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Chapter 1

A gentle introduction to
parameterized complexity

1.1 The phenomenon of NP-completeness

Since Cook’s seminal proof of NP-hardness of the SAT problem [75], the
pursuit of understanding the border between efficiently tractable problems
(i.e., languages in P) and problems that seem to require exponential-
time computations (i.e., NP-hard languages) has driven most of the
research in theoretical computer science. Despite the fact that a formal
proof that P �=NP is still out of our reach, arguably we have a fairly
good intuitive understanding of what features make a particular problem
NP-hard. Starting with Karp’s list of 21 problems [202], the net of
known NP-complete problems has quickly reached volumes of books,
see for reference the monograph of Garey and Johnson [160]. Today’s
research on NP-hardness focuses mostly on (i) understanding the source
of intractability of a given problem, and (ii) identifying the most efficient
ways of circumventing it by examining the problem’s structure.

Arguably the most natural way of coping with an NP-hard problem is
via approximation. In this framework, given an NP-hard optimization
problem we relax the request of finding an optimal solution to finding
a solution that is provably not far from being optimal; for instance, we
may ask for a solution whose cost is at most twice as large as the optimal
one. Generally, for a minimization problem an algorithm returning a value
at most c times larger than the optimal one is called a c-approximation;
this definition can be easily translated to maximization problems as well.
Relaxation of the request of finding an optimal solution enables us to
perform faster computations; the classical definition of an approximation

2



CHAPTER 1. A GENTLE INTRODUCTION 3

algorithm assumes that it works in polynomial time.

It appears that the landscape of NP-complete problems that is uni-
formly flat when simple NP-hardness reductions are considered, turns
out to be rich and varied when one examines the possibilities of design-
ing approximation algorithms. Some problems, like Clique, cannot be
approximated within multiplicative factor of n1−ε for any ε > 0, unless
P=NP [310]. Other, like Dominating Set, admit an O(log n) approx-
imation that is optimal, again under P �=NP [12]. For a large number
of problems, like Vertex Cover, a constant factor approximation is a
limit [114]. Finally, some rare problems, likeKnapsack, admit polynomial-
time approximation schemes (PTASes), i.e. for every ε > 0 there exists a
polynomial-time (1 + ε)-approximation, whose running time can of course
depend on ε. The systematic study of approximation algorithms exhibited
both a number of useful and practical algorithmic techniques, mostly con-
nected to ubiquitous usage of linear programming, and deep connections
with probability theory, convex geometry and discrete Fourier analysis,
which are foundations of the theory of approximation lower bounds. We
refer to the books of Vazirani [306] and of Williamson and Shmoys [309]
for a deeper introduction to approximation algorithms.

A different approach is to accept the necessity of the exponential blow-
up in the complexity that follows from NP-hardness, but try to design
algorithms that keep this blow-up as small as possible. Here, we arrive
at the field of exact algorithms. Consider for example the classical
Clique problem: while the trivial algorithm that tries all possible subsets
of vertices runs in O∗(2n)1 time, one can reduce this running time to
as low as O(1.211n) via clever branching strategies [291]. Usually, the
research in exponential-time algorithms focuses on lowering the base of the
exponent as much as possible; however, for many problems even breaking
the trivial 2n barrier of brute-force enumeration or dynamic programming
on subsets is a challenging task [33, 35, 37, 93, 95]. It also appears that
algebraic techniques, in particular the inclusion-exclusion principle, subset
convolutions and polynomial identity testing using the Schwartz-Zippel
lemma, are very useful in the context of exact algorithms [33, 34, 36].
These algebraic tools can be also used to reduce the space complexity
of exponential-time algorithms to polynomial [244, 257]. We refer to the
book of Fomin and Kratsch [135] for more information on the field of
exact algorithms.

1The O∗(·) notation suppresses factors polynomial in the input size.
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1.2 Parameterized complexity in a nutshell

In this thesis we will be mostly interested in another paradigm, namely
parameterized complexity. Informally speaking, the parameterized
approach aims at identifying the source of intractability of a problem by
introducing an auxiliary measure that reflects hardness of a given instance.
The idea is to pinpoint the properties of the problem that make it hard
to tackle, and then to use this understanding to design algorithms that
perform efficiently assuming that the given instance has a ’weak spot’,
i.e., one of the hardness measures is small. Formally, in the parameterized
setting an instance of a problem comes with an additional nonnegative
integer, called the parameter and traditionally denoted by k, which is
the given hardness measure of the instance. A problem is said to be in
class XP if it admits an algorithm working in f(k) · nf(k) time for some
computable function f , where n is the length of the input. A problem is
called fixed-parameter tractable (FPT, for short), or belongs to class FPT ,
if it admits an algorithm working in f(k) ·nO(1) = O∗(f(k)) time for some
computable function f ; such running time is also called fixed-parameter
tractable. These definitions can be naturally extended to allow several
parameters by treating k as a vector of nonnegative integers rather than
a single number. Since XP algorithms are widely regarded as impractical,
we are mostly interested in FPT results. We refer to Section 2.2.1 for
more discussion on these notions, including definitions of non-uniform
classes XP and FPT.

Parameterized complexity as an algorithm design paradigm was intro-
duced in the beginning of the 90s by Downey and Fellows. The original mo-
tivation comes from the Graph Minors project of Robertson and Seymour,
whose many algorithmic corollaries may be conveniently re-interpreted as
fixed-parameter tractability results. However, it very quickly turned out
that the concept is much more general and can be applied to a full variety
of fields of computer science, from very theoretical, like the theory of graph
minors, to very applied, like bioinformatics or machine learning. Today,
parameterized complexity is an established and dynamically developing
subbranch of algorithmics with two classical monographs [119, 132], a
dedicated annual conference (International Symposium on Parameterized
and Exact Computations, IPEC) and a number of workshops organized
every year. According to the website of the parameterized complexity
community [308], more than 100 research papers related to the paradigm
appear each year in peer-reviewed proceedings of international confer-
ences. We refer to the recent festschrift in honor of Mike Fellows [44] for
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a historical overview of the development of parameterized complexity.

Let us explain the main idea of the parameterized approach on a
simple example of the Set Cover problem. In this problem, we are given
a universe U , a family F of subsets of U , and an integer k. The question
is whether one can find a subfamily G ⊆ F of size at most k such that
G covers every element of U , i.e.

⋃G = U . Let |U | = n and |F| = m.
Observe that we may design two natural algorithms for the problem.

(i) First, we may simply check every possible subset of F of size k in
time O∗(

(
m
k

)
) ≤ O∗(2m).

(ii) Second, we may employ a simple dynamic programming routine
on subsets of U . Let F1, F2, . . . , Fm be an arbitrary ordering of
F . For each subset X ⊆ U and i = 0, 1, . . . ,m, let φ(X, i) denote
the minimum possible number of sets among {F1, F2, . . . , Fi} that
together cover X, or +∞ if no such covering exists. Clearly, for any
X ⊆ U we have that φ(X, 0) is equal to +∞ unless X = ∅, in which
case φ(∅, 0) = 0. On the other hand, the answer to the problem can
be found by checking whether the value φ(U,m) does not exceed
k. It is easy to observe, however, that function φ(·, ·) satisfies the
following recurrence for i > 0 and X ⊆ U :

φ(X, i) = min(φ(X, i− 1), 1 + φ(X \ Fi, i− 1)).

Therefore, we can compute all the values of the function φ(·, ·) in
O∗(2n) time and check whether φ(U,m) ≤ k, thus obtaining an
algorithm working in O∗(2n) time.

In the language of parameterized complexity these results imply that
the problem is (i) fixed-parameter tractable when parameterized by m,
for it admits an O∗(2m) algorithm; (ii) fixed-parameter tractable when
parameterized by n, for it admits an O∗(2n) algorithm; and (iii) in class
XP when parameterized by k, for it admits an O∗(

(
m
k

)
) ≤ O∗(mk) algo-

rithm. This example shows that even a seemingly innocent and classical
problem can hide a rich parameter ecology, which enables us to design two
substantially different algorithms that are in some sense complementary:
one is essentially faster when the family is smaller, while the other when
the universe is smaller. Moreover, two natural questions stem from this
example.

Firstly, since we already know that Set Cover is in XP when param-
eterized by k, can it be in fact fixed-parameter tractable with the same
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parameterization? Here the answer is (probably) negative. Downey and
Fellows defined a hierarchy of complexity classes

FPT ⊆W [1] ⊆W [2] ⊆ . . . ⊆W [P ] ⊆ XP,

called also W -hierarchy; we refer to their monograph [119] for a compre-
hensive introduction. The hierarchy is conjectured to be strict, that is,
every inclusion in the sequence above is proper; this belief is supported
by many links connecting collapses in W -hierarchy with collapses in the
classical complexity. Set Cover parameterized by k is known to be
complete for the class W [2] [119], hence existence of a fixed-parameter
tractable algorithm would imply that FPT =W [2].

Secondly, is the constant 2 in the designed algorithms for Set Cover

optimal? In other words, can one design algorithms with running times
O∗((2 − ε)n) or O∗((2 − ε)m) for some ε > 0? This question has been
investigated by Cygan et al. [86] and the answer is probably negative
as well, but our foundations for making this statement are much less
certain. Cygan et al. have shown that an O∗((2 − ε)m) algorithm for
Set Cover would contradict the Strong Exponential-Time Hypothesis
(SETH) of Impagliazzo and Paturi [194], which is still broadly assumed,
yet considered doubtful by many. For an O∗((2− ε)n) algorithm, Cygan
et al. were unable to show links between existence of such an algorithm
and SETH; however, they have conjectured that such links exist, and
supported this claim by showing certain obstacles for attacking the problem
via standard randomized-algebraic techniques. Therefore, the question
whether the base of the exponent can be improved for parameterization
by n is still open.

The presented example of the Set Cover problem shows that even
for very basic problems applying the parameterized complexity paradigm
can lead to a large number of concrete and challenging research questions,
whose pursuit gives new insights and improves our understanding of the
issue. Many of these questions remain open despite simplicity of their
formulation.

