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Summary 

The most applied polymer today for chemical improved oil recovery (IOR) processes, such as 

polymer flood and/or polymer well treatments, is the synthetic partially hydrolyzed 

polyacrylamide (HPAM) and its derivatives. Several field projects have been carried out 

utilizing HPAM, and the observed trend is that these polymers show low shear stress stability 

and low salt tolerance. They are also sensitive to elevated reservoir temperatures. More 

robust, efficient and cost- effective thickeners are needed.  

In this master`s thesis an characterization of modified HPAM, are carried out in low and high 

salinity brine at room temperature (22 ± 0.1
o
C).  By incorporation of a relative small amount 

of hydrophobic groups (i.e. 8-18 carbon atoms moieties) onto the hydrophilic chain of 

polyacrylamide in aqueous solutions, this provides significantly changes in the behavior of 

HPAM. A reorientation of the macromolecules in aqueous solutions due to polar and non- 

polar parts, results in a formation of hydrophobic associations between the incorporated 

hydrophobic groups. These modified HPAM polymers are referred to as associating 

polymers, due to the association occurring between hydrophobic groups within a 

macromolecule and between hydrophobic groups at neighboring macromolecules.  

This characterization process involves shear viscosity measurements at different polymer 

concentrations and viscoelasticity measurements of entangled polymer solutions in different 

salinity brines. The purpose of this rheological characterization was to; detect thickening 

ability, shear stress stability, the strength of polymer gels and compare the elastic deformation 

response of gel solutions with increasing degree of hydrophobicity and increasing salinity of 

the brine.  

In this study three polymers with the same polymer base with increasing degree of 

hydrophobicity, FP3630S < C319 < D118, were compared. In addition to an HPAM with 

lower molecular weight, but much higher degree of hydrophobicity, B192, was characterized. 

Observations from shear viscosity measurements show improved thickening ability at high 

concentrations with increasing degree of hydrophobicity. A relative low content of 

incorporated associating groups seems to improve the thickening ability of HPAM with 

increasing salinity of the brine. Above a given concentration, CAC (critical association 

concentration), the associating macromolecules start to interact and form associating network. 

Formation of this gel structure seems to enhance the viscosity of the solution significantly. 
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In the untangled polymer concentration range, below C
*
 (critical overlap concentration), the 

viscosity seems to be reduce with increasing degree of hydrophobicity on HPAM. Increase of 

salinity in the brine, it observed to reduce the viscosity even further. These observations 

correspond well when the dominating interactions are the intramolecular hydrophobic 

interactions.   

The yield point and gel point was measured for entangled gel solutions from viscoelastic 

measurements. The yield point indicates the maximum shear stress applied on the gel solution 

before it starts to deform, and after this threshold value the deformation response due to 

increasing shear stress was detected. The strength of the gel structure is observed to increase 

with increasing amount of associating groups (HPAM<C319<D118), due to reinforcement of 

the intermolecular hydrophobic. Salinity effect seems to reduce interactions in the gel 

network. For B192, the strength of gel structure is observed to be stronger than HPAM based 

polymers in low salinity brine, but the gel structure seems to be easier deformed. This may 

indicate that B192 has a different gel structure than HPAM based polymers, due to lower 

molecular weight. Increasing salinity of the brine seems to increase the strength of the 

interactions in the gel structure of B192, due to the high amount of associating groups and low 

degree of hydrolysis.  

The gel point indicates the strength of the gel structure during a transition from viscoelastic 

liquid to viscoelastic solid or vice versa. The discussion about gel strength is the same as for 

yield point. 
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Nomenclature 

Variables 

A Area, [cm
2
] 

C Polymer concentration [kg/m
3
] 

o
C Celsius degree 

C
*
 Critical overlap concentration [ppm] 

Ci Concentration of component i [mol] 

   Polymer concentration [ppm], [mg polymer/kg solution] 

CAC Critical association concentration [ppm] 

cP Centi Poise (1cP = 1mPa s) 

EA Area displacement efficiency, dimensionless 

G Shear modulus [Pa] 

G
*
 Complex shear modulus [Pa] 

G´
 

Storage modulus [Pa] 

  
  Storage modulus at yield point [Pa] 

G´´
 

Loss modulus [Pa] 

I Ionic strength [mol/kg] 

K Absolute permeability [m
2
]  

K
` 

Power Law constant 

KH Huggins Coefficient, dimensionless 

Kr,i Relative permeability of phase i, dimensionless 

Kr,o Relative permeability of oil, dimensionless 

Kr,w Relative permeability of water, dimensionless 

L Length [cm] 

M Mobility ratio, dimensionless 

M Molarity [mol solute/L solution] 

MDa MegaDalton  (unit of molar weight) (1Dalton=1 g/mol) 

Mol% Percentage amount of mol of a chemical component 

mPa s Milli Pascal second 

N Power law exponent 

n
` 

Number of components in the solution 
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OOIP Originally oil in place [barrels] 

 P Pressure difference in Darcy law [bar] 

Q Volumetric flow rate [cm
3
/s] 

S Seconds 

     Damping factor, dimensionless 

wt% Mass weight percent 

zi Valence of component i 

 

Greek letters 

 ̇ Shear rate [1/s] 

 ̇  Critical shear rate at the end of upper 

Newtonian plateau [1/s] 

   Shear strain at yield point, dimensionless 

  Phase shift angle [
o
] (degrees between 0

o
 to 

90
o
.  

  Shear viscosity of a non- Newtonian 

solution 

   Complex shear viscosity [Pa/s] 

   Shear viscosity of solvent [Pa s] 

   Reduced viscosity [cm
3
/g] 

    Specific viscosity, dimensionless 

   Inherent viscosity [cm
3
/g or ppm] 

   Complex shear viscosity related to storage 

modulus [Pa/s] 

    Complex shear viscosity related to loss 

modulus [Pa/s] 

   Relaxation time 

   Mobility of oil [m
2
/mPa s] 

   Mobility of water [m
2
/mPa s] 

  Viscosity [Pa s] 

   Zero shear viscosity [Pa s] 
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   Infinite shear viscosity [Pa s] 

   ⁄  Interfacial tension between oil and water 

[N/m] 

  Shear stress [Pa] 

   Shear stress at yield point [Pa] 

  Angular frequency [1/s] 

   Angular frequency at gel- point (crossover)  

[1/s] 

  Difference, dimensionless 

 

Abbreviations 

AMPS 2-acrylamido- 2- methyl propane acid 

API American Petroleum Institute 

bbl Barrel 

CIPR Centre for Integrated Petroleum Research 

CBY- model Carreau- Bird- Ysauda Model 

CP Cone plate 

DG Double gap 

EOR Enhanced oil recovery 

HPAM (FP3036) Partially hydrolyzed polyacrylamide 

HSHT High salinity and high temperature 

HTHP High temperature and high pressure 

IOR Improved oil recovery 

LVE- range Linear viscoelastic range 

LPS Linked polymer solution 

MCR Modular Compact Rheometer 

NCS Norwegian continental shelf 

NVP N-vinyl- 2- pyrrolidone 

PAM Polyacrylamide 

PDMS Polydimethylsiloxane, fluid 

PLM Power Law model 
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PPM parts per million, mass fraction (g/g) 

R&D Research and development 

SSW Synthetic sea water 

TDS Total dissolved solids 

USD United State dollars [$] 

 

Unit conversion 

    s =    mPa s   

1mPa s = 1cP  

1 bbl = 0.159 Sm
3 

1Darcy = 9.87   10
-13

 m
2 

1 ft = 0,348 m  
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1.   Introduction 

Global oil demand is expected to advance 1% a year to 105 million barrels a day by 2030 

from 90 million barrels a day in 2012 (International Energy Agency, 2013). The expected 

increasing demand for oil must be meet through exploration of new hydrocarbon reservoirs 

and enhancing the oil recovery of available reservoirs. 

Implementation of Enhanced oil recovery (EOR) techniques is a crucial contribution to the 

global need for energy. Today the oil recovery around the world lies between 30-40%, and 

considering the increasing world population and the global energy demand, this recovery 

efficiency is not satisfying. An increase in efficiency of the recovery process above 60% will 

be more adequate.  

According to Wu et al. in 2012 (Wu et al., 2012), it is estimated that about 7000 billion 

barrels of oil are still remaining in the reservoirs worldwide today. And this amount of oil is 

the target value for EOR methods. To improve the flow efficiency at both macroscopic and 

microscopic levels using EOR technologies are very costly, and for most oil nations the crude 

oil price have to be high for the additional recovery to be economically beneficial (TOTAL 

E&P, 2008).  

The oil market is mainly controlled by the increase in oil demand from the transport industry. 

According to a report to the Norwegian Parliament from the Ministry of Petroleum and 

Energy in 2011 (Olje og Energidepartement, 2011), more than half of the oil consumption is 

used as oil- based fuels. Even though there is an increasing interest in renewable energy, such 

as biofuel and electricity to substitute the use of fossil fuels in automobiles, this will not give 

a dramatic effect on the oil demand in the upcoming years.        

On the Norwegian continental shelf (NCS) the average recovery efficiency from oil fields is 

46%, and in Marsh 2013 the Norwegian Petroleum Directorate published that the total 

recoverable petroleum resources are estimated at 85.5 billion barrels of oil equivalents
1
.    

                                                           
1 http://www.npd.no/en/Topics/Resource-accounts-and--analysis/Temaartikler/Resource-
accounts/2012/  

http://www.npd.no/en/Topics/Resource-accounts-and--analysis/Temaartikler/Resource-accounts/2012/
http://www.npd.no/en/Topics/Resource-accounts-and--analysis/Temaartikler/Resource-accounts/2012/
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Figure 1.1 Recoverable resources on the NCS as of 31.12.12
2
. 

In addition to conventional oil recovery techniques, a chemical EOR approach can contribute 

to a more efficient recovery process resulting in a higher oil production. Polymers as 

viscosifying EOR agents were already considered in the early 1960‘s (Sorbie, 1991). By 

adding such thickening agents to the injection water, the viscosity will increase and the 

relative permeability of water will be reduced (Zolotukhin and Ursin, 2000). As a 

consequence of the increasing pressure difference due to the injected polymer solution, this 

can result in an accelerated oil production.  

On the NCS conventional waterfloods have been very efficient because of the favourable 

mobility ratio. The reservoirs contain typically light oil with viscosities ranging from 0.5 to 2 

mPa s which implies that the oil and the water is almost equally mobile. Even though the 

reservoirs are highly heterogeneous, injecting water is still considered to be the most cost- and 

time efficient recovery method (Skarestad and Skauge, 2009).          

The oil price controls the EOR activity on the NCS (Utvinningsutvalget, 2010), among other 

important parameters such as the increasing energy demand around the world, the economic 

growth and new technological developments. The market for Brent crude oil has varied a lot 

since the beginning of oil history on the NCS (Bolton, 2013, Olje og Energidepartement, 

2011, Utvinningsutvalget, 2010), but since 2009 the oil price has been high. An oil price 

above 75 USD per barrel is considered high valued oil. In figure 1.2 the development of the 

                                                           
2 http://www.npd.no/en/Topics/Resource-accounts-and--analysis/Temaartikler/Norwegian-
shelf-in-numbers-maps-and-figures/Recoverable-resources/ 

http://www.npd.no/en/Topics/Resource-accounts-and--analysis/Temaartikler/Norwegian-shelf-in-numbers-maps-and-figures/Recoverable-resources/
http://www.npd.no/en/Topics/Resource-accounts-and--analysis/Temaartikler/Norwegian-shelf-in-numbers-maps-and-figures/Recoverable-resources/
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oil price through the last 26 years are shown. Exploration and production enhancements on 

the NCS are strongly influenced by the value of Brent crude oil.    

 

Figure 1.2 The global oil price development of Brent crude oil through the last 26 years 

(Bolton, 2013). 

The value of the Brent crude oil has varied from 10 USD per barrels to 140 USD per barrels 

through the last twenty years. Since 1969 when the first oil was discovered in the Ekofisk 

field in Norway, the Norwegian petroleum industry was established right after. During the 

following decade and into the mid-nineties there were many big discoveries, such as the 

Statfjord field and the Troll field
3
 (Olje og Energidepartement, 2011). Several Research and 

Development (R&D) projects were initiated to assure the Norwegian competence and 

competitive ability with the international market in the oil and gas sector
4,5

. The Oil 

companies and the authorities investigated the possibility for applying polymers, among 

others, to improve the oil recovery.  During the middle of 1990`s the oil price dropped down 

to 15 USD per barrels.  Together with the high prices for EOR chemicals, such as polymers, 

                                                           
3 www.norskolje.museum.no  
4 
http://www.regjeringen.no/nb/dep/oed/aktuelt/taler_artikler/minister/tidligere_olje_og_e
nergiminister_enoksen/2007/building-a-sustainable-petroleum-industr.html?id=460505  
5 
http://www.statoil.com/annualreport2011/en/ouroperations/businessareas/technology,pro
jectsanddrilling%28tpd%29/pages/researchanddevelopment.aspx 

http://www.norskolje.museum.no/
http://www.regjeringen.no/nb/dep/oed/aktuelt/taler_artikler/minister/tidligere_olje_og_energiminister_enoksen/2007/building-a-sustainable-petroleum-industr.html?id=460505
http://www.regjeringen.no/nb/dep/oed/aktuelt/taler_artikler/minister/tidligere_olje_og_energiminister_enoksen/2007/building-a-sustainable-petroleum-industr.html?id=460505
http://www.statoil.com/annualreport2011/en/ouroperations/businessareas/technology,projectsanddrilling%28tpd%29/pages/researchanddevelopment.aspx
http://www.statoil.com/annualreport2011/en/ouroperations/businessareas/technology,projectsanddrilling%28tpd%29/pages/researchanddevelopment.aspx
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the EOR projects were forced to termination (Skarestad and Skauge, 2009). In the beginning 

of 2000 the EOR activity took off, until the financial crisis lowered the value of the Brent 

crude oil in 2008. Since 2009 the oil price is stabilized on a high level, and together with 

increasing oil demand this has influenced the interest and activity for unconventional recovery 

techniques. 

The most applied and studied polymer for EOR purposes around the world, is the 

conventional partially hydrolysed polyacrylamide (HPAM). This synthetic polymer is largely 

industrial available and has a lower price compared to other polymers, like the biopolymer 

Xanthan (Morel et al., 2008). In this study a modified HPAM is characterized due to their 

associating properties. These polymers are considered attractive for polymer flooding 

compared to HPAM, due to (Dupuis et al., 2011b):  

1.  A lower amount of polymer concentration is needed to achieve a given mobility 

(lower the costs). 

2. They have an extended range of suitable reservoirs regarding salinity tolerance. 

3. The mixing and pumping procedures are more facilitated due to rapid viscosity build- 

up and shear stability. 

The enhanced thickening ability and elastic deformation response of associative polymers 

compared to classical water soluble polymers, makes the associating polymer solutions 

attractive for other IOR applications like near well treatments. The thickening capability and 

selective adsorption properties, highly concentrated associating polymer solutions can be 

injected for in- depth gel formation. These polymeric gels may be able to modify the 

injectivity and/ or production profile of a producing oil reservoir (Dupuis et al., 2011b).  
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2.      Background 

This chapter has the intention to create a better understanding of new modified 

polyacrylamide polymers, and a more sufficient aspect of associating polymers is considered 

for chemical EOR approach.   

 

2.1 Enhanced oil recovery 

Improved knowledge of sub terrain chemical and physical conditions, and the flow 

characteristics can improve the process of conventional recovery methods significantly. By 

implementing different improved oil recovery (IOR) measures like advanced modelling and 

simulation software, it is possible to characterize the reservoir and predict fluids flow and 

rock behaviour during production. Introducing high- resolution logging tools which gathers 

data close to the wellbore and seismic surveys which covers larger areas of the reservoir, the 

reservoir model can be improved. The resolution of these techniques are still low (Skarestad 

and Skauge, 2009). By including enhanced oil recovery (EOR) techniques in addition to 

advanced sub- sea technology and other production optimisation techniques, this could have a 

great impact on the efficiency and economic benefit of the recovery process on the Norwegian 

continental shelf (NCS) (Utvinningsutvalget, 2010).  

All EOR methods have in common that a material is added to the reservoir, which is not 

necessarily originally in place. When adding a material, the reservoir is added energy to 

produce more hydrocarbons to the surface. Such EOR recovery methods are called 

unconventional methods, compared to primary and secondary oil recovery, which affects the 

whole reservoir and the oil production (Skarestad and Skauge, 2009). EOR techniques used in 

the petroleum industry can be distinguished between gas and water related EOR approach. 

Gas related EOR methods include injection of CO2- and miscible hydrocarbon gas, whereas 

water related EOR includes chemicals like surfactants and polymers dissolved in the injection 

water and low salinity water injection. All EOR techniques have unique properties to reach 

out to different parts of the reservoir that was not yet been flooded by the water injection 

(Skarestad and Skauge, 2009).  
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2.1.1  Polymers for EOR 

The most utilized polymers today are the synthetic and partially hydrolyzed polyacrylamide 

(HPAM), the modified natural polymers and the biological polysaccharide, Xanthan (Wu et 

al., 2012). The water – soluble polymers are very attractive for IOR purposes, and in this 

study mobility control through polymer flood in oil fields and production control by injection 

of a blocking polymer gel are considered. 

Figure 2.1 Comparison of area sweep efficiency (EA) to an unfavorable waterflood (left) 

and a favorable polymer flood (right) from the injector to the producer (Sorbie, 1991). 

In figure 2.1 one of the most important parameter during oil production is illustrated by 

addition of polymers to the injection water, and that is the mobility control (Lee et al., 2009). 

When polymers are added to the injection water, this can result in a pressure build-up between 

the flooded area and the injection well in the reservoir. According to Darcy`s law, the pressure 

difference over the medium is related to the water solution`s viscosity and permeability. The 

lowest resistance to flow for the injected polymer solution will be anywhere besides the 

already existing “water channels”. Darcy‘s law describes the permeability for a linear, 

horizontal flow. For incompressible fluid at constant volume rate in a core sample, Darcy‘s 

law can be defined as (Zolotukhin and Ursin, 2000): 

  
   

 
 
  

 
                               Eq. 2.1 
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Where Q is the volumetric flow rate, K is the absolute permeability, A is the cross- sectional 

area, µ is the fluid viscosity, ΔP is the pressure difference over the medium and L is the length 

of the core sample. 

Already in the early days of the oil production industry in the 1950‘s, extensive waterflood 

applications were applied after unveiling the down sides of pressure depletion methods. At the 

end of the 1950`s, the weaknesses and strengths of waterfloods in oil production were mainly 

explored (Sorbie, 1991). This led to extensive research and new developments of chemicals 

through the last 60 years (Lee et al., 2009). Water- soluble polymers, also called water 

thickeners, have the thickening ability to increase the viscosity of water due to its high 

molecular weight. Charged polymers will also be able to increase the hydrodynamic volume 

of the macromolecule even further, due to electrostatic repulsion between polymer coils and 

charged segments in the same coil (Wever et al., 2011).  

For chemical EOR flooding the synthetic and anionic HPAM and its derivatives are the most 

common used polymers (Reichenbach-Klinke et al., 2011). This synthetic copolymer consists 

of acrylamide and acrylic acid, and has a typical high polymer weight between 2 to 20MDa 

(Sorbie, 1991). In figure 2.2 the molecular structure of polyacrylamide (PAM) and HPAM are 

illustrated. Compared to HPAM; the modified natural polymers have a lower chemical and 

mechanical stability, and the biopolymers are more expensive and easier biological 

degradable during a polymer flood through the reservoir. 

 

Figure 2.2 The primary chain structure of polyacrylamide (PAM) and partially hydrolysed 

polyacrylamide (Sorbie, 1991). 
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How easily a phase flows through a porous medium in a multiphase flow can be measured by 

its mobility. Single phase mobility, such as water, oil or gas, is defined as:  

   
      

  
                   Eq. 2.2 

Where  ,  , K and Kr,i are the mobility, the viscosity, the absolute permeability and the 

relative permeability of the fluid i respectively.  

The mobility ratio is defined the ratio between the mobility of the displacing fluid (water) and 

the displaced fluid (oil):  

  
  

  
 

       

       
                  Eq. 2.3 

Where M and Kr are the mobility ratio and relative permeability respectively, and the 

subscripts o and w refers to oil and water  (Sorbie, 1991).  

To be more specific, a favourable mobility ratio between water and oil are often considered to 

be equal to or less than unity     . This implies a stable displacement front between the 

fluids, and according to the Buckley – Leverett displacement theory, this ideal front is 

described as a shock- front (piston- like displacement). On the other hand, when the mobility 

ratio is greater than unity, this front becomes less sharp because the displacing fluid is more 

mobile than the displaced fluid       (Lien, 2009).   

 

Figure 2.3 The Buckley- Leverett saturation front height is sharpest at favourable mobility 

ratio (Sorbie, 1991). 

The figure 2.3 illustrates the different outcomes of the displacement front at different mobility 

ratio. A mobility ratio above 10 is considered high, and the displacement front at this mobility 
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ratio is illustrated in figure 2.3 as “10” and “30”. A high mobility ratio cause the water to 

flow more easily towards the production wells compared to the oil. This unfavorable ratio 

leads to water bypassing oil, which results in a high residual oil saturation in the reservoir. A 

mobility ratio near unity is considered a low, and these displacement fronts at favorable 

conditions are illustrated in figure 2.3 as “0.2”, “1” and “3”. A shock front of water sweeps 

the oil towards the productions wells, resulting in high water saturation after the flooding. 

