Dependencies:

No Software is an Island

Thesis for the degree Master of Science

Jorgen Tellnes <jorgen@telln.es>

October 2013

jorgen@telln.es

Abstract

In the past years, package managers, application frameworks and open-source
libraries have made it vastly simpler and faster to get functioning software
up and running, while cloud providers and external service providers have
made it easier to get the application out into the hands of millions of users
without large up-front costs.

While this recent technology development has made it possible for compa-
nies with limited resources to build impressive software and valuable services,
the development has serious security implications which the current state of
software development and systems engineering are not yet able to handle
very well.

In this thesis, we will show that the security and availability of a system
are largely determined by the surrounding “ecosystem” of dependencies, and
that techniques to reduce the reliance on a system’s dependencies—software
libraries, services and infrastructures—are hugely beneficial.

The intended audience for this thesis are computer scientists, professional
and amateur software developers, and system designers, but anyone with
basic IT knowledge is encouraged to keep reading.

111

v

Acknowledgements

Tusen takk til Tone, min kone. Takk for at du har tolerert at jeg har hatt
lange dager pa universitetet, og takk for at jeg har fatt lov a lesse masse
tanker og idéer pa deg, selv om det ikke alltid har veert riktig tid eller sted.
Takk for at du har hatt troen pa meg nar jeg ikke selv har hatt det.

Tusen takk til min veileder, Kjell Jgrgen Hole, for mange interessante
samtaler, veldig mye god oppfelging, gode rad og uvurderlig hjelp. Tusen
takk for at du alltid har hatt tid til a lese over eller prate, selv pa en lgrdag,
og selv om du har hatt veldig mange andre baller i luften.

Tusen takk til Mikal, Ole, Stian og Andreas for god stemning, god kaffe,
god hjelp til korrekturlesning og aerlige tilbakemeldinger.

Tusen takk til Mamma og Pappa for at dere har stottet meg under hele
dette prosjektet, og bidratt med gode samtaler og middagsbesgk.

vi

Contents

[Abstractl iii
[Acknowledgements| v
Contents vii
(1__Introductionl 1
(1.1 What are dependencies?| 2
(1.2 Discovering and mapping dependencies| 3
(1.3 Describing dependencies with graphs| 4
(L4 Structure of the thesislo 6
2 Library dependencies| 9
2.1 What are library dependencies? 9
[2.2 Indirect dependencies|o 12
[2.3 Automatic package management|. L. 13
[2.4 Homogeneity in library usage| 13
2.5 Tines of code and vulnerabilities) 14
R6 Ticenced 15
[2.7 Cross-build injection| 16
[2.8 Dependency management systems| 18
[3 Infrastructure dependencies| 19
[3.1 What are infrastructure dependencies? 19
[3.2 Complex systems| 21
[3.3 Vague and indirect dependencies|. 23
[3.4 Cloud computing and |
[Service-Oriented Architectures 24

vii

[4 'Trust in dependency relations| 27

M1 Whatistrust?d.o o 27
(4.2 Trust in dependency graphs| 28
4.3 The Internet web of trustl. 29
(4.4 Trusting “amateurs”| 32
4.5 Do software developers have an informed level of trust in de- [

[pendencies?| 33
b__Case studies| 35
[>.1 Dependency modelling and mapping tools| 35
[>.1.1 Spoiklin Soicel oL 36

[>.1.2 Visual Studio 2012 Code Map| 37

[p.1.5 depend.py|.o 38

(5.2 Dynamic Presentation Generator| 40
(5.3 Build systems and Cross-build Injection|. 44
[>.4 npm and dependency explosion|00 46
6 Solutions| 51
[6.1 Libraries and package managers| 51
[6.1.1 Extensions to package managers| 51

[6.1.2 Security wrappers|. 55

6.2 Infrastructures 56
[6.2.1 Insulating against dependency failures] 56

[6.2.2 Metaclouds and insulating against cloud plattorm failure| 57

[6.2.3 Indirect dependencies|. 58

[6.2.4 Designing for failure] 60

6.3 Non-technical solutions 62
[6.3.1 Choosing a Dependency Management Litecycle|. 63

[7 Conclusions and summary| 67
(7.1 Summary| 67
(7.2 Conclusionsl 68
[(.3 Extensions of thesis workl. 69
[7.4 Open research questions| 69

[A" Source code listings| 71
(Bibliography| 75
[List of Figures| 89

Viil

Chapter

Introduction

A distributed system is one in which the failure of a computer you didn’t
even know existed can render your own computer unusable.
— Leslie Lamport [1]

Everyone depends on something outside themselves. We depend on the
electricity company to deliver the power that keeps us warm and powers our
gadgets, and we depend on the fire department to save us if our gadgets catch
fire. There are a set of entities we all depend on to keep us safe, warm and
happy. At the same time, dependence can be a burden and a risk to ones
welfare. Dependence on alcohol or narcotics has ruined lives or even whole
societies. The same goes for systems and code, depending on something can
be beneficial, but it can also be risky or even outright dangerous.

A good programmer is a lazy programmer [2]. This makes perfect sense,
as a lazy programmer doesn’t waste his or her precious time reinventing the
wheel or spend time on things that a framework or third-party library can
do faster and better. The rise of modern package managers has accelerated
this trend toward using a multitude of third-party libraries, and modern
cloud-based architectures have accelerated the trend toward using multiple
third-party services “in the cloud”. While maintaining and reducing the
dependency of other systems are an important part of managing a software
project, most development teams do a shoddy job.

An important issue is that the web of entities a system depends on may be
larger than what is immediately obvious, and a large number of the entities
may be hard to discover even with rigorous analysis. An example illustrates
the problem at hand. The availability of almost all Norwegian Internet banks
depends on user authentication with BankID, which again depends on the

plugin block-lists that are maintained by browser vendors. The lists are an
example of non-obvious and ill-defined dependencies that can severely affect
the availability of the banks at any time.

As a further example, due to a configuration error made by an Indonesian
Internet Service Provider (ISP), Google went down for about a half hour in
November 2012 in large parts of eastern Asia. This incident was entirely
outside Google’s control, and was simply caused by the dependencies inherent
in the structure of the Internet.

The point is, code and systems don’t exist in vacuums. They sit in the
middle of a huge and ever-changing ecosystem, interacting with many other
systems and other pieces of code. Keeping these dependencies to a minimum,
decoupling as much as possible, and at the very least being aware of them is
essential to the security and reliability of a system.

In this introduction, we define the concept of dependency and explain how
dependencies occur in modern Information and Communications Technology
(ICT) systems. We then discuss some prior work in detecting dependencies,
show how graph theory can be used to describe and analyse dependencies,
and finish by providing an outline of the rest of this thesis.

1.1 What are dependencies?

In its broadest sense, a dependency is a relation between two entities where
one entity depends on the other for something. An example is that most
people depend on the emergency services if a fire breaks out. In ICT systems,
one can say that a system depends on the underlying infrastructure, or that a
program has a dependency on a third-party library. The extent or importance
of dependencies can vary, as well as the impact in the case of a failure in a
dependency. Not all dependencies are equal.

A security dependency exists when the security of an entity depends
on the security of another entity. The security of an office door depends on
the security of the door to the janitor’s office, where all the spare keys are
kept. The security of a Windows desktop computer will similarly depend on
the security of the domain controllelﬂ it is associated with [3]. The security
of a service running in a public cloud depends on the security of the cloud, as
an attack on the cloud infrastructure can disrupt or compromise the service.

Dependencies are necessary. A system that doesn’t communicate with
other systems is likely a system of limited scope and usefulness. In many
cases it makes perfect business sense to outsource parts of the application

In Windows enterprise domains (Active Directory), a domain controller handles pass-
words and authentication (among many other things) for all computers in the domain.

to third parties (e.g. SMS gateways, payment processors, cloud storage and
specialist libraries) to avoid the cost or maintenance overhead, or to reduce
time to market.

Problems occur when the system is tightly coupled [4] to a dependency,
or when there is no control over what dependencies the system has. This
situation can quickly land the system in “Dependency hell” [5], from which
there is no easy way out. Especially since the dependencies of a system often
have a set of dependencies that they themselves rely on, adding indirect
dependencies to the original system.

Faults in complex systems are often attributed to a root cause, but
Cook [6] asserts that attributing failures to a single root cause is funda-
mentally wrong. A failure in a complex system is almost always caused by
multiple faults that only create a failure when combined.

Mismanaged dependencies, overly large number of dependencies—or sim-
ply a lack of awareness of a systems’ dependencies—increases the risk that
dependencies outside the scope of the system will be contributing to a sys-
tem failure.

The term “dependency” is used in many different settings. There are de-
pendencies in program code; between different libraries, which will be stud-
ied closer in Chapter [2} between classes, functions or even—in the context of
compiler optimisation—between individual CPU instructions. In Chapter [3]
we will look closer at dependencies in the infrastructure around program
systems. This thesis will mainly focus on library dependencies and infras-
tructure dependencies.

1.2 Discovering and mapping dependencies

It is important to properly understand the “ecosystem” that a system lives
in, to know as much as possible about its dependencies. How many are there,
where and what are they? What uptime does the Service Level Agreement
(SLAED for an external system guarantee? Does the system use an outdated
library or API with known vulnerabilities? In many systems, the answers to
these questions aren’t known, either from lack of documentation or from the
sheer complexity of the system and its surroundings.

There have been some prior works on automatically discovering depen-
dencies in a network, but most works have either been of the empiric kind
(listening to network traffic to infer dependencies) [7, 8] or just attempting

2A contract that defines the service level (uptime, response time and other guarantees)
for an external system or service, and available recourse for a breach of the agreed-upon
service level.

to make a framework for describing and modelling dependencies [9] without
attempting to tackle the problem of discovering them.

Empirical observation of network traffic can discover and map most de-
pendencies during normal operation of a system, but this activity is not
sufficient to discover exceptional dependencies that only emerge in failure
scenarios. Failures in complex systems depend on multiple failures in col-
lusion [6], so knowledge of exceptional dependencies are important to fully
discover potential failures.

To discover all dependencies, an empirical method must exercise all pos-
sible system states as well as all possible states of all external systems. This
is impossible, as there may be dependencies that only manifest at a specific
time and date, at a specific location, or when a specific set of failures occur
in a specific way. Empirical methods are not viable for detecting exceptional
dependencies, but are still useful for discovering dependencies in a system’s
normal operation, and can be useful when trying to build an understanding
of normal system operation that later can be expanded upon.

Automated static analysis of source code is able to detect most depen-
dencies that are defined in the source code. Dependencies outside the scope
of the source code, such as fallback systems, databases and other infrastruc-
tural elements, and dependencies only associated by correlation cannot be
detected through static source code analysis. Not all dependencies can be
found in the code, and not all dependencies can be observed from a system
in the normal running state. Combining these techniques with a deep knowl-
edge of the system and its surroundings seems to be the most viable way to
discover most dependencies.

1.3 Describing dependencies with graphs

Graphs are mathematical structures used to describe entities (nodes) and the
pairwise relationships between them (edges, represented by lines between
nodes). When the direction of the edges means something, the graph is
directed, and the direction of the edges is signified by arrows. If the direction
of the edges is unimportant, or the edges are implied to be bidirectional,
the graph is said to be undirected. See Figure for an example of a
graph showing the relationships between a group of friends, where an edge
represents the relation “is friends with”. Note that the graph is undirected,
as a one-directional friendship is somewhat meaningless.

The same kind of graph can be constructed for dependencies, resulting in
a dependency graph, where an edge signifies “depends on.” Dependency
graphs are directed, due to the nature of the dependency relation. In the

4

Figure 1.1: A small group of friends, visualised with a friendship graph. The
graph is made with the graph drawing software yEd [10)].

event of a co-dependency, the edge will be bidirectional.

A graph can be measured and analysed in ways that systems, infrastruc-
tures or software cannot. We can measure and visualise the graphs contained
within the larger context, stripping away unnecessary detail and noise, and
transforming them from being imaginary structures to an actual tangible,
measurable form.

A dependency graph can be traversed (by e.g. Kruskal’s algorithm [I1])
to find a Minimal Spanning Tree where any unnecessary edges are removed
or to discover if there are any circular dependencies in the graph. A circular
dependency is when a node ends up depending on itself, through a number
of intermediaries.

Shortest-path algorithms like Dijkstra’s algorithm [12] can be used to find
the shortest dependency chain from a node to another. The average degree
(number of edges going in/out of a node) is useful to see how dense the graph
is. Other useful metrics include the graph diameter, which is the “width” of
the graph [’ and betweenness centrality, which is a measure of how many of
the shortest paths in a graph pass through a specific node.

These metrics can quickly draw a picture of the size of the dependency
graph, and the relative importance of the different nodes. The total number
of edges in graph divided by the number of edges in the minimal spanning
tree can be used as a measure of duplicated edges (edges that don’t contribute
to the minimal spanning tree).

3The longest distance between any two nodes, or more precisely the longest shortest
path in a graph.

1.4 Structure of the thesis

We'll take a look at the rest of the chapters in this thesis. The chapters are
outlined here in order to give a quick impression of the overall structure of
the thesis.

Chapter [1] - Introduction

You are here.

