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ABSTRACT 
 

The fingerprinting quantitative analysis combining similarity evaluation, Principal 

Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-

DA) is a valid method for classification of herbal medicine species. The main 

objective of this study was to investigate the chemical differences between two 

officinal Chinese pharmacopoeia species Dendrobii Caulis (Shihu) and Dendrobii 

Officinalis Caulis (Tiepi Shihu). As far as is known no systematic chemical 

differences study between the two species, especially based on Dendrobii whole 

profile, was done before. A total of twelve samples, six from each species collected 

from five different provinces in China were analyzed in China at Central South 

University (CSU) and in Norway at University of Bergen (UiB). The extraction 

method of flavonoids or other phenolic compounds present in the two different 

species of Dendrobii and the sample preparation were developed and were relatively 

simple processes. The main advantages of these processes were low solvent 

consumption, relatively short extraction time, good extraction efficiency, stability and 

repetitiveness. The HPLC-DAD method was developed to separate the components 

present in the two species of the Chinese herbal medicine (HM) Dendrobii with good 

resolution. Based on the optimization of the chromatography conditions, an efficient 

chromatography fingerprint of these species was established. It was verified that some 

compounds with retention times in the range from 40 to 50 min appeared in Dendrobii 

species but not in Dendrobii Officinalis species. All the samples were analyzed at four 

different wavelengths, the results obtained at 254 nm being the most useful. PCA 

results showed that the distribution of the samples in two groupings before and after 

peak alignment is almost the same revealing the similarity between the two species. 

Regarding PLS results, it was observed a regular relationship between the Dendrobii 

samples and between the Dendrobii Officinalis samples with a clear separation 

between the two different clusters. In the results obtained for one wavelength or even 

four wavelengths, the final predictive properties of the models were good due to the 

low values obtained for the Standard Error of Prediction (SEP). The selectivity ratio 

showed specific regions in the raw data that could help distinguish between the two 

Dendrobii species. The method established by this study could be applied to other 

similar Dendrobii species for the quality assessment. 
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1. INTRODUCTION 
 

1.1 Theory and Background 
 

A great number of oriental countries have extensively used traditional HM and their 

preparations for many centuries [1, 2].  

The quality control of traditional HM is one of the main concerns for its application 

and development, so to obtain additional evidence of its safety and efficacy more 

scientific research and improvement of the quality of the research is needed. This fact 

is recognized by World Health Organization: “Despite its existence and continued use 

over many centuries, and its popularity and extensive use during the last decade, 

traditional medicine has not been officially recognized in most countries. 

Consequently, education, training and research in this area have not been accorded 

due attention and support. The quantity and quality of the safety and efficacy data on 

traditional medicine are far from sufficient to meet the criteria needed to support its 

use worldwide. The reasons for the lack of research data are due not only to health 

care policies, but also to a lack of adequate or accepted research methodology for 

evaluating traditional medicine” [3]. 

 

1.1.1 Chromatographic Fingerprints and Quality Control of Herbal 

Medicines 
 

A chromatographic fingerprint of a HM is, by definition, “a chromatographic pattern 

of the extract of some common chemical components of pharmacologically active and 

or chemically characteristics [1, 4-6]. This chromatographic profile should be featured 

by the fundamental attributions of ‘integrity’ and ‘fuzziness’ or ‘sameness’ and 

‘differences’ so as to chemically represent the HM investigated” [1, 6, 7]. So, using 

the chromatographic fingerprints it is possible to do accurately the authentication and 

identification of the HM (‘integrity’) even if the concentration/amount of the 

characteristic constituents are slightly different for the same HM (‘fuzziness’) and the 
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chromatographic fingerprints can also effectively show the ‘sameness’ and the 

‘differences’ between several samples [1, 6, 8].  

In every HM and its extract there is a great number of components that are unknown 

and most of them are in low amount and even in the same HM samples it is frequently 

observed some variability [1, 9, 10]. Therefore, to obtain a chromatographic 

fingerprint that represents the pharmacologically active and chemically characteristic 

constituents is not very simple [1]. 

To ensure the consistency of HM products, the phytoequivalence concept was 

developed. The full HM product can be seen as the active compound, because the 

several constituents act together being responsible for its therapeutic effect. 

According to the phytoequivalence concept, “a chemical profile, such as a 

chromatographic fingerprint, for an herbal product should be constructed and 

compared with the profile of a clinically proven reference product” [1, 11]. 

So, an extract of the HM should be prepared and its activity by pharmacological and 

clinical methods should be determined. A qualitative and quantitative profile of all the 

constituents should be obtained by using a hyphenated technique with high efficiency 

and sensitive detection, such as HPLC-DAD, HPLC-MS or GC-MS. These 

hyphenated techniques used to obtain the chromatographic fingerprints and further 

combined with chemometric approaches are the perfect tools for quality control and 

authenticity of HM [1, 2, 11].  

To obtain a good chromatographic fingerprint that represents the phytoequivalence of 

a HM depends on many factors, such as extraction methods, measurement instruments, 

measurement conditions, etc. The chemical constituents in the HM may also vary 

depending on plant origins, harvest seasons, drying processes and even possible 

contaminations such as excessive or banned pesticides, microbial contaminants, heavy 

metals, chemical toxins, etc. [1, 2, 12]. 

Since a single HM may contain a great number of natural constituents, obtaining a 

good fingerprint is dependent on the method of extraction and the sample preparation. 

A powerful tool for the quality control of herbal medicines is the combination of 

chromatographic fingerprints of HM with chemometric approaches. 
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In quality control of herbal medicines, the research field is very interdisciplinary 

because it uses knowledge from chemistry, biochemistry, pharmacology, medicine 

and also statistics [1, 2]. 

 

1.1.2 Herbal Medicine Dendrobii 
 

The second largest group of the family Orchidaceae is the genus Dendrobii or 

Dendrobium, which comprises approximately 1400 species [13, 14]. 

In Pharmacopoeia of the People’s Republic of China 2005 edition also known as the 

Chinese Pharmacopoeia 2005, Dendrobii Caulis – Shihu – is officially recorded as the 

fresh or dried stem of Dendrobium nobile Lindl, Dendrobium officinale Kimura et 

Migo, Dendrobium fimbriatum Hook. var. oculatum Hook and similar species [15].  

In Chinese history and literature, Dendrobii Officinale Kimura et Migo was described 

as a miraculous drug. Its antitumor [16], cardio-protective [17, 18], 

immunomodulatory [19] and hepatoprotective [20] effects have recently been 

confirmed by modern research. Recently, in the Chinese herbal medicine market, the 

price of Dendrobium officinale Kimura et Migo has increased one hundred times 

more in relation to other Dendrobii species. Dendrobium officinale Kimura et Migo is 

even considered the precious wild “Tiepi Shihu” in traditional conception and due to 

the increasing demand and price is often adulterated by other related species [21]. 

                             

Figure 1. Dendrobium fresh(left) [22] and Dendrobium dry stems (right) [23] 
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Therefore, in current Chinese Pharmacopoeia 2010, Dendrobii Officinalis Caulis 

(Tiepi Shihu) is separated from Dendrobii Caulis (Shihu) and recorded as the dried 

stem of Dendrobium officinale Kimura et Migo, while Dendrobii Caulis (Shihu) is 

officially recorded as the fresh or dried stem of Dendrobium nobile Lindl., 

Dendrobium chrysotoxum Lindl. and Dendrobium fimbriatum Hook. [24]. However, 

from the data base of Chinese State Food and Drug Administration for registered 

medicines entitled with “Shihu” and produced by more than 190 factories, no species 

designation was clarified [25]. 

And to the best of our knowledge, no systematic chemical differences study, 

especially based on Dendrobii whole profile, between the two species has been done. 

 

1.1.2.1 Flavonoids and Herbal Medicine Dendrobii 

 

Flavonoids are phenolic compounds widely present in an extensive range of natural 

plants, with over 8000 individual substances known. The flavonoids are classified as 

flavones, flavanones, catechins and anthocyanins. The basic structure of flavonoids is 

shown in Figure 2. These type of compounds show different functions in plants, such 

as antioxidants, antimicrobials, photoreceptors, visual attractors, feeding repellants, 

and light screening. Studies on pharmacological effects of flavonoids have shown that 

these compounds have extensive biological activities and significant pharmacological 

effects on cardiovascular, digestive and nervous systems. They also have anti-

inflammatory, antiallergenic, antiviral, vasodilatory, immunoregulator, anti-tumor, 

analgesic, liver-protecting, aging-delaying, antidepressive and immunity-improving 

effects [26-28]. The role of flavonoids as antioxidants that reduce free radical 

formation and quench free radicals has been the subject of many studies. The 

antioxidant activity is observed in both the absorbed flavonoids and their metabolites. 

It is very common that the flavonoids occur in plants as glycosylated derivatives and 

they also give a contribution to the colors in leaves, flowers, and fruits [29]. 

Significant sources of flavonoids are the medicinal plants and their phytomedicines 

[27, 30]. 
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Figure 2. Basic flavonoid structure [27] 

It is convenient to use dry, lyophilized or frozen samples because when the plant 

material to be analyzed is fresh or non-dried, the flavonoids (especially glycosides) 

can be decomposed by enzymatic action. Therefore, the dry samples are grinded into 

a powder and the extraction solvent is selected according to the polarity of the 

flavonoids present in the sample to be analyzed. For less polar flavonoids such as 

isoflavones, flavanones, flavonols and methylated flavones the extraction is done with 

chloroform, dichloromethane, diethyl ether or ethyl acetate whereas more polar 

aglycones and flavonoid glycosides are extracted with alcohols or alcohol–water 

mixtures. Direct solvent extraction is still the most used method [31]. This kind of 

medicinal material is usually extracted using ultrasonic methods and with alcohols 

[32-34] and also in order to remove saccharides since they are not soluble in this type 

of solvents [35, 36]. 