For a typical mobility control applications; polymers are considered when the viscosity of the 

oil is high ( >5mPa s), but also when the reservoirs are heterogeneous with oil- bearing layers 

at different permeabilities (Zolotukhin and Ursin, 2000). As mentioned in the beginning of 

this section, polymer gels can be utilized as a near well diversion technique to improve the 

production profile of an oil producing field. Polymer gels is injected to block thief zones, 

which is high permeability layers in the reservoir,  and divert the water into new unswept 

areas of lower permeability. Injected polymer gels are illustrated in figure 2.4.  

 

Figure 2.4 Polymer gels as near well diversion technique to improve injectivity and 

production performance (Skarestad and Skauge, 2009). 

A reaction between a polymer and a cross linking agent the solution can swell many times 

their size and thereby block selected pore channels. Linked Polymer Solutions (LPS), 

BrightWater technology and Silicate gel are examples of such polymer gels (Skarestad and 

Skauge, 2009).  These gels can be injected near the injection well to improve the injectivity 

performance, and near the production well to improve the production performance of the 

producers (Zolotukhin and Ursin, 2000). The success of the pore blocking using polymer gel, 

is related to the reservoir conditions and how this affects the performance of the gel 

(Skarestad and Skauge, 2009).  
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Comparing to conventional waterfloods on a timescale, polymer floods will accelerate the 

recovery process due to rapid viscosity build- up. Since the intention for all IOR measures is 

to improve the economic benefit of the recovery process, the polymer injections will 

contribute to a faster and higher oil production. An incremental recovery factor of 5% original 

oil in place (OOIP) or more is regarded as a successful polymer application (Rai et al., 2012, 

Singhal, 2011, Skarestad and Skauge, 2009).  
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2.1.2 Modifications on polyacrylamide 

During the last two decades several polyacrylamide (PAM) - based polymers have been 

developed with improved rheological properties, to survive in high temperature and high 

pressure (HTHP) reservoirs (Wu et al., 2012).  

There exist several important properties that have to be considered before a polymer flood. 

One of them is the solubility of polymer in the water solution. Polymers are often dissolved in 

brines on site, and thereafter injected into the reservoir. The polymer solutions may become 

inhomogeneous during mixing, where microgels and other insoluble associations can damage 

the formation and reduce the efficiency of the polymer solution when injected. A filtering 

process is required before any polymer flood to remove impurities and other unsolved 

particles that can contribute to an unwanted pore blocking (Sorbie, 1991). It is also important 

to take into consideration the exposure of rust, acid and other pollute chemicals the polymer 

solution can interact with on offshore platforms.      

The molecule weight and chain distribution plays an essential role on the polymer flow 

characteristics in the porous media. The viscosity improvement and the expenses regarding 

the amount of polymers needed to improve the sweep efficiency have to be considered as well 

(Pope, 2007). Different molecular geometries will influence the performance and stability of 

the polymer solutions, and together with the properties of the porous media a thorough study 

is crucial to the outcome of the polymer application (Wu et al., 2012). Polymer retention 

mechanisms occurring during floods are probably the most important factor to evaluate the 

economically viable in given reservoir (Sorbie, 1991).   

A rapid viscosity build- up and mixing process are also essential to the performance and the 

economical prospective considering polymer floods. A rapid mixing process using low 

concentrated polymer solution that easily achieve a desirable viscosity and homogeneity, is 

time- saving and economical (Singhal, 2011). Pre- wetting polymers are often received in 

powder form, and transported to offshore or onshore installations in 750kg sacs.  
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Figure 2.5 Transported polymer sacs ready to mix (Morel et al., 2012). 

Another important rheological property of synthetic polyacrylamide polymers is the 

viscoelasticity. The ability to rearrange the molecular structure when exposed to mechanical 

stress is necessary to be able to sweep additional reservoir volumes, and thereby reach out to 

new areas of oil (Skarestad and Skauge, 2009). 

The conventional HPAM solutions lose easily their viscosity at high temperatures and high 

salinity/ hardness, and this restricts the application of polymer floods in deep offshore oil 

fields. Polymer applications on the Norwegian continental shelf meet several restrictions and 

two of them are temperatures above 100
o
C and the salinity. Strongly salinity oil reservoirs are 

considered to be 100 000 ppm (sea water 35 000 ppm) or higher, with a hardness of 2000 ppm 

or more (Singhal, 2011). 

 

Figure 2.6 The conventional polymers like HPAM and Xanthan limitations regarding 

salinity and temperature
6
. 

                                                           
6
 http://www.cipr.uni.no/projects.aspx?projecttype=11&project=54 

http://www.cipr.uni.no/projects.aspx?projecttype=11&project=54
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An illustration of the limitations of conventional polymers like HPAM and Xanthan meet, 

regarding reservoir salinity and temperature are shown in figure 2.6.  

 

As mentioned in the beginning, effective polymers have been designed to meet the 

requirements for HTHS reservoirs. Modifications on the polyacrylamide backbone are 

incorporations of groups that can improve the thermal stability of the macromolecule, and to 

provide a resistance to chemical degradation as the salinity of the brine increases.  

 

To improve the thermal stability of the polymers, some of the implementations that have been 

done are reconstruction of the polymer backbone to a rigid ring structure, or incorporation of 

large side groups along the backbone (Wu et al., 2012). By incorporate large and rigid groups 

along the backbone, this steric effect will contribute to prevent the polymer molecules to coil- 

up and thereby maintaining the viscosity of the solution (Wu et al., 2012).  

 

Incorporation of monomers like the 2- acrylamido- 2- methyl propane acid (AMPS) onto the 

polymer backbone, can contribute to reduce the sensitivity to ionic effects in the brine due to 

shielding of acrylic acid moieties. By incorporation of e.g. N- vinyl- 2- pyrrolidone (NVP) 

groups randomly on the polyacrylamide, an improvement in the thermal stability can be 

induced due to shielding of acryl amide moieties (Wu et al., 2012).  

 

Introducing hydrophobic groups along the partially hydrolyzed polyacrylamide, these groups 

will induce an aggregation due to non- polar interactions in brines. This can result in a faster 

viscosity build- up and a more robust molecular structure due to strong intermolecular 

associations, compared to conventional HPAM solutions. In section 2.1.4 an introduction of 

such associative polymers is presented (Wu et al., 2012, Reichenbach-Klinke et al., 2011).  
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2.1.3 Hydrolysis reaction and salinity/hardness effect 

HPAM is a chained polymer with repeating acrylamide and acrylic monomers, as illustrated 

in figure 2.2. In this thesis the conventional HPAM, SNF Flopaam 3036 (Lot Z 2340) was 

utilized. This polymer had a molecular weight between 16 to 20MDa, and a hydrolysis degree 

of 25- 30%. Hereafter in this study, this polymer is referred to as “HPAM”.  

  

A degree of hydrolysis around 25- 30 %, means that only 25% to 30% of the acrylamide 

moieties in the copolymer are hydrolyzed to acrylic acid (Reichenbach-Klinke et al., 2011). In 

figure 2.7 the hydrolysis reaction of polyacrylamide (PAM) to HPAM is illustrated. 

 

 

Figure 2.7 Hydrolysis reaction of polyacrylamide (PAM) to HPAM (Zhao et al., 2010). 

 

In figure 2.7 the hydrolysis reaction step by step is illustrated for one acrylamide monomer 

along the backbone. Some of the acrylamide monomers along the chain will react with 

surrounding water, and thereby substitute NH2 with OH
- 
ions. Due to the negative charged 

acrylic acid monomers along the backbone, the repulsion between them stretches the polymer 

back bone out. This swelling occurring in the macromolecule structures increases the 

hydrodynamic volume of the polymer in the solution.   

The degree of hydrolysis of polyacrylamide can affect the physical properties such as salinity 

and hardness sensitivities, mechanical stability and adsorption characteristics. A high degree 

of hydrolysis will induce unbalance in the repulsion between anionic carboxyl groups along 

the polymer backbone, where extensive screening may cause precipitation of polymers in the 

solution (Sorbie, 1991). 
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When salt is added the aqueous solution, the anionic carboxyl side groups will react with 

monovalent and divalent cations. The Coulomb repulsion between the negative charged 

groups on the polymer are less effective as the salinity in the brine increases, which reduces 

the swelling in the macromolecule (Reichenbach-Klinke et al., 2011).  

 

Figure 2.8  The anionic carboxyl side group simplified response to increasing 

salinity/hardness in the water solution. 

In figure 2.8 A, the acrylamide and acrylic acid copolymer are dissolved in water without any 

salt. The interactions occurring between the anionic side groups cause electrostatic repulsion 

(Dupuis et al., 2010), which induce a swelling in the macromolecule. When the salinity 

increases by addition of monovalent salt ions into the water solution, as shown in figure 2.8 B, 

screening of the repulsion between the negative charged carboxyl groups occurs. As a 

consequence of the interactions between the positive charged monovalent ions and the side 

groups, the polymer molecules will start to coil- up. A further increase in the salinity and 

hardness of the brine by addition of divalent ions are illustrated in figure 2.8 C. The 

macromolecule are no longer in a stretched state anymore, the chains are now considered to 

be in a coiled state (Reichenbach-Klinke et al., 2011). In the presence of divalent ions, a 

precipitation of the polymer may occur. Precipitation of HPAM macromolecules in high 

salinity brine are related to the degree of hydrolysis. Above a certain level of acrylic acid in 

the copolymer, insoluble complexes between these anionic groups and divalent ions can be 

formed in the solution. When these segments precipitate out of the solution due to 

insolubility, the viscosity will drop (Reichenbach-Klinke et al., 2011).   

Since HPAM is polyelectrolyte, the effect of salinity/hardness in the polymer solution is 

reducing the hydrodynamic volume of the macromolecules. This is illustrated in figure 2.9. 
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Figure 2.9 The long and flexible polymer backbone of HPAM coils- up when increasing 

the salinity/hardness of the solution (Sorbie, 1991). 

The reaction rate of hydrolysis depends on the concentration of salt and hardness in the 

solution and temperature. Increasing salinity and hardness in an aqueous solution, or 

increasing the temperature, this may speed up the hydrolysis reaction (Berg, 2010, Sorbie, 

1991). The relation between precipitation of HPAM macromolecules in the solution due 

salinity and temperature are illustrated in figure 2.10.  

 

Figure 2.10 The relation between precipitation of HPAM due to increasing salinity and 

hardness in brine, and increasing temperature (Sorbie, 1991). 



 

 17  
 

From figure 2.10 increasing salinity cause a more rapid precipitation of HPAM with 

increasing degree of hydrolysis. The steepest precipitation slope is shown for HPAM with the 

highest degree of hydrolysis of 92.5% when salinity increases. Relating this observation to 

ambient temperature, the temperature of precipitation is increases as the degree of hydrolysis 

reduces. The temperature where the HPAM macromolecules precipitates in the solution, are 

often referred to as the solution cloud point (Sorbie, 1991). 

Before any polymer applications the cloud point of the polymer solution must be evaluated to 

avoid precipitation on the chemical equipment during injection, or during the flow through the 

reservoir (Raney et al., 2011).  
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2.1.4 Associating polymers 

Already during 1950`s the first design of partially hydrolyzed polyacrylamide containing 

hydrophobic groups was carried out (Argillier et al., 1996). In general a relative small amount 

of hydrophobic groups, i.e. 8-18 carbon atoms moieties (Wever et al., 2011) are incorporated 

into the charged hydrophilic backbone. According to an overview given by Seright et al. in 

2011(Seright et al., 2011), less than 0.1 to 7 mol% are necessary to improve the thickening 

capability compared to non- hydrophobic containing HPAM in aqueous solutions.  

 

To generate viscosity in the polymer solution, the thickening effect of these modified HPAM 

polymers do not rely only on the molecular weight and the Coulomb repulsion between the 

charged segments on the backbone. In addition, the incorporated hydrophobic groups can 

interact with each other between different chains and increase the hydrodynamic volume of 

the macromolecules (Reichenbach-Klinke et al., 2011, Seright et al., 2011, Buchgraber et al., 

2009). Since the polyacrylamide backbone is soluble in aqueous brines, the hydrophobic 

groups will rearrange to minimize their exposure to the polar solvent (Chassenieux et al., 

2010, Maia et al., 2009, Taylor and Nasr- El- Din, 2007, Taylor, 2003, Taylor and Nasr- El- 

Din, 1995).  

 

The association effect depends on the properties of the aqueous solution like content, pH and 

temperature, and also the polymer structure, composition and concentration (Wever et al., 

2011). The incorporated groups associate due the intramolecular hydrophobic interactions 

and the intermolecular hydrophobic interactions. Intramolecular hydrophobic associations 

occurs between hydrophobic groups within the macromolecule, whereas intermolecular 

hydrophobic associations are hydrophobic interactions occurring between neighboring 

macromolecules in the aqueous solution (Wever et al., 2011). In figure 2.11 illustrates the 

different physical interactions occurring between hydrophobic groups.     
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Figure 2.11 Intra- and intermolecular associations occurring between the hydrophobic 

groups (Wever et al., 2011). 

According to McCormick and Johnson (McCormic and Johnson, 1988), concentrated 

solutions of these modified polymers may give rise to higher viscosities at low shear rates, 

they may also have higher salt tolerance, and show a less sensitivity to mechanical 

degradation compared to HPAM.  

 

In the literature, these modified partially hydrolyzed polyacrylamide (Maia et al., 2009, 

Taylor, 2003, Lin et al., 2000, Taylor and Nasr- El- Din, 1995) is often referred to as 

hydrophobically associating polyacrylamide (HAPAM) (Wever et al., 2011, Maia et al., 2011, 

Lu et al., 2010, Argillier et al., 1996), hydrophobically modified water- soluble polymers 

(HMWSP) (Dupuis et al., 2011a, Chassenieux et al., 2010) or hydrophobically associating 

polymers (AP) (Seright et al., 2011, Reichenbach-Klinke et al., 2011, Buchgraber et al., 2009, 

Kujawa et al., 2006, Regalado et al., 1999). From hereafter, the modified partially hydrolyzed 

polyacrylamide is referred to as associating polymers.  

 

An illustration of the chemical structure of an associating polymer with acrylamide and 

acrylic acid moieties are shown in figure 2.12. The hydrophobic group is dodecyl 

methacrylate.   

 

Figure 2.12 Hydrophobically associating acrylamide copolymer; x: 30-100, y: 0- 70, z: 

0,01- 1 mol% (Taylor and Nasr- El- Din, 1995). 
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The association and rearrangement due to hydrophobic interactions, resembles to micelle 

formation by surfactants above it`s critical micelle concentration (CMC) (Taylor and Nasr- 

El- Din, 2007). The distribution of hydrophobic groups on the hydrophilic backbone has a 

great impact on association occurring, and the unique rheological properties that are formed 

(Jiménez-Regalado et al., 2004, Argillier et al., 1996).  Above a given polymer concentration 

in aqueous solutions, a formation of a network of associating polymers is possible (Wever et 

al., 2011). This intermolecular association is an entropy driven process (Lin et al., 2000). It is 

the structure of the surrounding water molecules that becomes more disordered when the 

associating parts starts to interact and rearrange due to hydrophobicity.  

From a paper by Kujawa et al. from 2006 (Kujawa et al., 2006), different properties can be 

changed to improve the thickening ability of associating polymers. They listed up changeable 

properties like the molecular weight, the chemical structure of the hydrophilic units, the 

nature and content of the hydrophobic groups and/or their distribution along the hydrophilic 

backbone. 

 

There exists a classification of different associating polymers regarding the distribution of 

hydrophobic groups on the acrylamide backbone (Chassenieux et al., 2010, Dupuis et al., 

2011a, Jiménez-Regalado et al., 2004): 

 

1. Associative polymers containing only one associating block (figure 2.13A) 

2. Telechelic associative polymers (figure 2.13 B) 

3. Multisticker associative polymers (figure 2.13 C) 

4. Combined associative polymers 
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Figure 2.13 A simplified illustration of different associative polymers regarding the amount 

and distribution of the hydrophobic blocks (red) on the polymer backbone (blue) 

(Chassenieux et al., 2010). 

The first class of associating polymer is illustrated in figure 2.13 A, where the synthetic 

polymer contain only one single hydrophobic group onto the hydrophilic chain. At a low 

polymer concentrations, the associative polymers flows freely with a Brownian motion in the 

solution. This means that there are no significant intermolecular associations occurring, since 

the macromolecules are not affected by the neighboring macromolecules (Taylor and Nasr- 

El- Din, 1995). This is illustrated in the figure 2.14 “Free”. This concentration range is 

referred to as the diluted concentrated regime, where the viscosity measured at these 

concentrations are dominated by the intramolecular hydrophobically interactions (Wever et 

al., 2011, Dupuis et al., 2009).  

 

Figure 2.14 The behavior of associative polymers as the concentration increases in the 

solution. 
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A further increase in the polymer concentration will force the associating polymers together. 

At this concentration range the polymers motion in the brine are influenced by other 

polymers, and this is illustrated in the figure 2.14 “Affected”. An affected associating 

behavior occurs in a concentration range referred to as the semi- diluted concentration regime 

(Wever et al., 2011, Dupuis et al., 2009). 

 

Figure 2.15 Schematic drawing of the change in the viscosity of associating polymer 

solutions (red) and HPAM, as the concentration increases. Different concentration regimes are 

denoted as “1”: dilute solution, “2”: semi- dilute solution, and “3”: concentrated solution. 

The critical overlap concentration, C
*
, is the polymer concentration where the 

macromolecular structures starts to overlap. This concentration is often not an exact 

concentration, but rather a diffuse concentration range between the dilute regime and the 

semi- diluted untangled regime for the associative polymers (figure 2.15_ 2) (Dupuis et al., 

2009).  

 

The semi- diluted concentration range is divided into untangled and entangled regime 

depending on the concentration. In the semi- dilute untangled regime the associative polymers 

starts to associate and form typical “micelle”- like aggregations, due to the dominance of the 

intramolecular hydrophobic associations (figure 2.13). An increase in the polymer 

concentration results in an entangled regime, where extensive hydrophobic association 

between neighboring associating polymers leads to a formation of a transient network of 

polymers. This physical entanglement between polymer chains, are due to the strong 

intermolecular hydrophobic associations. This entanglement concentration is referred to the 
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critical association concentration, CAC, and is marked in the viscosity versus concentration 

plot (figure 2.15 between “2” and “3”) where the viscosity of the associating polymer 

solution increases significantly above this concentration (McCormic and Johnson, 1988). 

Above CAC, this concentration range is referred to as the concentrated regime. At these 

concentrations the polymers are no longer able to move in the solution, they are said to be 

jammed in the solution (Chassenieux et al., 2010, Taylor and Nasr- El- Din, 1995).  

The telechelic associative polymers are polymers containing hydrophobic groups typically 

located at both ends of the polymer backbone (figure 2.13 B) (Wever et al., 2011, 

Chassenieux et al., 2010, Jiménez-Regalado et al., 2004). Incorporation of more than one 

associating group can induce different types of associations when the polymer concentration 

increases. This is illustrated in figure 2.16. 

 

Figure 2.16 Schematic drawing of different types of association formed by the telechelic 

associating polymers (Ma and Cooper, 2001). 

Figure 2.16 illustrates that associating polymers with hydrophobic groups are distributed at 

the end of the chains a flower- like assembling may be formed. The hydrophilic backbone 

creates a loop towards the solution. It is possible that an increase in the concentration will 

result in bridges between the flower cores (Wever et al., 2011).  A network of associating 

polymers in the solution may be induced due to extensive formation of bridges between the 

cores as the concentration increases.  

 

The third associative polymer class is the multisticker, which contain several hydrophobic 

groups along the hydrophilic backbone as illustrated in figure 2.13 C. These multisticker 
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polymers will more efficiently create bridges between the flower-like cores, even at low 

polymer concentration. A further increase in concentration may lead to a formation of a 

transient network as well, and the strength of the intermolecular interactions are higher 

compared to a network of telechelic associating polymers (Chassenieux et al., 2010, Jiménez-

Regalado et al., 2004, Ma and Cooper, 2001). 

 

The forth polymer class combines the hydrophobic localization to the telechelic and the 

multisticker, and is refer to the combined associated polymers (Jiménez-Regalado et al., 

2004). This type of distribution of hydrophobic groups may result in stronger association and 

a much higher viscosity increase of the solution. The strength of the associations depends on 

the hydrophobic group, the position on the polymer backbone, and the polymer mobility in 

the solution (Jiménez-Regalado et al., 2004). 
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2.1.5 Salinity/hardness effect on associating polymers 

The behavior of the associative polymers in salty brines depends on the dominance of the 

attractive association of the hydrophobic groups, compared to the repulsive electrostatic 

interaction between the charged units along the molecular backbone (Maia et al., 2011, 

Kujawa et al., 2006).  

 

The sensitivity of salinity of associating polymer solutions is presented in several papers 

(Maia et al., 2011, Dupuis et al., 2011a, Pancharoen, 2009, Gouveia et al., 2008, Taylor and 

Nasr- El- Din, 2007). The papers from 2011 by Reichenbach- Klinke et al. (Reichenbach-

Klinke et al., 2011) and Wever et al (Wever et al., 2011) are also about the salinity effect on 

associating polymers. The salinity effect on the viscosity of the associating polymer solution 

compared to HPAM solutions is observed to be related to the dominance of hydrophobic 

associations. The classical behavior of HPAM solutions due to electrostatic screening is a 

reduction in the viscosity as the salt concentration increases. This electrostatic screening is 

also observed in associating polymer solutions. Above the critical overlap concentration (C
*
) 

in the semi- diluted concentration regime, the polymers are affected by each other and 

interactions occurs between the hydrophobic groups of neighboring polymers.  The salinity 

strengths the intermolecular hydrophobic associations occurring, and a more polar solvent 

increases the viscosity of the solution.  

