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Preface

The goal of bioinformatics is to support science and research in the field of
biology through the application of information technology. Proteomics is a field
within biology that deals with the study of proteins.

This paper describes QALM, an application developed to automate and sim-
plify a specific type of proteomics analysis. QALM is first and foremost a proof of
concept through which certain options for implementing such automation have
been explored. Although a functional and usable application has been created,
this should primarily be considered a stepping stone for similar applications in
the future.

Currently QALM is a desktop tool for importing and exporting data, inte-
grating and communicating with external systems for the analysis of such data,
and finally generating reports to present the results. It currently runs only un-
der the Linux operating system, but it should be possible to change this fairly
easily.

The hope for the future is that an expanded version of QALM may become
a usefull tool for biologists and researchers in the field of proteomics. QALM
has the potential to aid them in producing results faster while keeping track of
large amounts of data in an effective way and simplifying statistical analyses of
that data.

This thesis would not have been possible without the valuable help and
guidance of Professor Ingvar Eidhammer, who has been the supervisor for the
project. Thanks also to PhD candidate Marianne Brattås at the Department
of Molecular Biology for providing usefull feedback and tips on the useage of R
and XCMS.

The first two chapters describe briefly the biological and scientific founda-
tions of proteomics and protein quantification in particular. Chapter 3 gives an
overview of how a specific type of statistical analysis is currently carried out,
and touches upon options for automating it. Chapter 4 discusses the main goals
of the thesis and QALM, and lays the ground for the final solution and imple-
mentation details which follow in chapters 5 and 6. Finally, chapter 7 includes
concluding remarks and some visions for the future.
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Chapter 1

Proteins and proteomics

Proteins encompass a vast and varied group of biological molecules and struc-
tures that play important roles in many chemical reactions, and are important
for the structure of cells and tissues. Although they are a large group with
many different functions, the basic structures of all proteins are the same: They
consist of one or more chains of amino acids.

1.1 Amino acids and proteins

Amino acids are a group of fairly basic biological molecules with a comon struc-
ture that differs only in the section of each molecule known as the side chain
(denoted by R, See Figure 1.1). There are 20 regularly occuring amino-acids
that function as the building blocks that make up proteins. One might think of
them as a set of rigid “links” in a chain. The various shapes, sizes and chemical
properties of each such “link” affects the form and functions of the overall chain
(the protein).

Amino acids can be joined together through a substituted amide linkage,
known as a peptide bond. The part of an amino acid that remains after this
linkage is refered to as a residue (hence the R in the figure). A chain consisting
of two or more residues is called a peptide1, while longer chains with a molecular
weight over 10,000 are refered to as proteins, although there is no clear boundary,
and the two terms may sometimes be used interchangably [NelsonCox08, p.82-
85]. Although some proteins may contain chemical components that are not
amino acids (“conjugated proteins”, which most often contain a lipid or sugar
moiety or a specific metal), amino acids are the main building blocks of all
proteins, and the targets for the analyses described in the following chapters.

The ends of a polypeptide chain are often refered to as the N-terminal and the
C-terminal, for the Amino-end (which has a Nitrogen atom) and the Carboxyl-
end (with a Carbon atom) respectively. The N-terminal is conventionaly placed
towards the left, and the C-terminal to the right, as in Figure 1.1.

1dipeptides, tripeptides, oligopeptides, and polypeptides consist of two, three, a few, or
many amino acids, respectively.

9



10 CHAPTER 1. PROTEINS AND PROTEOMICS

Figure 1.1: Two separate amino acids (left) are linked by an amide bond to
create a dipeptide and water (right).
Image: Public domain, courtesy of Wikipedia and YassineMrabet.

Source: http://en.wikipedia.org/wiki/File:AminoAcidball.svg (edited)

1.1.1 Four levels of protein structures

The structure of a protein is generally divided into a conceptual hierarchy with
four levels of complexity. The first, or primary structure, is the sequence order
of all the individual amino acids in the chain. secondary structure is defined
by certain reocuring structures, consisting of particularly stable arrangements
of amino acids redidues.

A protein may consist of one or several peptide-chains or subunits. Tertiary
structure refers to the tree-dimensional shape or folding of such a unit. If a
protein consists of more than one subunit, then the arrangement of these are
refered to as the protein’s quaternary structure.

1.1.2 Protein variants and masses

Proteins have specific peptide sequences which when known, identify them
uniquely. Nonetheless, the same protein may exist in a few different variants,
and the differences between these may affect both the function of the protein
and the process of identification.

Isotopes

The atoms in amino acids may have isotopes; nucleotides of the same chemical
element, with the same atomic number, but differing molecular masses. Isotopes
occur naturally, and occasionally cause two otherwise identical amino acids to
have slightly different masses - an effect that is carried on to the proteins.
A protein therefore, does not have a single defined mass, but rather a mass
distribution that depends on the distribution of isotopes that may affect it.

Posttranslational modifications

Posttranslational modifications are changes in the chemical structure of a pro-
tein that are caused by the cellular machinery, but that occur after the protein
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has been formed2. Such modifications play important roles, and may be nec-
cessary for a protein to function correctly. They also affect properties used to
identify proteins, including the mass. When calculating the theoretical mass for
a protein, the possibility of posttranslational modifications must therefore be
taken into account.

Calculation of the theoretical mass of a protein

The theoretical mass of a polypeptide is calculated by adding the theoretical
mass of each amino acid residue in it’s chain, and then adding the extra masses
for the N- and C-terminus. If there are posttranslational modifications, then
the effect of these must be added to the calculation subsequently.

1.2 Proteomics; Identification, characterisation and
quantification

Proteomics is the study of functions and structures of proteins, and encompasses
a wide variety of experiments and areas of research. Three typical objectives
are:

• Identification of a protein, usually acheived by identifying it’s amino
acid sequence, or by measuring other properties that destinguish it.

• Characterisation of its biophysical and/or biochemical properties

• Quantification - determining the amount in a sample as either a relative
or absolute value.

1.2.1 Protein databases
The tasks of proteomics require the use of protein databases. There are various
databases for different types of protein-related information. Sequence-databases
such as Swiss-Prot and TrEMBL3 focus on the amino acid sequences of the
proteins, while others are concerned with other properties such as possible
posttranslational modifications or other chemical modifications[Eidhammer08,
Chapter 1].

Several programs for sarching protein databases exist. This thesis uses and
focuses on the search-engine Mascot, described in section 1.3.

1.2.2 Top-down and bottom-up approaches
There are several different ways to perform experiments and analyses in pro-
teomics. Roughly speaking, the approaches may be divided into two groups:
Top-down, in which the target protein is analyzed directly, and bottom-up,
where it is first cleaved into shorter peptides, which are then analyzed individ-
ually.

2Posttranslational modifications may range from the relatively simple such as phosphory-
lation and dephosphorylation, to more complex reactions such as cleavage of the protein, for
example to remove inhibitory sequences.

3These two databases are currently being combined under the name UniProt; See
http://www.ebi.ac.uk/uniprot/
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Of these two, the latter is most frequently used, due to several factors
[Eidhammer08, Chapter 1]:

• The sensitivity of measurements is generally better for peptides than for
whole proteins.

• The mass distribution due to isotopes is more complex for larger molecules
and proteins than for short peptide-stretches.

• Posttranslational modifications have the same effect: Taking all possible
modifications for a large protein into account may be substantially more
complex than for individual peptides, where the possible modifications are
more limited.

• In proteomics, as in all experiments involving physical measurements, er-
rors and inaccuracies occur regularly. In mass spectrometry , such errors
increase with increasing mass over charge (described in section 1.2.4).

• Some proteins are too large, or have other properties (eg. hydrophobicity4)
that make it impossible to measure their mass.

1.2.3 Digestion and separation
Before any bottom-up proteomics experiment can be performed, the proteins
to be analyzed must be cleaved into peptides with lengths appropriate for such
experiments. This process is known as digestion, and is generally done by
proteases, a class of enzymes5 that cleave peptide chains at specific places.
When the function of a protease is understood, this knowledge can be used
to carry out the theoretical digestion of proteins in the database. Even so,
irregularities may occur, possibly resulting in missed cleavages. This may
make it difficult to identify the resulting peptides, as they might not match the
theoretical peptides. A solution is to take the possibility of missed cleavages into
account, for example by allowing for a small number of them when searching
for matches (see section 1.3.1).

The most commonly used protease is trypsin, which is easy to obtain and
purify, works in most experimental settings, and cleaves proteins reliably into
peptides of suitable lengths (typically 6-20 peptides long and with few missed
cleavages).

Usually, protein samples are so large and complex that digestion alone may
not simplify them to a satisfactory degree. Often, it is desirable to divide
samples into small enough parts or fractions, that there is only one single, or
a very small number of proteins in each. Several procedures for attaining such
separation exit. For separation on the protein-level (before digestion), the
most commonly used method is 2D gel electrophoresis. For peptide-separation
(when digestion has been performed before separation), the dominantly used
method in proteomics is high preassure liquid chromatography (HPLC,
or just LC).

The key to the function of LC is the characteristic retention time of in-
dividual components of a sample - the time it takes for the component to pass

4The repulsion of water (think of how oil acts when added to water).
5Enzymes are themselves, a class of proteins. They act as catalysts, helping to speed up

or carry out speficic chemical reactions [NelsonCox08, p.183-184]
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through some imobilized, porous substance[Eidhammer08, Chapter 4]: A pep-
tide sample is injected into a “mobile phase” (a liquid) which then moves
through a “stationary phase”, generally a porous solid in a column. Thorugh-
out this process, the different peptides interact with the stationary phase and
the mobile phase to varying degrees, thereby moving at different speeds and
separating from each other over time.

After LC, the various components turn up as bands in the column, or as
peaks in the resulting chromatogram - a diagram displaying the distribution
of the various components over time (see the top diagram in Figure 1.2). Since
the molecules interact with the phases on an individual level, even molecules of
the same type will tend to spread out a little. This causes a chromatogram to
contain peaks around the average retention-time of each component, instead of
a single clear column for each of them.

Depending on the type of experiment being carried out, separation may take
place either before or after digestion. In the first case, the separated components
are intact proteins; in the latter case, similar peptides from several proteins are
grouped together prior to the main experimental procedure.

After experiments, the observed experimental masses of the resulting
peptides can be compared to theoretical masses for identification. These
are masses that have been calculated through the simulation of cleavages of
candidate proteins in sequence databases.

1.2.4 The basics of mass spectrometry

Mass spectrometry is a procedure through which the mass-to-charge ratio,
(often designated m/z) of the components in a chemical sample is measured.
The physical measurement is done with an instrument known as a mass spec-
trometer. There are various types of mass spectrometers, but they are all
based on the same underlying principle: An ionization source charges the
sample by adding protons to it. This makes it possible for a detector to regis-
ter the sample later, but also adds 1 Da of mass to the molecule for each proton
that is added, a side effect that must be accounted for later, during calculation
of the result.

After ionization, the sample is transfered to the mass analyzer, which
separates the different components in it by mass-over-charge (m/z), after whichn
the components are registered by the detector, and a mass spectrum is
created.

One relatively simple instrument for carrying out mass spectrometry experi-
ments is the MALDI TOF6 [Eidhammer08, Chapter 8]. In the “MALDI” part of
the instrument, short pulses of light are used to ionize small organic molecules
(known as the “matrix”) that have been mixed with the sample containing the
peptides. The ionized organic molecules may then transfer protons to the pep-
tides. The energy from the short bursts of light also causes the mixture to
evaporate. After evaporation, the ions in the resulting gas is accelerated by an
electric field, then sent through a “drift tube” in which there is no such field.
The velocity an ion achieves depends on its mass and charge, and so is there-
for the time required to reach the detector, which is located at the end of the

6MALDI and TOF stand for Matrix Assisted Laser Desorption Ionization, and Time Of
Flight, respectively
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drift tube. This allows for the calculation of m/z-values for the ions, and the
generation of an MS-spectrum.

Information in a mass spectrum

A mass spectrum is a diagram with m/z-values along it’s horizontal axis and
intensities along it’s vertical axis. From this, the masses of components can
be calculated if their charge-states are known (a registered component will
usually have a charge state of 1, 2 or 3, by the addition of that number of
protons).

Example:

Assume there are two components, one with mass 420, and one with
mass 360. With one charge, the first will be visible as a peak at the
m/z-value:
(420 + 1) / 1 = 421

With two charges, the same component will be registered at m/z:
(420 + 2) / 2 = 211

In the same way, the second component may be registered with a
m/z-value of either 361, or 181.

�

Isotopes, described in section 1.1.2, also play a role here. The abundance of
different isotopes for different chemical elements vary, with 13C (heavy carbon)
being by far the most commonly seen in peptieds, with a natural abundance of
about 1 percent [Eidhammer09, Chapter 5]. This means that if a certain type of
peptide contains 30 carbon atoms for instance, one can expect roughly one out
of three such peptides to contain one 13C, while the rest of the carbon atoms will
be the more common 12C. A small number of peptide molecules might contain
two or more 13C. In a mass spectrum this might result in one peak for the
“regular” peptides and another, smaller peak above it for the heavier peptides.
If peptides with more than two 13C occur, an even smaller peak might be visible
above the first two.

A single such peak is refered to as a monoisotopic peak. A set of monoiso-
topic peaks (whose m/z-positions are in accordance with that expected due to
isotopes) are refered to as isotopic envelopes. Knowledge about such pat-
terns may be usefull for calculating the possible charges and masses of observed
components7.

The peaks in a monoisotopic envelope may be combined into a single peak
later (so-called deisotoping) to simplify the calculation and identification of
peptides. The term peptide imagemay be used to signify an isotopic envelope,
where the peaks are believed to originate from a single peptide. An observed

7The distances between isotopic peaks depend on their charges: If z=1, distance will be
(m/z)=1, if z=2, distance will be (m/z)= 1

2
, etc. Simultaneously, the m/z position will

be changed according to the formula: (M + z*H+)/zH+, where z represents charge, M the
original mass of the peptide, and H the additional mass due to added protons [Eidhammer08,
p.71].
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peptide therefore has at least one peptide image in each spectrum, but may
have more than one if it occurs with different charges.

In larger molecules different isotopes may occur more regularly, and molecules
containing only a single isotope will be more rare. Instruments may not always
be able to clearly identify monoisotopic peaks, so for large peptides or proteins
the average mass is often used instead of the monoisotopic mass.

Raw data and peak-lists

Mass spectrums can have one of two formats: That of the raw data, in which
the peaks are displayed as they were observed in the MS scan, or that of a
peak-list, in which the data has been processed.

A peak in a raw data spectrum will be stretched over a short range of m/z-
values and contain numerous measurements along small increments in this range.
In a peak-list, these intensities will have been combined into a single line or
column, so the total intensities of the peak are specified at a single point.

1.2.5 MS/MS analysis

PMF versus Tandem Spectrometry

Two main approaches are used in bottom-up proteomics. Peptide Mass Fin-
gerprinting (PMF), also refered to as mass profile fingerprinting or peptide
maps, is the process of comparing experimental peptide masses (from exper-
iments) to theoretical peptide masses (information from a protein database)
[Eidhammer08, Chapter 1]. If an observed protein has a corresponding protein
in the database, then for each theoretical peptide mass from the database pro-
tein, a corresponding peptide mass should be observed in the experiment. Full
coverage of the protein sequence is not achieved in practice however; the norm
is a coverage of around 20-40%. In stead, search tools do statistical calculations
to give indications of the confidence of a proposed identification.

A weakness of the PMF approach is that it will usually only determine a
single property of peptides, namely their mass. Since there may be a great
number of peptides with identical or very similar masses, determining the exact
amino acid contents of an observed peptide is difficult, and establishing the
positions and sequene of the residues may be impossible.

The alternate approach, Tandem Spectrometry or MS/MS, is distin-
guished by the fact that it involves carrying out spectrometry on two (or pos-
sibly more8) “levels” [Eidhammer08, Chapter 1]. On the first level, an MS scan
is used to select ionized peptide molecules from a certain m/z interval for fur-
ther analysis. The selected molecules (refered to as the precursors) may be
fragmented before the next level of MS scans (denoted MS/MS), in which the
m/z values of the resulting fragments are finally measured, yielding data from
which the peptide sequence may be derived.

Often the interval of selection will be small enough that only a single pre-
cursor will be selected for MS/MS at a time. Each MS scan is followed by a
number of MS/MS scans, usually between 0 and 5. Typically, the most intense

8Repeated MS-scans are possible, generating “MSn”-analyses. Procedures employing two
levels of scans are most common however, and are the focus of this thesis.
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Figure 1.2: Illustration of the process used for recording LC-MS/MS spectra. The
three highest peaks from the MS spectrum are selected for MS/MS.
Image: Original from [Eidhammer08, Chapter 8]; this is an expanded version acquired directly

from the author.

peaks from the MS scan are selected for MS/MS. This process is illustrated in
Figure 1.2.

Before either a PMF or an MS/MS analysis can be performed, the proteins
must be separated and digested. In the case of PMF, the separation into frac-
tions usually occurs before digestion. Ideally, one would like to end up with
groups of intact proteins, with all the molecules of a single protein in one and
the same fraction, but this is hard to achieve. If each fraction only contains a
small number of proteins however, they are still managable and can be used for
further analysis.

In MS/MS, the proteins are only separated after digestion, which results
in large amounts of peptides and greater complexity. It is possible to do a
separation step before the digestion, then do a second separation step on the
peptides afterwards. Such a precedure would remove a lot of complexity, but
would at the same time require a great deal extra work, as each step would have
to be repeated for each fraction from the preceeding steps. Such large amounts
of work would slow down a large analysis process and make it impractical.

Selecting peaks for MS/MS

The peaks from an MS spectrum for which MS/MS is to be performed are
usually selected automatically by a MALDI instrument, but criterias for this
selection can be set by the user. These may for instance include:

• The number of peaks to include (usually 3-8)

• The charge state (This is usually determined by the spacing between the
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isotope peaks)

• A list of specific m/z values to analyze

• A list of specific m/z values to ignore, for instance due to known contam-
inants that are likely to pe present here.

1.3 Protein identification with Mascot

Mascot is a search engine that uses data from mass spectrometry to identify
proteins by searching sequence databases. It uses several different search meth-
ods to acheive this; in the context of this thesis, the most important of these
is MS/MS Ion search, in which data from MS/MS spectra are the input data.
The goal for Mascot is to find an exact match if possible, or as close a match as
possible. Citing the Mascot website9:

If the "unknown" protein is present in the sequence database, then
the aim is to pull out that precise entry. If the sequence database does
not contain the unknown protein, then the aim is to pull out those
entries which exhibit the closest homology, often equivalent proteins
from related species.

1.3.1 Carrying out an MS/MS Ion search

Mascot can accept several different peak list formats. A list of such formats
is available from the Mascot website. In this thesis and in QALM, the format
used is the XML-based mzData, version 1.05, which will be described in chapter
6.6.1.

Several settings for a Mascot search may be specified as needed, depending
on the experiment and the peak list to be used as search input. Among other
things, a user may10:

• select which databases to search

• specify which enzyme should be used to perform the theoretical diges-
tion of the proteins (trypsin, mentioned in section 1.2.3, is typically the
default).

• specify how many missed cleavages to take into account

• select a taxonomy which limits the search, for example to proteins from
a specific species or group of species, thereby speeding up the search and
filtering out results known to be irrelevant.

• set various tolerance-values for the search

9http://www.matrixscience.com/search_intro.html
10For a web-based example of searching with Mascot, see:

http://www.matrixscience.com/cgi/search_form.pl?FORMVER=2&SEARCH=MIS
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1.3.2 Results of a search: Mascot’s raw data format
Results from Mascot searches are available in various formats, some of which
depend on what type of search is being done. A part of QALM has been
created specifically for mining the raw data format (or .dat files) resulting
from a mascot search. These are plain text files divided into several sections
that together contain all the result data from a search. The format of such files
will be described in chapter 6.6.2.



Chapter 2

Protein Quantification

Protein quantification involves studying the quantities of proteins (also known
as protein profiles) in some specified situation and under specific circumstances.
Such knowledge is essential in a number of scientific fields and may be incor-
porated into different types of projects with various goals. Most of the theory
in this chapter is taken from Protein Quantication by Mass Spectrometry - A
Compendium for the Course INF389 by Ingvar Eidhammer [Eidhammer09].