Chapter 2| - [Library dependencies|

This chapter discusses dependencies in software libraries. It shows that ac-
cording to the Open Web Application Security Project (OWASP) [13], most
developers don’t keep track of the libraries their systems depend on, and
makes an example of how a complex system with a lot of dependencies can
be heavily impacted by a vulnerability in a dependency. Indirect dependen-
cies and homogeneity in software are examined, and we look at the relation
between defects and system size. Lastly, we also take a look at how build
processes and modern package managers can worsen the problem of complex
dependency graphs, and detail cross-build injection, an exploit class that
targets the build process.

Chapter (3| - Infrastructure dependencies|

In this chapter, we will look into dependencies on a more “fuzzy” level: at the
level of entire systems and infrastructures. We will see that dependencies can
limit a system’s level of security. We will look into how complex systems and
vague dependencies make it harder to know the dependency graph, and how
modern cloud-based systems and service-oriented architectures can further
exacerbate this problem.

Chapter (4] - [Irust in dependency relations|

Dependencies create a need for trust. We examine the web of trust that exists
on the Internet between the different networks, and how trust is diluted in
large dependency graphs that contain indirect dependencies. We also look at
trust in situations where there is limited knowledge of the entity you trust.
Finally, we look at how trust in non-professionals can be misplaced, and
try to answer whether or not developers have an informed level of trust in
dependencies.

Chapter [5| - [Case studies]

We perform case studies of “real world” systems, and examine how to model
and analyse systems. The chapter describes a few of the available tools to
model dependency graphs at various levels of abstraction, and describes a
modelling tool written for this thesis to simulate downtime events in depen-
dency graphs.

We will evaluate the dependency management and dependency graphs in
Dynamic Presentation Generator and Netflix, and the npm package manager
with its dependency explosion. Finally, we will look more into build systems
and cross-build injection and examine the safeguards the build systems have
to protect against this type of attack.

Chapter [6] -

We discuss attempts currently being made at solving the problems outlined
in this thesis, and suggest possible extensions to these methods. Finally, we
also suggest some original solutions and possible mitigations.

Chapter [7| - |Conclusions and summary|

We round off this thesis with conclusions and a summary, and then we suggest
further work that could be done given more time, as well as open research
questions.

Chapter

Library dependencies

People think that computer science is the art of geniuses but the actual
reality is the opposite, just many people doing things that build on each
other, like a wall of mini stones.

— Donald Knuth

In this chapter, we will look at dependencies in software libraries. We
will look closer at indirect dependencies, and how package managers have
contributed to large dependency graphs and made indirect dependencies more
common. Finally, we will attempt to illuminate the connection between
source code size and number of vulnerabilities, and how cross-build injection
can be used to inject hard-to-detect vulnerabilities into the final product.

2.1 What are library dependencies?

A library dependency (or component dependency) is a dependency
on a software library or component [I4]. This component can be a large
framework that does almost everything, or it can be a small class for con-
verting between time formats. It can be written by a large organisation,
or a single developer in her spare time. It can be well documented or not
documented at all.

Introducing a component dependency into a system can be immensely
useful. Instead of having to implement every single component of the sys-
tem, the programmer can import a suitable component or library to do the
work. Developers don’t have to reinvent the wheel every time, and can spend
their time working on the domain logic and figuring out the major important

points instead of diving head-first into complex algorithms that they don’t
necessarily have the expertise to properly understand, or waste time on te-
dious details. Offloading work to prewritten components allows developers to
work faster when it matters, and go back to improve or replace components
later if necessary.

A component dependency is also a security dependency. Allowing exter-
nal code to run in an application allows for exploitation of vulnerabilities
contained in the imported code. This means that the security of included
components has as much impact on the systems security as ones own code,
and should be treated as such. There are attempts to sandbox or other-
wise limit the effects of vulnerabilities in dependencies [15, pp. 19-21], but
they only attempt to solve the set of direct vulnerabilities, not the fact that
unexpected results from the imported code can cause vulnerabilities in the
in-house code, such as a time calculation library giving out wrong dates, or
broken random number generators [16].

It is hard to find solid data on the number of dependencies in the average
“modern” software project, but a survey of 473 software projects done by
White Source [17] indicates that the average project has 64 open source
dependencies. Note that this only includes open source components; the
total number of dependencies is probably higher. In my experience, this
estimate is probably not far from the truth (as a lower bound), and I have
seen projects with hundreds of dependencies.

As we will see in Section [2.5] this many dependencies can be the cause of
problems simply due to the total number of lines of code involved. It isn’t
unusual for small to medium-sized projects to have substantially more code
residing in third-party libraries than in the in-house code. Many software
development teams don’t put in the effort needed to keep track of all of
the dependencies, leading to a mess of out-dated libraries, including libraries
with known vulnerabilities [13, [14].

Keeping libraries up-to-date brings its own set of challenges, as trying to
stay on the “bleeding edge” and only use the most recent releases often incur
high risks of instability and a lot of work with reacting to possible changes in
the library. Staying too far behind can often mean being vulnerable to issues
already fixed in newer releases, or having to manually patch fixes to stay
secure. Both ends of the release cycle bring challenges; pain and uncertainty
on the bleeding edge, and vulnerabilities on the tail end.

A quick test: analysing Norwegian banking websites

To test how well library dependencies are handled in practice, I performed
a quick evaluation of Norwegian Internet banking websites in July 2013.

10

Because I didn’t have access to the banks’ server-side source code, I sim-
ply checked the versions of JavaScript libraries in use on each site to see
if they were kept up-to-date, and cross-referenced with public vulnerabil-
ity databases and security bulletins to find if the libraries had any known
vulnerabilities. The banking sites surveyed was DnB, Nordea, Skandia-
banken, Sparebankl and Sparebanken Vest. See Table for an overview of
the findings.

jQuery Ul swfobject

jQuery dojo

dnb.

nordea.

SpV.
skandiabanken.
sparebankl.

Table 2.1: Versions of major Javascript libraries used in Norwegian banking
websites. Red marks versions with known vulnerabilities, orange are out-dated
versions (older than the next-newest version), and green are up-to-date versions.

As can be seen from the table, none of the sites had the most recent
version of jQuery, and Skandiabanken even used a version] that dated back
to 2009, with a known vulnerability [I8].

It should be noted that all the sites using jQuery also used multiple
jQuery plugins of varying quality. These are open source plugins, and some
are authored and maintained by a single person. This could be risky if the
code is not verified or analysed internally. Some of the plugins were very old
(as old as 2008), indicating a lack of maintenance.

Sparebanken Vest (spv.no) used a severely out-dated version of the Dojo
Toolkit [19], version 1.3.2, released in July 2009. This version has sev-
eral known vulnerabilities, including Cross-Site Scripting (XSS) and open
redirect vulnerabilities. See Common Vulnerabilities and Exposures (CVE)
advisories CVE-2010-2273, CVE-2010-2274, CVE-2010-2275 and CVE-2010-
2276 [20] for more information. I have verified that both Skandiabanken and
Sparebanken Vest are not vulnerable to the known vulnerabilities described
here, although this is not because of any active mitigation or workarounds
on their part.

It is important to emphasise that this informal and crude test cannot
be used to draw any hard conclusions. However, the test can be used as
an indication of how library dependencies are handled in the rest of the

ISkandiabanken used two different versions of jQuery, version 1.3.1 for the “public,”
non-authenticated website, and version 1.5.1 for the authenticated “secure” banking site.

11

banks’ server-side code base. Client-side code typically doesn’t have the
same security consequences as server-side code, but as can be seen from the
table, some of the libraries used had several known vulnerabilities.

2.2 Indirect dependencies

The Open Web Application Security Project (OWASP) organisation pub-
lishes a Top 10 list over the most important web application vulnerabilities
every few years. The most recent, OWASP Top 10 — 2013 [21], features the
vulnerability class “A9 Using Components with Known Vulnerabilities” as
one of the most important classes of web application vulnerabilities in 2013:

Virtually every application has these issues because most devel-
opment teams don’t focus on ensuring their components/libraries
are up to date. In many cases, the developers don’t even know all
the components they are using, never mind their versions. Com-
ponent dependencies make things even worse.

OWASP Top 10 — 2013 [13)]

The last sentence is quite interesting, as indirect dependencies (depen-
dencies that has dependencies of their own) really do complicate the issue.
Indirect (or transitive) dependencies are dependencies that are outside the
control of the system developers. When each library include its own set of
dependencies, this can lead to a dependency “explosion,” where each library
adds more dependencies, which in turn adds more dependencies and so on.

A recent security incident with Spotify’s account creation system shows
just how hard it is to spot issues arising from indirect dependencies:

So changes in the standard python library from one python version
to the next introduced a subtle bug in twisted’s nodepre. prepare ()
function which in turn introduced a security issue in Spotify’s ac-
count creation [22].

A change in the standard python library caused a hard-to-find bug in a
third-party library function that in turn introduced a unicode-related vul-
nerability in Spotify’s account management system. This shows that indirect
dependencies and dependency chains can lead to situations where a depen-
dency two steps removed can still introduce security vulnerabilities.

12

2.3 Automatic package management

Modern package managers and build systems automatically resolve and down-
load dependencies, and make it vastly simpler to add a new dependency to
a project. Modern package managers like npm (JavaScript), NuGet (.NET)
or Maven (Java) are widely used in their respective ecosystems, largely due
to their ease-of-use compared to manual handling of dependencies.

While package managers can help resolve and download dependencies,
there are still a lot of tasks left to manage. Making sure everything is as
up to date as it can be, handle potential unwanted changes in the indirect
dependencies and verify that there are no known vulnerabilities in any de-
pendency, direct or indirect. This can be hard to do right, and with large
dependency graphs, the graph will also change more often, demanding yet
more resources to manage it.

Modern package managers simplify adding and resolving dependencies,
but do not make it easier to keep track of changes in the dependency graph,
vulnerabilities in packages, or what authors and packages are trustworthy
or not. This leads to a point where most developers lose track over the
dependencies they have in their code. Package managers also encourage
making small packages with less duplicated functionality, which again leads
to each package having more dependencies, although the total application
size doesn’t necessarily increase.

2.4 Homogeneity in library usage

Software homogeneity in a network is highly conducive to spreading of mal-
ware [23]. A network where all systems are running the same operating
system or other piece of software is a network where malware spread very
easily, as it can exploit the same vulnerability in all nodes on the network.

As an example, 54.8% of all web sites depend on the Javascript framework
jQuery [24 25]—including mega-sites such as Amazon.com, Microsoft.com,
Wikipedia and Tumblr—and the trend is rising. A vulnerability in jQuery
would impact over 50% of the world’s websites, and as the major sites could
act as hubs in the network, malware distributed through an exploited jQuery
vulnerability would spread easily and fast.

Most Javascript libraries benefit greatly from being served from a Content
Delivery Network (CDN), mostly due to the increased chance of the user
already having the library in their browser cache, thus decreasing loading
times and bandwidth usage. The probability of a library already being in
the users cache is proportional to the number of sites that use that particular

13

CDN, so a primary reason for choosing a particular CDN is the number of
users. This causes a “rich-get-richer” effect, where the “richest” CDN grows
fastest, leading to a network dominated by hubs. This is known in network
theory as preferential attachment [26].

Google Hosted Libraries [27], 28] is used in 14.9% of all websites to serve
Javascript libraries, and is used by 90.9% of all sites that use a CDN for
Javascript. Consequently, Google’s CDN has the potential of being a hub
that can be used to efficiently spread malware.

2.5 Lines of code and vulnerabilities

Source Lines of Code (SLOC) is a metric given by the number of lines of code
in the source code of a program [29]. Lines in the source text containing only
whitespace or comments are typically excluded. Additional metrics based
on SLOC has been proposed, such as XLOC (executable LOC) or LLOC
(logical LOC), but aren’t as widely used. Automatically generated code and
library code are also commonly ignored when counting SLOC, as the intent
typically is to count the lines of code written by a developer or team, not by
the development environment.

As SLOC has historically been misused by managers as a measure of
programmer efficiency and productivity| and is in itself somewhat vaguely
defined, SLOC is often berated as a useless metric. As a measure of com-
plexity, on the other hand, lines of code are just as useful as cyclomatic
complexity [30]. Cyclomatic complexityf’| is a useful metric that carries a
much higher computational cost, but is proven to have about the same pre-
dictive power. SLOC can be a useful metric to give a ballpark estimate of
the magnitude of a development project, although the precision is low.

Number of defects are strongly correlated with SLOC [31]. The defect
count is a linear expression of the total SLOC [32], meaning that a larger
system typically has more defects than a smaller system. To keep the number
of defects small, system size must be strictly controlled.

“My point today is that, if we wish to count lines of code, we should not
regard them as ‘lines produced’ but as ‘lines spent’: the current conventional
wisdom is so foolish as to book that count on the wrong side of the ledger.”
— E. W. Dijkstra [33]

2 “Measuring programming progress by lines of code is like measuring aircraft building
progress by weight.” — Often attributed to Bill Gates
3Cyclomatic complexity is the number of linearly independent paths through a program.

14

According to the static analysis vendor Coverity, a typical program has
a defect density of 0.1 to 20 defects per 1000 SLOC (kSLOC) [34]. Static
analysis of the Linux kernel in 2004 showed 0.17 bugs per kSLOC [35].

Based on defect and vulnerability data from different versions of the Mi-
crosoft Windows and Red Hat Linux operating systems, Alhazmi et al. |36,
37] found a relation between defect density and vulnerability density. As
could be expected: more bugs, more vulnerabilities. The ratio between de-
fect density and vulnerability density was found to be in the 1-5% range.

