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Preface

This dissertation is submitted as a partial fulfillment of the requirements for the

degree Doctor of Philosophy (PhD) at the University of Bergen (UiB). The work-

ing environment was Centre for Integrated Petroleum Research (CIPR) in collab-

oration with the Department of mathematics at the University of Bergen, Norway.

The thesis was funded by CIPR.

Image data occur within different fields of petroleum research. They can be

a result of laboratory experiments or geology field trips, and often result in a

vast amount of image data that needs to be analyzed. Depending on the quality

and size of the data they can be difficult to analyze. Within petroleum research

the larger overall goal is improved knowledge of oil mobilization and reservoir

characterization.

In this thesis various image processing techniques are studied. Two types of

image data are encountered that are processed using two different types of tech-

niques. This is reflected in the layout of this thesis, which is split into two theoret-

ical parts. The first topic is filtering of X-ray image time-series coming from fluid

flow experiments conducted at CIPR. These data-sets have image artifacts that

can occlude the depicted fluid flow and makes it more difficult analyze the data.

The goal of this work is to improve the presentation of the data. Good results are

obtained that largely improves the presentation of the data.

Filtering is often a precursor to image segmentation, which is the topic cov-

ered in the second part of this thesis. There different types of segmentation meth-

ods are studied with respect to segmentation of computed tomography (CT) im-

ages of vuggy carbonate rocks. The goal of this part of the thesis is to deter-

mine which segmentation method is best suited for segmenting the image data-

sets. The methods performance are evaluated for two-dimensional (2D) and three-

dimensional (3D) images. It is generally seen that the image segmentation meth-

ods perform well on high resolution image data-sets. For decreasing image reso-

lution the accuracy in the segmentation also decreases and there is more variations

in the results.

Outline

This thesis is organized into three parts. In Part I the objective is to improve the

presentation of 2D image time-series of fluid flow experiments acquired using an

in-house X-ray scanner. This scanner introduces severe horizontal and vertical

line artifacts which partly occlude the depicted fluid flow. These artifacts can be

attenuated in the frequency domain after constructing an appropriate filter. In this

part an introduction to frequency domain filtering and the filter construction is



iv

given, before presenting the results and giving a conclusion. In Part II the ob-

jective is to study the performance of various image segmentation techniques for

segmentation of CT images of vuggy carbonate rocks. These image volumes have

varying image resolution and therefore also varying degree of difficulty. In this

part an introduction to the segmentation techniques are given, before presenting

the results and giving a conclusion. In Part III the included papers are presented.

Contribution of this thesis

Part I In the first part of this thesis image filtering of laboratory X-ray image

data-sets of fluid flow experiments is considered. These image time-series ex-

hibits periodic and a periodic image artifacts that can be attenuated naturally by

frequency domain filtering after constructing an advanced filter. This filter is given

as a combination of several different frequency domain filters. The developed

procedure semi-automatically detects the artifacts frequency components and au-

tomatically computes the filter. The user need only provide the type of filters to

be included. The artifacts remains fixed throughout an image time-series. It is

therefore sufficient to compute the frequency domain filter once for each data-

sets. The developed procedure has been published as a part of Paper A. It was

later been modified slightly to further improve the results.

Part II In the second part of this thesis 3D segmentation of CT imaged vuggy

carbonate rocks is considered. There a comparison of the performance of five

different methods is given, namely standard global thresholding, the Ridler and
Calvard’s (RC) method [25], Otsu’s method [23], local thresholding by indicator
kriging (IK) [20] and region based segmentation using the piecewise constant
level set (PCLS) method [15]. To validate the performance of the segmentation

methods the expected visible porosity of the data-sets is computed. The detected

porosity, pore length and pore volume distributions are also computed from the

segmentation. This comparative study was first published in Paper B for three

of the segmentation methods and it was later extended by the inclusion of two

additional methods in Paper C (submitted June, 2013). To apply IK to our data-

sets the original formulation was slightly modified.

In addition, a 3D graph cut solver was developed for solving the PCLS method.

Traditionally, level set methods are solved by deriving and solving an Euler-
Lagrange equation, which is time consuming. In this work it was shown that

a faster solver is obtained by representing the problem on a spacial graph and

computing the minimum cut on this graph. The presented graph cut solver is an

extension of the 2D graph cut algorithm proposed in [2]. This resulted in the

development of a fast and accurate solver, that is not very sensitive to the initial
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value. The approach was published in Paper D and it was later used for segment-

ing the vuggy carbonate rock image data-sets.





Part I

Frequency domain filtering of
fluid flow images





Chapter 1

Introduction

At the Centre for Integrated Petroleum Research (CIPR) experimental studies

have been performed to visualize and analyze fluid flow properties in porous me-

dia. The studies are designed to obtained improved knowledge of oil mobilization

processes. The larger overall goal is enhanced oil recovery from real oil reser-

voirs. The experiments are performed by 2D imaging of the displacement process

taking place after injecting some liquid into rock slabs. Also of interest is the flow

of gas in porous media and some smaller experiments have been conducted.

The imaging is performed using a custom-built in-house X-ray scanner specif-

ically designed for imaging fluid flow displacement processes in porous media.

Often the image quality is poor and the image data is corrupted from severe scan-

ner introduced image artifacts that can vary depending on the current scanner

calibration. The introduced artifacts are both periodic and non-periodic vertical

and horizontal line artifacts that remains constant within an image time-series.

These artifacts makes the data more difficult to analyze as they can both distort

and partly occlude the object of interest; the fluid flow.

In this part of the thesis the objective is to improve the presentation of the

laboratory X-ray image data-sets. The goal is to attenuate the artifacts without

distorting the fluid flow. This can be achieved through advanced image filtering.

From image processing theory it is known that due to the repetitive behavior of the

artifacts they are likely to be visible in the frequency domain as either frequency

peaks or ridges. It is therefore natural to consider frequency domain image fil-

tering. Close evaluation of the frequency domain representation of the images

reveals that they are indeed visible as frequency ridges and intricate filters are

constructed. The developed procedure yields good results when applied to vari-

ous image data-sets and the image artifacts are largely removed. This is achieved

without distorting the fluid flow, which become more easily recognizable.
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1.1 X-ray imaging of laboratory experiments

Most experiments considered in this work have been performed on rock slabs

of size 30 × 30 × 2 cm, although the scanner can handle slabs that are up to

1× 1 m. Prior to running the experiments the rock slabs are sealed with an epoxy

coating, and fluid inlets and outlets are attached to opposite sides. In the X-ray

scanner the slabs are positioned either vertically or horizontally depending on the

experiments. To image these slabs the scanner uses sub-section scanning. For

rock slabs of size 30 × 30 × 2 cm the scanner require 3 × 3 sub-sections and

it uses about 4-5 minutes to scan the entire region. For the maximum rock size

9 × 9 sub-sections are needed and the scanning time increase accordingly. The

scans are not necessarily taken at regular intervals throughout the experiments.

More often they are taken irregularly and the size of the intervals depend on the

current displacement process. When there are large changes in the fluid flow scans

are taken more often to capture more details. The experimental setup is further

described in [29, 28, 30].

Each sub-section is scanned subsequently at different time-points, as is illus-

trated in Figure 1.1(a). The full 2D image is later generated from the resulting

sub-images. Within each sub-section the X-ray source is centered, illustrated by

the black squares, and the scanner scans in an overlapping manner from one side

to the other, which is illustrated by the vertical gray stripes. It takes about 30

seconds to scan each sub-section, and shifting horizontally from one block to the

next is faster than the vertical shift. In the horizontal direction the sub-images

are concatenated in a non-overlapping manner. In the vertical direction the sub-

images are, however, concatenated in an overlapping manner as they partly covers

the same region. This is illustrated by the two orange lines. Ideally image regis-

tration should have been used to automatically discard overlapping regions. This

is, however, beyond the scope of this work. Instead a trained user has manually set

the cutoffs to register the sub-images. This leads to a slightly blocky appearance

at the intersections in the vertical direction. The scanning procedure is repeated

in time and yields a 2D image time-series.

Since sub-section scanning is applied the fluid flow might move faster than the

scanner. This can lead to an inaccuracy in the imaged flow at the intersections,

as is illustrated in Figure 1.1(b). In particularly, this is a problem when imaging

fingering effects as fingers have a tendency to move rapidly through the domain.

It is desirable to correct for the time difference within each 2D image by shifting

the sub-images in time. Due to large and possibly non-uniform sampling interval

and a relatively small set of time-points, obtaining an accurate result might be

difficult. Further investigations are left for future work.

In Figure 1.1(c) a typical water flooding scan, where part of the image has

been magnified for better viewing, is shown. Clearly visible are the typical peri-
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(a) (b)

Sub-image intersection

Vertical periodic line artifacts

Horizontal non-periodic line artifacts

(c)

Figure 1.1: In (a), the X-ray image acquisition procedure is illustrated. A 2D image is

generated by sub-section scanning, where each section is scanned at different time-points.

Within each section the X-ray source is centered indicated by the black squares. Each

section is scanned in an overlapping manner from one side to the other, illustrated by the

gray lines. This cause periodic vertical line artifacts that are visible in the resulting im-

ages. Vertically the sub-sections are scanned in a slightly overlapping manner, illustrated

by the two orange lines. The sub-images are concatenated in a post-processing step. In

(b), it is illustrated how fingers can move faster through the domain than the scanner,

which might cause an inaccuracy in the imaged fluid flow. In (c), a sample image is

shown, in which part of the image has been magnified. The periodic vertical line artifacts

are due to the scanning procedure, while the horizontal non-periodic artifacts depends on

the current scanner calibration. Two dark horizontal lines are also visible. These are due

to sub-image concatination.

odic vertical image artifacts generated by the scanning procedure, as well as the

horizontal non-periodic line artifacts that depends on the current scanner calibra-

tion. The intersection between the sub-images are visible as two horizontal lines

and there is also a visible intensity shift. These artifacts corrupt the image data and

can make it difficult to perceive the imaged fluid flow. To bring out the true details

attenuation of these artifacts are of importance. Fortunately the artifacts remain

constant throughout an image time-series. Therefore filters can be constructed for

a single image and then applied to the remaining images.

The scanner generates two types of image file formats, JPEG and TIFF images.

The JPEG image data-sets are thresholded by the scanner to reduce the influence

of outliers prior to compression. They are given with unsigned 8-bit integer preci-

sion, which gives them an intensity range of [0, 255]. In this process the intensity

range is largely reduced, which results in poorer intensity resolution. The TIFF

images are uncompressed and given with unsigned 16-bit integer precision, thus

they have intensity range [0, 65 535]. Most intensity values corresponding to the

depicted fluid flow are, however, located in the lower part of the intensity range.

There are only a few outliers from image artifacts that are scattered in the re-

maining part. Therefore, the intensity range can be reduced without reducing the
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(a) (b) (c)

Figure 1.2: Selected images from a water flooding experiment. Observe in (a) that finger-

ing behavior starts early in the experiments. During the experiment some of these fingers

are reinforced and water channels are formed, as can observed in (b) and (c).

accuracy. In this work both JPEG and TIFF images are filtered. Similar results

are obtained for both filetypes.

1.2 Fluid flow experiments

The image data considered in this work are mostly from experiments conducted on

fairly homogenous Bentheimer sandstone acquired from an outcrop in Germany.

The experiments were constructed to obtain improved insight into fluid flow prop-

erties, in particular how heavy-oil is mobilized by water and polymer flooding.

Prior to conducting the experiments, if not stated otherwise, the sandstones were

saturated with approximately 90% oil and 10% water to mimic the characteristics

of oil reservoirs. Aging is performed to mimic reservoir wettability conditions.

The experiments typically starts by oil mobilization using water flooding, which

is shown in Figure 1.2. There it is seen how thin sharp fingers develops early

on in the experiment and continues to grow throughout the experiment. Fingers

occur since water has lower viscosity than oil. Other parameters influencing fin-

gering development is capillary forces and rock heterogeneity. From these fingers

other fingers are created mostly by splitting at the tip, and the fingers grow both in

width and length. During the experiment some of these fingers are reinforced at

the expense of other fingers and water channels are created. The fingers continue

to spread throughout the experiments. Nevertheless, the oil recovery from areas

originally bypassed by the fingers is poor, causing injected fluid to being mostly

produced through the water channels [29, 28, 30]. This was also found in [36]

where fluid flow experiments were performed on sandpacks.

After water flooding polymer flooding is often performed. Polymer is a term
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(a) (b) (c)

Figure 1.3: Selected images from a polymer flooding experiment. In (a), initially the

water channels from a water flooding experiment are clearly visible. Then in (b), observe

that a polymer bank has formed, indicating that polymer mobilizes oil bypassed by the

water flooding. The polymer moves slightly faster through the water channels. In (c), it

is observed that the polymer continues to move slightly faster through the water channels

while maintaining the polymer bank.

used about water that is made more viscous by adding polymer molecules. The

polymer flooding yields, due to higher viscosity, improved sweep of the domain

as can be observed in Figure 1.3. It is clearly able to access regions that were orig-

inally bypassed by the water flooding and a polymer bank quickly develops. The

oil is being mobilized through the water channels and oil recovery is improved. In

fact, the oil recovery will in most cases nearly double compared to water flooding.

The fingering effect is reduced since it depends on the viscosity ratio between the

mobilized oil and polymer solution. Thus, the amount of fingering will depend

on the experiment. There will be less fingering when the polymer solution and

displacing oil has low viscosity ratio, for higher viscosity ratio fingering behavior

will increase. When the viscosity ratio is low more oil is recovered and a better

sweep of the domain is observed [30]. Also in [36] it was found that during poly-

mer flooding the oil is being mobilized into the water channels by choosing the

path of least resistance. A better sweep of the domain was obtained and the oil

recovery nearly doubles when compared to the water flooding.





Chapter 2

Filtering of laboratory X-ray
images

The X-ray image data-sets considered in this work are corrupted by severe scanner

introduced a periodic horizontal and periodic vertical line artifacts. The filtering

procedure need therefore attenuate both periodic and a periodic artifacts without

distorting the fluid flow. Due to the periodic character of parts of the artifacts it is

natural to consider frequency domain image filtering. These artifacts are difficult

to attenuate using filtering techniques in the image domain.