Specifying sites and circumstances

Some examples of situations where protein quantification may be applied are:

• when investigating how the changes in protein profiles depend on changing
states; for example how they change in response to various drugs or when
exposed to certain contaminants.

• when examining how protein profiles differ between corresponding sites in
individuals under different circumstances; for instance comparing results
from a sick individual to those from a healthy individual.

• when investigating how protein profiles from corresponding sites in differ-
ent species differ.

• when examining how protein profiles in a specific site varies over time.

It is important to specify precisely the sites and circumstances under which
the protein quantities are measured; for an investigation of protein quantities
to be meaningful and valid, the compared samples must be comparable in some
specified way. In addition, it is important to ensure that factors that may affect
the result are as similar as possible. Such factors may be:

• Biological, such as age, sex and weight

• Physiological, such as states of hunger or stress, etc.

• Environmental factors surounding the individuals, such as temperature
and humidity

19
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• Other things, depending on the experiment and what type of sample is
being taken.

,

2.1 Relative and absolute quantification

Relative quantification involves comparing the abundance of proteins from
two or more different samples and determining the ratios between them. This
approach is primarily used to check for differentially expressed proteins;
instances in which the abundances of one or more proteins in one or more of the
samples differ from the corresponding abundances in the rest of the samples by
a statistically significant degree. XCMS, the program that lies at the core of the
statistical component in QALM, carries out statistical calculations for pairwise
comparisons of such situations (XCMS is described in the next chapter, see
section 3.2).

Absolute quantification involves measuring the amount of a specific pro-
tein in a mixture and specifying it in absolute terms (typically in moles1). Be-
cause measuring such quantities can be significantly more complicated than
relative quantification, relative quantification is used more frequently than ab-
solute quantification [Eidhammer09, Chap.1].

2.2 Label-based and label-free quantification

There are two main procedures to choose from when carrying out quantifica-
tion projects. In label-based quantification the proteins or peptides in one
situation are labeled, or proteins or peptides in both situations are labeled but
with different labels. The samples from both situations are mixed prior to the
MS-procedure, and the labels should cause the two versions of the peptides ap-
pear as two peaks in the same MS spectra, with a distance between them that
corresponds to the weight of the label (or the difference in weight between the
two labels if both situations are labeled)2.

Stable isotopes are often used as labels, as this lets both the unlabeled
peptide and it’s labeled conterpart retain the same chemical properties, but
have differing masses. The first point here is noteworthy, as it is important
for the labels not to affect steps in the process such as the ionization or the
chromatography. Furthermore, heavy isotopes are simple; only a single label is
added to a peptide, and they do not complicate the MS/MS spectra significantly.

Ideally, the observed amount of peptide ions should mirror the relative pep-
tide amount in the combined sample (both situations). After performing the
MS, the spectrums are therefore searched for potential peak-pairs that may
represent two versions of the same peptides (heavy and light). MS/MS is there-
after performed to confirm that the pairs do originate from the same peptides,

1A mole of a substance contains aproximately 6.022 * 1023 molecules of the substance; this
is defined in such a way that the mass in grams of a mole of a substance will be equal to the
substance’s molecular mass in atomic mass units.

2This assumes the charge for each peptide is one. If there is more than one charge, then
the distances will be reduced by a factor of 1/z, as explained in a footnote under section 1.2.4
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and the relative abundances between them is found by creating extracted ion
chromatograms (XIC) (see section 2.3.2 for details).

In label-free quantification, the data for two samples are created in two
separate MS runs. A quantification project of this type may be roughly divided
into five steps:

1. Perform an LC-MS run (or an LC-MS-MS/MS run) for each sample.

2. Search for instances of common peptides - peptides that occur accross
several or all samples.

3. Estimate the abundance of each of the common peptides in each of the
samples.

4. Using MS/MS data, identify the protein origins of these common peptides.

5. Calculate the abundance of each protein accross the samples.

The first result of this process should be a table showing the observed abun-
dances of each peptide in each of the samples. This is then used to create a
similar table describing the abundances of each identified protein in each of the
samples. Note that this data must be normalized for the values from different
samples to be comparable (see section 2.2.1).

Varying peptide properties cause different peptides to be ionized to different
degrees. This means that the observed abundances (peaks) of different peptides
may not be comparable, so relative abundance can not be determined for differ-
ent peptides. Observations of the same peptides in different (but comparable3)
samples are comparable however, and can be used to determine the relative
abundance of the same peptide in different samples.

2.2.1 Normalization
In a broad sense, normalization involves removal of or accounting for possible
errors in measurements or sets of data. This is a broad field in itself which will
only be mentioned briefly here.

In LC-MS projects it is neccessary to compare results from various experi-
ments carried out on different samples. As in all physical measurements, results
may vary slighly from MS-run to MS-run, even for samples that are identi-
cal. Contaminants in the samples or instrument, slight variations in the way
samples are handled and other things may affect the observed abundances and
effect variations in the results that should be corrected for through normaliza-
tion. Normalization may be performed in several ways, among others:

• If it is assumed that the total abundance in each sample is equal and that
shifts are relatively equally distributed among them, abundances may be
transformed to: p′

i = TotQ

TotP
∗ pi, where p′

i is the result of normalizing the
observed abundance of pi, and TotQ and TotP are the total abundance in
the respective samples Q and P.

• By doing linear regression normalization if suspecting a systematic shift
that increses with the magnitude of the abundances.

3In this context, “Comparable samples” are samples that can be assumed to contain ap-
proximately the same peptides.
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2.3 Quantification projects
In broad terms, all quantification projects consist of four major steps:

1. Define the problem and plan the project (What situations are there and
what type of statistical procedures are to be performed? How many sam-
ples will there be, how should they be grouped, and how will the protein
profiles be created?)

2. Carry out the main experimental procedures.

3. Calculate the abundances of the proteins observed in each sample.

4. Perform statistical analyses on the resulting data.

2.3.1 The central experiments: From peptide abundances
to protein abundances

Calculating the abundance of a protein is done by first calculating the abun-
dances of peptides that originate from the specefied protein. The process of
selecting peptides and finding their abundance is somewhat complex. Figure 2.1
gives a schematic overview of some of the steps involved[Eidhammer09, Chap.1]:

1. First the protein sample is digested.

2. If neccessary the resulting peptide sample may be divided into smaller
fractions more suitable for the following LC-MS procedures. Instances of
the same peptide may occur in several fractions.

3. For each fraction, an LC run is performed. Individual instances of the
same peptide may sometimes occur in different LC peaks (i.e.have differing
retention times).

4. For each LC peak, there will generally be several MS runs (3 are illustrated
in Figure 2.1). This means that a peptide in a single LC peak may be
observed in several MS spectrums.

5. Because of the possibility of varying charges among the different instances
of a peptide ion, the same peptide may appear at several places in a single
spectrum. The MS spectras in Figure 2.1 have been deisotoped; the
various isotopic peaks have been added together, so each isotopic envelope
is only visible as a single peak in the diagrams.

The observed abundance of a single peptide may vary considerably due to
differences in ionization, experimental variations, and errors. The calculation of
the abundance of a protein is therefore based on the estimated abundances of
several peptides.

2.3.2 Comparing two situations
A common type of experiment is the comparison of protein profiles from two
different situations, for instance when investigating the effects of some contam-
inant. A typical procedure for such a project might include:
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Figure 2.1: Calculating the abundance of a single peptide
Image: From [Eidhammer09, Chapter 6].

1. Defining the situations and groups. If testing for effects of contaminants,
it might be natural to define two groups of samples; one controll group
with samples from “healthy” individuals, and one treatment group with
samples from “contaminated” individuals.

2. Determine number of replicates needed to counteract biological or ex-
perimental variations. These may be:

• Biological replicates: Similar samples taken from different indi-
viduals in the same group to account for biological diversity.

• Technical replicates: Several similar samples from the same indi-
vidual to account for variations in the experimental procedure.

The total number of replicates, also known as the group size, depends on
the statistical analyses that are to be performed and the desired accuracy
of the results.

3. Select the comparable individuals for both groups, perform the experi-
ments and obtain the protein samples.

4. Perform the LC-MS experiments for each sample

5. Find the relative abundances of proteins in each sample

6. Apply statistics to the observed intensities to analyze the effects.
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Calculating protein abundances from peptide abundances

When comparing two samples S1 and S2, the relative abundance of some protein
in the two samples will be R = P1/P2. The corresponding relative abundances
for each peptide should then in theory be p(i)

1 /p(i)
2 = r(i) = R, where p(i)

1 and
p(i)

2 are corresponding abundances of peptides from protein 1 and 2 respectively.
Due to variations and uncertainties in the experiments the observed relative
abundance for a single peptide is seldom correct, so the relative abundances of
several peptides are incorporated. The result can be calculated in two ways:

• By estimating P1 from the abundances of p(i)
1 for each peptide i, and P2

from the abundances of p(i)
2 for each i, and finally calculating R from these.

• By estimating r(i) using p(i)
1 /p(i)

2 for each common peptide i, then using
the resulting values to calculate R.

The second approach is the most commonly used, since calculating the relative
abundance of each peptide first may account for some of the variations in the
experiment.

This requires that each peptide in the calculation has been confirmed to
originate from the target protein, and that it has been quantified as correctly
as possible in each of the two situations. This may be somewhat involved, since
the same peptide may appear in different spectrums even when the protein
abundances are aproximately the same. They may also appear several times
in the same spectrum due to a varying number of charges. An extracted ion
chromatogram (XIC) is therefore created; this is a diagram designed to show
the overall intensities of only a very specific mass (see Figure 2.2).

Figure 2.2: Example of an extracted ion chromatogram (XIC) showing data-
points for regression, resulting deviation profiles, and the distribution of peak
groups accross retention time.
Image: Generated by XCMS from sample data.
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2.4 Label-free quantification by ion current
The goal of label-free quantification is to create a table describing the quantities
of various proteins in each of the samples. In an ideal case, each peptide would
have the same retention time in each sample, and occur only in a short time
interval, causing it to be observed in exactly two MS-spectra (one for each
sample), and then with the same m/z-value. Such ideal situations do not occur
in practice, however. Noise, variation in preparations of the samples and the
instruments complicate the situation so that the following must be taken into
account:

• Retention times for the same peptide may vary between samples.

• Varying charges may give the same peptide different peptide images.

• The same peptide may occur in different chromatographic peaks.

Taking these factors into account, the following steps are neccessary when
analyzing the spectra:

1. Common peptides must be found (generally done by finding common pep-
tide images).

2. The abundances of the common peptides in each sample must be deter-
mined.

3. The proteins from which the peptides originate must be identified (nor-
mally done by performing a database search using MS/MS data as input,
as will be described in section 1.3).

4. The abundences of proteins must be calculated from the abundances of
common peptides.

There are two possible procedures for step 3 and four: The first, which is
the type of procedure QALM has been developed for, involves doing LC-MS-
MS/MS from the start. The second procedure consists of doing an LC-MS
run first and identifying peptides where the observed abundances differ between
samples. The protein origins of these peptides are then determined through a
new MS/MS run.

Aligning chromatograms

As peaks for the same peptide may have differing retention times in different
chromatograms, they have to be aligned to each other so that the correct peaks
“overlap” as closely as possible before they can be compared (see Figure 2.3).
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Figure 2.3: Simplified view of aligning peaks in different chromatograms.



Chapter 3

R and XCMS

The statistical component of QALM is based on the R platform and the pack-
age XCMS, which enables analysis of LC-MS-MS/MS data in R. This chapter
describes R in general and more specifically the requirements for loading XCMS
and carrying out certain analysis tasks on LC/MS data. Instructions for in-
stalling R and XCMS are included in apendix A.

3.1 The R-Project
The R Project is an open-source platform of software for statistics. It includes
both a programing language and an environment for statistical computing. From
the webpage1:

It is a GNU2 project which is similar to the S language and envi-
ronment (...). R can be considered as a different implementation of
S. There are some important differences, but much code written for
S runs unaltered under R.
R provides a wide variety of statistical (...) and graphical tech-
niques, and is highly extensible. The S language is often the vehicle
of choice for research in statistical methodology, and R provides an
Open Source route to participation in that activity.

3.1.1 The R Environment
R contains software facilities for handling and storing data, and has a large
collection of tools for performing data analysis, including graphical facilities for
display.

R is not limited to statistics, but is an environment in which many classi-
cal and modern statistical methods have been implemented[RIntro]. In addi-
tion to the standard and recomended packages that are shipped with R, many
more packages designed for various tasks are available through CRAN, the
Comprehensive R Archive Network3. XCMS and it’s dependencies are exam-
ples of such packages, and will be described in section 3.2.

1http://www.r-project.org
2http://www.gnu.org
3http://cran.r-project.org
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R differs from other platforms for statistical computing in one particular
respect; instead of writing output to the screen the way many other systems
do, R focuses on using and storing data in objects. The section on XCMS will
include examples of this.

R runs on various systems such as Windows, Mac OS X, Linux and FreeBSD,
and is available as free software under the terms of the GNU General Public
License, version 24.

3.1.2 The R programming language

The R programming language may be considered an implementation, or a dialect
of the S programming language. S was developed in the 1980’s and has seen
widespread use in statistical computing. It is a functional language, and though
the syntax may resemble that from C and similar languages, it’s semantics are
more like those of Lisp, including the possibility of “computing on the language,
which in turn makes it possible to write functions that take expressions as input,
something that is often useful for statistical modeling and graphics”[RLangDef].

The R language has support for Objects of various basic types as well as
special compound objects, and it is possible to do a variant of object oriented
programming in R. QALM does not define objects of it’s own, but makes use of
objects defined in XCMS.

Running commands in R

It is possible run R commands directly through a command line interface once
the R environment has been loaded. In many cases, such use alone may be
sufficient, depending on the work being done. It is also possible to create func-
tions to automate common tasks, or to group commands in text-files, and load
and call these either from the command line of the Operating System, or from
within the R environment.

One of the major tasks QALM performs is the grouping and execution of a
number of such commands in two separate steps, thereby making access to the
command line interface and any knowledge of R redundant for the typical user.
This will be elaborated on in section 3.3 and in later chapters.

3.2 XCMS
XCMS is an R-package specifically developed for the analysis of data resulting
from LC/MS experiments. It was developed at the Scripps Center for Mass
Spectrometry, a section of the Scripps Research Institute5. From the XCMS
website6:

A common goal of all of the metabolomics/proteomics bioinformatic
platforms is to allow users to identify and statistically assess metabo-
lite and peptide features that show significant change between sample

4see: http://www.gnu.org/licenses/gpl-2.0.html
5The Scripps Research Institute is a private non-profit research organization, funded mainly

by the National Institute of Health (NIH) and other federal agencies in the US. For more
information, see http://www.scripps.edu/intro/overview.html

6http://masspec.scripps.edu/xcms/xcms.php
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groups. (...) The success of XCMS has come from largely achiev-
ing the primary goal in identifying and statistically assessing feature
metabolite and peptides.

XCMS can read and process LC/MS data stored in several formats, including
mzData, which will be described in chapter 6.6.1. It has many options for
interacting with and visualizing such data, as well as for carrying out retention
time alignment, relative qunantitation, and more. The details relevant to this
thesis will be described in the following section.

3.3 Use of XCMS under QALM

Under QALM, XCMS is used to preprocess the data imported into a project
(QALM-projects will be described in section 6.1) and search for peaks that may
represent differentially abundant peptides. The result of these operations should
be a peak-list ordered by statistical significance so the most clearly differentiated
peaks are found at the top.

The following description is based on the manual LC/MS Preprocessing and
Analysis with xcms[Smith09], which was also central during the development
of QALM. Only functions directly relevant to the problems in the thesis are
described. The main steps needed are in short:

1. Organizing the directories and data files.

2. Starting R and loading XCMS.

3. Specifying the data files, importing them, and doing filtration and peak
identification (generating xcmsSet-objects).

4. Performing the first matching of peaks across samples (grouping).

5. Doing the first retention time correction or alignment, which is followed
by a new grouping procedure.

6. Repeating the previous two steps a number of times (zero or more).

7. Filling in data for missing peaks.

8. Generating a report of the most significant differences.

3.3.1 Directories and files

QALM works with mzData-files. These contain LC/MS data in an XML format
(described in detail in chapter 6.6.1). Files in this format should be placed in
directories where they will remain available to XCMS. Files containing data
from samples from the same situation should be in the same directory, while
files from another situations should be in separate directories, such as

current-project/situation-a/
current-project/situation-b/
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Within XCMS, each situation will later be referenced by the name of the
directory it’s files was located in.

It is also possible to divide groups of samples further by employing hierarchies
of directories. If samples should be divided depending on the day they were
taken for instance, one might use:

current-project/situation-a/day-1/
current-project/situation-a/day-2/
current-project/situation-b/day-1/
current-project/situation-b/day-2/

XCMS would then automatically classify the files in each such directory
separately. Support for more than one level of samples is not yet supported in
QALM however, and will therefore not be elaborated on here.

Once placed in directories, the files should remain there as XCMS will refer
back to them throughout the analysis process.

3.3.2 Starting R and importing XCMS
On a Linux system, R can generally be started with the comand R at a terminal
or command-line7. Once R has started, a copyright notice and introduction
message should appear, and below this, the entry point for commands to R. To
call XCMS, the package must be loaded into R. This can be accomplished with
the command:

>library(xcms)

When an R session is started, data from that session will be stored in a
hidden file called .rsession in the directory R was started from. When the
command q() (quit; exit from R) is issued at the R command line, a prompt
asking whether or not to save this data (the workspace image) will appear.
The next time R is started from the same directory, the workspace will be
reloaded automatically. This makes it easy to continue working on the same
data in a later session.

In QALM, R is always started from the directory the currently open project
is located in. This makes it possible to continue working with previously gen-
erated objects and enables “manual” inspections of the generated objects and
data by starting R from the command line in the project folder if needed. The
contens of an R workspace image can be listed using the command:

ls()

3.3.3 Importing files to XCMS
There are several ways to let XCMS know about the files it should read data
from. Among other things, given one directory (the root of the previously de-
fined hiearchy), XCMS can search through it and any sub-directories recursively,
and read any encountered files having supported formats.

In QALM, the situation directories (directories containing sample files to be
included) are added to a vector8, then that vector is passed as an argument to the

7For information about how to obtain and install R and XCMS, see Apendix A.
8A vector can be thought of as a type of list in R.
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function xcmsSet(). The result of this call is stored in a variable (my.xcms.set
in the following example):

# NOTE: Lines beginning with # are comments.
# Store list of two directories with files in a vector:
my.collection <- c(’/home/projects/current-project/situation-a’,

’/home/projects/current-project/situation-b’)

# Pass that vector to the function xcmsSet, and store
# the result in the variable "my.xcms.set":
my.xcms.set <- xcmsSet(my.collection)

Note: This is a simplification of the code actualy used in QALM,
for the sake of clarity, but the result of the code is essentially the
same, if a little less flexible. The actual calls made by QALM will
be described in chapter six.

The last command will initiate the process of peak identification. During
this process, XCMS will output pairs of numbers showing the m/z it is currently
working on, and the total number of peaks identified so far (see Figure 3.1).
Each sample will have its output written on a separate line. Note that the final
number of peaks might be lower than those displayed throughout the process,
as postprocessing will remove duplicate peaks.

The resulting variable, my.xcms.set, will be an object of the type xcmsSet.
It contains the lists of peaks from the samples and related information, and
provides methods for aligning and grouping those peaks, as discussed in chapter
2.4. A summary of the data can be output by entering the variable name by
itself (see also Figure 3.1):

# Display output about the imported samples and peaks
>my.xcms.set

The method xcmsSet() accepts several arguments that optimize its function
for particular instruments or groups of samples. In most cases however, the
default values should work acceptably. In the case of QALM, support for al-
ternative arguments were not deemed neccessary9, and have therefore not been
integrated into the main application. Changes may be made to the individual
R-scripts however, as explained in chapter 6.7.3. Further details on xcmsSet()
can be found in the various manuals that come with XCMS.

3.3.4 Groups: Matching peaks accross samples

Once an xcmsSet has been created, the peaks in it that represent the same
analyte need to be grouped. This is done using the group() method:

# Group peaks in different samples representing the same analyte:
>my.xcms.set <- group(my.xcms.set)

9This decision was made based on discussions with a biologist with some previous experi-
ence with XCMS, and who would be a potential user of QALM.
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Figure 3.1: Output from creating an xcmsSet and displaying it’s content (“col-
lection.1” is a vector containing references to two directories containing in all 6
samples).