A typical small or medium-sized system will have a large amount of code
residing in external libraries. In some cases there are way more SLOC in
library dependencies than in the code that makes up the system, written by
the in-house development team. This makes internal development guidelines
and processes less effective than if everything was written in-house.

2.6 Licences

Large dependency graphs can make license compliance harder. If a leaf node
changes its license, or a new node gets added to the graph with an unaccept-
able license, you have to remove and replace this node. With a large graph,
the control you have over each node diminishes, as the number of indirectly
attached nodes increases.

This is especially hard with open-source dependencies, as some open-
source licenses are “viral,” and require any system redistributing their code
to be licensed with the same conditions[f] Examples of such viral licenses are
the GNU General Public Licence (GPL) or Creative Commons Attribution-
ShareAlike (CC BY-SA). A library far out in the dependency graph with
a viral license like GPL can force the entire system to be licensed as GPL.
Conflicting licenses in different libraries can also occur, which would prevent
any legal distribution of the system at all [17].

An example of how potential licensing conflicts are handled in the NuGet
package manager can be seen in Listing NuGet handles potential con-
flicts by releasing Microsoft (the original developer of NuGet) of any liability
related to licence issues, and only warns the user of potential issues. NuGet
doesn’t enforce any licence restrictions.

15

Each package is licensed to you by its owner. Microsoft is not responsible
for, nor does it grant any licenses to, third-party packages. Some
packages may include dependencies which are governed by additional
licenses. Follow the package source (feed) URL to determine any
dependencies.

Package Manager Console Host Version 2.7.40808.167

PM> Install-Package Microsoft.AspNet.WebApi.Client

Attempting to resolve dependency ’Microsoft.Net.Http (>= 2.0.20710.0)°.

Attempting to resolve dependency ’Newtonsoft.Json (>= 4.5.6)°.

Installing ’Microsoft.Net.Http 2.0.20710.0’.

You are downloading Microsoft.Net.Http from Microsoft, the license
agreement to which is available at http://www.microsoft.com/web/webpi
/eula/MVC_4_eula_ENU.htm. Check the package for additional
dependencies, which may come with their own license agreement(s).
Your use of the package and dependencies constitutes your acceptance
of their license agreements. If you do not accept the license
agreement(s), then delete the relevant components from your device.

Successfully installed ’Microsoft.Net.Http 2.0.20710.0°.

Listing 2.1: NuGet handles licences in dependencies by issuing a warning, but
will not detect or handle any licensing conflicts.

2.7 Cross-build injection

Cross-build injection (XBI) is a relatively novel type of code injection attack,
first described in a white paper by Fortify Software in 2007 [38]. XBI exploits
the fact that modern build processes often fetch dependencies from remote
servers in an insecure manner [38, 39]. Modern automated build processes
with library package managers, such as those offered by Maven, NuGet, npm
or RubyGems will resolve and fetch declared library dependencies on build-
time, by downloading them from a central repository or a local cache. See
Figure for an overview of the typical build process with package managers
in a modern application.

If the process of fetching these dependencies from the remote server is
insecure, this opens up for Man-in-the-Middle (MITM) attacks, where an
attacker can inject arbitrary code, and even run code directly on the computer
that initiates the build. The remote server could also be compromised (like
what happened to a Sourceforge download mirror in 2012 [40]), and if there
is no verification of server integrity, the compromised server would be able
to inject malware into the build process and affect the resulting binaries.

4With AGPL, using the code in a web-based system is regarded as distribution.

16

Maven Central

v

N
.
e
Local cache
Build server
Source code Compiled artifact

Figure 2.1: Typical flow in a Maven-based build process. Note that the only exter-
nal node in the diagram is Maven Central, the central Maven package repository.
XBI attempts to exploit the dotted edge to inject code.

What’s so scary about XBI is that the attack is designed to change the
produced binaries, which can then be distributed to thousands of users (or
put in production on a website) before the attack is discovered. The impact
is potentially very large. Discovery can also be very hard, as it is hard to
detect if the source behind a binary has been tampered with [41].

The attack window for successful XBI through a MITM attack is signif-
icantly increased when using package managers, as each developer machine
and build server fetches the dependencies from the web at least once (and
sometimes when starting each build) [38]. The number of dependencies in use
is also larger, so the total number of requests made are significantly larger,
increasing the window of opportunity.

Continuous integration and continuous delivery [42], where the applica-
tion is automatically compiled, tested and deployed in a continuous manner
by a build server, is getting traction as a best practice for agile software de-
velopment, as it allows for simpler integration and faster deployment. The

17

risk and potential impact of XBI in this kind of software development process
is higher, since a successful attack can potentially get into production-ready
code and even reach the production environment without human interven-
tion.

2.8 Dependency management systems

Earlier in this chapter, we saw how important it is to properly manage the
dependencies of a system. This is a hard task that could be simplified by
tools that assist in ensuring licence compliance, handling mapping of ex-
plicit library dependencies and notifying developers about new releases and
known vulnerabilities.

I haven’t been able to find many of these systems. There are a lot of
systems that claim to do dependency management, but in reality are only
package managers that also performs dependency resolution (traverse the
dependency graph to make sure dependencies are only included once) and
handles version requirements (“use version x.y of dependency z”) as a part
of their functionality. There exists a select few static analysis tools such as
Veracode Analytics [43] that can perform static analysis and generate reports
of external dependencies and any known vulnerabilities.

The UK Centre for Protection of National Infrastructure tasked the stan-
dards organisation Open Group with writing a dependency modelling stan-
dard [44]. The result were published in December 2012 [45] as the Depen-
dency Modelling (O-DM) Standard [46]. The dependency modelling system
iDepend [47] promises to be compatible with this specification and assist in
solving and mapping dependency issues in software, processes and infras-
tructure. As of September 2013, however, iDepend is still in alpha, and the
website has been down for the last few months, indicating that the project
has been abandoned.

To summarise, the current state of dependency management systems is
that there are no systems that satisfy our needs. Whether or not this func-
tionality is best taken care of in a dedicated dependency management system,
or if it should be handled directly in the package managers and development
environments is also up for debate. On the one hand, a dedicated system
would be able to handle different environments and ecosystems, but imple-
menting this in package managers may be easier and faster, as a package
manager is more closely tied to the development process.

18

Chapter

Infrastructure dependencies

The central enemy of reliability is complexity.
— Dan Geer et al. [4§]

In this chapter, we will take a look at dependencies in ICT infrastructures.
We begin with an overview, look at dependencies in the Internet “web of
trust,” and then look more specifically at dependencies in Service Oriented
Architectures (SOAs) and cloud computing environments.

3.1 What are infrastructure dependencies?

Dependencies are not limited to well-defined low-level relations in source
code. When looking at entire systems, services and infrastructures, we also
find dependency relations to the entities surrounding the system. A system
can depend on basic services, like stable power, networking connections and
cooling, as well as higher-level services like external APIs, cloud platform
management systems, payment processors and more.

As with software library dependencies, a dependency graph of the system
can be constructed and analysed, hopefully providing more insight into the
behaviours and vulnerabilities of the entire system. For the purposes of
this chapter, the concept of a dependency can also be understood in a
slightly different way: there exists a dependency relation between two entities
when the state of one entity is correlated to the state of the other. This
extended definition frees us from the requirement that a dependency must
be well defined, and allows us to reason about vague and even potentially
undefined dependencies.

19

rs
Payment processor [:
-
/Autne ntication service

LN

N’
. Application server lail Service

Database servers

—
5\ /) Helpdesk system

Backup service

Power grid

Figure 3.1: Dependency graph of the infrastructure in and around a typical cloud-
hosted application. The contents of the cloud is what is typically thought of as
“the system”, but system-impacting incidents can occur in all elements seen in the
illustration.

A typical modern ICT system has many dependencies to its surrounding
infrastructure. An example of a typical cloud-hosted application can be
found in Figure 3.1} As with library dependencies, it makes perfect business
sense in many cases to outsource parts of a system to a third party. Unlike
library dependencies, however, there is a risk for outages and information
leakage, and many applications are not properly isolated from such failures.
With third party services, there exist legal techniques such as Service Level
Agreements (SLAs), to provide legal recourse in case of failures, although
SLAs do nothing to prevent the failure in the first place. After-the-fact
recourse is often too little too late.

These higher-level dependencies are often weakly defined and more vague
and non-technical, and thus tend to be shunned by developers and academics.
The dependencies are still important, especially when considering large, na-
tional systems and infrastructures, and the very large impact of incidents in
these systems. Some of the systems are deemed “too big to fail,” and should
be scrutinised closely. In Norway, these systems include the payment sys-
tems run by Nets and Evry; the communications backbone by Telenor; the

20

national power grid; the eGov system Altinn; and the mobile phone networks
of Telenor, NetCom and Network Norway.

Incidents in such important, complex systems can cause major prob-
lems [49], disrupt important societal functions and impact large parts of
the population. This was exemplified when the 2011 winter storm Dagmar
knocked out a lot of mobile base stations in Norway. People were stranded
without power and unable to call the emergency services. The mobile network
operators blamed the utility companies, and claimed the problem was that
the base stations lost power, and that the utilities companies were unable to
restore power before the battery backup gave out. However, a report pub-
lished by the Norwegian Post and Telecommunications Authority in January
2012 revealed major vulnerabilities in the way extreme events are handled
by mobile network operators [50]. The operators weren’t prepared to handle
events much outside normal operations, including securing critical points of
failure in their central infrastructure.

3.2 Complex systems

A complex adaptive system is defined as a system that has “a large number
of components or agents that interact and adapt or learn” [51]. Examples of
complex adaptive systems include the Internet, the brain, the stock market,
but also sufficiently large ICT systems, especially as human agents acting in
collaboration with the system can be considered part of the system. We argue
that modern public cloud infrastructures also are complex adaptive systems,
as they feature self-regulation, a vast number of independently acting entities,
and non-linear interactions that can cause cascading failures.

Failures in complex adaptive systems typically have complex causes [0],
often with multiple faults colluding to cause the failure. As an example,
we take a quick look at the post-mortem from the Microsoft Azure service
disruption on leap day 2012 [52].

An outage occurred on leap day 2012, lasting for over 10 hours. In
Microsoft’s post-mortem and other media coverage of the outage [53], the
problem was attributed to a simple leap year related programming error,
but the actual problem was the fact that Microsoft’s Azure is a complex
adaptive system, with a large number of semi-autonomous systems and com-
plex interactions. This resulted in a tightly interleaved systems architecture
where a fault in one component could propagate and take down large parts
of the system.

Complex systems can have complicated dependency graphs, and can even
have dependency graphs that cannot be accurately defined. The boundaries

21

of the system often cannot easily be described, and the dependency graphs
may change as the systems adapt. Accurately monitoring and controlling
dependencies in complex adaptive systems is an open research question.

Traffic systems are interesting real-world examples of complex, loosely
connected systems. The systems are complex adaptive systems, for the most
part due to the adaptive and convoluted behaviours of the drivers interacting
with each other in unpredictable ways.

In Bergen on August 30, 2013, a truck leaked about 50 litres of hydraulics
oil onto the outbound lane of the northern main road. To ensure traffic safety,
police had to shut down traffic for a while while they washed away the oil.
The resulting traffic jams lasted from 09:00 to 19:30, and caused slow-moving
or jammed traffic in and out of the northern, western, eastern, and southern

main roads [54].

Figure 3.2: A complex adaptive system gone terribly wrong.

This traffic incident is a good example of how an infrastructure with
insufficient over-capacity can experience cascading failures. Once certain pa-
rameters are outside the normal operating range, inter-dependencies between
different parts of the system can affect each other in hard-to-predict ways.
Undiscovered dependencies in infrastructures can cause problems way outside
what is thought to be the location of the failure itself. In the traffic incident
in Bergen, even traffic going in the opposite direction of the accident spot
was slowed to a grinding halt by the fact that other deadlocked streams of
traffic were blocking roundabouts and intersections for outbound traffic, as
seen in Figure [3.2]

22

3.3 Vague and indirect dependencies

Dependencies on elements surrounding a system can be ill defined, non-
technical and vague. The relations can be between weakly connected entities,
and thus be hard to discover. By employing the expanded understanding of
a dependency as stated in the chapter introduction, we also include highly
correlated systems. By including such non-obvious dependencies, we can un-
cover new dependencies and also reason about dependency relations that are
not as clear-cut and well defined as in the previous sections of this thesis.
As an example, let’s examine the dependency graph for the Norwegian
identification system BankID. The user-facing aspect of BankID is a Java
applet [55]. As such, it depends on Oracle, who owns and maintains Java.

e Firefox (Mozilla)
BankID applet Java/Oracle - @
“~~A(Chrome (Google)

Figure 3.3: A dependency chain within the BankID dependency graph, showing
the indirect and ill-defined dependencies with regards to interactions with browsers’
security features.