 

In the concentrated regime, increasing salinity increases the viscosity of associating polymers 

up to a certain level due to intermolecular hydrophobic interactions. Above a given salinity 

concentration in the solution, the polymers starts to precipitate or form a pseudo gel- structure 

(Dupuis et al., 2011a, Kujawa et al., 2006, Taylor, 2003). 

 

According to an overview given by Taylor and Nasr- El- Din from 2007 (Taylor and Nasr- El- 

Din, 2007) the salinity effect of associating polymers in the diluted concentration region 

follows the same trend as HPAM solutions. Below the critical overlap concentration (C
*
), the 

viscosity decreases as the salt concentration in the solvent increases. This is due to an 

enhancement in the intramolecular hydrophobic associations, which reduces the 

hydrodynamic volume of the associating polymer even further than HPAM solutions. Similar 

observations have been observed several times (Maia et al., 2011, Gouveia et al., 2008).  
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In June 2009 Monrawee Pancharoen (Pancharoen, 2009) finished his thesis at Stanford 

University, where he characterized several associating polymers and compared these to the 

conventional HPAM. The chemicals he used from SNF Floerger were FP 3630, SuperPusher 

D118, S255 and SuperPusher B192. In this thesis the same polymers were studied, except of 

S255. SuperPusher C319 was utilized instead. He performed shear viscosity measurements of 

these polymer solutions at constant temperature, and thereafter compared these viscosities 

after addition of salts. His results showed that the viscosity of associative polymers was less 

affected to an increase in the salinity from 2wt% and 10 wt% NaCl brines, compared to the 

HPAM.   

 

In this thesis associating polymers were delivered from SNF Floerger, and the properties of 

these polymers and HPAM as presented in table 3.4 in section 3.1.3. Hereafter, the three 

different SuperPusher polymers utilized during this study are referred to as C319, D118 and 

B192.  
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2.2 Polymer rheology 

Rheology is a study of the flow behavior and properties, and deformation of all kinds of 

materials exposed to external stress. When materials are under deformation stress they all 

show a viscoelastic behavior, which is a mixture of viscous and elastic properties (Berg, 

2010). Viscosity is a measure of a fluids resistance to deform under influence of an external 

force. In general, the viscosity of polymer solutions will not be the same at all time. The 

viscosity value is highly influenced by the fluids nature, ambient temperature and the amount 

of force applied.  Sir Isaac Newton defined the dynamic viscosity as (Newton`s Law of 

viscosity):  

  
 

 ̇
                                                                Eq. 2.4 

Where µ is the viscosity, τ is the shear stress, and  ̇ is the shear rate in laminar flow. The SI- 

unit of the dynamic viscosity is “Pascal   second” [Pa   s], but the field unit used in the 

petroleum industry is centipoise [cP] after Jean Poiseuille. The viscosity unit centipoise is the 

same as “milliPascal   second”. 

 

2.2.1 Shear viscosity  

Fluids can be divided into several classes based on their behavior compared to the shear rate 

applied. A flow curve is a plot of shear rate versus shear viscosity, and can be used to 

determine which class a certain fluid belongs to. The viscosity of Newtonian fluids is 

independent of the shear rate, i.e. the viscosity is constant. Typically Newtonian fluids are 

water and mineral oils (Schramm, 1998). Most fluids are Non- Newtonian, and their shear 

flow behavior is always changing. The viscosity is therefore dependent upon the shear rate, 

and polymer solutions acts as Non- Newtonian fluids at sufficiently high concentrations 

(Sorbie, 1991).  Figure 2.17 show a standard shape of the complex flow behavior for dilute 

flexible chain- like polymer solutions, with four distinct regions. 
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Figure 2.17 Schematic viscosity curve of a polymer solution as a function of shear 

rate where each number represents a specific region (Lunestad, 2011). 

The rheological characterization of polymer solutions must include determination of their 

viscosity in both shear and extensional flows, since these macromolecules are subjected to 

both shear and extensional stresses inside an oil reservoir (Chauveteau, 1986).  Polymer 

solutions at low concentration can act as non- Newtonian time- independent fluids (Sochi, 

2010), which indicates that the strain rate at a given point only depend on the instantaneous 

stress at that point.  

The four distinct regions in the flow curve illustrated in figure 2.17 are described below:  

1. The upper Newtonian plateau (Sochi, 2010): This region is also called the plateau of 

the zero- shear viscosity ( 0). At low shear rates, the viscosity is constant, i.e. 

independent of shear rate. This behavior can be explained through the phenomenon 

Superposition of two processes (Anton Paar, 2008).  
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Figure 2.18 Illustration of Superposition of two processes at low shear rate (Anton Paar, 

2008). 

In the low- shear range the macromolecules will start to orient them- self towards the 

flow, which cause disentanglements. Since the shear force acting on the polymer 

solution is so weak, the polymers are still able to re- entangle because of their 

viscoelastic properties. These two processes cancel each other out, leading to an area 

on the flow curve with no change in the total viscosity value.  

Chauveteau and Yasuda defined a transition zone between the Newtonian region (1) 

and the shear- dominated region (2) at high shear rates. A critical shear rate (  ̇) 

defined at the end of the upper Newtonian plateau, was estimated to be equal to the 

inverse proportion of the rotational relaxation time (  ). The relaxation time is 

characteristic for a specific polymer solution, and is defined as the response time for 

the macromolecules to rearrange back to the originally configuration after the shear 

stress stops. A long relaxation time indicates a high elasticity in the polymer, caused 

by the strong interactions in the molecular chains (Sorbie, 1991).        

2. The shear thinning region: After the critical shear rate defined at the relaxation time 

for the polymer, the viscosity starts to decrease with increasing shear rate. This non- 

Newtonian behavior is also referred to a pseudoplastic behavior (Sochi, 2010). Now 

the shear forces starts to break up the equilibrium structure, and uncoils the 

macromolecules. This results in a deformation in shear direction, which reduces the 

flow resistance of the polymer solution. 
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Figure 2.19 Disentanglements of flexible chain- like polymers under shear stress 

(Anton Paar, 2008). 

 

3. The lower Newtonian Plateau: At this shear rate region the viscosity of the polymer 

solution is at its lowest value   ), due to the strong deformation forces acting on of 

the macromolecules. All the macromolecules in the solution are now stretched out to 

an aligned conformation and oriented to the shear direction. 

 

4. The shear thickening/ dilatant region: Odell et al. in 1987 (Odell et al., 1987) 

reported observations on extremely dilatant effects occurring at high shear rates. 

This shear thickening character occurs in any turbulence flows, like thus occurring in the 

porous media. This viscoelastic effect on the polymer occurs beyond a critical shear rate 

which is characteristic for a given polymer type, molecular weight and solvent. There 

exist some disagreement about how this viscosity enhancement phenomenon occurs 

compared to pure solvent; but two of the most supported theories are the coil- stretch 

transition, and the development of transient entanglement network.  

 

The most supported hypothesis is the one where the viscosity increases due to stretching 

of random- coiled molecules. The high shear flow is now regarded as an extensional flow 

and the stretching continues until the macromolecules are torn apart. A more recent 

hypothesis to explain this viscoelastic effect is a formation of a transient aggregation 

network, due to collision of the polymer molecules. As the shear rate increases, the 

collision frequency increases as well. Since these macromolecules have very flexible 

chains, they will start to aggregate. This entanglement is thereafter followed by a 

disentanglement process, which takes longer time. And it is this transient aggregation that 

may induces the viscosity enhancement.   
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In an overview paper by Sochi in 2010 (Sochi, 2010), he listed up three broad classifications 

of non- Newtonian fluids. As described above, polymers at low concentrations can be 

typically time- independent fluids. They can also be classified as viscoelastic or time- 

dependent fluids, since no sharp distinction exist between them in this classification. A 

polymer solution can have different characteristically properties that allows it to cover all 

three of the classifications. At different polymer concentrations, the flow behavior depending 

on shear rate and shear time may differ. 

      

Viscoelastic fluids are fluids that are partial elastic upon the removal of a shear stress. Such 

materials have properties that can be typical of both viscous fluids and elastic solids (Sochi, 

2010).  Some fluids, like polymer solutions, may be time- dependent or thixotropic non- 

Newtonian solutions. The shear viscosity of such fluids will decrease not only with increasing 

shear rate, but also with time at constant shear rate. The higher shear stress applied, the faster 

is the structure- breakdown process (Berg, 2010).     
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2.2.2 Models for shear flow 

In 1991 Sorbie (Sorbie, 1991) listed up several proposed empirical functions to describe the 

complex shear behavior for non- Newtonian fluids. The most applied and simplified 

mathematic model for shear thinning behavior in viscometric flows is the Power Law Model 

(PLM), also referred to as the Ostwald- de- Waele model. The viscosity function in the PLM 

is given by the expression:  

 

   ̇     ̇                   Eq. 2.5 

 

Where    ̇  is the shear dependent viscosity,  ̇ is the shear rate, and K
‘
 and n are empirical 

constants. The constant n is known as the Power Law index, and when n < 1 this results in a 

non- Newtonian flow behavior showing a monotonically decreasing shear thinning response 

at  ̇>0 (Sochi, 2010). For a Newtonian fluid, K
‘ 
is the constant viscosity and n is equal to 

unity.  

 

 

Figure 2.20 The Power- Law Model validity is only in the shear thinning region (Sochi, 

2010). 

 

The PLM is unfortunately not valid in the upper Newtonian plateau or in the lower Newtonian 

plateau, as illustrated in figure 2.17. Because of these limitations, the model is just able to 

produce results in the shear thinning or shear thickening area depending on the Power law 

index.    
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A more adequate model for the whole shear range is a four- parameter rheological model. The 

Carreau- Bird- Ysauda Model (CBY Model) includes region 1 to 3 illustrated in figure 2.17, 

and is expressed like this:  

 

   ̇     
       

[  (   ̇ )
 
]

   
 

                            Eq. 2.6 

Where    ̇  is the shear dependent viscosity,    is the infinite shear viscosity,   is the zero- 

shear viscosity,  ̇ is the shear rate, λ is a time constant and n is the Power Law index. The 

time constant (  ) is the relaxation time for a given polymer solution. The disadvantage about 

this empirical model is that it neglects the shear thickening region. 

 

 

Figure 2.21 The validity of the Carreau- Bird- Ysauda Model (Sochi, 2010). 

 

Several mathematic models have been proposed to describe this complex behavior of non- 

Newtonian fluids in one or more of these regions, but these involves more parameters and 

demands therefore a more precise input data.    
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2.2.3 Intrinsic viscosity and Huggins coefficient 

The viscosifying properties of polymer solutions are given in relation with the molecular size 

and conformation, and the ability to expand in a given solvent. In dilute polymer solution the 

most important characterizing viscosity parameter, is the hydrodynamic volume of the 

macromolecules. This volume is referred to as the intrinsic viscosity of the polymer solution 

(Maia et al., 2005). An increase in the hydrodynamic volume will result in an increase in the 

intrinsic viscosity of the solution. The intrinsic viscosity can be defined as the reduced 

viscosity as the polymer concentration goes to zero (Sorbie, 1991):    

            
    

   
       

   

 
                                  Eq. 2.7 

Where      is the intrinsic viscosity at zero polymer concentration [cm
3
/g], η is the non- 

Newtonian shear viscosity of the solution [Pa s], ηs is the solvent viscosity [Pa s], c is the 

polymer concentration [g/cm
3
]. ηsp is the specific viscosity (dimensionless unit) and ηR is the 

reduced viscosity [g/cm
3
]. The SI- unit for intrinsic viscosity is [cm

3
/g], but the unit [1/ppm] 

is often preferred.  

The reduced viscosity is defined as the ratio of the specific viscosity to the polymer 

concentration (Sorbie, 1991): 

   
   

 
                   Eq. 2.8  

Where     is the specific viscosity (dimensionless unit) and c is the polymer concentration of 

the solution [g/cm
3
].  

The specific viscosity is a dimensionless viscosity parameter defined as the relative viscosity 

minus unity (Sorbie, 1991):  

          
 

  
 

  

  
                                Eq. 2.9 

Where   is the viscosity of the solution at the upper Newtonian plateau [Pa s],    is the 

viscosity of the solution at very high shear rates [Pa s],  and    is the relative viscosity 

(dimensionless unit). 

The relative viscosity is also a dimensionless viscosity parameter, and is defined as the ratio 

between the viscosity of the polymer solution to the viscosity of the solvent (Sorbie, 1991):  

   
 

  
                            Eq. 2.10 
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Where   is the non- Newtonian shear viscosity of the polymer solution [Pa s], and ηs is the 

solvent viscosity [Pa s].   

Sorbie et al. (Sorbie, 1991) related the intrinsic viscosity to the inherent viscosity as the 

polymer concentration goes to zero:  

            

    
 

  
 

 
       

       

 
                                    Eq. 2.11 

Where      is the intrinsic viscosity at zero polymer concentration with the unit [cm
3
/g], and 

ηI is the inherent viscosity with the SI- unit [cm
3
/g].  

The inherent viscosity is defined as the ratio between the logarithmic value of the relative 

viscosity and the concentration of the solution (Sorbie, 1991): 

   
       

 
                 Eq. 2.12 

Where the relative viscosity (defined in Eq. 2.10) is a dimensionless viscosity parameter, and 

the polymer concentration, c, has the unit [g/cm
3
]. 

The intrinsic and inherent viscosity can be measured through viscometry at different 

concentrations. Since they are limited to zero polymer concentration, the viscosity is 

determined by extrapolation from the plot. In figure 2.22 this extrapolation technique is 

illustrated, and it is only valid at low polymer concentrations such as in the dilute regime 

where the rheological flow behavior of the polymer solution is Newtonian (Chauveteau, 

1986).   
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Figure 2.22 Determination of the intrinsic viscosity (Sorbie, 1991). 

The most used parameter to characterize the hydrodynamic interactions between polymer- 

polymer, polymer- solvent and solvent- solvent in a shear flow, is the Huggins constant or the 

Huggins coefficient. In 1942 Huggins suggested a relationship that links the viscosity and 

concentration in the Newtonian region of a pseudoplastic solution (Chauveteau, 1986), and 

this relation is defined like this (Sorbie, 1991):   

   

 
          

                             Eq. 2.13 

Where ηsp is the specific viscosity (dimensionless unit), c is the polymer concentration 

[g/cm
3
], η is the solution viscosity [Pa s] and KH is Huggins coefficient (dimensionless unit).  

The value of the Huggins coefficient indicates how well the polymers are dissolved in a 

solvent, considering the intra- and inter- chain effects in the solution. If the interactions are 

neither attractive nor repulsive at short distances, the Huggins coefficient depends only on the 

particle conformation in solution. According to Maia et al. in 2005 (Maia et al., 2005) larger 

values like 0.5- 1 typically indicates that polymers are in poor solvents, caused by 

contractions of the polymer chains due to intramolecular association (attractive forces).  In a 

paper by Volpert et al. in 1998 (Volpert et al., 1998) they defined a Huggins coefficient value 

of 0.4 ± 0.1, as a good solvent conditions for polymers. In good solvent there exist no specific 

interactions in the polymer solution (Chauveteau, 1986).  



 

 37  
 

By relating the intrinsic viscosity to associating polymers, the intrinsic viscosity of the 

solution is regarded as proportion to the reciprocal of the density of the polymer solution. The 

smaller      is, the denser (less swelled) are the macromolecules in the solution (Dupuis et al., 

2011a). By incorporation of hydrophobic groups on the acrylamide backbone, the intrinsic 

viscosity is supposed to decrease as the hydrophobicity increases, or the length of the 

hydrophobic unit increases. Due to intramolecular hydrophobic associations that most likely 

dominate in the diluted concentration range, the hydrodynamic volume reduces as the 

intrachain bonds between the hydrophobic groups increases (Kujawa et al., 2004). According 

to new experimental insights on associating polymers from 2011 by Dupuis et al. (Dupuis et 

al., 2011a), this observation was not confirmed due to too low hydrophobic units (≤0.5 mol%) 

along the backbone. They concluded that formation of significant amounts of intrachain bonds 

in the diluted concentration range may be possible above a particular amount of incorporated 

hydrophobic units.  

Relating the Huggins coefficient to associating polymer solutions, experimental studies 

carried out by Dupuis et al. in 2011 (Dupuis et al., 2011a) observed good solvent conditions in 

neutral brines. Increasing the hydrophobicity, the Huggins coefficient was observed to be 

above unity.  This seems like there exist attractive interactions occurring between the 

hydrophobic groups within the macromolecule, which makes the polymer less soluble in the 

solvent. This corresponds well with the experimental observations carried out for Kujawa et al 

(Kujawa et al., 2004), regarding the dominance of the attractive intramolecular hydrophobic 

associations.   

Estimating the intrinsic viscosity and Huggins coefficient, only low polymer concentrations 

are valid. These parameters can be found using polymer concentration in the diluted 

concentration regime below the critical overlap concentration, C< C
*
. Several models have 

been proposed to estimate the critical overlap concentration, C*, directly from the intrinsic 

viscosity. In a paper by Chauveteau in 1986 (Chauveteau, 1986) he suggested the Simha 

overlap parameter: 

   
   

    
                            Eq. 2.14     

Where C
*
 is the critical overlap concentration for a given polymer solution [ppm] and [η]0 is 

the intrinsic viscosity at zero- polymer concentration [1/ppm].  

In 1991 Sorbie et al. (Sorbie, 1991) suggested that this relationship would be better estimated 

through this definition:  
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                            Eq. 2.15 
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2.2.4 Viscoelasticity 

This subchapter covers fundamental details about linear viscoelasticity. For more extensive 

discussion look up the sources; Barnes et al. (1989) (Barnes et al., 1989). 

 

All materials have a mixture of viscous and elastic portions that determine their rheological 

state and behavior. When they are exposed to a deformation stress or temperature changes, it 

is possible for a material to change their physical behavior from elastic state to a more liquid 

and easier flowing state. It is due to breakage of intermolecular interactions that holds the 

elastic structure together, that may transform the material to a more viscous state.  

 

Polymeric fluids show viscoelastic effects above the critical overlap concentration (C
*
), and 

several models exist to describe the observed viscoelastic phenomena that occurs during 

flows. These models are not able to describe all aspects of the rheological behavior, but 

according to a paper by Sochi in 2010 (Sochi, 2010) they all have in common one 

characteristic parameter of time to account for the fluid memory. The relaxation time (  ) is a 

characteristic parameter of a particular polymer system, and is correlated to viscoelastic 

studies through the yield point.    

 

The models for viscoelasticity are divided into linear and nonlinear studies, and the most 

supported fluid model is linear viscoelastic Maxwell model. This model has several 

limitations, but is devoted to the study of viscoelastic materials under very small strain.  

Under sufficiently low deformation where the displacement gradients are very small, the flow 

regime can be described as a linear relationship between shear stress and shear strain (Sochi, 

2010). 

 

In oscillatory experiments the viscoelastic behavior of a system can be characterized through 

the response of deformation and sliding forces. A viscoelastic study of a fluid can be carried 

out by subjecting stress (or strain) through a rotational viscometer that varies periodically in 

time (Berg, 2010). Robert Hooke defined the elasticity law, and applied for oscillation the 

deformation energy can be expressed like this:  

  
 

 
                                                   Eq. 2.16 

Where G is the shear modulus, τ is the shear stress and γ is the shear strain. The SI- unit of 

shear modulus is Pascal [Pa]. This shear modulus describes the viscoelastic behavior of a 
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material, and is divided into the elastic portion and the viscous portion. This elastic part of the 

viscoelastic behavior is called storage modulus, G´, and the viscous part is called loss 

modulus, G´´. The balance of the two portions in viscoelastic behavior of a material is given 

through the damping factor, tan δ. The damping factor of a solution is defined as the 

relationship between the viscous and the elastic portion:  

     
   

  
                  Eq. 2.17 

Where tan δ is a defined parameter, G´´
 
is the loss modulus and

 
G´

 
is called the storage 

modulus. 

 

Figure 2.23 Materials with different viscoelastic properties at a given condition (Anton 

Paar, 2008). 

As illustrated in figure 2.33, the measured complex viscoelasticity of a material, can give us 

an indication of the molecular configuration and the processing flow behavior. The 

viscoelastic properties of a material can be described through to the value of the damping 

factor at a given condition (Anton Paar, 2008):  

1.  Ideally viscous liquids, tan δ >> 1: When the damping factor of a material is much 

larger than unity, this indicates that the viscous behavior dominates over the elastic 

portion (G´´>> G´). Such liquids have a liquid- like structure, and flows very easily as 

illustrated in figure 2.23_1.   

2.  Viscoelastic liquids, tan δ > 1: For a viscoelastic liquid the damping factor is just 

above unity, this indicates that the viscous portion is still dominating over the elastic 

part (G´´> G´). These liquids have a liquid- like structure as well as illustrated in 

figure 2.23_2.  



 

 41  
 

3. Viscoelastic liquid/solid, tan δ = 1: When there exist an equal balance between the 

viscous and elastic portion in the flow behavior (      ), the state of a material is a 

mixture of liquid and solid. At this specific condition, the damping factor is equal to 

unity.  During viscoelastic measurements, this characteristic condition is found at the 

gel point. At these conditions the flow behavior of the solution, is equally dominated 

with liquid and gel- like character (figure 2.23_3).         

4. Viscoelastic solids, tan δ < 1: A viscoelastic solid have a gel- like character during 

flow, and require some energy to start moving. The damping factor is below unity, 

which indicates that the viscous portion is lower than the elastic portion (G´> G´´). 

Typical behavior of such viscoelastic solids is illustrated in figure 2.23_4.  

5. Ideally elastic solids, tan δ << 1: When the elastic portion is strongly dominating 

over the viscous portion, these rigid solids require a lot of energy to initiate flow 

(G´>> G´´). Their gel- like character is provided by strong interactions within the 

material, resulting in a damping factor much lower than unity. The flow behavior is 

illustrated in figure 2.23_5. 