Note that this command stores the result of grouping my.xcms.set over the
existing variable. This is acceptable here, as group() adds group information
without destroying or changing the existing data (it is non-destructive).

As with xcmsSet(), arguments to group() are possible, but not supported
yet in QALM.

3.3.5 Aligning chromatogram peaks

Peaks in different chromatograms representing the same peptides may have dif-
fering retention times. It is therefor neccessary to do retention time correc-
tion. XCMS attempts to align corresponding peaks in different chromatograms
by using the group-information from the previous step. After correcting for
drifts in retention time the group data is no longer valid, so a new grouping-
step is needed.

Occasionaly, improper grouping will occur, resulting in groups that contain
more than one peak from each sample, or groups that are missing peaks from
some samples. Such data should not be used for retention time correction, so
XCMS ignores groups with peaks missing from more than one sample or that
have more than one extra peak.

The retention time correction procedure will calculate a median retention
time for each group and a deviation from that median for each sample. The
changes within a sample are aproximated using a local polynomial regression
technique, and least squares regression is used for the curve fitting on all data
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points.
Setting the argument family to symetric allows for outlier detection and

removal. Plottype can be set to mdevden in order to display a plot of the
retention times and what the algorithm is doing (neither are currently used in
QALM). The retention time correction command:

# Plain / default retention time correction as used in QALM:
my.xcms.set.2 <- retcor(my.xcms.set)

# Alternative, with arguments as explained:
my.xcms.set.2 <- retcor(my.xcms.set, family = "symmetric", plottype =

"mdevden")

# Do a new grouping based on the new retention times.
my.xcms.set.2 <- group(my.xcms.set.2)

Note that this stores the result in a new variable. This is recomended, since
the function retcor will change the retention times for the peaks in the object.

3.3.6 Extra iterations

The second grouping-run may result in more accurate data than the first. It
may therefore be usefull to perform several rounds of retention time correction
followed by new groupings. This can be repeated iteratively in the same manner
as described in the two preceeding sections.

When doing so, it is advisable to use a new variable for the result of each
iteration. In QALM this is done by using naming conventions for the variables
that include the iteration-number, among other things.

3.3.7 Filling in missing peaks

Since peaks for certain peptides may be missing in some chromatograms even
when observed in others, XCMS may sometimes produce groups with peaks
missing from some samples even after retention time correction and regrouping.
Using the fillPeaks() method, XCMS can re-read the original data files and
integrate them, filling in the missing data points:

# Fill in missing peak data:
>my.xcms.set.3 <- fillPeaks(my.xcms.set.2)

3.3.8 Analyses: Generating peak reports

In the final step a report showing the most significant differences in intensity
can be generated using the function diffreport(). When called from QALM,
this step will be refered to as the analysis-step.

The arguments to this function, as it is used by QALM are:

• The xcmsObject to analyze data from

• The name of the first situation in the comparison (the name of the direc-
tory containing the files for the situation).
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• The name of the second situation.

• The path and filename the report should be stored under. “.tsv” will be
appended to this filename.

• The number of extracted ion chromatograms to produce10 (zero in the
following example).

# Generate peak report, to be stored as:
# /home/projects/current-project/reports/my_report.tsv
>my.report <- diffreport(my.xcms.set.3,

situation-a,
situation-b,
"/home/projects/current-project/reports/my_report,
0)

This function will calculate Welch’s two-sample T-statistic for each analyte.
The analytes will then be ranked by P-value and a report will be written to
a tab-separated file which may be opened in Open Office.org Calc, Microsoft
ExCell, or a similar application [XCMSAPI].

The data in the report is also available in the form of a dataframe; a set of
tabular data in R. After running the previous example, the resulting data may
be accessed as follows:

# Will write out all the result data:
>my.report

# Will write out the first three lines of the report:
my.report[1:3, ]

10Technicaly, this is included in the R scripts for QALM, but it is not used/supported in
the main application.
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3.4 Understanding the peak-report
Reports consist of the following columns (shown in Figures 3.2 and 3.3):

• name: A simple name to refer to the peak/analyte. It consists of the
integer values of the analyte mass and retention time, prepended with M
and T, respectively (for instance M449T3288).

• fold: The mean fold change between the situations. Refer to the next
column (tstat) to see which was higher.

• tstat: Welch’s two sample T-statistic. This number will be positive if
greater intensity for the analyte was observed in the second situation, and
negative if greater intensity was observed in the first.

• pvalue: The P-value for the t-statistic.

• mzmed: The median of the m/z values of peaks in the group.

• mzmin: The minimum m/z value of peaks in the group.

• mzmax: The maximum m/z value of peaks in the group.

• rtmed: The median retention time of peaks in the group.

• rtmin: The minimum retention time of peaks in the group.

• rtmax: The maximum retention time of peaks in the group.

• npeaks: The number of peaks assigned to the group.

• <situation-a>: The number of samples from the first situation repre-
sented in the group.

• <situation-b>: The number of samples from the second situation rep-
resented in the group.

• <file-n>: The integrated intensity value for each sample. There should
be one column for each file / sample.

Note: If there were several levels of situations (several levels of directories
with data, as mentioned in section 3.3.1), then the p-value for anova statistics
would follow after pvalue, under the column titled anova. This is not included
in the list because multiple levels are not currently supported in QALM.

Figure 3.2: An example of a portion of a peak-report (continued).
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Figure 3.3: An example of a portion of a peak-report.

In the context of QALM, the most interesting pieces of information are the
pvalue, mzmed and rtmed. The first value is used for selecting only the
peaks with the highest potential; the latter two are then used to search the raw
MS/MS data for matching spectrums-peaks, which will then be used to search
for potential peptides, as will be explained in the next few chapters.



Chapter 4

Main goals for the thesis
project

MS and MS/MS-experiments generate large amounts of data, and analysis of
this data can be extremely timeconsuming, not only due to the amount of data
itself, but also due to the overhead involved in preparing for and executing each
step involved in such analyses. The fact that steps in such a process take part in
and are related to different systems (XCMS, Mascot, protein databases, etc.),
complicate things further.

QALM has been developed for a specific type of project. The assumptions for
such a project have been that a set of results from MS and MS/MS experiments
are given, and that a researcher would like to scan these results in order to
identify proteins that may have a significantly different abundance in one sample
compared to another. Ideally a report would be generated that would list such
proteins along with their corresponding P-value or some other form of scoring.

Generating such a report would require the following main steps:

1. Scanning MS-data from two comparable situations with XCMS, and gen-
erating a report consisting of a list of differentiated peaks with corre-
sponding retention-times, mass-over-charge values (m/z), and statistical
data (P-values, etc).

2. The corresponding MS/MS-data would need to be sent to Mascot, which
would identify the differentially expressed peaks with potential peptides
and provide a corresponding score for each match. This is not a trivial
step: Huge file-sizes would make such a search impractical, if not im-
possible to perform over the Internet. A dedicated Mascot-server would
therefore be required, or the input-files (MS/MS data) would need to be
reduced to only the most relevant data.

The solution proposed in this thesis involves filtering out spectra by search-
ing for and using only those that match peaks identified in step one.

3. For each peak in the generated peak-list (or a selection of only the most
significant peaks from the list), corresponding spectra in the MS/MS data
(spectra with similar retention times and m/z-values) would be used as in-
put in a Mascot query, and the resulting Mascot .dat-file would be scanned

37
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for matching peptides. Differentially expressed peaks would thus be iden-
tified with these peptides (and by extention, with the proteins in which
they occur), and such a match would be given a scoring of some form.
This however, would again involve sifting through large amounts of data
(the Mascot result-file), only a fraction of which might be interesting for
the purposes of the current experiment.

These main steps are a somewhat simplified summary of what would be
required. To begin with, the first step would require R to be started, XCMS
to be loaded, and a handfull of relatively complicated commands to be given
through a command line interface. Given the setting, it would be important
to understand the relations between the different commands, and how they
affect the underlying data. This process may not only be time-consuming, but
also error-prone, and unless repeated regularly, the different steps are easily
forgotten.

The second step is by no means very difficult, but as mentioned, with large
files, the operation may be impractical. Reducing the size of input files may have
at least three benefits (besides the obvious need for less diskspace for storage):
Smaller files may be submitted over the Internet, allowing for a centralized
server to be used by distributed clients, and the actual search and processing
may complete a great deal faster if as little irrelevant data as possible is included.
Finally, the result from Mascot will consist of a smaller set of matches if the set
of spectra in the query is reduced.

Although some data mining tools for Mascot result files do exist, and the
web-based reports from Mascot may give some results, a satisfactory way to
produce a specific report such as the one descriped previously does not appear
to exist.

Finally, there is the issue of files and data: How should all input files be
treated and stored? And what of any intermediate files and resulting report-
files? Though it is entirely possible to define a set of rules to handle such things
in an orderly fashion (specific directory-structures and naming conventions, etc),
such a solution may lead to a host of problems in the long run (accidentally
storing something in the wrong place, or duplicating or deleting data, to mention
a few examples).

Automation of some or all of these tasks may not only simplify and increase
the efficiency of the analysis process, but also supply a level of abstraction that
may reduce or remove the risk of many of these problems.

4.1 Initial goals for the system
Initially, not very much was known about the project; the details were some-
what unclear, and the primary goal for the project was simply to automate the
analysis process described in the previous section in a way that would be as
simple and efficient for the end user as possible. In the very beginning, it was
theorized that this could be achieved by use of the R programming language
alone, by implementing a set of scripts to run the required tasks, but this proved
to be inadequate as the requirements for the application evoled.

R would however be required to run the first step of the process (generating
reports listing differentiated peaks). The result would thus have to consist of a
GUI-application with the built-in capability of:
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• Starting R, loading XCMS, and calling specific R-functions as needed to
analyze and generate a peak report for a set of MS data.

• Reducing the corresponding MS/MS-data from the same situations until
it only contained spectrum-data matching those peaks that would be of
interest, based on the generated peak-report.

• Submitting the reduced MS/MS data to a Mascot server over the Internet,
and recieving the results in the form of a plain-text DAT-file (a Matrix
Science / Mascot proprietary format).

• Reducing the result file from Mascot, and formatting it into a final report
listing the interesting matches.

• Importing, storing and handling files as needed to support these opera-
tions.

After some investigaton, a library for calling and running R-commands di-
rectly from Java, called RJava/JRI, was found. RJava/JRI has evolved from
two separate projects, one with the goal of being able to call Java-applications
from R, the other for calling R from Java. These have been joined together into
a fairly coherent system, that it appeared would provide the needed interface
between a Java GUI and scripts in R.

Java was thus selected as the main development platform, and a basic plan
and set of goals for what to implement was defined as follows (translated from
[Leroy09], see Apendix B):

1. A set of R-scripts to automate the handling and analysis of LC/MS data.

2. A GUI that simplifies the set-up and running of such analyses.

3. Some form of “link” between this GUI and Mascot which will make search-
ing the database a natural next step, that can be done from within the
same application / user interface as the analyses.

RJava/JRI was specified as the prefered option for the implementation of the
R-related parts of the project, but only on the premise that the libraries proved
to be mature and stable enough for the task at hand. Due to the uncertainty
surrounding this, and the apparent lack of any other realistic alternative for
the intercomunication between R and Java, a little extra development time was
reserved for this, and the main goal was specified as steps one and two, with
step three as optional if there was enough time.

4.2 Issues with RJava/JRI, and an alternative
approach for interfacing with R/XCMS

After spending the time needed to get familiar with R and XCMS, basic scripts
to automate the neccessary functionality were written. These were then called
in succession from Java, and seemed to function correctly, but to run notably
slower than when called directly from a command-line interface. Closer inspec-
tions revealed that when called from RJava/JRI, a batch of scripts would take
aproximately eight times as long to complete as when called directly from R
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or from the command line of the operating system. This was the case even for
very small sets of data. For larger amounts of data, this would constitute an
intolerable increase in time required to run the analyses. It was clear that a
different approach would be needed.

The requirements for the first step of the analysis process was studied again,
and a simple solution was found: Calling the R-scripts directly through the
host system, by way of the Runtime-class in Java, which gives access to the
environment a java application is running under. By dividing the neccessary
calls to R and XCMS into two main groups, and requiring input data for each of
these groups to be given at the same time, the whole process could be abstracted
into two separate steps.

There were two potential disadvantages to this approach: Firstly, variables
and objects created in R could not be referenced directly from Java, as they
could using RJava/JRI. Such access however, turned out to be unneccessary,
so this would not be a problem. The other potential problem was the risk
that commands needed to run scripts might differ slighly depending on the host
system. If so, keeping the application cross-platform compatible would require
the implementation of different methods to call the R-scripts, depending on the
host-system. In light of the huge gains in speed however, this was considered
an acceptable tradeoff.

4.3 Evolving requirements

Due to the issues mentioned above, as well as uncertainties regarding the details
of what exactly the final system should produce, and how it should function, a
complete plan for what was to be done was not completed until several weeks
into the project. Later, the plan was refined several times due to the complicated
nature of the steps in the analysis process and the consequences changing one
step would have on others.

An example of this is found in [QALM09] (Apendix C), where terms such
as “situation”, “collection”, and “project” are given specific definitions within the
context of the first step of the analysis-process (that in which R and XCMS is
involved), and where some of the relations between these entities are touched
upon.

A project may for instance contain several situations and collections. Each
situation may be added to one or more collections, which may then be “prepro-
cessed”. If, however, a change was to be made to a collection after it has been
preprocessed, the preprocessing would be invalidated, and so would any analy-
ses and reports that had been generated based on that collection in subsequent
steps. The final application would have to be able to handle or avoid this and
similar potential problems, and handle the different steps in the analysis process
so that no such conflicts could occur. This goes not only for the steps related to
R/XCMS, but also to the steps following them, such as MS/MS-file reduction
and generating the final report.

The next steps in the process, up to the production of a final report, was
elaborated in [Eidhammer10] (Apendix D), which was used as a set of guidelines,
although it was revised several times throughout the project.
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A single MS/MS file per analysis

One choice made along the way was to limit the number of MS/MS files per
analysis to one. This choice was based on a recomendation to keep things fairly
simple in QALM and focus on producing a functional proof of concept for the
major tasks.

In practice, there will usually be more than one MS/MS file per analysis.
The reason for this is the existance of multiple MS-files per situation; in the
type of experiment for which QALM was developed, there will generally be one
MS/MS-file for each MS-file.

Figure 4.1: The envisioned function of QALM.

Accessing Mascot

The most significant revision involved accessing Mascot: At the start of the
project, it was believed that Mascot could be accessed programatically through
some form of interface that QALM would be able to utilize. This turned out
to be wrong however, as no such posibility currently exists1. The ideal solution
(see Figure 4.1) with calls to Mascot integrated into QALM would therefore not
be possible. The best alternative seemed to be to export the reduced MS/MS-
files and leave the Mascot-search to the user. The resulting dat-file would then
have to be imported “manually” into QALM after the search completed.

1The background for this belief was an unfortunate misunderstanding regarding the use of
Mascot at the University of Bergen: When asked by e-mail whether it would be possible to
access Mascot from an external program, an administrator confirmed this. He was however,
refering to Mascot Daemon; a specific client program for Mascot that runs under Microsoft
Windows, and not to a general interface that would enable other third-party applications to
access the server.
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Figure 4.2: The revised solution.

Figure 4.1 illustrates how the tasks to be performed by QALMwere originally
envisioned: All tasks would be initiated and run from within QALM, including
those requiring access to the external systems XCMS and Mascot.

Figure 4.2 illustrates the revised processes: Now the user has to select the
files to use as input in a Mascot search, and import the resulting .dat-file from
Mascot into QALM afterward to complete a project. Although not ideal, this so-
lution was considered acceptable. The final solution and implementation details
are described in the next two chapters.



Chapter 5

Running QALM

QALM is a Java desktop application. This chapter presents the main elements in
the Graphical User Interface (GUI) and gives an introduction to the function of
the application. The next chapter will go into the details of the implementation.

As this chapter does not provide any definitions or detailed explanations,
it is recomended to read quickly through it at first, then refer back to it later
while going through the technical details described in the next chapter.

This is primarily a guide to the user interface of QALM. For information on
how to obtain and install a copy of the application, please refer to apendix A.

In the GUI, there are different “sections” for each of the main steps in a
typical analysis process, each with specific buttons, text-fields, lists of data, etc.
In the following description, each such section will be refered to as a specific
view. n

5.1 An example run and tutorial

The first time QALM is started, it will connect to the database, create the
necessary tables, and display the project view (Figure 5.1).

Managing projects and general navigation

Under the project-view, a user may create a new project or select and open an
existing project from the list on the left hand side. On the bottom left hand
side basic information about the selected project is displayed. The buttons on
the right hand side are disabled until a project is opened. When a project is
opened, they allow the user to navigate to other views for that project. At the
top, the menu-bar button “File” has options for creating a new project, closing a
currently open project, or exiting QALM. The menu-bar button “view” enables
navigation to any view, like the buttons on the right in the project view (unlike
these, the view-menu is available from all views).

The buttons near the bottom are also for navigation; these are shown in all
views, and for each, allow a user to go to the “previous” or “next” view, or to
return to the project-view. The button to the far right at the bottom toggles
the processing panel, which displays information and output from some of the
more time-consuming tasks performed in QALM.

43
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Figure 5.1: The project view in QALM, as shown on startup.

Figure 5.2: The panel for adding new projects.

When a new project is created, the user may enter a name and a description
for the project (Figure 5.2). This will be displayed whenever the project is
selected in the project-view.

Importing files

The first step in a QALM-project involves importing files under the file import
view (Figure 5.3). Here a user may add any number of situations (represented
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Figure 5.3: The file import view. This project contains three situations and a
number of files under each of them.

Figure 5.4: During importation, information about the copy-operation is dis-
played in the processing panel.

Figure 5.5: Deletion of a situation fails if the situation is in use in one or more
collections. This error message lists two collections in which the situation is in
use.
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as directory folders) and import files into each of them. The results of the
import-operations are displayed in the processing panel while they are carried
out; when completed, the GUI automatically switches back to the file import
view.

For reasons relating to data consistency, single files may not be deleted from
situations. In stead, each situation must be treated as a single whole, and may
be deleted as long as it is not in use in a collection. If included in a collection,
an attempted deletion will cause an exception, and an error message listing the
collections to remove the situation from will be listed (Figure 5.5).

Managing collections

Figure 5.6 presents the collections view. Here a user may create collections under
the opened project, or select previously created collections from the dropdown-
list on the top left hand side. The list below it will contain all the situations
under the currently open project. These can be marked and added to the se-
lected collection using the buttons on the top right hand side. Situations added
to a collection will be visible in the list on the top right hand side. After situa-
tions have been added, a collection can be preprocessed by clicking “Preprocess
Collection”. Before preprocessing is initiated however, a confirmation-dialogue
will be displayed (Figure 5.7). Such dialogues are displayed before some of the
most time-consuming tasks performed in QALM to ensure that they are not
initiated by accident.

As long as the collection has not been preprocessed, it is possible to change
the name, description, and number of retention-time corrections to perform for
a collection using the controlls in the lower left corner of the collections view.
Once the collection has been preprocessed however, all butons except “Delete
Collection” will be disabled.

Collections may be deleted if they do not contain any analyses. If they do
contain one or more analyses, a warning similar to that for situations used in
collections will be displayed if deletion is attempted (see Figure 5.5).

Managing analyses

Figures 5.8 and 5.9 show the analysis-view and the panel for adding new anal-
yses, respectively. Under the analysis view, a user may select a collection, from
the top left drop-down list, then either select an existing analysis under that
collection from the drop-down list below it, or create a new analysis to add to
that collection by clicking the button below it.

In the lower left area, the values for the selected analysis are displayed: It’s
name, two dropdown-lists for selecting the situations to analyze, and a text-field
for adding a description. The list on the lower right side is the analysis list. This
is a list of analyses from this project that are ready to be processed as a batch.
Selected analyses can be added to or removed from this list with the buttons
above it. The lower of the three buttons on the top right side initializes the
analyses, which will result in a peak-report for each analysis in the peak-list to
be produced.

Note that an analysis must contain two different situations. If the same
situation is selected twice in the same analysis, then it will not be possible to
add it to the analysis-list.
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Figure 5.6: The collections-view. The currently selected collection is called
“First Collection”. It has not yet been preprocessed, but two situations have
been added to it out of three possible. When it is preprocessed, retention-time
corrections will be performed three times.