In Figure 2.1 the performance of a standard image filtering technique versus

frequency domain filtering is evaluated. There, in (a), a typical input image from

a water flooding experiment is shown in which the characteristic line artifacts are

clearly visible. In (b), the image has been filtered using a median filter. It is a

standard windowing approach that replaces the center pixel by the median within

the window [11]. Visually median filtering does not appear to remove any arti-

facts, although close examinations reveals that some of the artifacts have indeed

been removed. In (c), the result of frequency domain filtering in which the arti-

facts frequency components have been attenuated using the procedure developed

in this work is shown. There, the image artifacts are largely removed.

In Figure 2.2 two typical fluid flow images are displayed. In (a), the image is

from a water flooding experiment and in (b), it is from a polymer flooding exper-

iment. The characteristic horizontal and vertical line artifacts are visible in both

images. In (c), a typical frequency domain representation of the images is shown.

The image artifacts are reflected in certain frequency components, which implies

that they can be attenuated in the frequency domain by precisely constructed fil-

ters. The periodic vertical image artifacts are reflected in the horizontal midline

ridge. Parts of the vertical fluid flow will also be represented by this ridge. The

horizontal aperiodic artifacts is more complicated. Fortunately they are visible

as the multiple nearly periodic vertical frequency ridges seen throughout the fre-
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(a)

Figure 2.1: In (a), a typical input image is shown, which clearly has severe vertical and

horizontal line artifacts. In (b), the image has been filtered using a median filter. Visually,

there is little difference from the original image. In (c), frequency domain image filtering

has been applied to attenuate the artifacts. There the artifacts are largely attenuated.

(a) (b) (c)

Figure 2.2: In (a) and (b) typical input images from water and polymer experiments are

displayed, respectively. The characteristic line artifacts are clearly visible. In (c), a typical

frequency domain representation of the images is shown. The single horizontal frequency

ridge corresponds in part to the periodic vertical image artifacts. Parts of the vertical fluid

flow is also represented by this ridge. The multiple vertical frequency ridges corresponds

to the aperiodic horizontal image artifacts.

quency domain. To filter the image data these ridges need first be detected and

then attenuated by precisely constructed filters. The challenge lies in locating the

ridges accurately and also in constructing precise filters that do not interfere with

the the fluid flow. The developed procedure has proven to produce good results

and much of the line artifacts are removed, bringing out the true details in the

image data.

In the following, an introduction to frequency domain filtering is given prior
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to presenting the constructed frequency domain filters. The following exposition

is largely based on the two textbooks [11, 24].

2.1 Freqeuncy domain image filtering

In the image domain an image f(x, y) is often filtered by convolving f(x, y) by

a folded sliding filter h(x, y). The linear convolution sum is given by

g(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m, n)h(x − m, y − n) , (2.1)

which is a sum over all the pixels in f(x, y), and M and N is the number of bins

in the x- and y-direction, respectively. The filter h(x, y) is of size P × Q and it

is usually much smaller than f(x, y). Depending on the size of the filter, the size

of the convolution output g(x, y) will be larger than f(x, y). In fact g(x, y) will

have size A × B, where A and B equals

A = M + P − 1 and B = N + Q − 1 , (2.2)

as is illustrated for one-dimensional (1D) and/or 2D sequences in [11, 24].

Convolution is a time consuming operation, especially for large data-sets. For-

tunately circular convolution in the image domain is equivalent to multiplication

in the frequency domain [24]. Thus we have

f(x, y) � h(x, y) ⇔ F (u, v)H(u, v) , (2.3)

where � indicate convolution. Frequency domain filtering will often be faster than

the corresponding image domain approach. The circular convolution sum is given

by

g(x, y) =
M−1∑
m=0

N−1∑
n=0

f(m, n)h((x − m)M , (y − n)N) , (2.4)

which is similar to the linear convolution sum in eq. (2.1). It differs only in the

formulation of the filter h(x, y) in which the indices are computed by taking the

modulo of M and N . For circular convolution, both f(x, y) and h(x, y) need to

be of the same size. The 2D circular convolution sum can be derived in a similar

manner as the 1D circular convolution sum in [24].

Linear and circular convolution sums are similar, but not identical. To ensure

that circular convolution yields the same result as linear convolution zero padding
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is performed on both f(x, y) and h(x, y) so that the number of bins in each di-

rection fulfill eq. (2.2). Adding additional zeroes will not influence the output, so

the formal requirement is that the number of bins in each direction fulfill

A ≥ M + P − 1 and B ≥ N + Q − 1 . (2.5)

The zeroes are appended to the end of the image in both the x- and y-direction.

Zero padding will also ensures better display in the frequency domain due to more

bins. It does not, however, provide any additional information about the spectrum

[24]. Wraparound errors occur when not enough zeroes have been appended to

f(x, y) and h(x, y) [11]. They are a result of pixels from one side of the image

influencing the convolution output at the opposite side. Circular convolution is

now no longer equivalent to linear convolution. Thus, zero padding with a suffi-

cient number of zeros is important both to avoid errors and to ensure that circular

convolutions yields equivalent result when compared to linear convolution [24].

To filter an image in the frequency domain, the frequency domain representa-

tions of both the image and the filter are needed. The frequency domain represen-

tation of and image f(x, y) is computed by the discrete Fourier transform (DFT),

F (u, v) =
M−1∑
x=0

N−1∑
y=0

f(x, y)e−j2π(ux
M

+ vy
N

) . (2.6)

The same approach can be used to compute the frequency domain representation

H(u, v) of a filter h(x, y). A similar transform is applied to transfer the image

back into the image domain, using the inverse discrete Fourier transform (IDFT),

f(x, y) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)ej2π(ux
M

+ vy
N

) . (2.7)

The two transforms make up the Fourier transform pair [11].

The frequency domain representation F (u, v) can also be represented on polar

form,

F (u, v) = |F (u, v)|ejφ(u, v) , (2.8)

since it contains both a real and imaginary part. It is made up of two terms,

the Fourier spectrum |F (u, v)| and phase angle φ(u, v). The Fourier spectrum

|F (u, v)| is computed by

|F (u, v)| =
√
R2(u, v) + I2(u, v) , (2.9)
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where R(u, v) and I(u, v) are the real and imaginary part of F (u, v), respec-

tively. It holds much of the image intensity information and it is analyzed to locate

the frequency components of the image artifacts. Filters are usually constructed

directly in the frequency domain as precise filters are more easily constructed there

than in the image domain. The phase angle φ(u, v) holds much of the information

related to object location and it is computed by

φ(u, v) = tan−1

( I(u, v)

R(u, v)

)
. (2.10)

It is difficult to analyze and is usually not modified during a filtering operations

[11]. In this work filters are always constructed in the frequency domain and only

real filters that do not modify the phase angles are considered.

The frequency domain representation F (u, v) is an infinitely periodic se-

quence in both the u- and v-direction. Therefore, it is sufficient to look at a

single period and it is customary to work with the period containing the ori-

gin. The zero frequency, F (0, 0), is commonly the largest frequency compo-

nent and it is proportional to the average image intensity value since F (0, 0) =∑M−1
x=0

∑N−1
y=0 f(x, y). The spectrum is symmetric about the origin and by shifting

the data,

F (u, v) = F (u − M/2, v − N/2) , (2.11)

the origin is ensured to lie in the center of the evaluated frequency spectrum,

F (M/2, N/2). This facilitate visual evaluation of the spectrum and also filter

construction. Prior to computing the IDFT it is shifted back so that the origin

once again lies at the zero frequency, F (0, 0) [11].

Filtering in the frequency domain is performed by computing the product

F (u, v)H(u, v), which according to eq. (2.3) is equivalent to circular convo-

lution in the image domain. This implies that

g(x, y) = IDFT {F (u, v)H(u, v)} (2.12)

should be equivalent to the output of the circular convolution sum from eq. (2.4).

In this work the filter H(u, v) is, however, always constructed directly in the fre-

quency domain. Therefore, even if the input image f(x, y) has been zero padded

prior to computing F (u, v) some wraparound errors occur since H(u, v) has not

been zero padded. To limit their effect the input image can be extended in all

directions, prior to zero padding, by replicating the boundary pixels by a given

number of pixels [11].
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2.2 Filter construction
The filter H(u, v) is constructed directly in the frequency domain by combining

different types of filters. Successful filtering depends on accurate attenuation of

frequencies originating from image artifacts. In this work three different filters

are combined to attenuate the image artifacts; a Gaussian lowpass filter, vertical
notch reject filters and horizontal notch reject filters. In the following, the filter

construction is presented.

2.2.1 Common filter parameters

The three different types of constructed filters use two common filter parameters,

the cutoff frequency D0 and the distance map D(u, v). From signal processing

theory it is known that the Fourier spectrum is periodic and it is unique over the

interval (−π, π) (or (0, 2π)) [24]. Therefore, in this work, both D0 and D(u, v)
lies within range [0, π]. The cutoff frequency D0 is given on the form of

D0 = π
1

f0

, for f0 ≥ 1 , (2.13)

which ensures that D0 ∈ [0, π]. The distance map D(u, v) is computed by

D(u, v) =

(
(u − M/2)2 + (v − N/2)2

) 1
2

, (2.14)

where u and v are the frequency domain coordinates. The value of D(u, v) is

the distance from index (u, v) to the center of the domain, and M and N is the

number of bins in the u and v direction, respectively [11]. The map D(u, v) is

scaled into range [0, π].

2.2.2 Gaussian lowpass filtering

The goal of lowpass filtering is to blur an image by attenuating high-frequencies

while passing low frequencies. This preserves low frequencies related to slowly

varying image intensity component, while blurring the components related to high

frequencies such as object boundaries and image artifacts. To preserve image ob-

ject information lowpass filtering should not be too severe. In this work a Gaussian

lowpass filter is applied. It does not introduce any ringing artifacts and yields a

smooth filter without any side-lobes in both the image and frequency domain. The

Gaussian lowpass filter is given by

HLp(u, v) = e
−D2(u,v)

2D2
0 . (2.15)
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Thus, the cutoff frequency D0 is used as the standard deviation controlling the

width of the lobe and therefore also the amount of smoothing [11].

2.2.3 Notch filtering
Notch filters are used for stopping selected frequencies, while passing the remain-

ing ones, or vice versa. They are created with narrow reject bands (or passbands)

and are symmetric about the origin. In general, notch filters are given on the form

of

HL(u, v) =
L∏

i=1

Hi(u, v)H−i(u, v) , (2.16)

where L are the number of notch filter pairs. The two filters Hi(u, v) and

H−i(u, v) are centered with respect to the origin at (ui, vi) and (−ui, −vi), re-

spectively. Their distance maps are therefore given by

Di(u, v) =

(
(u − M/2 − ui)

2 + (v − N/2 − vi)
2

) 1
2

(2.17)

D−i(u, v) =

(
(u − M/2 + ui)

2 + (v − N/2 + vi)
2

) 1
2

. (2.18)

The point (M/2, N/2) corresponds to the origin of the frequency domain, and ui

and vi the displacement in the u and v direction, respectively [11]. Both maps are

scaled into range [0, π].

2.2.4 Vertical notch filtering
Vertical notch reject filters are applied to attenuate frequencies coming from the

aperiodic and non-homogeneous horizontal line artifacts. The intensities of the

artifacts vary both between lines and within a single horizontal line. Close in-

spection of individual horizontal lines reveals within line features with changing

directions, as can be seen in Figure 2.3(a)-(b). This makes it difficult to determine

their exact frequencies. In the frequency spectrums there are multiple vertical fre-

quency ridges that run through the entire spectrum, as is observed in (c). These

frequency ridges indicate that there are frequency components corresponding to

artifacts in those locations. Due to the within line directional changes they cor-

respond to the horizontal artifacts. The fluid displacement changes slowly and

correspond to mostly low frequency components close to the spectrums origin.

The origin also holds much of the image intensity information [11] and care must

be taken not to modify it during filtering. Therefore the attention is focused on

attenuation of the vertical ridges while leaving the origin unchanged.
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Between line variations

(a)

Varying intensities and changing directions

(b) (c)

Figure 2.3: Horizontal line artifacts. In (a) and (b) two different sections of an image

has been magnified. Observe that the horizontal artifacts are both aperiodic and non-

homogenous. The intensities varies both within and between the horizontal lines, and

various within line features can be seen. In (c), the images frequency spectrum is shown.

The multiple vertical ridges corresponds to the horizontal line artifacts. The frequencies

of the vertical periodic image artifacts lies along the horizontal midline ridge.

To attenuate the vertical frequency ridges, 1D Gaussian reject filters are com-

puted for each ridge and for each row, symmetrically about the spectrums origin.

The filters are constructed in a pair-wise manner by

Hi(u, v) = 1 − e
−D2

i (u)

2D2
0 , Di(u) ∈ [0, π], 0 < D0 ≤ π , (2.19)

H−i(u, v) = 1 − e
−D2−i(u)

2D2
0 , D−i(u) ∈ [0, π], 0 < D0 ≤ π , (2.20)

for a common D0. The computations are repeated for all rows, v = 0, . . . , N − 1.

The two 1D distance maps are independent of row v and are given by

Di(u) = u − M/2 − ui , (2.21)

D−i(u) = u − M/2 + ui . (2.22)

For both maps ui is the displacement of the origin so that Di(u) = 0 and D−i(u) =
0 lies at the center of a ridge. The center of each ridge is semi-automatically

detected using the procedure outlined in Appendix A. Both maps are scaled into

range [0, π] as before. Thus, the following vertical notch reject filter is obtained,

H∗
V n(u, v) =

L∏
i=1

Hi(u, v)H−i(u, v) , (2.23)

where L is the number of notch filter pairs. An example of this filter can be

observed in Figure 2.4(a). It does not include midline filtering and it is used for
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(a) (b) (c)

+ =

(d)

Figure 2.4: Vertical notch filtering. In (a), a vertical notch filter that do not include

midline ridge filtering is shown. It is used for filtering image data-sets with horizontal

fluid flow. In (b), the same filter is shown only now including midline ridge filtering. It is

used for filtering data-sets with vertical fluid flow. In (c), a close up view of the midline

filters center point is shown. It attenuates the vertical midline while leaving the origin

unchanged. In (d), the construction of the midline reject filter is illustrated. To obtain the

filter in (c) all values greater than one are set to one.

filtering data-sets with horizontal fluid flow since midline filtering would distort

the flow.