The application of standardized UV/UV–Vis spectroscopy has been applied for years 

in the analyses of this kind of polyphenolic compounds. This type of compounds has 

two characteristic UV absorption bands, with maxima within an interval that varies 

from 240 to 285 and from 300 to 550 nm.  

It is possible to recognize the different flavonoid classes by their UV spectra 

characteristics that include the effects of the number of aglycone hydroxyl groups, 

glycosidic substitution pattern and the nature of aromatic acyl groups [31, 37].  

The type of flavonoids existent in Dendrobium species are anthocyanins 

(anthocyanidins), flavonol glycosides (based on kaempferol, quercetin, myricetin and 

methylated derivatives) and flavonol aglycones [38-43]. 
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1.1.3 Analytical techniques 
 

Chromatography is defined by International Union of Pure and Applied Chemistry 

(IUPAC) as “a physical method of separation in which the components to be 

separated are distributed between two phases, one of which is stationary (stationary 

phase) while the other (the mobile phase) moves in a definite direction.” 

Liquid Chromatography (LC) is also defined by IUPAC as “A separation technique in 

which the mobile phase is a liquid. LC can be carried out either in a column or on a 

plane. Present-day liquid chromatography generally utilizing very small particles and 

a relatively high inlet pressure is often characterized by the term high-performance or 

high-pressure liquid chromatography, and the acronym HPLC” [44]. 

The hyphenated analytical technique used in this work, both in China and Norway, 

was High-Performance Liquid Chromatography with Diode-Array Detection (HPLC-

DAD). 

 

1.1.3.1 HPLC-DAD 

 

High-performance (or High-pressure) Liquid Chromatography 

As mentioned before, the mobile and stationary phases are the two parameters related 

to the separation that is carried out in a chromatographic system. 

In HPLC, the stationary phase is packed into a column capable to support high 

pressures while the mobile phase is a liquid supplied under high pressure (up to 400 

bar/ 4 × 107Pa) to guarantee a constant flow rate and consequently reproducible 

chromatography.  

Therefore, the sample is dissolved in the mobile phase and after it is forced to pass 

through the stationary phase by means of high pressure so that chromatographic 

separation occurs because the different components of the sample have different 

affinity with the stationary or the mobile phase and consequently take different times 
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to move from the position of sample introduction to the position where they are 

detected. 

With previous knowledge about the analytes under investigation it is possible to 

change the properties of the stationary and/or mobile phases to achieve the desired 

separation. 

Different kinds of detectors can be coupled to HPLC and its type is chosen according 

to the sort of analysis being performed, for instance qualitative (identification) or 

quantitative [2, 45, 46]. 

The HPLC system is schematized in Figure 3. 

 

 

Figure 3. Schematic representation of HPLC system [47] 

 

Diode Array Detector (DAD) 

A detector is a device that is used to sense each solute as it is eluted from a 

chromatography column. 

The diode array detector can use a deuterium or xenon lamp that emits light over the 

UV spectrum range or a tungsten lamp for the visible region. The light from the lamp 

is focused by a lens through the sample cell and onto a holographic grating. Therefore, 

the sample is subjected to light of all wavelengths produced by the lamp. The 

dispersed light from the grating is able to reach a diode array. The array can have 

many hundreds of diodes and the output from each diode is regularly sampled and 
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stored in a computer. At the end of the run, it is possible to select the output from any 

diode and to produce a chromatogram using the UV wavelength that was falling on 

that particular diode [46]. 

The diode array detector is schematized in Figure 4. 

 

Figure 4. Schematic representation of a Diode Array Detector (DAD) [48] 

 

This analytical technique HPLC-DAD was previously used in the analysis of 

Dendrobium species, as was HPLC coupled with Mass Spectrometry (MS), an 

extremely versatile technique when it comes to analyze this kind of samples [49-53]. 

 

1.1.4 Chemometric techniques 

 

With the use of chromatographic instrumentation two goals can be achieved, such as 

quantitative analysis and qualitative (identification) analysis. In quantitative analysis 

it is possible to determine how much of a substance is present in a mixture and the 

data is obtained from peak height or peak area measurements. In qualitative analysis 

the solutes present in a mixture can be identified and the data is often obtained from 

retention measurements [46]. 

Pattern recognition tools as Principal Component Analysis (PCA) and Partial Least 

Squares Discriminant Analysis (PLS-DA) are very useful and widely used 

chemometric techniques to visualize and summarize the very large amount of data 

obtained from multivariate measurements in chemistry. By using the proper 
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mathematical approaches, pattern recognition is used to identify patterns in large data 

sets [54].  

 

1.1.4.1 Principal Component Analysis 

 

In chromatography, very often the chromatographic peaks are partially overlapping, 

so chemometric methods help to resolve the chromatogram into individual 

components. In order to obtain predictions, first the chromatogram is treated as a 

multivariate data matrix and then PCA is performed. In the mixture, each compound 

is a (chemical) factor with its spectra and elution profile which by a mathematical 

transformation can be related to principal components. After performing PCA, there is 

a reduction of the original variables to a number of significant principal components 

(e.g. two). In this way, PCA is used as a form of variable reduction, reducing the large 

original dataset to a much smaller manageable dataset more easily interpreted [54]. 

In the case of coupled chromatography like HPLC-DAD, the essential dataset for a 

single chromatogram can be described as a sum of responses for each significant 

compound in the data, characterized by an elution profile and a spectrum plus noise or 

instrumental error. Using matrix notation it can be written as: 

𝑿 = 𝑪𝑺 + 𝑬 

Equation 1 

where 𝑿 is the original data matrix or coupled chromatogram, 𝑪 is a matrix consisting 

of the elution profiles of each compound, 𝑺 is a matrix consisting of the spectra of 

each compound and 𝑬 is an error matrix. 

In summary, PCA is a way of identifying patterns in data and expressing it in a way to 

emphasize their differences and similarities. Since patterns in data of high dimension 

can be hard to find and where graphical representation is not available, PCA is a 

powerful tool for analyzing data. Another advantage of PCA is that there is not much 

loss of information once the patterns are found in the data and this data is compressed 

by reducing dimensions [54]. 
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Scores and Loadings 

The abstract mathematical transformation of the original data matrix in PCA is: 

𝑿 = 𝑻𝑷 + 𝑬 

Equation 2 

where 𝑻 are called scores, and have as many rows as the original data matrix, 𝑷 are 

the loadings, and have as many columns as the original data matrix and the number of 

columns in the matrix T equals the number of rows in the matrix P. 

The principal components are vectors of loadings or scores where variables or objects 

with largest variance will make the greatest impact. The scores, in the case of 

chromatography, relate to elution profiles and the loadings relate to the spectra. 

The schematic representation of PCA is showed in Figure 5. 

 

Figure 5. Schematic representation of PCA [54] 

 

The aim of PCA is to obtain a description of a data table in terms of uncorrelated new 

variables called principal components (PCs). The PCs are linear combinations of all 

the original variables subjected to two restrictions: First they are located in the 

direction explaining most of the variation in the data table and second they are 
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orthogonal with respect to each other (angle between them is 90°) and to the residual 

matrix. 

As said before, the PCs are given as vectors of loadings or scores. The loading vectors 

represent a basis for the variable space, while the score vectors represent a basis for 

the object space. Plotting the objects on the loading vectors shows the relationships 

between objects, while plotting the variables on the score vectors shows the 

relationships between variables.  

The significance of a PC is measured through the ratio of its variance to the total 

variance contained in the original variables. A PC with small variance usually means 

that it carries little information. The variance explained is most often used as the 

criterion for deciding on the number of PCs needed to obtain a data table [54]. 

 

1.1.4.2 Partial Least Squares 

 

Partial Least Squares Regression (PLS) is a calibration method based on finding the 

model relating the components of 𝑿 to the components in 𝒀. PLS components are 

calculated finding the directions of maximum covariance between 𝑿 and 𝒀, i.e., the 

maximum variation of 𝑿 correlated to 𝒀. PLS Component is different from the PCA 

component that means the scores obtained in PLS are different from the ones obtained 

in PCA. In PLS1 a single 𝒚 variable is predicted and in PLS2 a block of 𝒀 variables is 

predicted. 

In Figure 6 it is represented the decomposition of 𝑿 (𝑻,𝑷𝑻) and 𝒀 (𝑼,𝑸𝑻) matrices in 

PLS components. After, the construction of the regression model 𝑼 = 𝑻𝑩 (𝑿 and 𝒀 

matrices are represented by their components) is done. 
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Figure 6. Decomposition of 𝑿 and 𝒀 matrices in PLS components [55] 

In the calibration step, PLS components and regression vectors are calculated 

sequentially. There is the decomposition of 𝑿  and 𝒀  in components and the 

calculation of the regression coefficient. 

In the prediction step, first there is the Calculation of scores related to the response of 

new samples, 𝑿𝒏𝒆𝒘: 

𝑻𝒏𝒆𝒘 = 𝑿𝒏𝒆𝒘𝑷 

Equation 3 

After the prediction of Y scores for the new samples (𝑼𝒏𝒆𝒘): 

𝑼𝒏𝒆𝒘 = 𝑻𝒏𝒆𝒘𝑩𝑷𝑳𝑺 

Equation 4 

And finally, the calculation of the properties of interest (𝒀𝒏𝒆𝒘) for the new samples 

using the calculated 𝒀 scores: 

𝒀𝒏𝒆𝒘 = 𝑼𝒏𝒆𝒘𝑸𝑻 

Equation 5 

In summary, building a PLS model includes several steps such as: Preprocessing data 

sets if required (𝑿 and 𝒀): in the calibration set or in the validation set and in the new 

unknown samples; Selection of the size of the calibration model (number of 

components); Exploration of 𝑿  and 𝒀  data sets and their relationship: study of 

variance explained by the model and outlier detection and elimination from the 

 



21  
 

calibration set; Qualitative interpretation of the model; Model validation and finally 

Prediction of new samples [55]. 