Figure 5.7: A confirmation dialogue appearing before some of the most time-
consuming tasks performed in QALM.

The output resulting from both preprocessing collections and running analy-
ses is displayed in the processing panel. In Figure 5.10 the last part of the output
from a preprocessing-task and an analysis-run resulting in two peak-reports can
be seen.

Peak reports

The reports resulting from peak-analyses are available from the peak reports-
view (Figure 5.11).

The options near the top left lets a user choose whether to display all analyses
from a given project, or to filter the list and display only results from a specific
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Figure 5.8: The analysis view.

Figure 5.9: Creating a new analysis.

collection. The list on the right hand side contains the names of the peak report-
file (typically on the format <analysis-id-number>-<analysis_name>.tsv ).

When an analysis in the list is clicked and marked, a summary with the
name and P-value of the best peaks will be displayed in the tables on the lower
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Figure 5.10: The processing panel with the output from preprocessing a collec-
tion and generating two peak-reports.

Figure 5.11: The peak reports view, currently displaying two reports from the
collection “First_Collection”, and the top ten peaks from the second one of
them.

left hand side. The “spinner” above the table lets the user decide how many top
peaks to display.
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Peak reports may also be opened in an external program. Clicking “Open in
external application” below the peak report-list will attempt to call an appropri-
ate program for this through the operating system. If that does not succeed, an
error-message will be displayed, and the path to the report-file will be presented
in such a way that it can be copied. This should enable the user to open the
file manually in another application.

MS/MS file reduction

Once a peak report for a pair of situations has been created, a corresponding
MS/MS-file may be imported and reduced. This is done from the MS/MS
reduction-view, shown in Figure 5.12.

Figure 5.12: The MS/MS reduction view. An MS/MS file and the directory to
store the reduced file in has been selected, but reduction has not been carried
out yet. Reduction of mascot result files is performed from a similar view.

As under the analysis-view, a collection and analysis may be selected from
the drop-down list on the top left hand side. The name of the corresponding
peak-report is shown below the selected analysis upon selection. Below this, a
summary shows the current state of the analysis with respect to MS/MS-files:
If an MS/MS-file has been selected, it’s name is shown along with information
about it‘s state, which will be either REDUCED or UNREDUCED.

On the top right hand side the user may select the MS/MS-file to reduce,
or choose to remove a previously selected MS/MS-file. The next two buttons
allow a user to specify a directory in which to store the reduced MS/MS-file,
or to “use default” directory, typically <path to the project-catalog>/reduced/.
This is important since the MS/MS file is to be exported and used as input in
a Mascot search which the user must perform manually.

The “spinner” on the lower right hand side enables the user to specify how
many of the peaks from the peak report to use when scanning the MS/MS-file
for matches, while the button below it initiates the reduction process.
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Mascot .dat-file reduction

The selection of data from Mascot result-files (.dat-files) is initiated from a view
quite to that for MS/MS file reduction (see Figure 5.12).

The main difference is that only a file is selected; contrary to the case of
MS/MS-files, the data from the .dat-files is stored in a database, and not in
a separate file, so there is no nead for specifying a directory for storage. Also
there is no spinner for selecting a number of peakd; instead, all matches with a
score above a threshold specified in an external settings file1 are automatically
included.

Selecting final reports

The last view in QALM is the final reports-view. From here a user may select
a collection and an analysis, and output reports for that analysis in a variety of
formats. Figure 5.13 shows the view.

Figure 5.13: The final reports-view.

A collection and analysis may be selected from the top left. Below, some
information about the data under the analysis is displayed. On the top right
hand side the user can select whether to store the report to file or to out-
put it directly in the processing-panel, allowing it to be viewd quickly and
directly from within QALM. If “Write to file” is selected, the button below can
be used to select the output-directory where the report will be stored (note

1For more information about the settings in QALM see chapter 6.7.5.
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that the report-name will be generated automatically in the format <analysis-
name>_<format-name>.dat).

If a report is to be written to a file, the button for generating the final report
will be disabled until a valid output directory has been selected. If on the other
hand “print report to processing panel” is selected, the button “Generate Final
Report” will be enabled, while the button and text-field for selecting an output
directory will be disabled.

The drop-down list on the right hand side allows a user to select which
format the report should use. Below this list, a checkbox lets the user choose
whether or not to include resulting Mascot-queries for which no peptides were
found.

The main contents of each report-format is the same, although certain details
may be excluded in some formats. This is discussed in more detail in chapter
6.3.

5.2 Notes on the Graphical User Interface
While the main priority in a prototype application such as QALM often tends
to be placed on the handling of data in the lower levels of the architecture, the
graphical user interface (GUI) also plays an important role. This is especially
important considering one of the goals specified in the previous chapter: To
“abstract” and simplify the analysis process; in other words, to make it as user
friendly as possible.

For this reason, a lot of effort has gone into the design of the GUI, in an
attempt to make it as clear and understandable as possible. Some principles
that have been taken into account in this respect are:

• To divide the various steps in an analysis process in a clear and logical
way, and attempt to hide the more complicated details.

• To strive for consistency and avoid confusion, for instance by making sure
the various views and components within them work in similar fashion.

• To give meaningfull feedback as often as possible. This includes both
visual and textual feedback. Examples of the former may be seen when
adding or removing elements from a list, or in how certain buttons are
disabled in specific situations (The buttons and situation-tree in Figure
5.3 are good examples). Examples of the latter may be seen in message
dialogues and the processing panel, as shown in Figures 5.5 and 5.10.

• To make the consequences of actions clear to the user before they are
executed, for instance by asking for confirmation before starting a time-
consuming process or deleting something.

• To catch and handle all exceptions in a similar and reasonable manner,
and explicitly inform the user when something goes wrong. There are a
large number of specific, detailed error-messages that may be displayed in
QALM, and should an error occur that is unknown, the user will still be
informed of this through an information dialogue.



Chapter 6

Implementation details

In this chapter an overview of the architecture of QALM will be provided along
with more technical descriptions of selected components and algorithms.

6.1 Definitions

Throughout the development of QALM, several terms have been used to discribe
the processes and elements that it works with, and the uses of these have varied
over the course of the project, as needs have changed. The following list defines
terms as applicable to the final software and the overall process it handles.

6.1.1 Projects

A project is the context under which all operations in QALM are done. One
project may be open at a time, and opening a new one will automatically close
any currently open project. Situations and Groups belong to a given project.

6.1.2 Situations

Situations are directories created from within the application, to which files
with MS-data from sets of samples are imported. To compare samples from two
different sources,such as cells from the liver of a healthy cod, and corresponding
cells from the liver of a fish exposed to some form of treatment, one would create
two situations. In the first would be placed files with data from experiments on
the healthy cod, while data from the other cod would be imported to the second
situation. The imported files would need to be MS-data in themzData-format,
as explained in chapter 3.2. XCMS will group the data and enable subsequent
comparisons between different situations. Situations are imported direcly under
a project, and will belong to that project. (It is possible to import the same
situations into different projects, but this will result in some duplication of data,
as each project has it’s own directories with it’s own copies of the supplied files
and information about these in the database).

Note that for two situations to be comparable in the “analysis”-step follow,
they have to contain data from at least two samples each (ie, there must be at
lest two files with MS data in each situation).
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6.1.3 Collections and preprocessing

A collection represents a set of related situations under a project and corre-
sponds roughly to an xcmsSet object1 in XCMS. Several collections may be
added to a project, and the same situation may be included in several different
collections. For each collection, XCMS will create an xcmsObject, attempt to
identify peaks representing the same analyte accross samples, and group these
together in order to make them comparable in subsequent steps (see chapter 3.2
for details on this process).

The actual invocation of the XCMS-function for grouping ( group() ) is just
one call in a batch of commands, collectively refered to as preprocessing in
the application (see chapter 3.3 for details). To the average user, these will
appear as a single operation resulting in a change in state for the collection
from unprocessed to preprocessed.

The state of a collection has important implications for the analyses run on
it later, and any other elements dependent on those analyses. For a collection to
be deleted after having been processed, any analyses and peak-reports belonging
to that collection will therefore need to be deleted first. A collection may not
be changed after processing, as this would invalidate any previous analyses and
results under it.

Furthermore a collection can only be processed once at least two separate
situations have been added to it.

6.1.4 Analyses

In the context of QALM, an Analysis is a selection of two situations from the
same collection, that are to be compared when the analysis is run. An analysis
can be created under a processed collection. Several analyses can be created
under the same group, and when ready to be run, one or several analyses from
one or several different groups can be added to the analysis list (see Figure 5.8),
and run in a batch. When an analysis is run, a corresponding peakreport will
be generated.

6.1.5 Peak reports

A peak-report is generated by XCMS and describes the statistically significant
differences in expression of analytes from the two situations in an analysis, as
explained in chapter 3.4.

To recapitulate, the values that are of greatest interest here are the mass over
charge (m/z), retention time (RT), and the P-value. The first two identify the
analyte, while the latter is used to select the most significant peaks for reducing
MS/MS-files in the next step.

6.1.6 XML

EXtensible Markup Languate (XML) is a plain-text format with a hierarchy of
elements or “nodes”, possibly with attributes. In the following example, the first
element (which is called “firstElement”) has an attribute (“typeOfAnimal”), the

1In short, an xcmsSet contains sets of sample-data in various classes, peaks and peak-
groups.
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value of which is “fish”. The first element also contains two other elements (“sec-
ondElement” and “third”), which contain the text “Atlantic Cod” and “Arctic
Cod”.

<firstElement typeOfAnimal=’fish’>
<secondElement>Atlantic Cod</secondElement>
<third>Arctic Cod</third>

</firstElement>

Elements and attributes may be named however needed to represent a set
of data, and the hierarchy may have any number of nodes, sub-nodes, and
attributes.

An XML Schema Documentation (XSD) is a document that specifies how
an XML-file representing a specific type of data may be formated, i.e. which
elements it may contain, in what order they may appear, etc.

The main advantages of XML are that it is relatively easily read both by
humans and computers, and that it’s simplicity and flexibility enables it to
represent almost any form of data. The mzData-format which will be described
in section 6.6.1 is an XML-based format adhering to a specified XSD.

6.1.7 Peaks and spectra

A Peak generaly refers to a row in the peak report for an analysis (see Figure
6.1). Such a row consists of data such as peak-name, retention time, mass-over
charge (m/z), and the P-value for the peak.

The term Spectrum will generaly refer to the XML-representation of an
MS- or an MS/MS-spectrum in MS- or MS/MS-files (In this context, a spec-
trum is specific type of XML-element, that may contain subelements containing
the MS-data and various metadata; see Figure 6.2 and the description in sec-
tion 6.6.1). In some contexts however, this may refer to a record in the table
“spectrum” in the database.

Figure 6.1: A peak (highlighted) in a peak-report.

6.1.8 The database

For the context of this thesis, a database may be considered to signify a rela-
tional database; a solution that allows various types of data to be stored in a
set of tables that have clearly defined relationships to each other. The word
“database” generally refers to the files or datastructures in which such tables
and related data are stored, while a “Database Management System (DBMS)”
is the software used to create, control, and access a database.
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Figure 6.2: A spectrum (highlighted) in a file with MS data. The parameter
msLevel=”1” states that this is an MS spectrum (an MS/MS spectrum would
have a msLevel of 2). Note also the m/z-range and retention time.

Generally, any mention of “the database” in this thesis will refer to the
local database included with QALM, described in section 6.5. This is a facility
for storing data within QALM, and should not be confused with any protein-
databases mentioned in earlier chapters, or the Mascot database, which will
only be referenced explicitly by that name.

6.1.9 MS/MS-file reduction
MS/MS-file reduction is the process of scanning an MS/MS-file for spectra
matching the peaks in the peak report from an analysis. The results of such a
scan are:

• A new MS/MS-file into which all matching spectra are written (this will
be used as the input when performing a Mascot search later).

• The insertion into the local database of a representation of the match
(including spectrum, report-peak, and a match between them - see section
6.5).

6.1.10 Results from Mascot: “.dat-files”
When Mascot is searched, the result may be retrieved as a text-file with the
file-ending “.dat”. The terms “.dat-file” and “Mascot result file” will be used
interchangably to signify such files throughout this chapter.

6.1.11 Final reports
“Final reports” refers to the text-files generated as the final step in QALM,
and should not be confused with the peak-reports generated by XCMS. Various
formats exist, which essentially display the same data in various ways. These
are described in section 6.3.
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6.1.12 The background processor

The background processor is a solution that allows separate “threads” or a pro-
gram to perform two separate tasks at once; some form of work is done in the
background, while related output is printed in the processing panel (see for
instance Figure 5.4). The solution will be discussed in more detail in section
6.7.4.

6.2 Overview of the architecture

Many different components are integrated in QALM. This section gives an
overview of how they work together. The most important components are dis-
cussed in more detail in section 6.7. Instructions for obtaining a copy of the
source-code and API documentation for QALM are included in Apendix A.

6.2.1 Layers and division of responsibilities

The design of the application has four layers, each of which has separate areas
of responsibility. In addition, there are a few components that do not fit clearly
into any layer, as they are called from and used by other components from
several layers. These are displayed in a separate box near the bottom right
corner in Figure 6.3.

Although it does not correspond exactly to classes or software-packages, the
following diagram is usefull for getting an overview of the application. The
arrows show the main ways in which each component makes use of other com-
ponents.

The presentation layer

This contains the Java GUI. With the exception of the reports, all things related
to graphics and presentation is handled here. The main Java Form, which con-
tains all the other panels (and is also the entry point for the whole application)
is the class no.kjartanleroy.codproject.gui.QALMGui.

The Control layer

As the name implies, the main logic, or control of the application runs through
this layer. All major operations are called from here after being initiated through
the GUI.

There is one main Java Class here (Controller.java, technicaly under the
package no.kjartanloery.codproject.gui), which forewards calls to other
parts of the system or carries out operations on behalf of the GUI.

The Data layer

The Adapter class (under no.kjartanleroy.codproject.persistence), acts
as a go-between for components that need to access the or the StateManager.
In addition, some data-validation is performed here.

The other components in the data-layer are responsible for handling various
types of data, as corresponding to their names. They may read from or write
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Figure 6.3: Basic architecture of QALM.

to files on the host system that are relevant to their function, or access the
database through the Adapter.

The Persistence layer

The StateManager class responsible for creating, storing, and reloading infor-
mation about the file-structures of an open project (the situation-directories
and files).

DBConnector is responsible for connecting to the database. The methods
for executing each command is in that class, while the SQL-code is located in
the class SQLScripts.

Other components

Transfer objects are classes that are made specifically for carrying information
of specific types. With a few exceptions, there are TO-objects under QALM
corresponding to each of the tables in the database (see Figure 6.9 and 6.10).
Each of these can contain information corresponding to that in a database table,
and may be used in all layers, from persistence to presentation.
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A host of different exceptions can be thrown if some task fails in QALM.
The excepion framework ensures that all of these are caught and handled in
an orderly fashion; when something goes wrong, an error-message is displayed,
if possible with information specifically relevant to the error.

The text displayed after exceptions and in other information-messages are
stored in a java properties-file, and technical settings are stored in another. The
classes Settings and TextStrings are responsible for importing these settings
and texts.

6.2.2 More on the function of QALM

Table 6.1 provides some short descriptions of functionality in QALM that may
not be obvious from the preceeding section. More detailed explanations of se-
lected components and solutions are found in section 6.7. In the tableDB refers
to the local database and OS to the underlying Operating System. “Bold” text
refers to class names or Java objects, while “emphasized ” text refers either to
directories or filenames, or variables within classes, as should be clear from the
context.

6.3 The final reports

QALM can create final reports in four different formats. This section gives a
brief description of each of them, then summarizes what each of the data-fields
in the reports mean.

Full

This may in a sense be consedered the “raw” format of the reports. It displays
each match between a report peak and an MS/MS spectrum separately, and
the elements under it as a hierarchy: Each match contains a mascot query, and
each mascot query may contain a number of matching peptides. Each of the
matching peptides may furthermore match a number of proteins (see Figure
6.4).

Compact

This contains essentially the same data as the “full” format, but the contents
has been organized differently so as not to take as much vertical space: Each
query and it’s data is shown on the left hand side and each peptide under it in
a list towards the right. The protein-list under each peptide occurs at the far
right (see Figure 6.5).

By Proteins

This report reorganizes the data and presents it by proteins: Each line starts
with a protein accession (a protein ID) and data from the peptide it was included
for. Farther towards the right, there is one row for each of the matches the
protein occured in (see Figure 6.6).
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Table 6.1: Functionality in QALM
Action in QALM Tasks performed in the background
Starting QALM DB connection is established and tables created if neccessary.
Creating a new
project

The name is validated, the project inserted to the DB, and a
directory for it created under projects.

Opening a project currentProject in the Adapter is set to the project id.
Selecting a new
view

A method for the selected view loads relevant data and displays
it in a manner dependant on the data’s state (eg. disallowing
editing an analysis that has run).

Creating a new sit-
uation

The name is validated and a directory created under situa-
tions. The situation is added to the DB, and a TreeModel
for storing file-structure is created (or updated) by the State-
Manager and stored in project.qpj in the project directory.

Importing files to a
situation

Using the background processor, the selected file(s) are copied
to the situation directory and project.qpj is updated.

Creating a new col-
lection or analysis

The new item is validated, then inserted into the DB.

Preprocessing a col-
lection

Using the background processor, the collection is verified to
be ready for preprocessing. A set of R-script commands are
prepared passed to RScriptMaster, which creates an exter-
nal R-script and executes it by calling the OS. If it completes
successfully, the collection state is changed to “preprocessed”.

Running analyses Again, RScriptMaster is used through the background pro-
cessor. A script with a command for creating a peak-report for
each analysis is generated and executed. If it completes suc-
cessfully, the state of each analysis is changed to “completed”.

Deleting a situation If it is in use in any collection, deletion is canceled, otherwise
the situation is removed from (a) the DB, (b) the file-system,
and (c) the TreeModel.

Deleting a collec-
tion

If it contains any analyses, deletion is canceled, otherwise the
collection is deleted from the DB.

Deleting an analy-
sis

All related data is deleted: Mascot data (queries and matches),
reduced MS/MS-files, the peak-report, and the analysis itself.

Reducing an
MS/MS file

After asking for confirmation, any existing (previously re-
duced) MS/MS-file for the analysis is deleted. The supplied
MS/MS file is then itarated over, and spectra matching any
report-peaks are copied to a new MS/MS file, and the matches
are registered in the DB.

Reducing a Mascot
result file

For each query in the file, a query is inserted into the DB. For
each peptide under the query and each protein under those
peptides, a corresponding item is inserted (this hierarchy is
most evident in the report format “FULL”; see section 6.3).

Generating a report A list of all the data to output is fetched from the DB. The list
is passed to FinalReportFormat, which formats the report
as selected, and either displays it or saves it as a file in the
selected directory.

Closing a project The value of the currentProject variable in theAdapter and
any existing instance in the StateManager (which manages
the TreeModel of files and directories) is set to null.
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Figure 6.4: The Full report format.

Figure 6.5: The Compact report format.
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Figure 6.6: The report format By_proteins.

Figure 6.7: The report format By_proteins_compact.

By Proteins Compact

The compact proteins-format is similar to the previous format, but includes less
data, and only a single line per protein (the matched peaks are not mentioned
here; see Figure 6.7). Often biologists will only need to identify differentially
observed proteins. In such cases, the information provided in this report will be
sufficient.

6.3.1 Data in the reports

The data fields in the reports are:

• Peak name in report: Name in the peak-report generated by XCMS.

• Spectrum ID: The spectrum ID-number in the reduced MS/MS file.

• Precursor ID: The ID of the precursor in the reduced MS/MS file.

• Mascot query name: Given by Mascot when it performs the search.

• QMatch: The number of peptides in the searched protein-database with
theoretical masses matching the query mass.

• QExp: The m/z-value of the query
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• QMass: The mass of the query. This is calculated from the m/z-value
and the charge (note that the charge is not given explicitly).

• QPlughole: A threshold for homology; an empirical measure of whether
the match is an outlier[MascotFAQ, p.4-5]).

• TimeInMinutes: The retention time in minutes.

• Matching peptides: The number of peptides matching a given Mascot
query.

• Match score: The match-score for a peptide; a value given when Mascot
performs the search.