Mac 05 X (Apple)

This is an obvious and well-defined dependency relation. BankID has to
trust that Oracle stewards Java properly. But Java applets are run within
a Java applet plugin in the browser, and modern web browsers have secu-
rity features that make them able to block insecure or out-dated plugins at
will [56, B57]. So, when vulnerabilities are discovered in Java, browser ven-
dors (and in the case of Safari and Internet Explorer, OS vendors) are able
to disable the plugin to ensure the safety of their users. In the end, the avail-
ability of BankID depends on browser/OS vendors. This can be thought of
as a dependency chain hidden within the larger dependency graph, as seen
in Figure [3.3

In January 2013, a series of critical Java applet plugin vulnerabilities were
discovered, published and exploited in short order [58]. Oracle released an
updated version, and claimed to have fixed the vulnerabilities, but Apple still
blocked the Java applet plugin [59] from their operating system, as Apple did
not have confidence that the release had fixed all the known vulnerabilities.
This affected all of BankID’s users who used Apple computers.

Oracle and Apple are large multinationals, and the “small” BankID does
not have any leverage over them. In a situation like this, they just have to

23

sit and wait. The only thing BankID could do was to inform users about
the situation, suggest temporary work-arounds, and wait for the situation to
be resolved [60].

In the context of dependencies in infrastructures, such indirect (transitive)
dependencies are problematic, as they cannot be effectively controlled. The
case with BankID also demonstrates that the dependencies surrounding a
system can be less well defined and “clear-cut” than intuitively thought. De-
pendencies can exist in the entire ecosystem surrounding the system—Iegal,
social and technical—and attempts at discovering and modelling dependen-
cies in infrastructures must take these aspects into account.

Other challenges loom on the horizon for BankID and their Java applet-
based system, as both Google and Mozilla have announced their intent to
block many Netscape Plugin-API (NPAPI)-based plugins (which includes
the Java plugin) from their browsers as of January 1st 2014, and then com-
pletely block all NPAPI-based plugins by the end of 2014 [61]. While BankID
has presented a roadmap to transition to a applet-less implementation [62],
the timeframe outlined by BankID for this transition is too long to avoid
these problems.

3.4 Cloud computing and
Service-Oriented Architectures

The interesting thing about cloud computing is that we’ve redefined cloud

computing to include everything that we already do.
— Larry Ellison, Oracle CEO [63]

Cloud computing is—as the above quote makes clear—a term that has been
widely misused in the past, to the point where it almost makes no sense
anymore. For this thesis, however, we will define cloud computing as a
massively distributed service for hosting applications and systems, providing
virtually infinite scaling.

In this thesis, we will mostly talk about two kinds of cloud computing ser-
vices. Platform-as-a-Service (PaaS) clouds, where the cloud provider delivers
a platform within which the customer can build a system, using the provided
APIs and supported programming languages, and Infrastructure-as-a-Service
(IaaS) clouds, where the cloud provider provides the infrastructure (virtual
servers, networking, and some way to manage it), but where the customer
has full control over the runtime environment [64]. An example of a publicly
available PaaS cloud is Google App Engine [65], while Amazon EC2 and
Microsoft Azure are examples of public laaS clouds.

24

Cloud computing services are conducive to systems with many external
services (and thus having many infrastructural dependencies), as a system
designed to run on a cloud computing platform has to be designed for loose
coupling between components. As a response, many services have popped up
to deliver parts of a typical cloud-based system (such as logging, monitoring,
provisioning etc.), which easily can be integrated into an existing system.
Due to scaling requirements, many cloud-based systems have gravitated to-
wards a Service-Oriented Architecture.

Service-Oriented Architecture (SOA) is a software architecture pattern,
where the system is divided into self-contained and separate services that each
provide a part of the application functionality [66]. Together, the services
provide the full functionality of the application or system.

Service 1 Service 6 Service 11
ﬁ\rvice 2 TService 7 f Service 12
\&a ice 3 rvice 8 f Service 13
ice 4 rvice 9 / Service 14

rd Service n

\ ice 5 /

Application root

Incoming request

ﬂm
) $04

Users

SI——

Figure 3.4: Birds-eye view of an imagined web-application with a service-oriented
architecture.

The benefits of SOA are many (and beyond the scope of this thesis),
including providing looser coupling between the different parts of an appli-

25

cation, simplifying redundancy and making it easier to scale a system to
higher loads by adding servers (scaling out or “scaling horizontally”). It can
be seen as the architectural counterpart to programming with modules and
components, as both strive to avoid unmaintainable monolithic applications
by dividing it into small, maintainable, loosely coupled modules or services.
Figure[3.4)shows an illustration of an application with typical service-oriented
architecture.

The services in a SOA don’t all have to be local services within the sys-
tem, but can also be external outsourced services. In recent years, this has
become more and more popular, as web-centric API technologies like REST
and SOAP have matured, and cloud computing made it possible to cheaply
deliver services to a large customer base without large up-front costs. This is
evidenced by the multitude of “Web 2.0” services providing everything from
payment processing and subscription management to application monitoring
and media transcoding.

There are some potential problems with SOA—although it must be em-
phasised that the benefits typically outweigh the problems, especially com-
pared to “traditional” monolithic applications. SOA moves the inherent com-
plexity of a system from the application into the structure of the dependency
graph, in much the same way that “clean” software development (through
the Single Responsibility Principle [67]) moves complexity from the function
to the call graph. The inherent complexity doesn’t disappear, and one may
argue that this complexity is easier to handle and understand when the logic
is less distributed.

SOA introduces complexity in the network between services, as buffers,
timeouts and queues are necessary to insulate against single failures, and
avoid resource contention. If the system doesn’t insulate against single fail-
ures, a single failure can take down the entire system, and the availability
of the system is going to be unacceptable. If 30 services each have 99.99%
uptime, the uptime of the entire system is going to be just 0.9999%° ~ 99.7%.

Insulation against errors is harder than most think, and can introduce sig-
nificant headaches as the scale of a system increases. In the solutions chapter,
in Section [6.2.4], we will discuss the solutions employed by the industry to
avoid the potential problems mentioned in this section.

A system doesn’t have to be fully cloud-based to be impacted by the is-
sues described in this section. Modern startups (using what’s jokingly called
“trendy programming” or “cargo cult programming” [68]) often offload ser-
vices that traditionally used to be in-house, like code hosting, build servers,
mailing, billing, reporting etc., to save up-front costs on hardware, software
licenses and expensive in-house expertise, even if the system itself is hosted
locally.

26

Chapter

Trust in dependency relations

Trust, but verify.
— Ronald Reagan

In this chapter we look at trust in dependency relations. We start by
examining what trust is, then look at trust as it appears in dependency
graphs. We then examine trust in relationships with non-professional agents
(or amateurs). Finally, we try to answer the question of whether or not
developers have an informed level of trust in their dependencies.

4.1 What is trust?

Trust is a difficult concept to define, as it is both context-dependent and
agent-dependent. Trusting someone when you have no choice (trust as de-
spair) is vastly different than trusting someone you know really well (cognitive
trust). In the same way, the trust between two equal individuals is differ-
ent from the trust between unequal individuals, or between an individual
and a corporation. For this reason, many differing definitions occur in the
literature, based on different contexts.
The definition of trust we will use in this thesis is from Marsh and Dibben [69]:

“Trust concerns a positive expectation regarding the behavior of
somebody or something in a situation that entails risk to the trust-
ing party.”

An important element of trust is the acceptance of risk [69]. That is, by
trusting someone else, there has to be some risk that you accept. Without

27

any risk, there would be no need for trust. If there is a possibility to remove
the need for trust, such as by adding redundancy, contractual guarantees or
otherwise insulating against failures, it should be considered thoroughly, as
it lowers or even removes risk.

In deciding to trust an entity, a person is forced to also trust that entity’s
choice in who to trust. This transitive trust may be a source of conflict, as
there can be different opinions on the trustworthiness of third parties. This
is why dependency graphs with multiple paths between nodes make it harder
to remove the need for trusting an entity, as the entity may be a—possibly
unknown or undeclared—dependency of another node. Discovery of such
superfluous edges is critical.

When it comes to security dependencies, the accepted risk is very high,
and there are not many ways to avoid trust, since the security of your system
will depend on the security dependencies. As we have seen in Section[2.5] each
added line of code brings a non-zero probability of containing vulnerabilities
and thus a certain risk of negatively impacting the security of your system.
In other words, a library dependency is a security dependency.

Cognitive trust is built from accumulated knowledge and experience [70].
If a service provider or framework developer has a bad history of security
issues or downtime incidents, your level of trust will be lower. This is an
iterative process, where the level of trust can be lowered by undesirable
behaviour or incidents, and increased by long periods of stability.

In a software library dependency setting, there is often not much available
knowledge about the person, organisation or company that is delivering the
service or library. Thus, until any experience can be acquired, the trust
has to involve a “leap-of-faith” step. Due to the nature of vulnerabilities, an
insecure library can appear to be secure simply from lack of a proper security
review. No evidence of vulnerabilities is not evidence of no vulnerabilities.

4.2 Trust in dependency graphs

To model trust in dependency graphs, one can visualise that trust “flows”
outwards along the edges from node to node. Each node decides to trust in
a set of nodes, but has to trust these nodes’ choice in who they trust. The
result is that a choice to trust a few nodes quickly inflates to a choice of much
larger consequence when the entire graph is taken into account.

Comparing dependency graphs to the trust chains used in systems like
SSL/TLS, we immediately see major differences. In a trust chain, the concern
is the length of the chain. That is, how long do we have to walk until we
reach a trusted node? In dependency graphs, we navigate the graph the

28

Dependency graph

Trust chain

Figure 4.1: Comparison of the standard SSL “trust chain,” and trust dilution in
a dependency graph.

other way, from the trusted node and outwards. The problem here is not one
of depth, but of total graph size. See Figure for a comparison.

The concept of “trust dilution” [71] is applicable here, where the strength
of a trust relationship must be weakened if it passes through a large set of
intermediaries or when it is spread out over a large number of nodes. The
massive spread of a dependency graph leads to a need to trust a much larger
set of nodes than in a dependency chain, leading to a more diluted trust.

4.3 The Internet web of trust

In this section, we will take a look at the “web of trust” that determines rout-
ing on the Internet, and how the complexity of this web can cause cascading
failures, and how it has caused cascading failures in the past.

Reachability and routing on the Internet is controlled by the Border Gate-
way Protocol (BGP), which is a protocol for different Autonomous Systems
(ASS)EI to reach a consensus as to how traffic should be routed from network
to network. For this reason, BGP is one of the most important protocols on
the Internet, even though it is less known than most other protocols. In broad

'1SPs or other peering partners [72].

29

terms, each AS is assigned a unique ID (AS number), and can announce an
IP prefix, along with a path comprised of the AS numbers that must be tra-
versed to reach this prefix. Typically, an AS announces IP prefixes that they
themselves own or that they provide a route to.

This system is based on trust between peers. At the peering point, an
AS determines if it trusts the routes the other AS announces. ASs must
themselves validate whether someone advertises a prefix they actually own,
and if the route path makes sense. This is a “web of trust,” which can be
modelled as a graph of trust relationships — or dependency relationships. As
each AS interfaces with a relatively small set of other ASs, the web of trust
also has transitive (indirect) trust relationships, and a typical announced AS
path has a length of about four hops [73].

This trust can be exploited, and honest mistakes and accidents happen.
Since the BGP protocol is responsible for defining the routing and reachabil-
ity of traffic, it can be used for low-level MITM attacks that are much harder
to detect for end-users and network administrators than the more common
DNS-based attacks [74]. BGP can also be used for Denial of Service (DoS)
attacks, where traffic to a network or website is routed through networks
that discard the traffic [75], effectively “blackholing” it.

Of the many incidents over the years [76, [77], two incidents in particular
demonstrate how vulnerable BGP routing is:

In February 2009, a Czech ISP made a configuration error on one of their
routers while attempting to de-emphasise a specific route. The configuration
caused that router to announce an unusually longP| routing path [78]. This
triggered a buffer overflow in Cisco routers that caused them to regard the
route as invalid [79], and disconnected and reconnected the session, causing
routing instability and a storm of route updates. Other routers passed the
invalid route along, so the announcement spread globally, and eventually
cascaded into a global routing instability that lasted for about an hour. The
instability peaked at 107780 routing updates broadcasted every second and
4.8% of all IP prefixes on the Internet suffered instability or outage. See
Figure for an overview of the instability by country.

In November 2012, an Indonesian ISP were making a configuration change
to block access to Google from inside their network by “null routing” or
“blackholing” —specifying a route with an invalid destination [80]. Through
a configuration error, the announcement leaked to a peering partner, and
spread across the Internet. This caused the route to Google to be routed
to the Indonesian ISP’s invalid network destination for about a half hour,
effectively taking Google offline for about 3-5% of the Internet’s users [81].

2A route containing over 256 AS numbers.

30

| Minimum Medium m Very n Extremelyl

Figure 4.2: OQwverview of the global routing instability caused by the 2009 BGP
incident.

A similar event happened in Pakistan in 2008, causing YouTube to be un-
available in large parts of Asia [82].

Since the system is based on a web of trust between peers, a peer halfway
across the globe is implicitly trusted through three or four intermediaries,
leading to problems with indirect (transitive) trust. As seen with the Google
incident, this can adversely affect companies and individuals that have noth-
ing to do with Internet routing directly.

The Internet and its routing protocols constitute a complex adaptive sys-
tem, as it has a large number of independently acting agentsﬁ who change
and adapt over time. This complex adaptive system can experience emergent
and hard-to-predict properties, leading to the kind of cascading failures we
have seen.

30ver 40 000 ASs per September 2013 [83].

