapped in a water-zeolite system is dependent on the scaling

of λ, due to the different forces and also the zeolite structure itself. Different

scaling, will thus give different configurations of water, depending on what part

of the structure is reachable with a given scaling of λ. In the long time limit one

should expect all configurations to be mapped, but this looks to be computational

difficult within reasonable time.

That said, longer simulations using the Nosé -Hoover thermostat would have

been beneficial for a proper conclusion on polynomial path integration for water

in zeolite. This would take a large amount of time, and there are many aspects

to consider before running the λ-scaling in a Nosè-Hoover thermostated system.

The Nosè-Hoover algorithm is more sensitive to non-physical changes, the system

must thus be tuned with more care than a velocity scaled system. Taking into

account that even a velocity scaled system broke down in this work, it could be

beneficial to look into other methods to obtain excess energy. For example the

particle insertion method, although this probably will lead to a low acceptance

rate due to the restriction posed by the zeolite.

78



C
h
ap

ter
7.

R
esu

lts
an

d
discu

ssion

Figure 7.20: Polynomial path integration for 50 ps simulation
of water in zeolite KA water, the errorbars show the error at each
lambda value, while the shaded area is the resulting error in the
overall integration. The legends show the different exponents
while K6=3, K12=4 and Kexp = 0.25. The simulation using the
Nosé-Hoover thermostat is, K1 = 3H .

Figure 7.21: Polynomial path integration for 2 ns simula-
tion of water in zeolite KA, the errorbars show the error at
each lambda value, while the shaded area is the resulting er-
ror in the overall integration. The legends show the differ-
ent exponents, while K1=2, and Kexp = 0.25.
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Chapter 8

Conclusions

8.1 Models for methane-zeolite interactions

The OPLS methane model[51] combined with the zeolite structure model of Faux

et al. [16] using the Lorentz-Berthelot mixing-rules has been used to model 66

methane molecule in zeolite A without counter-ions. This system is based on the

Lennard-Jones potential and simulations results have been compared to a new de-

veloped model. The new model is based on the Buckingham potential, where the

zeolite structure is described by the 2-body model of Jackson and Catlow [48], the

methane molecules are described by the model II of Tsuzuki et al. [54], and the

two models are combined using the mixing-rules of Good and Hope [35]. Results

from the simulations show that methane diffusion using the Buckingham based

model is over three orders of magnitude higher than for the Lennard-Jones based

model.

The performance of the new model has been further investigated by compar-

ing the calculated methane diffusion coefficients to literature values for methane

in counter-ion free zeolite A. These values show excellent agreement at loadings

of 8 molecules per α-cavity or more. The diffusion coefficient at lower loading

shows that the interactions towards the zeolite framework are still too strong.

It is thus expected, that the model will underestimate the diffusion of methane

at low loading, compared to experimental studies, although not as much as the

earlier used model. The structural features using the new model have been com-

pared to results from published molecular dynamics simulations. These show good

agreement for the calculated methane radial distribution function, although the
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higher temperature broadens the peaks this work. The calculated density profiles

and mean square displacement for the highest loading of 15 methane/α-cavity

shows that methane exhibits a highly ordered, solid-like, structure inside the α-

cavities. This is also in agreement with published molecular dynamics simulations

on similar systems. The conclusion is that the new Buckingham based model

performs well against other models frequently used in molecular dynamics simula-

tions of methane in zeolites. Furthermore, it represents a better alternative than

the earlier used Lennard-Jones based model, which has to strong methane-zeolite

interactions.

8.2 Simulation of LTA3-A zeolite

The performed simulations of methane in LTA-3A zeolite, using the Buckingham

potential at a temperature of 500 K, show that the presence of potassium ions pre-

vents methane from moving inside the zeolite crystal. Methane is thus only allowed

to move through the zeolite binder. This is in agreement with steric exclusion of

methane being the working method of zeolite KA in natural gas dehydration.

8.2.1 Potassium motion

The simulation gave some interesting observations with regards to the potassium

motion in zeolite A. Though, it must be pointed out that the results of the sim-

ulation were influenced by the nonphysical high concentrations of methane in the

zeolite. Nonetheless, many of the same observations have been done experimen-

tally by Lim and Grey [74], Pluth and Smith [77] and Schoonheydt, R. A. [75] and

through molecular dynamic simulations of water and zeolite NaA, as reported by

Gren et al. [76]. Zeolite simulations performed in this work have thus, pinpointed

yet another fascinating phenomenon, the correlation between a potassium located

at the 6T-ring moving into the β-cage, and the potassium ion located at the 8T-

ring taking the vacated spot. Both the existence of potassium in the β-cages,

and the correlated motion between the 4T potassium ions and the 6T potassium

ions have been proven experimentally at high temperatures. Furthermore, water

stabilization of the sites have been shown experimentally to have an important
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role in determining the number of available counter-ion sites in the zeolite crystal.

