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”Most people, if you describe a train of events to them will tell you what the result would be. They

can put those events together in their minds, and argue from them that something will come to pass.

There are few people, however, who, if you told them a result, would be able to evolve from their own

inner consciousness what the steps were which led up to that result. This power is what I mean when

I talk of reasoning backward.”

Sherlock Holmes, in A Study of Scarlet

by Arthur Conan Doyle (1859 - 1930)



Abstract

Reservoir characterization based on seismic data demands a robust and reliable method that transforms

seismically derived parameters such as elastic moduli, P-velocity, S-velocity or acoustic impedance into

parameters delineating lithology and reservoir quality. However, as the number of such desirable reser-

voir parameters exceeds the number of seismic observables, a straightforward transformation does not

exist. Hence, one is restricted to consider an approach by a set of rock physics constraints, which

is often associated with a non-linear and undetermined problem with non-unique solutions. Johansen

et al. (2011) developed such an approach referred to as inverse rock physics modeling (IRPM) that is

based on the estimation strategy of Johansen et al. (2004).

There exists numerous rock physics models to cover the large span of different natural born rocks.

As all these models simplify inherent complex rocks to predict the seismic response, their quantitative

accuracy is debatable. Moreover, several reservoir parameters for these models have many elements

of uncertainty attached, and it can be challenging to assign them proper values, e.g. the porosity of

sediments in a reservoir at the stage of deposition. Despite these problems, the rock physics models

have proved to yield constraint data that lie within a manageable proximity to real seismic data. The

IRPM approach takes advantage of this fact and may serve as a tool for interpretation of lithology

and evaluation of reservoir quality. However, users of the IRPM approach must aim their attention to

recognize relevant uncertainties, pitfalls and limitations to reduce misinterpretation risks. This study

considers a set of rock physics constraints where particular reservoir parameters have been perturbed

to mimic uncertainty. From considering synthetic data, it was found that uncertainties in the reservoir

parameters considered had a significant influence on the corresponding inverse solutions.

In reservoir monitoring the supervision of temporal fluid pressure and saturation alterations dur-

ing production is key information to achieve optimized oil recovery. The IRPM approach is flexible to

incorporate reservoir parameters that are of interest in reservoir monitoring. This study applies IRPM

on real data from Glitne, North Sea, to predict pore pressure, saturation and porosity after a period of

production. However, due to absence of repeated observational data from Glitne, a synthetic hybrid

model was used to simulate production effects on the initial Glitne data. The results obtained showed

little variation in the porosity solutions, a wide range of possible saturation solutions and pore pressure

solutions that were cumbersome to constrain due to its insensitivity in the Glitne rock physics model.

The solutions emphasize limited applications of IRPM to constrain particular reservoir properties that

are highly insensitive in certain rock physics models.

Keywords: Reservoir characterization, rock physics, quantitative seismic interpretation, reservoir

description, reservoir monitoring.
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Chapter 1

Introduction



2 Introduction

1.1 Motivation

The global demand of oil is stretching for new limits parallel with declining production. Hence,

enhanced oil recovery is a hot area of research in a wide range of scientific disciplines, including seismic

reservoir characterization. Seismic reservoir characterization, also known as reservoir geophysics, is

defined by Robert E. Sheriff as ”The use of geophysical methods to assist in delineating or describing

a reservoir or monitoring the changes in a reservoir as it is produced” (Walls et al., 2004). As such, a

bridge between observed elastic properties (denoted data parameters) and reservoir properties (denoted

model parameters) must be established in aid of reservoir characterization. Rock physics offers the key

for linking the data and model parameters, and is a part of the so called integrated approach outlined

in figure 1.1. The work in this thesis aims at rock physics inversion according to this figure.

Rock	
  physics	
  modeling	
   Seismic	
  modeling	
  

•  Porosity	
  
•  Satura7on	
  
•  Lithology	
  
•  Pressure	
  
•  Temperature	
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•  Amplitudes	
  
•  Frequency	
  	
  
•  AAenua7on	
  

Seismic	
  inversion	
  Rock	
  physics	
  inversion	
  

Figure 1.1: The integrated approach delineates how the various parameter domains are linked together by
rock physics and seismic modeling. It represents a simple workflow scheme for reservoir characterization that
clusters transformations as junctions between the various parameter domains. Examples of model parameters
within each domain are given in the grey boxes. Adapted from Gelius and Johansen (2010).

A forward rock physics model attempts to predict the elastic behavior (e.g. elastic moduli, seismic ve-

locities, density) of rocks from a description of reservoir properties (e.g. porosity, constituent properties,

saturation). Thus, the model parameters are input while data parameters are output. However, rocks

are by nature made very heterogeneous, and rock physics models are restricted to consider a confined

set of model parameters to describe the heterogeneity without loosing its practical simplicity (Guéguen

and Palciauskas, 1994). Hence, careful usage of rock physics is required to obtain approaches of seismic
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observables with success (Avseth et al., 2005).

In a reservoir characterization context, reservoir properties should ideally be estimated from geo-

physical observables. Hence, rock physics must be solved backwards, i.e. solving an inverse problem.

However, the number of model parameters used to describe heterogeneities in a rock outnumbers the

data parameters describing its physical behavior. Moreover, rock physics models are non-linear func-

tions of model parameters. This makes it impossible to straightforward turn rock physics upside-down

to estimate model parameters from acquired data parameters (Johansen et al., 2011).

In spite of these issues, several approaches are however used to predict reservoir quality and lithology

from geophysical observations. Ødegaard and Avseth (2003) developed a rock physics template analysis

where observational data is cross plotted along modeled data using customized rock physics models,

and by studying correlations within these plots one can make interpretations of reservoir properties.

Another alternative is to use statistical rock physics, e.g. a Bayesian inversion type (Avseth et al., 2005;

Tarantola, 2005). Here, the concept is to obtain statistical correlations based on data fitting of a set of

training data where both data and model parameters are well described, and which subsequently are

used for reservoir characterization. Furthermore, a strategy proposed by Johansen et al. (2004) were

further adapted by Johansen et al. (2011) to introduce an approach referred to as inverse rock physics

modeling (IRPM). The IRPM approach consists essentially by considering rock physics constraints

represented as functions of model parameters from a set of observational data that are correlated to

interpret reservoir properties. This approach will be applied through this thesis.

As to modeling simplifications and uncertainties in observation data, inverse solutions of reservoir

quality and lithology are characterized by non-uniqueness. Hence, specialists that apply IRPM for

reservoir characterization must be highly compatible to recognize and be aware of underlying rea-

sons causing non-unique solutions to minimize distorted interpretations. Highlighting these issues is

therefore of vast importance besides learning the procedure of the approach itself. For instance, when

defining a rock physics model for an area, lack of information about required input parameters force

us to assign reasonable values based on assumptions, nearby well data and experience (Avseth et al.,

2005). If however the properties defined in the model deviate significantly from the real case scenario,

inconsistencies in the rock physics constraints lead to erroneous inverse solutions. The IRPM approach

makes it functional to investigate the non-uniqueness of rock physics modeling and influence of model

and observational data uncertainties.

One of the most recent technical contributions for enhanced oil recovery is four-dimensional (4D)

seismic to surveillance the temporal variations in fluid saturation and pressure during production.

This helps to map the fluid mobility so that optimized placement of injection and production wells

can be made (Gelius and Johansen, 2010). Especially in complex reservoirs, huge oil amounts are

left behind after production as the fluid distribution is inadequately mapped. Rock physics is vital
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in 4D reservoir characterization as it serve as a tool for interpreting observations (Bjørlykke, 2010).

Hence, rock physics constraints can be modified to predict reservoir properties that usually alter dur-

ing production by the IRPM approach. Subsequently, when a set of time-lapse observations data are

available, the changes occurred in the reservoir can be quantified by analyzing the corresponding in-

verse solutions of each data set. However, in lack of repeated observations, hybrid synthetic modeling

has been applied to consider the impact of production effects on initial observations.

1.2 Main objectives

The main objectives of the thesis is to:

• Give a thorough review of the inverse rock physics modeling (IRPM) approach of Johansen et al.

(2011).

• Use the functional features of IRPM to emphasize the non-uniqueness of predicting reservoir

quality and lithology from observational data.

• Study how uncertainties in defining reservoir parameters can influence the inverse solutions.

• Suit the rock physics modeling for reservoir monitoring applications to study simulated produc-

tion effects on observational data from Glitne, North Sea.

1.3 Thesis outline

The thesis is divided in to chapters where the focus of each chapter is:

In chapter 1 to give the motivation and main objectives of thesis.

In chapter 2 to review relevant elasticity and rock physics theory.

In chapter 3 to scrutinize the IRPM approach.

In chapter 4 to test the IRPM approach using synthetic data and where effects of reservoir parameter

uncertainties are studied.

In chapter 5 to adapt the IRPM to applications in reservoir monitoring to study simulated produc-

tion effects on Glitne observational data.

In chapter 6 to discuss and conclude the main findings of this study.
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Background theory



6 Background theory

2.1 Outline

The purpose of this chapter is to provide background theory to support understanding the inverse

rock physics modeling (IRPM) approach. Basic knowledge about elastic theory is fundamental to

understand concepts of seismic data and its link to rock physics and reservoir characterization and

monitoring. Sections 2.2 and 2.3 reviews elastic media and the elastic wave equation. Following,

section 2.4 introduce rock physics in general and the most commonly used models for dry rocks.

Section 2.5 introduce the Gassmann (1951) model for fluid saturated rocks.

2.2 Stress, strain and Hooke’s law

The content of this section is extracted from Auld (1990) and Pujol (2003). Elasticity theory provides

the link between the rock physics parameters and the seismic parameters, i.e. the connection between

the two rightmost domains in figure 1.1. Hence, this theory builds the foundation in the study of

modern use of seismic. Even though this thesis concern is rock physics theory, it is still an advantage

to see the whole picture of the integrated approach. Thus, elasticity theory is reviewed in this and the

following section.

Elasticity theory describes how a material deforms under applied stress, and how it returns to its

original form when releasing the stress. The oscillatory motions of a medium, e.g. seismic waves, is

caused to a rise in elastic restoring forces when particles in a medium are displaced from its equilibrium

positions. A quantitative definition of the particle displacement field u is given as

u(L, t) = l (L, t)−L, (2.1)

where L and l denotes the position vectors of the initial and new positions, respectively, and t is time.

Thus, u describes how particles within a medium are vibrating through time. Furthermore, elastic

waves represent infinitesimal material deformations that can be quantified by the strain tensor ε as

follows

ε = εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
, i, j = x, y, z, (2.2)

where the components εij is the strain components. A connection between u and ε is given by the

strain-displacement relation,

εI = ∇Ijuj, I = 1, 2, 3, 4, 5, 6, (2.3)

j = x, y, z,

where ∇Ij is the symmetric gradient operator, often denoted ∇S. Be aware that (2.2) is denoted in
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full subscript notation, whereas (2.3) has abbreviated notation.

The stress tensor σ gives the state of stress for any particles in a body. It consist of the stress com-

ponents σij(i, j = x, y, z) acting on a surface i in direction j of the volume elements that represents a

bodies particles. For an arbitrarily oriented surface with normal n̂, a traction force vector σn can be

found from

σn = σijnj. (2.4)

A change in material volume corresponds to a non-zero quantity of the diagonal elements in σ and ε,

while a change in shape is given by the off-diagonal elements.

When dealing with small stress and strain in a perfectly elastic medium, a constitutive law called

Hooke’s law states the existence of a linear stress-strain relationship. In general Hooke’s law is

σij = cijklεkl, i, j, k, l = x, y, z, (2.5)

where cijkl is a 6 × 6 matrix containing constants describing the stiffness of a medium, with i and j

as free subscripts, and summation over k and l. This implies a matter of 3 × 3 × 3 × 3 = 81 elastic

constants. However, from equation 2.2 the strain tensor must be symmetric, i.e. εkl = εlk, and only

holds six independent components, which also is valid for the stress tensor, i.e. σij = σji. This means

that cijkl = cijlk = cjikl = cjilk and thereby a reduction to 6 × 6 = 36 elastic constants is achieved.

Moreover, the existence of elastic potential gives that cijkl = cklij and further reduces the number of

elastic constants down to 21. Nevertheless, only the most complex anisotropic mediums requires 21

constants in order to be properly described. In case of an isotropic medium, only two constants are

needed.

The elastic stiffness constants can be expressed in terms of elastic moduli such as the bulk mod-

uli K, shear moduli µ, Young’s modulus E, Poisson’s ratio v, and if the medium is isotropic it can be

described by the Lamé constant λ and shear moduli µ. Definitions and relationships between elastic

constants are summarized in table 2.1.
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Elastic constant K µ E v λ

Definition −V δP
δV

σxy
2εxy

σzz
εzz

− εxx
εzz

K − 2
3
µ

K, µ E, v

K K E
3(1−2v)

µ µ E
2(1−v)

E 9Kµ
3K+µ

E

v 3K−2µ
2(3K+µ)

v

Table 2.1: Upper: definitions of elastic constants. V and P are volume and pressure, respectively. Lower:
relationship between elastic constants. Modified from Guéguen and Palciauskas (1994).