 

Partial Least Squares Discriminant Analysis (PLS-DA) is a classical PLS regression, 

with a regression mode, where the response variable indicates the classes (or 

categories) of the samples. PLS-DA has often been used for supervised classification, 

i.e., classification and discrimination problems. The response vector is qualitative and 

is recoded as a dummy block matrix where each of the response categories is coded 

with an indicator variable. After this, PLS-DA is performed as if the response vector 

was a continuous matrix [54]. 

Classification problems in fingerprints data analysis are complex due to the many 

variables and few samples/objects issue. This makes that many solutions can be found 

to separate the classes. The PLS-DA score plots as showed in most classification 

applications present an overoptimistic view of the separation between the classes. 

Even using PLS-DA to discriminate a random data set into two groups does almost 

always give a PLS score plot with perfect separation between the two arbitrary classes. 

The permutation testing and cross model validation are used to assess the validation 

of classification models. Permutation tests show that when cross validation is not 

applied appropriately, it leads also to overoptimistic results [56]. 

Selectivity ratio can be used to detect marker candidates and can be defined for each 

variable 𝑖 as: 

𝑆𝑅𝑖 = 𝑣𝑒𝑥𝑝𝑙,𝑖/𝑣𝑟𝑒𝑠,𝑖                     𝑖 = 1,2,3, .. 

Equation 6 

where  𝑣𝑒𝑥𝑝𝑙 is the explained variance and 𝑣𝑟𝑒𝑠 the residual variance. Based on an F-

test, this is a valuable property for variable selection especially when the ratio of the 

number of variables to the number of objects is high [57]. 
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PCA and PLS diverge in the optimization problem they solve to find a projection 

matrix but they are both linear decomposition techniques and they can be combined 

with various functions. 

The statistical measure of the multivariate distance of each observation from the 

center of the data set is named Hotelling's T-squared statistic. To calculate the T-

squared statistic, PCA uses the main principal components and it is used for the 

detection of outliers [58]. 

 

1.1.5 Information theory applied to chromatographic fingerprint of HM 
 

Information theory is used to evaluate the chromatographic fingerprints. Since the 

chromatographic fingerprint obtained is deeply dependent on the chromatographic 

separation degree and concentration distribution of each chemical component, based 

on the information content it is possible to select the chromatographic fingerprint with 

the best separation degree and the most uniform distribution of the chemical 

compounds. 

A chromatographic fingerprint may be considered as a continuous signal determined 

by its shape and according to Ref. [59], the information content of a continuous signal 

can be defined as: 

Ф= −∫𝑝𝑥𝑙𝑜𝑔𝑝𝑥 𝑑𝑥 

Equation 7 

where 𝑝𝑥 is the chromatographic response of all chemical components present in the 

fingerprint under investigation. 

The evaluation of the quality of the HM is done based on similarities and/or 

differences of the chromatographic shapes and based on the separation degree of each 

chemical component between the fingerprints obtained for the different HM under 

study. 

Therefore, first a chromatographic fingerprint is normalized with its overall peak area 

equal to one and after its information content is obtained based on Equation 8 [60]: 
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Ф= −∫𝑝𝑥 [𝑠𝑢𝑚(𝑝𝑥)]𝑙𝑜𝑔𝑝𝑥⁄ [𝑠𝑢𝑚(𝑝𝑥)]⁄ 𝑑𝑥 

Equation 8 

Two advantages of calculating the information content according to Equation 8 is 

that the whole chromatogram is taken into account and also that the noise should have 

a small influence in this calculation. 

Figure 7 shows four simulated chromatographic fingerprints with different separation 

degrees (a, b, c and d). The concentration distributions of the four peaks are the same. 

The values of the chromatographic resolution (𝑅𝑠) are displayed in Table 1. The 

results suggest that the further chromatographic separation from Fig. 7a to Fig. 7d (Rs 

from 1.50 to 2.00), which can not cause any addition to the information content Ф, is 

unnecessary. However, the serious overlapping situation in Fig. 7b and Fig.7c 

(Rs=0.63, 0.31) causes a loss of the information content [60]. 

 

Figure 7. Chromatographic fingerprints simulated with different separation degrees [60] 

 

Table 1 - Information content of simulated chromatographic fingerprints with different separation degrees 
represented in Figure 7 [60] 

Data a b c d 

Rs 1.50 0.63 0.31 2.00 

Ф 6.04 5.50 4.83 6.04 
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1.1.6 Orthogonal (Taguchi) “L” Array Design 
 

Genichi Taguchi (Japan) developed a method for designing experiments to investigate 

how different parameters affect the mean and variance of a process performance 

characteristic that defines how well the process is functioning. This experimental 

design involves the use of orthogonal arrays to organize the parameters affecting the 

process and the levels at which they should be varied.  

The Taguchi method tests pairs of combinations instead of testing all possible 

combinations like in factorial design. With this method it is possible to determine 

which factors most affect product quality with a minimum amount of experimentation, 

consequently saving resources and time. The method works better for an intermediate 

number of variables (3 to 50), few interactions between variables and when only few 

variables contribute significantly. 

There are five general steps involved in the Taguchi Method Design of Experiments: 

- Define a target value to measure the performance of the process; 

- Determine the parameters that affect the process; 

- Construct the orthogonal array for the parameter design showing each 

experiment number and conditions; 

- Carry on the experiments indicated in the completed array to collect the data; 

- Data analysis in order to check the effect of each parameter on the 

performance measure. 

In Table 2 it is represented a 34-2 Fractional Factorial Design 4, with Factors at three 

Levels (9 runs), where P1, P2, P3 and P4 are the parameters that can affect the 

process. 

Table 2 - Orthogonal (Taguchi) L9 Array Design 
Experiment P1 P2 P3 P4 IC 

1 1 1 1 1 IC1 
2 1 2 2 2 IC2 
3 1 3 3 3 IC3 
4 2 1 2 3 IC4 
5 2 2 3 1 IC5 
6 2 3 1 2 IC6 
7 3 1 3 2 IC7 
8 3 2 1 3 IC8 
9 3 3 2 1 IC9 
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After calculating the information content for each experiment, the average 

information content value (𝐾) is calculated for each factor and level. This is done 

according to Equation 9, where 𝑖 is the level number (1, 2 or 3) and 𝑗 is the parameter 

number (1, 2, 3 or 4). 

𝐾𝑖,𝑃𝑗 =
∑ 𝐼𝐶𝑖

3
 

Equation 9 

The range R (𝑅 = ℎ𝑖𝑔ℎ 𝐾 − 𝑙𝑜𝑤𝐾) of the 𝐾 for each parameter is calculated and the 

larger R value for a parameter means a larger effect of the variable on the process [61, 

62]. 

 

1.1.6.1 Advantages and Disadvantages of "L" Array Design 

 

The advantage of the Taguchi method is that emphasizes a mean performance 

characteristic value close to the target values and it allows the analysis of many 

different parameters without a high amount of experimentation. It obtains a lot of 

information about the main effects in a relatively few number of runs. It allows the 

identification of key parameters that have the most effect on the performance 

characteristic value so that further experimentation on these parameters can be 

performed and the parameters that have little effect can be ignored. 

The main disadvantage of this method is that the results obtained are only relative. 

Also, since the orthogonal arrays do not test all variable combinations, this method 

should not be used when all relationships between all variables are needed. The 

Taguchi method provides limited information about interactions between parameters 

[61, 62]. 
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1.1.7 Pre-processing of data 
 

Prior to chemometric analysis of the chromatographic results using MATLAB and 

Sirius, it is necessary to pre-treat the chromatograms obtained. There are some pre-

processing steps that seem particularly important for the further analysis of the HPLC-

DAD data. First, the pre-processing of data done using the Changde program included 

three processes; namely data smoothing and differentiation and baseline correction. 

After this, alignment of the chromatographic data is also needed since no internal 

standard is used during the experiments. And finally, the data obtained was also 

normalized. 

After the pre-processing of fingerprints it is possible to proceed to the chemometric 

analysis of the data obtained. 

 

1.1.7.1 Data smoothing and differentiation 

 

The aim of data smoothing and differentiation is to remove the random errors from 

the quantitative information. Disregarding the source of these errors, they are usually 

described as noise and it is very important to remove as much as possible this noise 

without losing the basic information. 

For this purpose, the method of least squares is used, where the set of points is fitted 

to some curve and it is assumed that all the error is in the ordinate (𝑦) and not in the 

abscissa (𝑥 ). The least squares minimize the sum of squared residuals, where a 

residual is the difference between an observed value and the fitted value provided by a 

model. 

Using averaging prior to smoothing, it is possible to reduce the noise nearly as the 

square root of the number of points that were used. 

Thereby, this function known as Savitzky-Golay filter for smoothing and 

differentiation will act as a filter to smooth noise fluctuations and avoid distortions 

into the dataset [63]. 
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1.1.7.2 Baseline correction 

 

Signals of analytical instruments like chromatography essentially contain chemical 

information, baseline and random noise. 

For the baseline correction an algorithm named adaptive iteratively reweighted 

Penalized Least Squares (airPLS) was used. This method iteratively changes weights 

of sum squares errors (SSE) between the fitted baseline and the observed signals. The 

weights of the SSE are adaptively obtained using the difference between the 

previously fitted baseline and the observed signals [64].  

The airPLS leads to a balance between fidelity to the observed data and the roughness 

of the fitted data. 

In Equation 10, 𝑥 is the vector of the analytical signal and 𝑧 is the fitted vector and 𝑚 

is the length of both of them. The fidelity of 𝑧 to 𝑥 can be expressed as the sum square 

errors between them. 