This leads us to formulate the following conjectures:

Hypothesis. A critical dehydration of the zeolite crystals, caused by an excessively

high regeneration temperature during desorption, can be an important reason be-

hind the drastically reduced lifetime of the zeolites, due to the changes caused by

the unblocking of the 8T-windows.

8.3 Investigation of polynomial path integration

for water in zeolite

The work done on the polynomial path integration for water revealed that differ-

ent paths from ideal gas towards real gas gave large differences in the estimated

excess Helmholtz free energy. The main reason is configuration space mapped in

a water-zeolite system being dependent on the scaling of λ. The polynomial path

integration for water, was computational difficult to perform, due to the different

forces in the multi-specie system and the zeolite confinements. Taking into account

that even a velocity scaled system broke down in this work, it could be beneficial

to look into other methods to obtain excess energy, for example insertion-based

schemes, or other reference states which are more similar to the water in zeolite

system.
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Chapter 9

Suggestions for further work

9.1 Simulations

The simulations of methane in LTA−96 should be performed over a larger range of

temperatures, in order to investigate the influence temperature has on the system.

This will also give a better foundation for comparison to published work on the

same system. Further tuning of simulation parameters and setup can reduce the

computational time and improve the results, one could start with looking at the

time steps and the relaxation time. The smaller LTA−96 systems need a longer

runtime, probably in the order of 8 to 10 ns for the temperature fluctuations to

settle down.

Further investigation on methane and LTA-3A zeolite is suggested to examine

a methane-zeolite interface system. This should provide more reliable information

to confirm or dismiss the proposed hypothesis. Although, it would take some work

to set-up the zeolite structure as an interface system. Some information on this

could be extracted from the interface work done by Combariza and Sastre [78]

and Gren et al. [76]. The zeolite structure itself should preferentially be modelled

with different levels of hydration to cover the water stabilization effect on the

counter-ions. The observed potassium motion can also be investigated in a bulk

water-zeolite system, with different levels of hydration and increasing temperature,

to see if the same opening of the 8T-window can be observed.

The particle insertion method could be tried in instead of the polynomial path

integration, although long simulation runs would be needed due to the restriction

posed by the zeolite leading to a low acceptance rate for insertion of a particle.
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The investigation could also continue into the use of a different reference state for

water in zeolite, for example an Einstein crystal.

9.2 Improving the models

A further investigation of the methane model could look at how model III from

Tsuzuki et al. [54] performs in a zeolite system. This model uses partial charges

on methane, which accounts for polarization. This could then be compared to

the model II used in this work, furthermore, different mixing-rules could also be

applied. Implementation of the flexible zeolite model of [48] can also improve

the calculations, although this would mean adding support for bond over periodic

images. The use of a flexible model can improve the diffusion at low loading.

Although, it should be mentioned that the use of flexible models is one of the

large topics in molecular dynamics simulations of zeolites. On one hand some

research groups argue that a flexible model is inaccurate, and that it is thus better

to use the fixed equilibrium positions, on the other hand research groups argue

that the flexible models are accurate enough and crucial for diffusion studies. The

reader is referred to Garćıa-Sánchez et al. [60] and Demontis and Suffritti [79] for

an introduction to the different points of view.

9.3 Changes to software

The problems with the calculation of translation temperature and pressure in

the current MD51 code can be solved by implementing a flexible model. The

program will then treat the zeolite structure as one molecule. This will remove the

averaging over fixed molecules in the temperature calculation and the removal of

non-bonded interactions between sites in the zeolite structure will produce correct

pressure calculations. For continued use of a rigid framework the implementation

of separate translation averaging and separate pressure calculation for each of the

species would remove the current deficiencies in the code. Another option would

be to try the DLPOLY code by Todorov et al. [80], this code has a better support

for molecular dynamics simulations of zeolites. Although this would mean losing

some of the features included in MD51 code.
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Appendix A

The script for Figure 4.6

%script for visualizing difference between LJ12-6 and Buckingham potentials

r=1:0.001:10;

r0=0:0.0001:10;

rB=1:0.001:10;

%buck

eps=8; % increased well depth for visualization

rm=2;

C=8.8; %decreased value for visualization, of max UBuck

% 12 gives same attractive part as LJ

Buck=eps*((6/(C-6))*exp(C*(1-rB./rm))...