2.3 Elastic waves

The content of this section is extracted from Auld (1990). To examine how an elastic material vibrates

as a function of time one must relate the particle displacement u to the applied stress σ through

Newstons 2. law, F = ma, where F is force, m material mass and a the particle acceleration, which

on integral form is ∫∫
δS

σ · n̂ dS +

∫∫∫
δV

F dV =

∫∫∫
δV

ρ
∂2u

∂t2
dV , (2.6)

for a volume element with volume V , surface area S with normal vector n̂ and density ρ. The surface

integral term in (2.6) can be transformed to a volume integral by applying the Gauss theorem∫∫
δS

σ · n̂ dS =

∫∫∫
δV

∇ · σ dV . (2.7)

Now, the integrals can be eliminated and a differential form of (2.6) is obtained by following

∇ · σ = ρ
∂2u

∂t2
− F , (2.8)

which is known as the translational equation of motion. Furthermore, by differentiating (2.8) with

respect to time t and introducing particle velocity v = ∂u
∂t

, (2.8) becomes

∇ · ∂σ
∂t

= ρ
∂2v

∂t2
− ∂F

∂t
. (2.9)

To eliminate the term ∂σ
∂t

equations (2.3) and (2.5) are used to produce a wave equation as follows

From (2.5)→ (σ = c : ε) :
1

c
⇒ ε =

1

c
: σ, (2.10)

From (2.3)→ ε = ∇su
∂
∂t−→ ∇sv =

∂ε

∂t

(2.10)−−−→ ∇sv =
1

c
:
∂σ

∂t
. (2.11)
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Multiplying (2.11) by c and substitute into (2.9) gives the general elastic wave equation for v;

∇ · c : ∇sv = ρ
∂2v

∂t2
− ∂F

∂t
,

or, in abbreviated notation,

∇iKcKL∇Ljvj = ρ
∂2vi
∂t2
− ∂

∂t
Fi. (2.12)

Equation (2.12) is a complex partial differential equation which is quite cumbersome to solve. However,

assuming a body force F = 0 and a plan harmonic wave with phase velocity v = ω
k
, where ω is angular

frequency and k is the wavenumber1, on the form

v ∝ rei(ωt−k·r), (2.13)

reduce the problem of finding wave velocity and polarization down to an eigenvalue problem. Say

that the direction of propagation is given by l̂ and that time and spatial derivatives transforms to

multiplication with angular frequency and wave number respectively, i.e. ∂
∂t
→ iω and ∂

∂xj
→ −ik.

Consequently, the symmetric gradient operator ∇Lj and its transpose, divergence of stress operator

∇iK , may be replaced by matrices −iklLj and −ikliK respectively, and substituted into (2.12) to give

k2liKcKLlLjvj = ρω2vi,

m

k2τijvj = ρω2vi. (2.14)

This is called the Christoffel equation where τij = liKcKLlLj represents the Christoffel matrix. The

eigenvalues of τij corresponds to the phase velocity of the P, SV and SH waves, while its eigenvectors

states the polarization. The Christoffel equation applies to plane wave solutions in both isotropic and

anisotropic media specified by the stiffness tensor cKL.

If the stiffness tensor cKL defines an isotropic material, equation (2.14) simplifies to two simple ex-

pressions;

VP =

√
K + 4

3
µ

ρ
, (2.15a)

VS =

√
µ

ρ
. (2.15b)

These two equations are frequently used in rock physics modeling since the effective medium theory

assumes the volume of rock to be homogenous and elastically isotropic.

1k = 2π
λ , where λ is the wavelength.
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As an elastic wave propagates through an isotropic medium and encounters an interface where a new

isotropic medium with discriminated physical properties begins, some of the energy from the wave will

be reflected upwards to the surface. The reflected energy creates the foundation for reflection seismic

studies. The amount of reflected and transmitted energy can respectively be expressed by reflection

and transmission coefficients. The most trivial case is when having various isotropic mediums with

velocities Vn and densities ρn, where index n refers to a specific medium. If an incident wave hits an

interface between two such mediums perpendicularly, the reflection coefficient becomes

R =
Vn+1ρn+1 − Vnρn
Vn+1ρn+1 + Vnρn

, −1 ≤ R ≤ 1, (2.16)

where negative signs of R emphasize a phase shift of 180◦ in the reflected wave.

A reflected wave cannot capture unlimited physical variations in the subsurface, which leads us to

the subject of seismic resolution. It can be separated into what the wave can discriminate in the hor-

izontal and vertical directions. For the horizontal direction, the wave can not distinguish two features

closer than of RF =
(
V Z
2f

) 1
2
, called the Fresnel zone, where Z and f respectively are depth to object

and frequency of the wave. Furthermore, the vertical resolution defines the ability to separate two

features. If the thickness of a layer is smaller than λ/4, where λ is the wavelength, the reflectors corre-

sponding the upper and lower layer interface can not be discriminated and only one reflector appears.

Hence, the layer will not be correctly interpreted.

2.4 Rock physics modeling

The content of this section is mainly extracted from Guéguen and Palciauskas (1994), Mavko et al.

(2009) and Gelius and Johansen (2010). Rock physics theory provides a link between the elastic prop-

erties and the reservoir properties, i.e. the connection of the two leftmost domains in figure 1.1. The

field of research in this thesis is within these domains, and a thorough description of basic rock physics

is therefore following.

A body of rock is by nature characterized by its heterogeneity. A confident description of the physical

behavior of a rock strongly depends on the level of heterogeneity, which subsequently rely on the scale

considered. For instance, from analyzing a reservoir rock through a microscope one typical finds it to

consist of multi-mineralic components and pores saturated with various fluids (i.e. the reservoir prop-

erties). However, a seismic wave at a tens-of-meters to hundreds-of-meters scale is because of restricted

seismic resolution not capable of capturing microscopic irregularities present, but is rather recording a

macroscopic average (i.e. effective elastic properties) where constituents are randomly distributed (see

figure 2.1). Random distribution of constituents at a micro scale appears as an effective elastically

isotropic medium at a macro scale. Hence, the seismic image of the macroscopic effective rock exhibits
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a homogenous reservoir rock, although it usually occurs layered (dashed red lines in figure 2.1). This

emphasize the scale dependencies of rock physics and illuminate that assumed simplifications usually

are unequal the complex reality.

Depth

Micro reservoir
properties [10-6 m]

Seism
ic w

ave [102 m
]

Unconsolidated rocks

Consolidated rocks

Cementation initiation

Figure 2.1: A marine seismic acquisition over a geological outcrop composed of several layers with different
physical properties. The layers are separated by red dashed lines.

A representative volume element (RVE) of a rock is used to describe the average properties of a rock

as a homogenous and elastically isotropic volume. The most familiar techniques for down-scaling

of seismic measurements to predict the effective properties on a RVE is based on effective medium

theory (Jakobsen et al., 2000), referred to as forward rock physics modeling. Due to the wide span

of constituent properties and geometrical distribution, the physics of a rock can be quite differently.

Thus, numerous rock physics models have been constructed to best describe the various conditions.

However, they are commonly limited to be functions of the following: (1) the volume fractions of e.g.

n constituents V1, V2, . . . , Vn, (2) their elastic moduli M1,M2, . . . ,Mn, and (3) details of their relative

geometrical arrangement to each other.

The geometrical details are in practice not sufficiently implemented into rock physics models, although

several theories deal with simplifications and approximations. When information from only (1) and (2)

are available, one may estimate the elastic moduli upper and lower bounds. At any specified volume

fraction of the various phases, the exact elastic moduli will lie within these bounds and depends on

the geometrical details (Mavko et al., 2009). However, these bounds are extremely reliable and robust,

and have contributed to be a superior rock physics tool (Avseth et al., 2005). The first upcoming
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sections reviews such bounds, continuing with more advanced rock physics models where geometrical

details are to some extent incorporated.

Basically, one may group the rock physics models according to consolidated or unconsolidated rocks,

a mixture of these, or empirical models (Johansen et al., 2011). Several published papers has tested

the validation of different theories for different rock types. Inclusion models is made for consolidated

rocks, and works adequate for sandstones (Dræge et al., 2006), carbonates (Agersborg et al., 2008) and

shales (Hornby et al., 1994). Likewise, unconsolidated rocks are described by contact theories (Walton,

1987; Digby, 1981; Mindlin, 1949), whereas contact cement theory (Dvorkin et al., 1991) is used for

weakly consolidated rocks.

2.4.1 Voigt-Reuss-Hill average moduli estimate

The Reuss (1929) and Voigt (1928) models give the absolute lower and upper bounds, respectively, for

the elastic moduli of isotropic or anisotropic media. To illustrate, imagine a mix of soft and stiff com-

ponents, e.g. shale and sandstone respectively, that have been layered both horizontally and vertically

sequentially (see figure 2.2). Let V1, V2 and M1,M2 be the volume fractions and bulk or shear moduli

of the sandstone and shale, respectively.

VoigtReuss

Sandstone
Clay

σ

Figure 2.2: A stress σ is applied on an alternating body of sandstone and shale in two cases where the
layers are perpendicular and parallel to the stress. The body achieves a minimum and maximum stiffness
when layers are perpendicular and parallel to σ, respectively.

Reuss model considers the elastic moduli when stress σ is applied normal to the horizontally aligned

layers. The properties of the soft shale then dominates, resulting in a varying strain, while the stress

is constant. The effective elastic moduli then gets a lower limit given by (Reuss, 1929)

1

MReuss

=
V1
M1

+
V2
M2

. (2.17)

Conversely, Voigt’s model computes the elastic moduli when the stress is applied perpendicular to

vertically aligned layers, giving the dominance to the stiff sandstones properties. The upper limit for
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the elasticity of the rock then becomes

MVoigt = V1M1 + V2M2. (2.18)

In general, for N phases the Reuss and Voigt bounds are given as

MReuss =

[
N∑
n=1

Vn
Mn

]−1

(2.19a)

MV oigt =
N∑
n=1

VnMn. (2.19b)

Finally, the Hill (1963) average is the arithmetic mean between MReuss and MV oigt;

MHill =
1

2
(MReuss +MV oigt). (2.20)

For any elastic material, the effective modulus M∗ will always be MReuss ≤M∗ ≤MV oigt.

2.4.2 Hashin-Shtrikman bounds

The optimal bounds for an perfect elastically isotropic composite are the Hashin-Shtrikman bounds (Hashin

and Shtrikman, 1963). A physical interpretation of these two bounds is that one of the constituents is

embedded in the other, forming an outer and inner spherical core, as seen in figure 2.3. A medium may

be viewed to compose exclusively of such embedded spheres with varying diameter, so that all void

vanish at a microscopic scale. On the macroscopic scale however, the medium appears homogenous

with its effective Hashin-Shtrikman upper bounds given by

KHS+ = K1 +
V2

(K2 −K1)
−1 + V1

(
K1 + 4

3
µ1

)−1 , (2.21a)

µHS+ = µ1 +
V2

(µ2 − µ1)
−1 + 2V1 (K1 + 2µ2)

[
5µ1

(
K1 + 4

3
µ1

)]−1 , (2.21b)

where the bulk moduli K, shear moduli µ and volume fractions V have indices 1 and 2 that corresponds

to the stiffest and softest material respectively, i.e. K1 > K2 and µ1 > µ2. An interchange of these, i.e.

indices 1 and 2 represents the softest and stiffest material respectively, in (2.21a) and (2.21b), gives

the Hashin-Shtrikman lower bounds (HS−).

The Hashin-Shtrikman bounds given by equations (2.21a) and (2.21b) can be written in a more general

form called the Hashin-Shtrikman-Walpole bounds (Walpole, 1966a,b). The elastic moduli are then

given by

K = K1 +
V2

(K2 −K1)
−1 + V1

(
K1 + 4

3
µm
)−1 (2.22a)
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µ = µ1 +
V2

(µ2 − µ1)
−1 + V1

[
µ1 + µm

6

(
9Km+8µm
Km+2µm

)]−1 , (2.22b)

where the index 1 and 2 refers to the two components. The upper bound is found when Km and µm

are the maximum bulk and shear moduli of the two components, whereas the lower bound is found

when they have the minimum value. Consequentially, it is possible that µ2 > µ1 and K2 < K1, where

the indices 1 and 2 refers to the stiffest and softest material, respectively.

Stiff material, e.g. quartz 

Soft material, e.g. clay 

HS+ HS- 

Figure 2.3: A physical interpretation of the upper and lower Hashin-Shtrikman upper (HS+) and lower
(HS−) bounds.

2.4.3 Direct calculation

By direct calculations the effective elastic moduli is found directly from Hooke’s law (2.5). Consider a

simple two-phase inclusion model as in figure 2.4, containing a mono-mineralic matrix and spherical

pores with volume factions V1 and V2, respectively.

Assume that both phases are isotropic and elastic, and that the seismic waves has a wavelength

λ� (V1 + V2) on a mini scale (10−3 m) where Hooke’s law can be written on average form as

σ̄ = M∗ε̄, (2.23)

where M∗ can be bulk or shear elastic moduli. The average stress and strain are then

σ̄ = σ̄(1)V1 + σ̄(2)V2, (2.24a)

ε̄ = ε̄(1)V1 + ε̄(2)V2, (2.24b)

where (1) and (2) denotes respectively matrix and inclusion phase. If M1 and M2 are the respective

elastic moduli of the two phases, the effective modulus M∗ can be found by substituting (2.24a)

into (2.23) and further reformulate this expression by using equation (2.24b) to eliminate the matrix

volume;
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M∗ = M1 + (M2 −M1)
ε̄(2)

ε̄
V2. (2.25)

Spherical	
  Pores	
  

Matrix	
  

σ	
  

σ	
  

Figure 2.4: A simple two-phase inclusion model composed of matrix and pores. σ̄ describes the average
stress in equation 2.23.

Furthermore, if its assumed that V2 < 0.1 and no physical interactions between the pores occur, the

volume strain term in (2.25) has a solution (Landau and Lifshitz, 1967)

ε̄(2)

ε̄
=

3K1 + 4µ1

3K2 + 4µ1

. (2.26)

When (2.26) goes into (2.25), an expression for the effective elastic moduli M∗ is achieved. For a dry

rock, K2 = 0, V2 = φ, the effective elastic modulus becomes

M∗ = M1

[
1−

(
1 +

3K1

4µ1

)
φ

]
. (2.27)

Equation (2.27) do not incorporate with elastic moduli at a seismic scale (i.e. macro scale). Hence, it

do not work consistently to predict the response of seismic waves. It only works under the restricted

assumptions given above, and becomes erroneous with increasing heterogeneity (e.g. more than two

phases, larger pore volume, non-spherical pore geometries, etc.).