1.3 Goals of the parameterized analysis

As we have argued, the main goal of the parameterized paradigm is to
provide tools for precise, multivariate analysis of NP-hard problems. While
the theory of classical complexity uses only one measure of hardness of
an instance, namely the total length of the encoding, in parameterized
complexity one tries to design additional measures to precisely locate the
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source of problem’s intractability, and understand which properties make
a particular input hard to tackle. The thesis is that such a systematic,
multivariate analysis of the problem is likely to give new insights that can
be used to design algorithms that perform efficiently in practice.

The parameterized complexity framework sets the notion of fixed-
parameter tractability as the central concept of efficiency. Recall that
a parameterized problem is fixed-parameter tractable if it admits an
algorithm working in time f(k) · nO(1) for some computable function f ,
where k is the parameter and n is the input length. Given this definition,
there are two natural directions of optimizing the running time of a
fixed-parameter tractable algorithm:

• First, one can optimize the dependence on the parameter, i.e., make
the function f as low as possible.

• Second, one can optimize the polynomial factor, i.e., make the
constant exponent of n as small as possible.

For many problems these two goals stand in some sort of a counterposition.
In other words, one can optimize the polynomial factor at a cost of worse
dependence on the parameter. A classical example of such a situation is
the Odd Cycle Transversal problem; here, given a graph G and an
integer k, one is asked whether at most k vertices can be deleted from G
to make G bipartite. On one hand, a relatively simple FPT algorithm
via the technique of iterative compression was proposed by Reed, Smith,
and Vetta [277]. The running time of this algorithm is O(3k · kmn) for
graphs with n vertices and m edges2. On the other hand, Kawarabayashi
and Reed [210] have shown an algorithm that achieves almost linear
time in terms of the input size, but at a cost of much worse dependence
on k. Kawarabayashi and Reed do not even provide estimates on the
function f they obtain. Even though algorithms with better dependence
on the parameter than 3k have been found recently [243, 255], it is still
open whether one can find an algorithm that both has a subquadratic
polynomial factor, and sensible (say, single exponential) dependence on
the parameter.

It should be said that different researchers take very different stances
with respect to the question whether optimizing the dependence on the
parameter or the polynomial factor is more important. For this reason, all
the algorithms contained in this thesis have the polynomial factor stated

2Reed et al. claimed only running time O(4k · kmn), but a more careful analysis of
the algorithm reveals that it may be implemented to run in O(3k · kmn) time; cf. [192].
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and rigorously analyzed, even though the author’s personal viewpoint
actually puts more focus on the dependence on the parameter. In fact,
the author advocates trying to optimize both factors of the time com-
plexity at the same time whenever possible, as for example in the recent
approximation algorithm for treewidth of Bodlaender et al. [46].

1.4 Overview of the techniques

In this section we give a short overview of the main approaches used in
parameterized complexity to prove upper and lower bounds; many of the
presented concepts will be used later in this thesis. We focus more on
approaches understood as general frameworks in which a parameterized
problem can be considered, rather than particular techniques or tricks.
We refer to the books of Downey and Fellows [119] and of Flum and
Grohe [132] for a broader discussion.

1.4.1 Upper bounds

Branching

One can argue that branching algorithms are the salt of parameterized
complexity. Consider the classical Vertex Cover problem parameterized
by the solution size: given a graph G and an integer k, one is asked whether
k vertices of G can be removed so that G becomes edgeless. We perform
the following simple strategy: as long as there exist edges in the graph,
we pick any edge vw and branch into two subprograms. In the first
subprogram we assume that v will be deleted in an optimum solution, and
in the second subprogram we assume that w will be deleted. Hence, in
each subprogram (also called branch) we remove the chosen vertex and
continue. We perform this strategy up to the point when there are no
edges left in the graph — in which case we report success — or when
k vertices have been already removed and there are still some edges left
— in which case we declare the branch to be fruitless and terminate it.
Observe that if some vertex cover of size at most k exists in the graph,
then it will be discovered in at least one branch and thus the algorithm
will report success. On the other hand, if there is no vertex cover of size
at most k, then of course all the branches will turn out to be fruitless. For
the time complexity, observe that since we branched into two possibilities
at each step and the search tree has depth bounded by k, then its size
is at most 2k+1 − 1. Consequently, the whole algorithm runs in O∗(2k)
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time, thus showing that the Vertex Cover problem is fixed-parameter
tractable when parameterized by the requested solution size.

Observe that in order to make sure that a branching algorithm works
in FPT time we need to ensure the following two conditions:

(i) at each branching step, the algorithm chooses among a set of choices
of cardinality bounded by a function of the parameter;

(ii) the height of the branching tree is bounded by a function of the
parameter.

Sometimes we also say that an algorithm guesses the correct branch
to say that it branches into all the possibilities. This corresponds to
viewing an FPT branching algorithm as a polynomial-time algorithm that
can perform some nondeterministic steps, provided that their number is
bounded by a function of the parameter.

Branching routines are ubiquitous in the world of parameterized and
exact algorithms. On one hand, they provide a simple and independent
method of attacking NP-hard problems, which is particularly suitable for
optimizing the dependence of the running time on the parameter. For
example, for the aforementioned Vertex Cover problem one can achieve
as low running time as O∗(1.2738k) using extensive branching [69]. On the
other hand, simple branching subroutines are also useful in combination
with other, more powerful techniques. They are often used as opening steps
that simplify the structure of the instance by removing easily resolvable
parts, or as finishing steps when the instance is cleaned enough to admit
an easy branching algorithm.

Kernelization

Kernelization can be already considered an independent subbranch of
parameterized complexity with its own tools and methods. The origin
of kernelization is a realization that the parameterized framework can
be used to create a rigorous and formal theory that explains the power
of preprocessing routines, i.e., polynomial-time algorithms for NP-hard
problems that do not solve the problem completely, but shrink the size
of the instance at hand as much as possible by identifying parts of the
input that are redundant or resolvable in polynomial time, and reducing
them. Formally, a kernelization algorithm for a parameterized problem
L is a polynomial-time algorithm that, given an instance (x, k), outputs
an instance (x′, k′) that is equivalent to the input one, i.e., (x, k) is
in L if and only if (x′, k′) does, and such that |x′|, k′ ≤ g(k) for some



10 CHAPTER 1. A GENTLE INTRODUCTION

computable function g. The output instance (x′, k′) is called the kernel ,
while the function g is called the size of the kernel . Thus, by applying
the parameterized framework we can allow a kernelization algorithm not
to solve the problem completely (which we do not expect to happen), but
to stop performing simplification steps once the instance is already small
enough in terms of the hardness measure of the instance.

A folklore observation states that in fact every decidable problem L
is FPT if and only if it admits some kernelization algorithm. Obviously,
if a kernelization algorithm for L exists, then we may first apply it, and
then run any algorithm resolving L on the obtained kernel; note that this
algorithm runs in f(k) time for some computable function f , since the
kernel’s size is bounded by a computable function of k. To prove the
converse implication, assume that L admits an FPT algorithm A working
in time f(k) · nO(1) and consider the following kernelization algorithm.
Given input (x, k), we first check if |x| ≤ f(k). If this is the case, then
we do not need to do anything, so we output the pair (x′, k′) = (x, k) as
the obtained kernel. On the other hand, if |x| > f(k), then algorithm A
on input (x, k) works in f(k) · |x|O(1) ≤ |x| · |x|O(1) = |x|O(1) time, that
is, in polynomial time. Hence, we may apply the algorithm A to (x, k) to
solve the instance completely, and as a kernel provide a trivial YES- or
NO-instance, depending on the result.

This observation suggests that the general notion of kernelization is
basically the same as fixed-parameter tractability. However, restricting
our attention to polynomial kernels , that is, requiring that the size of the
kernel is a polynomial function of the parameter, results in a much richer
landscape of results. Note that polynomial kernels are particularly interest-
ing, as applying any brute-force algorithm on a polynomial kernel yields a
very efficient FPT algorithm for a problem. Many classical combinatorial
problems indeed do possess polynomial kernels, with notable examples of
Vertex Cover [68] and Feedback Vertex Set [303]. The interest in
polynomial kernels has spiked since the discovery of the so-called compo-
sition framework, which provides tools for proving that certain problems
do not admit polynomial kernels unless NP ⊆ coNP/poly [45, 120, 149].
Examples of problems without polynomial kernels are k-Path [45] and
Set Cover for both FPT parameterizations: by n or by m [116].

The study of kernelization algorithms have brought many new tools
and techniques into the world of fixed-parameter tractability. Of particular
significance are meta-theorems for obtaining linear kernels for a class of
problems on graphs with topological constraints, developed by Fomin et
al. [49], and the novel technique of Kratsch and Wahlström of obtaining
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randomized kernels via the use of matroids [225, 226]. On the other hand,
from the practitioner’s point of view kernelization algorithms are free
of the main weak point of parameterized complexity, namely that the
definition of fixed-parameter tractability inherently allows exponential-
time computations. Thus, the kernelization framework has found many
applications, among others in computational biology. In modern parame-
terized complexity, investigating possibilities of polynomial kernelization
is usually an immediate follow-up question after proving that a problem
is fixed-parameter tractable. We refer to a recent survey of Lokshtanov et
al. [242] for a more comprehensive introduction to kernelization.

Dynamic programming and width measures

As we have seen in the example of Set Cover, dynamic programming
routines can be very useful for designing FPT algorithms. Similarly as
in this example, one often employs a dynamic program on a family of
states that is exponential, but bounded by a function of the parameter.
Usually states are formed simply by subsets of some small universe, but
more complicated families of states can also be used; we will see many
such examples in this thesis. Let us remark that similar usage of dynamic
programming is ubiquitous in the world of exact algorithms.

In parameterized complexity a standard approach is to design dynamic
programming routines on structural decompositions . The idea is as follows:
even though the graph itself can be large, maybe its structure can be
described by some sort of a simple decomposition on which a dynamic
program can be employed. Simplicity of the decomposition is usually
expressed by its parameter called the width measure. Consider for example
the Independent Set and Dominating Set problems. While NP-hard
in general, both of the problems can be solved in linear time on trees by
a simple dynamic programming routine. Therefore, it is natural to ask
whether there exists a notion of ’tree-likeness’ that measures how much a
graph resembles a tree, such that the simple dynamic program for trees
can be lifted also to graphs with small value of this ’tree-likeness’.