• Theoretical mass: The theoretical mass of a peptide.

• Delta mass: The difference between the theoretical mass and the ob-
served mass for a peptide.

• Peptide sequence: The sequence of amino acid residues in a peptide.
Each letter represents one of the 20 regular amino acids.

• Protein matches: The number of known proteins in which a peptide
occurs.

• Accession: A number that identifies a protein uniquely within the protein-
database Mascot has searched.

• Description: A description of a protein.

6.4 File and directory structure under QALM
After instalation, all files and data relating to QALM will be in a directory
named QALM. This section describes the contents of the various folders and
files under that directory.

Figure 6.8 shows an example of a typical directory tree under the QALM
directory. The database is stored in database, and lib is used for various libraries
that QALM makes use of. All projects are stored under projects. The sub-
directories under a project will be created when needed. In the example, under
situations there are sub-folders for two situations. These correspond to the
directories in the file tree in QALM when creating new situations. The actual
filetree used to represent the directories within the GUI are stored in project.cpj.

reports contains peak-reports for analyses. The reports consist of the name
of the analysis, with its’ database-id prepended to ensure uniqueness.

Unless another directory is selected, reduced MS/MS-files are stored under
reduced. They are named as the files they are based on, but like analyses, have
the analysis-id prepended.

scripts contains the various R-scripts that are executed by QALM. The
sub-folder generated contains the initiating script-file (RSourceFile.R), through
which the others are called. This file should not be changed manually, as it will
be replaced the next time QALM runs; any R-code that may be required to run
before executing the other scripts should instead be placed in RPreparations.R;
this script is allways called before the others (see section 6.7.3 for details).
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Figure 6.8: Structure and files under the main directory QALM.

6.5 The database

In the early stages of planning for the application, there was no specification for
a database (for example, see [QALM09], apendix C). In stead, files or some form
of data structure (e.g. a 2-dimensional array) was specified as requirements for
the storage and handling of the information resulting from analyses and file-
reductions. For some of this data, the format was a given (peak-reports are
generated as stand-alone files by XCMS, and can be used as they are; MS/MS-
files must be in their given XML-format to be used as input in a Mascot-search).
However, to be able to use the various pieces of information from these files in
a reliable and effective way, it would be a great advantage to be able to enforce
stricter rules on their interrelationships. This section describes how the database
used in QALM enables this.

6.5.1 Motivation for a database

A database model lets one define the relations between different things, such as
a collection, an analysis, and an MS/MS-file. Once these relations are defined,
the database management system (DBMS) does the job of enforcing them. If
for example one attempts to delete a collection under which there exists an anal-
ysis, the DBMS will hinder this, and instead return an error message describing
why the operation can not be completed: The collection has a related anal-
ysis; removing that analysis is required before the collection can be removed,
otherwise, the remaining data would be inconsistent.

In similar fashion, searching, retrieving, sorting and filtering data is made
easy by use of SQL (Structured Query Language). This is especially usefull
when it is not known what needs may arise at a later stage. When unforseen
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changes or requirements occur, manipulating SQL-queries (and possibly tables
and relations) may be an effective and simple way to adjust, and new types of
data and new relations can be added easily.

Also, there is the subject of standardization, both on the technical level, and
on the usability level, for documentation purposes: If one would prefer to use
a different DBMS, it may be switched with only minor (if any) adjustments in
the SQL-code, and a diagram such as the ones below (Figures 6.9 and 6.10)
immediately give an overview of the different types of data and their relations
in a format that is well known and understood.

To recapitulate, some of the major advantages of using a database, as op-
posed to developing specific formats and data structures are:

• Reliability on defined relations for a number of operations

• The ability to expand organicaly as new needs arise

• Standardization and simplicity through use of a technology that has been
in use throughouth the industry for decades.

6.5.2 Apache Derby / JavaDB

QALM currently uses Apache Derby, a small Java based DBMS, available under
the Apache License, version 22. It was chosen for it’s simplicity of use; Derby
can be run seamlessly from inside a java application, and can be deployed with
it without requiring any installation or setup.

Later, with a more mature version of QALM ready for production, it would
be advisable to switch to a more advanced and more thoroughly tested DBMS,
which could be administered separately from QALM itself (such a system might
also function over a network).

6.5.3 Data and the relations between them

Figures 6.9 and 6.10 give an overview of the data in the database, and the
relations between them. Note that for presentational purposes, the model has
been divided in two; the table analysis is displayed in both diagrams, and acts
as the “link” between the two sections.

Some of the elements in the diagrams will be discussed in detail. The mean-
ing an functions of others should be clear from the context, as they make use
of fairly standard practices and have more or less self-explanatory names. The
“<something>_id ” columns for instance, serve either as primary keys identi-
fying a record uniquely within the table, or as foreign keys linking two tables
together3, while description in most tables means exactly that; a description of
the respective entity, as entered by the user in through the GUI4.

In the following discussion, table names are in bold, while names of columns
in them are emphasized. Typewriter text indicates values of data, either in
a table column or in a Java class. Whenever names are used without such

2See: http://www.apache.org/licenses/LICENSE-2.0
3There are two exceptions to this rule: precursor_spectrum_id in the table spectrum,

and spectrum_id in mascot_query refer to an id-number in a file, as discused later in this
chapter.

4protein_match is an exception. Here description is obtained from a mascot result file.
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formating, they will be refering to real-world instances of the items and the
relationships between them, and not the objects in the database which are
attempts to model those relationships.

Figure 6.9: The database (project-related tables)

Figure 6.10: The database (tables with data from experiments and searching).
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Details concerning tables in Figure 6.9

The first Figure shows tables with data relating to the structure of projects in
QALM. The relationships between the central “objects” are in brief:

• A project may contain any number of situations and collections

• Each situation may be added to a number of collections (but only once to
each collection).

• An analysis consists of two situations and belongs to a specific collection.

In the project table, project_dir should contain the name of the directory
under which the data from the project should be stored. This should be a single
directory name, not a path; when the project is created, the directory will
be created under the projects-directory, as mentioned in section 6.4. created
and changed are timestamp-values that were intended to keep track of when
a project was created or last changed respectively (currently, support has only
been implemented for the former).

In the table situation, situation_dir is the name of the directory where the
situation is located (see section 6.4).

In collection, collection_state is a string-representation of a value from
a Java Enum type5. It can be either “processed” or “unprocessed”. reten-
tion_time_corrections is an integer that defines how many times a collection
should go through the cycle of retention time corrections and regrouping during
preprocessing (see chapter 3.3.5).

Like collection_state, analysis_state is a string from an Enum type. It can
be either “ready”, if the analysis has yet to be run, or “completed” if it has
been completed. reduced_file_dir is the directory in which a reduced MS/MS
file for the analysis will be stored.

Details concerning tables in Figure 6.10

The tables in the second Figure contain data from experiments and analyses.
Following roughly the order in which the various data are used throughout a
typical project in QALM:

• A report_peak corresponds to one row of data from a peak-report (as
generated by XCMS) for which a matching MS/MS-spectrum has been
found. Any number of report_peak-records may be linked to a given
analysis.

• A spectrum is related to a record in m2file (representing MS/MS-files),
and may match one or more report_peak-records.

• An MS/MS file (m2file) is related to an analysis (analysis), and can
contain many spectra (spectrum).

• Amascot_query contains the results of one of the queries from a mascot
search (it therefore corresponds to a specific spectrum-record; that from
the spectrum used as input for the search).

5Simplified, an “Enum” is an object that may take on values, one at a time, from a list of
specific, immutable “states” defined in the Enum itself.
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• A mascot query (mascot_query) may include a number of peptides
(matching_peptides); potential peptides in that they were found to
match the criteria from the spectrum during the Mascot search.

• A peptide may be found in several different proteins, somatching_peptide
may refer to several matching_proteins (note that different proteins
may also contain several of the same potential peptides).

Each peak for which a matching MS/MS spectrum is found is inserted into
report_peak. This feature exists mainly to make it possible to refer back
to the report-peak from a matched spectrum. Some formats of the final re-
port generated by QALM include the names of the peaks/rows (such as eg.
“M501T3371”) in the peak-report for the same analysis. Such names are stored
in peak_name_in_report. Note that the report itself is not referenced here, nor
anywhere else in the database. A unique filename for the report is created based
on the name and id of the analysis, and it is left to other components of QALM
to handle any references to this.

As mentioned, a spectrum refers to a spectrum in an MS/MS file. A spec-
trum will be inserted to the database when a match occurs during the reduction
of an MS/MS-file, and will therefore be related to the m2file representing the
file it was found in, and the peak_report it matched. Note that the table
does not contain any data from the MS/MS-file, but only the ID-number the
spectrum has in the MS/MS file (id_in_m2file), and the ID of the precursor-
spectrum (precursor_spectrum_id. See section 6.6.1 for more information on
the format of MS/MS files).

In m2file, file_path stores the path to the MS/MS file that will be reduced
(not to be confused with the final reduced MS/MS file, which may be stored
elsewhere). In m2file_state the state of the MS/MS-file is stored. It can be
either unreduced or reduced. This state relates only to QALM, and not the
file itself, which is never actually changed; reduced simply means that a new
file containing portions of the data from the original MS/MS file (ie, a “reduced
copy”) has been created.

mascot_query stores selected data from each query in a Mascot .dat-
file. Each query in such a file corresponds to a specific spectrum from the
MS/MS-file used to initiate the Mascot search. This means that once a .dat-file
has been reduced, there should be one record in the mascot_query for each
record in spectrum under the same analysis (remember a spectrum belongs
to an analysis by way of its relation to an m2file). This also means that
although there is no direct relation between them in the database, the columns
spectrum_id in mascot_query, and id_in_m2file in spectrum refer to the
same field in the same file. For corresponding records, these id’s should therefore
be the same.

This solution may perhaps appear problematic at first, since the same ID is
stored twice, in two different places, with no relation between the two instances.
Remember however, that although related6, the two instances originate from
two different sources. It is conceivable that a different database design would
handle this issue better. This might be required if QALM is to be expanded
further, for instance to support several MS/MS-files and corresponding mascot

6The mascot query being the result of a search with the spectrum as input.
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results in each analysis. For the current state of QALM however, the issue does
not appear to pose significant problems.

As a sidenote to this, it should be pointed out that if a user should acci-
dentally choose to import the wrong .dat-file before attempting to generate the
final report, this is likely to be detected, since it is highly unlikely that all pairs
of values for id_in_m2file and spectrum_id will be the same. This will result in
an exception being thrown and a warning about a “mismatch between MS/MS
data and mascot data”. Even so, the addition of a more explicit check to ensure
that the correct files are used is recomended for any future implementation.

The remaining columns in mascot_query correspond to similarly named
fields in Mascot .dat-files. The same is true for non-key columns in match-
ing_peptide and matching_protein. All these values are used in the final
reports generated by QALM, and are defined under section 6.3, where the var-
ious report formats are described.

6.5.4 Issues with the current database

For practical reasons relating to time and efficiency, the early test-runs of QALM
were carried out using relatively small data-sets and MS/MS-files (typically
between 1 and 100 megabytes). This appeared to be sufficient to demonstrate
the function of the application, and for a long time, no problems relating to the
database were observed.

Later, when QALM was tested with bigger files (MS/MS files ranging from
a few hundred megabytes up to several gigabytes in size), timeouts started to
occur when a lot of data was inserted into the database7. The reason for this
error has not been identified, but it may be related to the strain put on the
database when large amounts of data are being inserted in a short period of
time. During reduction of .dat-files for instance, a large number of calls to the
database may occur in rapid succession.

In any case, the result of such an interruption will be that not all data for a
given MS/MS-file or .dat-file is inserted into the database. When this occurs, the
only current solution is to repeat the process; the existing data for an analysis
will then be deleted8, and hopefully a new, successfull operation will replace it.

For the future, there are several actions that may be taken to avoid this
error:

1. Currently each piece of information is inserted into the database indi-
vidually (each Matching Protein, for instance). An alternative approach
grouping such pieces of data and inserting it in batches (so-called “pre-
pared statements”) would significantly reduce the number of calls to the
database and might reduce the risk of such “timeouts”.

2. Replacing the Derby-database with a bigger, more heavy-duty DBMS with
better support for such intensive usage (if an application like QALM is to
be used in practice, this should be done regardless of this specific time-out
error, as discussed in the introduction to Derby in section 6.5.2).

7Technically, the error states that “a lock could not be obtained within the time requested”.
8When reducing an MS/MS-file or a .dat-file, it is standard procedure to check for any

existing data and ask for confirmation before replacing it.
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3. In addition, the code for connecting to the database and performing the
insert-commands from QALM should be scrutinized again for potential
weaknesses that may be contributing to this problem, or alternative solu-
tions that may result in better performance.

6.6 File formats

In this section, the basic formats of the mzData-files and the mascot result files
will be described. Algorithms for mining such files for information and reducing
their sizes are discussed in section 6.7.

6.6.1 Initial MS and MS/MS data: The mzData format

The reason for limiting support to one format is the need to mine the files for
data later (see section 6.1.9). For the first version of QALM, adding support for
more than one format would be timeconsuming and impractical. The selection
of the mzData format was not a decision taken during the implementation of
or for the sake of QALM - it was simply the format in which test data was
supplied9.

mzData is an XML-based format adhering to certain rules and specifications,
as defined in it’s XSD. Citing the abstract from [mzMemo]:

(..) mzData is an XML format for representing mass spectrometry
data in such a way as to completely describe the instrumental aspects
of the experiment. The key feature of the format is the use of external
controlled vocabularies to allow data from new instruments and new
experimental designs to be shared in a common format.

In spite of this aim of being able to support future instruments and new
data, the mzData format is currently deprecated by the Proteomics Standards
Initiative. The reason for this was the parallel existance of another such format;
mzML, developed at the Seattle Proteome Center at the Institute for Systems
Biology. The two formats have now been replaced by a single new format,
mzML, which incorporates the best ideas from each of the two. mzML was
released in June 2008, and updated in june 2009.

Support for the new format has not been added to QALM yet for two reasons:

1. The test-data supplied was in the mzData format, so this is what was
available from the onset of the project.

2. QALM is primarily a proof of concept, and although it would be an ad-
vantage, using the new format is not a crucial requirement at this stage.
In any case, adding support for mzML in the future should only require
the replacement of a single component of QALM.

9This may have depended on the instrument used; the format a given mass spectrometer
may export data to may vary from instrument to instrument.
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Figure 6.11: An mzData file: Root node and description.

The contents of an mzData file

Figures 6.11 to 6.14 show the structure of an mzData file. The data is from a
set of samples provided for the tesing of QALM.

Note that the “+” and “−” symbols are not part of the file, but rather con-
trolls in the program displaying the file. They allow sections of the file to be
“collapsed” or hidden from view while navigating it. In Figure 6.11 for instance,
the elements instrument, dataProcessing and spectrumList have been col-
lapsed. Figure 6.12 shows the spectrumList element and one MS-spectrum
from the list under it expanded (note the attribute count in spectrumList -
this is used by Mascot during the search to follow). Figure 6.13 shows an MS/MS
spectrum with a precursorList. Two data elements under these spectra are
collapsed; Figure 6.14 shows what they look like when expanded.

The first element, mzData, is the root-node or element, which contains
all the other nodes in the document. The cvLookup element contains the
name, location, version of a controlled vocabulary source, and a label used to
reference it from within the document. description (Figure 6.11) includes
various descriptive information about the sample, it’s source, the instrument
used, and more. All this information is kept as-is when QALM reduces an
MS/MS-file. In practice, the section is copied as a whole into the new, reduced
document.

Figure 6.12 shows four collapsed spectra under the spectrum list, followed
by one expanded MS-spectrum while Figure 6.13 shows an MS/MS spectrum.
Of special interest in the context of this thesis are:

• The attribute id, identifying each spectrum uniquely within the file. The
columns id_in_m2file and spectrum_id in the database tables spec-
trum and mascot_query respectively, refer to this id.

• The attributes mzRangeStart and mzRangeStop, which identify the m/z-
range for an MS-spectrum.

• The attribute msLevel under each spectrumInstrument-node. These
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Figure 6.12: An mzData file: The spectrum list with one MS-spectrum ex-
panded.

identify the spectra as either MS-spectra (if msLevel is 1), or MS/MS-
spectra (if msLevel is 2). is marked with a red

• The cvParam nodes that have the name-attribute “timeInMinutes”. It’s
value-attribute as a number; this is the retention time of the spectrum.

• The cvParam nodes that have the name-attribute “MassToChargeRatio”.
The number under value is the m/z-value of an MS/MS spectrum.

The last three are marked with red circles in Figure 6.13.
The nodes mzArrayBinary and intenArrayBinary contain base64 en-

coded binary data. mzArrayBinary contains the list of m/z-values for a spec-
trum, while intenArrayBinary stores the intensities for each member of that
list.

Note the various types of content represented in the XML format. The
start-elements (like <spectrum>) , end-elements (like </spectrum>), and
attributes have already been mentioned. In addition there can be characters
(plain text), whitespace, comments, and more. This is important because the
algorithm used to traverse the XML data must be able to identify and classify
each piece of the document and handle it correctly, a process which will be
detailed in section 6.1.9.

More information about the mzData format may be found at the Proteomics
Standards Initiative website10.

6.6.2 Mascot Results: .dat-files
When a mascot search is carried out, a plain text file containing the results is
produced. From this file, various reports may be genarated an exported. The

10Description and references for mzData from the Proteomics Standards Initiative:
http://www.psidev.info/index.php?q=node/80#mzdata
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Figure 6.13: An mzData file: An expanded MS/MS-spectrum.

Figure 6.14: An mzData file: A field containing binary data.

contents and formats of these reports may vary depending on what type of
search is performed (Peptide Mass Fingerprinting, Sequence Query, or MS/MS
Ion search, as in the case of QALM) and the result one is looking for.

In stead of making use of one of the exported formats, QALM mines the
original .dat-file itself for the requested data. The reason for this is mainly to
ensure that all the data is available in case it should prove neccessary later.

The Contents Of a .dat-file

Before the list of results in a .dat-file, there are various settings, definitions and
other data. This data is currently not used in any way by QALM, and will not
be discussed here. Instead, focus will be on the sections of the .dat-files from
which QALM imports data to the database.

The input for a Mascot search consists of an MS/MS file containing a number
of spectra. Each of these spectra effectively becomes a separate search query,
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and the .dat-file from a search will contain separate results for each such query.
The overall data is divided into sections with various types of information, and
results from each of the queries may be represented in each of these sections.

The sections of importance for the function of QALM are:

• The summary section, which starts with:
Content-Type: application/x-Mascot; name="summary"
For each query, there are four lines; one for each of the following:

- qexp: The mass over charge and charge, separated by a comma.

- qmatch: The number of peptides in the database matching the mass.

- qplughole: The threshold for homology.

• The peptides section, which starts with:
Content-Type: application/x-Mascot; name="peptides”
This contains a list of all the matching peptides for each query, and for
each such peptide, a string with data separated by commas. This data
includes:

- It’s theoretical mass

- The delta mass (deviation from the theoretical mass)

- The peptide seqence.

- A score for the match.

- A list of matching proteins (proteins in which the peptides occur).

• The input sections, with information about each query, begining with:
Content-Type: application/x-Mascot; name="query17"Among other
things, this section contains information about the queries stored in a sin-
gle line (the “titleString”) in the following format:

spectrumId=47062 TimeInMinutes=7.844 somethingElse=(...)

The most important attributes for QALM here are the spectrumId and
the retention time (TimeInMinutes).

What the various values mean is described in the section discussing the final
reports generated by QALM (section 6.3). The process for getting the required
information from .dat-files will be described in section 6.7.2.

6.7 Selected algorithms and other solutions
This section describes some of the technical solutions in QALM in more detail.
Note that some familiarity with general programming-terms and algorithms
are assumed. Instructions for obtaining a copy of the source-code and API
documentation for QALM are included in Apendix A.

6.7.1 Reducing MS/MS Files
To reduce MS/MS files, QALM makes use of Java classes and objects that rep-
resent the various types of XML elements that occur in the mzData files. The
classes used for this were generated using the tool xjc under the Java Architec-
ture for Xml Binding (JAXB). JAXB enables the “marshalling” of Java objects
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into XML objects for the purpose of storage, then “unmarshalling” them back
into Java objects. Given a reference (URI) to an XML schema (an XSD docu-
ment) and the name of an existing directory, the xjc-tool produces a set of Java
classes containing members corresponding to the XML-nodes and attributes de-
fined in the schema11. Figure 6.15 shows a repetition of the procedure used to
generate the classes used by QALM. (The classes used in QALM are located in
the java package no.kjartanleroy.codproject.xmlbindings).