 

To characterize the viscoelastic behavior of polymer solutions at different concentrations; an 

amplitude sweep and a frequency sweep were carried out. An amplitude sweep or strain sweep 

was carried out first to detect the linear viscoelastic (LVE) region of the polymer solution. In 

the amplitude plot the storage and loss moduli are given as a function of shear strain or shear 

stress. A classical amplitude sweep on a highly concentrated polymer solution is illustrated in 

figure 2.21. 

 

Figure 2.24 Typical logarithmic amplitude plot of the viscoelastic behavior of a polymer 

solution (Anton Paar, 2008). 
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Above the critical overlap concentration regime of a polymer solution, the storage modulus 

will dominate over the loss modulus. The damping factor is then below unity (tan   < 1), 

which indicates that polymer solutions have a gel structure.   

 

The linear viscoelastic (LVE-) range of a given polymer solution, can be determined from an 

amplitude sweep. The LVE- range is the linear viscoelastic plateau for a given condition at a 

constant angular frequency, and is detected on the dominating shear modulus of the solution. 

At the end of this linear plateau, the characteristic yield point of the solution can be estimated. 

This point can be related to the relaxation point from shear viscosity measurements of 

polymer solutions. 

 

This yield point of a concentrated polymer solutions (polymeric gels) represent the highest 

shear stress (  ) applied at a given condition, without breaking the interactions holding the 

gel- structure together. The dominating storage modulus at yield point (  
 ), represent the 

strength of the intermolecular forces acting in the gel – like network of the solution. 

 

When the external forces exceed the interactions in polymeric gels, the gel- like network starts 

to break into a solution of small clusters and isolated macromolecules (Kujawa et al., 2006). 

For typical Maxwellian fluids, this elastic deformation shows a declining response after yield 

point on the storage modulus curve, as illustrated in figure 2.24. The two moduli shown in 

figure 2.24, illustrates the balance between deformation force and sliding force. Since 

concentrated polymer solutions are in solid state, applied stress cause dominance of 

deformation up to yield point. Hence, the sliding force starts to dominate. The crossover point 

between the storage and loss moduli indicates a total dominance of viscous portion. Any 

additional stress will push the solution around in the measuring cup, with no resistance.  

 

According to a viscoelasticity study performed by Kujawa et al. in 2006 (Kujawa et al., 2006) 

of associating polymers above CAC (critical association concentration), the yield point is 

increasing with increasing hydrophobicity. Above CAC the amount of chain overlap and 

entanglements prevent the network of polymers to disrupt, and increasing the amount or 

length of the hydrophobic groups the intermolecular hydrophobic associations enhances. In 

addition upon salt, the effect is related to polymer concentration and dominating hydrophobic 
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association. In concentrated solutions above CAC, the observed salinity effect is not that 

pronounced. Increasing the salinity of the solution above a critical salt content, the polymer 

solutions may starts to separate into a turbid elastic gel with low viscosity.  

 

From a viscoelasticity study carried out by Regalado et al. (Regalado et al., 1999), they also 

observed an significant change in the viscoelastic behavior above a given concentration when 

incorporating only a few hydrophobic groups on a hydrophilic backbone of HPAM. When 

temporary hydrophobic intermolecular associations occurs above this concentration and a 

formation of a associating network is formed, this seems to contribute to a reduction in the 

process of polymer diffusion (decomposition) and an increase in the zero- shear viscosity.    

 

After the linear viscoelastic region was defined, the second oscillation test was carried out. It 

is crucial to determine the LVE- range of the polymer solution before performing a frequency 

sweep, because of the deformation of the network- structure occurring after a critical shear 

stress. According to Anton Paar (Anton Paar, 2008), the limit of the LVE- range for a 

concentrated polymer solution is usually set at a shear strain (γL) of 10%.  

In a frequency sweep the storage and loss modulus is given as a function of the angular 

frequency at constant amplitude, this logarithmic plot is illustrated in figure 2.25. The 

complex viscosity (  ) is also represented in the same plot, as a function of angular frequency 

at constant amplitude.            
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Figure 2.25 A typical logarithmic frequency plot of a concentrated polymer solution (Anton 

Paar, 2008). 

Figure 2.25 show a classical G´´ (ω), G´ (ω) and       curves for an entangled polymer 

solution, as the angular frequencies decreases. At low angular frequencies these vary in 

accordance with the Maxwell model (Kujawa et al., 2006, Caputo et al., 2004, Jiménez-

Regalado et al., 2004). This linear viscoelastic model states that G‘(ω) varies proportional to 

ω
2
, while the G´´ (ω) varies proportional to ω.   

There exist a relationship between the storage and loss moduli as a function of angular 

frequency, and this relation is given through the complex shear modulus (     ). This 

relationship is illustrated in a vector diagram in figure 2.26.  
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Figure 2.26 The vector diagram shows the relationship between the complex shear modulus 

and the storage and loss moduli (Anton Paar, 2008). 

In figure 2.26 the two moduli that represent the elastic and viscous portion of the viscoelastic 

behavior, are illustrated as two vectors. The complex shear modulus is the sum of the two 

vectors, and a contact angel   [
o 
] is marked between the complex modulus and the loss 

modulus.    [o 
] is referred to as the phase shift angle, and the angles varies between 0

o
 to 90

o
 

degrees. Through the damping factor, denoted as     , it is possible to characterize the 

dominating behavior (Anton Paar, 2008).   

The complex shear modulus is defined as:    

                                               Eq. 2.18 

Where        is the storage modulus as a function of angular frequency given as a real 

component of the complex shear modulus, and        is the loss modulus as a function of 

angular frequency given as an imaginary component of the complex shear modulus.  

The complex shear modulus can also be defined through the complex shear viscosity,    as 

follows (Anton Paar, 2008): 

   
  

 
                 Eq. 2.19 

In vector form, the complex viscosity can be defined as the real and imaginary components as 

functions of angular frequency. The relationship is defined as: 

                            Eq. 2.20 

Where the relation to the storage and loss moduli is given as: 
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                 Eq. 2.21 

    
   

 
                 Eq. 2.22 

The complex viscosity (    ), is given defined in Eq. 2.19 as a relationship between the 

complex shear modulus for oscillation and the angular frequency at constant amplitude. This 

function connects the study of viscoelastic behavior of entangled polymer solutions to the 

upper Newtonian plateau shown in figure 2.17 in section 2.2.1. At low angular frequency, the 

zero- shear viscosity ( 0) can be extrapolated from the measured complex viscosity at zero 

angular frequency. This relation can be expressed like this (Anton Paar, 2008):  

             
                    Eq. 2.23 

Where the complex viscosity is given as     , and         is the complex viscosity given as a 

function of the angular frequency,  . 

According to the viscoelasticity study of Regalado et al. (Regalado et al., 1999), for entangled 

polymer solutions the functions of zero- shear viscosity as a function of shear rate ( ( ̇)) and 

complex viscosity as a function of angular frequency (     ) seems to coincide. And the 

transition zone between the Newtonian plateau and the shear thinning region given as the 

relaxation time ( ̇ ) of the polymer system, corresponds point in a frequency sweep where the 

two moduli at a given angular frequency cross over each other (              ). 

This crossover point is an important characteristic parameter, and is referred to as the gel 

point of a polymer solution. The value of the relaxation time indicates the strength of the 

intermolecular forces acting in the gel- like network structure. At gel point a transition occurs 

from liquid phase to solid (gel) phase, as the deformation stress decreases. This transition is 

the revers phase transition that happens at yield point. 

The limitations of the Maxwell model are shown in the classical frequency plot of the two 

moduli in figure 2.26. Already before the gel- point the linear relationship starts to deviate. 

Angular frequencies above the gel- point of the polymer solution are not valid for the 

Maxwell model, since these curves are non- linear. 
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3.     Experimental 

This chapter will give you an introduction of the experimental methods that were used, along 

with the instruments to interpret the results.   

3.1 Chemicals 

3.1.1 Salts 

For preparation of saline polymer solutions and the corresponding brine solutions, different 

salt were used. Only sodium chloride was added in the brine containing 0.5 wt% NaCl. This 

brine was prepared by first making a 15 wt% NaCl stock solution, and let this 1 liter solution 

stand at least 12 hours on stirring. The following day was this stock solution filtrated through 

a 0.45µm vacuum filter, in order to remove unwanted particles from the brine. After filtration 

was the stock solution diluted to 0.5 wt% NaCl in a quantum of 5- 10 liters, using distilled 

water. By making this brine in such a huge quantum, the uncertainties of weighing is reduced 

to 0.1g.     

The high salinity water consisted of different salts. The salts added in this solution are listed 

up in table 3.1, where the concentration parts per million (ppm) is given as g/g.  Hereafter the 

two brines are referred to as low and high salinity brines.    
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Table 3.1 Properties of salts used in the high salinity brine, in total 5 kg. 

 

The density of 1 kg/L is utilized during calculations of molar concentrations, and no more 

precise density measure of the solutions is required. 

 

The high salinity brine was also made in a quantum of 5 liter to reduce the uncertainties of 

weighing. After addition of distilled water, this mixture of salts was let overnight on stirring 

to make it as homogeneous as possible. After more than 12 hours on stirring the high salinity 

brine had a pale appearing compared to the low salinity brine, as the picture in figure 

3.1shows.    

 

 

Figure 3.1 Filtration of high salinity brine through a 0.45µm filter. 

Type Mass 

[g/5 kg] 

Concentration 

of salt [ppm] 

Molar 

concentration 

[mol/l] 

Manufacturer Purity 

[%] 

NaCl 325.00 65000 1.11 Sigma- Aldrich, 

Switzerland 

≥ 99.5 

CaCl2*2H2O 75.00 15000 0.10 Riedel- de Haën, 

Germany 

≥ 99.0 

NaHCO3 10.00 2000 0.024 Fluka 

Analytical, 

Germany  

≥ 99.0 

Na2SO4 2.50 500 0.0035 Riedel- de Haën, 

Germany 

≥ 99.0 

KCl 100.00 20000 0.27 Fluka 

Analytical, 

Germany 

≥ 99.0 

H2O (distilled 

water) 

4487.50 0 0 - - 

Total 5000.00 102500  - - 
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The following day, the brine looked homogeneous in spite of the pale appearance. No 

precipitation had occurred through the night. Using a 0.45µm vacuum filter to remove 

impurities and insoluble salt, a filter change every 10 to 15 minutes was essential. Compared 

to the filtration process of the low salinity solution, the filter got blocked very easily due to 

accumulation of compounds. After the filtration process the high salinity solution was as 

clearly as the low saline brine.      

Table 3.2 The ionic strength of the two solvents. 

Component 

Molecular 

weight 

[g/mol] 

Composition at 1 liter solvent 

Low salinity Low salinity 
High 

salinity 
High salinity 

[mol] [ppm] [mol] [ppm] 

Na
+
 22.99 0.086 1967 1.14 26198 

Ca
2+

 40.08  - - 0.10 4089 

K
+
 39.10 - - 0.27 10489 

Cl
-
 35.45 0.086 3033 1.58 56174 

HCO3
-
 61.02 - - 0.024 1453 

SO4
2-

 96.07 - - 0.0035 338 

TDS [ppm] - 5000 - 98742 

Ionic strength [mol/kg 

solution] 
- 0.086 - 1.72 

 

 

TDS is a shortening for total dissolved solids, and in table 3.2 this value is very high 

compared to synthetic sea water. The ionic strength presented for each solvent in table 3.2, 

are calculated through this definition: 

  
 

 
∑      

   

                     Eq. 3.1 

Where   is the ionic strength of the solution, with the SI- unit [mol/kg],    is the number of 

components in the solution, c is the concentration of given component   in the solution and   

is the ionic charge number of component  .  

 



 

 50  
 

3.1.2 Reference fluid for viscosity measurements 

A polydimethylsiloxane (PDMS) solution manufactured by Sigma- Aldrich was used as a 

standard calibration solution during viscosity measurements on the rheometer. This PDMS 

test was carried out frequently to detect deviation at 20 ± 0.1
o
C. 

 

Table 3.3 Properties of the standard calibration fluid at 20 
o
C± 0.1

o
C. 

Standard fluid for viscosity measurements 

Product name Manufacturer Shear viscosity [mPa  s] 

PDMS200 Sigma- Aldrich, Switzerland 5.25 ± 0.10  

 

3.1.3 Polymers 

The most applied polymer today for chemical IOR processes, are the synthetic HPAM and its 

derivatives. The reference polymer utilized in this experimental thesis, was the Flopaam 

partially hydrolyzed polyacrylamide manufactured by SNF Floerger, France. Compared to 

other conventional polymers like the biological Xanthan, this polymer is known to have low 

shear stress stability due to flexible chains.  

 

After a high amount of shear stress applied on an entangled HPAM solution cease, the 

decomposition process of the macromolecules happens more rapid compared to entangled 

associating polymers solution. In addition to physical chain entanglements, an associating 

network of macromolecules is formed in the solution due to intermolecular hydrophobic 

interactions (Dupuis et al., 2011b). If the amount of shear stress was high enough, the weak 

intermolecular network of physical entanglements in HPAM solution is broken up and 

polymer backbones may be torn apart. In contrast to associating polymers, the backbones may 

still be intact and the associating polymer network may be reformed or decomposed to 

associating clusters. A viscosity drop is observed for HPAM, whereas in an associating 

polymer solution the viscosity may be built up to its original level before shear was applied 

due to the associating network (Reichenbach-Klinke et al., 2011).     

 

During preparation of polymer solution the shear rate has to be high enough to create a 

homogenous solution without causing degradation. The stirring rate was determined from 

recommendations from the producer and researchers at CIPR. HPAM is also sensitive to 

chemical degradation, where exposure to iron and oxygen may induce a rapid chemical attack. 
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During preparation, storage and measurements the temperature was set within the stability 

range of the polymer solution. An increase in the ambient temperature may accelerate the 

hydrolysis process of the acrylamide monomers. 

 

The associative polymers utilized in this experimental thesis were SuperPusher C319, 

SuperPusher D118 and SuperPusher B192 manufactured by SNF Floerger, France. All 

applied chemicals were used as received and the known properties of the polymers are shown 

in table 3.4. SNF Floerger has informed that these polymers have purity between 88- 92 %.  

Table 3.4 Properties of SNF Floerger polymers 

SNF Floerger Polymers 

Product name Appr. 

Molecular 

weight 

[MDa] 

Hydrolysis degree 

[mole %] at room 

temperature 

Hydrophobic 

content 

Relative 

hydrophobic 

content 

Batch 

FLOPAAM 3630S   16 - 20 25-30 Non - Lot Z 

2340  

SUPERPUSHER 

C319  

  16 - 20 25-30 Low 1 Lot X 

3433 

SUPERPUSHER 

D118 

  16 - 20 25-30 Medium 2 Lot 

RG 

2567/

5-6-7 

SUPERPUSHER 

B192 

8-12 15 High 5 - 6 Lot 

GC 

3157/

14 
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3.2 Preparation procedure 

3.2.1 The API stock solution procedure 

The preparation of all polymer stock solutions during this thesis, regardless of type of 

polymer and solvent, followed the American Petroleum Institute (API) standard procedure 

described in chapter 2.3, RP 63, 1
st
 ed. 1990. Some adjustments were made regarding the 

amount and type of pre- filtered solvent, and the stirring rate and time. 

The standard concentration for a stock solution was 5000 ppm. Polymer solutions in the semi- 

diluted concentration regime were prepared by the following procedure:  

1. 480g pre- filtered brine was first weighed in an 800ml beaker. 

2. Accurately 2.800g polymer powder was thereafter weighed in a tray. 

3. The pre- filtered brine was then placed on a magnetic stirrer, where an increasing 

stirring rate induced a vortex. When the vortex extended to about 75 % towards the 

bottom, the stirring speed was set. 

 

 

 

Figure 3.2 The vortex created by magnetic stirring. 

4. The polymer powder was then added slowly just below the vortex shoulder. This 

careful sprinkling process was carried out during 30 seconds.    

5. Right after the addition of the polymer granulate, the stirring speed was reduced to the 

lowest possible rotation. This step, together with step 4 is crucial to the homogeneity 

of the polymer solution. A careful addition of the polymer power, followed by a 
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sufficient stirring rate can avoid gel formation and precipitation. The lowest possible 

stirring speed is set where the polymer particles still float in the solution.  

 

Figure 3.3 Polymer powder floating around in the solution. 

 

6. To avoid oxidation of the polymer solution a parafilm is placed at the top of the 

beaker.  

7. The tray is thereafter measured for the second time to detect how much of the polymer 

powder that actually was added to the solution. 

8.  The polymer solution was left on adequate stirring overnight. The following day the 

solution was transferred to a Duran flask with a cork sealed by a parafilm.  

 

All polymer solutions that were made during this thesis were stored without stirring in about 

seven days after mixing, after recommendations from CIPR. The highest concentrated 

solutions of HPAM, C319 and D118, with a polymer concentration of 5000ppm, dissolved in 

low salinity brine were stored on stirring overnight after mixing. 5000ppm solution of B192 

dissolved in the same brine was placed on the magnetic stirrer over two nights. Decreasing 

solubility was expected with increasing hydrophobicity, and the difficulties concerning 

solubility of concentrated B192 was more pronounced compared to the two other associating 

polymers.  
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A further increase in the salinity and hardness of the brine was expected to enhance the 

hydrophobic aggregation. That was why all 5000ppm associative polymer solutions dissolved 

in high salinity brine, were placed on a magnetic stirrer over two nights instead of one night.   

 

 

Figure 3.4 A homogenous polymer stock solution after mixing overnight 

(5000ppm solution of D118 in low salinity brine). 

In spite of two nights on stirring, the 5000ppm solutions of the B192 in both brines did not 

seem homogeneous at all. Several viscosity measurements were carried out for 5000 ppm 

B192 dissolved in low salinity brine. Since samples of the solution were most likely not 

representable for the whole solution, an average value of these measurements is presented in 

the results. Difficulties arise during sampling of B192 dissolved in high salinity brine. 
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Figure 3.5 High degree of hydrophobicity cause a dramatic thickening ability, this is 

illustrated for 5000ppm solutions of B192 in the low salinity brine (left) and high salinity 

brine (right). 

All the 5000ppm solutions were thereafter diluted to desired polymer concentrations. The API 

dilution procedure of stock solutions was carried out in the same way for all diluted polymer 

solutions in different brines. A given amount of the 5000ppm solution was diluted with low or 

high salinity brine, and thereafter placed on magnetic stirring overnight. A solution was never 

diluted more than ten times it initial concentration. For all diluted solution of B192 in low 

saline brine, the stirring time lasted over two nights to achieve solubility.  

After the diluted solutions from the 5000ppm solution were mixed, they were vacuum 

filtrated through a 40µm filter to remove precipitations and/or microgels. The filtration time 

varied on the brine, the polymer composition and concentration. The vacuum suction was 

barley noticeably during filtration of D118 and B192, since formation of foam made the 

process run very fast. Somewhat higher suction was needed during filtration of HPAM and 

C319 solutions, without causing mechanical degradation of the polymers.  

Figure 3.6 is a picture of a filtrated diluted solution of C319 dissolved in high salinity brine. 

This filtrated solution has a clear and homogeneous appearance, and was identical to the 

appearance of the filtrated HPAM and C319 dissolved in low salinity brine. During filtration 

the filter had to be changed frequently, due to accumulation.  
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Figure 3.6 Filtrated 3000ppm solution of C319 in high salinity brine. 

Increasing hydrophobicity and salinity, the filtration process run faster. During filtration of 

associative polymer solutions containing medium to high amount of hydrophobic groups, 

foam was created. Compared to the filtration of HPAM and C319, there was observed less 

accumulation on the filter. Pictures of the filtrated D118 and B192 in low and high salinity 

brine respectably, are shown in figure 3.7. An extensive formation of foam is observed for 

SuperPusher B192, which resulted in a shorter filtration time.  

 

Figure 3.7 Filtrated 2000ppm solutions of D118 (left) and B192 (right) in low salinity 

brine. 

The filtrated HPAM and C319 solutions were left to gain equilibrium overnight before use. 

Whereas D118 and B192 filtrated solutions were placed on the magnetic stirrer for about 20 
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to 30 minutes, before stored overnight after filtration. The intention was to reduce the amount 

of foam in the solution, by reforming the hydrophobic interactions between the chains that 

contribute to the thickening ability (Reichenbach-Klinke et al., 2011).  

 

Figure 3.8 Filtrated 3000ppm solution of D118 placed on stirrer (1.), after 30 minutes (2.), 

the solution was stored overnight (3.). 

The pH value of the brine was measured and always adjusted to 6.8 before mixing with the 

polymer.  It was very important that the pH of these polymer solutions was held at a neutral 

value between 6 and 8, since they are polyelectrolytes. An excess of hydrogen ions or 

hydroxyl ions in the solvent, have a tendency to react with the carboxylate functional groups 

on the molecular backbone of the polymer. At neutral pH the viscosity of the polymer 

solution is immediate affected by electrostatic effects (Sorbie, 1991) occurring in the solvent, 

especially at low salinity brines.  

Before any viscosity measurements of the polymer solutions, the pH had to be measured. A 

diluted NaOH with a concentration of 0.1M was used to adjust the pH value of the polymer 

dissolved in low salinity brine to 6.8. The high salinity brine acted as a solid buffer during 

addition of diluted HCl with a concentration of 0.1M. The acid concentration had to be 

adjusted to 1.0M to be able to change the pH. After reaching a sour environment outside the 

buffer zone, a couple of droplets of 1.0M NaOH were necessary to increase the pH of the 

solution again. After five minutes waiting time, the pH value had increase up to the initial 

value again.  During this waiting time a precipitation of the associating polymer had occurred 

in the solution, a picture of this is shown in figure 3.10 for C319 dissolved in high salinity 
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brine. Since the high salinity brine acted as a buffer and the precipitation occurred during pH 

adjustment, a pH value between 6 and 8 of the polymer solutions was accepted prior to 

viscosity measurements.  