For data-sets with vertical fluid flow, vertical midline filtering does not distort

the flow. A filter is therefore created that attenuates the midline frequency ridge

while leaving the spectrums origin unchanged. Initially the idea was to gradually

increase the constant f0 in eq. (2.13) to create a gradually narrowing midline reject

filter as the filter approaches the origin. This was the approach used in Paper

A. Even though this approach left the origin unchanged and good results were

obtained, a low-frequent sinusoid was introduced by the filter. It was therefore

abandoned. Instead the midline notch filter was created by combining the midline

reject filter,

H0(u, v) = 1 − e
−D2

0(u)

2D2
0 , D0(u) ∈ [0, π], 0 < D0 ≤ π , (2.24)
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where D0(u) is given by eq. (2.21) for u0 = 0, with a 2D Gaussian lowpass filter

HLp(u, v), which yields

H ′(u, v) = H0(u, v) + HLp(u, v) , for common D0 . (2.25)

This process is illustrated in Figure 2.4(d). It is observed that adding the two filters

yields a filter that leaves the origin unchanged and attenuates the vertical midline,

but also include two symmetric peaks that have intensity values above one. The

constructed filters should, however, have intensity values in the range [0 1] to

attenuate certain frequencies while leaving the remaining frequencies unchanged.

To preserve this property all intensities above one are set to one,

H ′(u, v) =

{
1, if H ′(u, v) > 1
H ′(u, v), otherwise

. (2.26)

In (c), a close up view of the constructed midline filter center point is shown.

Although this approach introduces a slight discontinuity in the filter, the results

does not have any visible introduced artifacts. It attenuate the image artifacts

while leaving other image features unchanged. The combined vertical notch filter,

shown in Figure 2.4(b), is given by

H∗∗
V n(u, v) = H∗

V n(u, v) · H ′(u, v) . (2.27)

It is used for filtering data-sets with vertical fluid flow.

2.2.5 Horizontal notch filtering
Horizontal notch reject filters are applied to attenuate frequencies coming from the

periodic vertical image artifacts. These artifacts lies along the horizontal midline

frequency ridge, as can be observed in Figure 2.3(c). This ridge is not monotone,

but have frequency peaks at the intersection with the vertical frequency ridges,

which are more visible closer to the origin.

For data-sets with horizontal fluid flow a horizontal midline reject filter can be

applied since the fluid flows frequency components lies along the vertical midline

frequency ridge. This midline reject filter can be constructed in a similar manner

as the vertical midline reject filter. It is created by combining a midline reject filter

with a 2D Gaussian lowpass filter HLp(u, v). The midline reject filter is given by,

H0(u, v) = 1 − e
−D2(v)

2D2
0 , D(v) ∈ [0, π], 0 < D0(u) ≤ π , (2.28)

which is similar to the filter in eq. (2.24). It is now constructed in a column-vise

manner and the distance map D(v) depends on v, computed by

D(v) = v − N/2 . (2.29)
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(a) (b)

Figure 2.5: Horizontal notch filtering. In (a), a horizontal midline filter is shown. It is

used in the case of horizontal fluid flow. In (b), multiple combined 2D Gaussian reject

filters is shown, situated at the intersections between the spectrums vertical and horizontal

frequency ridges. It is used in the case of vertical fluid flow.

It is scaled into range [0, π]. The combined filter is then computed by

H ′(u, v) = H0(u, v) + HLp(u, v) , for common D0 . (2.30)

This yields a filter with two frequency peaks that have frequency values greater

than one, as was the case for vertical midline filter. To ensure that certain frequen-

cies are not reinforced all values greater than one is set to one,

H∗
Hn(u, v) =

{
1, if H ′(u, v) > 1
H ′(u, v), otherwise

. (2.31)

The resulting filter is displayed in Figure 2.5(a), and it attenuates the horizontal

midline frequency ridge while leaving the origin unchanged.

For data-sets with vertical fluid flow the horizontal midline filter will modify

the fluid flow. A second type of filter along the horizontal midline is therefore

constructed. Since the horizontal midline ridge have frequency peaks at the in-

tersection with the vertical frequency ridges, multiple 2D Gaussian reject filters

are constructed and positioned at the intersections. The horizontal midline notch

filters are now given by

H∗∗
Hn(u, v) =

L∏
i=1

(
1 − e

−D2
i (u,v)

2D2
0

)(
1 − e

−D2−i(u,v)

2D2
0

)
, (2.32)

where L is the number of notch filter pairs, D0 is the cutoff frequency, and

Di(u, v) and D−i(u, v) are the distance maps given by eq. (2.17) and eq. (2.18),

respectively. The center point of each reject filter is found by the procedure out-

lined in Appendix A. The resulting filter is shown in Figure 2.5(b), and it atten-

uates the vertical image artifacts while leaving the vertical fluid flow unchanged.

Observe that the filters kernel size increases away from the origin. This is due to

the influence of the neighboring reject filters. It does not appear to influence the

results in any noticeable way.
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2.2.6 Constructed combined filter
The constructed combined filter, H(u, v), used in the filtering procedure varies

depending on the data-set. For all data-sets a Gaussian lowpass filter HLp(u, v)
from eq. (2.15) is included. The notch filters does, however, vary depending on

the direction of the flow. For each time-series the filter need only be computed

once for a single image. This filter can be applied to the remaining images as the

line artifacts remain constant throughout an experiment.

In the case of vertical fluid flow, the flows frequency components are located

along the horizontal midline. To attenuate the vertical line artifacts while preserv-

ing the fluid flow, multiple Gaussian reject filters are included along the midline

that are given by H∗∗
Hn(u, v) from eq. (2.32). Vertical notch filtering does not in-

fluence the fluid flow, therefore the vertical notch filter H∗∗
V n(u, v) from eq. (2.27)

is used. The resulting applied filter is therefore

H(u, v) = HLp(u, v) · H∗∗
Hn(u, v) · H∗∗

V n(u, v) . (2.33)

The combined filter H(u, v) used for filtering data with horizontal fluid flow is

constructed in a similar manner. For these data-sets the fluid flows frequency com-

ponents are located along the vertical midline. This midline is therefore omitted

when constructing H(u, v). Thus the included vertical notch filter is H∗
V n(u, v)

from eq. (2.23). Horizontal notch filtering will not influence the fluid flow, there-

fore the horizontal midline filter H∗
Hn(u, v) from eq. (2.31) is applied. The re-

sulting combined filter is therefore

H(u, v) = HLp(u, v) · H∗
Hn(u, v) · H∗

V n(u, v) . (2.34)
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Results and conclusion

The developed procedure is applied for filtering X-ray image data-sets with ei-

ther vertical or horizontal fluid flow. The main focus has been on filtering image

data-sets from experiments performed on Bentheimer sandstones. The procedure

works for data-sets from other types of experiments as well, and the result of fil-

tering an image from a Berea sandstone experiment is included. Good results are

obtained and the procedure removes much of the vertical and horizontal line arti-

facts. This is true for both for TIFF and JPEG images. Here TIFF images are used

due to better intensity resolution. In Paper A JPEG images were used.

3.1 Filtering results

In Figure 3.1 the result of filtering a water flooding experiment on a Bentheimer

sandstone is displayed. On the upper row selected input images are shown. On

the middle row the corresponding output after filtering with filter H(u, v). Since

the flow runs vertically the combined filter from eq. (2.33) is used. On the lower
row the difference between input and output images are shown. Observe that good

results are obtained. The filtering procedure attenuates the vertical and horizontal

line artifacts while preserving the fluid flow. This is confirmed by the difference

plots. The horizontal intensity shifts visible in the input images are also present

in the results. Wraparound errors are not completely eliminated since H(u, v)
is constructed in the frequency domain. They can be observed along the vertical

image boundaries where the horizontal line artifacts are more visible than to the

interior. These errors are handled by image extension, which is covered further in

Section 3.2.

Image filtering of other time-series yields similar results as in the previous

example. In Figure 3.2 the result of filtering a polymer flooding experiment on a

Bentheimer sandstone is shown. The filter H(u, v) is constructed by eq. (2.33)
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(a) (b) (c)

Figure 3.1: Water flooding experiment. The upper row displays selected input images,

the middle row the corresponding output after frequency domain filtering and the lower
row the difference between input and output images. Observe that line artifacts are largely

attenuated while preserving the fluid flow, which is confirmed by the difference plots.

as in the previous example, and also here the filtering procedure removes much of

the vertical and horizontal line artifacts while preserving the fluid flow. As for the

water flooding experiment, filtering yields good results and artifacts are largely

attenuated. Also here some wraparound errors are visible along the vertical image

boundaries. The horizontal intensity shifts seen in the input images are also visible

in the output images.
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(a) (b) (c)

Figure 3.2: Polymer flooding experiment. The upper row displays selected input images,

the middle row the corresponding output after frequency domain filtering and the lower
row the difference between input and output images. Observe that the line artifacts are

attenuated while preserving the fluid flow.

In Figure 3.3 the performance of the method when applied to an image data-

set acquired from a gas flooding experiment on a heterogeneous Berea sandstone

is shown. For this experiment the rock slab was completely saturated by water

prior to flooding. In (a), a selected slice of the input image data-set is shown.

It is observed that gas flows horizontally, choosing the way of least resistance.

The typical horizontal and vertical image artifacts are also visible. Since the flow
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(a) (b) (c)

Figure 3.3: Gas flooding experiment. In (a), an input image is shown and in (b), the

resulting output after filtering. Observe that the horizontal and vertical line artifacts have

been largely attenuated while preserving the fluid flow. In (c), the difference image con-

firms that the filter attenuate artifacts while preserving the fluid flow.

runs horizontally the combined filter H(u, v) from eq. (2.34) is applied. In (b),

the resulting output after frequency domain filtering is shown. It is observed that

the filtering procedure successfully attenuates most of the vertical and horizontal

image artifacts. Compared to the two previous examples the horizontal artifacts

are not as well attenuated since the flow runs horizontally. Good results are, how-

ever, obtained and there are few wraparound errors. In (c), the difference image

confirms that the image artifacts are attenuated while preserving the fluid flow.

3.2 Wraparound error handling

The influence of wraparound errors are made less severe by image extension in

which the input image boundary pixels are replicated a certain number of times

prior to zero-padding. In Figure 3.4 the effect of image extension is illustrated. In

(a), the input image is shown, and in (b)-(f), the filtered outputs after extending

the input image by 0, 100, 200, 400 and 600 pixels, respectively, in all directions.

Wraparound errors are observed along the horizontal and vertical image bound-

aries. In (b), both the vertical and horizontal line artifacts are clearly visible along

the image boundaries. Along the horizontal image boundaries a pixel intensity

drop is observed. It is due to vertical midline filtering and is also visible in (c).

The influence of wraparound errors lessen as the input image is extended by more

pixels and become difficult to perceive. Visually there is little difference in the

outputs when the input image has been extended by 200 pixels or more. The inte-

rior of the images does not appear to be influenced by image extension and there

is little difference between the results.

In Figure 3.5 vertical and horizontal cross section plots of the input and the

filtered results confirms this trend. Observe that filtering greatly reduce the noise

level in the image signal compared to the input. Image filtering without first per-

forming image extension results in an intensity drop at the image boundaries,
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: Wraparound error handling. In (a), the input image is shown, and in (b)-

(f), the filtering output after extending the image by 0, 100, 200, 400 and 600 pixels,

respectively, in all directions. Observe that close to the image boundaries the horizontal

and vertical line artifacts are better attenuated when the input image has been extended by

more pixels. To the interior of the images few differences are observed. At the horizontal

image boundaries a drop in pixel intensities are observed in (b)-(c). This is due to vertical

midline filtering. Visually, there is little difference when the input image is extended by

200 pixels or more.

which is clearly visible in both cross section plots. This intensity drop is reduced,

or eliminated, as the input image is extended by more pixels. For the vertical

cross section plots in (a) this intensity drop is also visible in the outputs when the

input image has been extended by up to 200 pixels. When the input image has

been extended by 400 pixels or more, the cross section plots are similar. For the

horizontal cross section view in (b) the outputs are similar as long as they have

been extended by more than 100 pixels. To the interior of the image there is lit-

tle difference between cross section plots of the output images. This indicates

that the filtering procedure works equally well to the interior regardless of image

extension.



26 Results and conclusion

0 1000 2000 3000
0

500

1500

2500

 

 
Input
Ext. 0
Ext. 100
Ext. 200
Ext. 400
Ext. 600

(a)

0 1000 2000 3000
800

1200

1600

2000

 

 
Input
Ext. 0
Ext. 100
Ext. 200
Ext. 400
Ext. 600

(b)

Figure 3.5: Cross section plots. In (a) and (b) vertical and horizontal cross section plots

are presented, respectively. The input images pixel intensities have more variation than

the pixels coming from the filtered images. When the input image is processed without

including extension, the output image experience an intensity drop at the boundaries.

Vertically this can also be observed up to extension by 200 pixels.

The signal-to-noise ratio (SNR) can be applied to measure how close the fil-

tered image g(x, y) is to the input image f(x, y) by computing

SNR =

∑M−1
x=0

∑n−1
y=0 g(x, y)2

∑M−1
x=0

∑n−1
y=0 [g(x, y) − f(x, y)]2

. (3.1)

The closer g(x, y) is to f(x, y) the larger the SNR will be due to smaller error

[11]. Computing SNR for the various extensions is used to evaluate how they

influence the filtering result. In Figure 3.6 it is observed that SNR increase until

the input image has been extended by 200 pixels, it then reaches a steady state

and remains more or less fixed when increasing the number of pixels. Computing

the average SNR confirms this. It is greatest when extended by 200 pixels, but

does not decrease much when extending by more pixels. Thus, image extension

reduces the effect of wraparound errors.

To summarize, it has been illustrated that visually there is little difference in

the output images when the input image has been extended by 200 pixels or more.

This is also true for SNR computations. However, in the vertical cross section

plots the graphs appear to reach steady state when extended by 400 pixels or more.

Therefore, to avoid the intensity drop at the horizontal image boundaries all input

images are extended by 400 pixels in all directions.
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Figure 3.6: Signal-to-noise ratio. In (a), observe that SNR increase with increasing

image extension until reaching steady state. Little variation is seen after the input image

has been extended by 200 pixels or more. This is confirmed in (b) where the average SNR

over all images in a single time-series is computed.

3.3 Conclusion

The objective of this work was to improve the presentation of X-ray image data-

sets of fluid displacement processes acquired using an in-house X-ray scanner.