𝐹 = �(𝑥𝑖 − 𝑧𝑖)2
𝑚

𝑖=1

 

Equation 10 

Balance between fidelity and smoothness is measured as the fidelity plus penalties on 

the roughness. It can be given by Equation 11, where 𝐷  is the derivative of the 

identity matrix such that 𝐷𝑧 = ∆𝑧. 

𝑄 = 𝐹 + 𝜆𝑅 = ‖𝑥 − 𝑧‖2 + 𝜆‖𝐷𝑧‖2 

Equation 11 

Although adaptive iteratively reweighted procedure is similar to the weighted least 

squares and to iteratively reweighted least squares [65, 66, 67], it calculates the 

weights in different ways and adds a penalty item to control the smoothness of the 

fitted baseline. Each step of this proposed procedure involves calculating a weighted 

penalized least squares according to Equation 12, where 𝑤 is the weight vector and 𝑡 

represents each iterative step. 
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𝑄𝑡 = �𝑤𝑖
𝑡|𝑥𝑖 − 𝑧𝑖𝑡|2 + 𝜆��𝑧𝑗𝑡 − 𝑧𝑗−1𝑡 �

2
𝑚

𝑗=2

𝑚

𝑖=1

 

Equation 12 

So, airPLs algorithm can be applied to chromatograms since it gives extremely fast 

and accurate baseline corrected signals for both fitted and observed signals [64]. 

 

1.1.7.3 Automated alignment of chromatographic data 

 

The datasets must be preprocessed before PCA and PLS-DA analysis in a way that the 

elements in the matrix for individual samples describe the same phenomena. For peak 

alignment in chromatographic data, several types of approaches have been developed. 

In some approaches, the retention time shifts have been corrected by making internal 

standards added or making marker peaks coincide in all chromatograms under study 

[68-74]. 

For the peak alignment in this work, automated alignment of chromatographic data 

was used, where the data is preprocessed in order to correct unwanted time-shifts. 

This approach includes the selection of a reference sample to warp towards. This 

selection procedure is used when there are no internal standards available or 

normalization to correct the signal. This method is used for datasets obtained from 

quite homogeneous samples with very similar chromatographic profiles [1, 75]. 

 

1.1.7.3.1 Correlation optimized warping (COW) 

 

The COW algorithm, introduced by Nielsen et al. [76] is a method to correct shifts in 

discrete data signals. This algorithm, that it is assumed to preserve the properties of 

peak shape and area, aligns a sample chromatogram (digitized vector) towards a 

reference chromatogram (reference sample vector). This reference sample is used to 

align the entire data set. 
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The COW algorithm requires two user input parameters that are typically selected on 

a trial and error basis by visual inspection of the chromatographic profiles: the 

segment length and the slack size (flexibility). 

A slightly modified version of COW algorithm developed by Tomasi et al. [77] is 

used here and the main change regards the sharing of the boundaries between adjacent 

segments. In this new version of COW, the correlation coefficient between two 

vectors 𝒙 and 𝒚 of length 𝑁 is calculated as: 

𝑟(𝒙,𝒚) =
𝑐𝑜𝑣(𝒙,𝒚)

�𝑣𝑎𝑟(𝒙)𝑣𝑎𝑟(𝒚)
 

=
[(𝑰𝑁 − 𝟏𝟏𝑇𝑁−1)𝒙]𝑇(𝑰𝑁 − 𝟏𝟏𝑇𝑁–1)𝒚

‖𝒙�‖2(‖𝒚‖22 − 𝑁𝑦�)1/2 =
𝒙�𝑇𝒚

‖𝒙�‖2(‖𝒚‖2 − 𝑁𝑦�)1/2 

Equation 13 

 

Where 𝑥�  represents the centered 𝒙 , 𝑦�   is the mean of 𝒚  and the centering matrix              

𝑰𝑵 − 𝟏𝟏𝑇𝑁−1 is symmetric and idempotent [75]. 

 

1.1.7.3.2 Reference chromatogram selection 

 

The reference chromatogram (sample) should be as representative as possible for all 

phenomena of interest in the data set. 

This method is based on the product of the correlation coefficients between all 

individual chromatograms. 

For a given chromatogram 𝒙𝑡, the similarity index (0 < 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 ≤ 1) can 

be calculated as follows:  

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥 = �|𝑟(𝒙𝑡,𝒙𝑖)|
𝐼

𝑖=1

 

Equation 14 
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where 𝑟(𝒙𝑡,𝒙𝑖)  is the conventional correlation coefficient between two 

chromatograms in the dataset calculated as shown in Equation 13. 

So, the chromatogram with the highest similarity index is selected to be the reference 

chromatogram to use with the given dataset [75]. 

 

1.1.7.3.3 Simplicity value 

 

The simplicity value is used to measure the alignment of a set of chromatograms 

towards the reference chromatogram. Its principle is related to the properties of 

singular value decomposition (SVD), where the size of the squared singular values is 

directly associated to the sum of squares of the data matrix. Any data matrix, X 

(uncentered) can be decomposed as 𝑿 = 𝑼𝑺𝑽𝑇 , where 𝑺  is a diagonal matrix 

containing the singular values equal to the square roots of the eigenvalues of 𝑿𝑇𝑿. 𝑼 

and 𝑽 are both orthogonal matrices, where the columns in 𝑼 are the eigenvectors of 

𝑿𝑿𝑇 and the columns of 𝑽 are the eigenvectors of 𝑿𝑇𝑿. 

The sum of the first R squared singular values determines how much of the variation 

is explained by the corresponding R components: 

𝐸𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = �

⎝

⎜
⎛
𝑆𝑉𝐷

⎝

⎛ 𝑿

�∑ ∑ 𝑥(𝑖, 𝑗)2𝐽
𝑗=1

𝐼
𝑖=1 ⎠

⎞

⎠

⎟
⎞

2

𝑅

𝑟=1

 

Equation 15 

where SVD (M) indicates the single value for a given component r and where the data 

is scaled to a total sum of squares of one. 

Though, to find the optimal combination of segment and slack size as the simplicity 

value (0≤simplicity≤1), the principle of simplicity is adapted from Henrion & 

Andersson [78], Christensen et al. [79] and Johnson et al. [80]: 
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𝑆𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 = �

⎝

⎜
⎛
𝑆𝑉𝐷

⎝

⎛ 𝑿

�∑ ∑ 𝑥(𝑖, 𝑗)2𝐽
𝑗=1

𝐼
𝑖=1 ⎠

⎞

⎠

⎟
⎞

4

𝑅

𝑟=1

 

Equation 16 

It is possible to achieve high simplicity values in COW alignment with some 

combinations of segment and slack parameters. This is shown in Figure 8 (A) using 

simulated data. 

This method is focused on preserving total area of all peaks in the chromatographic 

profiles and any change introduced by the alignment procedure is not desired. So, a 

second criterion that takes into account this area effect has to be included [75]. 

 

1.1.7.3.4 The peak factor 

 

The data should be quite homogeneous so that peak area and shape can be the same 

before and after alignment. Even if the reference chromatogram is carefully selected a 

change in peak area and shape can still occurs. This change can be quantified by the 

peak factor, which is a number between 0 and 1.  

𝑃𝑒𝑎𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =
∑ (1 −𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑐(𝑖), 1)2)𝐼
𝑖=1

𝐼
 

Equation 17 

where, 𝑐(𝑖) = �‖𝑥𝑤(𝑖)‖−‖𝑥(𝑖)‖
‖𝑥(𝑖)‖

�    and  ‖𝑥(𝑖)‖ = �∑ 𝑥(𝑖, 𝑗)2𝐽
𝑗=1   is the Euclidean length 

or norm for 𝒙𝑖 ; 𝒙𝑖  is the chromatogram before warping while  𝒙𝑤(𝑖) is the same 

sample after alignment. 

Values of peak factor measure are shown in Figure 8 (B) for simulated data. It is 

possible to see that some combinations of segment length and slack size give high 

simplicity values but low peak factor values, so should not be considered as suitable 

alignment parameters. 
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1.1.7.3.5 The warping effect 

 

The warping effect combines simplicity and peak factor (0 ≤ 𝑤𝑎𝑟𝑝𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡 ≤ 2): 

𝑊𝑎𝑟𝑝𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝑦 + 𝑝𝑒𝑎𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 

The simplicity factor and the peak factor have the same influence on the warping 

effect value. The relation between these three measures is shown in Figure 8. If the 

warping effect has a value closer to two means that peaks are both aligned and that the 

change in the area is minimal [75]. 

 

1.1.7.3.6 Optimization 

 

The warping effect values are optimized in the form of a discrete-coordinates 

simplex-like optimization routine carried out in several steps [81]. The first step is to 

establish global search space boundaries from the combination of all segment length 

and slack sizes of interest. In the second step, by default a 5×5 sparse search grid is 

selected in both the segment and slack direction and then the warping effect for these 

25 points is determined (this is done using simulated data as an example with segment 

length 10–70 and slack size 1–15). The six best (default choice) combinations, 

providing the highest warping effect scores, are selected and used as starting points in 

a discrete-coordinates simplex optimization part. 

 

1.1.7.3.7 Defining the optimization space 

 

As shown in Figure 8, the search space for segment lengths includes several possible 

choices as long as the slack size (flexibility) is large enough. So, longer segment 

lengths require more flexibility to give good alignment. Though, this will always 

depend on the chromatographic data available such as datasets obtained from quite 

homogeneous samples with very similar chromatographic profiles as explained before. 
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1.1.7.3.7.1 Segment length and slack size (flexibility) 

 

The rule to select the segment length optimization space is: 

𝑃𝑊𝐴 ±
𝑃𝑊𝐴

2
 

Equation 18 

where 𝑃𝑊𝐴 is the approximate peak width average at the base over all peaks in the 

reference chromatogram. Using this rule, the segment lengths will contain both entire 

peaks and peak fragments. 