And indeed, this intuitive ’tree-likeness’ has been formalized indepen-
dently by several researchers in the 80s; the version used nowadays, called
treewidth, was introduced by Robertson and Seymour in their seminal
Graph Minors project [280]. The formal layer of this notion is somewhat
technical (we provide details in Section 2.3.2; see also the book of Dies-
tel [112]), but for the purpose of this overview let us imagine that a graph
of treewidth t resembles a tree where the width of the trunk is not 1 as in
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the classical definition of a tree, but t instead.

Treewidth is today an important tool for a number of fields of theo-
retical computer science, including artificial intelligence, approximation,
computational biology, and, most importantly for us, parameterized com-
plexity. The reason is that for many NP-hard problems one can implement
very efficient dynamic programming routines working on graphs of small
treewidth; for instance, the Independent Set and Dominating Set

problems can be solved in times O(2t · tO(1) · n) and O(3t · tO(1) · n) on
graphs of treewidth t, respectively. On the other hand, graphs of small
treewidth actually do appear in applications. For instance, via the classi-
cal Lipton-Tarjan planar separator theorem [238] it can be easily shown
that a planar graph on n vertices has treewidth at most O(√n), which
immediately yields 2O(

√
n) algorithms for the Independent Set and

Dominating Set problems on planar graphs. Dynamic programming
algorithms for graphs of bounded treewidth can be used as a method on
its own, but most often are applied as subroutines in combination with
other techniques.

The concept of treewidth also seems to uncover a fundamental link
between the topological complexity of graphs, measuring which was the
original motivation of this notion, and the complexity of model checking
natural models of logic on graphs. Courcelle observed that the classical
equivalence of the Monadic Second-Order (MSO) logic on finite trees with
tree automata can be lifted to graphs of small treewidth, thus discovering
a powerful meta-theorem for designing algorithms on graphs of bounded
treewidth, today known as the Courcelle’s Theorem [79]. This theorem
can be stated as follows: there exists an algorithm that, given a formula
ϕ of MSO2 logic on graphs and a graph G of treewidth at most t, checks
whether ϕ is satisfied in G in time f(||ϕ||, t) · n for some computable
function f . Here, MSO2 means that we allow quantification both over
subsets of vertices and over subsets of edges; see Section 2.3.6 for a formal
definition. In other words, Courcelle’s theorem states that model checking
MSO2 on graphs is fixed-parameter tractable when parameterized jointly
by the length of a formula and the treewidth of a graph. Thus, existence of
many efficient dynamic programming routines on graphs of small treewidth
can be explained by a common reason: expressibility in MSO2.

Following the success of treewidth, also other width notions have been
introduced and are used. Cliquewidth, for instance, has been introduced
by Courcelle and Olariu [83] to measure the complexity of a graph viewed
as an algebraic structure, rather than a topological space as was the case
for treewidth. Similarly to treewidth, also graphs of bounded cliquewidth
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admit efficient dynamic programming routines, and an analogue of Cour-
celle’s theorem can be proved if one forbids quantification over sets of
edges [82]. We invite the reader to Chapter 3 for a more thorough in-
troduction to width measures and dynamic programming algorithms on
graph decompositions.

WIN/WIN approaches

The WIN/WIN approach is an intuitive algorithm design paradigm that
can be stated as follows. Given the input to the program, we perform
some preliminary check. Depending on the outcome, we choose different
strategies of tackling the problem, exploiting different features of the
input that the check exhibited. The name of the technique comes from
the fact that each possible outcome of the check should provide us with
information that enables us to solve the problem efficiently; in informal
words, for every possible result of the check we win.

In parameterized complexity WIN/WIN approaches are most often
used in combination with dynamic programming on graph decompositions.
The preliminary check is usually an attempt to construct a simple decom-
position of the input on which a fast dynamic program can be employed.
If we succeed in constructing the decomposition, then we win by applying
the dynamic programming algorithm and solving the problem quickly.
Otherwise, there must be some reason of construction’s failure. This
reason usually takes form of a complicated combinatorial object embedded
in the graph, whose complexity prevents us from decomposing it expedi-
tiously; such an object is usually referred to as an obstacle. Informally
speaking, while constructing the decomposition we may discover a big,
entangled knot that we are not able to handle. The crucial insight of
the WIN/WIN approach is that such an obstacle can be also exploited
algorithmically. Usually, we are either able to immediately provide an
answer to the problem by examining the complicated structure of the
obstacle, or find a part of the obstacle that is provably irrelevant to the
problem and can be safely removed (design a so-called irrelevant vertex
rule or irrelevant edge rule). After this removal we restart the whole
algorithm.

The WIN/WIN approach in parameterized complexity is most often
used in the context of treewidth and tree decompositions. The reason
is that the obstacle for having small treewidth is a large grid minor : an
extremely useful and natural combinatorial object that can be exploited
in many different ways. In Section 3.2.4 we survey algorithmic results
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that can be obtained via WIN/WIN approaches that use grid minors.

Well-quasi-orderings

The well-quasi-ordering framework is perhaps one of the oldest algorithmic
techniques used in parameterized complexity, and stems from the original
motivation of the field, that is, the Graph Minors project of Robertson
and Seymour. Formally, a partial order (P,≤) is a well-quasi-ordering
(WQO, for short) if for any infinite sequence of elements x1, x2, x3, . . . ∈ P
there exist indices i < j such that xi ≤ xj . A folklore observation states
that this is equivalent to the following definition. Let S ⊆ P be any
subset of P . We say that S is closed under ≤ if whenever x ≤ y and
y ∈ S, then also x ∈ S. We say that S is characterized by obstruction
set FS if S = {x ∈ P | ¬∃f∈FS

f ≤ x}; in other words, S comprises
all the elements of P that are not larger or equal to any element of the
obstruction set. Then (P,≤) is a well-quasi-ordering if and only if it does
not contain any infinite decreasing sequences and every set S closed under
≤ is characterized by a finite obstruction set.

Let us now explain the well-quasi-ordering framework on the example
of the Graph Minors theorem of Robertson and Seymour [287], which
states that the class of undirected graphs ordered by the minor ordering
(see Section 2.3.1 for the definition of a minor) is a well-quasi-ordering.
In other words, every class of graphs that is closed under taking minors
is characterized by a finite set of forbidden minors, depending on the
class only. For instance, the classical results of Kuratowski [234] and of
Wagner [307] prove that the class of planar graphs is characterized by the
set of forbidden minors {K3,3,K5}. More generally, for any 2-dimensional
manifold M , the class of graphs that can be embedded on M without
crossings is closed under taking minors, so it can be characterized by
a finite set of forbidden minors FM . Note, however, that we can prove
only existence of set FM , and the Graph Minors theorem of Robertson
and Seymour does not provide us any means of computing FM , or even
bounding its size. In fact, FM is not known even for M being a torus,
and the only complete classification besides the plane has been done for
the projective plane [254] (the family of forbidden minors is of size 35).

Besides the Graph Minors theorem, the theory of Robertson and
Seymour has also many important algorithmic corollaries. In particular,
Robertson and Seymour [285] have proven that checking whether a graph
H is a minor of G can be done in time f(|V (H)|) · n3, where n = |V (G)|
and f is some computable function. In other words, minor testing is
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fixed-parameter tractable when parameterized by the size of the tested
minor. When we combine this algorithm with the Graph Minors theorem,
we obtain the following surprisingly strong corollary: for every class of
graphs S closed under taking minors, membership in S can be tested
in cS · n3 time for a constant cS depending on S only. We namely just
need to test whether any graph from FS is a minor of the input graph.
This provides a powerful algorithmic meta-tool for determining whether a
problem is (non-uniformly) fixed-parameter tractable.

Let us explain this technique on the example of treewidth. It can be
easily seen that the class Ft of graphs of treewidth at most t is closed
under minors; we also say that treewidth is a graph parameter closed
under taking minors. Hence, for every t there exists an algorithm working
in time ct · n3 checking whether an n-vertex graph has treewidth at most
t. Note that according to our definition of fixed-parameter tractability,
this does not mean that computing treewidth is fixed-parameter tractable
when parameterized by t, since we have designed a separate algorithm
for every value of t, and not a single algorithm that takes t as input. In
fact, each of the designed algorithms has the corresponding family Ft

hard-coded in its code; as we have noted, the Graph Minors theorem does
not provide us any method of deriving Ft knowing the value of t only.
Such algorithms, or rather families of algorithms, are called non-uniform
FPT algorithms (see Section 2.2.1 for formal details).

Similarly to treewidth, also many other graph parameters are closed un-
der taking minors, and hence their value can be computed by non-uniform
FPT algorithms; examples include vertex cover number, feedback vertex
set number and genus, among many others. However, such algorithm are
clearly completely impractical. It is not only that we cannot control the
running of the algorithm; we in fact cannot even implement it, as the
implementation depends on the hard-coded obstruction set that is un-
known. The only information that the Graph Minors theorem provides us
is a non-constructive proof that such an algorithm exists . For this reason,
well-quasi orderings are most often used only as preliminary classification
tools, whose usage should be always followed by investigation of existence
of a uniform FPT algorithm, with running time as low as possible.

1.4.2 Lower bounds

W -hardness

Since it is commonly believed that FPT �=W [1], proving that a problem
is W [t]-hard for some t ≥ 1 shows that the existence of an FPT algorithm
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is unlikely. As usual, W [t]-hardness of a parameterized problem L can
be proven by providing an appropriate reduction from some known W [t]-
hard problem L′. In this setting, we use parameterized reductions, i.e.,
reductions that work in FPT time, and which produce an instance whose
parameter is bounded by a computable function of the input parameter.
Note that then the existence of an FPT algorithm for L together with a
parameterized reduction from L′ to L would give an FPT algorithm for L′.
In the literature W [1]- and W [2]-hardness results are most common. The
reason is that two natural parameterized problems, Clique parameterized
by the target clique size, and Dominating Set parameterized by the
target dominating set size, areW [1]- andW [2]-complete [119], respectively,
thus providing a very convenient source of reductions. Since the formal
definition of classes W [t] is somewhat technical and irrelevant with respect
to the content of this thesis, we omit it and refer to the monograph of
Downey and Fellows [119] for a more thorough introduction to the W -
hierarchy. For our purposes, it suffices to think of W [1] as the class of
problems reducible to Clique via parameterized reductions, and of W [2]
as the class of problems reducible to Dominating Set via parameterized
reductions.