2.4.4 Self-consistent approach (SCA)

With the assumptions V2 < 0.1 and no pore interactions of the inclusion model in section 2.4.3 being

neglected, (2.26) fails to hold. Instead, the method of SCA replaces the elastic moduli of the matrix,

i.e. K1 and µ1, with the rocks effective moduli, K∗ and µ∗, so the strain volume term becomes

ε̄(2)

ε̄
=

3K∗ + 4µ∗

3K2 + 4µ∗ . (2.28)

The theory considers that the pores are embedded into the effective medium instead of the matrix,

and thereby it incorporate interactions between the pores. Subsequently, (2.28) yields a more accurate
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approximation than (2.26). Applying (2.28) in (2.25) gives an expression for K∗ and another for µ∗,

which can both be solved by a self-consistent approximation for K∗ and µ∗ (Guéguen and Palciauskas,

1994). SCA is based upon scattering theory which considers the scattered elastic energy transmitted

from the inclusions as elastic waves propagates through the rock volume.

2.4.5 Differential effective medium (DEM) theory

The differential effectium medium inclusion theory (Bruggemann, 1935) is based on the Kuster-Toksöz

(KT) scattering model of first order. When a plane P-wave propagates through a medium consisting

of a matrix and pores, the pores generates scattered of energy transmitted as P and S waves. The

KT model basically sums up the incident and scattered waves from the pores to give the net scatter-

ing (Gelius and Johansen, 2010). A general expression for the effective elastic moduli K∗
KT and µ∗

KT

for a spectrum of aspect ratios1 α is given by

(K∗
KT −Km)

(
Km + 4

3
µm
)(

K∗
KT + 4

3
µm
) =

N∑
i=1

vi (Ki −Km)Pmi, (2.29a)

(µ∗
KT − µm)

(µm + ζm)

(µ∗
KT + ζm)

=
N∑
i=1

vi (µi − µm)Qmi, (2.29b)

where indices m and i represents the matrix and the various pore contents respectively, and Pmi and

Qmi is the geometrical factors specified in table 2.2.

Pore shape Pmi Qmi

Spheres
Km+ 4

3
µm

Ki+
4
3
µm

µm+ζm
µi+ζm

Needles
Km+µm+ 1

3
µi

Ki+µm+ 1
3
µi

1
5

(
4µm
µm+µi

+ 2µm+γm
µi+γm

+
Ki+

4
3
µm

Ki+µm+ 1
3
µi

)
Disks

Km+ 4
3
µi

Ki+
4
3
µi

µm+ζi
µi+ζi

Penny cracks
Km+ 4

3
µi

Ki+
4
3
µi+παβ

1
5

(
1 + 8µm

4µi+πα(µm+2βm)
+ 2

Ki+
2
3
(µi+µm)

Ki+
4
3
µi+παβm

)
Table 2.2: Coefficients P and Q for some given shapes2. The indices m and i refer to the matrix and
inclusion materials respectively. Adapted from Mavko et al. (2009).

The KT model is however only based on first order scattering, so the inclusion scatterings that interacts

each other are not included. Here, DEM theory propose to solve that issue by stepwise embedding a

volume fraction of inclusions within the matrix and run the KT model to compute the effective elastic

moduli. This composite is within the next step considered to represent the new matrix, as a new set

of inclusions of equvalent aspect ratio are added, and the same process is repeated over again. The

1The aspect ratio describes the shape of a pore, and is defined as α = a
b , where a and b is the minor and major axis

for a pore, respectively.
2β = µ (3K+µ)

(3K+4µ) , γ = µ (3K+µ)
(3K+7µ) , ζ = µ

6
(9K+8µ)
(K+2µ) .
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effective elastic moduli is then given after all the inclusions are included in the computations. Note that

this model is asymmetric, i.e. an interchange of the matrix with one of the embedding components and

subsequently applying DEM theory, leads to a different elastic moduli. For a two-phase medium the

effective elastic bulk K∗ and shear µ∗ moduli is found from the coupled system of ordinary differential

equations (Berryman, 1992) as

(1− y)
d

dy
[K∗(y)] = (K2 −K∗)P ∗

2 (y), (2.30a)

(1− y)
d

dy
[µ∗(y)] = (µ2 − µ∗)Q∗

2(y). (2.30b)

Phase one is the host material with bulk moduli K1 = K∗(y = 0) and shear moduli µ1 = µ∗(y = 0),

while phase two has K2 and µ2 as the bulk and shear moduli and a volume fraction given by y, which

in case of fluid inclusions and voids is y = φ, where φ is the porosity. The geometrical factors P and

Q is given in table 2.2, and the index 2 indicates that the coefficients are for an inclusion of phase two

in a host material with the effecitve moduli K∗ and µ∗.

2.4.6 Contact theory (CT)

An appropriate way of modeling sediments right after deposition is by considering a random package

of identical spherical grains (Mindlin, 1949). This applies only when sediments are buried to a depth

where increasing confining pressure Pc does not cause the grains to further reorganize. Such models

are referred to as contact theory (CT), where the most familiar group member is the Hertz-Mindlin

model (HM). The elastic moduli of the CT models depend on the contact properties between the

grains; contact stiffness, contact area and coordination number1 C0, - but also, the elastic properties

of the grains and confining pressure Pc. The according Hertz-Mindlin effective bulk moduli for a dry

package of grains is

KHM =

(
C2

0 (1− φ0)
2 µ2

s

18π2 (1− vs)2
Pc

) 1
3

, (2.31)

where φ0, µs and vs are the critical porosity2, shear moduli and Poisson ratio of the grain material,

respectively.

Due to the resistance between grains to slip relative to each other, the shear moduli also depends

on the normal stress applied on the grain package and the roughness of grains. Mindlin (1949) as-

sumed that shear stress is applied subsequently to normal stress, and a maximum of grain friction.

The effective shear moduli of the dry package of grain then becomes

1Coordination number C0 is the average number of contact points for each grain.
2The critical porosity is the porosity of sediments at the stage of deposition. A porosity φ extending the critical

porosity φ0 leads to suspension of the material, i.e. it behaves like a fluid.
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µHM =
5− 4vs

5 (2− vs)

(
3C2

0 (1− φ0)
2 µ2

s

2π2 (1− vs)2
Pc

) 1
3

. (2.32)

Another member of CT models is the Walton (1987) model which is expressed by other parameters

than in the HM model. It assumes that the shear stress is added simultaneously to the normal stress,

somewhat giving different results from the HM model. Furthermore, the roughness of the grain contacts

are considered in two extreme cases, giving it an upper and lower limit for the elastic parameters. The

upper limit is in the case of a very high friction coefficient, i.e. very rough grain contacts, giving the

effective bulk and shear moduli of a dry package of grains, respectively as

KWa+ =
1

6

3

√
3 (1− φ0)

2C2
0Pc

π4B2
, (2.33a)

µWa+ =
3

5
K(Wa+)5B + A

2B + A
, (2.33b)

where the coefficients A and B are defined as,

A =
1

4π

(
1

µs
− 1

µs − λs

)
, (2.34a)

B =
1

4π

(
1

µs
+

1

µs − λs

)
, (2.34b)

where λs is the Lamé constant of grain material. If the grain contacts are smooth, the lower bound of

Walton model has an effective bulk moduli KWa− = KWa+ as in (2.33a), whereas the effective shear

moduli is

µWa− =
3

5
KWa−. (2.35)

2.4.7 Contact cement theory (CCT)

As granular media experience further burial, additional stiffness-influence processes occur. These are

due to (1) mechanical and (2) chemical compaction which is transforming the granular structured rock

to consolidated prominent rocks. The former process leads to a reorganization of grains that cause an

increase of stiffness at grain contact points. The latter process is due to minerals tending to partly

or completely dissolve and precipitate within the pore space and contact points, caused by the high

pressure at grain contact points and high concentration of ions in the pore fluids (Kullerud, 2010).

The sorting processes mainly occurs at the ”unconsolidated rocks” zone in figure 2.1, whereas the

cementation occurs in the ”cementation initiation” zone. The cement, which may consist of the same

mineral as the grains, can rim the grains in different ways (see figure 2.5), and has a substantial impact

on the rock stiffness, even at modest amounts.
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    Grain 
    Cement 

Contact 
cement model 

Coating cement 
contact model 

Coating cement 
model 

Figure 2.5: Grains that have been coated with cement, e.g. clay, before deposition is referred to as coating
cement model. If the cementation occur after the grains has established contact, it is denoted a contact cement
model or coating cement contact model.

Dvorkin et al. (1991) developed a contact cement theory (CCT) that delineates the effective elastic

properties of a given cemented granular model, with respect to the elastic properties of the cement,

its volume fraction and critical porosity (Gelius and Johansen, 2010). According to the CCT model

the bulk and shear moduli are respectively

KCCT =
1

6
C0 (1− φ0)McŜn, (2.36a)

µCCT =
3

5
KCCT +

3Co (1− φ0)

20
µcŜτ , (2.36b)

where Mc = ρcV
2
Pc

and µc = ρcV
2
Sc

are the cement’s compressional and shear moduli, respectively. Ŝn

and Ŝτ are both contact stiffness coefficients outlined in appendix A.

A hybrid approach can be used to predict the elasticity as function of varying porosity associated

with various compaction processes. At the high porosity end member, the rock is predicted by contact

theory (CT) models, whereas at zero porosity, the rock must hold the elastic moduli of the effective

mineral. A Hashin-Shtrikman-Walpole (HSW) bound is thereby used to interpolate between these two

end members. If contact cement is present, this approach yields however under-predicted values at the

high porosity regime. Thus, a CCT model is applied at this regime (e.g. in between 0-10 % porosity

reduction caused by cementation growth), and a HSW bound interpolates between the remaining gap

(see figure 2.6).

The upper HSW bound describes the theoretical stiffest way of mixing the effective mineral and the

grain package framework, while the lower bound corresponds to the softest way of mixing these. These

trends have also been found to describe different compaction processes. The upper bound may be

interpreted as chemical compaction processes causing contact cement to precipitate. The lower bound

describes porosity reduction related to mechanical compaction where sorting cause smaller grains to

occupy the pore space between bigger grains. These different compaction processes are found at vari-
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ous deposition environments (Avseth et al., 2005). Interpretations of rock physics modeling like these

may work as guidelines in the choice of rock physics models to locally constrain the data. For instance,

if a well runs through a section of unconsolidated material where the porosity has decreased due to

sorting, contact theory and lower HSW bound (CT/HSW−) is favorable.
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Figure 2.6: Typical trend of porosity versus bulk moduli obtained by Hashin-Shtrikman-Walpole linking
the end members of CT and CCT models. The critical porosity C0 is 0.4, and a pure gas saturation is
considered. An illustration is attached to the CT and CCT end-members in the high porosity regime where
HSW is bounding these to the zero porosity end-member. Avseth et al. (2005) refers to these various hybrid
approaches as the friable sand model (CT/Lower HSW), the constant-cement model (CCT/Lower HSW) and
the increasing-cement model (CCT/Upper HSW).

2.4.8 Patchy cementation

At the stage where cementation initiates at unconsolidated loose sands, the contact cement is rarely

homogeneously distributed between grains. Hence, the rock is partial sensitive to pressure variations at

grain contacts where no cementation yet has occurred. Avseth and Skjei (2011) propose to model such

rocks by a heuristic approach where contact theory (CT) and contact cement theory (CCT) models

combined with Hashin-Shtrikman-Walpole (Walpole, 1966a,b) bounds are used. The assumption is

that the rock consists of a binary mixture of cemented and uncemented grain contacts, as upper and

lower bounds, respectively. Whereas the lower bound is represented by connecting the high porosity

contact theory end member with the mineral point, the upper bound is found by increasing the

effective stress until it mimics a 10 % constant cement model (i.e. consolidated compaction). Amounts

of cement between 0-10 % is considered to lie within the regime of patchy cementation where the

rock will be partial pressure-sensitive. Rocks with cement amounts exceeding 10 % will be extensively
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pressure-insensitive. Furthermore, Avseth and Skjei (2011) applied a linear weight method between

the upper (cemented) and lower (uncemented) bounds to predict the elastic moduli of patchy cemented

sandstones. An alternative approach to the linear weight method is to use a Hashin-Shtrikman bound

to mix the cemented sandstone end member, predicted by the CCT model, with the end-member of

unconsolidated sands, predicted by either a Hertz-Mindlin (Mindlin, 1949) or Walton model (Walton,

1987) (Avseth et al., 2012). The upper bound then represents connected cement distributed evenly

between grains, whereas the lower bound represents disconnected cement concentrated locally. A

Hashin-Shtrikman-Walpole lower bound is further used to interpolate between the patchy cemented

sandstone and the mineral point, which emphasizes varying porosity associated with sorting. The

resulting model trends are shown in figure 2.7 for both stiffest and softest isotropic mixtures (i.e.

connected and disconnected patchy cement, respectively).
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Figure 2.7: Rock physics modeling of patchy cemented sandstone (black dots and dashed lines), composed
by mixing a 10 % cemented sandstone with a pressure-sensitive unconsolidated sandstone given according to
Hertz-Mindlin theory (Mindlin, 1949), at volume fractions from one (blue dots) to zero (red dots), with an
increment of 0.2. The effective pressure is set to 20 MPa in the Hertz-Mindlin model.

2.5 Fluid effects

In the previous subsections 2.4.3 to 2.4.7, the rock physics models gave an effective elastic moduli for

a dry rock of pores with vacuum. In this section, the model of Gassmann (1951) is proposed to predict

the elastic properties when pore fluids are present.

The following assumptions must be satisfied when using the Gassman’s fluid substitution recipe:

• The wavelength λ is much larger than the grains and pore space. In other words; Gassman is

only valid for low frequencies where so-called local fluid flow are present,

• The rock must be isotropic,
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• All the grains have equivalent physical properties,

• The pore fluid is homogenous and completely saturates the open pore space.