 

 

Figure 3.9 Precipitation of 3000ppm solution of C319 diluted in low salinity brine, pH= 

7.53. 

During preparation, storage and measurements a stable temperature was set to reduce 

uncertainties and other source of errors. The whole experiment was carried out at room 

temperature, T= 22 
o
C.  

From February 25 to May 6 in 2013 (10 weeks) the rheometer at CIPR was out of order, 

before a replacement was in place. Due to time limitations, the storage procedure of B192 and 

600ppm and 100ppm solutions of SuperPusher C319 in high salinity brine was changed. After 

preparing the polymer solutions for the second time, the solutions were now stored in a 

refrigerator for about 3 weeks before measurements were carried out. A degradation check 

was performed at room temperature and compared to earlier shear viscosity measurements of 

the 5000ppm solution of C319 in high salinity brine. Some degradation was observed, but the 

deviation was approved.   
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3.2.2 Regarding concentrations  

In this thesis all concentrations are in parts per million (ppm) or weight percent (wt%). These 

units are preferred instead of molar concentrations because it is more frequently used in 

previous reports, and thus easier to compare the results. The salinity content of the brines is in 

this thesis presented as weight percent of the solution. A more common concentration unit for 

salt used in the chemical industry is molar (M). 

The concentration range was changed during this thesis, because there were some 

uncertainties in the beginning about the concentrations that should be more evaluated than 

others regarding the association phenomenon.  

In table 3.5 the polymer concentration ranges that were studied during this experimental 

thesis are presented due to the new adjustments.  
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Table 3.5 Presentation of the different polymer concentration ranges. 

Adjustments 

regarding 

concentrations 

Polymer type 

and brine 

Polymer concentrations 

 

1. Concentration 

range at the 

beginning 

HPAM, 

C319 and 

B192 

dissolved in 

low salinity 

brine 

5000 ppm solution 

- Diluted to 2000 and 3000 ppm solutions 

- Filtrated 2000 ppm solution was diluted to 600 and 

1000 ppm solutions 

- 1000 ppm solution was diluted to 100 and 150 ppm 

solutions 

- 600 ppm solution was diluted to 200 and 300 ppm 

solutions 

- 100 ppm solution was diluted to 25 and 50 ppm 

solutions 

2. New adjustment 

due to 

knowledge 

about C
*
 and 

CAC 

D118 

dissolved in 

low salinity 

brine 

5000 ppm solution 

- Diluted to 2000 ppm solution 

- Filtrated 2000 ppm solution was diluted to 1000 

and 1500 ppm solutions 

- 1500 ppm solution was diluted to 300 and 600 ppm 

solutions 

- 1000 ppm solutions was diluted to 100 and 200 

ppm solutions 

3. New adjustment 

due to 

Newtonian 

trend of high 

concentrated 

solutions 

D118  and 

C319 

dissolved in 

high salinity 

brine 

5000 ppm solution 

- Diluted to 2000 and 3000 ppm solutions 

- Filtrated 2000 ppm solution was diluted to 1000 

and 1500 ppm solutions 

- 1000 ppm solution was diluted to 100 and 600 ppm 

solutions 

4. New adjustment 

due to extremely 

viscous 

5000ppm 

solution 

B192 

dissolved in 

high salinity 

brine 

5000 ppm solution 

- Diluted to 2000 and 1000 ppm solutions 

- Filtrated 2000 ppm solution was diluted to 1500 

ppm 

- Filtrated 1000 ppm solution was diluted to 100 and 

600 ppm solutions 
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3.3 Experimental apparatus and equipment 

3.3.1 Physica MCR300 Rheometer 

The rheology measurements were performed by a Modular Compact Rheometer, Physica 

MCR300 by Anton Paar. In figure 3.10 a picture of this rheometer is shown. The MCR300 is 

equipped with different measurement geometries, whereas two of them are the double gap 

geometry and the cone plate geometry. The presumed viscosity of the solution decides which 

of the two geometries that was utilized. The viscosity of the fluid sample can be calculated 

from the measured torque (moment of force) during a steady rotation of one of the surfaces of 

the fluid. The uncertainty of the rheometer is given as the overall uncertainty of the viscosity 

measurements measured at given reference shear rates. At reference shear rate for diluted 

solutions below 200ppm the uncertainty was ± 0.01 mPa s, and at reference shear rate for 

polymer solutions with concentrations above 200ppm the uncertainty was ± 6.1 mPa s.    

 

 

Figure 3.10 MCR300 Rheometer by Anton Paar covered by a Plexiglas. 

The cone plate geometry (CP-75) is preferred for samples with a presumed viscosity higher 

than 10 mPa s (e.g. polymer stock solutions and concentrated solution), with a TEK 150P-C 

measuring cell. The cone plate setup consists of a sample plate stator and a slightly coned 

plate rotor with a distance of 0.05mm gap between them. For samples with a presumed 

viscosity ( ) below 10 mPa s (e.g. diluted polymer solutions and brines), the double gap 

geometry (DG- 26.7) is utilized with a TEZ 150P-C measuring cell. The double gap geometry 
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setup consists of two sets of measuring surfaces, and consists of a concentric cylinder stator 

and an open- end cylinder rotor.  In figure 3.11 the two rheometer geometries are illustrated.  

 

  

Figure 3.11 Cone plate geometry is illustrated on the left, and the double gap geometry is 

illustrated to the right (Lunestad, 2011). 

The MCR300 instrument has a Peltier element with water cooling and electric heating which 

controls the ambient temperature of the fluid sample. The viscosity measurements carried out 

on the rheometer was performed at 22 
o
C, and the apparatus had an uncertainty of 0.1 

o
C. 

About five minutes waiting time was set before any measurements, to gain an equilibrium 

temperature between the Peltier apparatus and the fluid sample.  As illustrated in figure 3.10, 

a Plexiglas was covering the rheometer to protect the fluid sample from debris and air 

fluctuations that can interfere with the measurements.  

The sampled volume required for the DG measuring cell was 3.8 ml, and for the CP 

measuring cell 3.1 ml was used. The required sampled volume was dispensed with a pipette 

onto the cup or plate. For each measurement performed on the rheometer, only fresh samples 

of the solution were used since a measured sample becomes mechanically degraded at high 

shear rates.  Some difficulties arise for very viscous fluid samples regarding use of the pipette 

to sample the required volume from the solution, and thereafter injecting it into the plate 

(figure 3.12). 
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Figure 3.12 Difficulties when sampling the extremely viscous 5000ppm solution of B192 in 

the high salinity brine. 

Precautions were made regarding how the samples should be specific injected into the cup or 

plate, since the rotor speed is extremely influenced by the resistance fluids cause when they 

are contacted. It is from this rotor speed the rheometer software measures the torque, and 

thereafter calculates the shear rate. From the calculated shear rate, the shear viscosity of the 

sample is estimated. When injecting a sample onto the plate, it is very important that the 

sample is placed in the middle like a pancake. Then the sample seems to be equally spread out 

on the plate when the stator is pushed down to a 0.05mm gap distance. When the sample is 

injected into the cup, no sample must be placed on the top of the stator. This can result in 

incorrect measurements of the sample, since some volume is missing from the cup and the 

liquid that are contacted with the rotor may cause a higher resistance to the rotor speed.          

A sampled volume of 4.1 ml was used for PDMS reference testing of the viscosity at 20
o
C ± 

0.1
o
C on the double gap measuring geometry. The viscosity testing of the PDMS was carried 

out several times before, during and after viscosity measurements of polymer solutions. The 

purpose of this Newtonian fluid was to detect irregularities in the rheometer, and thus 

enhancing the credibility of the viscosity measurements of the polymer solutions. An accepted 

viscosity measure of PDMS reference fluid is noted in section 3.2.1. The viscosity settings on 

DG measuring cell were 60 measuring points detected over 600 seconds at a constant shear 

rate of 100 (1/s).  

The cleaning process before any measurement on the rheometer was crucial, and was 

carefully carried out. All parts that were in contact with the fluid sample, had to be cleaned 

and dried before injecting a new fluid sample. The cleaning process started by taking out all 

the removable parts that were contacted. The rotor, the plate and the disassemble cup were 
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thereafter washed gently with soap and water, rinsed three times with distilled water before 

rinsed one time with acetone. The parts were gently wiped off by a soft paper before totally 

dried using pressurized air.  

Common to all rheology measurements performed on the MCR300 in this thesis; an Air 

Check test, leveling of the rheometer with a tubular spirit level and five minutes checking 

time of temperature equilibration at constant 22 ± 0.1
o
C before any measurement. The Air 

check test was performed at 22 ± 0.1
o
C using the CP- geometry at a zero- gap distance 

between the rotor and the plate. During the Air check test 120 measuring points were detected 

every two seconds during a measuring interval of 240 seconds. Quite often did the air check 

test show irregularities during the measurements over time, and therefore was a motor 

adjustment of the CP system necessary. After the calibration adjustment, another air check 

test was performed to check if the irregularities were removed. If they were, the viscosity or 

the viscoelastic measurements of the fluid samples could begin.  

Two parallels were always carried out on the rheometer of a polymer solution to make the 

results more credible. Some of the very viscous solutions, like the stock tank solutions and 

other highly concentrated solutions, several parallels were necessary since the sampled 

amount from the solution seemed inhomogeneous and gel- like.    

During shear viscosity measurements of the polymer solutions, the recorded values were 

approved by the Rheoplus software when the status of the measurement was denoted as 

“Dy_auto”. All of the shear viscosity measurements processed in the results is approved 

values. In the viscoelasticity measurements carried out for the different polymer solutions, 

there were a great number of not approved recoded measurements. The approved 

viscoelasticity measurements were denoted as “DSO”, whereas measurements below the 

limitations of the rheometer were denoted as “TaD”. During the amplitude sweep of the 

polymer solutions, only the stock tank solutions had all of the measuring points approved. In 

the frequency sweep most the stock solutions had all measurement points approved, but some 

of them lacked approval of the two first recoded points. The same trend was found in both 

viscoelasticity sweep tests; the numbers of approved measurements were lowered as the 

polymer concentrations were reduced. That is why no viscoelasticity measurements were 

carried out for polymer solutions with concentrations below 600 ppm. These solutions 

behaved like Newtonian fluids during the shear viscosity measurements, and no 

viscoelasticity measurements were carried out since they had no viscoelastic property.         
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3.3.2 Shear viscosity measurements 

The shear viscosity measurements performed by the MCR300 was controlled by Anton Paar‘s 

software Rheoplus. Different settings were made to detect the viscosity as a function of shear 

rate, time and polymer concentration. The settings on the rheometer and the concentration 

range were changed during this thesis, because it was not clarified in the beginning which part 

of the viscosity range and concentration range that should be thorough studied.  

The first shear viscosity measurements were carried out for HPAM polymers dissolved in low 

salinity brine. The viscosity range was divided into four intervals, and some changes were 

necessary between the two different measuring geometries.   

Table 3.6 Shear viscosity settings for HPAM dissolved in low salinity brine. 

Interval number CP settings 

(  > 10 mPa s) 

DG settings 

(  < 10 mPa s) 

1. First interval 41 measuring points were taken during a 

logarithmic increase in the shear rate range 

from 0.01 to 100 (1/s).  The measuring 

time for each point varies logarithmically 

from 10 seconds for the lowest shear rate, 

and up to 30 seconds for the highest shear 

rate.  

Equal to CP 

2. Second interval 6 measuring points every 10 seconds at 

constant shear rate of 10 (1/s).   

6 measuring points were 

detected every 30 seconds 

at constant shear rate of 

10 (1/s). 

3. Third interval 21 measuring points were detected during 

a logarithmic increase in the shear rate 

range from 10 to 1000 (1/s).  The 

measuring time for each point varies 

logarithmically from 10 seconds for the 

lowest shear rate, and up to 30 seconds for 

the highest shear rate.  

Equal to CP 

4. Fourth interval 11 measuring points were detected during 

a linear increase from 1000 to 5000 (1/s).  

The measuring time for each point varies 

logarithmically from 10 seconds for the 

lowest shear rate, and up to 30 seconds for 

the highest shear rate. 

6 measuring points were 

taken during a 

logarithmic increase in 

the shear rate from 1000 

to 3500 (1/s).  The 

measuring time for each 

point was the same as for 

CP. 

 

It is due to the limitation of the rheometer using DG geometry that the fourth interval is 

different from CP settings. The maximum shear rate on DG is set at 3500 (1/s).  The data 
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points of HPAM dissolved in low salinity brine were sampled using averaging 500 recorded 

values.    

New changes were made in Rheoplus, before measuring the C319 dissolved in low salinity 

brine. The new adjustments in the setting of CP and DG geometries are shown in table 3.7.  

At that time these adjustments gave a more genuine measure of the polymer solutions. It was 

also necessary to change the settings regarding how the data points were sampled, and they 

were now sampled as the last 10% of the recorded values at equilibrium. 

Table 3.7 New shear viscosity settings for C319 dissolved in low salinity brine. 

Interval number CP settings 

(Cp ≥ 1000 ppm) 

DG settings 

(Cp < 1000 ppm) 

1. First interval 41 measuring points were taken during a 

logarithmic increase in the shear rate range 

from 0.01 to 100 (1/s).  The measuring 

time for each point varies now 

logarithmically from 100 seconds for the 

lowest shear rate, and up to 10 seconds for 

the highest shear rate.  

Equal to CP 

2. Second interval 6 measuring points every 10 seconds at 

constant shear rate of 10 (1/s). 

6 measuring points were 

detected every 10 seconds 

at constant shear rate of 

10 (1/s). 

3. Third interval 21 measuring points were detected every 

10 seconds during a logarithmic increase 

in the shear rate range from 10 to 1000 

(1/s).   

Equal to CP 

4. Fourth interval 11 measuring points were detected every 

10 seconds, during a linear increase from 

1000 to 5000 (1/s). 

6 measuring points were 

taken every 10 seconds 

during a logarithmic 

increase in the shear rate 

from 1000 to 3500 (1/s).   

 

New adjustments had to be made before measuring the associative polymer solutions of C319, 

D118 and B192 dissolved in high salinity brine, and D118 dissolved in low saline brine. The 

viscosity range and concentration range at this time was now more specific, leading to fewer 

concentrations below 600 ppm. According to the viscosity measurements carried out for the 

associative polymers C319 and B192 dissolved in low salinity brine, an assumption was made 

that the critical overlap concentration (C
*
) range was between 200ppm and 400ppm and the 

critical aggregation concentration (CAC) ranged from 600ppm to 2000ppm. In previous 

settings of viscosity measurements, the shear rate range was divided into four intervals. The 
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new setting consists of only two intervals and these are presented in table 3.8. The settings 

regarding how the data points were sampled are the same before. 

Table 3.8 New shear viscosity settings for D118 dissolved in low salinity brine, and 

C319 and B192 dissolved in high salinity brine. 

Interval number CP settings 

(Cp ≥ 1000 ppm) 

DG settings 

(Cp < 1000 ppm) 

1. First interval 41 measuring points were taken during a 

logarithmic increase in the shear rate range 

from 0.1 to 1000 (1/s). The measuring 

time for each point varies now 

logarithmically from 30 seconds for the 

lowest shear rate, and up to 10 seconds for 

the highest shear rate.  

Equal to CP 

2. Second interval 17 measuring points were recorded every 

10 seconds during a linear increase in the 

shear rate range from 1000 to 5000 (1/s). 

17 measuring points were 

detected every 10 seconds 

during a linear increase in 

the shear rate range from 

1000 to 3000 (1/s). 

  

After the shear viscosity measurements of the polymer solutions were finished, the recorded 

data was transferred to Excel sheets in order to make proper graphs of the measured samples.  

Since polymer solutions are non- Newtonian fluids, the shear viscosity of the bulk solutions 

have to be compared at a constant shear rate. The reference shear rate chosen for all of the 

different polymer solutions is within the shear thinning region, as illustrated in figure 2.17 in 

section 2.2.1. It was very important to not choose a reference shear rate that was too low or 

too high since the polymer solutions show Newtonian flow behavior at these shear rate 

ranges. For low viscous solutions, the limitation of the rheometer by Anton Paar has to be 

considered.  

In previous reports, different reference shear rates have been utilized to characterize the shear 

viscosity of non- Newtonian polymer solutions (Lunestad, 2011, Nordli, 2010, Pancharoen, 

2009). In this study, the reference shear rates at 10 (1/s) and 100 (1/s) was both chosen. The 

shear viscosity measured at reference shear rate 10 (1/s) give a more realistic viscosity 

measure of the polymer solution, considering a typical flow rate of 1 ft. per day in a reservoir. 

For low concentrated polymer solutions (25ppm to 200ppm) a shear viscosity measured at 10 

(1/s) may not be credible. The shear viscosity measurements carried out at low shear rates is 

most likely surface tension of the liquid. Therefore a reference shear rate of 100 (1/s) chosen 

for the diluted polymer concentrations.  
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The rheometer had clear limitations at low and high shear rates, as illustrated for low and high 

salinity brine. In figure 3.13, a flow curve (shear viscosity as a function of shear rate) is 

shown for both brines using DG- geometry on the rheometer. 

 

Figure 3.13 Shear viscosities as a function of increasing shear rate of low (red) and high 

(dotted blue) salinity brines at 22± 0.1 
o
C.  

Through shear viscosity measurements at room temperature with increasing shear rate, the 

flow curves of both brines are detected. Their flow behavior is quite similar to each other, but 

the shear viscosity of high salinity brine is higher than low salinity brine. The shear viscosity 

measurements of the brines seem very unstable at low shear rates, before they stabilize. This 

indicates that, for low viscous solutions with dominating Newtonian flow behavior, the 

detected data at shear rates below 10 (1/s) seems to be surface tension between solution in 

measuring cup and air. For diluted polymer solutions with unstable measurements at low 

shear rates, these data is eliminated from the flow curves.  

The Newtonian flow behavior is shown from 10 (1/s) to 100 (1/s), before an increase in the 

shear viscosity is observed. This increase in shear viscosity at high shear rates indicates 

turbulence. For highly concentrated and elastic polymer solutions, a viscosity increase is also 

observed around 1000 (1/s). As the shear rate increases above 1000 (1/s), these viscoelastic 

solutions started to climb out of the measuring area between the cup and the spindle. This 

climbing effect of polymer solutions may be due to the Weissenberg effect (rod climbing 
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effect) (Anton Paar, 2008) or phase transition between viscoelastic liquid and viscoelastic 

solid phase. When the shear measurement was finished, most of the sampled volume was 

detected on the top of the sample rather than in the measuring cup as illustrated in figure 3.14. 

 

Figure 3.14 Unstable measurements at high shear rates due to Weissenberg effect or phase 

transition of concentrated polymer solutions. 5000ppm solution of C319 in low salinity brine 

is photographed.    
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3.3.3 Viscoelastic measurements 

By changing the settings in the Rheoplus software, the viscoelastic properties could be 

detected for different polymer solutions and brines. The viscoelastic properties were measured 

through an amplitude (strain) sweep, where the strain is given as a function of storage and loss 

modulus. A frequency sweep was carried out after the amplitude sweep, where the angular 

frequency is given as a function of complex viscosity, storage and loss modulus, and phase 

shift angel.   

The settings in Rheoplus for the amplitude sweep and the frequency sweep are presented in 

table 3.8 and table 3.9 respectably.  

Table 3.8 Settings in the amplitude sweep at 22 ± 0.1
o
C. 

Interval CP and DG settings 

1. First interval 19 measuring points were taken during a logarithmic increase in the 

shear strain range from 0.1 to 3000%. The angular frequency was set at 

a constant shear rate of 10 (1/s), after recommendation from the 

producer Anton Paar regarding polymer solutions.  

 

Table 3.9 Settings in the frequency sweep at 22 ± 0.1
o
C. 

Interval CP and DG settings 

1. First interval 18 measuring points were taken during a logarithmic increase in the 

angular frequency range from 300 to 0.1 (1/s). The shear strain was set 

at 10%, after recommendation from the producer Anton Paar regarding 

polymer solutions.  
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3.3.4 The pH- meter 

During this thesis two different pH- meters have been utilized at 22
o
C, but the twinpH B-212 

from Horiba was only used for pH measurements of B192 dissolved in the low salinity brine.  

The main pH- meter was the one from Hach- Lange showing two decimal units on the 

display, and had an accuracy of ± 0.1pH. Before any pH measurements on both pH- meters, a 

pH calibration was performed using the producers own solutions of different pH values. On 

the Hach- Lange pH- meter, the results of the calibration did always display a percentage 

success around 92% to 94%. 

 

Figure 3.15 the pH- meter from Hach- Lange with ISFET and glass pH probe.  

The Ion- Sensitive Field Effect Transistor (ISFET) at the end of the probe is a silicon chip, 

which contains a final layer with affinity for hydrogen (H
+
) ions only. This surface sensor is 

illustrated in figure 3.16. Hydrogen ions near or at the sensor in the solution, cause electrical 

effect that is detected. From this electrical effect the pH value of the solution is estimated.   

 

Figure 3.16 ISFET Technology on the pH meter from Hach- Lange
7
. 

                                                           
7
 http://www.hach.com/h-series-h160-portable-ph-meter-starter-kit/product-downloads?id=7640516412  

http://www.hach.com/h-series-h160-portable-ph-meter-starter-kit/product-downloads?id=7640516412
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The pH- meter from Hach- Lange was much easier to utilize compared to the twinpH meter. 