It produces images that are corrupted by both periodic vertical and non-periodic

horizontal line artifacts. To improve the image quality advanced image filtering is

required. Good results are obtained and the image artifacts are largely attenuated.

The line artifacts are visible in the frequency domain as frequency ridges.

Frequency domain filtering is therefore a natural option. The frequency ridges are

semi-automatic detected before constructing accurate reject filters. It is sufficient

to compute the frequency filter H(u, v) for a single image since the artifacts fre-

quency components remain constant within an image time-series. The filtering

procedure largely attenuate both the horizontal and vertical line artifacts without

distorting the fluid flow.

While constructing the filters care must be taken not to distort the fluid flow.

Since the flow runs either horizontally or vertically parts of the flows frequency

components will be located at the vertical or horizontal midline ridge, respectively.

Therefore, to ensure that the fluid flow is not modified the constructed filters needs

to take the direction of the flow into account.

To obtain satisfactory filtering results wraparound errors need to be handled.

In this work they are handled by image extension in which boundary pixels are

replicated, followed by zero-padding. This will ensures that wraparound errors

have little influence on the resulting filter outputs. Since the filter H(u, v) is

constructed in the frequency domain wraparound errors will, however, to a certain
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degree always be present.

The filtering procedure can be applied to both TIFF and JPEG images. Good

and similar results are obtained for both file-types, although TIFF images have

better intensity resolution.

3.4 Future work
The image time-series are generated from sub-section scanning in which each

section is scanned at different time-points and later concatenated. Currently, this

time difference is not corrected for and the sub-image registration is done manu-

ally by a trained user. There are therefore room for some improvements. Firstly,

the sub-image registration process should be automated using image registration.

Secondly, the time difference within each image slice should be corrected for in

the future by shifting the sub-images in time prior to concatenating them. There

is also a time difference within each sub-image as they are generated by scanning

from one side to the other. Correcting for this time difference will be difficult.

The presented filtering procedure largely attenuates the vertical and horizontal

image artifacts without distorting the fluid flow. Wraparound errors are, however,

visible at the image boundaries. In the future improved handling of wraparound

errors should be included to further limit their influence.

In the future, it would be interesting to segment the filtered data-sets, which

will make it possible to do various types of computations on the data. It would

for instance be interesting to extract the shape of the fluid flow and measure the

length and shape of fingers for different types of experiments. This would yield

improved knowledge of fluid flow in porous media and facilitate modeling. Prior

to segmentation the horizontal intensity shift present in the image data-sets should

be corrected for.



Part II

Segmentation of vuggy
carbonate rock images





Chapter 4

Introduction

It is commonly understood that carbonate reservoirs holds much of the world’s

oil and gas reserves. To better understand fluid flow properties in carbonate rocks

pore space characterization is of importance. This is commonly done by labora-

tory experiments where different rock properties are measured such as porosity,

permeability, dispersion characteristics, pore size distributions and capillary pres-

sure. Another approach that is gaining more popularity is to image the samples

and compute properties directly from the digital image volumes.

In this part of the thesis the objective is to analyze the performance of various

image segmentation techniques applied for segmenting CT scans of vuggy car-

bonate rocks. Image segmentation is applied to obtain a 3D binary representation

of the vuggy pore space. It divides an intensity image into regions based on some

given criteria, such as homogeneous voxel intensities. This will provide better

insight into the pore spaces connectivity and also allows for the computation of

various pore space characteristics such as porosity, pore length distribution and

volume distribution. The computations are performed in both 2D and 3D, and a

comparison of the results is given.

It can be difficult to differentiate between image phase in intensity images,

and the image histograms yield overlapping histogram populations. For high res-

olution images this makes it challenging to classify voxels at image object bound-

aries. As the image resolution decreases it becomes increasingly difficult to dif-

ferentiate between the pore space and rock matter in the image data-sets. The

computations show that the segmentation methods perform well for high resolu-

tion μCT-scans. When the image resolution decrease a larger portion of the image

voxels are wrongly classified. The computed porosity is, due to image resolution,

underestimated when compared to the measured porosity from laboratory experi-

ments.

Five different segmentation methods are evaluated. The goal is to determine

which method results in the best segmentation at varying image resolutions. The
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three first methods are global thresholding techniques, including basic global seg-
mentation, as well as the Ridler and Calvard’s (RC) method [25] and Otsu’s
method [23], which are iterative approaches. These methods computes a hard

threshold that is applied for separating the pore space from rock matter. They are

included as a reference and the two more complex methods should ideally provide

an improvement.

The two remaining methods are thresholding by indicator kriging (IK) [20]

and the piecewise constant level set (PCLS) method [15]. IK is a local threshold-

ing method that segments an image into two populations by using a local spatial

covariance estimate and IK, followed by a probability estimate. It is encountered

in the literature for segmenting image data-sets of vuggy carbonate rocks (see e.g.

[1, 16]). To apply the IK method to our data-sets the method has to be slightly

modified to account for three-phase image data-sets. The PCLS method is a re-

gion based segmentation method that can detect image object boundaries both

with and without gradient information. It segments an image by minimizing an

energy functional. The method is valid for multiphase segmentation problems and

can be applied directly without modifications to our data-sets. In addition, in this

work, a 3D graph cut solver for the PCLS method has been developed. The solver

is based on the existing 2D graph cut algorithm presented in [2]. This resulted in

a fast solver when compared to the traditional Euler-Lagrange approach. It is an

accurate and stable solver, which is not very sensitive to the initial value.

4.1 CT imaging of vuggy carbonate rocks

Vuggy carbonate rocks are heterogenous porous media that are mainly composed

of carbonate minerals. The pore size vary throughout the rock samples. The

smaller pores are not visible to the human eye, although some (but not all) are

visible under the microscope. The larger pores are, however, visible without mag-

nifying the samples. The pore space can therefore be divided into two categories,

the matrix and vuggy porosity. The matrix porosity is the smaller type of poros-

ity and mainly consists of intergranular or intercrystalline porosity. The vuggy

porosity is the visible larger porosity, and can be interconnected either through

the matrix porosity or through touching vugs [18]. Only a brief introduction to

vuggy carbonate rock is given here. For a more comprehensive introduction con-

sider carbonate reservoir textbooks, e.g. [18].

CT imaging of vuggy carbonate rocks is a nondestructive and noninvasive

technique that can be used to obtain a digitized map of the carbonate minerals

and pore space. The image data can be acquired at varying resolutions, which

again yields varying degree of accuracy in the image volume. High-resolution

μCT scans yields a detailed description of the vuggy porosity and also parts of the
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matrix porosity. Depending on the resolution the amount of porosity found below

image resolution will vary. For CT imaging each voxel is an average measurement

of a small region. Thus, each voxel can contain information from several different

materials. This is referred to as the partial volume effect [14]. It yields a blurring

effect that becomes more visible for decreasing image resolution. Image object

boundaries become less distinct, making it more and more difficult to distinguish

between different objects in the image volume.

Other image artifacts, in addition to the partial volume effect, are also encoun-

tered in CT images. Two such artifacts are beam hardening and ringing effects.

Beam hardening is due to an increase of mean X-ray energy as it passes through

an object, which can lead to varying voxel intensity values for the same material.

The ringing effect is often caused by faults in the detector and produces circu-

lar artifacts centered about the rotational axis [14, 37]. Furthermore, CT imag-

ing generates a large amount of image data. This can lead to computer memory

problems when processing the data, especially for 3D image data-sets. For more

background information on CT imaging consider e.g. [31, 14, 37].

4.2 Carbonate rock image data-sets

The vuggy carbonate rock samples considered in this work were acquired from an

outcrop of the Prebetic sub-zone, Betic range, Spain. A single block was removed,

and further divided into several samples. Here we examine CT images of three

different cylindrical core samples, acquired in 3D, of which selected slices can

be observed in Figure 4.1. The core samples vary in size and so does the image

resolution. All the image data-sets are truly cylindrical, which is ensured in a

pre-processing step.

In Figure 4.1(a) data-set A is observed. It was obtained from the smallest core

sample that measures approximately 5 mm in diameter and 5.5 mm in length. Of

the data-sets it has the highest uniform resolution of 11.4 μm and therefore the

most detail can be observed. The dark gray regions corresponds to vugs, while the

lighter gray regions corresponds to two different rock materials. In its histogram,

shown in (d), the three peaks indicate that the image phases are well separated.

In addition to the three image phases, some high-intensity regions exists. These

regions can lead to integer overflow that needs to be corrected in a pre-processing

step. The data-set was obtained using a μCT scanner, which introduced some

ringing artifacts in the first few slices.

In Figure 4.1(b) data-set B is observed. It was obtained using the same μCT

scanner as the one used for data-set A and also here ringing artifacts has been

introduced. This data-set is obtained from a larger core sample, which measured

approximately 2.5 cm in diameter and 3 cm in length. It has uniform resolution
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Figure 4.1: Three different 3D image data-sets are encountered. Data-set A is displayed

in (a), which has the highest uniform resolution of 11.4μm and therefore also displays

the most detail. Data-set B is shown in (b). It is obtained from a larger core sample

and has uniform resolution of 57.16μm. Data-set C is shown in (c), which is obtained

from the largest core sample. It is blurry, which makes it challenging to differentiate

between the pore space and rock matter. It has low non-uniform spatial resolution of

0.305 × 0.305 × 1.5mm. The histogram in (d) confirms that data-set A is detailed as

it has three well separated histogram peaks. The one in (e) shown that less detail can

be observed from data-set B, although also here three different histogram peaks can be

observed. The histogram in (f) clearly shows that data-set C is quite blurry as its histogram

has the shape of a skewed gaussian. The background voxels in black are not included in

the histograms.

of 57.16 μm . Due to lower image resolution fewer details can be observed when

compared to data-set A. Even so, three different image phases are observed also

here. They are visible in the image histogram as well, shown in (e), although

the peaks are not as well separated as for data-set A. This is due to lower image

resolution that makes the partial volume effect greater. Also for this data-set a

fourth image phase can be observed in a few locations containing high intensity

voxel values.
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In Figure 4.1(c) data-set C is shown. It is of the larges core sample that

measures approximately 10 cm in diameter and 21 cm in length. This data-set

is scanned using a different CT scanner than the two previous data-sets, and it has

low non-uniform spatial resolution of 0.305 × 0.305 × 1.5mm. Due to its low

resolution the partial volume effect is large and as a result the data is blurry. It

is therefore more challenging to determine the pore space. This is also confirmed

by its image histogram, shown in (f), which has the shape of a skewed gaussian.

Thus, it is not possible to determine image phases directly from the histogram.

Of the three data-sets, data-set A is the easiest data-set to analyze. As the im-

age resolution decreases image object boundaries become more and more blurry.

Although data-set B also has high resolution, it can be difficult to distinguish

between different image phases for this data-set. This makes data-set B more

challenging to analyze than A. Since data-set C has low non-uniform image reso-

lution it can be difficult to determine image objects, which makes this data-set the

most challenging to analyze. Data-sets A and B are considered to be three-phase.

The fourth phase containing high intensity regions is ignored as it is not visible

in the image histogram. For data-set C it is difficult to determine the number of

phases. Since it is acquired from the same block of rock as data-sets A and B, it

is considered to be three-phase as well.

4.3 Expected visible porosity

To compute the expected visible porosity, φv, of the data-sets the measured poros-

ity, φm, from laboratory experiments is used. For data-set B the porosity has

been measured to φm = 31.4 %. For data-set A and C the porosity has not been

measured. However, in [35] the average measured porosity of several samples ac-

quired from the same block of rock was 29 %. It is assume to be the approximate

porosity of these two data-sets.

An approximate measure of φv can be computed by combining φm with pore

size distributions obtained from nuclear magnetic resonance (NMR) experiments.

Pore size distributions were computed by [35] where they measured the T2 dis-

tributions of three different vuggy carbonate rock core samples that were approx-

imately 3.8 cm in diameter and 5 cm in length. For these experiments the pore

size distribution were not converted from μs to μm. Later in [8] the pore size

distribution of two core samples were measured by combining diffusion and re-

laxation measurements. Their experiments were performed on two core samples

of approximate diameter 2.5 cm and length 3 cm, which were extracted from the

same block of rock as our samples. They resulted in the discrete pore size dis-

tributions, D1 and D2, given in μm, that are are displayed in Figure 4.2. Each

point represents the porosity proportion for a given pore size. Since these NMR
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Figure 4.2: NMR pore size distributions of two data-sets. Each point represents the

porosity proportion for a given pore size [8].

Data-set A Data-set B Data-set C
φv 26.5 % 25 % 9 %

Table 4.1: Computed expected visible porosity, φv. It yields an indication of how much

porosity it is possible to detect in each data-set.

measurements have been converted from μs to μm our reasoning is based on their

results.

To compute the CT images expected visible porosity, φv, the two distributions,

D1 and D2, is used. φv is here computed by multiplying φm with the average

portion of porosity above image resolution R μm. That is,

φv = φm · 1

2

∑
x≥R

(
D1(x) + D2(x)

)
. (4.1)

It yields an indication of how much porosity it is possible to detect in the image

volumes. For data-set A φv = 26.5 %, for data-set B φv = 25 % and for data-

set C φv = 9 %. These measurements are also given in Table 4.1. In the pore

size distributions the uncertainty increase with the pore size. It might therefore

be difficult to quantify the exact amount of larger vugs. This is of importance for

data-set C where the image resolution, R μm, is located close to peak of the two

distributions. In addition, the NMR experiments were performed on much smaller

samples than data-set C. The computed expected visible porosity for this data-set

is therefore not as reliable and it is likely that it has been underestimated.



Chapter 5

Image segmentation techniques

There exists a vide variety of image segmentation techniques. In this chapter

five different segmentation methods that are applied for segmenting the CT vuggy

carbonate rock data-sets are presented. They separate an image I0 into regions

based on criteria that vary for each individual method. The three first methods

are global thresholding methods, namely basic global thresholding, Ridler and
Calvard’s (RC) method and Otsu’s method. The two remaining methods thresh-
olding by indicator kriging (IK) and the piecewise constant level set (PCLS)

method are more complex. In the following a brief introduction to the methods is

given.

5.1 Basic global thresholding

Global image thresholding is the simplest way of performing image segmentation.

Threshold values are often chosen after first evaluating the normalized histogram

h of I0, given by

hi =
1

N

∑
(I0 = i) for i = 0, . . . , L − 1 , (5.1)

where N is the number of image voxels and L is the maximum voxel intensity.