For the slack size search space, the number of data points before and after the first and 

the last peak, respectively, should be roughly the same as the peak widths (ensuring 

enough flexibility), then a slack size search space ranging from 1 to 15 [75]. 

The simplicity and optimization routines were freely downloaded from Reference [82]. 
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Figure 8. Simplicity (A), peak factor (B) and warping effect (C) values for all combinations of segment length and 
slack size using simulated data. For plots (A) and (B) a value close to one indicates that data are well aligned and 
that the area has changed insignificantly, respectively. For plot (C) a value close to two means that peaks are both 
aligned and that the change in the area is minimal. The white triangle in the upper left corner contains unfeasible 
combinations of segment length and slack size in the COW algorithm. [75] 

 

  

(B)   

(A) 

(C) 
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1.1.7.4 Data Normalization 

 

Normalization is performed to give objects the same relative or absolute "size". In 

chromatography, normalization is used to compensate differences in the amount 

measured at the injector [57]. 

Normally the variables are divided by one variable and in chromatography this 

happens when one analyte is added and used as an internal standard. An internal 

standard is a substance very similar but not identical to the chemical substances of 

interest present in the sample, whose peak is well resolved relative to the peaks of 

other substances present in the sample. The ratio of analyte signal to the internal 

standard signal is not affected by small variations in the injected volume and in the 

chromatographic conditions [46]. 

When an internal standard is not available, block normalize can be done and it 

consists on dividing all selected variables in each object with their sum to obtain the 

relative distribution of the variables in each object. This procedure is also known as 

normalizing to constant sum. Normalizing to constant sum corresponds to the 

transformation:  

𝑋𝑘𝑖
100 ∗ ∑𝑋𝑘𝑖

→ 𝑋𝑘𝑖 

Equation 19 

where the index 𝑘 runs over the objects and index 𝑖 over the variables [57]. 
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1.2 Aims of the study 
 

The main objective of the present study is to investigate the chemical differences 

between the two officinal Chinese pharmacopoeia species Dendrobii Caulis (Shihu) 

and Dendrobii Officinalis Caulis (Tiepi Shihu). Therefore, the main steps of the 

present study are: 

- To optimize the extraction method of flavonoids, one kind of active compounds in 

the traditional Chinese HM Dendrobii; 

- To optimize the chromatography conditions; 

- To establish the fingerprint analysis method and perform HPLC-DAD analysis of 

Dendrobii Caulis (Shihu) and Dendrobii Officinalis Caulis (Tiepi Shihu); 

- To perform HPLC-MS analysis of Dendrobii Caulis (Shihu) and Dendrobii 

Officinalis Caulis (Tiepi Shihu) to identify the main peaks; 

- Data analysis of fingerprint based on chemometrics analysis, such as PCA and PLS 

and find the differences between the two species. 
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2. EXPERIMENTAL 
 

2.1 Material, reagents and samples  
 

The HM Dendrobii samples were reduced to a powder by using a coffee and spice 

mill Tefal GT30083E (Tefal, China). 

Twelve samples of the two species of HM Dendrobii were purchased from five 

Chinese different provinces. In Table 3 is it possible to see the details of Dendrobium 

samples and the details of Dedrobium Officinale samples are described in Table 4. In 

Figure 9 it is possible to identify the place of origin of each sample. 

The hyphenated chromatographic equipment HPLC-UV Dionex Ultimate 3000 LC 

System (USA) used in Central South University (CSU) in China and in University of 

Bergen (UiB) in Norway is shown in Figure 10. In the LC System it was used a 

Hypersil ODS (C18) column (reversed phase), with 250mm length×4.6mm internal 

diameter (ID) and 5µm particle cartridge (Agilent Technologies, USA). The HPLC 

system consisted of a quaternary pump, a vacuum degasser, an autosampler and the 

column compartment fixed at 25 ºC was coupled to a variable wavelength diode-array 

detector (DAD). The injection volume was 10 µL.  

For the eluent system with a flow rate of 1mL/min it was used pure Methanol Sigma-

Aldrich Chromasolv®, gradient grade for HPLC≥99.9% (lot#SZBC292FV, Germany) 

and Formic acid Fluka Analytical from Sigma-Aldrich for LC-MS ~98% 

(lot#BCBG7820V, Germany) with a concentration in water of 0.4%. The water for 

HPLC analysis was purified by a Milli-Q Millipore water purification system (USA). 

Prior to LC analysis, the final samples were filtered using Iso-Disc Filters Supelco 

N-25-4 Nylon 25mm×0.45µm (Germany) and also filters Chromacol 1000×4-SF-

45(N) Tecnolab (USA). 

 

All the calculations, plots and fingerprints shown have been performed in Changde 

003 Version 1.0, 2008, Central South University, Changsha, PR China, in MATLAB® 



38  
 

version 7.10.0.499 (R2010a), the MathWorks, Inc., USA and in PRS-Sirius Version 

8.1, ©Copyright 1987-2009 Pattern Recognition Systems AS, Norway. The simplicity 

and optimization routines for the automated alignment of chromatographic data were 

freely downloaded from Quality & Technology Website: http://www.models.kvl.dk, 

University of Copenhagen, Denmark. 

 

Figure 9.  Map of People’s Republic of China [83] 

 

Table 3 - Description of Dendrobium (D) samples 

Sample nr Drugstore Province of origin (China) Amount provided (g) 

D1 Hunan Qianjin Guangxi 30 

D2 Tianjian Guangxi 30 

D3 Yunxiang Sichuan 30 

D4 Zhilin Guangxi 30 

D5 Yangtianne Yunnan 30 

D6 Hunan Bencaogangmu Guangxi 30 

 

Table 4 - Description of Dendrobium Officinale (DO) samples 

Sample nr Drugstore (Date of production) Province of origin (China) Amount provided (g) 

DO1 Zhejiang Leqing (20/04/2012) Zhejiang 30 

DO2 Zhejiang Leqing (10/06/2012) Zhejiang 30 

DO3 Zhejiang Leqing (10/07/2012) Zhejiang 30 

DO4 Zhejiang Leqing (13/10/2012) Zhejiang 15 

DO5 Zhejiang Jinhua (15/10/2012) Zhejiang 10 

DO6 Hunan Shaodong (15/09/2012) Hunan 30 
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Figure 10. HPLC-DAD Dionex Ultimate 3000 LC System used in CSU and in UiB [84] 

 

In HPLC, the most usual chromatographic peak shape distortion is tailing peaks. 

There can be several mechanisms of analyte retention and in the case of reversed-

phase chromatography there are non-specific hydrophobic interactions with the 

stationary phase. Though, polar interactions with some ionized residual silanol groups 

on the silica surface are common and are the cause of tailing peaks. 

So, to obtain good peak shapes this kind of interactions need to be minimized. 

To avoid peak tailing, the chromatographic separation should be performed at a lower 

pH in order to minimize secondary interactions of the acidic silanol groups because in 

this way, it is possible to assure that these ionizable residual groups are fully 

protonated. 

So, an aqueous solution of formic acid in a low concentration was used as one of the 

eluents to improve the tailing peak shapes of the weak acidic phenols and also to help 

the whole separation because of its acidity, due to its ion pair effect [85-87]. 
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2.2 Optimization of the extraction process 
 

The methods of extraction and sample preparation are very important to obtain good 

fingerprints of herbal medicines [1]. 

To achieve this, the optimization of the extraction process of flavonoids was done 

together with the optimization of the chromatography conditions. Several wavelengths 

were also tested. 

The best approach to perform quality control of complex HM is to perform 

chromatographic fingerprints especially using hyphenated chromatographic 

techniques. Any HM sample can contain hundreds of complex phytochemical 

compounds, thus it is very hard or even impossible to identify all of them by using the 

common approaches. 

In this work, information theory was used to evaluate the chromatographic 

fingerprints.  

For the extraction of flavonoids process, there were used four variables: A–time in 

minutes, B–the percentage of methanol used, C–volume of methanol used in mL and 

D–temperature in ºC. For each variable there were three levels. Levels 1, 2, 3 and are 

respectively for variable A: 30, 40, 50 minutes of ultrasonic extraction; variable B: 50, 

70, 100% of methanol; variable C: 30, 40, 50 mL of methanol and variable D: 25, 35, 

45 ºC. 

So, having these factors at three levels in the extraction process, it was possible to set 

up a 34-2 Fractional Factorial Design 4 (9 runs) also called (Taguchi) Orthogonal L9 

design. 

The results obtained for the information content according to Equation 8 are shown 

in Table 5. 
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Table 5 - 34-2 Fractional Factorial Design 4 and respective results obtained for information content relative to the 
spectra obtained at 254 nm 

Experiment 
No. 

A 
t (min) 

B 
% MeOH 

C 
V (mL) 

D 
T (ºC)  Information content 

1 1 1 1 1 11,57 

2 1 2 2 2 12,02 

3 1 3 3 3 11,96 

4 2 1 2 3 11,52 

5 2 2 3 1 11,35 

6 2 3 1 2 12,24 

7 3 1 3 2 11,47 

8 3 2 1 3 12,10 

9 3 3 2 1 11,48 

K1 11,85 11,52 11,97 11,47  
K2 11,70 11,82 11,67 11,91  
K3 11,68 11,90 11,59 11,86  
R 0,17 0,38 0,38 0,44  

 

Although the differences in the information content values are not very significant, a 

higher information content value means that there is a better chromatographic 

separation and lower information content value means that might be an overlapping 

situation. According to this, choosing the higher K values, the best result according to 

the calculations for the process of extraction of flavonoids is A1B3C1D2 meaning 

t=30 min, 100% methanol, V=30 mL and T=35 oC. 

Since temperature is the parameter with the highest R value, this should be the 

variable with the larger effect on the process. 