The pH of polymer solutions and brines was measured by placing the pH measuring probe 

into the solution. The pH measuring area on the probe was covered by thin glass that was very 

fragile, so it was crucial that the probe was carefully placed into the solution during the 

measurements.    

 

Figure 3.17 The twinpH from Horiba. 

Before starting preparation of the polymer solutions of B192 dissolved in low salinity brine, 

the pH- meter from Hach- Lange was damaged at CIPR and sent to reparation. It was replaced 

with the twinpH, which only displayed one decimal unit (figure 3.17). The uncertainty of the 

pH measurements given by the producer of Horiba was ± 0.1pH. To measure the pH of these 

solutions, a given amount was sampled and injected into the measuring cup on the twinpH.  
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3.3.5 Weighing scales 

Four different weighing scales have been utilized during preparation of polymer solutions and 

brines. To reduce the uncertainty of weighing of polymer powders, salts, polymer solutions 

and large quantum of brines different weighing scales have been used to provide a more 

accurate measure of the solute and solvent.   

The different types and technical specifications of the weighing scales are presented in table 

3.10. 

Table 3.10 Different types of weighing scales utilized. 

Type Resolution Minimum 

weight [g] 

Maximum 

weight [g] 

Deviation [g] Manufacturer 

AB 204-S Fine 0.01 220 0.0001 Mettler Toledo 

PB 3002S Medium 0.05 3100 0.01 Mettler Toledo 

SG 16001g Coarse - 16100 0.1 Lab- Tec 

 

 

Figure 3.18 Weighing scales. Left: PB 3002S, middle: SG 16001g, right: AB204-S. 

The main source to deviation of polymer solutions and brines is the preparation procedure. 

That is why the uncertainties during the weighting process contribute very little to the 

reproducibility of the solutions, and that is why they are neglected. It is the preparation 

procedure that has the highest impact on the viscosity of the solutions. There exist several 
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different procedures of how high salinity brines can be added and how the mixing process of 

the polymer solutions can be done (Wever et al., 2011, Maia et al., 2005). In this study the 

given salt concentration in the brine was already fixed before mixing it with a polymer, 

according to previous papers will this give a more homogenous mixture than increasing the 

salt concentration gradually in an already mixed polymer solution (Maia et al., 2005). 

The largest impacted on the viscosity of the solution that exceeds the uncertainties of the 

preparation procedure and the accuracy of the rheometer, is the sampling process from the 

solution. Highly viscous solutions may be inhomogeneous, even though they seem uniform, 

and the sampled volume from the solution may not be representable. This will be the highest 

uncertainty concerning reproducibility and credibility of these experimental results. To 

provide a higher credibility of the measurements carried out in this thesis; two identical 

parallels were always carried out. In appendix section A.1, a list of uncertainties is presented.       
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4.      Results and discussion 

The main objective of this experimental thesis is to characterize the rheology properties of 

associating polymers from SNF Floerger. C319, D118 and B192 were dissolved in different 

brines at constant room temperature conditions. HPAM was only dissolved in the low salinity 

brine, due to precipitation at higher salinity.     

4.1  Shear viscosity measurements 

From the shear viscosity measurements on the MCR 300 Rheometer, the characteristic flow 

behavior of each polymer at different concentrations and brines are recorded. The intrinsic 

viscosity, the Huggins coefficient, and the critical overlap concentration (C
*
) and critical 

association concentration (CAC) of the polymer solutions were estimated.  

4.1.1 Characteristic flow behavior 

HPAM dissolved in high salinity brine was not measured in this study, but the effect on 

increasing salinity of the brine was measured and discussed in the master thesis of Monrawee 

Pancharoen in 2009 (Pancharoen, 2009). He concluded that the effect of increasing salinity on 

HPAM solution was more pronounced compared to the associative polymer solutions, which 

showed a higher viscosity reduction due to increasing salinity.     

 

The shear viscosity of HPAM and the associating polymers where measured at different shear 

rates. The highest shear viscosities were recorded for the highest concentrated polymer 

solutions, and the non- Newtonian flow behavior was strongest for these polymer solutions. 

The viscosity build- up property of polymer solutions is quite favorable during a polymer 

flood through the reservoir. The non- Newtonian flow behavior is quite adequate during 

polymer floods. As the shear rate decreases during propagation towards the production well, 

the viscosity is increasing. For diluted polymer solutions, the shear viscosity is lower 

compared to higher concentrated solutions and this shrinks the shear thinning region. The 

flow behavior of the polymer solutions at different concentrations in different brines as the 

shear rate increases, are shown in the logarithmic plots of shear viscosity as a function of 

shear rates. The flow curve of D118 in both brines is presented in figure 4.1, the rest of the 

flow curves are presented in appendix section A.2. A selected concentration range with 

polymer concentrations of 600ppm, 1000ppm, 2000ppm and 5000ppm solutions are 

presented. For HPAM; only polymer concentrations of 600ppm, 1000ppm and 5000ppm 
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solutions were prepared and therefore presented in this specific concentration range. In 

appendix section A.2 measured shear viscosities of the solutions at reference shear rate of 10 

(1/s) in the shear thinning region is presented.  

 

Before the shear viscosities of different polymer solutions are discussed as the shear rate 

increases, the schematic flow behavior illustrated and described in figure 2.17 in section 2.2.1 

is important to have in mind.  

 

 

Figure 2.17 Flow curve illustration with four distinct regions from section 2.2.1.  
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Observations:  

 

The flow curve of D118 dissolved in low and high salinity brine carried out at 22 ± 0.1
o
C is 

presented in figure 4.1. 

 

Figure 4.1 Shear viscosities as a function of shear rate of different concentrated polymer 

solutions (different colors) of D118 dissolved in low (solid line) and high (dotted line) salinity 

brines (22 ± 0.1
o
C).  

The expected flow behavior of HPAM based polymer solutions, are an increase of shear 

viscosity due  increasing polymer concentration and electrostatic repulsion (Sorbie, 1991). 

This corresponds well with observations from this study; in low salinity brine the polymer 

backbone stretches out due to electrostatic repulsion. Increase of the polymer concentration 

seems to force the chains to overlap in the solution and induce higher viscosity (Appendix 

section A.2).The hydrodynamic volume and amount of the HPAM macromolecules in the 

solution seems to determine the viscosity. Dissolving HPAM in high salinity brine was not 

carried out, since in the presence of salt screens the negative charged segments on the 
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backbone. The hydrodynamic volume of the polymer reduces until they precipitates 

(Reichenbach-Klinke et al., 2011). 

Shear thinning regions were observed, and the decreasing slope is steepest for 5000ppm 

solution. This corresponds well with the Power Law index (n), where this index diverts to 

unity as the viscosity reduces. At unity, n =1, there exist no shear thinning region, and the 

solution is now characterized with a Newtonian flow behavior.   

Incorporation of a small amount of hydrophobic groups on the backbone of HPAM, like C319 

solutions in the same low salinity brine, the viscosity increased for concentrated solutions of 

2000ppm and 5000ppm. The same observations are observed for D118 in low salinity brine, 

with a higher amount of hydrophobic groups incorporated. As presented in table 3.4 in section 

3.1.3, the properties of HPAM, C319 and D118 are all the same except the amount of 

hydrophobicity. These observations seems to correspond well with earlier viscosity studies 

carried out on associating polymers (Maia et al., 2011, Dupuis et al., 2011a, Reichenbach-

Klinke et al., 2011, Wever et al., 2011). Above a critical polymer concentration, where the 

macromolecules are physically entangled (CAC), a significant viscosity build- up is observed 

for associating polymers due to increasing degree of hydrophobicity. They explained this 

increase as a dominance of intermolecular hydrophobic associations that forms an entangled 

network of associating polymers that enhanced the hydrodynamic volume of the solution.  

For B192, with a lower molecular weight and much higher degree of hydrophobicity, the 

same trend was observed for 2000ppm and 5000ppm solutions compared to HPAM based 

polymer solutions in low salinity brine. 

For polymer concentrations below 2000ppm, the slope on the shear thinning region is less 

steep. Through the Power Law index, an observation from HPAM based polymer solutions in 

low salinity brines is that this index increases as the polymer concentration decreases and the 

hydrophobicity increases (HPAM<C319<D118). The macromolecules in these solutions may 

be entangled as well, but the intermolecular associations seem to be less efficient compared to 

the 2000ppm and 5000ppm solutions.  

Polymer concentrations of 600ppm and 1000ppm of B192 in the low salinity brine, follows 

the same trend as HPAM based polymers with increasing amount of associating groups. 

Decreasing polymer concentration seems to reduce the steepness in the shear thinning region. 
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The Power Law index from the slope of the shear thinning region, seem to be almost unity for 

diluted B192 solutions (HPAM<C319<D118<B192). 

 

No viscosity measurements of HPAM without any associating groups were carried out in high 

salinity brine, due to precipitation. By a small increase of the degree of hydrophobicity, a 

viscosity build- up is observed. The shear viscosities of 5000ppm solution of C319 in high 

salinity brine is significantly higher compared to HPAM, but lower than 5000ppm solution in 

low salinity brine. A shear thinning behavior is also observed in high salinity brine, compared 

to the Newtonian behavior of HPAM in high salinity brine.  

A further increase in the degree of hydrophobicity, the viscosity of 5000ppm solution of D118 

in high and low salinity is observed to be approximately the same. These observations seems 

to indicate the efficiency of associating polymers as thickening agents, and corresponds well 

with earlier experimental studies (McCormic and Johnson, 1988). Above a critical 

concentration, the associating polymers exhibit higher viscosities, higher salinity tolerance 

and have a more marked shear- thinning behavior at higher shear rates than HPAM without 

any associating groups.  

In high salinity brine, the viscosities of 5000ppm solution of B192 was observed to be higher 

than in low salinity brine up to a given shear rate. This trend seems to indicate that the 

thickening ability in entangled associating polymer solutions, enhances with increasing degree 

of hydrophobicity (HPAM<C319<D118<B192). At a given shear rate, the viscosities of B192 

in low salinity brine was higher than in high salinity brine. This may indicate that due to 

different polymer composition of B192 compared to HPAM based polymers, B192 seems to 

be more sensitive to shear stress in the high salinity brine.  

The observed viscosity reduction from the 5000ppm solutions and down polymer 

concentration of 2000ppm in high salinity brine, was observed to drop more with increasing 

degree of associating groups (C319<D118<B192). The same trend was observed for the shear 

thinning region that seems to be less marked with increasing degree of hydrophobicity.  
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Conclusions: 

The viscosity of an associating polymer will be significantly higher at higher polymer 

concentration compared to HPAM. The thickening ability seems to be more efficient at higher 

concentrations and increasing amount of associating groups (HPAM<C319<D118<B192). 

The associating behavior due to intermolecular hydrophobic interactions seems to provide a 

higher salt tolerance. Even a small amount of hydrophobic groups seems to induce a less 

sensitivity to salt.  

 

The effect on increasing salinity corresponds well with earlier studies on associating polymers 

flow behavior (McCormic and Johnson, 1988), where the viscosity of the solutions are 

strongly related to the physical interactions occurring in the solution. In the concentration 

where the viscosity of a solution is much higher than other polymer concentrations like 

2000ppm and 5000ppm, there macromolecules in the solution seems to be entangled. 

Increasing salinity of associating polymer solutions where the polymers are entangled seems 

to strengthen the dominating intermolecular hydrophobic associations.  

Below polymer concentrations of 2000ppm, the viscosities are often relatively lower than 

2000ppm and 5000ppm. These solutions may also be entangled, but the association occurring 

is not that significant since there exist fewer macromolecules in the solution. This result in a 

lower effect of hydrophobic association compared to higher polymer concentrated solution, 

where the polymers are closer together and forced to physical entangle.    

 

As mentioned in section 3.3.2, for some highly viscous solutions like the 5000ppm solution of 

B192, viscoelastic effects was observed at high shear rates. These highly concentrated 

polymer solutions started to climb out from the measuring region between the cup and the 

spindle at sufficient shear rates. From the flow curves of these 5000ppm solutions, the 

observed shear viscosities in the low salinity brine seems to decrease with a straight 

decreasing slope for B192. The shear viscosities of HPAM, C319 and D118 seem to divert 

from this straight line to some extent. In high salinity brine, the shear viscosity measurements 

seems to divert less with increasing degree of hydrophobicity (C319>D118>B192). It seems 

like the impact on the shear viscosities, due to the climbing effect or the phase transition 

process that occurs at high shear rates, may be related to the increasing degree of 
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hydrophobicity and gel structure. The more elastic the polymer solution is, it seems like the 

more effected is the polymer solution to the climbing process.   
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4.1.2 Intrinsic viscosity, Huggins coefficient and C
*
 

The intrinsic viscosity is the one of the most important viscosity parameters for diluted 

polymer solutions. This parameter is directly related to the hydrodynamic volume of the 

macromolecules in the solution (Sorbie, 1991). During this study, the diluted concentration 

range was estimated to be polymer concentrations below 200ppm. The intension was to 

choose a range where the macromolecules in the solution were still untangled, and no 

intermolecular association occurred.  

From section 2.2.3, the intrinsic viscosity was defined as the reduced viscosity goes to zero- 

polymer concentration:  

           
    

   
       

   

 
                                Eq. 2.7 

Where      is the intrinsic viscosity at zero- polymer concentration [cm
3
/g], η is the non- 

Newtonian shear viscosity of the solution [Pa s], ηs is the solvent viscosity [Pa s], c is the 

polymer concentration [g/cm
3
]. ηsp is the specific viscosity (dimensionless unit) and ηR is the 

reduced viscosity [g/cm
3
]. The SI- unit for intrinsic viscosity is [cm

3
/g], but the unit [1/ppm] 

is often preferred.  

No correspondence where found between the experimental data of HPAM and the inherent 

viscosity. Estimation of intrinsic viscosity was performed through extrapolation from the plot 

of reduced viscosity as a function of polymer concentration.  

The Huggins coefficient is another important characteristic parameter of the polymer solution. 

The value of this coefficient indicates how well the polymer is dissolved in the solvent, 

regarding the interactions between polymer- polymer, polymer- solvent and solvent- solvent 

in a shear flow (Sorbie, 1991).   

The Huggins coefficient is dependent on the slope of reduced viscosity as a function of 

polymer concentration, and the relation is given through Eq. 2.13 in section 2.2.3: 

   

 
          

                             Eq. 2.13 

Where ηsp, c, η and KH are the specific viscosity (dimensionless unit), the polymer 

concentration [g/cm
3
], the viscosity of the solution [Pa s] and the Huggins coefficient 

respectably. 
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The critical overlap concentration, C
*
, can then be estimated through calculations using Eq. 

2.14 and Eq. 2.15 in section 2.2.3: 

   
   

    
                            Eq. 2.14     

   
 

    
                            Eq. 2.15 

Where C
*
 is the critical overlap concentration for a given polymer solution and [η]0 is 

estimated intrinsic viscosity at zero- polymer concentration (Sorbie, 1991). 

 

 

Observations:  

It was not possible to use this extrapolation technique to estimate the intrinsic viscosity of the 

associating polymers, since irregular viscosity measurements were detected. This resulted in a 

negative slope in the diluted concentration range (appendix section A.3). This technique was 

only possible to utilize for HPAM solutions dissolved in low salinity brine.  

A graphic approach was utilized to estimate the intrinsic viscosity of the associating solutions. 

It seems like the behavior of associating polymers deviates from HPAM without any 

associating groups, and the viscosity may be dominated by random clusters of 

macromolecules.   

 

In figure 4.2 the reduced viscosity as a function of polymer concentrations in the diluted 

region is shown. The shear viscosity measurements at reference shear rate of 100 (1/s) was 

measured at 22 ± 0.1
o
C. The intrinsic viscosity of associating polymer solutions was 

estimated from the plot by making an averaging line of the measured reduced viscosities at 

polymer concentrations of 50ppm, 100ppm, 150ppm and 200ppm. This line was extrapolated 

to zero- polymer concentration. In the diluted concentration range of D118, only polymer 

concentrations of 100ppm and 200ppm were carried out.  
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Figure 4.2 The linear relationship between reduced viscosity and polymer concentration 

for all polymers dissolved in low salinity brine in the diluted concentration range at 22 ± 

0.1
o
C.  

 In figure 4.2, the linear relationship between the reduced viscosity and polymer concentration 

of HPAM and associating polymer solutions in low salinity brine is presented. HPAM follows 

the linear increasing trend as the polymer concentration increases, and the through the 

equation of the trend line (blue equation) the intrinsic viscosity, Huggins coefficient and 

critical overlap concentration can be estimated. For the associating polymer solutions, the 

intrinsic viscosity is estimated through an averaging line between the measured reduced 

viscosities that extrapolates to zero- polymer concentration. 

The estimated properties of HPAM, are compared to the experimental study carried out by 

Nordli in 2010 (Nordli, 2010)  and Lunestad in 2011 (Lunestad, 2011) at CIPR. The same 

HPAM polymer was utilize at 22
o
C in their experimental master study. The properties and 

salinity of the low salinity brine was also the same, with a 0.5 wt% of NaCl.  

In table 4.1 the intrinsic viscosity, Huggins coefficient and C
*
 is presented for all the polymer 

solutions dissolved in low salinity brine. In addition the estimated properties of Nordli 

(Nordli, 2010) and Lunestad (Lunestad, 2011) are also presented to compare these results to 

HPAM.  
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Table 4.2 Estimated properties of polymer solutions in low salinity brine at 22 ± 0.1
o
C; 

intrinsic viscosity, Huggins coefficient and critical overlap concentration. 

Polymer type Salinity 

of brine 

Intrinsic 

viscosity 

      

[1/ppm] 

Huggins 

coefficient, 

KH 

[- ] 

Critical overlap 

concentration, C
*
 [ppm] 

C
*
=1/        

[ppm] 

C
*
=0,7/        

[ppm]  

HPAM Low 0.0027 1.37 376 263 

Nordli, 

FP3630 

Low 0.0056 0.06 179 125 

Lunestad, 

FP3630 

Low 0.0056 0.08 179 125 

C319 Low 0.0029 - 344 241 

D118 Low 0.0030 - 333 233 

B192 Low 0.0020 - 501 351 

 

Comparing the estimated properties of HPAM to Nordli and Lunestad, some differences are 

observed. The calculated Huggins coefficient and C
*
 using viscosities measured at reference 

shear rate of 100 (1/s) at 22 ± 0.1
o
C, a doubling of the calculated Huggins value is observed.  

The slope in the linear expression of the trend line of HPAM was observed to be much lower 

in this study. Both, Nordli and Lunestad, have used polymer concentrations up to 1500ppm 

which is not in the diluted concentration range of HPAM. Using only diluted polymer 

solutions below 200ppm, improves the credibility of the estimation of intrinsic viscosity 

carried out during this study. 

The calculated Huggins coefficient is above unity for HPAM in this study, and this indicates 

that the macromolecules are in a poor solvent due to dominating attractive interactions 

between dispersed macromolecules (Chauveteau, 1986). A good solvent has a Huggins 

coefficient of 0.4 ± 0.1, in such solvents there exist no specific hydrodynamic attractive or 

repulsive interactions that dominate (Volpert et al., 1998).   

Comparing the estimated properties of HPAM to Nordli and Lunestad; their values are much 

lower. The difference is related to the chosen polymer concentration range used to estimate 

the intrinsic viscosity. The intrinsic viscosity of HPAM seems to be relatively too low 
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regarding the effect of salinity on polyelectrolytes. Even though the estimation procedure in 

this study is different from Nordli and Lunestad, the low intrinsic viscosity gives in turn a low 

Huggins coefficient. Since the salinity in the solvent is so small, an equal balance between the 

attractive and repulsive hydrodynamic interactions of the macromolecules in the solution was 

expected. An intermediate value of the intrinsic viscosity from Nordli and Lunestad to this 

estimated value intrinsic viscosity from this study will probably be a more realistic value 

(        [1/ppm]). 

The concentration where the polymer chains in the diluted polymer solution starts to overlap, 

C
*
, a very high critical overlap concentration is estimated for HPAM in this study. These 

concentrations are high as a consequence of the low estimated intrinsic viscosity. A doubling 

in the concentration is observed in the experimental master study of Nordli (Nordli, 2010) and 

Lunestad (Lunestad, 2011).   

 

Comparing the associating polymer solutions in low salinity brine, the estimated intrinsic 

viscosity of the solution was approximately the same for C319 and D118. Even though these 

two polymers have equal chemical properties, the increasing degree of hydrophobicity in the 

diluted concentration range seems to not affect the hydrodynamic volume of the 

macromolecules in this solvent significantly.  

The expected observation was a lower intrinsic viscosity of D118 relative to C319, due 

increasing amount of intramolecular hydrophobic interactions, which reduces the 

hydrodynamic volume of the macromolecules in low salinity brine.  A similar odd 

observation was also observed by Dupuis et al. (Dupuis et al., 2011a). They concluded that 

significant changes in the intrinsic viscosities were related to the amount of incorporated 

hydrophobic groups in the diluted concentration range. Relating this observation to this study, 

it seems like the relative amount of hydrophobic groups on D118 which is known to be twice 

as much as C319, is not that different. The actual amount of incorporated hydrophobic groups 

on the hydrophilic chain in mol% is not notified by the producer (SNF Floerger). Dupuis et al. 

observed that a given amount of hydrophobic groups are needed to induce significant amounts 

of intrachain bonds. It seems like from this observation that the relative amount of 

hydrophobic units in mol% of the polymer molecule is not that different on C319 to D118.        
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The intrinsic viscosity of B192 in the diluted concentration range corresponds well with 

earlier observations. Increasing degree of hydrophobicity will significantly reduce the 

hydrodynamic volume of the macromolecules in low salinity brine.  