As a fluid do not have any response to shear strength, the Gassmann model predicts the effective shear

moduli of the saturated and dry rock to be equal;

µsat = µd. (2.37)

However, the effective bulk moduli of the saturated rock is

Ksat = Kd +
(1− Kd

Ks
)2

φ
Kf

+ 1−φ
Ks
− Kd

K2
s

, (2.38)

where the indices d, s and f stands for dry, solid and fluid bulk moduli, respectively, and φ is porosity.

The Ks moduli is predefined by the mineral elastic properties, whereas Kd can be found by a rock

physics model. If the fluid comprise a homogenous mixture of various fluid constituents, e.g. brine and

gas, the effective bulk moduli can be found from Wood’s formula (Wood, 1955). For N fluids it is

1

K
(W )
f

=
N∑
i=1

Si
Ki

, (2.39)

where Si is the volume faction of the i-th fluid. Notice that equation (2.39) equals the Reuss lower

bound (2.19a). In reality, homogenous fluid substitutions are rare, and the fluid substitution occurs

in a more gradual process, referred to as patchy saturation. In such case, the fluid properties can be

found by using a Hill average (Hill, 1963). For N fluids it follows,

K
(H)
f =

1

2

 N∑
i=1

SiKi +

(
N∑
i=1

Si
Ki

)−1
 . (2.40)

Hence, a patchy fluid substitution yields a stiffer rock than a homogenous substitution. Notice that

equation (2.40) is the arithmetic average of equations (2.19a) and (2.19b).

2.6 Summary

In this chapter we have seen how elastic moduli is linearly related to stress and strain through Hooke’s

law, and how this relationship is used to express an elastic wave equation where the direction, velocities

and polarization of the various waves can be found. Furthermore we have presented several rock physics

models that predicts the dry rock elastic moduli from a description of reservoir properties. Although

there exists a myriad of rock physics theories (theoretical, empirical, hybrids, etc.), the bottom line for

choosing any rock physics model is that it shall approach a description of the physical behavior of the

geological scenario present. Ultimately, the Gassmann model can be applied to estimate the elastic

moduli of a fluid saturated rock.



Chapter 3

The inverse rock physics modeling

approach
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3.1 Outline

In this chapter, the inverse rock physics modeling (IRPM) approach of Johansen et al. (2011) will be

introduced. A general workflow of this approach is shown in figure 3.1. In Step 1 a reservoir model

is defined by a set of constant model parameters, hence called static model parameters, together with

a set of model parameters that are allowed to vary within specified boundaries, hence called dynamic

model parameters. Furthermore, a suitable rock physics model is chosen to build constraints relating

the dynamic model parameters to the elastic properties, referred to as data parameters. Following in

Step 2, a set of data parameter constraints and a set of data parameter values are input for the IRPM

approach. The outcome are the solutions of dynamic model parameters that corresponds the input

data parameter values. We define two different hypothetical reservoir models in step 1 in section 3.2,

and these models will be used in the following sections that describes and demonstrates the IRPM

approach.

Static model 
parameters	
  

Rock	
  
physics	
  
model	
  

Rock physics 
constraint cubes	
  

Dynamic model 
parameters	
  

Forward modeling 

Step	
  1	
  

IRPM	
   Input data	
  

Inverse modeling 

Step	
  2	
  

Rock physics 
constraint cubes	
  

Solutions of 
dynamic model 

parameters	
  

Figure 3.1: A general workflow of the IRPM approach by Johansen et al. (2011).

3.2 Reservoir model

In this study two hypothetical reservoir models are considered; reservoir A and B in figure 3.2. They

are composed of the same constituents, but considered to be located at different depths offshore. The

solid and fluid constituents are defined in table 3.1. The fluid constituents are different in the the two

reservoirs because the temperature, fluid pressure and salinity are unequal (see table 3.2).
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  B	
  

Gas	
  

Brine	
  

Shale	
  

Depth	
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  m	
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Figure 3.2: The geological scenario assumed for reservoir A and B, with a burial depth of 1000 and 2500
meters, respectively.

Constituent Bulk moduli [GPa] Shear moduli [GPa] Density [g/cm3]

Quartz 37.9 44.3 2.65
Clay 25 9 2.55

Brine(A) 2.6467 – 1.0267
Gas(A) 0.0028 – 0.0119

Brine(B) 2.7436 – 1.0199
Gas(B) 0.008 – 0.0288

Table 3.1: The constituent properties for reservoir A and B. The solid constituents are extracted from Han
et al. (1986), while the fluid constituents are found from Batzle and Wang (1992) relations where the input
parameters are defined in table 3.2.

Fluid property Brine(A) Brine(B) Gas(A) Gas(B)

Temperature [◦C] 50 70 50 70
Fluid pressure [MPa] 10.1 25.2 1.98 4.95

Saltinity [fractions of one] 0.05 0.045 – –
Gas gravity1 [ratio] – – 0.56 0.56

Table 3.2: The fluid properties defined for reservoir A and B used to compute the bulk moduli and density
from Batzle and Wang (1992) relations. The fluid components are denoted by (A) and (B) for reservoir A
and B, respectively. The temperature is assumed to increase with depth. The fluid pressure is found from
using equation (3.3). Salinity often shows a small decrease with increasing temperature. The gas gravity used
here represents methane.

As new sediments are deposited, older sediments will be buried. The sediments may differ in a ge-

1The gas gravity is the ratio of gas density to air density at 15.6 ◦C.
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ological time perspective that gives sequential sedimentological events reflecting various deposition

environments (Boggs, 2006). The lithology may therefore shift significantly with depth, and potential

hydrocarbon bearing reservoirs may be present at various depths. Reservoir A is considered to consist

of an unconsolidated grain package, while reservoir B has additional cement deposited at the grain

surface. This is a very important difference in the choice of suitable rock physics models for the two

reservoirs (Avseth et al., 2005). Hence, it seems convenient to apply contact theory (CT) and contact

cement theory (CCT) for reservoir A and B, respectively.

The dry rock physics modeling for reservoir A and B is specified as follows;

• For reservoir A, a frictionless Walton (1987) CT model is applied to mimic the elasticity at

critical porosity φ0 for smooth grains. A Hashin-Shtrikman-Walpole lower bound (HSW−) is

used to interpolate this end-member with the effective mineral properties. This is referred to as

the friable sand model in Avseth et al. (2005).

• For reservoir B, a few percent of deposited cement is added in the high porosity regime modeled

by CCT (Dvorkin et al., 1991). A Hashin-Shtrikman-Walpole upper bound (HSW+) is used to

model the remaining porosity loss to the effective mineral caused by increased cementation. For

simplicity, the cement consists of the same mineral as the grains. Also, the cement is assumed

to rim the grains in a coating cement contact manner (the rightmost grains in figure 2.5). This

is referred to as the increasing-cement model in Avseth et al. (2005).

These hybrid rock physics techniques was reviewed in section 2.4.7. According to Avseth et al. (2005),

the elasticity-porosity relationship obtained for reservoir A when choosing a HSW− trend, describes

how the elasticity is changing due to sorting (i.e. mechanical compaction) associated with changing de-

position environment. Reservoir B with a HSW+ describes the influence of increasing cementation (i.e.

chemical compaction) that is proportional with depth after cementation initiation. At high porosities,

cementation often lead to a relatively small decrease in porosity but a big increase in stiffness, whereas

sorting may change the porosity but lightly affects the stiffness (see for instance figure 2.6).

The dynamic model parameters will preferably describe the lithology and reservoir quality. For sili-

ciclastic rocks as in reservoir A and B, the usual parameters to consider are porosity, clay-to-sand

fraction (i.e. lithology) and the gas-to-brine (eventually oil instead of gas) portion (i.e. saturation).

The remaining model parameters are held constant (i.e. static model parameters) and are following

considered. Besides the constituent properties defined in table 3.1, both CT and CCT needs criti-

cal porosity φ0 and coordination number C0 to be specified. Moreover, the effective pressure Pe is

needed in Walton’s equations (2.33a) and (2.35), whereas the amount of cement expressed by b goes

into Dvorkin et al. (1991) equations (2.36a) and (2.36b). These static model parameters have been

specified by assumptions and empirical relations as follows.
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Firstly, the critical porosity of sediments is assumed to be 40 %; φ0 = 0.4, which is a typical value for

siliciclastic rocks (Nur et al., 1995; Avseth et al., 2005). Following, the coordination number of the

deposited sediments can be computed empirically when the critical porosity is known. Here, an inter-

polation of compiled coordination number data by Murphy (1982) is used (see table 5.1.5 in Mavko et

al., 2009). This yield a coordination number

C0(φ0)
∣∣
φ0=40

≈ 8.3 (3.1)

for both reservoir A and B.

Proceeding with the pressure parameter, the effective pressure is defined as

Pe = Pc − βPp, (3.2)

where Pc, Pp and β is the confining pressure, pore pressure and the linear poroelastic coefficient defined

as β = 1 − Kdry

Ks
, respectively. Here, it is assumed that β = 1, making the effective pressure Pe equal

to differential pressure Pd = Pc − Pp. To find the confining pressure the following approach is used;

Pc = ρ∗sgZ, (3.3)

where ρ∗s, g and Z are the bulk density of the overburden, the gravitational constant and depth,

respectively (Pluijm and Marshak, 2004). The overburden bulk density of reservoir A is considered

to be 1.8 g/cm3, giving Pc = 17.7 MPa. This equation can be modified to yield the pore pressure

(i.e. fluid pressure) Pp by replacing ρ∗s with the respective bulk fluid density ρ∗f . If the pore fluid in

the overburden is brine (see table 3.1 for density) this gives a pore pressure Pp = 10.1 MPa and the

effective pressure becomes

Pe = Pc − Pp = 7.6 MPa, (3.4)

for reservoir A.

Since the CCT model is pressure independent, pressure computations are skipped for reservoir B.

However, CCT require the amount of contact cement expressed by b = a
R

, where a is the radius of the

contact cement layer, and R is the grain radius. If a porosity reduction is only caused by cementation

growth, b has the following formula for coating cement contact model;

b =

√
2 (φ0 − φ)

3 (1− φ0)
, (3.5)

for a given porosity φ. This cementation distributes the cement evenly around the grain surface and

is referred to as Scheme 2 in Mavko et al. (2009).
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A short summary of the static model parameters defined for reservoir A and B are given in table 3.3.

Keep in mind that the reservoir parameters defined for reservoir A and B are purely based on as-

sumptions and hypothetical relations. These are highly simplified and can not be directly applied to

determine real reservoir parameters.

Model properties

Reservoir A Reservoir B

Theory CT & HSW− Theory CCT & HSW+

Depth 1 [km] Depth 2.5 [km]
φ0 40% φ0 40%
C0(φ0) 8.3 C0(φ0) 8.3
Pe 7.6 [MPa]
Friction None Cement Coating

Table 3.3: The rock physics models, depth and static model parameters defined for reservoir A and B.

3.3 Forward rock physics modeling constraint cubes

The mission of a rock physics model is to appropriately relate the model parameters to the correspond-

ing data parameters. In general, the rock physics models can be thought of as functions of M model

parameters;

d = R(φ,C, Sg︸ ︷︷ ︸
Dynamic

, Ks, µs, Kf , C0, Pe, . . . ,M︸ ︷︷ ︸
Static

), (3.6)

where d is a specific data parameter and R is a chosen rock physics model (for instance one of those

reviewed in section 2.4.3 - 2.4.7). The input model parameters are composed of a set dynamic model

parameters that varies, preferable porosity φ, lithology C and saturation Sg, and a set static model

parameters that are constant, e.g. solid bulk moduli Ks, solid shear moduli µs, fluid bulk moduli Kf ,

coordination number C0 and effective pressure Pe. One may generalize (3.6) by using vector notation

to include a set of data parameters ~d = [d1, d2, . . . , dN ] and model parameters ~m = [m1,m2, . . . ,mM ];

~d = ~Rk(~m), (3.7)

where index k specify a certain rock physics model which on this formalism is

~Rk = [Rk1(~m), Rk2(~m), . . . , RkN(~m)],

where every component Rki(~m) can be viewed as a rock physics expression procuring the data param-

eter di from ~m.

Ê
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In reservoir characterization the data parameters are acquired in sought of determining model param-

eters. Thus, it demands an inverse rock physics model so (3.7) becomes

~m = ~R−1
k (~d). (3.8)

Nevertheless, the usual case scenario is that M > N , which implies that the forward rock physics model
~Rk is a nonlinear transformation where ~d is an image of ~m. In practice, such inverse rock physics func-

tions ~R−1
k are inexistent, as this is an ill posed problem with non-unique solutions (Johansen et al.,

2011).

Instead, we can consider resampling a set of forward rock physics constraints. They are in turn

applied on observational data constraining the dynamic model parameters. The rock physics con-

straints are built for each data parameter di by perturbing over a set of specified dynamic model

parameters mj(j = 1, . . . ,MD), where the result will be a constraint cube with L1 × L2 × . . . × LMD

equidistant computational points of dimension MD. The dynamic model parameters considered in the

following examples are porosity φ, lithology C and gas saturation Sg (denoted the PLF domain), i.e.

j = φ,C, Sg, which will correspond to x-, y-, z-axis in a cartesian coordinate system. Each of these

dynamic model parameters can however switch place with one of the static parameters, depending

on the purpose of the study. Furthermore, after defining the maximum mj,max and minimum mj,min

values for a specified dynamic model parameter j, the l-th value equals mjl = mj,min + (l − 1)∆mj

with an increment ∆mj =
(mj,max−mj,min)

Lmj−1
, where Lmj

is the number of values (Lmj
= 26 in this study).

The mjl values are next sequentially fed into the rock physics model to compute the effective elastic

properties for a given data parameter di. This creates a discrete sampled constraint cube for each data

parameter (e.g. figure 3.3 shows bulk moduli K for reservoir B).
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Figure 3.3: The bulk moduli discrete constraint cube for reservoir B. The cube is divided into a grid
containing 26 × 26 × 26 = 17576 equidistant points within an interval of 0 < φ < 0.4, 0 < C < 1 and
0 < Sg < 1. The color gradient corresponds to the computed bulk moduli K.