Constructing W [1]- and W [2]-hardness reductions is somewhat similar
to classical NP-hardness reductions, but of course the character of the goal
is different. Intuitively, the gist of an NP-hardness reduction, say from
the SAT problem, is to create a uniform search space of n binary choices
that can be checked with each other. For a W [1]-hardness reduction, say
from the Clique problem, one usually needs to express a search space of
size nk corresponding to possible choices of k-tuples of vertices that are
candidates for the clique. Hence, while a usual gadget in an NP-hardness
reduction is of constant size and expresses a constant number of states,
in a W [1]-hardness reduction a common opening step is to construct
a gadget that expresses an unbounded number of states, the so-called
1-in-n gadget . Similarly as with NP-hardness, an experienced researcher
working in parameterized complexity can usually easily identify features
of a problem that can be used for designing a W [1]-hardness reduction;
these features can be intuitively described as the ability to express k
independent 1-in-n choices that can be pairwise checked with each other.

ETH and SETH

W [t]-hardness reductions can be used to identify a problem’s location on
the complexity landscape only very crudely. We can distinguish FPT prob-
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lems from problems that are not likely to be fixed-parameter tractable.
However, for example distinguishing FPT problems that require non-
elementary dependence on the parameter from problems that are solv-
able in subexponential parameterized time, i.e., time O∗(2o(k)), using
W -hardness reductions only seems implausible. Similarly, also for prob-
lems in XP that are not likely to be in FPT it is interesting to ask whether
the exponent of the polynomial factor needs to be exponential in the param-
eter, or for instance can be sublinear. The Exponential-Time Hypothesis
and Strong Exponential-Time Hypothesis of Impagliazzo and Paturi [194]
are assumptions using which we can make more precise statements about
lower bounds on time complexities of parameterized algorithms.

ETH and SETH are based on hardness of the CNF-SAT problem.
Recall that in the CNF-SAT problem we are given a propositional formula
ϕ over a set of n boolean variables, and we assume that ϕ is in conjunctive
normal form. That is, ϕ is a conjunction of m clauses, each being a
disjunction of a number of literals — variables appearing in negated or
non-negated form. The question is whether there exists an evaluation of
the variables to values true or false such that ϕ is satisfied. In the q-CNF-

SAT problem we additionally require that every clause contains at most
q literals. While 2-CNF-SAT problem is polynomial-time solvable [18],
already 3-CNF-SAT is a classical NP-hard problem.

Observe that the CNF-SAT problem can be trivially solved in O∗(2n)
time by trying all the possible evaluations. However, for every q ≥ 3 there
exists εq < 1 such that q-CNF-SAT can be solved in O∗(2εqn) time3 [266].
For the case of q = 3, ε3 is known to be as low as 0.386. However, for
the currently known algorithms it holds that limq→∞ εq = 1, that is,
as we relax the constraint on the length of the clauses, the brute-force
search seems more and more inevitable. Therefore, let us denote by δq the
infimum over the set of constants c for which an O∗(2cn) algorithm solving
q-CNF-SAT exists, for q ≥ 3. In this definition we allow randomized
two-sided error algorithms.

The Exponential-Time Hypothesis (ETH) states that δ3 > 0. In other
words, there exists a constant c > 0 such that no algorithm for 3-CNF-

SAT can achieve running time O∗(2cn). The Strong Exponential-Time
Hypothesis (SETH) states that limq→∞ δq = 1, that is, that brute-force
search becomes necessary as q tends to infinity. Note that in particular,
ETH implies that no O∗(2o(n)) exists for 3-CNF-SAT, while SETH implies
that no O∗((2− ε)n) exists for the general CNF-SAT problem, for any
ε > 0. ETH is most often used in combination with Sparsification Lemma

3Here, the polynomial factor hidden in the O∗(·) notation may depend on q.
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of Impagliazzo et al. [195], which intuitively states that for the sake of
designing exponential-time algorithms for q-CNF-SAT one can assume
that the number of clauses is linear in the number of variables, where
the ratio between the number of clauses and the number of variables
depends on q. The immediate consequence of Sparsification Lemma is
that when defining ETH, one can replace n with n+m in the definitions
of constants δq. In other words, ETH is equivalent to claiming that there
exists a constant c > 0 such that no algorithm for 3-CNF-SAT can
achieve running time O∗(2c(n+m)). We refer to Section 2.2.3 for a formal
introduction of ETH, SETH, and Sparsification Lemma.

It should be noted that while ETH is generally considered a plausible
complexity assumption, SETH is regarded by many as a quite doubtful
working hypothesis that can be refuted any time. For this reason, lower
bounds proven under the assumption of SETH should not be regarded as
supported by very strong arguments, but rather that existence of better
algorithms would constitute a major breakthrough in the complexity of
satisfiability.

ETH is a very convenient source of reductions for proving precise
statements about running times of exact and parameterized algorithms.
For instance, in order to show that an NP-hard problem is not solvable
in subexponential time in terms of the input length, it suffices to provide
a reduction from 3-CNF-SAT that produces an instance of size linear
in the size of the input formula. Pipelining such a reduction with the
assumed subexponential-time algorithm would yield a subexponential-
time algorithm for 3-CNF-SAT, contradicting ETH. Similarly, to refute
the existence of a subexponential parameterized algorithm, i.e., an FPT
algorithm working in time O∗(2o(k)), it suffices to present a reduction
from 3-CNF-SAT to a parameterized problem that produces an instance
whose parameter is bounded linearly in the size of the input formula. As
Flum and Grohe observe [132], most of the known reductions for classical
parameterized problems have in fact the aforementioned property, and thus
the corresponding problems do not admit subexponential parameterized
algorithms unless ETH fails. However, ETH is a much more general tool
for proving tight bounds on time complexity. It has been used for example
to prove optimality of some slightly super-exponential parameterized
algorithms [241], of classical dynamic programming on graphs of bounded
treewidth [91, 241], or of XP algorithms for problems known to be W [1]-
hard [64, 67, 133, 251], as well as to sketch the limits of applicability of
Courcelle’s theorem [228, 231, 232]

While ETH can be used to estimate the order of the exponent of
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the running time of a parameterized algorithm, SETH is an even more
precise tool using which one can pinpoint tight bounds on the base of
the exponent. Contrary to ETH reductions, in SETH reductions one
usually needs to start with an arbitrary q-CNF-SAT instance instead
of simple 3-CNF-SAT, and very carefully control the parameter of the
constructed output instance instead of just ensuring linear dependence on
the size of the input formula. Similarly to ETH, also SETH can be used
for a large variety of parameterized problems. For example, Lokshtanov et
al. [239] and Cygan et al. [91] have proven a number of lower bounds on the
classical dynamic programs for graphs of bounded treewidth. In particular,
Lokshtanov et al. have proven that for any ε > 0, existence of algorithms
solving the Independent Set and Dominating Set problems on graphs
of treewidth t and achieving running times O∗((2− ε)t) and O∗((3− ε)t),
respectively, would contradict SETH. On the other hand, Cygan et al. [86]
attempted to create a net of SETH reductions between many important
problems of parameterized complexity. Despite not linking all the problems
to SETH, the landscape given in [86] provides a fairly good understanding
of hidden links between fundamental problems for which brute-force or
straightforward dynamic programming solutions seem to be optimal. It is
noteworthy that SETH can be also used to prove refined lower bounds for
the performance of some XP and polynomial-time algorithms [272].

In Chapter 4 we provide a more thorough survey of the program of
obtaining tight bounds on the complexity of parameterized problems.

Kernelization lower bounds

In the overview of the field of kernelization we briefly mentioned the
methodology for proving implausibility of polynomial kernelization. Cur-
rently, the main tool for showing that a parameterized problem probably
does not admit a polynomial kernel is the composition framework of
Bodlaender et al. [45], with backbone information-theoretical theorem
proved by Fortnow and Santhanam [149]. Bodlaender et al. have shown
that a parameterized problem does not admit a polynomial kernel unless
NP ⊆ coNP/poly providing it is OR-compositional . Intuitively, OR-
compositionality means that given a large number of instances of the
problem with the same parameter k, one can merge these instances in
polynomial time into one, possibly huge instance, but whose parameter is
bounded by a polynomial of k. The output instance should be equivalent
to logical OR of the input instances. We provide formal details of the
composition framework in Section 2.2.4.



20 CHAPTER 1. A GENTLE INTRODUCTION

A simple example of compositionality is the k-Path problem, where,
given a graph G and integer k, one is asked if a simple path of length
k exists in G. For the merging procedure, the so-called composition
algorithm, we simply take the disjoint union of input instances, and ask
for the same value of k. Observe that a k-path exists in the disjoint union
of graphs if and only if it exists in any of them; hence the output instance is
equivalent to the logical OR of the input instances. Therefore, by a simple
application of the results of Bodlaender et al. we obtain that the k-Path
problem does not admit a polynomial kernel unless NP ⊆ coNP/poly.

The intuition behind compositionality is as follows. Assume that a
compositional problem admits a polynomial kernel. Then, by pipelining the
composition algorithm with kernelization we are able to pack information
contained in an unbounded number of input instances into an instance of
size only polynomial in terms of the parameter. Thus, some information
about some of the instances must have been lost during compression into
the kernel. However, we do not expect a polynomial-time algorithm to be
able to identify the instances on the input that can be safely discarded.
This is precisely the intuition behind the backbone theorem of Fortnow and
Santhanam [149] that led to development of the composition framework.