The critical overlap concentrations estimated for C319 and D118 are approximately the same 

due to the estimated intrinsic viscosity. Compared to HPAM, the expected critical overlap 

concentrations with increasing hydrophobicity should be higher due to hydrophobic 

intramolecular associations (McCormic and Johnson, 1988).  From the estimated C
*
 of C319 

and D118, this corresponds well with the estimated critical overlap concentrations of HPAM 

carried out by Nordli (Nordli, 2010) and Lunestad (Lunestad, 2011). An averaging value of 

the critical overlap concentration between 200 to 300 ppm for the estimated concentration 

carried out in this study to Nordli and Lunestad, corresponds well with increasing degree of  

hydrophobicity.  

The critical overlap concentration of B192 is much higher than the others due to the low 

intrinsic viscosity. This corresponds well with experimental studies of associating polymers 

(Dupuis et al., 2011a, Kujawa et al., 2004), where associating polymer  with high 

hydrophobicity  (192) is observed to have strong  intramolecular hydrophobic interactions. 

The solubility in a polar solvent like this low salinity brine, reduces as the degree of 

hydrophobicity increases. And an estimated Huggins coefficient would most likely be highest 

for B192 in this study.    

 

 

Conclusions:  

It was observed that for associating polymer solution in low salinity brine, the extrapolation 

technique of intrinsic viscosity through the linear relation given in Eq. 2.13, was not adequate 

due to negative slope. In low concentrated associating polymer solutions, some irregularities 

are observed in the measured viscosities compared to HPAM. It seems like some kind of 

association occurs, it might by random formation of clusters that differs from the behavior of 

HPAM.  

The estimated intrinsic viscosity of HPAM in this study was carried out using the linear 

relation between intrinsic viscosity, Huggins coefficient and polymer concentration (Eq. 
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2.13). Comparing this estimated intrinsic viscosity of HPAM to the estimated value carried 

out during the experimental master study of Nordli (Nordli, 2010) and Lunestad (Lunestad, 

2011), it is relative lower. The observed difference was due to different concentration ranges 

was utilized. The credibility of the intrinsic viscosity estimated in this study is higher, since 

the linear relation through Eq. 2.13 is only valid below critical overlap concentration (C
*
). 

Estimation of the critical overlap concentration before utilizing this extrapolation technique 

may provide an even better credibility of the estimated intrinsic viscosity, since the diluted 

concentration range will be more defined. 

Using an average intrinsic viscosity of HPAM, the estimated viscosity in this study compared 

to Nordli and Lunestad, a reduction in the intrinsic viscosity is observed with increasing 

hydrophobicity. The estimated intrinsic viscosities of C319 and D118 are not that different as 

expected. Since only the relative amount of hydrophobicity is known, the actual amount of 

hydrophobic groups in mol% of the macromolecule may be too low to create significant 

number of intermolecular hydrophobic bonds. The estimated intrinsic viscosity of B192 

follow the expected tend.  

The critical overlap concentration is found to be increased with increasing hydrophobicity, 

since increasing amount of intramolecular hydrophobic associations reduces the 

hydrodynamic volume of the polymer. A higher polymer concentration is needed to initiate 

overlapping chains in the solution.  
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4.1.3 Shear viscosity as a function of polymer concentration 

In section 2.1.4 about associating polymers figure 2.15 illustrates how shear viscosity of 

HPAM compared to associating polymer solutions, are expected to behave when the polymer 

concentration increases.  

 

Figure 2.15 Viscosity build up due to increasing polymer concentration. Expected increase 

of HPAM is shown as a back line, and an expected viscosity increase of associating polymer 

as red line. 

The increase in figure 2.15 show an improved viscosity change at higher polymer 

concentrations of associating polymers compared to HPAM. The numbers 1, 2 and 3 

corresponds to the characteristic concentration ranges with distinctive physical and chemical 

interactions occurring.   

 

A graphic approach to determine the critical overlap concentration (C
*
) and the critical 

aggregation concentrations (CAC) was carried out. Due to unstable shear viscosity 

measurements at low concentrations and at concentrations around CAC of associating 

polymers, this determination procedure was quite difficult and no clear differences in these 

concentrations was observed due to salinity changes. In appendix section A.4 the graphic 

approach on C319 and D118 in low salinity is illustrated, and the result of the C
*
 and CAC of 

the polymer solutions in low and high salinity brines are presented.  
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Observations:  

 

In figure 4.3, the shear viscosities of polymers measured at a given reference shear rate in low 

and high salinity brine is given as a function of polymer concentration. For polymer 

concentrations from 25ppm to 200ppm, a reference shear rate of 100 (1/s) was utilized to 

estimate the shear viscosity of the solution. Polymer concentrations above 200ppm and up to 

5000ppm, a reference shear rate of 10 (1/s) was utilized. The specific concentration range for 

each polymer is listed in table 3.5 in section 3.2.2.    

 

Figure 4.3 Relationship between shear viscosity and polymer concentrations in low (solid 

curves) and high (dotted curves) salinity brines at 22 ± 0.1
o
C.  

In figure 4.3, the double logarithmic plot of shear viscosity as a function of polymer 

concentration is shown. From figure 2.15, the expected increasing viscosity behavior of 
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HPAM and associating polymer is similar until a given polymer concentration, where the 

viscosities of associating polymers increases even more.  

In figure 4.3, the three different concentration regions were estimated. The back dotted lines 

have the intension simplify the effect of hydrophobicity and salinity effects.  The first dotted 

line at polymer concentration of 200ppm is an illustrating border between diluted 

concentration range and semi- diluted concentration range. The second dotted line at higher 

polymer concentration (above 1000ppm) is illustrates the border between the semi- diluted 

and the concentrated concentration range. These border lines are in reality more diffuse 

(Dupuis et al., 2009).  

Below the first border line in the diluted concentration range, the viscosities measured at these 

concentrations seems to decrease with increasing degree of hydrophobicity 

(HPAM>C319>D118>B192).  This observations corresponds well with earlier experimental 

studies (Wever et al., 2011), that below the critical overlap concentration (C
*
) where the 

macromolecules are untangled, the dominating interactions occurring in associating polymer 

solutions is intramolecular hydrophobic interactions. Increasing hydrophobicity in untangled 

polymer solutions, the hydrodynamic volume of the macromolecules will decrease 

(Reichenbach-Klinke et al., 2011). The sensitivity to salinity in untangled polymer solutions 

seems to reduce the viscosities (Wever et al., 2011).  

Between the two dotted lines, the polymer concentration range is referred to as the semi- 

diluted concentration range. These border lines are just an illustration where the different 

concentration ranges may exists, due to the increasing viscosities measured at different 

concentrations. This intermediate concentration range includes both untangled polymer 

solutions at the lower polymer concentration end, and entangled polymer solutions at higher 

polymer concentrations. Common to such polymer solutions is that the macromolecules are 

all affected by each other in the solution, as the concentration increases the chains will start to 

overlap (Dupuis et al., 2009). The steepest slope on the curve, or the highest viscosity build- 

up as the concentration increases, is observed to be HPAM in low salinity brine. The 

steepness of the curve decreases with increasing degree of hydrophobicity in low salinity 

brine (HPAM>C319>D118>B192). At the end of the semi- diluted concentration range, the 

steepness of the curves of D118 and B192 increases more rapid compared to HPAM and 

C319. At this end of the semi- diluted concentration range, between 600ppm to 2000ppm, the 
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critical aggregation concentration (CAC) is expected to be found due to the rapid viscosity 

increases observed in low salinity brines.  

 

Some variations in the shear viscosities of the associating polymer solutions are observed in 

both brines in the semi- diluted concentration rang.  Compared to HPAM without any 

associating groups, the shear viscosities at increasing polymer concentrations seem more 

stable. This variation may be due to random formation of clusters, which results in irregular 

viscosity increase with polymer concentration. 

As the salinity increases, the viscosities of associating polymers seems to still be lower than 

the viscosity measured in low salinity brine at the beginning of the semi- diluted 

concentration range. Around 600ppm, some changes in the viscosities are observed for C319 

and B192 in high salinity brine. A more rapid increase is observed for B192. The viscosity 

development due to increasing polymer concentration is still relative low for D118 in high 

salinity brine. A change in the dominance of the intramolecular hydrophobic associations in 

untangled solutions to intermolecular hydrophobic associations in entangled solutions is 

expected at the end of this concentration range (Wever et al., 2011).  So the observations of 

viscosity increase in C319 and B192 corresponds well with these expectations of typical 

associating behavior as concentration increases. 

In the concentrated range (above the second dotted line), the macromolecules are expected to 

physically interact due to overlapping chains and intermolecular hydrophobic associations 

(McCormic and Johnson, 1988, Regalado et al., 1999). Comparing the steepness in the curves 

at polymer concentration of 5000ppm solutions in low salinity brine where a formation of 

network of associating polymers seems to most likely have occurred, the steepest curve is 

observed for B192. The steepness in low salinity brine increased with increasing degree of 

hydrophobicity in this concentration range (HPAM<C319<D118<B192). At a given polymer 

concentration at the end of semi- diluted concentration range or at the beginning of the 

concentrated range, a change in the hydrophobic interactions occurred. It seems like the 

critical aggregation concentration (CAC) most likely is between 600ppm to 2000ppm, since 

the rapid viscosity build up starts in this region.  

Increasing the salinity of the brine the steepest curves of the polymer solutions are even 

steeper than in low salinity brine. At the end of the concentrated range at polymer 
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concentration of 5000ppm, which most likely seems to above CAC, the same trend as in low 

salinity brine is observed regarding thickening ability and degree of hydrophobicity 

(HPAM<C319<D118<B192). The viscosities are now significantly higher for associating 

polymers in high salinity brine, compared to the viscosities in low salinity brine.  

 

Conclusions:  

A graphic approach to estimate C
*
 and CAC was difficult due to irregularities in viscosities. 

Estimation attempts in the low and the high salinity brines are illustrated in appendix section 

A.4.   

At low polymer concentrations, the viscosities of polymer solutions decrease with increasing 

hydrophobicity (HPAM>C319>D118>B192). The viscosity of the associating solutions 

decreases even more as the salinity of the brine increases. This range is defined as the diluted 

concentration range.  

In the semi- diluted concentration range, between the two dotted lines a transition from 

untangled to entangled solutions is observed. Entangled solutions are observed at high 

concentrations where the steepness of the curve (thickening ability) increases. In low salinity 

brine, this transition effect from dominating intramolecular to intermolecular hydrophobic 

association is observed for D118 and B192. Whereas in high salinity brine, the viscosities 

seem to be still lower than in low salinity brine, the transition is observed for B192 and C319.  

Above the highest dotted line at 5000ppm concentration, the rapid gel formation is compared 

for the polymer solutions in low and high salinity brine. The thickening ability is greatly 

improved in at these polymer concentrations, which indicates that the given association 

concentration, CAC is reached. Above the critical associating concentration (CAC) a network 

of polymers are formed due to physical chain overlap in addition to intermolecular 

hydrophobic interactions. The steepness of the curves seems to represents the thickening 

ability, and the steepness increases with decreasing degree of hydrophobicity in low salinity 

brine (HPAM<C319<D118<B192). In high salinity brine the trend is the same, but the 

thickening ability is observed to be even more pronounced than in low salinity brine.  
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The thickening ability above CAC and the low salinity effect on the hydrodynamic volume 

makes the associating polymers very interesting to polymer flood, and injectivity and/or 

production modifications. Form these observations, a small amount of hydrophobic groups 

incorporated onto the polyacrylamide backbone of HPAM seems to stabilize the 

macromolecule when increasing the salinity of the brine. Instead of precipitation and viscosity 

loss as observed for HPAM dissolved in high salinity brines, a small hydrophobicity increase 

is observed to greatly improve the thickening ability at lower polymer concentrations 

(HPAM<C319<D118<B192).  

Above the critical aggregation concentration (CAC), gel- like solutions is formed. Increase of 

salinity of in the brine, seems to increase the viscosities even further for associating polymers. 

The rapid thickening ability due to formation of associating network that creates gel- like 

solutions, may be quite favorable as a near well diversion technique. Since a lower polymer 

concentration is observed to be needed to reach a given gel- like solution.       
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4.2  Viscoelastic measurements 

In this study the linear viscoelastic Maxwell model (Sochi, 2010) was chosen to estimate the 

viscoelastic behavior of the polymer solutions above critical overlap concentration (C
*
) at 22 

± 0.1
o
C.  

 

From the background of viscoelasticity given in section 2.2.4, the dominance of the storage 

and loss modulus is evaluated from amplitude sweep. The dominant modulus of polymeric 

gels (highly viscous polymer solutions) is the storage modulus, and hence the linear 

viscoelastic (LVE) range is detected. The characteristic relaxation time, known as the yield 

point of the polymer solution is estimated at the end of the LVE- range.  

 

After the linear viscoelastic region of polymeric gels is defined, a frequency sweep is carried 

out for these solutions. In the frequency sweep the crossover point of the storage and loss 

moduli is estimated, and this point is known as the gel- point of polymeric gels. From the 

frequency sweep the phase shift angle between the loss modulus and the complex shear 

modulus are recorded to illustrate the elastic and viscous dominated behavior of the solution 

under different deformations.  

 

4.2.1 Yield point 

The yield point of a polymer solution with dominating intermolecular hydrophobic 

interactions is defined as the maximum deformation stress before the structure of the solution 

starts to deform and split up to several units.    

 

Through an amplitude sweep where the storage (  ) and loss (   ) moduli is given as a 

function of shear stress ( ), the yield point are estimated at the end of linear viscoelastic 

(LVE) range on the dominating modulus. Since the yield point is defined for entangled 

polymer solutions, due to the dominance of intermolecular hydrophobic interactions, the 

dominating modulus of such polymeric gels are storage modulus (damping factor tan  < 1) 

(Anton Paar, 2008).  A graphic approach illustrated in figure 4.4, is utilized to estimate the 

yield point of polymeric solutions.  
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Figure 4.4 Illustration of the graphic approach to estimate yield point of a polymer 

solution through amplitude sweep.  

 

The yield point of a gel- like polymer solution presented with a given shear stress and storage 

modulus value, as shown in figure 4.4. The shear stress at yield point (  ,) of a polymer 

solution is the maximum deformation stress that can be exposed to polymer molecules before 

the network of associating polymers starts to deform and split up. The storage modulus at the 

yield point (  
 .), represent the strength of the intermolecular interactions holding the network 

structure for polymers together in the entangled solution. Below the critical shear stress at 

yield point, the concentrated polymer solutions act as solids since the storage modulus 

dominates over the loss modulus. The gel- like solution absorbs the deformation energy, 

without flowing (TA Instruments, 2004). Once the deformation stress becomes stronger than 

the interactions holding the associating network together, the associating bond starts to break. 

Above this threshold stress, the polymer solution will initiate flow.  

 

For typical Maxwellian fluids, an increase in the shear stress above the yield point value, a 

declining response on the storage modulus curve is shown. This deformation  is due to the 

transition from gel- like polymer behavior to a more liquid- like flow behavior above 

threshold shear stress.  
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In this study, the amplitude sweep was only carried out for polymer concentrations from 

600ppm to 5000ppm. Due to limitations on the rheometer regarding viscoelasticity in diluted 

solutions, polymer concentrations below 600ppm was not performed.  

The amplitude sweeps of C319 in low and high salinity brine are presented in figure 4.5 and 

figure 4.6, and the rest of the amplitude sweeps are presented in appendix section A.5. All the 

amplitude sweeps were carried out at room temperature of 22 ± 0,05
o
C. 

Observations:  

The amplitude sweep, storage and loss moduli as a function of shear stress of C319 in low 

salinity brine is presented in figure 4.5. 

 

 

Figure 4.5 Amplitude sweep of C319 dissolved in low salinity brine at different polymer 

concentrations at 22 ± 0.1
o
C.  
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In figure 4.5 where the storage and loss moduli are given as functions of shear stress for C319 

solutions in low salinity brine. It is observed for 3000ppm and 5000ppm solutions of C319 

that storage modulus is dominating over loss modulus, before these two moduli cross. 

Polymer concentrations below 3000ppm are viscous dominated over the defined shear stress 

interval, which indicates that this associating polymer is able to form physical gels at high 

enough concentrations. The estimated yield point of the gel solutions of C319 with 

concentrations 3000ppm and 5000ppm is observed to move to higher shear stress value as the 

concentration increases. This indicates that the intermolecular forces holding the formed 

network structure together in these entangled solutions, becomes strengthen as the polymer 

concentration increases. This observation corresponds well with expected entangled solutions 

of modified HPAM.    

The amplitude sweep, storage and loss moduli as a function of shear stress of C319 in high 

salinity brine is presented in figure 4.6. 

 

 

Figure 4.6 Amplitude sweep of C319 dissolved in high salinity brine at different polymer 

concentrations at 22 ± 0.1
o
C.  
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In figure 4.6 where the storage and loss moduli are given as functions of shear stress for C319 

solutions in high salinity brine. A gel solution behavior is only observed for 5000ppm 

solution of C319 in this high salinity brine. The storage modulus dominates over loss moduli 

until a given shear stress, where these two moduli cross. All solutions below 5000ppm show 

viscous dominating behavior over the whole shear stress interval. Increase of the ionic 

strength of the solution, seems to reduce the strength of the intermolecular interactions. Below 

the concentration of 5000ppm where the macromolecules most likely are jammed, increasing 

ionic components seems to prevent the macromolecules to form network. In these solutions 

the macromolecules may associate to clusters or isolated macromolecules. Comparing this 

effect on C319 in high salinity brine to HPAM, the viscosity effect and this gel- like behavior 

of 5000ppm solution are still efficient even with low degree of hydrophobicity.  

 

A summarization plot of the polymer solutions with dominating storage modulus as a function 

of shear stress is presented in figure 4.7. 
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Figure 4.7 Storage moduli as functions of shear stress of different gel- like 

polymer solutions at 22 ± 0.1
o
C. Polymers dissolved in low salinity brine are shown with 

solid line, whereas dissolutions in high salinity brines are shown as dotted line.  

The 3000ppm solution of C319 dissolved in low salinity brine, the storage modulus was 

dominating over loss modulus.  The storage modulus of 3000ppm was not presented in 

summarizing figure 4.7, since the yield point value was so small compared to the other 

solutions. The estimated yield point value is not presented in table 4.3, neither. The measured 

shear stress at yield point of 3000ppm C319 dissolved in low salinity brine was 0.16 Pa, and 

the measured storage modulus at yield point was 0.38. 
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Table 4.3 Estimated yield points of gel- like polymer solutions at 22 ± 0.1
o
C.   

Polymer 

concentration 

[ppm] 

Polymer Salinity Yield point at 22 ± 0.1
o
C 

Shear stress, 

    [Pa] 

Storage modulus, 

  
  [Pa] 

5000 HPAM Low 0.89 1.49 

- - - 

C319 Low 0.94 2.81 

High 0.43 1.14 

D118 Low 1.47 4.41 

High 0.63 1.80 

B192 Low  0.63 1.80 

High 4.71 2.65 

 

The yield point indicates the strength of the intermolecular interactions holding the gel 

network together in entangled polymer solutions, and how the deformation process of this gel 

structure degenerate with increasing shear stress above this threshold value. 

Comparing the yield point of HPAM, the shear stability and strength of the intermolecular 

interactions are observed to be increase with increasing amount of associating groups in low 

salinity brine (HPAM<C319<D118). The intermolecular hydrophobic interactions seem to 

reinforce the strength with increasing degree of hydrophobicity. These observations 

correspond well with earlier viscoelasticity studies carried out on associating polymers 

(Kujawa et al., 2006). A higher deformation stress is needed to initiate flow of these 

associating polymer solutions compared to the gel solution of HPAM without any 

hydrophobic group.  

The yield point in low salinity brine of B192 compared to the HPAM based polymers, a lower 

shear stress is observed. This may be due a different composition of the gel structure. From 

the observed loss of shear stress at yield point of B192, in spite of the relative strong 

interactions that is observed; it seems like the solution of B192 consist of associating clusters 

that hydrophobically interact with each other and form a network. This network seems to be 

easier to deform than the network in HPAM based polymers, where isolated macromolecules 

or smaller clusters are associated together to form the gel structure.  

The shear stress at yield point of D118 is observed to be higher than for C319 dissolved in 

high salinity brine. This seems to indicate that the higher amount of hydrophobic groups in 

D118 reinforces the intermolecular hydrophobic interactions in the gel structure. Comparing 

this salinity effect to the viscoelastic study of multisticker associating polymers carried out in 
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2006 by Kujawa et. al (Kujawa et al., 2006), they found that increasing salinity of the solution 

give a less pronounced effect on the yield point. These observations do not correspond with 

the observed salinity effect in this study. The increasing salinity of the brine has a pronounced 

effect in the strength of interactions in these associating solutions. The strength of the 

interactions in the gel structure becomes lower due to increasing amount of ionic components 

in the solvent.   

The salinity effect seems to have a dramatic effect on the yield point for B192. The 

interactions in this gel solution are observed to be much stronger at high salinity, and the 

shear stability is also much higher compared to dissolution in the low salinity brine. This may 

be related to the relative high degree of hydrophobicity and low degree of hydrolysis. The 

hydrophobic groups reinforces the strength of the network of macromolecules for B192, and 

so does the relatively lower electrostatic repulsion of B192 compared to D118 and C319. The 

electrostatic repulsion of B192 becomes lower with increasing salinity of the solvent. This 

seems to induce a lower salinity sensitivity of B192, compared to C319 and D118 with higher 

degree of hydrolysis.   