 

2.2.1 Sample preparation 

 

All the samples were dried and pulverized before use and approximately 3 g of each 

sample was weighted and extracted with 30 mL of pure methanol in an ultrasonic bath 

for 30 minutes at 35 ºC. Afterwards, vacuum filtration was done and the extract was 

evaporated to dryness in a water-bath at 90 ºC.  The residue was dissolved with pure 

methanol to avoid the dissolution of saccharides. The solution was prepared in a 5 mL 

volumetric flask. Before the HPLC analysis, the sample was filtrated through a 0.45 

µm membrane into a LC vial. 
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During the extraction process, the Dendrobium samples showed a yellow-brownish 

color whereas Dendrobium Officinalis samples displayed a greenish color. Parallel 

samples were prepared for Dendrobium Officinalis in both China and Norway. 

 

2.3 Optimization of chromatography conditions and fingerprinting 
 

The optimization of the chromatography conditions was done taking into account the 

optimization of the extraction process. 

A good experimental design for the optimal chromatographic separation is necessary 

[1]. The chromatographic conditions for Dendrobii species were described in 2.1 

Material, reagents and samples. After several attempts, discussions and research to 

find the gradient elution for the chromatographic separation of flavonoids in 

Dendrobii species it was possible to find a chromatogram with good resolution. The 

chromatographic separation of flavonoids was carried out using a gradient elution of 

solvent A: 0.4% formic acid in water and solvent B: 100% methanol at a flow rate of 

1 mL/min as follows:  

t (min) 0 10 25 40 50 70 90 95 

%B 5 15 40 55 55 100 100 5 

 

The DAD detector was set at four different wavelengths: 254, 280, 310 and 335 nm. 

The data obtained was normalized because there was no standard solution available 

for this specific analysis. 

The data was not standardized. Standardization multiplies each variable with the 

inverse of its standard deviation. Thus, every variable has variance equal to one after 

this pre-processing.  Because data seem to be noisy standardizing it would emphasize 

peaks with small area (noisy) and decrease the importance of peaks with larger areas. 

Scanning the sample solution through the diode array detector, it was found that the 

baseline is steady at 254 nm and more peaks can be detected. It is possible to see this 

in Figure 11, Figure 12 and Figure 13. 
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When the wavelength was above 254 nm, the baseline became unsteady gradually, 

noise increased and the spectrogram became in disorder. Fewer peaks were detected 

and the values for most peaks remarkably were dropped. So the detection wavelength 

was set at 254 nm and this was also described in some references of previous works 

where flavonoids in Dendrobii species were studied [1, 50, 53, 88]. 

To check the stability of the samples prepared, several runs were done for some of the 

samples. These runs were done on different days. It was verified, by comparing 

different chromatograms made on different days that the samples were stable at least 

during the time in which the experiments occurred. The acronyms used to describe the 

samples are  D for Dendrobii samples, DO for Dendrobii Officinalis samples, 1 and 2 

represent the replicates, N represents the samples analyzed in Norway (UiB) and C 

the samples analyzed in China (CSU). 

 

   

 

   

(B) 

(A) 
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Figure 11. Results obtained in Norway: from 1-12 DO samples and from 13-18 D samples. Results were obtained 
at (A) 254 nm, (B) 280 nm, (C) 310 nm and (D) 335 nm 
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Figure 12. Results obtained in China: from 1-12 DO samples and from 13-18 D samples. Results were obtained at 
(A) 254 nm, (B) 280 nm, (C) 310 nm and (D) 335 nm 
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Figure 13. Results obtained in Norway: 1-12 DO samples and 13-18 D samples. Results obtained in China: 19-30 
DO samples and 31-36 D samples. All the results were obtained at (A) 254 nm, (B) 280 nm, (C) 310 nm and (D) 
335 nm 
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3. RESULTS AND DISCUSSION 
 

It was necessary to pre-treat the chromatograms obtained prior to the chemometric. 

First, the pre-processing of data was done using the Changde program and after this, 

alignment of the chromatographic data was performed in MATLAB since no internal 

standard was used during the experiments.  

After the pre-processing of fingerprints in both programs it was possible to proceed 

with the chemometric analysis of the data obtained. 

 

3.1 Fingerprint analysis 
 

The fingerprint analysis results are divided into the results obtained at one wavelength 

– 254 nm – and the sum of the results obtained at four different wavelengths – 254, 

280, 310 and 335 nm. 

 

3.1.1 Results using the data obtained at one wavelength: 254 nm 

 

Since more peaks can be detected at the wavelength of 254 nm, looking closer at the 

fingerprints obtained at this wavelength it is possible to see specific main peaks 

present in Dendrobii spectra that are not present in Dendrobii Officinalis spectra. 

The following figures show the results obtained at 254 nm before peak alignment (A) 

and after peak alignment (B). The results obtained in UiB are shown in Figure 14, the 

results obtained in CSU are in Figure 15 and in Figure 16 it is possible to see the 

results obtained in UiB and CSU all together. From (A) to (B) it is possible to see 

some improvement with respect to the peak alignment.  

In the results obtained in UiB there are several main peaks common to all Dendrobii 

spectra with variables between ~4500 and ~5500 that corresponds to retention times 

between ~40 min and ~50 min. In the results obtained in CSU the main peaks are 

found in the same range. 
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This fact might represent that the two species of samples – Dendrobii and Dendrobii 

Officinalis – have some different compounds with retention times in this range that 

could help distinguish them.  

In total around 100 characteristic fingerprint peaks were detected in the twelve 

samples of Dendrobii and Dendrobii Officinalis collected from five different places in 

China. 

 

 

Figure 14. Results obtained in UiB at 254 nm. Spectra 1-12 DO and 13-18 D: (A) before peak alignment and (B) 
after peak alignment 
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Figure 15. Results obtained in CSU at 254 nm. Spectra 1-12 DO and 13-18 D: (A) before peak alignment and (B) 
after peak alignment 
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Figure 16. Results obtained in UiB and CSU together at 254 nm. Norway: 1-12 DO, 13-18 D and China: 19-30 
DO and 31-36 D. (A) before peak alignment and (B) after peak alignment 
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3.1.2 Results using the sum of the data obtained at four different wavelengths: 254, 280, 

310 and 335 nm 

 

The following figures are shown to illustrate when the results of the four wavelengths 

are added before peak alignment (A) and after peak alignment (B). In Figure 17 are 

shown the UiB results, in Figure 18 the CSU results and in Figure 19 the UiB and 

CSU results all together. From (A) to (B) it is also possible to see if there was some 

improvement with respect to the alignment. Here, the number of main peaks is 

reduced compared with the ones obtained when using only one wavelength. Taking a 

closer look to the fingerprints obtained in UiB and CSU separately it is possible to see 

that there are still some compounds with retention times in the variable range from 

~4500 to ~5500 that corresponds to the range of ~40 to ~50 minutes that are present 

in Dendrobii samples but are not present in Dendrobii Officinalis samples. Therefore, 

it still possible to distinguish between the two species of herbal medicines. When 

using the sum of the wavelengths, the peak alignment for UiB and CSU together does 

not work so well as when using only one wavelength. When comparing the 

fingerprints this can maybe be explained due to the fact that there are fewer peaks 

when all the wavelengths results are added (Figure 16 and Figure 19). There is also a 

slight deviation of the main peaks after 50 minutes retention time. 
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Figure 17. Results obtained in UiB after adding the 4 wavelengths (254, 280, 310 and 335 nm), 1-12 DO and 13-
18 D: (A) before peak alignment and (B) after peak alignment 
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Figure 18. Results obtained in CSU after adding the 4 wavelengths (254, 280, 310, 335 nm), 1-12 DO and 13-18 
D: (A) before peak alignment and (B) after peak alignment 
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Figure 19. Results obtained in UiB and CSU together after adding the 4 wavelengths (254, 280, 310 and 335 nm). 
Norway: 1-12 DO, 13-18 D and China: 19-30 DO, 31-36 D. (A) before peak alignment and (B) after peak 
alignment 
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3.2 PCA  
 

In order to evaluate the similarity between the two species of Dendrobii, PCA was 

performed on the data set obtained from the HPLC chromatograms. As the previous 

results, the Principal Component Analysis are also divided into the results obtained at 

one wavelength – 254 nm – and the sum of the results obtained at four different 

wavelengths  – 254, 280, 310 and 335 nm. 

 

3.2.1 Results using the data obtained at one wavelength: 254 nm 

 

The next figures represent the score plots obtained by PCA where PC1 stands for the 

scores coordinates of principal component 1 and PC2 for the scores coordinates of 

principal component 2. The first two components kept a larger percentage variance 

explained and the third component contributed little to the separation.  

The PCA model was built using the data matrix containing all the analyzed samples in 

each country (18×10801) or in both countries (36×10801). 

The loading plots for the first two PC, that represent the object space projected and 

are used for interpreting relations among variables are not presented in this work 

because due to the large amount of variables it is not possible to have conclusive 

results. Therefore, in the figures below there are represented the Loadings vs 

Variables graphics for the first two PC, where it is possible to identify the variables 

that contribute most to each PC and then check how is this reflected in the raw data. 

Looking at the results obtained in UiB before and after peak alignment (Figure 20) it 

is possible to see that the results are quite consistent. D and DO samples are mainly 

separated on the first PC. There are two possible outliers, i.e., samples D1 and D3 but 

according to Hotelling's T-squared statistic D3 is a clear outlier. The second PC is 

predominantly describing the difference between these two samples and the rest, 

where it is possible to see important variables ~5500 and in the raw data that 

represents a peak that appears in samples D1 and D3. The possible explanation for D3 

is that it comes from a province (Sichuan) different from the majority. But here there 
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may be many reasons as explained in the introduction of this work such as the harvest 

season, the drying process or even some contaminations from pesticides or toxins.  