Figure 6.15: Demonstration of how XJC was used to generate Java classes used
by QALM: Java-files corresponding to elements in the XML schema mzdata.xsd
are stored in the directory generated.

Overview of the algorithm

QALM reduces MS/MS files through four main steps:

1. Iterating over elements in the original file before <spectrumList>, and
outputting each of them to a temporary XML file.

2. Once <spectrumList> is reached, do the following for each <spectrum>
under it while keeping track of the number of matches:

- Go through the spectrum recursively and populate the Spectrum-
Type.12

11More information about JAXB may be found at:
http://java.sun.com/xml/jaxb
For an overview, the relevant Wikipedia article is also useful:
http://en.wikipedia.org/wiki/JAXB

12Recursively here means that all elements in the hierarchy under a spectrum should be
read and represented by an object of the appropriate Java class which will be made accessible
through the SpectrumType object.
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- Append matching spectra to the temporary file (see below)

3. For any encountered elements not under spectrumList (in practice </spectrumList>
and </mzData>), append them to the temporary file.

4. Finally, go over the temporary file again and rewrite it to the final file,
making sure to fill in the attribute count under spectrumList.

The reason for performing the reduction in this manner has to do with the
options for handling XML data in Java. There are two main models for working
with XML:

1. The Document Object Model (DOM), in which an entire XML document
tree is loaded into memory. This enables arbitrary parts of the document
to be accessible whenever they may be needed, but may be inefficient for
large documents.

2. Streaming model, in contrast, uses some form of “cursor” which reads one
XML element at a time from the start to the end of the document. At
any given time, only the element currently pointed to by the cursor may
be accessed and the cursor may only be moved foreward. This provides a
very efficient way to scan through large XML documents, but limits the
options for navigating them.

In addition to these, JAXB provides the option of marshalling and demar-
shalling Java objects. Although this is quite different from DOM, it suffers from
the same issues in the context of QALM: Loading an MS/MS file potentially
several gigabytes in size into memory would require large amounts of memory,
and would most likely be a prohibitively slow process. Marshalling smaller ob-
jects into XML on the other hand, would not pose any problems, and would
simplify a part of the process.

QALM therefore uses a combination of the streaming model and JAXB mar-
shalling: The Java Stream Reader API for XML (StAX) provides a quick way
to scan through the original XML document, and is used in QALM to quickly
generate java-objects representing each of the spectrum-elements (Spectrum-
Type, and output directly the elements that are not part of spectra (in essence
everything before and after the spectrum list). Each of the SpectrumType-
objects are checked to see if it matches any of the report peaks, and appended
to the temporary file using JAXB. This process is explained in more detail in
the following section.

Checking for matches and adding spectra

Checking if a spectrum matches any report peaks is done by the following al-
gorithm (simplified / abstracted), which uses an array-list of SpectrumType-
objects to keep track of the spectra to output:
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Data:
spec: The new spectrum to check (either MS or MS/MS)
rt: Retention time from spec
msl: MS-level from spec (MS = 1, MS/MS = 2)
sList: An array list containing matched spectra

Procedure; For each encountered spectrum spec:

1. If(msl = 1):

if (sList.length > 1){ marshallSpectrumList() }

Clear sList

m1MatchList = getMatchingM1Peaks( spec, rt )

if(m1MatchList.length > 0){ sList.add(spec, rt) }

2. Else, if(msl = 2):

if(sList.length = 0){ rt mismatch; do nothing! }

else:

mz = spec.getMzValue()

preId = spec.getPrecursorId()

m2MatchList = getMatchingM2Peaks(spec, rt, mz, preId)

if(m2MatchList.length > 0):

sList.add(spec)

saveDataToDB(m2MatchList)

The method getMatchingM1Peaks() scans the list of peaks selected from the
peak report (from XCMS) and returns any peaks that match the retention time
of the current spectrum. getMatchingM2Peaks() does the same for MS/MS-
peaks; it updates and returns a list of matches between spectra and peaks
(these are stored in the database by the call in the last line).

marshallSpectrumList() appends all spectra in sList to the new, temporary
XML file. Notice that the sets of spectra in the sList is added to the new file
if and only if a new MS-spectrum (level 1) is encountered, and there are two or
more previous spectra in the list. The reasoning behind this is as follows:

• The targets of the search are level-2 spectra and their precursors under
the conditions that:

- The level-2 spectra have mz-values matching a report peak

- The precursor has rt matching that of the same report peak.

• All level-2 spectra have a level-1 precursor spectrum, so the first spectrum
in the list will always be a level-1 spectrum.

• If level-2 spectra occur in the list, it must therefore have length greater
then 1, and conversely, if there are more than 1 elements in the list, all
except the first must be level-2 spectra.
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• All spectra in the list must be matches; a level-1 spectrum must have an
rt value matching that of one or more report peaks, while level-2 spectra
following it must havemz-values matching those of the same report peaks.

• The last instance in a set of level-2 spectra with a common precursor must
have been included once a new level-1 spectrum is encountered, since
all MS/MS spectra in the original XML-file follow directly after their
precursor (MS) spectrum.

This ensures that all matching MS MS/spectra are included, and that they
will be preceeded by their respective precursor spectra. Two other points worth
noting to better understand this algorithm:

• It allows small chunks of output to be made many times throughout a
reduction.

• If the rt for a level-1 spectrum is a mismatch, sList will be empty, so
all level-2 spectra encountered are ignored until a new, matching level-1
spectrum has been encountered.

Binary data and the Apache Commons Codec

The information stored under the data-elements (see fig.6.14) is stored in base
64 binary. In order to unmarshall this into a Java object and Marshall it back to
XML later, the Commons Codec from Apache Commons13 is used to decode and
encode the data (The library is in the Java JAR-file commons-codec-1.4.jar
in the /lib folder under QALM).

6.7.2 Mining Mascot: Retrieving data from .dat-files
To retrieve the data needed from Mascot result files, QALMmakes use of Mascot
Parser14, a library developed by Matrix Science (the creators of Mascot) specif-
ically for the purpose of accessing such files. Mascot Parser is “(...) a package
that provides an Application Programmer Interface (API) to the Mascot result
and configuration files.” [MascotParser].

Use of Matrix Parser relies on the availability of a Java JAR-file (msparser.jar)
and a software library (libmsparserj.so), both of which are found in the lib-
catalog under the QALM root directory.

Note that on 64-bit computers, a different version of libmsparserj.so is needed.
This is included in QALM, but needs to be renamed; please refer to the instal-
lation instructions in Apendix A for details.

13http://commons.apache.org/codec/
14Mascot Parser is available from:

http://www.matrixscience.com/msparser_download.html
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Usage

The following is a simplified example of how Matrix Parser may be used:

// Load file and prepare for reduction:
String filePath = "/path/to/mascot-file.dat";
ms_mascotresfile file = new ms_mascotresfile(filePath, 0, "");

// Loop over queries in file:
for (int i = 1; i <= file.getNumQueries(); i++) {

// Instantiate a TO-object to store Mascot Query information:
query = new MascotQueryTO();

// Get input query and title string:
inputQuery = new ms_inputquery(file, i);
String titleString = inputQuery.getStringTitle(true);

// Get the start and stop-positions of the value of spectrum id
// in the title string (between "spectrumId=" and " ")
int specIdStart = titleString.indexOf("spectrumId=") + 11;
int specIdStop = titleString.indexOf(" ", specIdStart);

// Fetch and store the value as an integer in the query object:
query.setSpectrumId(Integer.parseInt(

titleString.substring(spectrumIdPos, spectrumIdEndPos)));

// For each query i, fetch the value of the mass-field from
// the summary section, and store it in the query-object:
query.setQmass(file.getSectionValueDouble(

ms_mascotresfile.SEC_SUMMARY, "qmass" + i));
}

Similar code is used to retrieve all the relevant information from mascot files.
In broad terms, the steps in the overall algorithm involve doing the following
for each query in the .dat-file:

1. Create a MascotQueryTO-object

2. Set the variable “analysisID” in that object to the id of the current analysis.

3. Populate that object with query-level values (id, mass, score, etc)

4. Insert the information in the MascotQueryTO into the database

5. Create an ms_peptidesummary (PS) to access the peptide list

6. Create an ms_proteinsummary (RS) to acces protein information

7. Iterate over the peptides using PS, and for each of them:

(a) Create a matchingPeptideTO-object to represent it

(b) Populate that object with data fetched from the peptide
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(c) If the peptide scores above the threshold15:

i. Insert it into the database

ii. Get the list of proteins in which the peptide ocurs

iii. For each such protein:
- Create a matchingProteinTO-object
- Fetch and store the accession (id) of the protein in it
- Fetch it’s description using the RS-object
- Insert the protein into the database

Whenever something is inserted into the database throughout this process, a
reference to the element it belongs to is always included (for instance, a mascot
query refers to the id of the analysis it is included under, while a peptide fetched
from that query refers to the id of the representation of that query in the
database, etc). The result is a set of records in the database that will show
the relationships between the various pieces of data from each .dat-file, and
where that data will correspond to the data in the MS/MS-file that was used
to generate the .dat-file through the Mascot search.

The relevant tables in the database were described in section 6.5.3 and illus-
trated in Figure 6.10.

6.7.3 R Scripts And How To Call Them

The R-procedures needed in the context of QALM were described in chapter
3.3. This section describes how scripts to execute such procedures are generated
and called from the main application.

Scripts

The use of R under QALM may be divided into two main steps and several sub-
steps, each of which involves executing a separate R-script. Preprocessing is
performed once for a collection, while analyses may be performed several times
for each collection; usually once for each pair-combination of situations under
the collection. The set of scripts and results for each of the main steps are:

1. Preprocessing:

prepareFileList.R supplies the files to include in the group.

xcmsSet.R creates the xcmsSet-object from the files.

group.R groups the peaks in the xcmsSet-object.

retcor.R performs retention time correction.

fillPeaks.R fills in missing peaks.

2. Analysis / peak-reports:

15The threshold is set in the file QALMSettings.properties. See section 6.7.5
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diffreport.R generates peak-reports for two specified situations under a
specified collection.

In addition to these scripts, two special scripts are used: RPreparations.R,
which loads the XCMS package and the other scripts, and RSourceFile.R,
which is generated anew before each main step and is responsible for calling all
the other scripts in succession.

Any environment-settings needed in R may be added to RPreparations.R,
as this script will always run before the others. RSourceFile.R on the other
hand, should not be changed, as it will be overwritten the next time QALM
makes any calls to R. The rest of the scripts may be changed if necessary, for
instance to set different arguments to a command under certain conditions. This
solution allows for some flexibility in the way R and XCMS is called; The actual
R-calls may be changed a great deal without having to make any changes to the
Java source code.

Although the generation of peak-reports (step 2) depends on the existance
of data resulting from preprocessing, the calls to each of the two steps run
independantly of each other. The way they are called is a illustrated in Figure
6.16, which displays the first three scripts needed for the preprocessing-step.

Figure 6.16: Overview of the procedure for producing and calling R-scripts.
Elements to the left represent Java-objects, while “R Scripts” and “Generated”
toward the right represent directories containing individual R-script files. See
the description in the text.

Calling R

The task of executing a set of R-scripts (either for preprocessing or analysis)
involves the following calls (corresponding to the numbers in Figure 6.16):
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1. The Controller creates a set of Java objects to represent each of the re-
quired R-commands. These objects are implementations of the IRScript
interface16, and correspond to specific R-Script files.

2. Each of the RScript-objects are added to a list in an RScriptMaster-
object in the order they should be executed in using the method addScript().

3. When all the script-objects have been added, the controller calls the
method executeScripts() in RScriptMaster.

4. The RScriptMaster deletes any existing file RSourceFile, then creates
a new, empty file, and places a call to execute RPreparations.R in the
first line. It then iterates over the RScript-objects received from the
controller, and adds one line to RSourceFile for each object.

5. Finally, RScriptMaster calls R through the operating system and re-
quests it to run the script RSourceFile.R.

6. When RSourceFile.R is executed, it calls RPreparations.R and the other
scripts in succession.

To recapitulate: The main script for initiating either prepcoessing or anal-
ysis is generated by QALM, then run through a call to the the operating sys-
tem. In the case of an analysis, this would only include one call to the script
diffreport.R. For preprocessing however, a number of scripts would be called,
and two of them (group.R and retcor.R) may be called several times with
different arguments each time.

The output from R is usually sent to the command line from where the scripts
were executed. In the case of QALM, this output is caught and redirected to
the Processing Panel using the Background processor, as described in the
following section.

6.7.4 The Processing Panel And BackgroundProcessor

Some of the tasks performed by QALM take significantly longer time to complete
than others. Such operations may also produce output that could be usefull or
informative throughout the process. If such operations were started without
any thread-handling the result would be a “frozen” GUI, with no possibility of
outputting any information or results. The user would simply have to wait until
the operation either completed or failed and an error message was shown before
being able to continue.

To avoid such problems and to enable relevant output to be displayed within
the application, QALM runs certain tasks in a separate thread, and provides
the option of outputting data from tasks run in that thread in the “processing
panel”.

The main class in the GUI-component of QALM is QALMGui. Within
this class, there is an inner class called BackgroundProcessor which is re-
sponsible for the thread-management. This class extends the abstract class

16That is, they are specializations of the type of object, “RScript”. Simplified, one might
say that Xset and Group are specific types of RScript‘s, similarly to how cat and dog are
specific types of mamal‘s. The point of this is to ensure that the RScriptMaster accepts all
objects that are valid RScript‘s, but no objects that are not.
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javax.swing.swing.SwingWorker to manage threads. The constructor in
BackgroundProcessor takes two arguments:

• operation: An instance of BackgroundProcessEnum that identifies
the operation to run. This lets all background-processes to run through
the same class. The alternative would be to create a separate class for
each background-operation.

• param: An Object-array for passing arguments to the method to call.
Since the required type is Object, all Java objects can be passed here.

WhenBackgroundProcessor is instantiated, relevant parameters are passed
in the array param. These are stored as object-variables in theBackgroundProcessor-
instance, and when the method execute() is called on that object, they are used
to run the specified operation in the a separate thread.

In the case of preprocessing for instance, the following method in the GUI
is called. It instantiates the BackgroundProcessor, which in turn calls the
Controller (in the new, separate thread):

/**
* Method for initiating preprocessing in the background:
* (The parameter "c" is the collection to process)
*/
protected void runPreprocessing(CollectionTO c){

// Store the parameter "C" in the Object-array "paramList":
Object[] paramList = new Object[]{c};

// Instantiate the BackgroundProcessor, specifying "PREPROCESS"
// as the operation, and "paramList" as the arguments:
BackgroundProcessor preproc = new BackgroundProcessor(

BackgroundProcessEnum.PREPROCESS, paramList);

// Start preprocessing in the background:
preproc.execute();

}
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Running the code snippet above causes the following two methods in Back-
groundProcessor to be called. The first is the constructor, responsible for
instantiating the class. It causes the processing-panel to be set to visible,
and creates a PrintStream-object that refers to it. The parameter passed
to PrintStream is an object of type TextAreaOutputStream; this is a
class specially written to forward and output text to a specified JTextArea-
component17. Here, the processing panel text-area (called txtAreaProcessingOutput)
is passed to the TextAreaOutputStream, causing any text that is sent to the
PrintStream output to be forewarded to that text-area.

The constructor also registers which operation is to be performed, stores
the relevant arguments from the array param, and does any other necessary
preparations for the main call that will follow.

/**
* Constructor.
* @param operation Constants representing the operation to run.
* @param param Any data the current operation needs to run.
*/
private BackgroundProcessor(

BackgroundProcessEnum operation, Object[] param){
super();
// Change cursor to a "sandglass" or other "busy"-icon:
setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

// Show the processing-panel in the GUI:
setProcessingView();

// Create a reference to a PrintStream-object that will
// send text to the JTextArea in the ProcessingPanel:
this.output = new PrintStream(

new TextAreaOutputStream(txtAreaProcessingOutput));

// Set the type of operation to be called
this.currentOperation = operation;

// Any preparations for the specified operation:
switch(operation){

case PREPROCESS:
// Store the collection in the object:
this.collection = (CollectionTO) param[0];
break;

case (...)
}

}

17This solution is adapted from a solution proposed by Ranganath Kini in an online
discussion in 2006. See the post dated 06 Feb 2006 05:58 GMT at:
http://www.javakb.com/Uwe/Forum.aspx/java-programmer/24140/Redirecting-System-out-
println. A link is also available from the API for the TextAreaOutputStream-class.
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The second call to BackgroundProcessor in turn calls the method in
Controller for preprocessing the specified collection.

/**
* Run the operation specified in the call to the
* constructor in a background thread.
*/
@Override
public Void doInBackground() {

try {
// Run whichever command this instance was instantiated to run:
switch(this.currentOperation){

case PREPROCESS:
guiCtrl.preprocessCollection(collection, output);
break;

case (...)
(...)
}

Notice the argument output in the call to preprocessCollection() here. output
is the variable defined in the previous code snipet (the constructor). It is passed
on to the Controller-method so that output from the preprocessing can be
output to the JTextArea in the processing panel.

Once the process has completed, the method done() is automatically run.
In this case it updates the relevant information-fields in the GUI, hides the
processing panel, and changes the cursor back to it’s regular icon.

/*
* Executed in event dispatching thread when doInBackground() completes.
*/
@Override
public void done() {

switch(this.currentOperation){
case PREPROCESS:

// Update the GUI-elements relevant to this operation:
panelManageCollections.updateCollectionLists();
break;
(...)

setProcessingViewOff(); // Hide the processing panel
setCursor(null); //turn off the "busy" cursor

}

The same procedure is used for all processes that require use of a separate
thread and the background panel. This includes all the major tasks such as
preprocessing, analysis/peak-report generation, file-imports and reductions, and
generation of the final reports.

Note that the output itself is left to the methods implementing each of
these tasks. The BackgroundProcessor simply provides each of them with a
PrintStream-object that they may choose to make use of.
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6.7.5 External Settings, Text And Validation

Technical settings and text that is not integrated directly into the GUI are stored
in two Java Properties files in the package no.kjartanleroy.codproject.settings.
These are plain-text files that Java has special methods for reading from with
ease and efficiency.

Settings

The first file, QALMSettings.properties, holds information such as the name
of the database, the database driver and the path used to access it, as well as a
few path-strings. In addition, there are three settings that affect computations:

• PeptideMatchingScore: The minimum score a peptide needs to have to
be considered a match when retreiving data from a Mascot .dat-file.

• MzLim: The limit for matching m/z-values during MS/MS file reductions.

• RtLimInSeconds: The retention time limit for MS/MS file reductions.

The file and the values are loaded when QALM starts, and can be accessed
with a call to the method getInstance() in the class Settings, which is an
implementation of the interface ISettings.

In addition to this, ISettings has three noteworthy methods. If the user
enters a name such as Peter’s collection for a collection, the apostroph may in
certain cases cause problems, for instance when inserted into the database. To
be safe, this and other unsafe characters should in certain situations be replaced
by some other character that is known to be safe. This requires a comparison to
a list of characters that are known to be safe. What characters are safe however,
may depend on the situation. For instance, an analysis-name, which is used to
generate the file-name for a report, may need to conform to stricter rules than
text in the description for the same analysis (there may be symbols that are
acceptable in the database, but that may not be permitted in file-names). For
this reason, there are three separate methods for accessing character lists in
ISettings:

• getStrictLegalCharacters() returns an ArrayList of all alpha-numeric char-
acters (from a-z, A-Z and numbers 0-9), as well as the underscore (_) and
dash (-). These are characters and symbols that will be acceptable in most
cases.

• getLaxLegalCharacters() returns a less strict set of characters. In addition
to the previous list, this includes the characters: æøå, ÆØÅ,.;:@!/?*()[].

• getForbiddenCharacters() returns an array of characters that should not
be used in the database.

These methods are used in various combinations, mainly by the Adapter.
In some cases, strings that contain illegal characters (or are too long) will cause
an exception to be thrown, and an error message explaining the problem to
be displayed. In other cases, illegal characters will simply be replaces with an
underscore, “_”. The above example would then result in a collection called
“peter_s_collection”.
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Text strings

The other properties file, ApplicationText.properties, contains a long list of
words, sentences, headings for reports, and more. These are pieces of text that
may be output when running QALM, but are not directly integrated into the
GUI (unlike titles, text on buttons, etc).