Interpolation of the estimated points gives a smooth continuous scalar field Di as
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Di(φ,C, Sg) = di, ∀ φ ∈ [φmin, φmax] ∧ C ∈ [Cmin, Cmax] ∧ Sg ∈ [Sgmin
, Sgmax ],

for data parameter i. The constraint cubes for bulk moduli K, shear moduli µ and density ρ (i.e.

i = K, µ, and ρ) are shown in figures 3.4 and 3.5 for reservoir B.

Figure 3.4: Interpolation of points in figure 3.3 introduce a continous bulk moduli K constraint cube
DK(φ,C, Sg).

Shear moduli cube Density cube

Figure 3.5: Shear moduli and density constraint cubes for reservoir B.

The dynamic model parameters, porosity, lithology and saturation, are specifically perturbed within

the following rock physics relationships. For various solid volume fractions of quartz and clay (i.e.

the lithology), the effective mineral properties Ks and µs are found from Hill’s equation (2.20). For

various fluid volume fractions of brine and gas (i.e. the saturation), the effective fluid bulk moduli Kf

is found from Wood’s equation (2.39), and the fluid substitution is introduced by using the Gassmann

model, equation (2.38). The porosity is explicitly given in the Hashin-Shtrikman-Walpole bounds and
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the Gassmann model, which represents the fluid volume fraction.

The density cube is not calculated using a rock physics model as for the bulk and shear moduli.

Instead, for a given lithology, saturation and porosity, the density function ρ(φ,C, Sg) is the weighted

sum of the average constituent densities;

ρ(φ,C, Sg) = φ [Sgρgas + (1− Sg)ρbrine] + (1− φ) [Cρclay + (1− C)ρquartz] , (3.9)

where ρbrine, ρgas, ρclay and ρquartz are the densities of brine, gas, clay and quartz, respectively. Hence,

the density constraint cubes for reservoir A and B are equivalent. This simple linear expression con-

tains only density constants of the various constituents and the dynamic model parameters (φ,C, Sg).

Thus, it is relevant to interpret the concurrency between an alteration of a specified dynamic model

parameter and the corresponding impact on the density cube. For instance, the porosity φ appears in

both terms in (3.9) and should subsequently affect the density ρ more than lithology C or saturation

Sg. This is confirmed by the density cube (figure 3.5) as one observe that the color gradient is shifting

more along the porosity axis than in direction of lithology or saturation axis. Also, a big contrast

in density between solid and fluid constituents is represented by porosity, whereas the contrast in

density of different lithology and saturation are much smaller. This interpretation reveals the connec-

tion between the visual constraint cube and the underlying mathematical expression from the density

function, and equivalently the rock physics models.

Any given set of PLF (φ,C, Sg) will be equivalent to one specific data parameter value d̂i, while a

single d̂i value corresponds to several sets of PLF values constrained by a surface, referred to as iso-

surface. In figure 3.6 the reservoir A bulk and shear constraint cubes are shown, where figure 3.7

shows two isosurfaces obtained for bulk moduli values K1 = 3 GPa and K2 = 25 GPa, corresponding

the bulk moduli constraint cube in figure 3.6. Notice that the elastic constraint cubes for reservoir A

deviates significantly from the corresponding constraint cubes for reservoir B.

Bulk moduli cube Shear moduli cube

Figure 3.6: Bulk and shear moduli constraint cubes for reservoir A.
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Figure 3.7: Two bulk moduli isosurfaces obtained from the bulk moduli constraint cube for reservoir A.

3.4 A 2D resampling of rock physics constraints

The original idea that elaborated to the IRPM approach by Johansen et al. (2011) is based on a paper

by Johansen et al. (2004). This paper considers creating 2D rock physics constraints that are refor-

mulated into other relationships. In the calculation of the constraint cubes presented in the previous

section, all three PLF parameters varied. If one of these are held constant, the data parameters di

can be viewed as contour lines in a 2D plot. A resampling procedure is subsequently used to extract

the relationship between the two model parameters that varies. This demonstrates how rock physics

constraints are generated from a different point of view than seen in the previous section.

Lets demonstrate by use a constant saturation Sg = 1 (pure gas) and Sg = 0 (pure brine), and

let porosity φ ∈ [0, 0.4] and clay content C ∈ [0, 1] vary as in the previous examples. Once again, the

reservoir B model has been used to demonstrate the resampling procedure of Johansen et al. (2004)

that goes as follows. A resampling of the rock physics constraints is done for a fixed set of data

parameters di(i = 1, . . . , N) with j-th value equal to Dij = di,min + (j − 1)∆di with an increment

∆di =
(di,max−di,min)

Ldi
−1

, where Ldj denotes number of values. For every Dij that intercepts the contour

lines, a registration of the clay content for a certain porosity gives the φ−C dependency. The resample

procedure is demonstrated in figure 3.8 and considers bulk moduli K with LK = 6, Kmax = 34.84

GPa and Kmin = 15 GPa, extracting six φ − C contour relations for both pure brine and gas. Each

of these φ−C contours can be described as direct functions ϕDij
(~m) (named correlation functions) of

the dynamic model parameters ~m for a given data parameter value Dij ∈ [di,min, di,max]. In 3D, the

correlation functions corresponding to the data parameter values Dij(i = K) in figure 3.8 are shown

in figure 3.9 as isosurfaces. Here, 26 various saturation values are perturbed and resampled, including

pure brine and gas in figure 3.8, extracting 26 porosity-lithology contours that are subsequently inter-

polated. Notice the concurrency between the parallel isosurfaces and the corresponding contour lines

for pure gas in figure 3.8 d).

Considering any isosurface in figure 3.9, a combination of φ, C and Sg corresponds a point and may
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a) Sg = 0, C ∈ [0,1] b) Sg = 1, C ∈ [0,1]
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Figure 3.8: The resampling procedure for reservoir B in the two upper plots shows bulk moduli K as function
of porosity and lithology sampled at six distinct K values for pure brine and gas saturations. In the two lower
plots, the corresponding sampling are plotted in the porosity-lithology plane, represented in a 2D and 3D
point of view.

be a possible solution to the particular data parameter value. Also notice the significant difference in

bulk moduli sensitivity due to a change in porosity compared to a change in lithology or saturation.

The bulk moduli decreases significantly when increasing porosity, while the bulk moduli is much less

sensitive to the other two model parameters. Notice however the strong influence on the effective

stiffness when introducing a small amount of gas in a fully brine saturated rock.
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Figure 3.9: The six isosurfaces corresponding to the six resampled K values in figure 3.8. The word iso
comes from the Greek word isos, meaning equal. In this sentence, each individual surface contains the same
data parameter value at every point.

3.5 The IRPM algorithm

The six isosurfaces in figure 3.9 represent the same data parameter but have various data parameter

values d̂i (i = K). Each isosurface may further be denoted as ϕd̂i(~m) and they tend to be more or

less parallel to each other. This could already be seen by studying the color gradient in the bulk

moduli constraint cube (figure 3.4) for reservoir B. Focusing on a single isosurface, it spans all possible

PLF combinations for a particular input data value d̂i. It is clearly not constraining much the PLF

parameters, which is quite typical. This is also as expected as determining the parameters from one

input data yields an undetermined problem. However, by applying a new input data dj with value

d̂j, an additional isosurface is exhibited in the PLF space. The two isosurfaces tend to intercept and

create a line that constrains the solutions to the problem accordingly as

ϕd̂i − ϕd̂j = 0, (3.10)

narrowing the solution range significantly from considering only one input data. In figure 3.10 this has

been done with the bulk and shear moduli for some values d̂K and d̂µ for reservoir B. The projection

(black dashed lines for porosity) of the intersection line (purple line) onto the PLF axis corresponds

the solution ranges (red intervals).

A third input parameter dn with value d̂n constrains the solutions even further to the intersection

of all three respective isosurfaces. The solution to this problem is accordingly

ϕd̂i − ϕd̂j − ϕd̂n = 0, (3.11)

which corresponds to one or several points.
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Figure 3.10: Intersection of the isosurfaces ϕK=17(~m) and ϕµ=13(~m).

In figure 3.11 the density isosurface dρ is the third one present. Thus, a realsitic chance of obtaining

a unique solution (i.e. a determined problem) for the dynamic model parameters is first possible when

the number of dynamic model parameters mj(j = 1, . . . ,M) equals the number of data parameters

di(i = 1, . . . , N), i.e. M = N . However, because of the non-linearity of rock physics models, several

solutions may occur even when M = N . Furthermore, it is typical to perturb over static model pa-

rameters that are influenced by uncertainty as well as considering several possible rock physics models

as valid candidates. Hence, one can not really talk about one unique solution when doing inverse rock

physics modeling.

The actual sought of solutions is in practice done by mathematical approximation algorithms car-

ried out by computer implementation. In the plots above, a Newton-Raphson based method (Kelley,

2003) is used, that is a calculus method for locating roots, or in this case interceptions of functions.

Alternatively, a proximity detection method can be used that allow several points on the isosurfaces

that lies within a certain spatial distance to each other to be considered as valid solutions. For more

details about these solvers, the reader is referred to appendix B.

From a geometric point of view, isosurfaces that represents various data parameters and are parallel

makes it cumbersome to obtain stable solutions. A small perturbation in one of the data parameter

values would result in a significant displacement of the intersection line or points. To prevent this, the

isosurfaces should be arranged more perpendicular to each other, i.e. the dot product of their normal

vectors at the intersection, should be close to zero. With respect to this, Jensen and Johansen (2011)



36 The inverse rock physics modeling approach

propose a strategy for finding the best combination of data parameters to achieve as stable and with

as narrow solutions as possible.

The IRPM approach can be summarized as a two-step procedure:

1. Model forward constraint cubes: define static and dynamic model parameters for the reser-

voir. Choose an appropriate rock physics model for the reservoir, and use it to do a forward

modeling for a discrete set of combination of dynamic model parameters.

2. Use IRPM to find inverse solutions: select constraint cubes of various data parameters

that yields isosurfaces for a set of input data. The IRPM algorithm is further used for localizing

intersections between the respective isosurfaces. The coordinate of intersection points yields

the inverse solutions of each dynamic model parameter corresponding to the input data. These

solutions may aid in reservoir characterization.
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Figure 3.11: Intersection of the isosurfaces ϕK=17(~m), ϕµ=13(~m) and ϕρ=2.3(~m). In this plot, a single
solution appears in the purple circle. However, this solution must not be considered to represent the true
solution as this problem is non-unique.

3.6 Summary

In this chapter we have seen a general workflow of the IRPM approach and applied it on two distinct

reservoir models. The reservoir models have been used to demonstrate how to model rock physics

constraints and how to obtain solutions of dynamic model parameters by applying IRPM. We have seen
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examples that supports that the inverse problem is emphasized by non-unique solutions. However, if

an appropriate rock physics model is chosen, ideal input data acquired and the static model parameters

defined sufficiently accurate, interpretation of the solutions can be helpful in reservoir characterization.



Chapter 4

IRPM performance and influence of

reservoir parameter uncertainties
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4.1 Outline

Is inverse rock physics modeling (IRPM) a robust, reliable and convenient method applicable for

reservoir characterization? To evaluate this, the IRPM algorithm is put to the test on synthetic data

constructed by the same rock physics model as the rock physics constraint cubes, obtaining fully

consistent input data. Next, the influence on inverse solutions from uncertainties in the pre defined

static model parameters is studied.

4.2 IRPM performance on synthetic input data

Say that the porosity, lithology and saturation (PLF) properties were known at 27 discrete points in

reservoir B (see figure 4.1). These dynamic model parameter values are subsequently substituted into

the rock physics model and density function applied for reservoir B (see section 3.2, 3.3 and 3.4) to

compute the elastic moduli and density, respectively (see figure 4.2). Now, both the dynamic model

and data parameters are known in advance, and it is possible to check if IRPM will succeed to identify

the correct model parameters values when the corresponding input data is 100 % consistent.
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Figure 4.1: 27 discrete combinations of porosity φ,
lithology C and saturation Sg. The zebra stripes on
background separates the various data samples.
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Figure 4.2: The corresponding synthetic data param-
eters computed using the rock physics model for reser-
voir B.

Figures 4.3-4.6 shows the inverse solutions obtained from applying combinations of the bulk moduli K,

shear moduli µ and density ρ in each sample seen in figure 4.2. The pre defined dynamic model param-

eters in figure 4.1 are marked as black squares superimposing the colorized inverse solutions. Various

combinations of two input data (i.e. undetermined problem) is presented in figure 4.3) K and µ, 4.4)

K and ρ and 4.5) µ and ρ, whereas figure 4.6 shows all three input data (i.e. determined problem) K,

µ and ρ. A Newton-Raphson based solver (see appendix B.1) are used here. The solutions obtained for

sample #5 for the undetermined and ”determined” problem in figures 4.5 and 4.6, respectively, can be

studied in figures 4.7 and 4.8, respectively. We see that for all combinations of two input data that the
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Figure 4.3: Inverse solutions using K and µ.
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Figure 4.4: Inverse solutions using K and ρ.
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Figure 4.5: Inverse solutions using µ and ρ.
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Figure 4.6: Inverse solutions using K, µ and ρ.

Figure 4.3-4.6: Inverse solutions obtained from various combinations of the input data samples in figure 4.2.
The colors of the solutions denotes the saturation as proposed by the colorbar. Undetermined problems are
presented by a combination of two input data (figures 4.3-4.5), whereas a determined problem is faced when
considering three input data (figure 4.6). In figures 4.5 and 4.6, sample #5 is denoted by a bluish background
as it is used in figure 4.7 and 4.8 to study the solutions.

porosity is constrained quite well, whereas a less narrow solution range is achieved for lithology and

saturation. Often the dynamic model parameters are practically not constrained at all. An example

of unconstrained saturation solutions can be seen in figure 4.7. Note that the solution ranges marked

with orange on each axis are the same as those for sample #5 in figure 4.5.