The distribution of the samples in the two groupings before and after peak alignment 

is almost the same and clearly shows the similarity between the Dendrobii samples 

and the similarity between the Dendrobii Officinalis samples. From before to after 

peak alignment it was also observed a very small improvement of the explained 

variance. 

Looking at the Loadings vs Variables plot for the first component, the most important 

variables are located in the range from 4861 to 5401 and looking at the raw data in 

Figure 14 it is possible to see that this is the main region where some main peaks 

appear in Dendrobii samples but not in Dendrobii Officinalis samples. To confirm 

these results and which compound corresponds to each peak the ideal situation would 

be to perform LC-MS. 
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Figure 20. Results obtained in UiB: (A) before peak alignment with PC1–63.4% and PC2–12.8%; (B) after peak 
alignment, reference: sample DO5(1) PC1–69.1 % and PC2–12.8%. The figures below each score plot represent 
Loadings vs Variables for Comp. 1 and Comp.2 
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As expected, in the results obtained in CSU before and after peak alignment (Figure 

21) it is possible to see two groupings, revealing the similarity between Dendrobii 

samples and between Dendrobii Officinalis samples. After peak alignment the 

similarity between samples remains consistent but most of the replicates are closer to 

each other and it was also observed a very small improvement of the explained 

variance. The groupings are mainly separated on the first PC and looking at the 

Loadings vs Variables, the variables with most significant loadings are located in the 

range from 4861 to ~5671. And again, looking at the raw data in Figure 15 it is 

possible to see that this is the region where some peaks are observed for one kind of 

samples but not for the other. 
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Figure 21. Results obtained in CSU: (A) before peak alignment PC1–41.0% and PC2–23.7%; (B) after peak 
alignment, reference: sample DO4(1) PC1–52.8% and PC2–14.9%. The figures below each score plot represent 
Loadings vs Variables for Comp. 1 and Comp.2 
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Analyzing the results for UiB and CSU all together (Figure 22), before and after peak 

alignment there is a separation between all the four different groups being 

investigated. Although it seems that some samples are considered outliers this may be 

due to the fact that when all the results are mixed together a large part of the variance 

is therefore unexplained – 49.2% and 42.7% remains in the residual matrix. It is 

known that models with a larger percentage variance explained are often more 

trustworthy when exploratory analysis is done. Looking at the Loadings vs Variables, 

the variables with most significant loadings are located in the range from 4861 to 

5401 that corresponds in the raw data (Figure 16) to the same region where it is 

possible to see main peaks that are only present in one type of samples. 

Here, the pre-processing of data was very important because the measurements 

obtained with different instruments were treated together and also the fact that the 

data was normalized it reduced the effect of signal strength, which correspond to a 

different concentration in each sample. 

When analyzing the results obtained for UiB, the results for CSU and also the results 

for UiB and CSU together, there was some improvement for the variance explained 

by PC1 and PC2 after doing the peak alignment. 
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Figure 22. Results obtained for UiB and CSU together: (A) before peak alignment PC1–28.3% and PC2–22.5%; 
(B) after peak alignment, reference: sample DO2(1)N PC1–46.6% and PC2–10.7%. Blue color represents Norway, 
red color represents China, the squares represent DO samples and the circles represent D samples. The figures 
below each score plot represent Loadings vs Variables for Comp. 1 and Comp.2 
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3.2.2 Results using the sum of the data obtained at four different wavelengths: 254, 280, 

310 and 335 nm 

 

The next figures represent the score plots obtained after performing PCA and again, 

the first two components kept a larger percentage variance explained and the third 

component contributed little to the separation.  

The PCA model was built using the data matrix containing all the analyzed samples in 

each country (18×10801) or in both countries (36×10801) but this time taking into 

account all the wavelengths. 

In the figures below there are represented the Loadings vs Variables graphics for the 

first two PC, where it is possible to identify the variables that contribute most to each 

PC and then check how is this reflected in the raw data. 

From Figure 23 it is possible to see that for the results obtained in UiB, before and 

after peak alignment, the Dendrobii samples are in one group while Dendrobii 

Officinalis samples are in another group. Therefore, samples D3 and D1 are observed 

as possible outliers also for the same reasons explained for the results obtained when 

using one wavelength. It was observed a decrease of the explained variance.  The 

groups are mainly separate on the second PC and again in the variable range from 

4861 to 5401 that corresponds in the raw data (Figure 17) to the region where some 

peaks are observed only in one kind of samples. These results are consistent with the 

ones obtained when using only one wavelength. 
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Figure 23. UiB: (A) before peak alignment PC1–42.5% and PC2–29.3%; (B) after peak alignment, reference: 
sample DO5(1) PC1–40.5% and PC2–21.7%. The figures below each score plot represent Loadings vs Variables 
for Comp. 1 and Comp.2 
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Looking at the results obtained in CSU (Figure 24), D1 is observed as an outlier 

either before or after peak alignment. Here the results are not so consistent with the 

ones obtained for one wavelength, since before they were not detected outliers. 

Although, it still possible to observe two groupings with the replicates closer after the 

peak alignment. From before to after peak alignment there was a slightly increase of 

the explained variance. 

And again, the groupings are mainly separated on the first PC and looking at the 

Loadings vs Variables, the variables with most significant loadings are located in the 

range from 4861 to ~5671. Looking at the raw data (Figure 18) corresponds to the 

same range were differences are observed. 
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Figure 24. CSU: before peak alignment PC1–33.4% and PC2–22.8%; (B) after peak alignment, reference: sample 
D2N  PC1–52.8% and PC2–23.7%. The figures below each score plot represent Loadings vs Variables for Comp. 
1 and Comp.2 
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Looking at Figure 25, like when only one wavelength was used, the results show that 

the samples are separated in four groups before peak alignment and after peak 

alignment. Also here some samples are considered outliers this may be due to the fact 

that when all the results are mixed together a large part of the variance is therefore 

unexplained – 65.7% and 59.9% remains in the residual matrix. Looking at the 

Loadings vs Variables, the variables with most significant loadings are again located 

in the range from 4861 to 5941 that corresponds in the raw data (Figure 19) to the 

same region where it is possible to see main peaks that are only present in one type of 

samples. 

When analyzing the results obtained for CSU and also the results for UiB and CSU 

together, there was some improvement for the variance explained by PC1 and PC2 

after doing the peak alignment. Although, in the results for UiB it was observed a 

decrease in the variance explained. 
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Figure 25. CSU and UiB together: (A) before peak alignment PC1–18.8% and PC2–15.5%; (B) after peak 
alignment, reference: sample DO4(2)C PC1–23.2% and PC2–16.9%. Blue color represents Norway, red color 
represents China, the squares represent DO samples and the circles represent D samples. The figures below each 
score plot represent Loadings vs Variables for Comp. 1 and Comp.2 
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Looking at Table 6 and taking into account before and after peak alignment, the only 

results that had an improvement of the explained variance in both PCs were the results 

obtained in CSU and UiB-CSU together, whether using one or four wavelengths. 

When analyzing the results in UiB, using the sum of four wavelengths, there was a 

slight decrease in the variance explained by the two PCs. 

 

Table 6 - Summary of PCA results before (*) and after (**) peak alignment 

University  One wavelength  
(254 nm) 

Four wavelengths  
(254, 280, 310, 335 nm) 

UiB* PC1 
PC2 

63.4% 
12.8% 

42.5% 
29.3% 

UiB** Reference 
PC1 
PC2 

DO5(1) 
69.1% 
12.8% 

DO5(1) 
40.5% 
21.7% 

CSU* PC1 
PC2 

41.0% 
23.7% 

33.4% 
22.8% 

CSU** Reference 
PC1 
PC2 

DO4(1) 
52.8% 
14.9% 

D2N 
52.8% 
23.7% 

UiB-CSU* PC1 
PC2 

28.3% 
22.5% 

18.8% 
15.5% 

UiB-CSU** Reference 
PC1 
PC2 

DO2(1)N 
46.6% 
10.7% 

DO4(2)C 
23.2% 
16.9% 
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3.3 PLS-DA 
 

The Partial Least Square results are also divided into the results obtained at one 

wavelength – 254 nm – and the sum of the results obtained at four different 

wavelengths –254, 280, 310 and 335 nm. 

 

3.3.1 Results using the data obtained at one wavelength: 254 nm 

 

As explained in the theory section, classification problems in fingerprints data 

analysis are complex due to the many variables and few objects issue. This makes that 

many solutions can be found to separate the classes. The PLS-DA score plots as 

showed in most classification applications present an overoptimistic view of the 

separation between the classes. 

To avoid this issue, a new subset was created where the variables with selectivity ratio 

less than a value obtained by an F-test were removed. The replicate objects and an 

object from each Dendrobii species were also removed from the new subset. 

From theory, it is also known that the permutation testing and cross model validation 

are used to assess the validation of classification models. Permutation tests show that 

when cross validation is not applied appropriately, it leads also to overoptimistic 

results. In cross validation, parts of the data are held out and a model is built on the 

remaining. This process is repeated until all data has been kept out once. 

In this case, manual cross validation was used because if automated cross validation 

was used there might be the risk of removing the objects from the same cluster due to 

the small amount of objects. 

The replicates and an object from each kind of Dendrobii species removed from the 

new subset were used to test the predictive properties of the model. Ideally new 

sample analysis should be done in the laboratory to later test the models. 

After following all the steps to build a PLS model (explained in section 1.1.4.2), it 

was possible to obtain some conclusions. As an example, these steps will be explained 



77  
 

and shown in detail for the PLS model for CSU after peak alignment. For the other 

data sets only final results are shown, as detailed results for all data sets would make 

the thesis prohibitively long. 

The next figures represent the score plots for the performed PLS-DA, the selectivity 

ratio plot, and finally a comparison between the actual and predicted class 

membership. In the axis labels of the score plot it is shown the percentage of 

explained variance by each latent variable for the independent variable (𝑥) and for the 

dependent variable (𝑦), respectively. PLS-DA was performed to further investigate 

the separation between the two Dendrobii species. 