Since its discovery, the composition framework has been used several
times to refute existence of polynomial kernels for many different problems.
It should be said that it is rare that a composition algorithm is so simple
as in the case of the k-Path problem. Usually, designing a composition
algorithm requires both a good understanding of the problem, and a
number of combinatorial ideas. Today, most compositions use the notion
of cross-composition, introduced by Bodlaender et al. [50], that puts the
original framework into a very convenient and useful formalism.

Dell and van Melkebeek [102] have refined the backbone result of
Fortnow and Santhanam to provide a framework for proving more precise
lower bounds on the sizes of kernels. For instance, they have proved
that the Vertex Cover problem cannot admit a kernelization algorithm
that compresses any instance into bitsize O(k2−ε) for any ε > 0, unless
NP ⊆ coNP/poly. The framework, today known as weak compositions,
has been further improved and applied to other problems by Dell and
Marx [101] and by Hermelin and Wu [187].

It should be also mentioned that Bodlaender et al. [45] have conjectured
that the OR function in OR-compositions can be replaced by the AND
function. This statement, further known as the AND-conjecture, has been
recently resolved positively by Drucker [120]. That is, Drucker has shown
that existence of a polynomial kernel for an AND-compositional problem
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also contradicts the assumption that NP � coNP/poly. The positive
resolution of the AND-conjecture refutes existence of polynomial kernels
for a number of important problems, including for instance computing the
treewidth of a graph.

We again invite an interested reader to the survey of Lokshtanov et
al. [242] for more information on kernelization lower bounds.

1.5 Highlights of this thesis

1.5.1 Survey of the content

The content of this thesis is based on the following 5 papers:

• Jungles, bundles, and fixed-parameter tractability, co-authored by
Fedor V. Fomin, and presented at the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013 [145];

• Computing cutwidth and pathwidth of semi-complete digraphs via
degree orderings, presented at the 30th International Symposium
on Theoretical Aspects of Computer Science, STACS 2013, Kiel,
Germany, February 27 - March 2, 2013 [269];

• Subexponential parameterized algorithm for computing the cutwidth
of a semi-complete digraph, co-authored by Fedor V. Fomin, and to
be presented at the 19th Annual European Symposium, ESA 2013,
Sophia Antipolis, France, September 2-4, 2013 [146];

• Tight bounds for parameterized complexity of Cluster Editing, co-
authored by Fedor V. Fomin, Stefan Kratsch, Marcin Pilipczuk and
Yngve Villanger, and presented at the 30th International Symposium
on Theoretical Aspects of Computer Science, STACS 2013, Kiel,
Germany, February 27 - March 2, 2013 [136];

• Known algorithms for Edge Clique Cover are probably optimal,
co-authored by Marek Cygan and Marcin Pilipczuk, and presented
at the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013 [94].

The thesis consists of two parts. The first part is based on the results
obtained in [145, 269, 146] and treats of construction of an algorithmic
containment theory for tournaments, or more generally, semi-complete
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digraphs (see Section 2.1.2 or Section 5.1 for a precise definition of this
generalization). It appears that in spite of serious obstacles for lifting the
results of the Graph Minors project to the world of general directed graphs,
a similar theory can be designed for the class of semi-complete digraphs.
This theory has been recently developed by Chudnovsky, Fradkin, Kim,
Scott, and Seymour in a series of papers [72, 73, 74, 151, 152, 215]. The
work of Chudnovsky, Fradkin, Kim, Scott, and Seymour answers many
important questions, but a number of issues, mostly related to algorithmic
aspects of the theory, have been left open. In this thesis we address these
issues by providing efficient algorithms for most important topological
problems in semi-complete digraphs, mirroring the achievements of the
Graph Minors project of Robertson and Seymour, of course on a much
smaller scale. In particular, we provide new, unified proofs of many of the
fundamental findings of Chudnovsky, Fradkin, Kim, Scott, and Seymour,
which also lead to more efficient algorithms.

In this part of the thesis we mostly rely on defining width measures of
graphs, designing dynamic programming on width decompositions, and
applying different WIN/WIN approaches. To give more background on
our reasonings, in Chapter 3 we survey applications of width measures in
parameterized complexity.

The second part of the thesis addresses the optimality program, that
is, pursuit of tight bounds on the complexity of parameterized problems.

First, in Chapter 8 we perform a tight multivariate parameter analysis
of the Cluster Editing problem; this chapter is based on the results
of [136]. Shortly speaking, the Cluster Editing problem treats of
transforming a graph into a cluster graph, i.e., a disjoint union of cliques
(called clusters) using a small number of edge additions or deletions. We
address two natural parameters of the problem: the allowed number of
editions k and the target number of clusters p. Our study reveals a fully
tight picture of the interplay between these two parameters. On one hand,
we show that the problem can be solved in O∗(2O(

√
pk)) time. On the

other hand, for every magnitude of p being a function of k we show that
no algorithm with running time O∗(2o(

√
pk)) exists unless ETH fails. To

the best of author’s knowledge, this is the first parameterized problem for
which such a tight multivariate analysis has been performed.

Second, in Chapter 9 we address the Edge Clique Cover problem,
which asks whether the edges of the input graph G can be covered using
at most k cliques in G. It was known that the problem admits a simple
kernel with at most 2k vertices, and application of a simple dynamic
programming routine on this kernel yields an FPT algorithm with running
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time O∗(22
O(k)

). We prove a somewhat surprising result that these results
are tight under ETH. More precisely, we provide a reduction from the
3-CNF-SAT problem that at the same time shows (i) non-existence of a
subexponential kernel, under P �=NP; (ii) non-existence of an algorithm
achieving running time O∗(22

o(k)
), under ETH. To the best of author’s

knowledge, this is the first doubly-exponential lower bound on the running
time for a natural parameterized problem, and one of a few kernelization
lower bounds outside the framework of composition.

In this part of the thesis we address the optimality program of investi-
gating tight bounds for parameterized problems. Again, we survey the
advances of the optimality program in Chapter 4 to put our study in a
larger context.

1.5.2 Sparse graphs and dense graphs

We would like to point out here that in all the results contained in this thesis
we address classes of graphs that are dense. The underlying undirected
graph of a tournament is a clique, and the combinatorial richness of this
graph class is obtained only by choosing different directions of arcs. In
the Cluster Editing problem we aim at transforming the given graph
into a small number of disjoint cliques using a small number of editions.
Hence, we may assume that the input graph is already dense, as it has to
be dense after a slight perturbation. A YES-instance of the Edge Clique

Cover problem also needs to be dense, since its edge set can be covered
by only a few cliques.

As we will try to convince the reader about in Chapter 3, there is
a full variety of tools for proving fixed-parameter tractability results on
classes of graphs that are sparse, but only a handful of means of using
density. However, there are many examples where dense instances appear
naturally in applications; see the introductory sections of Chapters 8 and 9
for motivation of Cluster Editing and Edge Clique Cover. A simple
example when the input graph cannot be assumed to be sparse, is when
it represents some similarity relation between a set of objects. In such a
situation the graph is likely to contain large cliques or clique-like clusters
of objects of the same type. Understanding possibilities of designing fast
algorithms for such graphs is certainly an important and interesting issue.

The common theme of all the reasonings contained in this thesis is that
we exploit the dense nature of the input instances to design fast algorithm,
or to prove high lower bounds. Even though we do not claim to create
any algorithmic theory for dense graphs, we hope that the insights of this
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thesis will be helpful in future study of the parameterized complexity in
dense graph classes.



Chapter 2

Preliminaries

2.1 Notation

2.1.1 General notation

By N we denote the set of nonnegative integers. For t ∈ R, we denote
exp(t) = et where e is the base of natural logarithms. A partition of
a set X is a sequence of pairwise disjoint subsets of X whose union is
equal to X. By � we denote the symmetric difference of two sets, i.e.,
A�B = (A\B)∪ (B \A). For a formula of any logic ϕ, by ||ϕ|| we denote
the length of ϕ in any fixed encoding. We also use Iverson notation: for a
condition ψ, [ψ] denotes value 1 if ψ is true and 0 otherwise.

Let us define function tower : N × N → N recursively as follows:
tower(0, k) = k and tower(q + 1, k) = 2tower(q,k). Following Frick and
Grohe [154], a function f : N→ N is called elementary if it can be formed
from the successor function, addition, subtraction, and multiplication using
finitely many compositions, projections, bounded additions and bounded
multiplications (of the form

∑
z≤y g(x̄, z) and

∏
z≤y g(x̄, z)). Observe

that if f(k) is elementary, then for some constant q ∈ N it holds that
f(k) ≤ tower(q, k) for large enough k; cf. [85].

TheO∗(·) notation hides factors polynomial in the input size. That is, a
function g(k, |x|) is in class O∗(f(k)) if and only if g(k, |x|) = O(f(k) · |x|c)
for some constant c. Here, k can be an integer parameter, as well as a
vector of parameters.

25
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2.1.2 Notation for graphs

Basic definitions

For graph notation, we mostly follow Diestel [112]. An undirected graph
is a pair G = (V,E), where V , the vertex set , is any finite set, and E, the
edge set , is a family of two-element subsets of V , called the edges. An
edge between vertices v and w is denoted by vw. We also say that vw is
incident with vertices v and w, and that v and w are adjacent or that
they are neighbors. Following these definitions, all the graphs contained
in this thesis are simple unless explicitely stated. That is, we do not allow

• loops: one-element subsets in E corresponding to edges connecting
a vertex with itself;

• multiple edges : multiple copies of the same subset in E corresponding
to many edges connecting the same vertices.

By allowing loops and multiple edges in the definition of a graph we arrive
at the notion of a multigraph.

By V (G) and E(G) we denote the vertex and the edge set of a
(multi)graph, respectively. For X,Y ⊆ V (G), we denote E(X,Y ) =
{vw ∈ E(G) | v ∈ X ∧w ∈ Y }; we use EG(·, ·) instead of E(·, ·) whenever
G is not clear from the context. The size of a (multi)graph G, denoted
|G|, is defined as |G| = |V (G)|+ |E(G)|. For undirected graphs G,H with
V (G) = V (H), by H(G,H) we denote the number of edge modifications
needed to obtain H from G, i.e., H(G,H) = |E(G)�E(H)|. We say that
two graphs G,H are isomorphic, denoted G ∼= H , if there exists a bijection
η : V (G) → V (H) such that uv ∈ E(G) if and only if η(u)η(v) ∈ E(H)
for all (u, v) ∈ E(G)× E(G).