31

- rm -rf fusr /lib/nvidia-current/xorg/xorg
+ rm -rf fusr/lib/nvidia-current/xorg/xorg

Figure 4.3: Can you spot the error being fized here? The code was supposed to
delete a specific driver-related folder deep in the file system, but instead removed
the entire /usr folder due to a single misplaced space character.

4.4 Trusting “amateurs”

With the blossoming of project hosting websites that encourage people to
share and “fork” source code, like GitHub [84], Google Code [85] and Mi-
crosoft CodePlex [86], there has been an explosion in small open-source li-
braries and plugins. Some of these (like Google Code) only allow open-source
projects, and some (like GitHub) charges money for private repositories, so
a large share of the projects hosted on these sites are open source. All of
the sites encourage sharing code and improving other peoples code, either
through forking [87], pull requests or suggesting changes.

While this undoubtedly leads to more innovation, and hopefully lowers
the bar for new programmers learning to write code, it also has led to some-
what of a mess. Reliable and well-managed projects live side-by-side with
mismanaged projects, and with so little information available, it isn’t always
easy to determine how efficiently a project is managed.

Horrible examples of how this can go wrong can be found in the commit
logs of several projects, where a misplaced space [88] (see Figure or lack
of scrutiny of a pull request [89] caused users to lose data on their systems. In
these cases, the data loss was mostly limited to few users, and only on their
private systems, but it is not hard to imagine that something like this could
have happened on a larger scale, especially if it is a hard-to-find vulnerability.

It is interesting to read the responses from the developers. Security issues
and vulnerabilities are sometimes put aside as “not important” or even funny.
The developer of the npm package n [89] merged a pull request that acciden-
tally deleted important system folders on many users’ computers. When a
bug report on this was filed, he added this comment to the report:

yeah it’s kinda tough when you have 250+ OSS projects, inevitably
some get messed up over time and I merge broken shit haha

— GitHub user and n author @uisionmedia [89]

And the response a security researcher got for pointing out flaws in the
security of the npm package registry: “Fork or gtfo.” [90], essentially saying
“If you think you can do it better, then go ahead. If not, get lost”.

32

It isn’t surprising that there are immature and unprofessional developers
out there [91], everybody has to learn sometime, and a lot of people do
this on their spare time. But there aren’t any good ways of building an
understanding of the level of professionalism of a library or program until
something goes wrong.

The same problem can be an issue with infrastructures and services. It
is really hard to judge the professionalism of a service just by the website,
and in many cases, the website is the only reference point. A well-designed
website can give the impression of a well-run organisation with many em-
ployees (and thus appear trustworthy), but may just be run by a few people
in their spare time.

4.5 Do software developers have an informed
level of trust in dependencies?

An informed (or understood) level of trust is based on experience and
knowledge (cognitive trust), where the trusting individuals are sufficiently
informed about the trusted entity, and thus understand their own level of
trust and the basis of this trust.

Based on what we have discussed in this chapter, I don’t think most
software developers have an informed level of trust in their dependencies,
because most software developers don’t even know the full extent of their
dependencies (as evidenced by the inclusion in OWASP Top 10 2013 [13]). A
modern software application can have a very large dependency graph, making
it difficult to gain sufficient knowledge on all dependencies.

When it comes to entire systems, it is possible to have contractual guar-
antees and SLAs that remove risk, and thus entirely remove the need to
trust. But the trend toward a “feudal” Internet [92], with “take it or leave
it” SLAs (as seen with many cloud computing providers [93]) makes this
harder. The same problems relating to knowing your dependency graph still
apply to systems, as we will see in later chapters.

33

34

Chapter

Case studies

An insightful quote found on the Internet can never be fake.
— George Washington

In this chapter, we will first evaluate different tools for modelling and
mapping dependencies, and then perform a case study of a real-world sys-
tem called Dynamic Presentation Generator. Further, we will look closer at
package management and build systems, study npm, and explain the concept
of dependency explosion.

5.1 Dependency modelling and mapping tools

Section explained how graph theory can be used to build a dependency
graph to describe and elucidate the neighbourhood of a software component.
A tool to automate the process of constructing and analysing dependency
graphs can be very useful.

In this section, we will evaluate some existing modelling tools that use
graph-theoretic concepts to analyse source code. Finally, we will examine
a set of modelling tools I developed to analyse and simulate the effects of
dependencies in infrastructures.

There are many different ways to approach the problem of mapping and
modelling dependencies, because there are many different contexts where
mapping and modelling of dependencies can be useful. Different contexts
require different approaches and solutions. The systems we evaluate fall into
two different categories, based on the approach and scope of their analysis:

35

Mapping dependencies in source code

This approach attempts to map the dependencies that exist in source code,
between modules, classes and functions. The method is primarily used in
tools to map and illustrate tightly interconnected (coupled) code and to
illuminate and enhance the architecture of the system. Tools using this
approach mainly act as an architectural tool to guide system developers
toward a simpler and more easily maintainable system architecture.

Generic dependency modelling

Dependency modelling focuses on modelling the interactions of dependencies
in systems and infrastructures. The model is either manually constructed
or automatically generated with a tool. The purpose of the model is to
approximately simulate a system, and show which dependencies may be hard
to remove, and thus which dependencies one should attempt to isolate or
introduce fallbacks for.

5.1.1 Spoiklin Soice

Spoiklin Soice [94, ©5] is a tool to map dependencies in Java source code.
It can show dependency relations within a program at different levels, be-
tween components, namespaces, classes and even functions. It can generate
a dependency graph and perform some automated analysis, such as finding
cyclical dependencies. Cyclical dependencies exist when an entity has an in-
direct dependency on itself. As a change to an entity can have implications
in any dependent entities, a cyclical dependency can create a situation where
any change to the entity can require the entity to change itself, creating a
feedback loop.

The visualisations in Spoiklin Soice are based on Spoiklin diagrams, in
which nodes represent functions, classes or entire packages, and the edges
represent dependencies. The diagram is hierarchical, with most edges going
from top to bottom, thus avoiding the need for the visual clutter of arrows on
directed edges. Edges that go upwards are distinguished from normal edges
by being drawn as curved lines.

Spoiklin Soice is primarily a tool for analysing and guiding program ar-
chitecture as a visualisation tool, but it can also provide some useful metrics
about the dependency graph, as seen in Figure b.I] The visualisation can
be used to view the program architecture at different levels, and find classes
and functions that are too closely coupled—and should be decoupled. Fig-
ure [5.2 shows how Spoiklin Soice visualises the same Java web application

36

©006 Level overview |

System path: /Users/jorgen/workspace/dpg/dpg2.1/target/classes
Level: class.

Number of elements: 308

Number of dependency-tuple roots: 137

Average parental dependency-from: 3,6

Longest dependency-tuple length: 7
Mean dependency-tuple length / standard deviation: 2,4/1,0
Mean impact set / standard deviation: 3,3/5,5
Analyses:
Dependency tuples: 1 100
Impact Set: 1 014
Impacted set: 1 014
Circular dependencies: 13
Dependencies on: 714
Dependencies from: 714
Conditional count: 2 197
Dependencies on/from: 1 428

Size (bytecode): 92 225

OK

Figure 5.1: Ezample Spoiklin Soice [95] analysis output. The data is from run-
ning Spoiklin Soice on a large Java-based web application, scoped at the class level.

as in Figure [5.1] at the class level. Spoiklin Soice can only analyse Java
applications.

5.1.2 Visual Studio 2012 Code Map

The most recent versionE| of Microsoft’s flagship integrated development en-
vironment (IDE), Visual Studio 2012 (VS2012), has features for mapping
dependencies in the code of a solution/project called Code Map [96]. Code
Map shows interactions between modules, classes, and functions, and also
displays some metrics in the graph (number of edges, circular edges and
more). See Figure [5.3| for an example.

The feature set is very similar to Spoiklin Soice, but Code Map can only
analyse systems written in Microsoft’s languages (C#, VB.NET, etc.), as
it is tightly coupled to the IDE, and also requires you to buy the most
expensive license of the IDE, the Ultimate edition—which as of this writing
costs 121 750 kr [97].

Code Map can also visualise relationships beyond the call graphs and
dependency graphs that Spoiklin Soice makes, allowing you to answer ques-
tions such as “which methods interact with this data field?” As with Spoiklin
Soice, Code Map is primarily intended as an architectural guide, but also—

1 As of this writing, Visual Studio 2013 is still only a Release Candidate.

37

,"‘ 1
}!"‘!}!“:‘é‘ {| /4
ﬁ‘:’ A A

=5 A
b
i

\ “}‘/«i 'i‘\,_l
.é:\‘“\‘} '-‘l‘ll‘l"l'm X
-“QQ"“\"W X

il

A
N i .‘*..!'
\ il

Figure 5.2: Screenshot of Spoiklin Soice [95] showing the package-level structure
of a Java web application.

helped by it’s tight integration with the rest of the IDE—to assist in debug-
ging and in understanding unfamiliar code bases [98]. In contrast to Spoiklin
Soice, it ignores some of the detailed analysis in favour of user friendliness.

5.1.3 depend.py

These are my own homemade tools, written during the preliminary the-
sis work. I originally made a model in NetLogo [99] (see Figure for a
screenshot), and then made a more sophisticated model called depend.py in
Python—while ensuring the same results. The python model is an order of
magnitude faster and is slightly more precise, but lacks some features, such
as being able to dynamically change parameters when the model is running.

The improved version, depend. py, uses the NetworkX graph library [100],
is written in Python, and the source code can be found in Appendix [A] The
application simulates downtime events in a user-defined dependency graph
and attempts to calculate the downtime of each node. The structure of the
graph and reliability (average uptime) of each node is specified in a JSON-
formatted file. If no information about historical reliability exists, we can
assume the SLA numbers to be a lower bound.

38

B Northwind - 0 x

Show Related = Layout~ # {0 Share~ B 100% - | Legend

I3 Streaming Video: Understand your code dependencies through visualization ppd

(&P Northwind.ULWPF.exe
[&P Northwind.Console.exe Northwind ViewMadel.dil

Northwind.Application.dil

(=P Northwind.Business.dil

NorthwindInterfaces.dl (=] Northwind Service.dll

[&¥ Northwind.ULSilverlight dil (& Northwind.Datadll

Figure 5.3: Screenshot of Visual Studio 2012°s Code Map feature, showing the
relationships between the different assemblies in a project.

From these inputs, the model can show that for typical infrastructure
dependency graphs, the root node (the application itself) will have a much
lower reliability than intuitively thought, since the downtime gets aggregated.
As we saw earlier in Section |3.4) a node with 30 dependencies, each with
99.99% uptime, will still only be able to get 0.9999%° ~ 99.7%. A test run
of depend.py with an imagined cloud-based infrastructure shows the same
phenomenon. See Listing for the exact result dump, and Figure for a
screenshot of depend.py showing the associated graph.

Note the abysmal reliability of the root node (App). Even though the
individual availability is defined as minimum 99.3%, the root node has a real
availability of only 95.8%, which is over 14 days of downtime in a year, or
1.3 days downtime in a month.

The NetLogo version has the capability of tagging an edge in the graph
as redundant, meaning that a failure in one node will not propagate along
this edge. This allows us to simulate what happens if this dependency is
insulated and controlled. It also shows the fact that isolating a single edge
is not necessarily enough to isolate failures originating in a specific node,
as there may be alternate paths to this node. We will look closer into the
problems—and potential solutions to—indirect dependencies in Section [6.2.3]
The source code of depend.py can be found in Listing in the Appendix.

39

8 00 NetLogo — test {/Users/jorgen/Documents/UiB/Master/masteroppgave/nlogo} 1w’

{interface | Info Code _
> ——ef ¥ view updates
abe Button w L =)

N (settings...)
G normal speed on ticks —

S icks:202 30|

Third-party: (9. . Cloud: (9.

go -| go once

!8;} all-edges-required? ‘

Root uptime
98.019802

Root uptime

/‘ - BankiD: (¢
0.98 \ A '
0 231 / T~ \

Figure 5.4: Screenshot of the NetLogo-based dependency modelling application,
showing an outage incident (red node) that propagates to outages in dependent
nodes (yellow nodes). Note that the plot of root node uptime has a sawtooth-like
appearance, with a slow, gradual rebound after each outage.

5.2 Dynamic Presentation Generator

Dynamic Presentation Generator (DPG) is a content management system for
the “Java in distant learning” (JAFUED e-learning system. The system was
initially written in 2004 by Yngve Espelid as part of his master’s thesis [101],
and in the years since, large parts of the system have been written and re-
written by students at the University of Bergen as part of their master’s
work. The system is written using Java Enterprise Edition and the Spring
web application framework, and Maven is used as package manager and to
handle the build process.

2Norwegian: “Java i Fjernundervisningen”

40

Ran 900000 iterations, summary:

(0, {’name’: u’App’, ’sla’: 100, ’uptime’: 95.758})

(1, {’name’: u’Cloud’, ’sla’: 99.95, ’uptime’: 99.618})

(2, {’name’: u’Internet’, ’sla’: 99.95, ’uptime’: 99.795})
(3, {’name’: u’BankID’, ’sla’: 99.3, ’uptime’: 96.438})

(4, {’name’: u’Nets’, ’sla’: 99.8, ’uptime’: 99.225})

(5, {’name’: u’Mobile’, ’sla’: 99.95, ’uptime’: 99.813})

(6, {’name’: u’Power’, ’sla’: 99.995, ’uptime’: 99.984})

(7, {’name’: u’SMS-gateway’, ’sla’: 99.95, ’uptime’: 99.436})
(8, {’name’: u’Third-party’, ’sla’: 99.95, ’uptime’: 99.626})

Listing 5.1: Output of a test run of depend. py

The following analysis delve into the dependencies underpinning the sys-
tem, and will also look at how the dependencies have been managed in the
project, and investigate what attacks are possible due to the dependencies of
the system. The version tested was DPG version 2.1.