The majority of samples in figure 4.6 when applying three input data have a second solution unequal

the true solution. See for instance sample #5 in figure 4.8 where all three isosurfaces intersects in

a point at two different locations and yields two different solutions. However, it may be possible

to discard invalid solutions if additional information (e.g. from well data) is available. For instance,

information about what type of fluid that is most likely to be present in the reservoir can be helpful.
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The pre defined saturations in figure 4.1 contains only values ≥ 0.5. Hence, limiting solutions to

Sg ∈ [0.5, 1] results in solutions which are consistent with the synthetic model (see figure 4.9).
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Figure 4.9: The same solutions as in figure 4.6, but here solutions with saturations under 50 % gas content
are discarded. Hence, all the solutions obtained by the IRPM algorithm matches the pre-defined dynamic
model parameters in figure 4.1.
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4.3 Reservoir parameter uncertainties and influence of fluid

heterogeneity

The synthetic input data generated in figure 4.2 were 100 % consistent with the rock physics constraint

cubes used in the IRPM algorithm for reservoir B. Such settings are however not realistic; the rock

physics constraints and observational input data will usually suffer from a certain degree of inconsis-

tency. It may be that the input data lack precision from measurements, but it may also be that the

rock physics constraints are too inaccurate. Uncertainties regarding defining static model parameters

is one issue that could counteract accuracy in the rock physics constrains. In section 3.2 reservoir

A and B were defined with a critical porosity φ0 = 0.4, which is a typical value for sandstones and

limestones (Nur et al., 1995; Avseth et al., 2005). The coordination number C0 was following estimated

as a function of the critical porosity (see figure 4.10).
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Figure 4.10: Critical porosity φ0 and coordination number C0 relationship according to Murphy (1982)
compiled data (red points). The dashed blue line interpolates the data points.

If the actual critical porosity deviates significantly from that defined in the rock physics constraints,

this will in turn influence the coordination number, and the rock physics constraints may become

significantly imprecise. To investigate the influence of a perturbation in critical porosity (and following

the coordination number), a set of five constraint cubes for reservoir B were generated with various

critical porosities between 35 % and 45 % at steps ∆φ0 = 2.5 %. Pre defined model parameter

combinations and corresponding synthetic input data used in the IRPM approach is shown in figure 4.1

and 4.2, respectively. In figure 4.11 the inverse solutions of the five different critical porosity constraints

are shown, using bulk moduli, shear moduli and density in the IRPM approach. As the input data

in figure 4.2 were calculated using a critical porosity of 40 %, the green solutions (corresponding

constraints with φ0 = 0.4) matches the black squares (i.e. the black squares) perfectly. Also notice

that several samples have a second solution of the same critical porosity φ0 model, corresponding to that

previously seen in figure 4.6. We further see that various dynamic model parameter solutions depends

differently on critical porosity; the porosity is lightly, lithology some and the saturation strongly
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depends on critical porosity. The solutions also deviates more from the true model with increasing

difference between the φ0 defined in the various constraint cubes and the input data calculated with

φ0 = 0.4. If a particular solution from a φ0 model in a given sample is not found, it may be that it is

overlapped by another solution (i.e. the solutions of various φ0 models are equal), as seen in several

samples for porosity solutions.
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Figure 4.11: The inverse solutions obtained by applying five constraint cubes of varying C0(φ0). The color
of the solutions reflects the critical porosity proposed by the colorbar. The black squares marks φ0 = 0.4 as
defined for reservoir B in section 3.2 and were used in calculating the applied input data (see figure 4.2).

Another example of a static model parameter that may be characterized by unpredictability is the

b parameter that describes location of cement deposited somewhere on the grain surface in reservoir

rocks. Figure 2.5 represents some standard cement models; coated models describes cement evenly

deposited on the grain surface, whereas contact models considers all cement accumulated at the grain

contact points. The rock physics modeling for reservoir B (see section 3.2, 3.3 and 3.4) requires the

parameter b = a/R, where a and R respectively is the radius of the contact cement and the grain

radius, to specify the amount of contact cement. However, by assuming that porosity reduction in

sands is due to cementation only and by adopting certain cement deposition models, the parameter b

can be expressed explicitly as in equation (3.5) when considering a coated cement model (Mavko et al.,

2009). If it turns out however that a contact cement model would be more appropriate for reservoir

B, the parameter b will have the following expression

b = 2

[
φ0 − φ

3C0 (1− φ0)

] 1
4

, (4.1)

that describes all cement to be located the grain contact points and subsequently yields a stiffer rock.
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To study how various cement models may influence inverse solutions obtained by IRPM, constraint

cubes with accordance to equation (4.1) were generated. The inverse solutions is shown in figure 4.12

for both coated and contact cement models. The synthetic input data applied is shown in figure 4.2

and is calculated by using a coated cement model represented by the black squares as true solutions.

Solutions obtained by applying constraints with a coated cement model has at least one consistent

solution for every sample, whereas a contact cement model yields no solutions that are fully consistent.
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Figure 4.12: The inverse solutions obtained by applying two set of constraint cubes for reservoir B with
different cement models. The black squares represents the true solutions consistent with the applied synthetic
input data.

Apart from structural heterogeneity like critical porosity and cement location, nonuniform distribution

of fluids introduce fluid heterogeneity that also affect the overall elastic behavior of a porous rock. Hill’s

equation (2.20) were proposed in section 2.5 to estimate the bulk moduli of patchy fluid saturation

by equation (2.40). However, if there exists uncertainties about which fluid mix model to choose, the

following example investigates the impact on the inverse solutions. The rock physics constraint cubes

for reservoir B considered the Wood’s formula (2.39) to predict the bulk moduli of the pore fluids.

New constraint cubes for reservoir B with a Hill fluid model were generated and applied together with

the synthetic input data (see figure 4.2) in the IRPM algorithm. The corresponding inverse solutions

were identified only at the samples where a gas fraction Sg of 1 were defined, whereas no solutions were

found for the remaining samples. In figure 4.13 the pre defined saturation of each sample is shown

next to the effective bulk moduli of the rock when applying both a Wood and Hill fluid model. Also,

the solutions for sample #22 is shown in the PLF space. Notice how the effective bulk moduli of the

rock is the same for both applications of Wood and Hill fluid models when considering a fully gas

saturated rock. This is logical as both fluid models will predict the same properties when considering

pure gas or brine saturations, i.e. K
(Wood)
f = K

(Hill)
f if Sg = 1 or Sg = 0. The remaining samples

deviates in effective bulk moduli as the fluid models predicts different properties, as seen in the bulk
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moduli isosurfaces in the PLF space. We see that the orange bulk moduli isosurface (i.e. a Wood fluid

model) yields a solution where it intersects the shear moduli and density isosurfaces. However, no

such solution is found when using a Hill model due to a significant displacement of the purple bulk

moduli isosurface that provides no interception with shear moduli and density isosurfaces at a distinct

point. Any fluid patchiness can be introduced by creating a set of constraint cubes, and they will yield

bulk moduli insosurfaces that are located in between the orange and purple isosurface in figure 4.13

for reservoir B.
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Figure 4.13: Pre defined saturation values are shown next to the corresponding effective bulk moduli when
applying two different fluid models. Also, the isosurfaces for sample #22 for both fluid models are shown to
the right. Notice that the shear moduli and density constraints are unaffected by different fluid models.

4.4 Summary

In this chapter we have seen the inverse solutions obtained by IRPM from synthetic input data that is

fully consistent with the rock physics constraints. Even when applying the same number of input data

as dynamic model parameters, the inverse solutions were non-unique. Possible methods for discarding

invalid solutions were studied to yield consistent solutions with the synthetic model. Furthermore, three

different static model parameters were perturbed to mimic uncertainties that lead to distorted inverse

solutions. We have seen how its possible to investigate the influence of uncertainties in specific static

model parameters by generating a set of constraint cubes. This may provide reducing misinterpretation

risks.



Chapter 5

Use of IRPM in reservoir monitoring
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5.1 Outline

Inverse rock physics modeling (IRPM) is flexible in the way it can delineate the various model pa-

rameters that a chosen rock physics model holds. In this chapter, the constraint cubes are modified

so that they are suited for reservoir monitoring with respect to typical model parameters that alters

under production. Following, real data from Glitne, North Sea, will be considered for reservoir moni-

toring, where a hybrid synthetic approach has been used to compensate the lack of repeated well log

observations.

5.2 Modification of constraint cubes in aid of

reservoir monitoring

One of the most recent developments in the field of seismic data acquisition is four-dimensional seis-

mic (4D), which adds time as the fourth parameter in reservoir monitoring. This technology involves

repeating conventional 3D data acquisition over the same area with a time lapse of anything between a

few months to several years to capture changes in subsurface properties. Years of production can cause

changes in the reservoir associated with the movement of fluids by introducing temporal saturation

and pressure variations. 4D seismic technology makes it possible to surveillance the movement of these

fluids and consequently to optimize the location of future wells and speed up production rates (Com-

pagnie Generale de Geophysique, 2006; Bjørlykke, 2010).

Rock physics is essential in 4D reservoir characterization as it serve a tool for interpreting the ob-

servations (Bjørlykke, 2010). Rock physics constraints can be used to discriminate how specific model

parameters are affecting the elastic properties (see for instance the generated constraint cubes in

section 3.3 and 3.4). For instance, saturation effects is often described by applying Gassmann’s equa-

tion (2.38). In figure 5.1 the effective bulk moduli for a homogenous and patchy fluid filled rock is

shown using the Gassmann model. Notice when considering homogenous fluid distribution, the modest

amounts of gas introduce almost equal elastic properties as for commercial gas amounts, whereas a

patchy fluid shows a more linear decrease in stiffness with increasing gas saturation. Rock physics

analysis, like applying the Gassmann model to delineate saturation effects, can be applied to investi-

gate how the seismic properties will change due to a period of hydrocarbon production.

Whereas seismic sensitivity of fluid effects are well-documented and utilized in 4D seismic studies,

similar studies on pressure effects are rarely carried out. As the Gassmann model is applicable when

any chosen rock physics model predicts the dry rock properties, it labels itself as a universal key for

predicting saturation effects. In contrast, an equivalent elastic relationship with pressure effects is

yet undiscovered (Landrø et al., 2001; Avseth and Skjei, 2011). In practice, the seismic parameters

are commonly linked to pore pressure by performing ultrasonic measurements on several core samples

taken from various locations of a hydrocarbon field. Core samples suited for such measurements are
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Figure 5.1: The effective bulk moduli of a rock when gas substitution is introduced, modeled by Gassmann’s
equation (2.38), in case of a homogenous and patchy fluid distribution.

however not always available (Avseth et al., 2005), and even if they are, they may suffer from a wide

range of uncertainties and are rarely calibrated with seismic data to provide the seismic sensitivity

of pressure effects (Landrø, 2001; Eiken and Tøndel, 2005). Moreover, the majority of rock physics

models are pressure insensitive and therefore lacks a input pressure parameter needed to perturb the

pressure for the rock physics constrains. However, a hybrid model where a high porosity grain package

is computed by the pressure dependent contact theory (CT) models offers an opportunity to consider

pressure effects. Also, the pressure dependency for fluids can be introduced by applying the relations

proposed by Batzle and Wang (1992). In figure 5.2 rock physics constraints of reservoir A (see sec-

tion 3.2 and 3.3) are functions of porosity and pore pressure, where lithology is set for pure quartz.

The corresponding pore pressure effect at porosity φ = 0.4 can be studied in figure 5.3, where confining

pressure Pc is 17.7 MPa from equation (3.3). Both plots implies that increasing pore pressure weakens

the grain framework and softens the rock.

The IRPM approach is flexible in the way that the dynamic model parameters can be switched de-

pending on the purpose of the study. In the following, modification of constraint cubes for reservoir

monitoring is demonstrated on the reservoir A model by considering lithology to be constant (pure

quartz is used in this example) and varying the pore pressure Pp, porosity φ and saturation Sg. Hence,

the dynamic model parameters are now ~m = (φ, Pp, Sg). The effective pressure in equation (3.2)

represents the input parameter in the CT model, where confining pressure Pc is 17.7 MPa from equa-

tion (3.3), and pore pressure has 26 equidistant values between 2 MPa and 17 MPa. Furthermore, by

implementing the fluid relations of Batzle and Wang (1992) into the calculations of constraint cubes,

the bulk moduli and density of fluids also change as function of pore pressure. The corresponding

constraint cubes for P-velocity, S-velocity and density are shown in figure 5.4. These are common data

parameters extracted from well logging (Avseth et al., 2005; Barclay et al., 2008).
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Figure 5.3: Pore pressure effects at φ = 0.4 for reser-
voir A.

Pore pressure fluctuation in reservoirs may depend on several factors. From the reservoir pore pressure

equilibrium state, it is assumed to increase near injection wells and decrease in vicinity of production

wells (Cole et al., 2002). The velocity cubes in figure 5.4 implies diminishing values for increasing pore

pressure, which expected from studying figure 5.2 and 5.3. Notice however that the velocity sensitiv-

ity is relative moderate for varying pore pressure. The elasticity changes remarkably when replacing

perturbation of lithology with pore pressure. This is due to the contrast in stiffness between various

minerals typically varies in an order up to tens-of-gigapascal, whereas common pore pressure alter-

ations caused by hydrocarbon production is at a scale of fractions-of-gigapascal. Hence, the stiffness

of the reservoir A rock is more sensitive to varying lithology than pore pressure variations.