-(C/(C-6))*((rm./rB).^6)); %Buckingham potential

LJ=eps*((rm./r).^12-2.*(rm./r).^6); %Lennard Jones potential

%Make the plot look nice

TB=transpose(Buck);

[maxvalue,idx]=max(TB,[],1); % find top of Buckingham

LJ0=0./r0;

L=transpose(LJ);

[minlj,lj]=min(L,[],1);

hold on

plot(rB(1,1:2950),Buck(1,1:2950),r(1,1:2950),LJ(1,1:2950),’LineWidth’,2);

legend(’Buckingham’,’Lennard-Jones’)
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Appendix A. Script for Buckingham and Lennard-Jones potenials

axis([0 4 -9 maxvalue+1])

h2=arrow([rB(1,102) Buck(1,102)],[rB(1,101) Buck(1,101)],’Length’,6,...

’BaseAngle’,60)

set(h2,’FaceColor’,[0 0 0]);

h3=arrow([r(1,621) LJ(1,621)],[r(1,620) LJ(1,620)],’Length’,6,...

’BaseAngle’,60)

set(h3,’FaceColor’,[0 0 0]);

h4=arrow([r(1,3000) LJ(1,3000)],[r(1,3002) LJ(1,3001)],’Length’,24,...

’BaseAngle’,60)

idL=crossing(LJ);

idF=crossing(TB(idx:8000));

set(h4,’FaceColor’,[0 0 0]);

grid on

set(gca,’YTickLabel’,[],’XTickLabel’,[])

grid on %put on ticks

[hx,hy]=ticks(gca,{’$0$’,’$\lambda r$’,’$_{\sigma_{B}}$’,...

’$\phantom{aa}_{\sigma_{LJ}}$’,’$_{r_{m}}$’},...

{’$-\epsilon$’,’$0$’,’$U_{Buck}$’},...

[0,rB(1,idx),rB(1,idx+idF),rB(1,idL),rm],...

[-eps,0,maxvalue],[],[0],[],...

’FontSize’,16,’FontWeight’,’Bold’);

%labels

hy=ylabel(’Energy’,’fontsize’,18,’fontweight’,’b’);

h=xlabel(’r_{ij}’,’fontsize’,18,’fontweight’,’b’);

pos = get(h,’pos’); % Read position [x y z]

set(h,’pos’,pos+[2 0 0]) % Move label to right

pos2 = get(hy,’pos’); % Read position [x y z]

set(hy,’pos’,pos2+[0 0.2 0]) % Move label to right

hold off
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The script for analysing MSD

file=’3A.dat’; %Set file name

U=load(file);

t=50*10^-15; %time step

x=U(:,1); %load frames

y=(U(:,2)).^2; %msd from rmsd

scale=10^(12); % use ps

n=length(x);

xt=x.*t*scale; %x-axis in ps

P=polyfitn(xt,y,1); %Fit a linear line

yfit=polyvaln(P,xt); %creat the fittet line

b=y-yfit; %get the residual

D=(P.Coefficients(1,1)/(6))*10^-20*scale %calc diffusion from the slope(m^2/s)

xlabel(’ps’);

ylabel(’MSD(\AA^2)’);

hold on

xlim([0 xt(n,1)]);

plot(xt,yfit,’k’,’LineWidth’,2)

[hl, hp] = boundedline(xt,yfit,b,’alpha’);

plot(xt,yfit,’-k’,xt,y,’--k’,’MarkerSize’,0.001)

legend(’Linear fit to simulation data.’ );

txstr(1)={[’a=’,num2str(P.Coefficients(1,1))]}; %print slope (angstrom ^2/ps)
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txstr(2)={[’STD in a=’,num2str(P.ParameterStd(1,1))]};%std (angstrom ^2/ps)

txstr(3)={[’R2=’,num2str(P.R2(1,1))]}; %print r squared

txstr(4)={[’D=’,num2str(D(1,1))]}; % print diffusion (m^2/s)

text(’units’,’normalized’,’pos’,[0.80 0.10],’string’...

,txstr,’HorizontalAlignment’,’left’);

hold off
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Appendix C

MSD for methane in LTA−96

Mean square displacement plots for methane in LTA−96, ranging from a loading of

24 methane molecules to 120 methane molecules pr unit-cell follows below. The

shaded area in the Figures are the residual from the fit of the linear line. The

diffusion coefficient is given in all MSD for plots in the right corner with units m2

s
.

The slope and the standard deviation in the slope are given in units of Å
2

ps
.

Figure C.1: MSD for 24 methane molecules.
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Figure C.2: MSD for 32 methane molecules.

Figure C.3: MSD for 40 methane molecules.
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Figure C.4: MSD for 48 methane molecules.

Figure C.5: MSD for 56 methane molecules.
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Figure C.6: MSD for 64 methane molecules.

Figure C.7: MSD for 72 methane molecules.
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Figure C.8: MSD for 80 methane molecules.

Figure C.9: MSD for 88 methane molecules.
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Figure C.10: MSD for 96 methane molecules.

Figure C.11: MSD for 104 methane molecules.
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Figure C.12: MSD for 112 methane molecules.

Figure C.13: MSD for 120 methane molecules.
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