Dependencies

In this project, the Maven build file specifies all dependencies, which is ben-
eficial, as there is only one place to look up what dependencies are used.
However, even if a dependency is included in the build, it doesn’t necessarily
mean that it is in use in the code. As the dependencies are injected at run-
time through dependency injection, simply removing a dependency from the
build will only result in an error when the removed code is actually invoked.
This makes it hard to accurately test whether a dependency is used or not.

There is also something to be said about dependency creep. Dependency
creep occurs when the ease of adding new dependencies for every (small)
problem that needs to be solved makes the number of dependencies—and
the system complexity—steadily increase for the duration of the develop-
ment. Lack of solid project management can lead to developers adding unsafe
dependencies, or multiple dependencies doing the same job.

The Maven build definition file for DPG lists 65 dependencies, and when
transitive dependencies were resolved, the build ended up with a total of 138
dependencies. Some of the dependencies included are duplicates, or at least
provide some duplicate functionality, such as jQuery—versions 1.2.3, 1.3.2
and 1.4.4 are all used in different parts of the system. In addition to the

41

8 00 Figure 1

x=1.07531 y=0.2725

200+~ 8@

Figure 5.5: Screenshot of depend.py in action.

vulnerabilities present in such old versions, debugging is a lot harder when
you don’t know which version of a dependency is in use in a particular part
of the application, or if a dependency is in use at all.

The DPG version tested is from Autumn 2012, so the dependencies are
expected to be somewhat outdated compared to the current cutting edge,
but many dependencies are grossly outdated. The most recent version of
jQuery in the project dates back to 2010, as do the versions of jUnit and
Hibernate, and the version of hsqldb database engine date all the way back
to 2008. It is clear that updating and keeping track of dependencies has not
been a priority in this project.

The sheer number of dependencies is also too high, causing the number
of SLOC in the dependencies to outweigh the number of SLOC in the “ac-
tual” system—the DPG code itself. To find the sizes, gross estimates of the
number of SLOC in the individual declared dependencies were obtained from

42

8000000

7000000 I

6000000 ——

5000000 —

4000000

3000000

2000000

1000000

DPG SLOC,
23000

DPG SLOC Dependency SLOC

Figure 5.6: An illustration of the relationship between DPG SLOC and depen-
dency SLOC. Note the thin blue line representing the total SLOC in DPG.

Ohloh [102], a web site dedicated to tracking open source projects and pub-
lishing associated metrics, including SLOC over time. The number of SLOC
in the DPG code itself (excluding any dependencies)—as measured by the
tool sloccount [103]—is about 23 000. A gross estimate of the number of
SLOC in the dependencies is at least 7 020 000 SLOC. There is vastly more
code in the dependencies than in the actual system, causing us to conclude
that DPG only contains 0.32% DPG! See Figure [5.6

As we discussed in Section the expected number of vulnerabilities
in a system is a linear expression of the total SLOC. Assuming conservative
estimates of 5 defects per kSLOC (Dp = 0.005), and a vulnerability density
(Vp) to defect density-ratio of 1%, we find the vulnerability density to be

Vp = 0.01 x Dp = 0.00005
The expected number of vulnerabilities in DPG is thus

V| = Vi x 7043000 ~ 352.2

43

If DPG was only made up of the 23 000 SLOC in the core, the expected
number of vulnerabilities would only be

V| = Vp x 23000 ~ 1.2

Using conservative estimates based on empirical data (see Section for
references), we arrived at an expected 352 vulnerabilities in the entire system,
where about 351 of them are expected to exist in the external libraries.
Cutting down on the number and size of external dependencies should help
bring the number of expected dependencies down to a safer level.

Cross-build Injection

All Maven repositories listed in the build file are accessed over unencrypted
HTTP (instead of encrypted HTTPS), and a Cross-build Injection (XBI)
attack against the build process is definitely possible. A developer working
over an insecure WiFi network (or a spoofed WiFi network) is vulnerable to
a MITM attack that can easily compromise the code downloaded by Maven
on build time, especially since the high number of dependencies (138) that
must be downloaded allows for a large window of opportunity.

It should be noted that the server hosting the DPG internal (but exter-
nally accessible) Maven repo runs a version of Ubuntu that no longer receives
security updates, and thus runs an Apache version that has known vulnera-
bilities. The investigation of DPG strongly indicates a potential for improved
security.

5.3 Build systems and Cross-build Injection

This section contains a short survey of the security capabilities in the most
popular modern library package management systems. It is determined what
countermeasures are in place to defend against XBI attacks (see Section
for a description of XBI). The package management systems surveyed are:

Maven (Java)

NuGet (.NET)

npm (JavaScript)

Ruby Gems (Ruby)

44

Secure transport (TLS/SSL) Checksums Package signing

RubyGems
Maven
npm

NuGet

Table 5.1: Summary of security capabilities in four of the most popular library
package managers. Some have plugins to expand the security capabilities.

This Connection is Untrusted

| v 4' You have asked Firefox to connect securely to repo.maven.apache.org, but we can't

confirm that your connection is secure.

Normally, when you try to connect securely, sites will present trusted identification to prove
that you are going to the right place. However, this site's identity can't be verified.

What Should | Do?

If you usually connect to this site without problems, this error could mean that someone is
trying to impersonate the site, and you shouldn't continue.

Get me out of here! |
Technical Details

I Understand the Risks

Figure 5.7: Certificate warning when trying to access repo.maven.apache.org
using hitps. All examples in the documentation also use unencrypted hitp.

A summary of the security capabilities of the different systems can be
seen in Table .11

While some of the systems support certificates or checksums to secure
the packages, both npm and Ruby Gems do not use these mechanisms by
default. Checksumming alone is not sufficient to prevent XBI if there is
no secure transport, as the checksum could also be tampered with. NuGet
uses both secure transport and checksumming, successfully protecting against
XBI based on a MITM attack. However, it does not protect against a com-
promised host, and the process of uploading packages does not include any
vetting or security analysis.

npm uses TLS/SSL by default]] but older versions don’t validate the cer-
tificates, allowing an attacker to perform a MITM attack with self-signed
certificates. In tests, npm version 1.2.18 (the most recent at the time) even
accepted a self-signed certificate with a mismatched hostname. RubyGems
defaults to plain unencrypted HTTP. Maven supports HT'TPS, but it is only

3Packages containing installers that download more components—like the package
phantomjs—make their own choices about transport security, and may decide not to
use TLS/SSL.

45

available for paying Sonatype customers, and thus is not supported on Maven
Central (see Figure [5.7).

Both Maven and RubyGems support signed packages, but Maven requires
you to implement your own validation, and RubyGems only has rudimentary
support with no proper supporting infrastructure, so almost no packages use
the functionality [104].

None of the major package management systems have a satisfying degree
of security “out of the box”. Maven can be configured for secure operation,
but requires an expensive license and a lot of manual work to implement
checks to validate certificates and checksums. NuGet has the best grip on
security “out of the box”, but still lacks package signing.

The largest missing piece, however, is that none of the package managers
have methods and routines for validating packages before they are published,
and for stopping impersonators from uploading malicious versions of known
libraries. None of them have any way to notify users of vulnerabilities and
insecure versions, and none of them have mechanisms in place to allow the
users to notify other users of unsafe or impersonating packages.

5.4 npm and dependency explosion

OOOOOOOOO’ODOQQOOOOOOOOOOOOOOOOOOOOOO
OOOOOOOOQOOQQOOOOOOOOOOOOOOOOOOOOOO
(0)@) OOOOOOOQOOOO 0O 000 @)
o0 OOQ 0000 O
000 00 000
o ©

Figure 5.8: Dependency graph of the npm package yeoman (top row, centre). A
total of 129 packages, with a radius of 6. The degree of the yeoman node itself is
only 25. Not included here are potential multiple versions of the same package.

In the previous section, we saw how npm [105] could be vulnerable to XBI,
and we have previously claimed that the number of dependencies in a typical
software project grows larger when using a package manager, because adding
new dependencies get easier with a package manager. Here, we will investi-
gate the structure of dependency relations in the npm package repositories,
and look at the inter-package dependency graphs.

46

The datastore behind the official npm repository is an open, publicly read-
able CouchDB instance[] which makes it easy to retrieve data for analysis.
The repository also keeps good track of the dependencies between packages,
along with the set of packages depending on a specific package.

Package dependency graphs

To see the effects of encouraging the use of multiple dependencies, we can take
a look at the npm package yeoman, which is a package for project workflow
management [108]. See Figure[5.8|for the full package tree that is downloaded
when installing yeoman. Note that this actually is not a tree, but a Directed
Acyclic Graph (DAG) that contains the minimal spanning tree that npm
uses to avoid downloading packages more than once. The extraneous edges
in the DAG makes—as we have previously discussed—removal of unwanted
dependencies harder.

The dependency graph of yeoman is a good example of indirect depen-
dencies leading to a dependency “explosion”, where the number of packages
increases beyond expectation due to the contributions of transitive depen-
dencies. yeoman has listed only 25 dependencies in its package definition,
but due to indirect dependencies, the total number of packages in the graph
increases to 129. With yeoman in the centre of the graph, the radius is 6, so
there are 6 levels of dependency relations separating yeoman and the furthest
layer of libraries. It should be noted that this is not a construed case of
a useless meta-package, but an actual useful and popular package that like
many others has a very large dependency graph.

The degree distribution

npm does not seem to discourage adding dependencies to a project, on the npm
home page, they even have a listing of “Most Depended-upon Packages” [109]
as a measure of popularity! As of July 10, 2013, the most depended-upon
package is underscore, with 3274 dependents, or about 9.5% of all packages
in the npm registry.

Figure is a plot of the in-degree distribution of packages in the npm
dependency graph, sampled on July 10, 2013. The in-degree of a package is
the number of dependents it has. The cut-off for the plot is at 10 depen-
dents, and there are 715 packages with 10 dependents or more. The far-left
package is the package underscore, with 3274 dependents. The total num-

4This “feature” actually caused a serious incident in 2012, when it was discovered
that the user information—including password hashes—in the database also was publicly
readable, and had been for some time [106] [107].

47

ber of packages in the npm registry at the time of drawing this graph was
about 34 500.

From this graph, and its power-law distribution with a long tail, we can
infer that the package dependency graph in npm probably is a small-world
graph, with a small diameter and a large number of hubs.

The depended-upon graph

Another way to study the dependency graph is to build the graph of the
dependents of a specific package. That is, the subgraph of packages that has
a path to a specific package in the dependency graph. In Figure [5.10] I have
mapped the reverse dependency graph of the package async as it were on
July 17th 2013. The data was collected directly from the npm datastore.

The network was built using a small Python script that ran a depth first
search (DFS) from node to node, using the dependedUpon relation defined
in the database. The search was started on the package async. Due to
computing constraints, the search was stopped at a max depth of 5, so this
is just a subgraph of the full graph. The source code of the Python script
used to build the graph is shown in full in Listing in the Appendix.

Like Figure[5.8] this is not a dependency tree, but a DAG that contains a
minimal spanning dependency tree that npm constructs to avoid dependencies
being loaded multiple times.

The package async itself is depended on by 2437 other packages (about
7% of all packages in the npm registry), but the full reverse dependency graph
contains a total of 8797 nodes (about 25%). Over a fourth of all npm packages
depend directly or indirectly on the async package, and over 72.3% of the
packages that depend on async do so indirectly.

This means that a flaw in the async package will affect over 25% of all
packages, and over 72% of the affected packages cannot remedy the situation
by removing this dependency themselves, but instead have to rely on others
to remove this dependency. Given that there are multiple paths between
each set of two nodes—there are 13725 edges and a total of 39296 unique
shortest paths between any two nodes—more than one edge must typically
be removed to delete a node from the graph.

48

shojeu
nuud
sfopoedssw
Aythsanbf
210USI-wealsy
Axoidhuana
Joj0

aeq

1593
Jauuedsyiod
Asanof
ouAs-dnpuy
uosf>
umeds-uim
PnIsal
wayur

ohey

wnusig
woyueyd-apou
suo

adey

st

uosq

|qIonpal
Auaso

a-gs0
Iniojod

Ayoue

ysimbs

now

founog
SuASIRXD
Janyose
Axoid-apou
183U02-qL13U03-JuNIS.
ozuoq
Juauodwod-adAy
1an-eq
orauiBus
1dusaA
|anajans-jana)
e

Jsapuipiod
JoUUOW-Jan3I0}
22u0
deimpiom
wosso

shiayng
assedido
J030911p
Apeaiwop
Ayi8n-quauosunis
Joj0d-15ue

'y

apsilem
JayiuIw-wy
azjjenbas

un
Ziassedjuiny
uptsosuow
uon
JuIysl-qauod-3unIg
paly

diz-wpe
puaixa-apou
slwojueyd
weaJjs-1eauod
Japlinguix

Jepniou>
Alem
suyopue
saka
1unapou
a1epyosu0d

sso-ueapy
sb

Jodssed
ZIRNIWBIUAAD
Asanbf
J0jes9ua8-UeWIODA
auogppeq
siegajpuey

1du3s-3a 400
2100513pun

3000
2500
000
500
1000
500

] a
S1y3 uo Juapuadap sagexoed

49

It is a power-law

f npm’s most-depended-upon packages [109] as of July 10 2013.

won o

In-degree distributi

distribution, with a long tail. The black line is a fitted power-law curve.