It yields the distribution of the voxel intensities and can be regarded as a proba-

bility distribution since it sums to 1. For two-phase image segmentation a single

threshold T is required and the binary map Ib is then computed by

Ib = I0 < T . (5.2)

The threshold T is ideally selected so that it groups together voxels with close

to uniform voxel intensity values. For multiphase image segmentation, multiple
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thresholds Tj , j = 1, . . . , n − 1, are required and multiple binary maps Ij
b are

computed,

I1
b = I0 < T1 , I2

b = T1 ≤ I0 < T2 , . . . , In
b = Tn−1 ≤ I0 . (5.3)

The resulting segmented image can then be represented by for instance

Is = 1 · I1
b + 2 · I2

b + . . . + n · In
b , (5.4)

where n is the number of image phases. A more thorough introduction to global

image thresholding can be found in image processing textbooks such as [11].

Within petroleum research, the vuggy pore space is often determined by global

thresholding. A single hard threshold T is often set either based on user preference

or by using the measured porosity φm from laboratory experiments to compute the

threshold. In the latter case the threshold is computed by,

T = {t : max
t∑

i=0

hi ≤ φm} , for t ∈ [0, L − 1] . (5.5)

This approach does not take advantage of the image information nor the available

image histogram information. It is therefore expected that better results can be

obtained by taking the image data and histogram information into account. In this

work threshold T is computed from the expected visible porosity, φv, from eq.

(4.1) instead of φm.

5.2 The Ridler and Calvard’s method
The Ridler and Calvard’s (RC) method [25] is an iterative global thresholding

method. It computes the optimally global threshold values by locating the mid-

point between the means of two adjacent histogram peaks. These peaks indicate

distinct group of voxels with similar intensity values. The computation terminates

once the threshold values converge. In this work three-phase segmentation prob-

lems are mostly encountered. Thus, the method is presented for such problems

and two thresholds are computed. They are iteratively computed by

T ′
1 = limk→∞ T k

1 , for T k
1 =

μk
1+μk

2

2

T ′
2 = limk→∞ T k

2 , for T k
2 =

μk
2+μk

3

2

. (5.6)

For each iteration k the means {μk
1, μk

2 , μk
3} of the three image phases are com-

puted by

μk
1 =

∑T k
1

i=0 ihi∑T k
1

i=0 hi

, μk
2 =

∑T k
2

i=T k
1 +1

ihi∑T k
2

i=T k
1 +1

hi

, and μk
3 =

∑L−1
i=T k

2 +1 ihi∑L−1
i=T k

2 +1 hi

. (5.7)
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The above formulation can easily be extended to handle images with more phases

or reduced in the case of two phase segmentation. The iterative scheme converges

quickly and globally optimal threshold values are found.

For the vuggy carbonate rock data-sets the first threshold T ′
1 separates the pore

space from the first rock phase, while the second threshold T ′
2 separates two dif-

ferent rock phases from each other. In this work, the goal is to obtain a good

representation of the pore space. Thus, it is only the first threshold that is of inter-

est. All voxels greater than T ′
1 can therefor be considered as part of rock matter,

while the remaining voxels are considered as porous. The binary pore space is

therefore given by

Ip = I0 > T ′
1 . (5.8)

5.3 Otsu’s method

Otsu’s method [23] is an iterative global image segmentation technique that com-

putes the globally optimal thresholds by maximizing the between class variance.

These classes can also be viewed as image phases. In this work three-phase image

data-sets are encountered and therefore the three-phase Otsu’s method is required.

In the following, the generalized multiphase approach is presented.

The multiphase Otsu’s method separates an image into a given set of classes,

Cj , j = 1, . . . , K, by finding the set of thresholds, {T ′
1, . . . , T

′
K−1}, that maxi-

mizes the between class variance,

σ2
B(T ′

1, . . . , T
′
K−1) = max

0<T ′
1<...<T ′

K−1<L
σ2

B(T1, . . . , TK−1) . (5.9)

This yields the set of globally optimal thresholds that best separate the image into

image phases. They are obtained by statistical computations on the normalized

image histogram, h. The general formula for σ2
B is given by

σ2
B =

K∑
j=1

Pj(μj − μG)2 , (5.10)

where Pj is the probability of occurrence of class Cj ,

Pj =
∑
i∈Cj

hi , for j = 1, . . . , K , (5.11)
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and μj is the corresponding class mean. It is computed by

μj =
∑
i∈Cj

iP (i|Cj)

=
1

Pj

∑
i∈Cj

iP (i)P (Cj|i) (5.12)

=
1

Pj

∑
i∈Cj

iP (i) , since P (Cj|i) = 1 , j = 1, . . . , K .

The formulation for the class mean is the same formulation as the one used by

the RC method in eq. (5.7), only using a generalized notation. To compute σ2
B an

estimate of the global mean, μG, of the entire image

μG =
L−1∑
i=0

ihi (5.13)

is also required. Thus, σ2
B is the sum of weighted variances of the class means,

μj , and the global mean, μG. Both the probability of class occurrence Pj and class

mean μj needs to be computed for all possible threshold combinations in order to

find the combination that maximize the between class variance, σ2
B. For the three-

phase segmentation problems encountered in this work, the number of classes is

K = 3 and two global thresholds {T ′
1, T ′

2} needs to be computed. This makes

the maximization problem a 2D problem. The method is more computational

expensive when compared to the two former methods. For more information con-

sider e.g. [23, 11]. Also for Otsu’s method the first threshold T ′
1 separates the

pore space from the first rock phase while the second threshold T ′
2 separates the

two rock phases from each other. Thus, the porosity map is also here computed

according to eq. (5.8).

5.4 Thresholding by indicator kriging

The indicator kriging (IK) method was proposed by Oh and Lindquist in 1999

[20]. It introduced a local thresholding scheme for two-phase segmentation. The

method segments an image into two populations, Π0 and Π1, by using a local spa-

tial covariance estimate and IK, followed by a probability estimate. To solve the

problem IK uses the ordinary kriging (OK) framework and the computations are

performed on smoothed indicator functions. The method requires that a fraction

of the voxels are a priori assigned to one of the two populations. The remaining

voxels are left to be assigned by IK.



5.4 Thresholding by indicator kriging 41

5.4.1 Introduction to ordinary kriging
The OK method provides a method for estimating the unknown value in one lo-

cation from neighboring data points using a statistical model. It estimates the

unknown value, z(x0), as an outcome of a random variable (RV), Z(x0), in lo-

cation x0 by estimating Z̃(x0) as the weighted linear combination of neighboring

RVs, Z(xα),

Z̃(x0) =
n∑

α=1

λαZ(xα) . (5.14)

The neighboring RVs, Z(xα), have known outcomes, z(xα), for α = 1, . . . , n,

and λα are the linear weights [12, 20]. The n + 1 neighboring data points make

up the kriging window, Kw, which is centered on x0 [20]. By assuming a circular

window, Kw is given as a disk in 2D or a ball in 3D.

For the OK method the statistical model is assumed stationary. The univariate

and bivariate probability laws are then assumed independent of the location within

the domain. The RVs are characterized by a common but unknown expected value,

E{Z(xα)} = μz , ∀xα ∈ Kw , (5.15)

which is valid for all RVs within the kriging window, Kw. The covariance function

between pairs of RVs depends only on the distance h separating them. It is given

by

Cov(Z(xα), Z(xβ)) = C(xα − xβ) = C(h) , ∀xα, xβ ∈ Kw , (5.16)

and is computed during the kriging operation. The covariance function between

two RVs is in the following also denoted by Cαβ . It yields a measurement of how

they change together. When the output is a large positive number the two RVs

are similar and in the opposite case they are not alike. The covariance function

is isotropic since it depends only on the distance, h = ||xα − xβ||, between two

RVs [12, 20]. The covariance is related to the semi-variogram γ(h), which can be

expressed as

C(h) = c − γ(h) , (5.17)

where c is a constant that remains fixed throughout the computations. The semi-

variogram is a measurement of the variance of the difference between two RVs,

Z(xα) and Z(Xβ). To ensure that the OK method yields an unique solution the

semi-variogram needs to be modeled [6, 12, 13]. For more information on the

covariance function and its relation to the semi-variogram, as well as modeling of

the semi-variogram, consider e.g. [6, 12, 13].
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Minimum variance unbiased estimator

The OK method is a minimum variance unbiased estimator. It is unbiased since it

requires that the modeled error RV, R(x0) = Z(x0) − Z̃(x0), is equal to zero,

E{R(x0)} = E{Z(x0) − Z̃(x0)} = 0 . (5.18)

It can be shown that this requirement is satisfied as long as the estimator satisfies

the constraint,

n∑
α=1

λα = 1 . (5.19)

This constraint is referred to as the linear constraint since it impose a constraint

on the linear weights λα for α = 1, . . . , n [12]. The OK method is a minimum

variance estimator since it minimize the variance of the error RV, R(x0). To do so

an expression for the error variance, Var{R(x0)}, is needed. It can be expressed

as

Var{R(x0)} = Var{Z(x0)} +
n∑

α=1

n∑
β=1

λαλβCαβ − 2
n∑

α=1

λαCα0 . (5.20)

To ensure that the estimator is unbiassed the linear constraint is included in the

expression for the error variance by adding an additional term,

Var{R(x0)} = Var{Z(x0)} +
n∑

α=1

n∑
β=1

λαλβCαβ

−2
n∑

α=1

λαCα0 + 2ν(
n∑

α=1

λα − 1) . (5.21)

The introduced term ensures that the error variance is minimized while naturally

satisfying the constraint. Since the linear weights λα sum to 1 the introduced term

does not change the equality. The error variance is then minimized by setting its

partial derivatives to zero [12]. A more detailed introduction to the estimator and

derivation of the partial derivatives can be found in [12].

Ordinary kriging system

The ordinary kriging (OK) system is obtained by setting the partial derivatives to

zero, which yields n + 1 equations,∑n
β=1 λβCαβ + ν = Cα0

∑n
β=1 λβ = 1

, for α = 1, . . . , n . (5.22)
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Solving the linear system yields the vector that minimize the error variance,

Var{R(x0)}, from eq. (5.21). The linear system might produce negative weights

that should be corrected by setting them to zero as they can produce negative es-

timates. The system has a unique solution as long as it is non-singular and the

uniqueness is ensured through modeling of the semi-variogram [12]. Consider

[12] for more detailed information.

5.4.2 Image segmentation by indicator kriging
The IK method is a two step segmentation procedure. In the first step a portion of

the voxels are assigned to one of the two populations, Π0 and Π1. In the second

step the remaining voxels are assigned by IK. This makes the method a local

thresholding method. By using indicator functions the IK problem can be solved

using the framework of the OK method [20].

A priori voxel assignment

In the first step of the IK method a portion of the voxels are assigned to either pop-

ulation Π0 or Π1. This initial segmentation of the data is performed by assigning

all voxels below threshold T0 to population Π0 and all voxels above threshold T1

to population Π1. Thus we have

Π0 = {x : I0(x) ≤ T0} (5.23)

and

Π1 = {x : I0(x) ≥ T1} . (5.24)

The two thresholds can be determined from the image histogram of the original

data, either by a trained user or based on some method. The remaining undeter-

mined voxels,

x /∈ {Π0 ∪ Π1} , (5.25)

are assigned by IK. These voxels mainly lies along the image object boundaries

separating Π0 and Π1 [20].

Segmentation by indicator kriging

In the second step the IK method assigns the remaining undetermined voxels to

either population Π0 or Π1 by computing the probability that a voxel x0 belongs

to one of the two populations using the OK framework. The IK method requires

that indicator functions are computed from the image data. The OK system is then

solved for indicator covariance functions prior to estimating the probability that

voxel x0 belongs to either Π0 or Π1.
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Indicator functions

Indicator functions are used to indicate whether or not a voxel is a member of a

given population. For the IK method smoothed indicator functions are used in

which voxels are given an indicator value in range [0, 1]. They are defined as

î(Ti; x) =

⎧⎪⎨
⎪⎩

1 , if I0(x) < Ti − sl
i

0 , if I0(x) > Ti + sr
i

F (Ti+sr
i )−F (I0(x))

F (Ti+sr
i )−F (Ti−sl

i)
, otherwise

, for i = 0, 1 .(5.26)

The Ti’s are the initial thresholds from the a priori assignment step and F (·) is the

cumulative distribution function,

F (l) = Pr{I0(x) ≤ l} , for l = min{I0}, . . . , max{I0} . (5.27)

The parameters sl
0, sr

0, sl
1 and sr

1 are defined as sl
0 ≡ sr

1 ≡ 0 and sr
0 = sl

1 =
(σ0T1+σ1T0)

(σ0+σ1)
, where σi is the sample standard deviation of population Πi,

σi =

(
1

Ni − 1

Ni−1∑
j=0

(I0(xj) − μ)2

) 1
2

, for μ =
1

Ni

Ni−1∑
j=0

I0(xj) , (5.28)

where xj ∈ Πi and Ni is the number of voxels in population Πi, i = 0, 1 [20].

The smoothed indicator functions are indicative of how likely it is that a voxel

x belongs to one of the two populations. All voxels given indicator value 1 are

indicated to belong to population Π0. Similarly, all voxels given indicator value 0
are indicated to belong to population Π1. The remaining voxels lies in a transition

region with indicator values in range
〈
0, 1

〉
.

Solving the indicator kriging method

Once the indicator functions are computed the IK problem can be solved by solv-

ing the OK linear system in eq. (5.22) for indicator covariance functions. The

linear system now becomes

∑n
β=1 λi

βCi
Iαβ + νi = Ci

Iα0

∑n
β=1 λi

β = 1
, for α = 1, . . . , n , i = 0, 1 , (5.29)

where the covariance function Ci
Iαβ is computed from the corresponding indica-

tor function. To ensure that the OK system yields an unique solution the semi-

variogram needs to be modeled. For a more detailed description of the semi-

variogram consider e.g. [12].
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The linear system might produce negative weights that should be adjusted.