A digraph, or a directed graph, is a pair G = (V,E), where V is again
a finite vertex set, while E, the arc set , is a family of ordered pairs of
different elements of V , called the arcs . We refer to a pair a = (v, w) ∈ E
as to an arc directed from v to w. We also call w the head of a, and v
the tail of a. Again, all the digraphs contained in this thesis are simple
unless explicitely stated, that is, they do not contain loops or multiple
arcs, defined similarly as in the undirected case. Note, however, that for
two different vertices v, w we allow existence of both arcs (v, w) and (w, v)
simultaneously. By allowing loops and multiple edges we arrive at the
notion of a multidigraph.

Definitions of V (G), E(G), and |G| can be extended naturally to the
directed setting. Similarly, we also denote E(X,Y ) = {(v, w) ∈ E(G) | v ∈
X ∧ w ∈ Y }.
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If H and G are undirected graphs, then we say that H is a subgraph
of G, denoted H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). For an
undirected graph G = (V,E) and X ⊆ V , by subgraph induced by X we
mean graph G[X] = (X,E(X,X)). The notions of a subgraph and of
an induced subgraph can be naturally extended to multigraphs and to
digraphs; in the latter case, we talk about subdigraphs.

For a graph G, a vertex set X ⊆ V (G) and an edge set F ⊆ E(G), by
G \X and G \ F we denote graphs G[V (G) \X] and (V (G), E(G) \ F ),
respectively. We also say that G is obtained by removing X or F from the
graph. Again, these notions can be naturally generalized to multigraphs
and digraphs.

A clique in an undirected graph G is a subgraph of G where every two
vertices are adjacent. We often identify a clique with its vertex set, and
by the size of a clique we mean the cardinality of its vertex set. Similarly,
an independent set is a set of vertices that are pairwise non-adjacent. A
vertex cover is a set of vertices that contains at least one endpoint of every
edge of the graph; equivalently, removing a vertex cover from the graph
results in an edgeless graph. A dominating set is a set of vertices X such
that any vertex of the graph either belongs to X or has a neighbor in X.
Parameterized problems Clique, Independent Set, Vertex Cover,
Dominating Set are defined with respect to the natural parameters
being the target cardinalities of the corresponding sets. That is, in all
these problems we are given a graph G and an integer k; in Clique and
Independent Set we ask whether there exists a clique/independent set
on at least k vertices, while in Vertex Cover and Dominating Set

the question is whether there exists a vertex cover/dominating set of size
at most k.

Neighborhoods and degrees

For an undirected graph G and a vertex v ∈ V (G), the open neighborhood
of v is defined as N(v) = {w ∈ V (G) | vw ∈ E(G)}, and the closed
neighborhood of v is defined asN [v] = N(v)∪{v}. We extend this notion to
subsets X ⊆ V (G) as follows: N [X] =

⋃
v∈X N [v] and N(X) = N [X] \X.

The degree of a vertex v is defined as d(v) = |N(v)|.
For a directed graph G, the open in- and outneighborhoods of v are

defined as N−(v) = {w ∈ V (G) | (w, v) ∈ E(G)} and N+(v) = {w ∈
V (G) | (v, w) ∈ E(G)}. Similarly as for the undirected graphs, we define
closed in- and outneighborhoods and extend these notions to vertex subsets
as follows: N r[v] = N r(v) ∪ {v}, N r[X] =

⋃
v∈X N r[v] and N r(X) =
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N r[X] \X, where r ∈ {−,+}. The indegree of a vertex v is defined as
d−(v) = |N−(v)|, while the outdegree is defined as d+(v) = |N+(v)|. The
degree of v is defined as d(v) = d−(v) + d+(v).

Paths and cycles

Let G be an undirected graph. A walk in G is a sequence of vertices
such that every two consecutive vertices of the sequence are connected
by an edge. The length of a walk is equal to the length of the sequence
decremented by 1. We say that a walk traverses each vertex appearing
on it, and it also traverses each edge between two consecutive vertices
appearing on it. The first and the last vertex are called the endpoints of
a walk. A walk is called closed if its endpoints are equal. The notions of
(closed) walks can be naturally generalized to digraphs by requesting that
for every two consecutive vertices of the sequence there is an arc from the
first one to the second. We then say that the first vertex of a walk is its
beginning, while the last is its end.

A path (or a simple path) in G is a subgraph of G formed by vertices
and edges traversed by a walk in G that does not visit any vertex more
than once. The first and the last vertex are called the endpoints of a path,
and all the other vertices are internal . A cycle (or a simple cycle) is a
subgraph of G formed by vertices and edges traversed by a closed walk
in G of length at least 3 that does not visit any vertex more than once,
apart from beginning and ending in the same vertex that is visited exactly
twice. The length of a path or a cycle is the cardinality of its edge set;
note that thus the length of a path or a cycle is equal to the length of the
corresponding (closed) walk.

Analogically, using directed (closed) walks we can define directed paths
and directed cycles. In the case of digraphs, however, we allow cycles of
length 2.

Two paths are edge-disjoint or vertex-disjoint if their edge or vertex
sets are disjoint, respectively. Two paths are internally vertex-disjoint if no
internal vertex of one path lies on the other. These notions can be naturally
generalized to digraphs; in this case we talk about arc-disjointness instead
of edge-disjointness.

An undirected graph G is acyclic, or a forest , if it does not contain
any cycle. It is moreover a tree if it is connected. Vertices of degree 1 in a
forest are called leaves, while all the other vertices are called internal. A
directed graph G is acyclic, or a DAG (for directed acyclic graph), if it
does not contain any directed cycle. Equivalently, G admits a topological
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ordering , i.e., an ordering σ of V (G) such that whenever (v, w) ∈ E(G),
then v <σ w. Recall that given an acyclic digraph G, its topological
ordering can be found in linear time.

An undirected graph G is bipartite if its vertex set can be partitioned
into two sets X,Y (called partite sets) such that every edge of the graph
has one endpoint in X and second in Y . Equivalently, a graph is bipartite
if it does not contain any cycle of odd length. We often think of bipartite
graphs as triples (X,Y,E), where X is the left partite set, Y is the right
partite set, and E is the edge set.

Connectivity

A graph is connected if every two vertices can be connected via a path. Ev-
ery graph can be in linear time decomposed into its connected component ,
i.e., inclusion-maximal connected subgraphs. If G is an undirected graph
and X ⊆ V (G), then we say that X is connected if G[X] is connected.

A digraph is weakly connected if its underlying undirected multigraph
is connected. For a directed graph G and two vertices v, w ∈ V (G),
we say that v and w communicate if there exist directed paths from
v to w and from w to v. Note that communication is an equivalence
relation. A digraph is strongly connected if every two vertices communicate.
Equivalence classes of the relation of communication are called strongly
connected components . For a digraph G, we have a natural structure of a
DAG on the set of strongly connected components of G: there is an arc
from component K to component K ′ if and only if (v, v′) ∈ E(G) for some
v ∈ K and v′ ∈ K ′. We call this DAG the DAG of strongly connected
components of G. Recall that given a digraph G, its DAG of strongly
connected components can be found in linear time [76].

Separations and cuts

In an undirected graph G, a separation is a pair of vertex subsets (A,B)
such that A ∪ B = V (G) and E(A \ B,B \ A) = ∅. The separator of
(A,B) is A ∩B, and the order of (A,B) is equal to |A ∩B|. For vertices
v ∈ A \B and w ∈ B \A, we say that separation (A,B) separates v and
w. This corresponds to the observation that every path between v and w
in G must contain a vertex from separator A ∩B. Thus, we may also say
that the separator separates v and w. Observe that in this formalism, the
classical Menger’s theorem states that for every two different vertices v, w
such that vw /∈ E(G), one can find either k + 1 internally vertex-disjoint
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paths between v and w, or a separation of order at most k that separates
v and w.

We naturally extend the notation for separations to the directed setting
as follows. Again, a separation is a pair of vertex subsets (A,B) such that
A ∪ B = V (G) and E(A \ B,B \ A) = ∅. We define the separator and
the order of a separation in the same manner as in the undirected setting.
For v ∈ A \ B and w ∈ B \ A, we say that (A,B) (or A ∩ B) separates
w from v. Again, in this notation the classical Menger’s theorem states
that for every two different vertices v, w such that (v, w) /∈ E(G), one can
find either k + 1 internally vertex-disjoint directed paths from v to w, or
a separation of order at most k that separates w from v.

While separations correspond to vertex-connectivity, for edge connec-
tivity we use the terminology of cuts. For an undirected graph G, a cut
in G is a partition (A,B) of V (G). The cutset of (A,B) is E(A,B), and
the order of (A,B) is |E(A,B)|. Every cut of order at most k will be also
called a k-cut . Again, we say that a cut or a cutset separates any vertex
from A and any vertex from B. These notions are extended naturally to
the directed setting, similarly as with separations. Note, however, that
here the order of a cut (A,B) is the cardinality of its cutset E(A,B),
while we put no constraints on the size of E(B,A). In this formalism
the classical Menger’s theorem for undirected graphs states that for an
undirected graph G and any two different vertices v, w ∈ V (G), one can
either find k + 1 edge-disjoint paths between v and w, or a cut of order
at most k that separates v and w. Similarly, for a directed graph G and
any two vertices v, w ∈ V (G), one can either find k + 1 arc-disjoint paths
from v to w, or a cut of order at most k that separates w from v

Tournaments and semi-complete digraphs

A simple digraph T is a tournament if for every pair of different vertices
v, w ∈ V (T ), we have that exactly one of arcs (v, w) or (w, v) is present
in E(T ). Similarly, T is semi-complete if for every pair of different
vertices v, w ∈ V (T ), we have that at least one of arcs (v, w) or (w, v)
is present in E(T ). A semi-complete digraph is a transitive tournament
if it is acyclic. Equivalently, there exists an ordering σ of vertices of
T such that (v, w) ∈ E(T ) if and only if v <σ w. Note that the DAG
of strongly connected components of any semi-complete digraph is a
transitive tournament.
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2.2 Algorithmic frameworks

2.2.1 Parameterized complexity

A parameterized problem L is a subset of Γ∗ × N for some finite alphabet
Γ. An instance of a parameterized problem consists of (x, k), where k is
called the parameter. By L̃ we denote the unparameterized version of L,
that is, a classical problem over alphabet Γ ∪ {1} for some 1 /∈ Γ where
y ∈ L̃ if and only if y is of form x1k for some (x, k) ∈ L.