Figure 5.9

B

Figure 5.10: The dependency graph of the npm package async (red, middle right).
The graph has a total of 8 797 nodes and 13 725 edges, the async package itself
only has a degree of 2 437. The figure is rendered using Gephi [110)].

50

Chapter

Solutions

A lot of banks don’t encrypt, a lot of those agencies that you think might
encrypt Social Security Numbers actually don’t, because it is very
complicated. It is cumbersome and there’s a lot of numbers
tnvolved with it.

— South Carolina Governor Nikki Haley, October 2012

The previous chapters focused on problems, issues and vulnerabilities. We
will attempt to turn the negative message around by showing some of the so-
lutions in use today, as well as describing potential solutions that could be put
in place or at least be researched further. Both technical and non-technical
(process- and management-oriented) solutions are described, including so-
lutions to facilitate proper handling of infrastructural dependencies and to
mitigate issues caused by library dependencies.

6.1 Libraries and package managers

There are two technical solutions to problems with library dependencies:
extending and improving package managers to limit the number and serious-
ness of dependencies, and implementing security wrappers to insulate against
failures and vulnerabilities in software libraries.

6.1.1 Extensions to package managers

As we have seen in the previous chapters, current package managers leave
much to be desired with regards to authenticity, integrity and reputation
management.

o1

Search for bootstrap returned 231 packages
Displaying results 1 - 20.
Stable

Bootstrap
By: outercurve
Sleek, intuitive, and powerful mobile first front-end framework for faster and easier web de

20,319 downloads Tags bootstrap html css javascript web Licenses Ap

Bootstrap
By: sirkirby
Sleek, intuitive, and powerful mobile-first front-end framework for faster and easier web de

https://github.com/sirkirby/twitter-bootstrap-nuget/issues
345,954 downloads Tags twitter css css3 html5 less jquery bootstrap respc

Bootstrap Less Source

By: sirkirby

Sleek, intuitive, and powerful mobile-first front-end framework for faster and easier web de
https://github.com/sirkirby/twitter-bootstrap-nuget/issues

49,385 downloads Tags twitter less css css3 html5 bootstrap responsive

Bootstrap for MVC 4
By: sirkirby
This package is meant to complement those using the Twitter.Bootstrap library in their MVC

minification support for easy integration into your shared layouts and views. Issues? Please [
bootstrap-nuget/issues

56,950 downloads Tags twitter boostrap mvc mvc4 bundles javascript css

Twitter Bootstrap for ASP.Net MVC 4

By: erichexter

This has the bootstrap layout and supporting files to quickly add Twitter Bootstrap to an MV
twitter.bootstrap.mvc4.sample to see how to use the auto scaffolding feature.

31,328 downloads

Figure 6.1: Screenshot of a search in NuGet returning multiple different packages
with different authors, all claiming to provide the same library. None of the authors
identify themselves in NuGet as the official author. Only after some research
outside NuGet can you find that sirkirby is the official package maintainer.

As an example of the problems that stem from lack of author authentica-
tion, see the screenshot in Figure . Most package managers (the example
is from NuGet) have multiple packages with the same names and different—
sometimes unknown—authors. It is often hard to find which version is the
correct edition from the correct author. It is interesting to note that over
50 000 have downloaded the various Bootstrap packages from the wrong au-
thor [ITI]. Some of the packages that claim to provide Bootstrap don’t even
provide the most recent version.

But even with their inherent problems, package managers are one of the
best places to attempt to solve the problems faced when managing dependen-
cies, as the package managers are closer to the problem domain and already
have much of the necessary infrastructure in place.

In this section, we will review existing extensions to package managers,
and briefly describe the ideal secure package manager.

52

The Node Security Project

The Node Security Project [112] is a community project organised by "Lift
Security. The project aims to perform audits of every package in npm, pro-
vide advisories and patches, and then provide a public API of audit results,
possibly integrated into npm. Their plan is ambitious, and not much has
come of it so far—only four published advisories from March 2013 to July
2013 [113]. It will be interesting to see if they can get the wide support they
need in order to execute the plan. The project also intends to implement
a distributed (crowd-sourced) audit mechanism, which has the potential to
provide quicker audit feedback and improve the quality of the audits. There
is great potential here if the project successfully gets off the ground.

Semantic versioning (SemVer)

Semantic Versioning (SemVer) [114], [115] is an attempt at applying a stan-
dardised set of semantics to the version numbers of a package or library. The
intent is that the version number should accurately describe the importance
and scope of the changes that this version represents.

The version numbers in SemVer are in the form major.minor.patch —
branch. Changes to the branch section are for internal use, for example to
identify a particular build. A change to the patch section denotes a bugfix or
other change that don’t change the packages’ API. The minor section gets
incremented when new—but backwards compatible—changes to the API is
introduced. The major section is incremented when changes that are not
backwards compatible are introduced.

If all packages conform to the SemVer specification, one can add rules
to the build process to automatically use the latest available patch version,
without worrying about any breaking changes. Keeping dependencies up to
date will be easier, as you typically can update to the most recent minor
version as well without much consideration.

Both NuGet and npm recommends SemVer [116], and npm requires that
it be parseable as a SemVer version [117], but none of them actually enforce
the semantics of it. In the end, the actual version number assigned to the
released package is up to the individual developer.

SafeNuGet

SafeNuGet [I18] is a NuGet package designed to check the versions of the
packages in your project against known vulnerable versions, and give you a
warning or halt the build if any of the packages are known to be unsafe. The

93

SafeNuGet project was initiated by Erlend Oftedal (of BEKK Consulting) in
June 2013, and was quickly adopted as an official OWASP project [119].

To identify unsafe versions, SafeNuGet relies on an official blacklist being
kept up-to-date. The registry is maintained by just one person, although
anyone can suggest additions via email, pull requests or issue tickets on
GitHub. As of October 2013, there are still only 10 packages on the official
blacklist, and it was last updated in June 2013 [120].

Extending on the concept of a blacklist by implementing it as a service
instead of just a flat file could be a nice move towards making the package
really useful. Ideally, we would like to see the job of keeping track of vul-
nerable versions of packages be performed by an impartial third-party (or
even crowd-sourced), and exposing this as a platform-agnostic API available
to all package managers. This way, the feature can be a part of all package
managers instead of only NuGet.

The ideal secure package manager

Here, I describe the most important features and requirements of an ideal
secure package manager. The list is not complete, and should be considered
as a wish-list to be implemented on top of the features that exist in major
package managers today.

e Verify the authenticity of package authors, to avoid multiple versions of
the same package from different authors, and to make package hijacking
close to impossible.

e Warn users about known vulnerabilities in packages, or vulnerable ver-
sions of a package. Notify users about vulnerable versions, even when
the system is already in production or no longer in active development.
By default, it should not allow a user to install a package known to
be vulnerable.

e Notify subscribers or users about licensing updates or changes to pack-
age authorship. It should block the installation if there are license con-
flicts.

e Have a system for managing author and package reputation, and clearly
communicate the reputation of the packages and authors to the users.

e Use and enforce semantic versioning through the above mentioned
package/author reputation mechanism. Updates that don’t conform
to SemVer (such as introducing breaking changes in a minor-level up-
date) will get flagged, and a warning will be shown to the user.

o4

e Use secure transport methods (HTTPS) and signed packages to counter
XBI attacks.

e Have a mechanism to discourage duplicate dependencies in projects:
“Do you want to install this package? It may overlap with the package
‘XXX’ that you already have installed.”

6.1.2 Security wrappers

If it is not possible to avoid having a potentially unsafe dependency in sys-
tems, the dependency can be isolated using security wrappers. A security
wrapper act as shield around the dependency, and—depending on the level of
distrust in the dependency—validates all input and output parameters. See
Figure for a simple conceptual diagram. If a security wrapper attempts
to totally isolate the dependency, even from the underlying filesystem and
networking stack, it’s called a sandbox. Security wrappers and sandboxes
are often used in web browsers to insulate against security issues in plugins,
and to stop malicious web content from affecting browsers [121].

Application

Unsafe dependency

Security wrapper

Figure 6.2: Conceptual diagram of a security wrapper isolating the dependency
from the rest of the system or application.

There are two scenarios to consider, each with a different set of solutions
and different levels of complexity:

1. Protecting against a dependency that can pose an active threat to
your system, and may attempt to do bad stuff. This is a potentially
malevolent dependency.

2. Protecting against a dependency that may contain vulnerabilities that
threaten the security of your system. This is an unsafe dependency.

95

In the latter case, implementing a security wrapper that filters or vali-
dates input to the dependency is sufficient, as it can be assumed that the
dependency doesn’t do anything wrong on purpose. The filters will typically
need to check for invalid input, such as XSS payloads or other malformed
input. To apply such filters to dependencies that directly access networking
or file system resources, modern programming languages support modifying
the code through reflection to add the necessary filter code.

In the case of the potentially malevolent dependency, it must be totally
isolated from the system with a sandbox, but even then it is conceivable that
the dependency can do damage—TIike miscalculate the amount of money in a
bank account if the account is owned by the attacker. To implement checks
that uncover any malevolence, one would have to reimplement the depen-
dency oneself, which is not feasible. A potentially malevolent dependency
should never ever be allowed in a project.

Modern package managers allow potentially malevolent dependencies into
systems by not verifying the authenticity of the claimed package authors.
An attacker could potentially publish a package to NuGet that claims to be
jQuery, but contains a slightly modified, malicious version. Security wrappers
can stop most obvious attempts, but a sufficiently sophisticated attack can
be impossible to stop by introducing security wrappers or even sandboxes.

6.2 Infrastructures

Dependencies in an infrastructure require its own set of solutions. The clas-
sical solutions typically involve removing the dependency or insulating the
system from the dependency. More recent techniques involve accepting the
existence of faults and errors, and instead focus on improving the way a sys-
tem handles failures. As we will see at the end of this section, the case of
Netflix illustrates how failures, latency, noise, and errors can be embraced as
stabilising agents.

6.2.1 Insulating against dependency failures

A system should be designed to insulate against faults and failures in its
dependencies, and to provide graceful degradation—if possible—in the case
of a failed dependency. If the dependency provides a non-essential service,
it may be acceptable to give the user a degraded level of service. When
Netflix’s recommendation service suffers an outage, Netflix simply gives you
less accurate recommendations instead of taking down the entire system.

o6

However, dependencies can provide essential services—such as payment,
billing or authentication—that have to be in place for any useful interaction
with the system. While graceful degradation may not make much sense in the
case of an outage in these kinds of services, it can be handled by introducing
redundancy, by having multiple dependencies in place to handle the tasks
assigned to the service.

Degraded service

Redundancy
Full service

A
Tt =

(i} No service
§%< >O<)O

Figure 6.3: Conceptual diagram of the different dependency failure insulation
patterns.

Some dependencies are either too difficult to isolate, or cannot be made
redundant without unacceptable consequences, like high costs. Contingency
plans and incident response plans should be in place to minimise the impact
of unwanted incidents.

See Figure for an example of the different ways of insulating against
dependency failures.

6.2.2 Metaclouds and insulating against cloud plat-
form failure

Cloud platforms like Amazon EC2, Microsoft Azure and Google App Engine
(GAE) sometimes fail [122], and isolating a system from faults in this kind
of dependency is hard, as a cloud platform provides the foundation for the

57

system. For this reason, cloud platforms are typically designed to be very
fault resistant, but some cloud platforms still have more outages than what
is acceptable for most use cases. Heroku is an example of a cloud provider
with poor uptime, with uptime as low as 99.2% for December 2012 [123].

A possible solution to this problem is to design a system that is capable of
running on multiple clouds. Solutions such as AppScale [124] exists that aim
to be a “Google App Engine Compatible” platform on top of any laaS cloud,
meaning that a GAE application can be deployed to any other cloud provider,
avoiding vendor lock-in by Google. However, the complexity and cost of
performing a successful migration in the event of an outage is prohibitively
high.

Migration of systems hosted on IaaS-based public clouds are simpler, as
one would only need to migrate the individual virtual machines, although the
necessary control systems and provisioning tools would also need a costly and
complex migration, ruling out any chance of using this method to avoid an
outage. It would have to be carefully planned and executed—or else the
migration itself could cause a system outage.

Moving an entire system is a huge undertaking. It requires large and
invasive changes to tools, routines, and the surrounding systems. However,
as we will see later, if the system is kept in a state of partial outage, these
surrounding systems, tools and routines will-—out of necessity—have evolved
to handle migrations. I therefore propose a meta-cloud, an abstraction on
top of several cloud platforms, in which the system running on the meta-
cloud is unaware of which cloud platform the individual server instances are
executing on [125].

One can imagine a simple implementation that simply chooses a cloud
platform randomly from a set of acceptable cloud platforms when asked to
instantiate a new virtual sever. By necessity, the system would be forced to
tolerate this kind of infrastructure. This is definitely possible, but probably
would run into difficulties with latency or cost.