For IK the weights λi
α are interpreted as probabilities. Thus, negative weights can

produce negative estimates [20]. In [20] they followed the procedure proposed

in [7] in which small positive weights are set to zero in addition to the negative

weights as they are the result of oscillating negative weights. The positive weights

are set to zero if they are smaller than the average magnitude of the negative

weights,

λ̄i =
1

n′

n′∑
γ=1

|λi
xγ
| , where λi

xγ
< 0 for γ = 1, . . . , n′ , (5.30)

and if their corresponding covariance Ci
Iα0 is less than the average covariance of

the negative weights,

C̄i =
1

n′

n′∑
γ=1

Ci
Ixγ0 . (5.31)

Probability estimate

Once the negative weights have been adjusted, the segmentation is completed by

computing the probability that the undetermined voxel x0 belongs to either Π0

or Π1. The probability estimate is expressed in terms of the linear weights and

indicator functions by

P (Ti; x0|n) = Pr{I0(x0) ≤ Ti}

=
n∑

α=1

λi
α î(Ti; xα) , for λi

α ≥ 0 , i = 0, 1. (5.32)

The probability that a voxel belongs to population Π0 is given by P (T0; x0|n)
whereas the probability that it belongs to population Π1 is 1 − P (T1; x0|n). The

undetermined voxel is assigned to the population with the largest probability,

Z(x0) ∈
{

Π0 , if P (T0; x0|n) > 1 − P (T1; x0|n)
Π1 , otherwise

. (5.33)

This completes the IK method. The computations are repeated for all the undeter-

mined voxels [20].

Majority filtering

During the a priori assignment step a certain number of voxels might be misclas-

sified. To limit this problem, majority filtering (MF) was included in [20] as a
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way to remove isolated voxels in the a priori assignment map. It is applied only

to those voxels a priori assigned to populations Π0 or Π1.

MF is a windowing method that change the population type of a voxel if it

is surrounded by voxels mostly belonging to the opposite population. The corre-

sponding entries in the indicator functions need also be updated. If a voxel x0 is

changed to Π0 then the indicator functions are reset to î(T0; x0) = î(T1; x0) = 1,

and similarly if it is changed to Π1 they are reset to î(T0; x0) = î(T1; x0) = 0
[20].

Once the segmentation process has been completed, a second pass of MF can

be applied. Also now the method is only applied to those voxels a priori as-

signed and the population type is changed only if the voxel is surrounded by vox-

els mostly belonging to the opposite population. For both MF passes a voxel

belonging to one population is said to belong to the opposite population if at least

60% of its neighbors belong to it [20].

5.4.3 Method modification for vuggy carbonate rock im-
ages

The original IK segmentation method is valid for two-phase image data-sets. The

CT images of vuggy carbonate rock encountered in this work are, however, three-

phase. Using the original IK formulation the first rock phase has a tendency to

be wrongly classified. To obtain reasonable segmentation results the method is

slightly modified.

A priori assignment step

The a priori voxel assignment step requires two thresholds, T0 and T1, to a priori

assign a portion of the voxels to Π0 or Π1. In this work the thresholds are com-

puted using a two step procedure. In the first step the Ridler and Calvard’s (RC)

method [25], introduced in Section 5.2, is employed. Two thresholds, T ′
1 and T ′

2,

are computed that separate the image phases since the vuggy data-sets contain

three different image phases. In the second step the two thresholds, T0 and T1,

required by the IK method are computed from T ′
1 since it separates the pore space

from rock matter. They are found by

T0 = T ′
1 − T ′

1 · f0 , for f0 ∈ Z
+ , (5.34)

and

T1 = T ′
1 + T ′

1 · f1 , for f1 ∈ Z
+ , (5.35)

where f0 and f1 are user defined. Given T0 and T1 the a priori population assign-

ment can be performed. The remaining voxels are assigned by IK.
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Figure 5.1: A priori population assignment for data-set A. In (a), an input image slice is

shown and in (b), the computed a priori assignment map. All voxels in gray are assigned

to population Π0, all light gray voxels are assigned to Π1 and the remaining voxels in

white are left undetermined. In (c), the two thresholds used in the a priori assignment

step is shown on the normalized image histogram. The arrows indicate the parts of the

histogram a priori assigned to Π0 and Π1.

In Figure 5.1 an illustration of this process is given for data-set A. In (a) an

input image slice is shown and in (b) the resulting partitioning after the a priori as-

signment process has been completed. All the voxels assigned to Π0 (pore space)

are shown in dark gray and all the voxels assigned to Π1 (rock) are shown in light

gray. The voxels in white are the undetermined voxels that mostly lies along the

image object boundaries. In 5.1(c) the normalized image histogram of the input

image is shown on which the two thresholds, T0 and T1, are indicated. The arrows

indicate the portions of the histogram a priori assigned to Π0 and Π1. Since it is

only the boundary between the pore space and rock that is of interest, the second

and third image phases are regarded as a single phase.

Adaptation of the indicator function

The smoothed indicator function, î(Ti; x) for i = 0, 1, from eq. (5.26) is indica-

tive of how likely it is that a voxel belongs to one of the two populations, Π0 and

Π1. It can be applied for two-phase image data-sets. Our data-sets are, however,

three-phase. This have to be taken into account when computing the indicator

functions.

One option is to treat the two rock phases as a single image phase. The stan-

dard deviation σ1 will then, however, become quite large. This influences in par-

ticular indicator function î(T0; x), which will have a tendency to wrongly indicate

the first rock phase as porous. This can be seen in Figure 5.2. By comparing the

input image in (a) to the first indicator function î(T0; x) in (b) it is observed that
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(a) (b) (c)

Figure 5.2: Problem original smoothed indicator functions. In (a) an input image slice

of data-set A is shown, and in (b) and (c) the corresponding indicator functions î(T0; x)
and î(T1; x), respectively. Observe in (b) that the encircled regions are wrongly indicated

to belong to population Π0. This problem is not observed for î(T1; x) shown in (c).

some regions, such as the encircled ones, are wrongly indicated to be closer to

porous phase than the rock phase. As a result, IK have a tendency to wrongly

assign this rock phase to Π0 instead of Π1 during the IK segmentation process.

Due to the formulation of the indicator function î(T1; x) in (c) is not noticeably

influenced.

Another option is to adapt the indicator function slightly by taking into account

that the objective is to locate the boundary between the pore space and rock matter.

The intersection between the two rock phases is not of interest. Therefore, all

voxels satisfying I0 > T ′
2 are said to be known as part of population Π1. This

leads to the modified smoothed indicator functions,

î(Ti; x) =

⎧⎨
⎩

1 , if I0(x) < max{min{I0}, Ti − sl
i}

0 , if I0(x) > min{T ′
2 , Ti + sr

i}
Fu−F (I0(x))

Fu−Fl
, otherwise

, (5.36)

for i = 0, 1. All voxels greater than T ′
2 are set to 0, indicating that they are

part of population Π1. The parameters sl
i and sr

i are as previously given by sl
0 ≡

sr
1 ≡ 0 and sr

0 = sl
1 = σ0T1+σ1T0

σ0+σ1
, and the first standard deviation σ0 is computed

from population Π0 as before. The second standard deviation σ1 is, however, now

computed for all voxels satisfying x ∈ {Π1 ∩{x : I0(x) ≤ T ′
2}}. The cumulative

distribution function has also been modified,

F (l) = Pr{I0(x) ≤ l} , for l = min{I0}, . . . , T ′
2 . (5.37)

It is only computed until T ′
2 is reached since all the voxels greater than T ′

2 are

defined to be part of population Π1. In the transition function, the upper limit Fu
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(a) (b) (c)

Figure 5.3: Modified indicator functions. In (a) an input image slice of data-set A is

shown, and in (b) and (c) the corresponding adapted indicator functions î(T0; x) and

î(T1; x), respectively. The encircled regions in î(T0; x) corresponding to the first rock

phase are now more correctly indicated to belong to population Π1.

and lower limit Fl are given by

Fu = F (min{T ′
2, Ti + sr

i} ) (5.38)

and

Fl = F (max{min{I0} , Ti − sl
i}) . (5.39)

This yields improved smoothed indicator functions that better indicates whether

or not a voxels belongs to Π0 or Π1 as can be observed in Figure 5.3. In (b) it

is seen that indicator function î(T0; x) now more correctly indicate that the first

rock phase belongs to population Π1. The indicator function î(T1; x) in (c) does

not appear to be influenced by the adaptation.

5.5 The piecewise constant level set method

The piecewise constant level set (PCLS) method was first proposed by Lie et al. in

2006 [15] as a region based image segmentation method for multiphase problems.

It segments an image by minimizing an energy functional. Traditionally this is

performed by solving an Euler-Lagrange equation, which is time consuming. In

this work the minimization problem is instead solved by computing the minimum
cut on a specially designed graph G . This graph cut solver was first introduced in

[2] for 2D problems. In Paper D it was extended for handling 3D problems.
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5.5.1 Introduction to the piecewise constant level set
method

The level set method was introduced by Osher and Sethian in 1988 [22]. It is an

active contour model that can be applied for image segmentation. The method

represents evolving fronts by embedding them in an higher dimensional function,

which is usually given as a signed distance function. This function is commonly

referred to as the level set function, ϕ. The evolving fronts are usually represented

by the zero level set, which allows for representing complicated structures that

do not depend on the discretization. Topological changes in the fronts, such as

splitting and merging, are naturally handled. The evolving fronts propagates under

forces in the normal direction of ϕ itself until (ideally) reaching steady state. This

steady state solution corresponds to the segmentation. To ensure that the problem

remains well-posed reinitialization of the level set function is required [21].

The Chan-Vese model [5] used the level set framework to solve the Mumford-
Shah model [19] for two-phase image segmentation problems. It is a region based

segmentation method that can detect image objects both with and without gradient

information. The method was later extended for handling multiphase segmenta-

tion problems in [34] by using several ϕ’s to represent the evolving fronts. Tradi-

tionally, the methods based on the level set approach are solved by first deriving an

Euler-Lagrange equation and then solving the problem using standard numerical

schemes.

The PCLS method [15] was later introduced as an alternative region based

segmentation approach for multiphase problems. It approximates an image I0 by

a piecewise constant image function Ĩ using a single PCLS function ϕ, which is

defined over the whole image domain Ω. In the original PCLS formulation the

Mumford-Shah energy functional was reformulated as

E(c, ϕ) =

∫
Ω

(I0 − Ĩ(ϕ))2dx̄ +
ν

2

n∑
i=1

∫
Ω

|∇ψi(ϕ)|dx̄ . (5.40)

It is minimized with respect to the mean phase values c and PCLS function ϕ.

For an n-phase segmentation problem Ω is partitioned into n subdomains {Ωi}n
i=1

and the PCLS function is defined as ϕ = i ∈ Ωi, for i = 1, . . . , n. The energy

functional also makes use of characteristic functions ψi, which are equal to 1 for

domain Ωi and 0 otherwise. Similar results can also be obtained by regularizing

φ directly (see e.g. [32]). The PCLS energy functional then becomes

E(c, ϕ) =

∫
Ω

(I0 − Ĩ(ϕ))2 dx̄ + ν

∫
Ω

|∇ϕ| dx̄ . (5.41)

This is the formulation used in this work. The first term is minimized when Ĩ
approximates I0 and its discontinuities represents image object boundaries. These
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discontinuities are modeled by the discontinuities of ϕ. The second term impose

regularization on ϕ. It ensures that the boundaries remains smooth and that small

objects are removed. Its influence is controlled by the parameter ν. The larger

ν is, the smoother the resulting segmentation will be. The mean phase values

c = {c1, . . . , cn} are computed by

ci =

∫
Ω

I0ψi(ϕ) dx̄∫
Ω

ψi(ϕ) dx̄
, ∀ i = 1, . . . , n , (5.42)

and the piecewise constant image function is found by

Ĩ(ϕ) =
n∑

i=1

ciψi(ϕ) , (5.43)

for a fixed ϕ. The PCLS function need not be reinitialized as it is represented as a

piecewise constant function. Consider Paper D for more details.

5.5.2 The piecewise constant level set method solved by
graph cut

Fast minimization of the PCLS energy functional from eq. (5.41) can be obtained

through representing the problem on a special graph G and computing the min-
imum cut on this graph. It was suggested in [2] to discretize the PCLS energy

functional directly to obtain a graph representable minimization problem. The

discretization yields

Ed(c, ϕ) =
∑
p∈D

(I0p − Ĩp)
2Δ + νTVd(ϕ) , (5.44)

where p corresponds to voxels, domain D has the same dimensionality as I0 and

Δ =
∏3

i=1 Δi. The grid spacing in direction i is Δi. The regularization term is

now given by the discrete total variation (TV) of ϕ, which is equal to the L1-

norm of the gradient. It was shown in [26] for denoising that using the L1 norm

preserves image edges while removing noisy artifacts. The regularization term

can then be represented on discrete form as

TVd(φ) =
∑
p∈D

∑
q∈N fκ(p)

1

2
ωpq|φp − φq|, for ωpq =

Δ

‖p − q‖2

. (5.45)

The edge weight ωpq between voxel p and q is divided by 2 since ωpq = ωqp. Voxel

q lies in the neighborhood of p and for 3D problems a 6- or 26-neighborhood

system is applied, which are denoted N6 or N26, respectively.
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Once the graph representable energy functional is obtained, a special graph

G = (V, E) can be constructed. It consists of a set of vertices V and a set of

directed edges E connecting the vertices. The idea of [2] was to create a multi-

level graph in order to solve multiphase segmentation problems. For 3D problems,

a multi-volume graph needs to be constructed. The set of vertices V can then be

defined as

V = {vp,l | ∀p ∈ D , l ∈ {1, . . . , n − 1}} ∪ {vs} ∪ {vt} (5.46)

for a n-phase problem. Thus, the graph has n−1 levels and at each level there are

vertices vp,l corresponding to image voxels, in addition to the terminal nodes vs

and vt. The terminal nodes are used for partitioning V into two disjoint sets and

the levels are used to further partition graph into n sets. The total set of edges E
is given by

E = ED ∪ ER , (5.47)

where ED are the between volume edge set and ER are the directed within volume

edge set. To each edge e weights ωe are assigned that are derived from eq. (5.44).

From the data-term the between volume edge weights are derived, given by

ωe(vs, vp,1) = (u0(p) − c1)
2Δ, ∀p ∈ D

ωe(vp,l, vp,l+1) = (u0(p) − cl+1)
2Δ, ∀p ∈ D , l = {1, . . . , n − 2} .

ωe(vp,n−1, vt) = (u0(p) − cn)2Δ, ∀p ∈ D
(5.48)

From the regularization term the within volume edge weights are derived. They

are given by

ωe(vp,l, vq,l) = ωpq, ∀p ∈ D , q ∈ Nκ=6,26, l = {1, . . . , n − 1} , (5.49)

where ωpq is as defined in (5.45). These weights do not depend on the graph level.