We say that a problem L is in class XP if there exists an algorithm
A that for a given instance (x, k) resolves whether (x, k) ∈ L in time
f(k) · |x|f(k), where f is an arbitrary computable function of k. We
moreover say that L is fixed-parameter tractable (FPT) if there exists an
algorithm B that for a given instance (x, k) resolves whether (x, k) ∈ L in
time f(k) · p(|x|), where f is an arbitrary computable function of k and
p is a polynomial of the input size. We also say that an algorithm or a
running time are XP or fixed-parameter tractable if they satisfy respective
conditions in the definitions above.

A parameterized problem L is in non-uniform class XP if there exists
a sequence of algorithms (Ak)k∈N such that algorithm Ak, given input x,
resolves whether (x, k) ∈ L in time ck · |x|ck , where ck is some constant de-
pending on k only. Similarly, L is non-uniformly fixed-parameter tractable
if there exists a sequence of algorithms (Bk)k∈N such that algorithm Bk,
given input x, resolves whether (x, k) ∈ L in time ck · p(|x|), where ck is
some constant depending on k only and p is a polynomial of the input size.

A parameterized reduction from a parameterized problem L to a pa-
rameterized problem L′ is an algorithm that, given an instance (x, k) of
L, in time f(k) · |x|O(1) outputs an equivalent instance (x′, k′) of L′ such
that k′ ≤ g(k), where f and g are some computable functions. Note that
pipelining a parameterized reduction from L to L′ with an FPT algorithm
for L′ yields an FPT algorithm for L.

The definitions of classes XP and FPT and of parameterized reductions
can be naturally generalized to allow several parameters by allowing k to
be a vector of nonnegative integers of some fixed length d. For instance,
then the domain of functions f in the definitions is Nd rather than N.
Alternatively, the reader may think of a parameterization by multiple
parameters as a parameterization by the sum of them.

Class SUBEPT, defined by Flum and Grohe [132, Chapter 16], consists
of these fixed-parameter tractable problems which admit an algorithm
working in time f(k) · p(|x|) on inputs (x, k), where f ∈ 2o(k) is a com-
putable function and p is any polynomial. We also call such algorithms
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subexponential parameterized algorithms. Algorithms with running time
O∗(tower(q, p(k))) for any polynomial p will be called q-times expo-
nential , and in particular algorithms with running time O∗(2p(k)) for
any polynomial p will be called single-exponential . To avoid misunder-
standings, algorithms with running time O∗(2O(k)) will be called simple
single-exponential .

We refer to the books of Downey and Fellows [119] and of Flum and
Grohe [132] for further reading on parameterized complexity.

2.2.2 Kernelization

A kernelization algorithm for a parameterized problem L ⊆ Γ∗ × N is
an algorithm that given (x, k) ∈ Γ∗ × N outputs in time polynomial in
|x| + k a pair (x′, k′) ∈ Γ∗ × N such that (i) (x, k) ∈ L if and only if
(x′, k′) ∈ L, and (ii) |x′|, k′ ≤ g(k) for some computable function g. The
output instance (x′, k′) is called the kernel, while function g is called the
size of the kernel. We say that a problem admits a polynomial kernel
if it admits a kernelization algorithm where the size of the kernel is a
polynomial function of the parameter. The following lemma expresses the
folklore observation stated and proved in Section 1.4.1.

Lemma 1 (Folklore, [119]). Let L be a parameterized problem and assume
that L̃ is decidable. Then L is fixed-parameter tractable if and only if it
admits some kernelization algorithm.

2.2.3 ETH and SETH

A propositional formula ϕ over a set of boolean variablesX is in conjunctive
normal form (CNF) if ϕ is a conjunction of m clauses, each being a
disjunction of a number of literals, i.e., variables appearing in negated or
non-negated form. The CNF-SAT problem is defined as follows: given a
propositional formula in CNF on n variables and m clauses, determine
whether there exists an evaluation of the variables into values true or false
that satisfies ϕ. By restricting the number of literals that can appear in a
single clause to q we arrive at the definition of the q-CNF-SAT problem.

For q ≥ 3, let δq be the infimum of the set of constants c for which
there exists an algorithm solving q-CNF-SAT in time O∗(2cn). In this
definition we allow randomized two-sided error algorithms. ETH and
SETH are then defined as follows.

Conjecture 2 (Exponential-Time Hypothesis, [194]). The following holds:
δ3 > 0.
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Conjecture 3 (Strong Exponential-Time Hypothesis, [194]). The follow-
ing holds: limq→∞ δq = 1.

We now recall the Sparsification Lemma of Impagliazzo et al. [195]
and its immediate consequence.

Proposition 4 (Sparsification Lemma, Corollary 1 of [195]). For all ε > 0
and positive q, there is a constant C so that any q-CNF formula ϕ with
n variables can be expressed as ϕ =

∨t
i=1 ψi, where t ≤ 2εn and each ψi is

a q-CNF formula with at most Cn clauses. Moreover, this disjunction
can be computed by an algorithm running in time 2εn · nO(1).

Corollary 5 ([195]). Unless ETH fails, there exists a constant c > 0 such
that no algorithm for 3-CNF-SAT can achieve running time O∗(2c(n+m)).
In particular, 3-CNF-SAT cannot be solved in O∗(2o(n+m)) time.

2.2.4 Kernelization lower bounds

We now recall the cross-composition framework introduced by Bodlaender
et al. [50] which builds upon Bodlaender et al. [45] and Fortnow and
Santhanam [149]. We will not use this framework in this thesis; we
provide the following formal details for reader’s convenience, since we
refer to lower bounds obtained via compositions in Section 1.4.2 and in
Chapter 9.

Definition 6 (Polynomial equivalence relation, [50]). An equivalence
relation R on Σ∗ is called a polynomial equivalence relation if (1) there
is an algorithm that given two strings x, y ∈ Σ∗ decides whether R(x, y)
in (|x| + |y|)O(1) time; (2) for any finite set S ⊆ Σ∗ the equivalence
relation R partitions the elements of S into at most (maxx∈S |x|)O(1)

classes.

Definition 7 (Cross-composition, [50]). Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N
be a parameterized problem. We say that L cross-composes into Q if there
is a polynomial equivalence relation R and an algorithm that, given t
strings x1, x2, . . . xt belonging to the same equivalence class of R, takes
time polynomial in

∑t
i=1 |xi| and computes an instance (x∗, k∗) ∈ Σ∗ × N

such that (1) (x∗, k∗) ∈ Q if and only if xi ∈ L for some 1 ≤ i ≤ t; (2) k∗

is bounded polynomially in maxti=1 |xi|+ log t.

Proposition 8 (Theorem 9 of [50]). If L ⊆ Σ∗ is NP-hard under Karp
reductions, and L cross-composes into a parameterized problem Q that
has a polynomial kernel, then NP ⊆ coNP/poly.
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The following result of Dell and van Melkebeek [102] is a sharp-
ened version of the information-theoretical theorem of Fortnow and San-
thanam [149] that led to development of the composition framework. We
will find it useful in Chapter 9.

Proposition 9 ([102]). Let q ≥ 3 be an integer, ε be a positive real
and L ⊆ {0, 1}∗ be any language. If NP � coNP/poly, then there is no
polynomial-time algorithm that takes a q-CNF formula ϕ on n variables
and outputs a binary string u of length O(nq−ε) such that u ∈ L if and
only if ϕ is satisfiable.

Such algorithms as the one refuted in Proposition 9 are called compres-
sion algorithms in order to distinguish them from kernelization algorithms,
where we additionally require that the target language is the same as
the source language. We remark that the original statement of Dell and
van Melkebeek is more general and refutes even existence of protocols
certifying satisfiability with total communication cost O(nq−ε); we refer
to [102] for details. Proposition 9 was used by Dell and van Melkebeek
to provide tight bounds on kernel sizes for some classical parameterized
problems, and is the crucial ingredient of the later framework of weak
compositions of Dell and Marx [101] and of Hermelin and Wu [187].

2.3 Width measures and the topological theory
for graphs

2.3.1 Containment relations

Let H and G be undirected graphs. We say that H is a minor of G if there
exists a family (Bv)v∈V (H) of disjoint subsets of V (G) such that (i) Bv is
connected for each v ∈ V (H), and (ii) if vw ∈ E(H), then v′w′ ∈ E(G)
for some v′ ∈ Bv and w

′ ∈ Bw. The sets Bv are called branch sets and
the family (Bv)v∈V (H) is called the minor model of H in G.

We say that H is a topological subgraph of G, or is topologically
contained (embedded) in G, if there exists a mapping η such that (i) for
v ∈ V (H), η(v) are distinct vertices of G, (ii) for vw ∈ E(H), η(vw) is a
path between η(v) and η(w), and (iii) all the paths η(vw) for vw ∈ E(H)
are pairwise internally vertex-disjoint. If we relax the requirement of
vertex-disjointness to edge-disjointness, we arrive at the definition of
immersion.

It is easy to observe that the minor, topological subgraph and immer-
sion relations are reflexive, transitive, and antisymmetric, and hence they
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constitute partial orders of the set of undirected graphs.

For a graph H, a subdivision of H is any graph that can be obtained
from H by repeated use of the following operation: take any edge vw ∈
E(H), and substitute it with edges vu and uw for a newly introduced
vertex u. Note that G contains H as a topological subgraph if and only if
G contains a subdivision of H as a subgraph.