In the same way as for settings, this text is loaded when QALM starts,
and accessible through a call to a Java object; in this case, an instance of
TextStrings, which implements ITextStrings, an interface defining a single
method: getText(String key).

Techincal motivation and choices

Storing text and settings in files separate from the source code has several
benefits. The primary motivations are to make the them more accesible for
editing and to simplify the code by separating content from logic.

“Hiding” the implementation of classes behind an interfaces has one major
benefit: The implementations can be changed completely without having any
adverse effect on the rest of the application. If for instance one wanted to store
all the text and settings in a database, or in several different files in stead of a
single properties-file, the implementation could be changed to do that; as long
as the interface is still the same, there will be no difference to the rest of QALM.

Both Settings and TextStrings uses the “singleton-pattern”: Instead of
creating a new instance each time access to one of them is needed, a call to the
static class getInstance() in the respective class is called. getInstance() returns
a single instance of the class, through which the needed method may then be
called. Next time a similar call is made, the same instance will be returned,
even if the call is made from a different component of QALM (a new instance is
only created the first time each class is used). The following code, for instance,
will return the text “Scheduling file for deletion:”, which has the key
“SchedulingFileForDeletion” in the file ApplicationText.properties:

TextStrings.getInstance().getText("SchedulingFileForDeletion")

To ensure that the classes are only used in this way, and never instantiated
unnecessarily, they have private constructors, and private static fields that refer
to instances of themselves, once instantiated:

class TextStrings implements ITextStrings {

// Reference to the instance, only reachable
// through the method getInstance():
private static TextStrings instance = null;

// private consstructor, so "new TextStrings()" can
// only be called from within the class itself:
private TextStrings() {

// Do nothing, just avoid instantiation!
}

/**
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* Get singleton.
* @return
*/
public static ITextStrings getInstance(){
// If instance has not been created
// yet, create it now:
if(instance == null){
instance = new TextStrings();

}

// Return the instance:
return instance;

}
}

6.7.6 A Framework For Exceptions And Messages
The class MessageManager under the GUI has methods for handling excep-
tions and displaying other messages and warnings as needed.

Messages

There are several different methods for displaying general “popup-messages”.
Generally, each of these accept various arguments, most of which are fore-
warded to a Java JOptionPane method, which causes an appropriate dialogue
to be displayed. The text displayed in the dialogue will be retrieved through
the ITextStrings interface described in the previous section. The following
example (where msgMngr is an instance of MessageManager), would cause
a dialogue or popup-message containing the text “Please select a situation to
import the files to.” to be displayed.

this.msgMngr.showPopup("NoSituationSelected");

Exceptions

The file ApplicationText.properties contains keys matching the names of
most of the exceptions that may be thrown in the context of QALM. Each key
has a corresponding message that describes the given problem. If an exception
that does not have a corresponding key and message should be thrown, the
default message will be shown in stead: “An unknown error occured.”

In addition to the default text for each type of exception, details for each
specific instance in which the exception is thrown can be added using the mes-
sage field in Exception. Unless the value of message is null (empty), the
message will be apended to the default text under the default text and the
heading “Details”.

Figure 6.17 illustrates how an exception might occur and be handled:
Assume some data is to be inserted into the database, but the operation fails

because the data contains invalid characters. The operation is started from a
calling method in the GUI, and would if successful, be forwarded through the
Controller and adapter to the DBController. The DBController would
insert the data, and the program flow would return to the calling method in
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Figure 6.17: Simplified illustration of exception handling.

the GUI, allowing the application to continue running as normal (the green
arrow in Figure 6.17). Since illegal characters are noticed by the Adapter
however, an exception of the type IllegalCharsInStringException() would
be thrown from there, and it would be propagated back up through each of
the other classes, until it reached the calling method in the GUI. Here the
exception would be caught in a try-catch block (see the code snippet below) and
sent to an instance of MessageManager, which would identify the exception
type and display an appropriate message explaining the problem and listing the
illegal characters that were encountered. The code involved would be similar to
the following:

/**
* Code in the Adapter. "observedIllegalChars"
* is a String containing the illegal characters.
* It will be appended to the general error message
* under ‘‘Details’’.
*/
throw new IllegalCharsInStringException(

"The illegal symbols are: " + observedIllegalChars);

/**
* Code in the calling GUI-class. Only the code
* between "try{" and "}catch" would be run if there
* were no errors. When an exception is thrown, it
* is caught and passed to msgMngr, which handles
* it appropriately.
*/
try{

// Code for initiating the process
(...)

} catch (Exception e) {
this.msgMngr.handleException(e);

}
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6.7.7 FileTreeNode and the StateManager
FileTreeNode is a class that extendsDefaultMutableTreeNode to add sup-
port for file-trees. It adds fields for:

• Keeping track of a file or directory which the FileTreeNode will repre-
sent.

• Sub-files in it if it represents a directory.

• The id of the situation under which it belongs

Methods in the superclass (i.e. the extended class, DefaultMutableTreeN-
ode) are used to add new FileTreeNodes below an existing one (which must
be a directory for it to be able to accept sub-nodes).

The main use for FileTreeNode is in the class StateManager, which keeps
track of the directories and files under a project. When a new project is cre-
ated, StateManager creates a Java DefaultTreeModel. Objects of this type
may contain a hierarchy of TreeNode-objects18. The DefaultTreeModel is
serialized and stored to a file (<project-name>.qpj) when the project is closed.
Next time the project is opened, the file is deserialized and used to display the
folders and files under the project (see Figure 5.3).

Although FileTreeNode is not displayed in the architecture diagram (Fig-
ure 6.3), it may be considered something akin to the TransferObjects (TO-objecs
in the diagram), since it is mainly used in the persistence layer, but also oc-
casionally in others (due to it’s flexibility, FileTreeNode is in some instances
used as a form of “wrapper-object” to modify how information such as file-names
are displayed in the GUI).

6.8 Known issues and potential improvements
QALM is currently a functioning application, yet there are still some issues
that should be improved for it to be truly usefull. Time-outs when working
with the database have already been mentioned; this section explores a few
other potential improvements that might move it from a “proof of concept” to
a truly usefull application.

6.8.1 Multiple MS/MS files per analysis
QALM currently only supports importation and reduction of a single MS/MS-
file for each analysis. While this does supply a “proof of concept” for the im-
portation and reduction of such files, it does still reduce the usability of the
application, as there will often be several MS/MS files for each situation.

The choice not to support multiple MS/MS files was made to save time and
avoid too much complexity when implementing QALM. The focus was instead
on completing a functional application where MS/MS-files could be imported
and reduced, and relevant information from them stored in the database. Such
functionality is now supported, and by using it in a certain way, it is possible to
acquire results from several different MS/MS files related to the same situation:

18TreeNode is an interface which is implemented by DefaultMutableTreeNode, and
thus by extention also by FileTreeNode.
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It is possible to create two identical analyses under the same collection, and
import different MS/MS-files into these. The generated peak-reports would be
identical, but the data retrieved from the two MS/MS files would differ, and the
two final reports generated by QALM would give the required results.

Althogh possible, this is by no means a good replacement for support for
multiple files within each analysis. If QALM was to be developed further, such
adding such functionality would therefore be a natural first milestone19.

6.8.2 Importing files

The component responsible for importing files into QALM currently uses a sim-
ple call to the underlying operating system. The reason for this solution was
twofold: Firstly, it was quick and simple to implement; relevant points consid-
ering that QALM was primarily a proof of concept, and the copying-component
just a small (and easily replacable) part of it.

Secondly, there is currently no simple way to perform file-copying in Java
that works acceptably in all cases. Typical examples involve opening byte-
streams and transfering a file piece by piece using a byte-buffer. This requires a
specific buffer size to be specefied, which might affect the speed of the operation,
especially for large files.

In any case, it is reasonable to assume that the operating system will gen-
erally perform copy-operations faster than Java will be able to. In stead of
spending too much time on optimizing the latter, the former was therefor cho-
sen for QALM.

For the future, it would be advisable to investigate alternatives to the current
solution, primarily because it’s functionality depends on the underlying OS and
may limit cross platform functionality. One viable option may be to make use
of the Path class under the package java.nio.file, which will simplify such
operations greatly, and which is to be released with the next version of Java
(JDK 1.720) sometime in the near future (QALM currently uses Java 1.6).

6.8.3 Support for mzML

QALM currently only supports MS/MS-data in the mzData format, in accor-
dance with specifications of the project it was developed for. Since that data
was produced however, mzData has been deprecated due to the existance of
another similar format. The two formats have now been combined into the new
mzML, and for the future it would be advisable to implement support for this,
as recomended by the Proteomics Standards Initiative. For more information
on mzML, see: http://psidev.info/index.php?q=node/257

6.8.4 Other things

Some other smaller changes that would contribute to the improvemet of QALM
might be:

• Adding support for multiple levels of situations (see section 3.3.1).

19This would also require adding support for several Mascot result-files.
20See: http://java.sun.com/docs/books/tutorial/essential/io/pathClass.html
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• Moving settings such as the threshold for .dat-file reduction from the ex-
ternal settings and into the GUI, thereby allowing users to specify them
while running the program.

• Adding some more “presentable” formats for the final reports, for instance
HTML and PDF.

• Improving support for arguments in the calls to XCMS.

• A solution for storing the data in final reports, thus avoiding having to
re-run the calls for generating them unless something has changed.

• Adding support for running QALM under Windows and other platforms.



Chapter 7

Final results and concluding
remarks

When this thesis was started, very little was known about what the result would
look like, or even which main processes and tools would need to be included.
Throughout the development process, the components involved have grown from
just R and XCMS to a host of technologies including various Java components,
a database, several software libraries for traversing and analyzing files in differ-
ent formats and more. A solution for organizing data in hierarchies of projects,
collections and analyses has been designed, and this has been connected to third
party applications for analysis and data storage. Algorithms have been devel-
oped for traversing various files and extracting and storing relevant information,
while complexity has been reduced by removing irrelevant data.

As it stands today, QALM is primarily an experimental application. Though
it does work as intended and may well be usefull as a tool to automate analyses,
it is important to remember that it was developed as a proof of concept, and that
it is not yet a stable, release-ready application. What QALM does provide is a
useful example of how files and data from mass spectrometry experiments may
be handled, and how the various tasks performed on such data may be integrated
and executed from a single consistent framework. A future application, based
either directly or indirectly on QALM, is likely to benefit from the experience
gained throughout the work done in this thesis.

7.1 Visions for the future

Beyond adding support for the functionality described at the end of chapter six
and possibly revising QALM to make it more robust, there are several posibilities
for expansions in the future:

1. Closer Mascot-integration: If either QALM (or some other application
with an interface that QALM could connect to) were to run on the same
computer as a Mascot-server, then it might be possible to send commands
directly to Mascot. If possible, this would remove the need for exporting
MS/MS-files and requiring the user to perform the Mascot-search manu-
ally, and let the whole process be controlled directly through QALM.

93
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2. Enabling use of an external DBMS, possibly one available over a network.
Such a system might also be expanded to support different users with
different sets of data, sharing of that data.

3. A client-server solution: When an LC-MS-MS/MS experiment is run, the
resulting data is currently stored on one system, and needs to be trans-
fered and imported into a system running QALM to run the analyses
described in this thesis. If QALM could instead be divided into a “server”
component where most of the functionality would run, and a “client” com-
ponent which could issue commands to the server-component, and the
server-component could be granted access to the experimental data, this
would further improve and simplify the analysis process. Combined with
the previous point, this might make up a usefull framework which would
not only allows different researchers to carry out their analyses quickly
and effectively on a common system, but also to share results with each
other.

In addition to technical challanges, such an approach would likely raise
questions related to security and how experimental data is accessed, among
other things. Barriers might exist that would render such a solution diffi-
cult or unrealistic, but this will not be known for sure unless the concept
is explored more thoroughly.
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Obtaining and running
QALM

QALM currently runs on the Linux platform. It has been developed and tested
on a 32-bit system running OpenSuse 11.2 and on a 64-bit system running
Fedora. In addition, an early version of QALM has run on Ubuntu. This
chapter describes how to obtain a copy of QALM, and the requirements for
installing and running it on a platform similar to these.

Requirements
QALM integrates several different applications and technologies, and it is gen-
erally assumed that the following will already be installed in the host system
QALM is to run on. Details regarding the installation of these applications
may vary depending on the platform, but relevant installation guides for most
systems are available from the vendors.

• Java, version 6 or newer. This can be obtained from:
http://www.java.com/en/download/index.jsp

• The R environment is available from the CRAN-network:

– http://cran.r-project.org/mirrors.html

– The University of Bergen hosts a mirror for CRAN. Linux pack-
ages are available for some of the major Linux distributions from:
http://cran.ii.uib.no/bin/linux/

• The XCMS package. As this is a more specialized package, some in-
stallation details are described below.

Installing XCMS
The XCMS package for R can be downloaded from the bioconductor.org website.
If the required libraries are available, the package can be installed from within R.
To do this, start R by opening a terminal and entering “R”. When the program
is started, enter the following:

source("http://bioconductor.org/biocLite.R")
biocLite("xcms")
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If this succeeds, XCMS is installed and QALM should be able to make use
of it. If an error-message results however, one or more libraries may be missing.

XCMS requires the libraries NetCDF and zlib-devel, which may be acquired
as follows:

NetCDF

The NetCDF-library may be downloaded from (in one line):

http://www.unidata.ucar.edu/downloads/
netcdf/ftp/netcdf-4.0.1.tar.gz

Download the package and save it in a directory, then enter the following
commands in a console to install it under the directory /usr/local :

tar -xzf netcdf-4.0.1.tar.gz
cd netcdf-4.0.1
./configure --prefix=/usr/local
make
sudo make install

zlib-devel

The best way to obtain the zlib-devel package may depend on the platrom
running. During development under Open Suse 11.2, the following package,
available from the Open Suse repositories has been used (in one line). The
package was installed and configured automatically by the package manager.

http://download.opensuse.org/repositories/openSUSE:/
11.2/standard/i586/zlib-devel-1.2.3-140.2.i586.rpm

Note: On a 64-bit system, the following package should be used instead:

http://download.opensuse.org/repositories/openSUSE:/
11.2/standard/x86_64/zlib-devel-1.2.3-140.2.x86_64.rpm

Sample data and examples for XCMS

For sample data and examples in XCMS, the following packages are also re-
comended. They may be installed directly from R, just like XCMS itself:

source("http://bioconductor.org/biocLite.R")
biocLite("faahKO")

source("http://bioconductor.org/biocLite.R")
biocLite("multtest")

Installing QALM
QALM itself can be downloaded in the form of a zip-archive from:

http://qalm.googlecode.com/files/QALM.zip
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The archive should be stored in a directory and unzipped there. As long as
the requirements specified above are met, the QALM can be started by running
the java JAR-file QALM.jar, found under the new directory, QALM.

In some cases the file can be started simply by clicking the icon marked
QALM.jar. Otherwise, it can be called from a terminal with the command:

java -jar QALM.jar

Figure 7.1: Starting QALM from a terminal (the archive has been “unzipped”
in the directory Runs).

Usefull notes and troubleshooting

• The library used for Mascot file reduction is available in two versions,
one for 32-bit systems and one for 64-bit systems. Both libraries are in-
cluded with QALM (under the directory lib), but only the file named
libmsparserj.so will be used. For 64-bit systems, it is therefore
necessary to rename the file libmsparserj.so to something else
(e.g. libmsparserj_32.so), and to rename the file libmsparserj_64.so
to libmsparserj.so.

• When started for the first time, QALM will create the database and the
required tables and store it in a directory QalmDB under the main direc-
tory database. If the directory QalmDB is removed or renamed, QALM
will create a new, empty database with the original name the next time
it is started.

NetBeans project and source code

QALM has been developed using the NetBeans IDE1. A NetBeans project which
includes the source code for QALM is available from a Subversion (SVN) repos-
itory under Google Code. The command needed to access and check out the
project is:

svn checkout http://qalm.googlecode.com/svn/trunk/ QALM

This will place all the files in a directory QALM below the the directory in
which the command was issued. Once this process has completed, NetBeans

1Integrated Development Environment
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should be able to find a project named QALM in that directory (Clicking File,
then Open project should display the dialogue shown in the figure below).

While it is possible to access the source code of QALM using other IDE’s
or editors, using NetBeans is highly recomended due to the way it handles
information about the GUI2.

Apendix A, Figure 1: Opening the project in NetBeans
(svn checkout was issued from within the directory tmp)

Just the source code

It is also possible to download just the Java source code and R-scripts used in
QALM. These are available for download in a zip-archive from:

http://qalm.googlecode.com/files/QALM-src.zip

Note however, that this archive does not contain any of the libraries or other
things QALM may require, and is only meant to provide a simple way to obtain
the source code directly. To get a better overview of the project and to be able
to compile and run it, checking out the project from the repository is highly
recomended.

Javadoc API
API3 documentation for QALM is available in the form of a zip-archive from:

http://qalm.googlecode.com/files/QALM-javadoc.zip

Once the archive has been extracted into a directory, the file index.html in
that directory should be opened in a web browser. The packages under QALM
will be displayed in the top left hand frame, while the contents of each package
(such as interfaces, classes and enums) will be displayed below. When an item on
the left hand side is clicked, the corresponding documentation will be displayed
in the main frame to the right.

The documentaion was generated using the Javadoc, and includes comments
for all packages, interfaces, classes, enums and methods in QALM.

2For more information, see http://wiki.netbeans.org/FaqFormFormFile and other Net-
Beans documentation.

3Application Programming Interface
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Beskrivelse av masteroppgåve i Bioinformatikk 
for Kjartan Lerøy, haust 2009 – vår 2010

Utgangspunkt

“R” er ein programpakke for statististisk analyse. XCMS er eit bibliotek / tilleggspakke til R utvikla 
spesielt for behandling av data frå proteinanalyser, som LC/MS og LC/MS/MS1. Når rådata (MS-
spektra) produsert ved slike forsøk vert behandla i R og XCMS gjev dette nye datasett som kan brukast 
til søk I proteindatabaser (t.d. Mascot-databaser) for å identifisere og anslå mengda av bestemte 
protein. 

Sidan R er komandobasert og ikkje har noko grafisk brukargrensesnitt eller direkte kobling til mascot 
er det noko komplisert og tidkrevande å gjenomføre analyse og proteinidentifikasjon.

I vårt tilfelle er det fisken torsk som skal forskast på og karakteriserast. Det er i den samanhengen 
ønskeleg med eit system som automatiserar analyse-funksjonaliteten frå R og XCMS mest mogeleg, og 
som kan bruke desse resultata direkte i søk mot ein Mascot-database2.

Målsetning

Det er tre hovedpunkter som er aktuelle å implementere under dette prosjektet:

1. Eit sett med R-Script som automatiserer behandling / analyser av LC/MS-rådata.

2. Eit grafisk brukergrensesnitt (GUI) som forenklar oppsett og køyring av slike analyser.

3. Ei form for kobling mellom brukergrensesnittet og Mascott, slik at databasesøk vert eit naturleg 
neste steg som kan gjennomførast innanfor same applikasjon / grensesnitt som analysene.

Som nevnt finnst det inga innebygd grafisk brukargrensesnitt for R og XCMS. Det finns derimot 
bibliotek3 som gjer kommunikasjon mellom programmeringsspråket Java og R mogeleg. Per dags dato 
er desse biblioteka ikkje fullstendige, men det er sansynligvis langt nok utvikla til å kunne nyttast i 
dette prosjektet for å utvikle eit grafisk brukargrensesnitt i Java. 

På grunn av usikkerheten rundt dette vil det i første omgang være naturleg å ha hovedfokus på punkt 
ein og to, sidan desse vil henge tett saman, og i alle høve være ei forutsetning for å realisere punkt tre. 