Once the graph has been constructed and the weights are assigned, the graph

cut problem can be solved. Such problems are solved by computing the minimum
cut on the G , which is equivalent to computing the maximum flow due to the

duality theorem in [10]. A cut C on graph G is the edge set, C ⊂ E, that

separates the vertices into two disjoint sets, Vs and Vt, so that vs ∈ Vs and vt ∈ Vt.

For multi-volume graphs the levels are used to further differentiate between the

different phases. The cost of the cut is computed as the sum over all edges e ∈ C ,

|C | =
∑
e∈C

ωe . (5.50)
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The minimum cut is the cut with the smallest total cost, which is also the cut that

minimize the energy functional [4]. For the PCLS energy functional (5.41) the

minimum cut is found by minimizing Ed(c, ϕ) in eq. (5.44) by

min
C on G

|C | = min
φ

∑
p∈D

(u0
p − ũp)

2Δ + ν
∑
p∈D

∑
q∈Nκ(p)

1

2
ωpq|φp − φq| . (5.51)

This is the cut that minimize the PCLS energy functional. For the cut to be ad-

missible it should sever at least on edge e ∈ ED for each vertex p ∈ D , otherwise

it does not separate vs and vt. If it severs more than one edge it is not minimum

cut since severing a single edge will always lead to a smaller total cost [2]. The

minimization problem is solved by maximum flow based on the work of [4].

From the cut C the PCLS function ϕ can be constructed by taking into account

the level in graph G of the edges in the cut, e ∈ C . For an n-phase problem ϕ can

be defined as

ϕ(p) =

⎧⎨
⎩

1, if (vs, vp,1) ∈ C
l + 1, if (vp,l, vp,l+1) ∈ C ,
n, if (vp,n−1, vt) ∈ C

l = {1, . . . , n − 2} . (5.52)

Its discontinuities corresponds to the segmentation [2]. Observe that ϕ is not

required for initiating eq. (5.48), it is sufficient to provide an initial guess of

the mean phase values. ϕ can be extracted as needed during the computations.

The mean phase values c and the approximate image function Ĩ are computed for

a fixed ϕ. The number of phases can be overdetermined and some phases can

be empty in the result. Consider Paper D for more details about the graph cut

approach.

In Figure 5.4 the principle of the special graph construction is presented for

simple 2D examples. In (a) an ordinary graph construction applied for two-phase

image segmentation problems is shown. There it is observed that the graph is

separated into two parts by the cut C . The planar edges corresponds to ER and the

vertical edges that are connected to the two terminal nodes to ED. For illustration

purposes only edges in the cut are shown for ED . In (b) the image segmentation

problem is three-phase. A graph with two levels is therefore required. There the

cut C severs the graph into three parts by using the between level edges to further

partitioning the graph. In (c) an illustration is given of how the PCLS function ϕ
is constructed. Observe that it is constructed by taking into account the edges of

ED that are in the cut C and their level in the G . The resulting segmentations are

shown beneath the graphs.
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Figure 5.4: Illustration of 2D graph construction. In (a) the segmentation problem is

two-phase and therefore a single level is required in G . The cut C partitions the graph

into two parts. In (b) the problem is three-phase. Thus, two levels are needed to represent

the problem and the between level edges are used to further partition the graph. In (c) the

PCLS function ϕ is constructed by taking into account the between level edges in the cut

C and their level in G . For illustration purposes only the edges in the cut are shown for

the between level edge set ED. The resulting segmentations are shown below the graphs.



Chapter 6

Results and conclusion

In this chapter a summary of the segmentation results from applying the previ-

ously presented segmentation techniques to CT imaged vuggy carbonate rock is

given. The level of difficulty varies between the image data-sets as they have vary-

ing image resolutions. For the two μCT data-sets, where image details are more

visible, the segmentation methods also succeed in a larger degree in capturing the

true complexity of the image data. As the image resolution decrease it becomes

increasingly difficult to differentiate between pore-space and rock matter, and as

a result the accuracy in the segmentation decrease as well. For a more thorough

coverage the reader is referred to Paper B and Paper C. The latter paper is an

extension of the former.

6.1 Summary of the segmentation results

In this section a summary of the visual evaluation of the segmentation results is

given. The segmentation methods have been applied to data-set A, B and C from

Section 4.2, and an image slice for these data-sets is shown in Figure 6.1 (a)-(c),

respectively. Data-set A has the highest uniform image resolution of 11.4 μm and

B has uniform resolution of 57.16 μm. Data-set C has low non-uniform resolution

of 0.305 × 0.305 × 1.5 mm, which makes its image objects blurry. The two first

data-sets were acquired using the same μCT scanner, while the last data-set was

acquired using a different CT scanner.

Basic global thresholding For basic global thresholding threshold T was

computed from the expected visible porosity, φv. The computations show that

for data-sets A and B the approach detects a too large a portion of the voxels as

porous. For data-set C it appears to both under- and overestimate the pore space

due to the highly blurred data, which yields strongly overlapping image phases in
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: On the upper row selected slices of the three encountered data-sets are shown.

Data-set A is shown in (a), data-set B in (b), and Data-set C in (c). On the lower row the

corresponding segmentation using the PCLS method is displayed.

the histogram. For this data-set φv is probably underestimated as was mentioned

in Section 4.3.

Computing the threshold solely based on φv does not take the available image

nor histogram information into account. It is therefore natural to expected that

a more complex approach will provide an improvement. An advantage of this

approach is that it is fast to compute.

The RC method The RC method computes the optimal global thresholds as

the midpoint between the means of adjacent histogram peaks. The method is fast

to compute and the solution is found within seconds.

It is observed that the RC method describes the pore space well for both data-

sets A and B. For data-set B the method does not, however, capture narrow valleys

of porosity as well as it does for data-set A. This is due to lower image resolu-

tion, which makes the narrow channels more blurry. In the pore space of both

segmentation results a vast number of small pore objects are detected. It can be

difficult to determine if these objects correspond to true porosity or if they have
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been wrongly classified. Compared to basic global thresholding based on φv the

RC method detects slightly less porosity, which is expected since it computes a

globally optimal threshold from the image histogram. It does not capture overlap-

ping histogram populations. Thus, it should detect less porosity than the expected

visible porosity, φv.

For data-set C a larger percentage of porosity is detected when compared to

basic global thresholding. This was expected since φv is probably underestimated

for this data-set. Due to the low image resolution global thresholding methods will

never provide an accurate segmentation since the image phases strongly overlap.

For this data-set it is not possible to differentiate between different phases in the

histogram as it resembles a skewed gaussian. The RC method does, as a result,

not provide a good segmentation and detects both too much and too little porosity.

In Paper B the performance of the RC method were evaluated in 2D and 3D for

data-sets A and B by comparing the detected porosity of each slice. There it was

seen that greater care needs to be taken when applying the RC method in 2D as it

wrongly classify a portion of the voxels as porous for several slices. For a single

slice it also fails as only two different image phases are present in the histogram

while three phases are assumed in the computations. Greater accuracy is obtained

in 3D as the image phases are better defined in the histogram. For data-set C the

2D performance of the method was not evaluated due to its low image resolution.

The RCm approach The RCm approach includes median filtering of the data

prior to computing the globally optimal thresholds using the RC method. The

approach was included to illustrate how filtering influences the segmentation re-

sult. It is observed that the approach preserves image features, while smoothing

image object boundaries and eliminating most of the small pore objects. This is

especially true for data-sets A and B. For data-set C some image features ap-

pears (subjectively) to be better captured. For the last data-set, due to the low

resolution, median filtering was applied in a slice-wise manner. The computed

porosity is similar to the porosity detected by the RC method, although especially

for data-set A and B a relatively large number of small pore objects have been re-

moved. Thus, median filtering does not change the main features of the detected

pore space.

In Paper B the performance of the RCm approach was evaluate for data-sets

A and B in both 2D and 3D, in a similar manner as for the RC method. Similar

observations are made for both approaches. Thus, the RCm approaches is is more

sensitive to local grayscale intensity variations in 2D than in 3D.

Otsu’s method Otsu’s method computes the optimal global thresholds by

maximizing the variance between image phases. The computations show that the
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method yields nearly identical results as the RC method, only at higher computa-

tional cost. The method takes several hours to compute the thresholds, while the

RC method is solved within seconds.

Thresholding by IK Thresholding by IK is a local thresholding method for

two-phase image segmentation. The computation time depends on the number of

undetermined voxels and it takes from a few days to more than a week, on an

external server, to perform the segmentation.

The results show that the method yields a relatively smooth segmentation that

limits the number of small regions detected as porosity, which is due to its use

of local image information. For both data-sets A and B the method is, however,

not successful in capturing narrow valleys of porosity. Disappointingly, for these

regions the method is only partly successful in separating the pore space from

rock matter. For data-set B some narrow ridges corresponding to rock are also

removed. By applying MF prior to IK segmentation an even smoother output

is obtained. For data-set A some narrow channels have been closed and a non-

existing channel has been created. For data-set B, MF appears to reinforce some

noisy artifacts as image objects are not as well defined.

For data-set C similar results are obtained both with and without MF prior to

IK segmentation. MF was here applied in a slice-wise manner due to the low

resolution in the third dimension. It does not have a great effect since the data is

already highly blurred. In both cases the results are smooth and image features

are to a certain degree captured.

The PCLS method The PCLS method, which is a region based method, is the

last method included. The computation show that it yields similar results as the

RC method only at higher computational cost. Due to memory issues sub-volume

processing is necessary and each sub-volume takes several minutes to compute.

The results are later concatenated.

For both data-set A and B the method describes the pore space well. As for

the RC method the PCLS method struggles to capture narrow valleys of poros-

ity for data-set B. The method does, however, result in overlapping histogram

populations that corresponds better to the true histogram populations. This is an

advantage of the method and a global thresholding method will never be able to

capture this property. Due to regularization the PCLS method results in slightly

smoother object boundaries when compared to the RC method, and some smaller

pore objects are removed. This is also seen for data-set C. The PCLS segmentation

results of data-sets A, B and C are displayed in Figures 6.1(d)-(f), respectively. For

a comparison with the other segmentation methods the reader is referred to Paper

B and Paper C.
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Figure 6.2: Normalized pore space measurements subtracted by their median value. The

measurements are shown for data-set A, B and C are in (a), (b) and (c), respectively.

The reason the PCLS method produce similar result as the RC method is

that they are based on similar ideas formulated in different frameworks. The

RC method computes the optimal global thresholds as the midpoint between the

means of two adjacent histogram peaks. The PCLS method minimize an en-

ergy functional to compute an approximate image Ĩ of I0 and locates the mean

phase value c of each subdomain. By increasing the weight on the regularization

term the PCLS method behaves less and less like the RC method, and fewer and

smoother image objects are detected. A disadvantage with the PCLS method is

that it is more computational expensive and memory demanding when compared

to the RC method.

In Paper B the performance of the PCLS method was evaluated in both 2D

and 3D for data-sets A and B. It was shown that the method performs similarly

in both dimensions. When compared to the RC method the PCLS method is more

computational stable in 2D.

6.2 Pore space characterization
To evaluate the performance of the segmentation methods in 3D various pore

space characterizations are computed. The performance is evaluated based on

the computed porosity, the computed maximum and average pore object length,

and the computed maximum and average pore volume. These measurements are

summarized in Table 6.1 for the individual data-sets. In Figure 6.2 they are also

visualized after first normalizing the measurements and subtracting their median

value. These measurements provided an insight into the pore spaces shape and

connectivity. The length of each individual pore object is compute as the maxi-

mum Euclidean length of the objects convex hull and the pore volume is computed

using a simple voxel count.

For data-sets A and B it is observed that the global thresholding methods and

the PCLS method all detects a large number of image objects. It is generally ob-
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Data Method Porosity Image objects

# obj. max len. average len. max vol. average vol.

Global 0.2650 40 598 7.2584 mm 0.0137 mm 25.2586 mm3 0.00064 mm3

A RC 0.2469 27 776 7.2584 mm 0.0141 mm 23.3998 mm3 0.00089 mm3

RCm 0.2432 2 479 7.2584 mm 0.0565 mm 23.1733 mm3 0.00976 mm3

Otsu’s 0.2468 27 749 7.2584 mm 0.0141 mm 23.3976 mm3 0.00088 mm3

PCLS 0.2468 26 760 7.2584 mm 0.0143 mm 23.4046 mm3 0.00092 mm3

IK 0.2288 17 789 7.2584 mm 0.0124 mm 21.7005 mm3 0.00128 mm3

IK-MF 0.2244 13 643 7.2584 mm 0.0145 mm 21.3235 mm3 0.00164 mm3

Global 0.2499 32 378 35.4674 mm 0.0921 mm 2.7465 cm3 0.0872 mm3

B RC 0.2089 25 836 35.4674 mm 0.1146 mm 2.2550 cm3 0.0913 mm3

RCm 0.1988 6 460 35.4674 mm 0.2848 mm 2.1480 cm3 0.3475 mm3

Otsu’s 0.2088 25 796 35.4674 mm 0.1147 mm 2.2543 cm3 0.0914 mm3

PCLS 0.2108 26 205 35.4674 mm 0.1124 mm 2.2834 cm3 0.0909 mm3

IK 0.1819 13 302 35.4674 mm 0.1378 mm 1.9223 cm3 0.1545 mm3

IK-MF 0.1770 18 717 35.4674 mm 0.1135 mm 1.8476 cm3 0.1068 mm3

Global 0.0899 7 957 7.6220 cm 0.2589 cm 9.6797 cm3 0.0187 cm3

C RC 0.1382 7 848 14.3500 cm 0.2245 cm 79.2686 cm3 0.0291 cm3

RCm 0.1383 6 122 14.3510 cm 0.2625 cm 80.8171 cm3 0.0373 cm3

Otsu’s 0.1386 7 837 14.3500 cm 0.2244 cm 80.3666 cm3 0.0292 cm3

PCLS 0.1245 4 648 14.1006 cm 0.3579 cm 35.1548 cm3 0.0442 cm3

IK 0.1339 5 170 13.3729 cm 0.2177 cm 82.9611 cm3 0.0428 cm3

IK-MF 0.1339 5 172 13.3729 cm 0.2176 cm 82.9615 cm3 0.0428 cm3

Table 6.1: Pore space measurements computed from the 3D segmentation results.

served that the RC, Otsu’s and PCLS methods yield similar measurements, which

is confirmed in Figures 6.2(a)-(b) where it is seen that they all produce measure-

ments that lies approximately at the median value. The other methods deviates

from the median value and the RCm approach has the most variation as it detects

a much lower number of pore objects when compared to the other methods. The

computed porosity is similar for the RC approaches, Otsu’s and PCLS methods,

while basic global thresholding based on φv detects 2− 4% more porosity and the

IK approaches detects about 2 % less porosity. Since the detected porosity of the

RCm approach is not reduced too much, especially for data-set A, this indicates

that the approach preserves the main image features. This was also observed in

the visual evaluation of the methods. The detected porosity of the IK approaches

is reduced when compared to the other methods and the number of detected pore

objects are reduced as well, disregarding the RCm approach. This indicates that

IK segmentation does not preserve image features to the same degree as in the

other methods. To a certain degree similar observations can be made from the

computed maximum pore object, which is smaller than for the other methods.