 

From figure 4.7 the storage modulus curves start to deform after yield point. The decreasing 

deformation curve represents the decomposition of the intermolecular interactions holding the 

associating network together. The slope on the deformation curve is observed to be less steep 

for D118 and B192 in high salinity brine. The reason may be that during deformation of these 

gel structures, where the intermolecular hydrophobic interactions starts to break, the outcome 

of the deformed gel network are different from the others. Deformation of D118 and B192 

seems to results in associating clusters instead of isolated macromolecules or smaller clusters 

in the solutions. These clusters will have higher viscosity and elasticity in the solution, 

compared to a deformed polymer solutions into isolated macromolecules molecules (Kujawa 

et al., 2006).   

 

Conclusions: 

In low salinity brine the strength of the gel network and the shear stress at yield point 

increased by increasing degree of hydrophobicity for the polymers HPAM < C319 < D118. A 

lower shear stress at yield point was found for B192 in low salinity brine compared to HPAM. 
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The low yield point may be due to a different gel structure that is easier to deform compared 

to HPAM in the low salinity brine.  

In high salinity brine, the strength of the gel structure seems to increase with increasing 

amount of associating groups (C319< D118). For B192 in high salinity brine the strength of 

the interactions observed to be increased. It seems like the relative high degree of 

hydrophobicity strengthens the interactions in the network and low degree of hydrolysis 

makes B192 less affected to increasing salinity of the brine.   

From the shear viscosity measurements an increase of the degree of hydrophobicity seems 

induce higher shear stress stability, due to reinforcement of the intermolecular associations 

between the hydrophobic groups in the gel network of polymers. Relating the shear viscosity 

measurement of gel solution of D118 (5000ppm) to the viscoelasticity measurements in low 

and high salinity brines, some interesting observations was observed. The shear viscosity and 

the effect on shear stress stability of D118 in low and high salinity brine was observed to be 

similar. From the viscoelastic measurements the strength of the gel structure of D118 in the 

high salinity brine seems to be higher than in the low salinity brine. This seems to result in a 

different deformation behavior above yield point. In high salinity the network seems to 

deform to associating clusters with high elasticity and viscosity, compared to the deformation 

process in low salinity brine where the network seems to deform to isolated macromolecules.   
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4.2.2 Gel point  

After defining the polymers linear viscoelastic region by amplitude sweep, the molecular 

structure of the polymer can be further characterized using a frequency sweep. In a frequency 

sweep of polymer solutions the storage modulus, the loss modulus and the complex shear 

viscosity are given as functions of the angular frequency at constant amplitude. This 

amplitude or strain must be below the critical amplitude at yield point. The critical amplitude 

(    was set to 10% to insure that the gel- like structure due to associating network is still 

intact.  

 

From a frequency sweep more information about the interactions occurring between the 

molecules in the entangled network can be found. The most important characterizing 

parameter from the frequency sweep is the crossover point of storage and loss moduli at a 

given angular frequency. 

 

The crossover point at a given angular frequency (ωc) where               , is a 

characteristic time of the polymer gels. The crossover point is referred to as the gel point of a 

given polymer solution, and is characterized with an equal balance of viscous and elastic 

portion. This point indicates the strength of the interactions holding the gel structure 

(network) together in the entangled polymer solution.  

The gel- point of the polymer solutions in this study is estimated through a graphic approach 

from the frequency sweep, as illustrated in figure 4.8. 
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Figure 4.8 Illustration of the graphic approach to estimate gel point of a polymer 

solution through frequency sweep.  

 

The value of the angular frequency at the gel- point (  ) indicates the external stress applied 

on the polymer solution. The value of the crossover point (              ), indicates the 

strength of the interactions holding the gel structure together. 

In this study, the frequency sweep was only carried out for the polymer solutions which had a 

dominance of storage modulus in amplitude sweep. The actual polymer solutions are listed in 

table 4.3 in section 4.2.1, in addition to 3000ppm solution of C319 dissolved in low salinity 

brine. The frequency sweep of 5000ppm solution of C319 dissolved in low and high salinity 

brines are presented in figure 4.9 and figure 4.10, and the rest of the frequency sweeps are 

presented in appendix section A.5. All frequency sweeps were carried out at room temperature 

of 22 ± 0.1
o
C.  
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From the linear plateau of the complex viscosity curves in the frequency sweep, the zero- 

shear viscosity      can be extrapolate to zero angular frequency according to Eq. 2.23 in 

section 2.2.4. It was not possible to extrapolate down to zero angular frequencies due to 

measurement limitations of the rheometer at low angular frequencies. The linear plateau of 

the complex viscosity curves are presented in appendix section A.6. 

Observations:  

The frequency sweep where the storage modulus, loss modulus and complex shear viscosity 

given as functions of angular frequency of 5000ppm solution of C319 the in low salinity 

brine, is presented in figure 4.9. 

 

 

Figure 4.9 Frequency sweep of 5000ppm solution of C319 the in low (solid line) salinity 

brine measured at 22 ± 0.1
o
C.  

The frequency sweep where the storage modulus, loss modulus and complex shear viscosity 

given as functions of angular frequency of 5000ppm solution of C319 in high salinity brine, is 

presented in figure 4.10. 
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Figure 4.10 Frequency sweep of 5000ppm solution of C319 the in high (dotted line) 

salinity brine measured at 22 ± 0.1
o
C.  

The estimated gel point value of the 5000ppm solution is presented in table 4.4. The estimated 

gel point of 3000ppm solution of C319 is too low to be presented in table 4.4. The measured 

angular frequency at gel point of 3000ppm C319 dissolved in the low salinity brine was 16 

(1/s), and the measured moduli value at gel point was 0.45 Pa.  

The gel point of the entangled polymer solution can also be found through the damping factor 

(tan  ) as a function of angular frequency. As described in section 2.2.4, the damping factor at 

gel point (               is equal to unity (tan  = 1). This plot is presented in appendix 

section A.5. 
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Table 4.4 The gel- point estimated for the different polymer solutions in both brines at 22 

± 0.1
o
C. 

Polymer 

concentration 

[ppm] 

Polymer Salinity Gel point at 22 ± 0.1
o
C 

Angular 

frequency,    

[1/s] 

Crossover value of 

moduli,         
       

[Pa] 

5000 HPAM Low 140 1.90 

- - - 

C319 Low 73.0 2.38 

High 32.0 1.50 

D118 Low 94.0 5.40 

High 54.0 2.20 

B192 Low 49.0 2.40 

High 81.0 2.80 

 

The gel point of a polymer solution indicates the strength of the interactions holding the 

network together. The strength of the gel structure seems to be increasing with increasing 

amount of associating groups (HPAM<C319<D118) in low salinity brine. It seems like the 

intermolecular strength in the gel network is reinforced with increasing degree of 

hydrophobicity. 

The strength in the gel structure of B192 is observed to be stronger than HPAM, but a lower 

frequency is observed for B192 in the low salinity brine. It seems like B192 has a different 

character of the gel structure, which is highly viscous and highly elastic, and will easier 

deform compared to the structure of HPAM. The strength in the gel structure of B192 is due 

to strong hydrophobic intermolecular interactions within the associating clusters.     

The salinity effect on C319 and D118 seems to reduce the strength of the interactions in the 

gel structure, due to electrostatic repulsion of the charged segments. Increase in ionic strength 

effect the B192 solution different then C319 and D118. The intermolecular hydrophobic 

interactions seem the increase to some extend with increasing salinity of the brine. From the 

observations of yield point in section 4.2.1, this may be related to the relative high degree of 

hydrophobicity and the low degree of hydrolysis. C319 and D118 have the same polymer base 

as HPAM, they only differs in degree of hydrophobicity. Whereas B192, has a lower 

molecular weight compared to HPAM, and a much higher degree of hydrophobicity. The 

large amount of associating groups strengthen the gel structure, and the low degree of 
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hydrolysis makes B192 less effected to electrostatic screening of the charged segments 

compared to the others.   

 

Conclusions:  

In the low salinity brine the gel strength seems to increase with increasing amount of 

associating groups (HPAM<C319< D118). The interactions become stronger due to 

reinforcement of the intermolecular hydrophobic interactions. The interactions holding the gel 

structure together seems to be reduced due to electrostatic repulsion, when the salinity of the 

brine increases. 

In low salinity brine the gel structure of B192 is observed to be stronger than HPAM, even 

though a low frequency is observed for B192. This may indicate that B192 has different gel 

structure that is more viscos and elastic, and has stronger hydrophobic intermolecular 

interactions than HPAM. It seems like it is easier to deform the interactions in the network of 

associating clusters (B192), than interactions in the network of isolated macromolecules 

(HPAM). Increasing ionic strength of the brine seems to strengthen the interactions in B192. 

This may be related to the high degree of hydrophobic groups in addition to low degree of 

hydrolysis which make B192 less sensitive to electrostatic screening.   
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5. Overall conclusions 

The thickening ability of HPAM was observed to be significantly improved above CAC by 

incorporation of a small amount of associating groups. The viscosifying power seems to be 

the formation of associating gel structure in entangled chain solutions, where the 

intermolecular hydrophobic interactions is observed to be strengthen with increasing degree 

of hydrophobicity (HPAM<C319<D118<B192). Increasing ionic strength of the brine seems 

to improve the viscous properties of HPAM dramatically in entangled solutions, due to 

reinforcement of the intermolecular interactions. These observations correspond well with 

earlier observations.  

The shear viscosity response to shear stress is observed to be similar for the entangled 

solution of D118 dissolved in the low and the high salinity brine. The strength of the gel 

structure and the elastic deformation response seems to differ, due to different gel structures.   

Below C
*
, the thickening ability is observed to alter from the trend observed above CAC. This 

observation corresponds well with earlier viscosity studies carried out for associating polymer 

solutions. The observed viscosity of the untangled solutions seems to be reduced with 

increasing degree of hydrophobicity (HPAM>C319>D118>B192). This seems to be due to 

the dominance of intramolecular hydrophobic interaction between the associating groups 

within macromolecules. Increasing ionic strength of the brine seems to enhance the 

intramolecular associations further.  

The strength of the associating gel structure above CAC was detected from the yield- and the 

gel point for viscoelastic solutions. The observed trend is that the strength of the 

intermolecular hydrophobic interactions increases with increasing amount of associating 

groups in low salinity brine (HPAM<C319<D118). For B192 the strength of the structure was 

observed to be higher than HPAM, but the shear stability was lower. It seems like the gel 

structure of B192 may be different and easier to deform due to different configurations. 

Increasing ionic strength is observed to reduce the strength of the hydrophobic interactions in 

C319 and D118, due to electrostatic screening. For B192, a salinity increase is observed to 

increase the intermolecular hydrophobic interactions in the gel structure. This may be related 

to the relative high degree of hydrophobicity and low degree of hydrolysis, which makes 

B192 less affected by electrostatic effects.  
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6. Further work 

A continuation of this experimental study is to see the thickening ability, shear stress stability 

and elastic deformation response of a hydrophobic modified HPAM in high salinity brine, 

when increasing the relative amount of hydrophobic groups on the hydrophilic chain more 

than twice as much (D118). The intention of this work is to observe the thickening and 

stability limitations of associating polymers, since the solubility in the brine decreases with 

increasing degree of hydrophobicity. 

Dissolve the studied associating polymers in synthetic sea water (SSW) and increasing the 

environmental temperature up to a reservoir temperature may also be interesting. The purpose 

of this study is to see how much thickening ability, shear stress stability and elastic 

deformation response are affected. Dissolution of the associating polymers in this brine and at 

this temperature provides a more realistic effect when considering a future offshore 

application, like on the Norwegian continental shelf (NCS).  

Detecting the critical overlap concentration (C
*
) and the critical association concentration 

(CAC) of the associating polymer solutions in SSW, is important to predict the characteristic 

flow behavior of a given polymer solution. To estimate the C
*
, several polymer solutions in 

the concentration range from 200ppm to 600ppm has to be made. In the case of estimating 

CAC, several polymer solutions have to be made between 600ppm to 2000ppm. Through a 

graphic approach carried out during this study, these broad concentration ranges were found.    

Another approach to interpret these experimental data is to improve the knowledge about the 

chemical composition and structure of the macromolecule. These findings may provide 

necessary information to understand the physical and chemical interactions occurring in 

associating polymer solutions. This might help to understand the formation of foam during 

filtration and precipitation of polymers during pH adjustments in high salinity brine.   

A further investigation of the adsorption ability of associating polymer solution can be 

interesting when considering polymer floods and injectivity and/ or production modifications. 

This can be carried out by core flood under reservoir conditions.  

A change in the preparation method of associating polymers in high salinity brines to a more 

gradual salinity increase in the polymer solution. A change in the preparation procedure is the 
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most uncertain parameter during this study, and a different salinity increase of the solution 

may provide a better solubility.  
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Appendix 

A.1 Uncertainties 

In following tables uncertainties are considered during preparation of polymer solution and 

salty brines, and during rheology measurements on the rheometer. The frequency of the 

uncertainty, the importance and preventive actions are considered.   

Table A.1.2 Uncertainties considered during preparation of solutions. 

Area of 

interest 

Type  Uncertainty Frequency Importance Preventive 

actions 

Weighing 

scales 

AB 204-S, 

fine 

± 0.0001g Always Low  

PB 3002S, 

medium 

± 0.01g Always Low  

SG 

16001g, 

coarse 

± 0.1g Always Low  

pH meters Hach- 

Lange and  

twinpH B-

212  

  

±0.1pH Always Low  

Equipment All Pollution Rare Low- 

medium 

Cleansing with 

distilled water 

Degradation - Temperature Rare Low Storage in 

temperature 

regulated room 

Mechanical Medium Low Regulated 

stirring speed 

after type of 

polymer and 

concentration 

Air Rare Low All solution was 

stored with 

sealing parafilm 

around the cork 

Chemicals -  Section 3.1  Always Low  
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Table A.1.2 Uncertainties during measurements shear viscosity and viscoelastic 

measurements. 

Area of interest Uncertainty Frequency Importance Preventive 

actions 

Solutions Inhomogeneous Medium Low  

Pollution Rare Low Control of 

equipment and 

minimal 

exposure to air  

Sampled volume 

(utilizing 

different 

pipettes) 

± 2% 

(Averaging systematic 

error of volume by 

Eppendorf model 1-10mL 

with standard ep.T.I.P.S) 

Always Medium Difficult to 

sample gel- like 

polymer 

solutions (high 

viscosity) 

MCR300 

rheometer 

± 2.5% 

(Instrumental error by 

Anton Paar) 

Always Low  

Equipment Pollution Rare Low Washing 

procedure 

(soap, water, 

distilled water, 

acetone and 

pressurized air) 

Stability Rare Low Air check tests 

and PDMS tests 

Shear viscosity 

(experimental 

uncertainties) 

100 (1/s):  

± 0.01 mPa s  

10 (1/s):  

± 6.1 mPa s  

Always Low  

Storage moduli 

(experimental 

uncertainties) 

± 0.007Pa Always Low  

Loss moduli  ± 0.0001Pa Always Low  
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Flow curve of 
HPAM dissolved in low salinity brine 

5000 ppm HPAM low salinity

1000 ppm HPAM low salinity

600 ppm HPAM low salinity

(experimental 

uncertainties) 

 

Damping factor 

(experimental 

uncertainties) 

±0.003 Always Low  

Complex 

viscosity 

(experimental 

uncertainties) 

0.0001 Pa s Always Low  

  

The greatest uncertainty regarding reproducibility is the preparation procedure and sampling 

volume. The measurement uncertainties on the rheometer are relative low compare to 

inhomogeneous solutions.      

 

A.2 Flow curves (shear viscosity as a function of shear rate) 

 

 

 

 

 

 

 

 

Figure A.2.1 Shear viscosity as a function of shear rate for different polymer concentrations 

(different colors) of HPAM dissolved in low salinity brine at 22 ± 0.1
o
C. 
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Table A.2.1 Shear viscosity of HPAM solutions in low and high salinity brines at 22 ± 

0.1
o
C. Measured at reference shear rate of 10 (1/s).  

 

 

 

 

 

 

Figure A.2.2 Shear viscosity as a function of shear rate at different concentrations (different 

colors) of C319 dissolved in low (solid) and high (dotted) salinity brines at 22 ± 0.1
o
C. 

Due to limitations of the rheometer, the measured values below 10 (1/s) was eliminated for 

600ppm and 1000ppm solutions (section 3.3.2). 
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Flow curves of  
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2000ppm C319 high
salinity
1000ppm C319 high
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Polymer 

concentration  of 

HPAM [ppm] 

Shear viscosity [mPa s] 

Low salinity 

brine 

High salinity 

brine 

5000 360 - 

2000 - - 

1000 18.3 - 

600 7.88 - 
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Table A.2.2 Shear viscosity of C319 solutions in low and high salinity brines at 22 ± 0.1
o
C. 

Measured at reference shear rate of 10 (1/s).  

 

 

 

 

 

Figure A.2.3  Shear viscosity as a function of shear rate at different concentrations (different 

colors) of B192 dissolved in low (solid) and high (dotted) salinity brines at 22 ± 0.1
o
C.  

Due to limitations of the rheometer, the measured values below 10 (1/s) was eliminated for 

600ppm solutions in both brines, and 1000ppm solution in low salinity brine (section 3.3.2). 
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Shear viscosity [mPa s] 

Low salinity 

brine 

High salinity 

brine 

5000 573 192 

2000 46.6 16.1 

1000 10.9 3.86 
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Table A.2.3 Shear viscosity of C319 solutions in low and high salinity brines at 22 ± 0.1
o
C. 

Measured at reference shear rate of 10 (1/s).  

 

 

 

 

 

 

Table A.2.4 Shear viscosity of D118 solutions in low and high salinity brines at 22 ± 0.1
o
C. 

Measured at reference shear rate of 10 (1/s).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Polymer 

concentration  of 

B192 [ppm] 

Shear viscosity [mPa s] 

Low salinity 

brine 

High salinity 

brine 

5000 1310 3140 

2000 103 6.57 

1000 3.78   2.85 

600 2.52  1.42 

Polymer 

concentration  of 

D118 [ppm] 

Shear viscosity [mPa s] 

Low salinity 

brine 

High salinity 

brine 

5000 690 837 

2000 84.7 2.52 

1000 10.9 1.53 

600 3.13  1.29 
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A.3 Reduced viscosity as a function of polymer concentration 

 

Figure A.3.1 Reduced viscosity as a function of polymer concentration of all polymers 

dissolved in low salinity brine at 22 ± 0.1
o
C. 
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A.4 Shear viscosity as a function of polymer concentration 

 

Figure A.4.1. Shear viscosity as a function of polymer concentration of C319 in the low 

salinity brine at 22 ± 0.1
o
C. 

Figure A.4.2 Shear viscosity as a function of polymer concentration of D118 dissolved the in 

low salinity brine at 22 ±0.1
o
C. 
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Table A.4.1 Estimated critical overlap concentration (C
*
) and critical aggregation 

concentration (CAC) of all polymer solutions in low and high salinity brines. 

Polymer solution Salinity of brine C
* 

range [ppm] CAC range [ppm] 

C319 Low 200-300 1000-2000 

High 100-600 600-2000 

D118 Low 200-300 600-1000 

High C*=CMC  1000-2000 

B192 Low 200-300 600-1000 

High 100-600 1000-2000 

 

A.5  Amplitude sweep (storage- and loss moduli as functions of shear 

stress) 

 

 

 

 

 

 

 

 

 

Figure A.5.1 Amplitude sweep for 600, 1000 and 5000ppm solutions of HPAM in low 

salinity brine at 22 ±0.1
o
C. 
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Figure A.5.2 Amplitude sweep for 1000, 1500, 2000 and 5000ppm solutions of D118 in low 

salinity brine at 22 ±0.1
o
C. 

During amplitude sweep of D118 dissolved in the low salinity brine, measured values at low 

and high shear stress was not valid. Due to limitations of the rheometer no valid 

measurements was detected for 600ppm solution of D118.  
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Figure A.5.3 Amplitude sweep for 3000ppm and 5000ppm solution of D118 in high salinity 

brine at 22 ±0.1
o
C. 

During amplitude sweep of D118 dissolved in the high salinity brine, measured values at low 

and high shear stress was not valid. Due to limitations of the rheometer no valid 

measurements was detected for 600, 1000, 1500 and 2000ppm solution of D118.  
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Figure A.5.4 Amplitude sweep for 5000ppm solution of B192 in low salinity brine at 22 

±0.1
o
C. 

No valid measurements of 600ppm and 1000ppm solutions of B912 dissolved in the low 

salinity brine were detected during amplitude sweep, due to limitations.  
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Figure A.5.5 Amplitude sweep for 5000ppm solution of B192 in high salinity brine at 22 

±0.1
o
C. 

No valid measurements of 600, 1000 and 2000ppm solutions of B912 dissolved in the high 

salinity brine were detected during amplitude sweep, due to limitations.  

A.6  Frequency sweep (storage- and loss moduli and complex viscosity as functions of 

angular frequency) 

 

 

Figure A.6.1 Frequency sweep for 5000ppm solution of HPAM in low salinity brine at 22 

±0.1
o
C. 
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Figure A.6.2 Frequency sweep for 5000ppm solution of D118 dissolved in low (solid line) 

and high (dotted line) salinity brines at 22 ±0.1
o
C. 

 

 

Figure A.6.3 Frequency sweep for 5000ppm solution of B192 dissolved in low (solid line) 

and high (dotted line) salinity brines at 22 ±0.1
o
C.   
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Figure A.6.4 Complex viscosity as a function of angular frequency for all polymers at 22 

±0.1
o
C. Low (solid line) and high (dotted line) salinity brine.  

 

 

Figure A.6.5 Damping factor as a function of angular frequency for all polymers at 22 

±0.1
o
C. Low (solid line) and high (dotted line) salinity brine.  
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