1 LC/MS: «Liquid chromatography» og «mass spectronomy».
2 Mascot: Proteindatabase utvikla for å identifisere protein ut frå data frå MS/MS-forsøk. Mascot-databasen som er 

aktuell i dette prosjektet ligg i Høgteknologisenteret og vert drifta av CBU. 
3 Rjava og org.rosuda.JRI: Dette var opprinnleg to ulike Java-bibliotek som har vorte slått saman til eit, og som gjer 

toveis-kommunikasjon mellom R og Java mogeleg. 
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QALM - Quantitative Analysis of LC-MS/MS-dataIngvarO
tober 19, 2009QALM is a tool for quantitative analysis of proteins. It is based upon the programs XCMSand Mas
ot. A goal is that the average user should not be aware of the underlying programs/toolsR, XCMS and Mas
ot. The basi
 input to the tool is raw data LC-MS- and LC-MS/MS-spe
tra.For using QALM a proje
t should be de�ned. Thus a proje
t 
onsists of the spe
tra 
onstru
tedin the proje
t, and all the results, partly and �nal, produ
ed by QALM.1 Some de�nitionsProtein pro�le is a list of proteins and their amounts (abundan
es).Situation is a spe
i�
ation for whi
h we want to determine the pro�le and 
ompare the pro�leto other situations. An example is liver of 
ods living in a polluted environment of a spe
i�
pollutation.Quantitative 
omparison is the pro
ess of 
omparing the pro�les from two situations. Note:this is a pairwise 
omparison.Colle
tion is a set of situations. Any two situations in a 
olle
tion 
an be 
ompared by thequantitative 
omparison. When a 
olle
tion is de�ned and has been 
ombined (Step 4) it
an not be 
hanged. This means that if one wants to add a situation to a 
ombined 
olle
tion,a new 
olle
tion must be de�ned. This is due to how the program XCMS works, in thatthe �les of all situations of the 
olle
tion must be pro
essesed (
ombined) together in a �rstphase of XCMS.2 A proje
tA proje
t 
onsists of:A set of situations Ea
h situation 
onsists of �les with raw data LC-MS or LC-MS/MS spe
tra.Typi
ally a situation has spe
tra form biologi
al and te
hni
al repli
ates.A set of 
olle
tions Ea
h 
olle
tion 
onsists of:
• A set of situations
• The state of the 
olle
tion, whi
h means steps exe
uted so far.
• Part results 
al
ulated so far.
• Final results.
• A set of quantitative 
omparisions. Ea
h 
omparison 
onsists of:� The (two) situations in the 
omparision.� The state of the 
omparison.� The part and �nal results so far.More? 1



3 The stepsPerforming a quantitative analysis by QALM 
onsists of exe
uting a set of steps. Between some ofthe steps there exists an ordering, in that one of them must be exe
uted before another. Most ofthe steps 
al
ulate partly (or �nal) results, and these are stored. This means that after exe
utionof a step the user 
an take a pause, and then 
ontinue at another time. This again means thatwhen QALM is 
alled, one must spe
ify whi
h step to exe
ute, and depending on the step whi
h
olle
tion to use. However, when inside QALM one 
an perform several steps.The user 
an perform the following steps:Step1 De�ne a proje
t. When starting any of the following steps from "outside", the proje
tmust be given.Step2 De�ne a situation. The parameters are:1. Name of the situation2. The �les of the situation3. OtherStep3 De�ne a 
olle
tion. The parameters are:1. Name of the 
olle
tion2. The situations of the 
olle
tion3. OtherStep4 Perform a 
ombination. A 
ombination is pro
essing ea
h of the raw data �les of a 
olle
tionfor peak dete
tion, mat
hing peaks and retention time aligning. The XCMS operations are:x
msSet, group, ret
or, �llPeaks. The parameters are:1. Name of the 
olle
tion2. OtherIt might be that this step should be divided into two or several steps.Step5 De�ne a quantitative 
omparison. The parameters are:1. Name of the 
olle
tion2. Name of the quantitative 
omparison3. Name of the (two) situations4. OtherStep6 Perform a peak 
omparison. This means 
omparing the mat
hing peaks of the two situ-ations of a quantitative 
omparison. This is performed by the XCMS operation reporttab.The parameters are:1. Name of the 
olle
tion2. Name of the quantitative 
omparison3. OtherStep7 Identify interesting peaks from the peak 
omparison. These are peaks with di�erentamounts (intensities). The parameters are:1. Name of the 
olle
tion2. Name of the quantitative 
omparison3. Other 2



Step8 Identify di�erentially abundant proteins. This is done by sear
hing by Mas
ot by usingLC-MS/MS-spe
tra of the interesting peaks (and also possible using non-interesting peaks).The mass and retention time of the intereting peaks are used to �rst lo
ate MS/MS spe
trafor these peaks. The parameters are:1. Name of the 
olle
tion2. Name of the quantitative 
omparison3. Name of the database (�lesystem) to sear
h in4. OtherStep9 Result assembling. This means 
olle
ting information from several quantitative 
ompar-isons. The parameters are:1. Name of the 
olle
tion2. Name of the quantitative 
omparisons3. OtherStep10 Result presentation

3
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Finding the proteins of the di�erentially abundant peaksIngvarMar
h 4, 2010This do
ument des
ribes the pro
edures for �nding the proteins of the di�erentially abundantpeaks found by XCMS from two situations, sit1 and sit2. Assume there are totally m MS/MS-�lesfor the two situations.1 InputsThe inputs are
• The report(s) produ
ed by XCMS: rtab<-di�report(obje
t, situation1, situation2, "report",parameters)� rtab is an obje
t in R, getting the report about the di�erentially abundant peaks� a dire
tory report_box is 
onstru
ted with plots of the intensities for the di�erentiallyabundant peaks� a dire
tory report_ei
 is 
onstru
ted with the Extra
ted Ion Chromatogram for thedi�erentially abundant peaks� a �le report.tsv is 
onstru
ted, showing the di�erentially abundant peaks (probably sameas rtab)
• MS/MS-�les (.xml) denoted as M2 �les, from the situations. We also denote them asDenote the di�erentially abundant peaks as D = {di}, i = 1, ..., n. The 
ontent for ea
h peakis:
• identi�
ation by mass-to-
harge Mz, and retention time T

• 
ontain data about fold, P-value, Mz and T for ea
h of the MS-�les for the two situations2 OverviewFigure 1 shows an overview of the pro
edure with the di�erent steps. For the �rst four stepsit illustrates the pro
edure for one MS2-run. Step �ve will then 
ombine the results for all theMS2-runs for the two situations under 
onsideration.Considering one M2-�le, we 
an 
on
lude:
• one peak 
an have several potential M2-spe
tra (step1)
• two di�erent peaks 
an share a potential M2-spe
trum (step1)
• an M2-spe
trum 
an mat
h several database peptides, in the same or (most often) di�erentproteins (step2-4)The last step (step5) is then to 
ombine the results from the analysis of ea
h M2-�le, and presentthe re
ognized proteins with some s
ores. 1



3 Step1 - File redu
ingFor performing the most reliable analysis, all the M2-spe
tra in the situation �les should beused. However, in this �rst analysis we will only use spe
tra that may 
orrespond to one of thedi�erently abundant peaks di. We therefore have to extra
t those spe
tra for ea
h �le. Consideringa spe
trum in a M2-�le with pre
ursor mass Mzp and retention time Tp, the spe
trum will be partof the new (redu
ed) �le if
∃di : |Mzp −Mzdi| < δMz ∧ |Tp − Tdi| < δTwhere δMz and δT are the a

ura
ies. Note that Mz and T of the peak (di) is not the integervalue of the identi�
ation, but rather mzmed and rtmed.The results of this step are (for ea
h M2-run):

• A new (redu
ed) situation �le (RM2-�le)
• An 2D array PS (for PeakSpe
tra) with one row for ea
h of the peaks (di), with the �elds� name� fold� tstat� p-value� mzmed� rtmed� 
ount the number of potential spe
tra in the M2-�le for the peak� spe
 the identi�
ation of the potential spe
tra in M2-�le, the identi�
ation is spe
trumid4 Step2 - Mas
ot sear
hFor ea
h of the (redu
ed) situation �les (MR2), a sear
h is performed against a protein sequen
edata base. A result, Mas
otRes2.dat-�le is 
onstru
ted for ea
h situation �le.4.1 Mas
otMas
ot is rea
hed from http://mas
ot.b

s.uib.no/The results are a

essable from http://mas
ot.b

s.uib.no/mas
otdata, where the result �lesare saved under subdire
tories for ea
h day (year, month, day).To �nd how to 
all Mas
ot from a program, go to mas
ot.b

s.uib.no. You will see the Wel
omemessage and a little below that there is a topi
 
alled Mas
ot Daemon.Daemon is a software that 
an 
onne
t to the server and submit/queue multiple sear
hes fromthe user. I.e. if you have many sear
hes to do, you dont need to submit them individually, you
an queue all at on
e at Daemon and he will sort it out.If you 
li
k in Install option there, you will be dire
ted to a ni
e walkthrough of how installand setup.5 Step3 - Mas
ot result extra
tionStep3 extra
ts from the Mas
otRes2 �le the data that is going to be used for the further analysisfor the protein mat
hes.The stru
ture of the .dat-�le determines how to extra
t the protein mat
hes. Ea
h M2 spe
trumin the situation �le (RM2) is denoted a query in the Mas
otRes2 �le. The queries are sorted onin
reasing pre
ursor mass, not mass-to-
harge. They are denoted q1, q2, .....The Mas
otRes �les are divided into se
tions. The se
tions to 
onsider here are:2



• The summary se
tion, 
ontaining for ea
h query:� qmass: the mass (Mr) of the query (pre
ursor), 
al
ulated from the Mz and the 
harge� qexp: Mz and the 
harge� qmat
h: number of mat
hed peptides (to the mass Mr) in the data base� qplughole: threshold for homology
• The peptides se
tion, 
ontaining the queries in in
reasing mass order. For ea
h query:� for ea
h mat
hing peptide is (the most important):

∗ the theoreti
al mass (Mr) of the peptide
∗ the mass (delta) di�eren
e to the query mass
∗ the peptide sequen
e
∗ the mat
hing s
ore
∗ the mat
hing protein(s)

• The "input" se
tion, 
ontaining (mostly from the redu
ed M2-�le) data about the queries inin
reasing mass order, espe
ially:� name="queryi"� spe
trumId� TimeIn Minutes� (a
qNumber, seems as same as spe
trumId)A new �le is 
onstru
ted, where the extra
ted data from the three se
tions are 
ombined inre
ords. There are then one re
ord for ea
h query. The new �les are denoted Mas
otRed �les.5.1 An extra
t from an Mas
otRed �leAn example of three re
ords from an Mas
otRed �le is shown below.

3



------------summary se
tion----------- "input" se
tion ----------------- peptide se
tion -------------------------------query mass exp qplughole spe
trumId Time pep.nr peptide mass delta sequen
e s
ore protein position50 1020.500402 511.257477,2+ 19.020084 36114 6.019 1 1020.523987 -0.023585 LAEEFAVSR 6.38 YIDP_ECOLI 31:392 1021.559647 -1.059245 WYKIGLDK 5.67 CR8AA_BACUK 248:2553 1020.524017 -0.023615 TGFPTTAQAK 3.85 YNR6_YEAST 503:5124 1020.571609 -0.071207 TGNKVYAIR 3.18 DECR_RAT 107:1155 1020.535248 -0.034846 TGQLVQYGR 3.18 RPOB_BACAN 2:10RPOB_BACC, RPOB_BACCR, RPOB_BACCZ RPOB_BACHK,RPOB_BACLD, RPOB_BACSU, RPOB_OCEIH 2:1051 1020.500402 511.257477,2+ 19.692263 35943 5.991 1 1021.446503 -0.946101 AGDTFPSDGR 7.02 GLNE_STRAW 950:9592 1020.560379 -0.059977 GPSFKASSLK 6.26 INP4A_HUMAN 317:326INP4A_MOUSE, INP4A_RAT 317:3263 1021.512711 -1.012309 YLSAGPCRR 5.95 BRWD1_HUMAN 25:33BRWD1_MOUSE 25:334 1019.518188 0.982214 ESLRTMQR 5.85 UVRC_PSEA6 142:1495 1021.534500 -1.034098 ESLRGFWK 4.82 POLN_HEVBU 1507:1514POLN_HEVME 1505:1512:2, POLN_HEVMY 1507:1514,POLN_HEVPA 1507:15146 1019.536819 0.963583 IMLRTQCR 4.82 CYOE_BUCBP 71:787 1021.545258 -1.044856 MLIRMYPV 4.82 YEB4_YEAST 94:1018 1021.427353 -0.926951 DELEEEMK 4.59 SYD_PYRAE 363:3709 1021.551773 -1.051371 IMIEEFIK 4.59 HTPG_THIDN 418:42510 1019.467209 1.033193 DTLHSEYR 4.53 ALDO3_ARATH 498:50552 1020.533544 511.274048,2+ 13.435090 35469 5.912 1 1020.435959 0.097585 SEDQEQASK 3.81 ANK1_MOUSE 870:8782 1019.470596 1.062948 ECLGGVGTER 0.21 MTNN_TREPA 18:27

4



6 Step4 - Creating �nal result �le for the M2-runThe input to this step is the PS array and the Mas
otRed �le. A new �le Result �le is 
onstru
ted,with one re
ord for ea
h peak (di). The re
ord for di 
ontains the data from the Mas
otRed �lefor all the potential spe
tra found for di.Can also be implemented as part of the data base.6.1 ExampleSuppose that peak di mat
hes spe
tra with spe
trumId 35943 and 36114. Then the re
ord for diwill 
ontain the two re
ords in Mas
otRed for those two query spe
tra (see example above).
△ The way this is done is to s
an the PS array, and for ea
h peak (di) for ea
h potential spe
trum(see Step 1) �nd the spe
trumId in the redu
ed �le (Mas
otRed-�le). It might be that it ishere enough to save a pointer to the re
ord in the Mas
otRed-�le. See how it is to beused in Step 5.6.2 Combining the PS array and Mas
otRed �leThe key for 
ombination is spe
trumId, whi
h exists in both PS and Mas
otRed. However, noneof them are sorted on this term. For fast 
ombination it may be appropriate to �rst sort one ofthem, probably it is best to sort Mas
otRed. Then the new �le Result is 
onstru
ted by s
anningPS, and then use binary sear
h in Mas
otRedSorted for ea
h spe
trumId.7 Step5 - Final 
al
ulationsBefore this step, Step1-4 are performed for all M2 runs of the two situations, 
reating a Result �lefor ea
h of the runs. In this step the �nal mat
hing (peak, protein) is assessed by 
ombining theresulting information from all the M2 runs.In this preliminary version we restri
t us to the result from only one MS/MS-�le. The reportshould be 
onstru
ted from the Result �le 
onstru
ted in Step 4. The goal was to 
al
ulate a reportwhere the main 
ontent is a list of proteins, a 
al
ulated fold and a s
ore or probability. The lastwill be a bit 
ompli
ated, sin
e I 
annot �nd that there is any P- or E- value 
orresponding to thepeptide mat
hes in the resulting .dat-�les from Mas
ot, only s
ores. So I think we should try tomake a list of proteins, where the re
ord for ea
h identi�ed protein should 
ontain:

• the name of the protein
• the peaks (di), that are found to may have produ
ed a spe
trum that has a mat
h to theprotein. For ea
h peak:� fold� P-value� the s
ore of the (highest s
oring) MS/MS-spe
tra8 AdditionalIt should be possible to sear
h in the Cod database at CBU.

5



summary
section

peptides
section

"input"
section

MascotRes−
file  (.dat)

di

dk Reduce
file

Step1 Step2

Mascot
search

m2−spectrum

m2−spectrum

m2−spectrum

m2−spectrum

Protein sequence
data base

Differentially abundant
peaks from XCMS

An M2−
file (.xml)

Reduced
RM2−file
(.xml)

array PS

MascotRed−
file  (.dat) Step3

Step4

Result−

Step5

Result−
file  1

Steps 1 − 4 for one M2−file  j

file  j

Result−

file  m

Figure 1: Figure illustrating the �rst three steps for one m2-�le.
6



Index

.dat-files
algorithm and usage, 79

2D Gel Electrophoresis, 12

Abundance
calculation of, 22

Adapter (class), 57
Amino acids, 9
Analysis (in QALM), 54
Apache Commons codec, 78
Architecture

controll layer, 57
data layer, 57
persistence layer, 58
presentation layer, 57
TO-objects, 58

BackgroundProcessor (class), 82
Bottom-up approaches (proteomics), 11

C-terminal, 9
Charge state, 14
Chromatograms, 13

aliging, 25
Collections (in QALM), 54
Contaminants, 21
Controll group, 23
Controller (class), 57
CRAN, 27

Database
definition, 55
motivation for, 64
overview, 64
relations, 65
tables under QALM, 65

DBConnector (class), 57
Deisotoping, 14, 22
Derby, 65
Digestion, 12

Enzymes, 12

Exceptions
framework in QALM, 88
handling, 88

Extracted Ion Chromatograms (XIC),
21, 24

FileTreeNode (class), 90
Final reports

by proteins, 59
by proteins compact, 62
compact format, 59
full format, 59

Fold, 35
Fractions (samples), 12
Fragmentation, 15

GUI, 43
presentation layer, 57

High preassure liquid chromatography,
see HPLC

HPLC, 12
Hydrophobicity, 12

Ionization, 13
Isotopes, 10

effects in MS, 14
used as labels, 20

Isotopic envelopes, 14

Java
SwingWorker (class), 83

JavaDB, see Derby
JAXB, 74

m/z ratio, 13
in peak reports, 35

Marshalling (XML), 74
Mascot, 17

.dat-files, 56

.dat-files (format), 73
results, see .dat-files

121



122 INDEX

settings, 17
Mass

average, 15
experimental, 13
monoisotopic, 15
theoretical, 13

Mass Spectrums, 15
Mass spectrometers

MALDI TOF, 13
Mass Spectrums, 13

information in, 14
peak lists, 15
raw data, 15

mass-to-charge, see m/z ratio
Missed cleavages, 12
Mobile phase, 13
Monoisotopic peaks, 14
MS/MS, 15

format, 70
reduction algorithm, 76

mzData, see MS/MS format
mzML, 91
mzML (format), 70

N-terminal, 9
Normalization, 21

peak (in QALM), 55
Peaks

in chromatograms, 13
selection by MALDI, 16

Peptide maps, see Peptide Mass Fin-
gerprinting

Peptide images, 14
Peptide Mass Fingerprinting (PMF),

15
Posttranslational modifications, 10
Precursors, 15
projects (in QALM), 53
Property files, see QALM, settings
Proteases, 12
Protein databases, 11
Proteins, 9

profiles, 19
quantification, 19
Structure, 10

Proteomics, 11
Proteomics Standards Initiative (PSI),

91

QALM

architecture, 57
calling R, 81
calling R/XCMS, 80
importing files, 29
issues and improvements, 90
layers of responsibility, 57
revised solution, 42
settings, 86

QALMGui (class), 82
QQLM

envisioned solution, 41
Quantification

absolute, 20
label-based, 20
label-free, 21
relative, 20

R
environment, 27
scripts, 28
sessions, 30
starting R, 30
the R-project, 27
workspace image, see R sessions

R-Scripts (in QALM), 80
replicates

biological, 23
technical, 23

Retention time, 12
in peak report, 35

RJava/JRI, 39
Issues, 40

RPreparations (script), 81
RSourceFile.R (script), 81

separation (of samples), 12
singleton pattern, 87
Situations (in QALM), 53
Spectra

in XML, 71
Spectrum (in MS/MS files), 55
Spectrum list, see Spectra, list
SQL, 58

SQLScripts (class), 58
StateManager (class), 58
Stationary phase, 13
SwissProt, 11

Tandem spectrometry, see M/MS15
Taxonomy, 17



INDEX 123

TextAreaOutputStream (class), 84
Theoretical mass

Calculation of, 11
Top-down approaches (proteomics), 11
Transfer Objects, see Architecture, TO-

objects
Treatment group, 23
TrEMBL, 11
Trypsin, 12

UniProt, 11

Validation (of text in QALM), 86
Views

.dat reduction, 51
analyses, 46
collections, 46
file import, 44
final reports, 51
MS/MS reduction, 50
peak reports, 47
projects, 43

Views (GUI), 43

XCMS, 28
aligning peaks, 32
diffreport(), 33
fillPeaks(), 33
group(), 31
importing files, 30
loading XCMS, 30
retcor(), 33
xcmsSet(), 31

xjc, see JAXB
XML, 54

attributes, 54
binary data, 78
DOM, 76
elements, 54
nodes, see elements
scanning, 76
StAX, 76
streaming model, 76

XSD, 55