The density of solid constituents are pressure dependent and typically requires pressure changes in

order hundred-of-gigapascal, as occur several thousands of kilometers through the earth (Semprich

et al., 2010; Pluijm and Marshak, 2004). Hence, the influence on density of solid constituents, due

to common pressure alterations of a few megapascals in producing reservoirs, is neglected in the cal-

culation of the density cube in figure 5.4. However, the density cube shows a small increase with

increasing pore pressure due to the fluid relations of Batzle and Wang (1992). The density function

can be expressed as

ρ(φ, Pp, Sg) = φ[Sgρ(Pp)gas + (1− Sg)ρ(Pp)brine] + (1− φ)ρquartz, (5.1)

where φ, Pp Sg and ρquartz are the porosity, pore pressure, gas saturation and quartz density, respec-

tively, and ρ(Pp)gas and ρ(Pp)brine are the densities of gas and brine as functions of pore pressure (Batzle

and Wang, 1992).

When the 4D suited constraint cubes are generated, step one of the general IRPM workflow in fig-

ure 3.1 is fulfilled. To further study how certain model parameters are changing in a reservoir as
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P-velocity cube S-velocity cube

Density cube

Figure 5.4: The constraint cubes of P and S-velocity and density for reservoir A suited for reservoir moni-
toring. The previously lithology axis is replaced by pore pressure.

function of time, repeated input data is required. Figure 5.5 shows solutions obtained from applying

synthetic input data and the constraint cubes in figure 5.4, where a Newton-Raphson based solver

(see appendix B.1) is used. The correct solutions is represented by black squares superimposing the

colorized inverse solutions with respect to saturation. The pre defined porosity and saturation samples

are shown in figure 4.1, while the pore pressure combinations are defined at 10.1 MPa (corresponds

the pore pressure found from equation (3.3) and can be thought of as the equilibrium pore pressure),

and a corresponding 5 MPa pore pressure decrease and increase. The solutions are similar to those

previously seen in figure 4.6 by that both consistent and incosistent solutions are identified, even when

applying three input data.
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Figure 5.5: The inverse solutions obtained from applying synthetic input data from the modified constraint
cubes of reservoir A in figure 5.4.

5.3 A 4D hybrid synthetic approach performed on real data

In this section a 4D study is introduced on synthetic modified well log data from the Glitne field,

Norh Sea, by applying the IRPM approach. Glitne is an oil field that was discovered in 1995 with

subsequent start of production in 2001, and are developed with six production wells and one water

injection well (Norwegian Petroleum Directorate, 2012). The log data shown in figures 5.6 and 5.7,

covers a section that comprise two facies referred to as IIb (2155-2165 meters) and IIc (2166-2183

meters) (Avseth et al., 2005). Facies IIb is clean, massive sandstone with clay coatings, but with some

presence of clay occupying the pore space. Facies IIc is plane-laminated sandstone with a grain size

generally smaller than in IIb and with a higher content of pore-filling clay.
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Figure 5.6: Observed model parameters in Glitne.
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Figure 5.7: Observed data parameters in Glitne.

Previous rock physics modeling on Glitne data by Avseth et al. (2005) and Johansen et al. (2011) fo-

cused on finding a representative rock physics model by calibrating the observed model parameters in
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aid of reservoir characterization. Avseth et al. (2005) superimposed constraints of various rock physics

models onto well log velocity-porosity data from the reservoir zones of Glitne. As such, the well log

data tend to cluster around the so called friable sand model, i.e. a lower Hashin-Shtrikman-Walpole

bound between zero porosity and high porosity end members, where Hertz-Mindlin theory (Mindlin,

1949) is used for the high porosity point (see figure 2.6).

Johansen et al. (2011) continued by applying the IRPM approach to calibrate the inverse solutions

with the model parameter well logs, and used the results obtained by Avseth et al. (2005) in creating

rock physics constraint cubes. However, several other rock physics models were additionally tested to

check wether an improved calibration was reachable. The result was different from the friable sand

model proposed by Avseth et al. (2005), and the modeling suggestions of both Avseth et al. (2005)

and Johansen et al. (2011) are summarized in table 5.1 for more details. Also, the constituent proper-

ties defined for the most consistent results were unequal in the two studies. In table 5.2 the constituent

properties used by Johansen et al. (2011) are shown.

Rock physics modeling suggestions

Avseth et al. (2005) Johansen et al. (2011)

Dry rock: Hashin-Shtrikman lower bound in-
terpolates between zero porosity (i.e. the effec-
tive mineral properties) and the high porosity
end member which were modeled using Hertz-
Mindlin theory (Mindlin, 1949). The Hertz-
Mindlin model used a critical porosity φ0 = 0.4,
coordination number C0 = 8.3 and effective
pressure Pe = 20 MPa. The effective min-
eral properties were modeled using a Hashin-
Shtrikman lower bound.

Dry rock: A DEM model interpolates between
the porosity end members with a pore model
as defined below. The inclusions has the elas-
tic properties of the high-porous end member,
which is predicted using a Walton model (Wal-
ton, 1987) with a mixed slip factor model (Duf-
faut et al., 2010; Bachrach and Avseth, 2008).
The Walton model used the same φ0, C0 and
Pe values as Avseth et al. (2005) used in the
Hertz-Mindlin model, and, the effective mineral
properties were also modeled equally.

Fluid substitution: The fluid properties were
modeled by Wood’s equation 2.39 and fluid sub-
stitution introduced applying Gassmann (1951)
model.

Fluid substitution: The fluid substitu-
tion is modeled equally as in Avseth et al.
(2005). Pore model: Aspect ratio spectrum:
[1, 0.5, 0.1, 0.01, 0.001, 0.0001]; Concentration:
[0.6419, 0.3205, 0.0321, 0.0050, 0.0005, 0.0001].
Slip factor model: 0.4 for facies IIb and 0.6
for facies IIc.

Table 5.1: The results of Avseth et al. (2005) and Johansen et al. (2011) rock physics modeling studies for
Glitne.

In this study, constraint cubes with accordance to Johansen et al. (2011) is created so that the the

rock physics modeling is calibrated to the Glitne well log data. As mentioned, the geological scenario

is slightly different in facies IIb and IIc, and Johansen et al. (2011) proposed using different slip-factors
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Constituent Bulk moduli [GPa] Shear moduli [GPa] Density [g/cm3]

Quartz 36.8 44 2.65
Clay 13 4 2.56
Brine 2.8 – 1.0
Oil 1.005 – 0.78

Table 5.2: Constituent properties that gives the most consistent result during modeling Glitne data accord-
ing Johansen et al. (2011).

in the Walton (1987) model for this issue (specified in table 5.1). Various slip-factor models means

a volume weighted averaging of the elastic moduli predicted at rough and zero grain friction. After

generating the constraint cubes and applying input data from the Glitne well log data, the results

shown in figure 5.8 for the two facies are obtained. The inverse modeling use P-velocity Vp, S-velocity

Vs and density ρ in the IRPM algorithm. The reason for the large number of identified solutions,

even when applying three data parameters, is because a proximity detection solver is applied. This

solver detects solutions in parts of the isosurfaces that lies within a certain spatial proximity of each

other and therefore identifies more solutions than the Newton-Raphson solver (see appendix B for

more details about the two different solvers). The solutions are similar to the solutions obtained from

synthetic input data in section 4.2 by that there is little variation in the porosity estimations, some

variation in lithology and a wide range of possible fluid saturations.
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Figure 5.8: The original inverse solutions obtained by using spesifications of Johansen et al. (2011). The
black circles represents the observed model parameters (corresponding model parameters in figure 5.6) and
the colorized dots denotes the inverse solutions obtained by applying the IRPM approach. The color gradient
of the inverse solutions denotes the fluid saturation.

To obtain a 4D reservoir characterization study on the Glitne data, repeated measurements at the same

depth sequence should ideally be acquired after a period of hydrocarbon production. Consequently,

saturation and pore pressure are expected to change from the initial scenario. In lack of such a data set,

and because provided data from Glitne do not include any pressure measurements, a hybrid synthetic

data set has been prepared. For this we are only considering data from facies IIb. The hybrid synthetic
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data are generated according to the following procedure;

1. The rock physics modeling is done in accordance to Johansen et al. (2011).

2. The rock physics constraints are modified to consider varying pore pressure, as described in

section 5.2.

3. Hydrocarbon production is assumed to give an oil saturation reduction and pore pressure increase

due to fluid injections. The initial and hybrid synthetic model parameters are shown in figure 5.9.

4. A new set of synthetic input data is calculated in figure 5.10 that correspond to the hybrid

synthetic model parameters in figure 5.9.

5. The synthetic input data is applied together with the modified constraint cubes in the IRPM

algorithm. In figure 5.11 the hybrid synthetic model parameters superimpose the corresponding

inverse solutions.
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Figure 5.9: Left: the initial model parameters from Glitne (denoted by black circles) together with the
considered oil decrease and pore pressure increase due to production. Right: updated model parameters
after oil saturation subtraction and pore pressure addition. The porosity is considered to be unaffected by
production effects. The background colors denotes the production effects.

As the initial Glitne data implies a varying clay content through facies IIb (see figure 5.8), the lithology

in the rock physics constraints were perturbed as C = [0, 0.05, 0.1] and revealed that the lithology have

no significant influence on the solutions. Hence, the rock physics constraints used in figure 5.11 and

in the following study use a pure quartz lithology.

The simulated oil decrease and pore pressure increase in figure 5.9 have been described by a one

half sinus function curve (i.e. y = sin(x), x ∈ [0, π]) with a peak at 2162.8 meters that corresponds
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Figure 5.10: The VP , VS and ρ parameters before and after the change in saturation and pore pressure
shown in figure 5.9.
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Figure 5.11: The inverse solutions obtained from applying the post-production input data in figure 5.10 and
the corresponding constraint cubes (i.e. VP , VS and ρ). The black circles denotes the hybrid synthetic model
parameters.

a maximum of 33 % oil reduction and a 5 MPa pore pressure increase. The synthetic modeling is

assumed to mimic model parameters in vicinity of an injection well, where injected brine at 2162.8

meters cause a higher pore pressure so that oil is squeezed away from the injection well. Notice that

the rock physics modeling by Avseth et al. (2005) and Johansen et al. (2011) used an effective pressure

of 20 MPa (see table 5.1), which typically lies close to the pore pressure. Hence, the pore pressure is

considered to also be 20 MPa in the initial rock physics model for Glitne. In equation (3.2) (assuming

β = 1), confining pressure is set to 40 MPa, whereas the pore pressure varies between 10 MPa and 30
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MPa, causing the effective pressure to vary in the rock physics constraints.

Reasonably, the input data in figure 5.10 has changed the most in vicinity of a maximum produc-

tion effect described in figure 5.9. We see that the bulk density, expressed by equation (5.1), has

increased significantly due to changed fluid properties, especially since the average porosity in facies

IIb is quite high. Furthermore, the P and S-velocities, expressed respectively by equations (2.15a)

and (2.15b), show a rather small change. The fluid independent S-velocity show a small decrease due

to increased pore pressure and bulk density. P-velocity however, has slightly increased caused from a

raise in the fluid incompressibility due to increasing brine saturations.

Now, an evaluation of the specific model parameter solutions in figure 5.11 follows. Firstly, considering

the inverted porosity solutions, they now lies more accurate within the black circles compared to the

initial solutions in figure 5.8. This is because the synthetic input data in figure 5.10 is calculated using

the same rock physics model as in the rock physics constraints applied in the IRPM approach. On the

other hand, the input data used in figure 5.8 are well log observations that disagrees to some extent

with the rock physics modeling suggested by Johansen et al. (2011). Any convenient rock physics

model must be used with caution when comparing with real data, simply because the models are

not capable of incorporating all heterogeneities found in natural born rocks. Real data may also suf-

fer from uncertainties which makes it challenging to compare real and modeled data (Walls et al., 2004).

Continuing the evaluation, the predicted saturations overlap and follows the trend of hybrid synthetic

data (i.e. black circles). The saturation is now more brine dominated at all depths. The predicted

saturations is still very non-unique.

Pore pressure solutions have not previously been studied by applying the IRPM approach, and is

therefore an interesting part of this study. The solutions show a highly non-unique problem that spans

more or less the whole perturbed pore pressure window. Reasons causing such poorly constrained

solutions were discussed in section 5.2; the elastic properties and density are not very dependent on

perturbations in pore pressure. Thus, the pore pressure is cumbersome to sufficiently constrain due to

its insensitivity in the rock physics modeling.

At this point, it is important to consider all possible combinations of input data to check if any

constraint cubes have isosurfaces that are closer to perpendicular to the pore pressure axis. A sen-

sitivity analysis was conducted to possibly find a better combination of data parameters leading to

more narrow and stable solution ranges (Jensen and Johansen, 2011). The sensitivity analysis did not

yield one set of input data which one could expect to perform much better than the rest. In addition,

the analysis revealed what is already implied by figure 5.11, namely that it might be impossible to

constrain the pore pressure. In figure 5.12 a combination of Poisson’s ratio v, S-velocity VS and Lamé

constant times density λρ are used in the IRPM approach, after a manual quality control of the vari-
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ous candidates. The sensitivity analysis evaluate data parameters that constrain each specific model

parameter conveniently. Hence, the saturation solutions in figure 5.11 has improved significantly due

to applying the Poisson’s ratio, which is particularly sensitive to saturation. However, the parameter

combination did not improve constraining pore pressure.
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Figure 5.12: The solutions obtained from applying v, VS and λρ input data, which corresponds the same
VP , VS and ρ values shown in figure 5.10.

5.4 Summary

In this chapter we have seen that rock physics constraints can be modified to incorporate model

parameters of interest in reservoir monitoring. A calibrated rock physics model for Glitne (Johansen

et al., 2011) were following modified to include varying pore pressure. Real input data from Glitne

were synthetically modified and applied together with the modified Glitne rock physics constraints to

study porosity, pore pressure and saturation solutions. The results obtained showed little variation in

porosity solutions, a wide range of possible saturation solutions and pore pressure solutions that were

cumbersome to constrain due to its insensitivity in the Glitne rock physics model.