In Figure 26 it is possible to see a clear separation between the two clusters that 

represent the different kind of samples. From Figure 27 it is possible to see that the 

selectivity ratio corresponds to several specific, continuous regions in the raw data 

containing peaks. Again, to further investigation these peaks should be identified with 

another technique such as LC-MS. The predictive models, as represented in Figure 28, 

show good results and are better when SEP is smaller. 

 

 

Figure 26. PLS-DA score plots of the first two latent variables for samples tested in CSU after peak alignment. 
Objects of class -1 (Dendrobii) are labeled in blue and objects of class 1 (Dendrobii Officinalis) are labeled in red 
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Figure 27. Graphic of variables vs Variable selectivity ratio (3.73 as limit) 

 

 

Figure 28. Graphic representation of Predicted (red) and Measured (blue) for Var 10802, SEP = 0.133, Comp. 3 

 

In Table 7 are shown all the results for UiB and CSU for one wavelength. 

The initial subset have always 18 or 36 objects and 10802 variables, after removing 
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or 20 objects. The number of variables is different according to the value obtained by 

an F-test for the selectivity ratio.  

Also represented in the next table, CsvSD is the ratio between the total prediction 

error of a model after including a new latent variable, and the total residual standard 

deviation before this inclusion. The ratio is multiplied by a correction factor to 

compensate for loss of degrees of freedom when the new latent variable is added. If 

the resulting number is less than one, the latent variable is significant and included in 

the model and the procedure continues with the calculation of a further latent variable. 

This criterion is used in classification and regression/response modeling. 

 

Table 7 - Results obtained for UiB and CSU when one wavelength was used, before (*) and after (**) peak 
alignment 

Analysis Objects removed 
Nr variables 
in the new 

subset 

LV1 
(CsvSD) 

LV2 
(CsvSD) 

Standard 
Error of 

Prediction 
(SEP) 

UiB* Replicates and  
D1 and DO1 (1) 475 90.2%–97.7% 

(0.17) 
2.4%– 0.9% 

(1.39) 0.136 

UiB** Replicates and 
D3 and DO3(1) 615 85.5%–95.4% 

(0.24) 
4.9%– 3.2% 

(1.09) 0.001 

CSU* Replicates and 
D2 and DO2(1) 1108 88.2%–90.4% 

(0.33) 
8.7%–6.9% 

(0.81) 0.108 

CSU** Replicates and 
D5 and DO5(1) 1384 83.7%–98.7% 

(0.14) 
9.1%–0.5% 

(0.94) 0.133 

UiB-CSU* 
Replicates and 

DO1(1)N, DO1(1)C, 
D1N and D1C 

25 91.7%–83.3% 
(0.42) 

7.3%–4.4% 
(0.91) 0.631 

UiB-CSU** 
Replicates and 

DO2(1)N, DO2(1)C, 
D2N and D2C 

82 79.5%–94.5% 
(0.25) 

7.9%–1.0% 
(1.15) 0.227 
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3.3.2 Results using the sum of the data obtained at four different wavelengths: 254, 280, 

310 and 335 nm 

 

In the results obtained for the four wavelengths (Table 8), they are consistent with the 

ones obtained for only one wavelength, where the final predictive properties seem to 

be good due to the low values for SEP. And also here the selectivity ratio shows 

specific regions in the raw data that could help distinguish between the two species of 

Dendrobii. 

 

Table 8 - Results obtained for UiB and CSU when four wavelengths were used, before (*) and after (**) peak 
alignment 

Analysis Objects removed Nr variables in 
the new subset 

LV1 
(CsvSD) 

LV2 
(CsvSD) 

Standard 
Error of 

Prediction 
(SEP) 

UiB* Replicates and  
D2 and DO2 (1) 553 85.0%–97.0% 

(0.19) 
5.8%–1.0% 

(1.52) 0.163 

UiB** Replicates and 
D1 and DO(1) 817 87.3%–91.5% 

(0.37) 
3.8%–6.9% 

(0.80) 0.272 

CSU* Replicates and D2 
and DO2(1) 610 81.5%–94.9% 

(0.26) 
8.6%–4.4% 

(0.72) 0.181 

CSU** Replicates and 
DO4(1) and D4 756 96.3%–89.3% 

(0.38) 
97.9%–10.0% 

(0.50) 0.167 

UiB-CSU* 
Replicates and 

DO6(1)N, DO6(1)C, 
D6N and D6C 

23 94.8%–74.7% 
(0.53) 

4.9%–1.3% 
(1.05) 0.947 

UiB-CSU** 
Replicates and 

DO3(1)N, DO3(1)C, 
D3N and D3C 

149 78.0%–92.9% 
(0.29) 

13.5%–0.8% 
(1.12) 0.416 
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4. CONCLUSIONS 
 

The HPLC method developed during this work can distinguish between Dendrobii 

and Dendrobii Officinalis, an identification that can be difficult using only visual 

inspection. Although, during the extraction process it is possible to observe a small 

difference in color between the two species, the Dendrobium samples showed a 

yellow-brownish color whereas Dendrobium Officinalis samples displayed a greenish 

color. The extraction process and the sample preparation are relatively simple 

processes. The main advantages of these processes are low solvent consumption, 

relatively short extraction time, high extraction efficiency, stability and good 

repetitiveness. 

This HPLC method was developed to separate flavonoids and/or other phenolic 

components present in these Dendrobii species with good resolution. Based on this 

separation, an efficient chromatographic fingerprint of these species was established.  

The pre-processing of data was very important due to the fact that the measurements 

obtained with different instruments are being treated together and this pre-processing 

is responsible for removing random errors from quantitative information. When 

analyzing the fingerprints, the automated alignment of chromatographic data it is also 

important in order to correct unwanted time-shifts. 

In the twelve samples of Dendrobii and Dendrobii Officinalis collected from five 

different provinces in China, around 100 characteristic fingerprint peaks were 

detected and it was found that some compounds with retention times in the range from 

40 to 50 min appear in Dendrobii fingerprints but not in Dendrobii Officinalis 

fingerprints. This could help to distinguish between the two different species of this 

herbal medicine. When using the sum of the four wavelengths, the number of main 

peaks is reduced compared with the ones obtained when using only one wavelength 

but the general conclusions are quite the same. 

Looking at PCA results, the distribution of the samples in the two groupings before 

and after peak alignment is almost the same and clearly shows the similarity between 

the Dendrobii samples and the similarity between the Dendrobii Officinalis samples. 
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From before to after peak alignment it was also observed a small improvement of the 

explained variance. 

Looking at the Loadings vs Variables plots showed where the most important 

variables were located looking at the raw data it was possible to see that this was the 

main region where several main peaks appear in Dendrobii samples but not in 

Dendrobii Officinalis samples. 

Regarding PLS results, there is a regular relationship between the Dendrobii samples 

and between the Dendrobii Officinalis samples. A clear separation between the two 

clusters was observed. In the results obtained for one wavelength or even four 

wavelengths, the final predictive properties of the models seem to be quite good due 

to the low values obtained for SEP. The selectivity ratio shows specific regions in the 

raw data that could help distinguish between the two species of Dendrobii. To further 

investigate these main differences, some additional analysis should be done such as 

LC-MS. 

So, it can be considered that the results obtained with PLS-DA are consistent with the 

similarity analysis obtained with PCA. 

The fingerprinting quantitative analysis combining similarity evaluation, PCA and 

PLS cluster analysis is a valid and relatively rapid method for classification of herbal 

medicine species. Data obtained from this study suggest that the use of HPLC-PCA-

PLS-DA can identify and distinguish the two different species of Dendrobii. The 

advantage of using this method is that it is often unnecessary to know the individual 

components that build the fingerprint. So, this represents a relatively rapid and 

efficient process for assessment. The fingerprint method established by this study 

could be applied to other similar Dendrobii species for the quality assessment. 
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5. FURTHER WORK 
 

With the purpose of identifying at least the main peaks detected in Dendrobii species 

but not in Dendrobii Officinalis species and also to confirm that the components 

present in the mixture, that are expected to be flavonoids and/or other phenolic 

compounds, LC-MS analysis should be performed. Initially, one of the aims of the 

study (section 1.2) was ‘to perform HPLC-MS analysis of Dendrobii Caulis (Shihu) 

and Dendrobii Officinalis Caulis (Tiepi Shihu) to identify the main peaks’ but for 

technical reasons beyond my control, i.e., the instrument was broken and awaiting 

repair it was not possible to realize these analysis. 

The isolation of the main peaks could also be done to perform UV spectra in order to 

confirm that some characteristic bands of flavonoids (between 210 and 400 nm) 

would appear. 

Finally, the validation of the analytical method should also be done. This is the 

process of establishing its performance characteristics and limitations and also the 

identification of the influences which may change these characteristics and to what 

extent. The reasons to validate are related with the fact that a new analytical 

procedure is being developed and also to widening the range of applicability for this 

procedure, e.g. for determining the same analyte but in a different matrix, the 

analytical procedure being used in a different laboratory and using different 

measuring equipment. 

Among other steps that could be done for the validation of the method, one should be 

for example, a reference peak/standard solution should be chosen to calculate the 

retention times and relative peak areas of the other peaks and with these values 

estimate instrument and method reproducibility. To check instrument reproducibility, 

several consecutive replicate analysis of a sample solution should be performed and to 

check the method reproducibility several replicate samples should be prepared and 

then each sample solution should be analyzed. The method reproducibility would be 

an important parameter to be determined since the experiments were done in different 

countries and consequently different equipment.  
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The validation is also very important when the measurements are conducted by 

another person and also when the results of the Quality Control protocol suggest that 

validation parameters vary in time [89]. 
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