6.2.3 Indirect dependencies

When attempting to lower exposure to risk by removing dependencies, in-
direct dependencies can be a serious hindrance. When bringing in a new
dependency to replace an unsafe or untrusted dependency, the same indi-
rect dependencies may still be underlying the new dependency, or it may be
depended on by another existing dependency in the system. As an exam-
ple, we can imagine two competing payment service providers both hosting

o8

their infrastructure on the same public cloud or in the same datacenter, or
two competing website monitoring services using the same SMS provider for

notifications. See Figure [6.4

Monitoring system Backup monitoring system

Common SMS Gateway

Figure 6.4: A simple diagram illustrating the problem of indirect dependencies.
While there are two redundant monitoring systems in place, they both have the
same underlying SMS Gateway. The application thus has an indirect dependency
(dotted grey line) to the SMS Gateway, and loses the intended redundancy.

A real-world example of indirect dependencies causing loss of intended
redundancy is PagerDuty [126], which is a third-party service for paging
operations personnel about downtime or other issues that require immedi-
ate attention. When the system breaks down at 4AM on a weekday night,
PagerDuty is responsible for paging or calling the person who has to get up
and fix the problem.

The PagerDuty service is hosted on Amazon EC2, but most of their
customers are hosted there as well [127]. This means that a downtime event
in the common underlying dependency (EC2) takes down both the customers
system and PagerDuty, leaving the customer with no way to get warnings
about the system outage! An event causing reduced performance (but no
total outage) in the underlying common dependency will be exacerbated by
the fact that PagerDuty will require more resources in order to report this
event to their customers.

29

To avoid indirectly placing all the eggs in one basket, the dependencies
of a service must be analysed and considered before choosing to depend on
the service. Having two redundant backup providers is of little use in a crisis
if both are located in the same burning building.

6.2.4 Designing for failure

No matter how hard you try, no matter how much effort is put into making
the system fail-safe, components will always break, hard drives will fail, and
servers will go down. The focus has traditionally been on designing the sys-
tem with fail-safes so it never goes down, or specifying hardware solutions
to avoid having hardware that goes down, like RAID and redundant power
supplies. This obviously doesn’t scale well. In a large, “Google-sized” data-
center, a hard drive failure is expected to happen almost every minute [128].

Instead of attempting to avoid any and all failures, the most important
thing is to be able to get the system quickly back to a normal running
state. Instead of focusing on Mean Time Between Failure (MTBF), which
can be vulnerable to single-component failures, the system should be opti-
mised to lower the Mean Time To Recovery (MTTR) [129]. In other words:
recovering quickly from failures is more important than having fewer fail-
ures. By “embracing” failure and accepting it as inevitable, the system can
be designed to function as well as possible despite failures—the system is
“designed for failure”.

The multi-discipline area of resilience engineering [130] deals with
some of these topics. Resilience engineering attempts to create resilient
systems, systems that are robust under changing conditions, and have the
ability to recover from catastrophic failure. Resilience engineering has tra-
ditionally been a focus in engineering disciplines such as airplane design,
power plant design and other life-and-death engineering disciplines. In re-
cent years, resilience engineering has seen a renaissance with the advent of
cloud computing and “web-scale” applications, which sets harder demands
for system resilience.

Netflix, Hystrix and Chaos Monkey

Netflix is an example of an organisation that has adopted the paradigm of
designing for failure, and Netflix has developed several new technologies to
incorporate this line of thinking into their systems.

Even though Netflix’s architecture was designed for loose coupling and
graceful degradation, it became apparent that they still needed to implement
even looser coupling. Simple timeouts were not sufficient to avoid resource

60

contention due to full buffers and queues, and failures would spread from
service to service. Netflix has developed several novel solutions to the prob-
lems inherent in handling dependency graphs in SOA architectures. Hystrix
is one of the most well-known solutions [I31].

Insulation of failures and providing graceful degradation is harder than
many think. Tools like Hystrix demonstrate this by adding a complicated
layer of logic between the different services to absorb problems and issues
instead of propagating them through the system [I32]. Hystrix does this
by employing a complex arrangement of thread pools, connection pools and
timeouts at different levels, in order to allow a certain level of temporary
failures before failing entirely.

Hystrix also facilitates service isolation by employing a “circuit-breaker”
technique that shuts down requests to service nodes if the latency or number
of failures exceed a certain threshold [131} 133]. This is done in order to avoid
cascading failures and to isolate failures to only the services that actually fail,
which allows for graceful degradation. See Figure for an overview of the
flow of a request through a Hystrix “circuit”.

Another solution developed at Netflix to improve the system’s resilience
is Chaos Monkey (and Chaos Gorilla, its bigger brother) [134], inspired by
a fuzz testing tool used in the development of the original Macintosh [I35].
Chaos Monkey maintains a certain level of constant failure by randomly
shutting down individual cloud server instances. This ensures the system is
resilient against some classes of failures, and that any lack of resilience will
cause it to fail early, forcing developers to implement the needed resilience.

“The best way to avoid failure is to fail constantly.” [130]

Chaos Monkey is part of Netflix’s “Simian Army”, which also includes
Chaos Gorilla, and Latency Monkey. Chaos Gorilla shuts down entire Ama-
zon availability zones in order to test the systems that automatically rebal-
ance services to functioning availability zones. Latency Monkey induces ran-
dom latencies in client-server communications and between services to sim-
ulate degradation and make sure applications are resilient to latency spikes
and other networking issues.

By keeping the system in a constant state of partial failure, the system
is forced to be resilient against failures. Others have adapted this approach,
such as modern web browsers, which are undergoing continuous “fuzz testing”
to tease out problems in the parsing code before releases [137]. This way of
improving resiliency by actually testing it is inspired by the natural world:
introducing noise, latency, failures and uncertainty in order to force systems
to be resilient to failure scenarios are analogous to the evolutionary pressure

61

we find in nature, where organisms are forced to adapt and improve in order
to survive.

In my opinion, this way of thinking is immensely beneficial for large
systems, and should be a best practice for constructing large systems that
need to be resilient to errors, such as national infrastructures and too-big-
to-fail systems. Systems designated as “too big to fail” should rather be
recognised as too big not to fail, and should be designed to handle frequent
small failures rather than waiting for a catastrophic failure before improving
its robustness.

6.3 Non-technical solutions

Technical solutions aren’t always sufficient. There are many examples of good
technical solutions that aren’t as effective as intended due to non-technical
reasons. TLS is a good example. TLS uses mostly good, decent cryptography
based on a mathematically and technically sound procesﬂ, but in the end
TLS easily falls victim to attacks directed at the non-technical part of the
system: the user. TLS are not particularly useful when the users simply
press “OK” on any popup that warns them of a certificate problem.

The same goes for secure development. Even if every developer has access
to state-of-the-art static analysis tools to detect almost every vulnerability
that exist in a program, they still have to be used properly to gain any benefit.

Secure development requires secure dependencies. How can one expect
to develop a more secure system by implementing rigorous secure develop-
ment processes if the libraries and frameworks used do not follow the same
methodologies? When deciding what dependencies or libraries to include in
the system, the architect or designer should include the security of the depen-
dency as an important factor, along with its size and scope. The dependency
should be as narrow in scope as possible given the problem it intends to solve.
Multiple dependencies doing nearly the same thing should be avoided.

When deciding on a Secure Development Lifecycle (SDL), dependency
management should be included in this lifecycle. In the following section,
we will evaluate a few different secure development life-cycles, in order to
determine which handles dependency management best. “Traditional” de-
velopment life-cycles should be modified to include secure dependency man-
agement.

1Some technical attacks on TLS exist, most notably the CRIME, BEAST and Lucky
Thirteen attacks. [138]

62

6.3.1 Choosing a Dependency Management Lifecycle

In order to select a development lifecycle that properly addresses the prob-
lems related to dependency management, we first need to outline what we
want from the development lifecycle. The development lifecycle needs
to include:

e Handling of updates to libraries and other dependencies for the entire
life of the product.

e Vulnerability monitoring (looking for published or in-the-wild vulnera-
bilities) in libraries and other dependencies for the entire
life of the product.

e A well-defined incident response to new vulnerabilities in 3rd party
libraries and other dependencies

e Guidance on infrastructure dependencies, and mechanisms for keeping
track of them and insulating against them if necessary.

e A step where library security is evaluated, either directly, through au-
dits and code reviews, or indirectly from reputation and public vulner-
ability information before being included into the project.

Let us take a look at the most popular SDLs in use in the industry, and
see how they stack up against our short set of requirements. The SDLs
reviewed are Microsoft Security Development Lifecycle [139], Cisco Secure
Development Lifecycle [140], and OpenSAMM [141]. We want to determine
which is the best candidate to provide guidance and best practices for secure
handling of dependencies in a development process.

Microsoft Security Development Lifecycle (SDL): SDL does not
include any mention of unsafe libraries and secure handling of dependen-
cies. It only recommends that “Analyzing all project functions and APlIs
and banning those determined to be unsafe helps reduce potential security
bugs with very little engineering cost.” This advice is aimed at banning de-
velopers in the organisation from using “unsafe” constructs, not banning
unsafe dependencies.

As a whole, the Microsoft SDL doesn’t sufficiently address the challenges
that dependencies pose, and cannot be recommended to provide guidance to
an organisation that attempts to perform secure dependency management.

63

Cisco Secure Development Lifecycle (CSDL): CSDL pays careful
attention to library dependencies, which it terms “3rd Party Software”. It
offers guidance for choosing secure versions of libraries, and registering li-
brary dependencies. After the application is launched, the Response stage of
CSDL includes vulnerability monitoring of library dependencies, making sure
that vulnerabilities in library dependencies are caught and the libraries up-
dated. It also includes strategies for responding to vulnerabilities discovered
after launch.

CSDL seems to be a good lifecycle to adhere to, in terms of dependency
management.

Open Software Assurance Maturity Model (OpenSAMM): Open-
SAMM is not a fully specified development lifecycle model, but a framework
to build a security development model tailored for the individual organisa-
tions. It still provides guidance for each step in a products lifecycle, so we’ve
included it here.

OpenSAMM includes objectives for defining and enforcing security re-
quirements in third-party dependencies in the planning stage, and for pre-
venting unexpected and possibly redundant dependencies by avoiding “one-
off implementation choices” with well-maintained lists of recommended frame-
works and libraries. In the after-launch stages of the lifecycle, OpenSAMM
includes activities to monitor “high-risk dependencies” and keep dependen-
cies updated through a consistent process.

OpenSAMM looks to be a guidance tool that can help to avoid a lot of
the vulnerabilities that stem from poor handling of library dependencies, and
would be my personal first choice. Although it, along with all the others,
doesn’t mention infrastructural dependencies.

64

2ANND[D 03 INP PIs0]d §1 NI Y Jr 9suodsos yovq)Df
D UINJOL PUD PINIAID-]LOYS 0] PIUDISIP §1 92 MOY JON 1IN0 T2SAFT D §D pajuawa)dit 2310498 D [0 140YIMO]] 1G9 9INII

ZPIoysaiy
anoqy asuodsay |NJss829Ng uIn}ey BI
Aaugie

i | oeqied pajed umouy | uondeoxy ——|

Joue Aousiel,

e yodal uay)

ploysaiyl anoqe J|
) »-| 3oeq|ied Injssaoon; asuodsay yoeq|ed uinley —m|
E »| pojuswajdwy joN umoiy | uoideoxy ——p|
Aj@ieipawiwy winial
I X s o
Eso._:.._.%c.ﬁuu 3 o E
N
noawi]
asuodsay 109 yosley UnaaR-poys
soA

\ walgo puewwod
A de@4an

- ()ananb* la SNOUCIYOUASY

S .

: ' ea| : IN09X?" l—— SNOUOIYIUA:
...... Aouse pue ssaoong/iolg poday ._zu.__w—_ﬂm__.__._u_wu Lo TS

£55902Ng

65

66

Chapter

Conclusions and summary

Controlling complezity is the essence of computer programming.
— Brian Kernighan [142]

In this final chapter we summarise the thesis, chapter by chapter, and
offer a conclusion, before looking at possible extensions of the thesis work as
well as open research questions.

7.1 Summary

We have seen that dependencies play a larger role than most developers think.
Chapter[I]explained what dependencies are, and showed us how dependencies
can be described with graph theory and modelled as a dependency graph.
Graph theory allows us to perform computation on a graph, and can be
useful to transform vague and hard to define relations into simple graphs
and associated metrics. We also illustrated the problem of discovering and
mapping dependencies, a problem which has no good solutions except hard
thinking and careful analysis.

Dependencies were analysed in two different contexts. In Chapter [2 we
looked at dependencies in source code, and especially dependencies to li-
braries and frameworks. We saw how indirect dependencies can make the
dependency graph larger than first thought, and how modern package man-
agers can exacerbate this problem. A large dependency graph can lead to

67

larger programs, and more lines of code are correlated with higher complexity,
more vulnerabilities, and more defects. We have also studied a novel attack
technique—cross-build injection—that attacks the build process in modern
build systems and package managers.

The other context in which dependencies are especially relevant, is de-
pendencies in infrastructures, which we examined in Chapter [3] We saw how
dependencies in infrastructures can cause problems with reliability and lead
to cascad