This was also observed in the visual evaluations. For all methods the maximum

pore objects length runs approximately along the image volumes diagonal from
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Figure 6.3: Pore length versus pore volume plots after PCLS segmentation on data-set

A, B and C are shown in (a), (b) and (c), respectively.

one side to the other, indicating that the pore space is interconnected throughout

the rock sample. Since the average pore object length and volume are small, the

majority of pore objects are small as well. This is also shown in Figure 6.3, which

displays scatterplots of the pore length versus pore volume measurements. There

it is observed a single larger pore object has been detected for data-sets A and B
after PCLS segmentation, while the remaining pore objects are small in size.

For data-set C there are more variations in the segmentation results which is

reflected in more variations in the computed pore space measurements as well.

This is confirmed by Figure 6.2(c), there is generally more more variation when

compared to the two other data-sets. One exception is the RCm approach whose

measurements lies approximately at the median value. The most deviation is seen

for basic global thresholding based on φv, which is likely due to underestimation

of the pore space. This approach is therefore not considered further her. The

other methods detect similar amount of porosity, with the exception of the PCLS

method. It detects less porosity which is probably because it detects the smallest

number of pore objects as well. The computed maximum volume is similar for the

methods, with the exception of the PCLS method. There the maximum volume is

much smaller, which is probably due to splitting the maximum volume detected

by the other methods into parts. This can also be observed in the scatterplots

in Figure 6.3(c), where it is observed that two major pore objects are detected

that are similar in length and volume. In addition there exists several other pore

objects that are larger in size, while the remaining objects are small. The IK

approaches detects smoother image objects, which is probably the reason why

they also detects shorter maximum object lengths, but larger maximum volume

when compared to the other approaches. For all methods, the computed maximum

pore objects length does not run through the image volume and only the major

vugs are detected with a fair amount of accuracy.
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6.3 Conclusion

The objective of this work was to test the performance of various image segmen-

tation techniques for segmentation of CT images of vuggy carbonate rock. Three

different 3D image data-sets are encounter. Two of them are acquired using a μCT

scanner, while the third one is acquired using a CT scanner. The image data-sets

have varying degrees of difficulty since they have varying image resolution. The

computations show that the methods generally perform well on high resolution

μCT scans. For decreasing image resolution the accuracy of the segmentation

also decrease.

For the two μCT scans it is observed that the RC, Otsu’s and PCLS meth-

ods all provide similar segmentation results. The RC is the fastest to compute,

while Otsu’s method take significantly longer time and for the PCLS method

sub-volume processing is necessary due to memory issues. The PCLS method

does, however, detect overlapping histogram populations, which better represents

the overlapping histogram populations of the input image. Filtering prior to RC

thresholding yields smoother object boundaries and reduces the number of small

pore objects, while preserving the main features. This illustrates that if the general

trend is of interest filtering prior to segmentation is a good option. The remaining

approaches does not perform satisfactory. Global thresholding based on φv detects

too much porosity and it does not take into account the available image histogram

nor image information. The IK approaches have a tendency to wrongly classify

narrow valleys of porosity as rock. This was disappointing as great expectations

were held to the methods performance. MF prior to IK segmentation yields worse

results.

For the third low resolution CT scan the included methods yields similar re-

sults. As this data-set is highly blurred it is challenging to segment and also chal-

lenging to evaluate the methods performance. It is observed that the methods are

only able to detect the major vugs, but not the fine details. Global method will

never provide a good segmentation for this data-set as its histogram has the shape

of a skewed gaussian. Therefore they both over- and underestimates the pore

space. This is a problem for the PCLS and IK methods as well, and some other

method might be more appropriate. Further, since the data-set does not have well

defined image objects it might also only be realistic to detect major vugs.

Pore space measurements show that the pore space of the two high resolution

μCT scans is interconnected throughout the image volume. There exists a sin-

gle large pore object while the remaining objects are small in size. This is also

confirmed by scatterplots and corresponds well with the knowledge that the pore

space is interconnected at μ-scale. The detected porosity is less than the expected

visible porosity, φv, which leaves room for some improvements.

The third data-set is not shown to be interconnected throughout the pore space.
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Since this sample is acquired from the same block of rock as the two other sam-

ples it is reasonable to assume that this sample is interconnected throughout the

pore space at μ-scale as well. This porosity is, however, located below image res-

olution. For this data-set φv was most likely underestimated, which explains why

the methods detest more porosity.

For both μCT scans the RC, Otsu’s and PCLS methods yield similar results.

Both RC and Otus’s method computes similar globally optimal thresholds, al-

though the computation time increase significantly for Otsu’s method when com-

pared to the RC method. The PCLS method detects overlapping histogram pop-

ulations, which better represents the overlapping populations in the image his-

togram when compared to the iterative global thresholding methods. It was also

shown to be more stable for 2D segmentation than the RC method. The method

is, however, more time consuming to solve than the RC method. Due to mem-

ory issues sub-volume processing is also required for solving the PCLS method.

Since the results of the methods are similar, this indicates that the RC method

can be used for initial investigations. For a more accurate segmentation the PCLS

method is a more appropriate choice. Furthermore, by increasing the weight on

the regularization term the PCLS method will behave less and less like the global

methods, and fewer and smoother objects are detected.

6.4 Future work

It would be interesting to investigate additional segmentation methods for segmen-

tation of the vuggy carbonate rock image data-sets. For instance, Markov random

fields might be investigated. It makes makes use of statistical information and

can be solved by using graph cut as was the case of the PCLS method. Another

method that could be of interest is the local multi-phase thresholding method in

[17] that combines statistical computations with the image gradient to complete

the segmentation. Furthermore, since the NMR measurements yields informa-

tion about the pore size distributions, it would be interesting to investigate if this

knowledge could be included in a statistical model to guide the segmentation at

the different scales.

In the recent years graphical processing unit (GPU) implementations are be-

coming increasingly popular for faster computations. It would be interesting to

implement the segmentation methods on the GPU to develop faster solvers.

In the future it would also be interesting to look into pore network modeling.

Following the work of [27, 9] it would be interesting to investigate the maximum

ball approach in which spheres are grown for each voxel in the pore space. The

larger spheres are regarded as pore objects while chains of smaller spheres are

viewed as pore throats. Single- and two-phase fluid flow simulation on this model
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would also be of interest. A disadvantage of modeling is that models mimics the

real pore space without necessarily capturing the pore spaces complexity.

Another approach is to perform computations directly on the binary pore

space. This approach has been used by e.g. [33], where they modeled single-

and two-phase fluid flow using the Lattice Boltzmann method. The approach is

computationally expensive. To reduce the computation time the computations

were performed directly on the GPU.

It would also be interesting investigate fluid flow modeling and simulations

in which properties computed at different scales are taken into account. These

properties can be found either through laboratory experiments or be computed

from segmentations at different scales.

Once fluid flow models have been constructed and fluid flow simulations have

been performed, it would be interesting to compare the results with laboratory

fluid flow experiments. Ideally, realistic simulations should give similar results as

the laboratory experiments.
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Appendix A

Determine notch filter intervals

After evaluating frequency spectrums of input images, such as the one displayed

in Figure A.1(a), it is clear that there are multiple vertical frequency ridges corre-

sponding to image artifacts. To precisely attenuate these ridges it is necessary to

precisely located their center point. This was facilitated by an observation that a

1D signal, C(u), can be computed by summing over each frequency domain col-

umn, which yields a signal with peaks at the ridge center points. It was computed

by

C(u) =
N−1∑
v=0

|F (u + a, v)|, for u = 0, . . . ,
M

2
− 1 , a =

M

2
, (A.1)

and then normalized to ensure that it only has values in range [0, 1]. Due to sym-

metry properties of the spectrum it is sufficient to compute C(u) for the spectrums

positive half. An example of a typical 1D signal is shown in Figure A.1(b).

Locating the peaks of C(u) is then performed by a two-step procedure. In

the first step the matlab program peakdet.m, developed by [3], is applied to locate

the first peak. It takes one parameter Δ and locates the local maximums of a 1D

signal. A point is considered a local maximum if it has a maximum value, and

was preceded (to the left) by a value lower than Δ [3]. Choosing Δ too small

will result in too many detected maximums as the computed 1D signal can be

noisy. Using this program we are only able to locate a few true peaks as is shown

in Figure A.1(b), illustrated by the red dots. Some falsely detected peaks are

obtained as well. Observe that all true peaks are located with approximately the

same distance to the neighboring peaks. In the second step, using this observation,

the remaining peaks are located using a search algorithm where the first true peak

is used as a starting point. It works by first discarding the falsely detected peaks.

The spacing between the origin and the first true peak is then used to search for

the second peak. The maximum peak within a predefined neighborhood is then
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Figure A.1: In (a) a typical frequency domain spectrum is shown and in (b) the computed

1D signal C(u) of the spectrums positive half. The red dots are the detected peaks by

peakdet.m [3]. In (c) the falsely detected peaks have been discarded and the remaining

peaks have been found using a simple search algorithm.

selected as the center point of the second ridge. The remaining peaks are found

in a similar manner. In Figure A.1(c) it is observed that all peaks are accurately

detected by the procedure.



Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

CT computed tomography

DFT discrete Fourier transform

GPU graphical processing unit

IK indicator kriging

IDFT inverse discrete Fourier transform

MF majority filtering

NMR nuclear magnetic resonance

OK ordinary kriging

PCLS piecewise constant level set

RC Ridler and Calvard’s

TV total variation
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Part III

Included Papers





Summary of the papers
This thesis include four scientific papers. They cover different topics, which is a

reflection of the various topics considered in this work. In the following a short

summary of the papers is given.

Paper A: 2-D Visualisation of Unstable Waterflood and Polymer Flood for Dis-

placement of Heavy Oil. In the proceedings of the Eighteenth SPE Improved Oil

Recovery Symposium, Tulsa, Oklahoma, USA, 14-18 April 2012.

Arne Skauge, Per Arne Ormehaug, Tiril Gurholt, Bartek Vik,
Igor Bondino and Gerald Hamon

The objective of this paper was to obtain improved knowledge of oil mobilization

processes through imaging of fluid flow experiments. Imaging was performed us-

ing an in-house X-ray scanner which introduces horizontal and vertical line arti-

facts. These artifacts are either periodic or aperiodic, and have varying intensities.

Image filtering was applied to improve the presentation of the image data. Due to

the periodic behavior of parts of the artifacts it was natural to consider frequency

domain filtering. Good results are obtained and the line artifacts are largely at-

tenuated without distorting the fluid flow. The author of this thesis contributed by

construction of the frequency domain filtering routine as well as performing the

filtering and scientific discussions. The author also contributed in writing parts of

the article.

Paper B: Determination of Connectivity in Vuggy Carbonate Rock Using Im-

age Segmentation Techniques. In the proceedings of the 12th European Confer-

ence on the Mathematics of Oil Recovery, ECMOR XII, Oxford, UK, 6-9 Septem-

ber 2010.

Tiril Gurholt, Bartek Vik, Ivar Aavatsmark and Sigurd Aanonsen

The objective of this paper was to evaluate the performance of image segmenta-

tion techniques applied for segmenting CT imaged vuggy carbonate rocks. Their

performance were evaluated based on the segmentation of three different data-sets

with varying image resolutions. It was shown that the methods perform well on

high resolution μCT scans. As the resolution decrease the accuracy in the segmen-

tation also decrease. Similar results were obtained in both 2D and 3D, although

in 2D there is a greater risk of wrongly classifying parts of voxels for some of the

approaches. The author of this thesis contributed by planning and performing the

experiments, implementation of the segmentation methods, analysis of the results

and scientific discussions, as well as writing the article.



Paper C: Pore space characterization of vuggy carbonate rocks: A comparative

study of the performance of various image segmentation techniques. Submitted to

Journal of Petroleum Science and Engineering, June 2013.

Tiril Gurholt and Bartek Vik

The objective of this paper was to evaluate the performance of various image seg-

mentation techniques applied for segmenting CT imaged vuggy carbonate rocks.

This paper is an extension of Paper B in which an additional couple of segmenta-

tion methods have been included. Similar results are obtained and the additional

segmentation methods do not provide an improvement. It was observed that the

PCLS method yields similar results as iterative global threshold methods at higher

computational cost when applied μCT scans. Since the method detects over-

lapping histogram population the segmentation is more accurate than the global

methods. For a low-resolution CT scan there are more variation in the results and

it is challenging to evaluate the methods performance. The author of this thesis

contributed by planning and performing the experiments, implementation of the

segmentation methods, analysis of the results and scientific discussions, as well

as writing the article.
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Tiril Gurholt and Xuecheng Tai

The objective of this paper was to minimize the PCLS method by graph cut in

3D. The PCLS method is a region based segmentation approach for multiphase

problems. It minimizes an energy functional to approximate an image by a piece-

wise constant image function. This is traditionally done by deriving and solving

an Euler-Lagrange equation. In this work it was shown that the method can be

minimized by graph cut in 3D by following the ideas of an existing 2D solver.

To solve the segmentation problem the minimum cut on a special graph needs to

be computed. The approach yields a fast and accurate solver, and the number of

phases can be overdetermined. Using the graph cut solver the PCLS method is

solved faster than the traditional Euler-Lagrange approach. The author of this the-

sis contributed by planning and performing the experiments, developing the 3D

solver in C++, scientific discussions and writing the article.