Chapter 6

Discussion and conclusions
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6.1 Discussion

This study has mainly contributed to focus on two areas: (1) impact of static model parameter un-

certainties on IRPM solutions and (2) customization of the IRPM approach for reservoir monitoring

applications. Along this research, pitfalls and limitations attached to the usage of IRPM in reservoir

characterization were encountered and are in the following discussed.

The model dependency of the IRPM approach is illustrated by comparing the elasticity constraint

cubes of reservoir A and B (see figures 3.4, 3.5 and 3.6). The contact theory and contact cement

theory, used respectively for reservoir A and B, deviates significantly. Reservoir A exhibits relative

monotonous low elastic values throughout the whole PLF domain, except for low porosities and quartz

dominated solid phase (see also figure 2.6). This emphasizes the importance of deposited cement at

the grain surface with respect to elastic properties in the high porosity regime. Also, for reservoir A

and B we use lower and upper Hashin-Shtrikman-Walpole bounds, respectively, to interpolate between

zero and high porosity end members. The lower and upper bounds simulate various sorting and ce-

mentation trends, respectively, two very different physical processes.

Figure 4.7 shows density and shear moduli constraints by their respective isosurfaces representing

sample #5 of the porosity, lithology and saturation solutions in figure 4.5. The angle formed between

the normal vectors at every point on a specific isosurface and a particular model parameter axis im-

plies how well the data parameter constrains the considered model parameter. As the average normal

vector of an isosurface approaches parallel with a model parameter axis, the solution range narrows

for that particular model parameter. The average normal vectors of the individual isosurfaces in fig-

ure 4.7 creates an angle with the porosity axis that is significantly closer to zero than the equivalent

angle at the lithology axis. This is why the solution range (marked as orange intervals on each model

parameter axis) of porosity is narrower than for lithology in figure 4.5. The orientation of isosurfaces

is consistent in terms of physical property reasoning; the porosity reflects the contrast in stiffness

and density between the solid and fluid components which is certainly much larger than the contrast

between various solid or various fluid components, respectively represented by lithology and saturation.

Figure 3.7 and 3.9 show considered bulk moduli isosurfaces for reservoir A and B, respectively. These

have in common a quite flat topology except when approaching fully brine saturations. This is due

to the fluid substitution from applying the Gassmann model (see figure 5.1). The bulk moduli is

monotonically strongly decreasing within approximately 0-10 % gas increase, whereas the remaining

gas substitution has a small effect. When applying several additional data parameters with a differ-

ent saturation sensitivity, it is a high probability for isosurfaces to intercept in the regions of a fully

brine saturated rock. Examples are found in figures 4.6 and 5.5; the majority of samples where three

input data have been applied has a second solution denoted by a high brine content. Thus, applying

bulk moduli, or other related parameters, in the IRPM approach, may imply non-unique solutions.
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This issue is however most relevant considering mixed fluids with a significant contrast in physical

properties. Figure 6.1 shows interceptions between the isosurfaces in figure 3.11. Notice how the red

and green interception line (both including bulk moduli constraints) tend to bow when approaching

low gas content and subsequently intercepts one another. Hence, conditioning and limitations of solu-

tion constraints depends on the orientation and flatness of isosurfaces, which can be conducted by a

sensitivity analysis that yields an optimal combination of input data (Jensen and Johansen, 2011).
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denotes a 10 % gas saturation, where the bulk moduli changes significantly when approaching brine.

The pore pressure in figure 5.11 and 5.12 show poorly constrained solutions, whereas figure 5.5 shows

consistent pore pressure solutions when considering synthetic input data from the 4D suited rock

physics constraints of reservoir A (see section 5.2). However, the hybrid synthetic modeling of Glitne

also considered consistent input data, so why are the pore pressure solutions in figure 5.11 and 5.12

so weakly constrained? The answer lies within the differently used rock physics models; reservoir A

use a lower Hashin-Shtrikman-Walpole (HSW) bound to interpolate the zero and high porosity end

members, while for Glitne, we use a differential effective medium (DEM) model that predicts a far

stiffer rock (see figure 6.2). The DEM model considers the mineral point as host material and the high

porosity framework as inclusions by cracks, ellipsoids and spheres. The HSW lower bound represents

the rock as infinite many two-phase spheres composed of an inner core of the mineral point and an

outer core of the grain package end member. Hence, the two models reacts very differently to pore

pressure perturbation. The stiffness predicted by DEM is hardly affected by common pore pressure

changes so that isosurfaces align parallel with pore pressure axis (see figure 6.3). Hence, the low pore

pressure sensitivity in the hybrid synthetic modeling for Glitne yields topological features of isosurfaces

that constrains pore pressure insufficiently and implies fragile pore pressure solution stability.
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If a rock physics model imposing a stronger pore pressure dependency is applied, the pore pressure

constraints would be stronger. However, contact theory implies that elastic properties change so tiny

due to common pore pressure variations, that isosurfaces most likely are close to parallel with the

pore pressure axis also if a more proper model is used. Also, geochemical processes that initiates due

to pore pressure changes and may potentially affect the rock physics, have not been considered in

this study. Furthermore, if cementation initiates in an unconsolidated sandstone reservoir so that it

becomes partly cemented, a patchy cementation model (see section 2.4.8) designates as a reasonable

candidate. This model indicates declining pore pressure sensitivity for increasing cementation. This

is one reason for why the 4D seismic technique has been more successful for unconsolidated reservoirs

than carbonates and cemented sandstones (Lumley, 2001).
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Figure 6.2: A DEM and lower HSW model that interpolates between zero and high porosity end members
at two different pore pressure Pp states. The pore fluid is gas.

The saturation solutions in figure 5.12, applying a input data combination of Poisson’s ratio, S-velocity

and Lamé constant times density, provide better saturation constraints than those seen in figure 5.11,

where P-velocity, S-velocity and density were applied. Poisson’s ratio v is directly related to the VP/VS

ratio by

v =
0.5 (VP/VS)2 − 1

(VP/VS)2 − 1
, (6.1)

which is very sensitive to saturation changes and often interpreted as a direct hydrocarbon indicator

by AVO (Amplitude Versus Offset) analysis (Gelius and Johansen, 2010). Hence, both Poisson’s ratio

and the VP/VS ratio are convenient input data to achieve narrow saturation solutions.
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In the reservoir A and B models described in chapter 3, a brine-gas fluid mixture was assumed. In

the hybrid synthetic modeling of Glitne in chapter 5 however, a brine-oil fluid mixture was assumed.

The elastic behavior of oil and gas are significantly different (Batzle and Wang, 1992) as demonstrated

in figures 6.4 and 6.5. The property contrast between oil and brine are significantly smaller than for

gas and brine. Hence, discrimination of brine and oil can be challenging due to their relative similar

elastic properties (Lumley, 2001; Avseth et al., 2005). Therefore, it can be more difficult to obtain

sufficient constrained solutions when oil substitution is considered.
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For some rock physics models, certain data parameters are represented as non-monotonous functions

of model parameters, such as the VP/VS ratio (see figure 6.6). This makes it more cumbersome to

achieve well constrained inverse solutions as the topology has a bigger surface area receivable for several

interception points. A solution to this issue is to consider appropriate bulk and shear moduli values

with a simpler topology that corresponds a specific VP/VS ratio. The points of intersection between

the respective bulk and shear moduli isosurface may subsequently represent the specific VP/VS ratio

constraint (Johansen et al., 2011).
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denotes the interception between the two isosurfaces.

During modeling, it is important to address simplifications made that may lead to uncertain reservoir

parameters. E.g. lithological assumptions considered in this research a binary mixture of quartz and

clay is used. Real geology is characterized by heterogeneity due to e.g. salt intrusions, volcanic tuff,

silica ooze, etc. (Avseth et al., 2005). In general, if information about a specific reservoir property is

unavailable, a set of rock physics constraints should be constructed where each reservoir property is

altered to capture possible heterogeneity models, as described in section 4.3.

In an early stage of seismic exploration, restricted geophysical observables due to absence of well

information can limit applications of IRPM. P-wave interval velocities is usually the first available infor-

mation acquired, whereas seismic inversion contributes acoustic impedance and VP/VS ratios (Avseth

et al., 2005). However, the P-wave interval velocities are an average over a continuous rock volume,

whereas velocities obtained from acoustic impedance estimations describes the physical properties at

a point of discontinuity, which its location is unspecified due to lack of well information. Averaging

velocities over a bigger volume introduce uncertainties due to internal heterogeneities. Hence, cau-
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tion must be aimed at combining velocities retrieved from acoustic impedance of unknown origin with

a P-wave interval velocity that may in fact vary significantly within the rock volume. A proximity

detection solver (see appendix B.2) may be appropriate when combining such uncertain input data.

6.2 Conclusions

In this study we have seen that applications of inverse rock physics modeling (IRPM) in reservoir

characterization reveal this as an undetermined problem with non-unique solutions. However, IRPM

emphasizes the non-uniqueness of the problem. Also, this study has highlighted interpretation pitfalls

due to uncertainties in reservoir parameters.

The IRPM approach is flexible in the way it predicts any of the reservoir parameters that the ap-

plied rock physics model holds. Hence, IRPM can be applied in reservoir monitoring to interpret

temporal variations in fluid saturation and pressure. A reservoir monitoring study on real data from

Glitne, North Sea, has been considered to predict porosity, saturation and pore pressure solutions. The

results obtained showed little variation in the porosity solutions, a wide range of possible saturation

solutions and pore pressure solutions that were cumbersome to constrain.

The main findings are:

• The IRPM approach may serve a tool for predicting reservoir properties (e.g. porosity, lithology,

saturation) when elastic properties (e.g. elastic moduli, seismic velocities, density) are known.

IRPM makes it practical to emphasize the non-uniqueness of the problem.

• As to the simplifications made in modeling inherent complex rocks, a set of perturbed rock

physics constraints can be made in order to study the influence of uncertainties in reservoir

parameters by analyzing the corresponding solutions obtained by IRPM.

• IRPM is flexible as varies rock physics constraints that can be considered as basis for reservoir

monitoring, i.e. if the rock physics model includes the relevant reservoir parameters that alters

during production.

• A reservoir monitoring study approach was performed on hybrid synthetic data from Glitne, in

lack of real repeated observations. It was found that pore pressure solutions were cumbersome

to constrain due to its insensitivity in the rock physics model relevant for Glitne. As such, well

constrained solutions are limited to reservoir properties that are sufficiently sensitive for specific

rock physics models.
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Appendix A

Contact cement theory (CCT) coefficients

The parameters Ŝn and Ŝτ in the CCT model (Dvorkin et al., 1991) are proportional to the normal

and shear stiffnesses, respectively, of a cemented two-grain combination. They depend on the contact

cement amount, the physical properties of the cement and grains as defined in the following relations:

Ŝn = Anb
2 +Bnb+ Cn,

An = −0.024153Λ−1.3646
n ,

Bn = 0.20405Λ−0.89008
n ,

Cn = 0.00024649Λ−1.9864
n ,

Ŝτ = Aτb
2 +Bτb+ Cτ ,

Aτ = −10−2
(
2.26v2 + 2.07v + 2.3

)
Λ0.079v2+0.1754v−1.342
τ ,

Bτ =
(
0.0573v2 + 0.0937v + 0.202

)
Λ0.0274v2+0.0529v−0.8765
τ ,

Cτ = 10−4
(
9.654v2 + 4.945v + 3.1

)
Λ0.01867v2+0.4011v−1.8186
τ ,

Λn =
2µc
πµ

(1− v)(1− vc)
(1− 2vc)

,

Λτ =
µc
πµ

,

b =
a

R
,

where µ and v are the shear modulus and the Poisson’s ratio of the grains, respectively; µc and vc are

the shear modulus and the Poisson’s ratio of the cement, respectively; a is the radius of the contact

cement layer and R is the grain radius (Mavko et al., 2009). However, b has been explicitly expressed

in equations (3.5) and (4.1) for various contact cementation models.



Appendix B

Solvers applied in the inverse rock physics

modeling (IRPM)

In essence, the IRPM can be reduced to a geometrical problem of identifying intersections of isosurfaces.

In this work, two solvers have been utilized for this purpose, namely a Newton-Raphson based method

and a proximity based method (Jensen, 2011). Whereas the Newton-Raphson solver identifies exact

points of intersecting isosurfaces, the proximity detection solver incorporate a small uncertainty. Hence,

the proximity detection solver is favorable when considering real input data. Figure B.1 shows examples

of the two different solvers in action, considering two and three input data.

B.1 Newton-Raphson’s method

This solver is based on Newton-Raphosn’s method (Kelley, 2003), and it identifies the intersections

of the isosurfaces to within a special level of precession. The solvers starts by subdividing the con-

straint cubes into 25 × 25 × 25 smaller cubes, where those subcubes not constraining all isosurfaces

of interest are discarded. For the remaining subcubes, x, y and z coordinates (i.e. model parameter

values) of the isosurface intersections are calculated according to Newton-Raphson’s method in three

dimensions (Kelley, 2003).

B.2 Proximity detection method

This solver does not only identify intersections of isosurfaces as solutions, but also points on the

isosurfaces which are within a maximum distance of each other. Hence, a tolerance parameter can be

adjusted to handle various levels of uncertainty. The solver refines the constraint cubes of 26×26×26

points to 50 × 50 × 50 points to gain high resolution so that the non-linear topology is captured.

Furthermore, points on isosurfaces that lies within a maximum tolerated distance from each other

are identified as possible solutions. At each solution, a sphere with a pre-defined radius comprehends

points on isosurfaces that are identified as solutions as well. If the refined constraint cubes has a
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sufficiently high resolution, the span of solutions obtained is continuous and the actual solutions can

be interpreted to be within the respective solution range.
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Figure B.1: The Newton-Raphson’s and proximity detection solvers in action, for two and three input
data. Notice how the proximity based method identifies a cloud of solutions around the points where the
Newton-Raphson’s based method identifies exact solutions.
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