For a graph G and an edge vw ∈ E(G), we define the edge contraction
operation as follows. Substitute vertices v and w with a newly introduced
vertex u, and put ux into the edge set for exactly these vertices x ∈
V (G) \ {v, w} for which vx ∈ E(G) or wx ∈ E(G). It can be easily
observed that G contains H as a minor if and only if H can be obtained
from G by repeated use of vertex deletions, edge deletions, and edge
contractions. If we additionally require that any contracted edge has at
least one endpoint of degree 2, then we obtain the notion of a topological
subgraph. Immersion can be also defined in terms of graph operations
using yet another operation called lift ; we refer to [27, 165] for details.

The notions of a topological subgraph and immersion can be naturally
lifted to the directed setting by replacing paths with directed paths. There
is no clear consensus about generalization of the notion of a minor. In
Part II of this thesis we use one of the propositions that has been presented
recently by Kim and Seymour [215]. We refer to Section 5.2.2 for a unified
formalization of containment relations in directed graphs.

2.3.2 Treewidth and pathwidth

A tree decomposition of an undirected graph G is a tree T in which each
vertex x ∈ V (T ) has an assigned set of vertices Bx ⊆ V (G) (called a bag)
such that the following properties are satisfied:

• ⋃x∈V (T )Bx = V (G);

• for each uv ∈ E(G), there exists an x ∈ V (T ) such that u, v ∈ Bx;

• for each v ∈ V (G), the set of vertices of T whose bags contain v
induces a connected subtree of T .

The width of a tree decomposition T is maxx∈V (T ) |Bx| − 1, and the
treewidth of a graph G, denoted tw(G), is the minimum treewidth over
all possible tree decompositions of G. To distinguish vertices of T from
vertices of G we often call the vertices of T nodes . By restricting T to be
a path we arrive at the notions of a path decomposition and pathwidth,
denoted pw(G).
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2.3.3 Cliquewidth

A labeled graph is a pair (G,α), where G is a graph and α : V (G) →
{1, 2, . . . , k} is a labeling function that associates with each vertex of G
one of k different labels. We define three operations on labeled graphs:

• Disjoint union ⊕ is defined as

(G1, α1)⊕ (G2, α2) = (G1 ∪G2, α1 ∪ α2).

In other words, we take the disjoint union of graphs G1 and G2, and
define the labeling as the union of original labelings.

• Join ηi,j(·) for i, j ∈ {1, 2, . . . , k}, i �= j, is defined as

ηi,j((G,α)) = (G′, α),

where G′ is G after introducing all possible edges having one endpoint
labeled with i and second with j.

• Relabel ρi→j(·) for i, j ∈ {1, 2, . . . , k}, i �= j, is defined as

ρi→j((G,α)) = (G,α′),

where α′ is α with all the values i substituted with j.

A clique expression is a term that uses operators ⊕, ηi,j(·), ρi→j(·), and
constants ι1, ι2, . . . , ιk that represent one-vertex graphs with the only
vertex labeled with 1, 2, . . . , k, respectively. In this manner a clique
expression constructs some labeled graph (G,α). The cliquewidth of a
graph G (denoted cw(G)) is the minimum number of labels needed in a
clique expression that constructs G (with any labeling).

2.3.4 Branch decompositions, branchwidth, rankwidth, and
carving-width

Many definitions of width measures of graphs follow formalism intro-
duced by Robertson and Seymour for branchwidth and branch decomposi-
tions [284]. Let X be any set and μ be any function that maps partitions
of X into two subsets to nonnegative reals. We will call μ the cut function
and require it to be symmetric, i.e., μ((A,B)) = μ((B,A)) for any parti-
tion (A,B) of X. A branch decomposition is a tree T with elements of X
associated with leaves of T , and every internal vertex of degree exactly 3.
For any edge e ∈ E(T ), removing e from T breaks T into two connected
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components; let (Ae, Be) be the partition of elements of X with respect
to the component to which they fall. Then the width of decomposition T
is defined as maxe∈E(T ) μ((Ae, Be)). The μ-width of X is defined as the
minimum possible width of a branch decomposition of X.

By choosing different sets X and cut functions μ we obtain different
width notions of combinatorial objects. For instance, if for an undirected
graph G we take X = E(G) and define μ((A,B)) to be the number
of vertices of G that are simultaneously adjacent to an edge from A
and to an edge from B, we arrive at the definition of branchwidth [284]
(denoted bw(G)). On the other hand, if for an undirected graph G we
take X = V (G) and simply put μ((A,B)) = |E(A,B)|, we arrive at the
definition of carving-width [298]. Finally, taking X = V (G) and μ((A,B))
to be the rank over F2 of the binary matrix of adjacency between A and
B leads to the definition of rankwidth [265] (denoted rw(G)).

2.3.5 Linear width measures and cutwidth

Let X be a set of size n, and μ be a cut function as in Section 2.3.4;
this time, we do not require μ to be symmetric. For an ordering σ =
(x1, x2, . . . , xn) of X, we define the width of σ as

max
i=0,1,...,n

μ({x1, x2, . . . , xi}, {xi+1, xi+2, . . . , xn}).

The linear μ-width of X is defined as the minimum possible width among
orderings of X. The cutwidth of a graph G (denoted ctw(G)) is defined
by taking X = V (G) and μ((A,B)) = |E(A,B)|.

2.3.6 Models of logic on graphs

FO is First-Order logic on graphs. The syntax of FO consists of

• logical connectives ∨, ∧, ¬, ⇔, ⇒, with standard semantics;

• variables for vertices;

• quantifiers ∀, ∃ that can be applied to these variables;

• and the following two binary relations:

1. E(u, v), where u, v are vertex variables, and the semantics is
that E(u, v) is true if and only if edge uv is present in the
graph;

2. equality of variables.
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MSO1 is Monadic Second-Order logic on graphs with quantification over
subsets of vertices but not of edges. The syntax of MSO1 extends that of
FO by the following features:

• there are variables for vertices and for sets of vertices;

• quantifiers ∀, ∃ as well as equalities can be applied to all these
variables;

• we add binary relation u ∈ U , where u is a vertex variable and U is
a vertex set variable, with standard semantics.

MSO2 is Monadic Second-Order logic on graphs with quantification both
over subsets of vertices and of edges. The syntax of MSO2 consists of

• logical connectives ∨, ∧, ¬, ⇔, ⇒, with standard semantics;

• variables for vertices, edges, subsets of vertices, and subsets of edges;

• quantifiers ∀, ∃ that can be applied to these variables;

• and the following three binary relations:

1. u ∈ U , where u is a vertex (edge) variable and U is a vertex
(edge) set variable, with standard semantics;

2. inc(u, e), where u is a vertex variable and e is an edge variable,
and the semantics is that inc(u, e) is true if and only if edge e
is incident with vertex u;

3. equality of variables.

Thus, formally MSO2 does not extend MSO1, but it is easy to see that
every formula of MSO1 can be translated to an equivalent formula of
MSO2. The set variables are also called monadic (vertex/edge) variables.

FO, MSO1, and MSO2 can be naturally generalized to digraphs by

• replacing edge (set) variables with arc (set) variables;

• for FO and MSO1, replacing relation E(u, v) with relation A(u, v),
with semantics that A(u, v) is true if and only if arc (u, v) is present
in the digraph;

• for MSO2, replacing relation inc(u, a) with relations head(u, a)
and tail(u, a), with semantics that head(u, a) (tail(u, a)) is true if
and only if u is the head (tail) of the arc a.
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Formally, formulas of FO, MSO1, MSO2 are evaluated on graphs
seen as logical structures. In case of FO and MSO1 the domain is the
vertex set of the graph, while the signature contains binary relation E
with interpretation that E(u, v) holds if and only if there is an edge
between u and v in the graph. In case of MSO2 the domain is the disjoint
union of the vertex set and the edge set of the graph, while the signature
contains unary relations Vertex(·) and Edge(·) testing whether a given
element is a vertex or an edge (usually used implicitly), and binary relation
inc(·, ·) with interpretation that inc(u, e) holds if and only if Vertex(u),
Edge(e), and vertex u is incident to edge e. We can also enrich the
signature with constants representing single vertices (or edges, in case
of MSO2), and unary relations representing prespecified sets of vertices
(or edges, in case of MSO2). Assume that X is a vector of symbols
enriching the signature, with interpretation A in a graph G. Then for a
formula ϕ(X) of FO,MSO1,MSO2 with free variables from X we say
that ϕ is satisfied in G with prescribed interpretation A if and only if
〈G,A〉 |= ϕ(A). Investigating logic on graphs is not the main topic of this
thesis. Therefore, we usually make statements about formulas on graphs
via this notion of satisfaction, rather than using the formal language of
logical structures. The translation to the language of logical structures is
in each case obvious.

An example of a graph property that can be expressed in FO is
existence of an independent set of size k, for any fixed k. Indeed, we
quantify existentially k vertices of the graph and check that they are
pairwise different and non-adjacent. Note, however, that the length of
such a formula is O(k2).

An example of a graph property expressible in MSO1 is 3-colorability.
Indeed, we quantify existentially 3 monadic variablesX,Y, Z corresponding
to vertices of the three colors, and check (i) that they form a partition
of the vertex set (each vertex belongs to exactly one of the sets), and (ii)
that each of them induces an independent set (no two vertices from the
same set are adjacent).

An example of a graph property expressible in MSO2 is hamiltonicity.
Indeed, we quantify existentially one monadic edge variable C correspond-
ing to the edge set of the hamiltonian cycle, and check (i) that C induces
a connected graph (there is no partition of C into nonempty C1 and C2

such that no vertex is incident both to an edge of C1 and to an edge of
C2), and (ii) that each vertex is incident to exactly two edges of C.
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2.3.7 Well-quasi orderings

A quasi-order is a pair (P,≤), where ≤ is a reflexive and transitive
relation on P . Note that partial orders are exactly quasi-orders where
we additionally require that the relation is also anti-symmetric. A quasi-
order (P,≤) is a well-quasi-ordering (WQO) if for any infinite sequence of
elements x1, x2, x3, . . . ∈ P there exist indices i < j such that xi ≤ xj . An
infinite decreasing sequence is a sequence of elements x1 > x2 > x3 > . . ..
A subset S ⊆ P is closed under ≤ if whenever x ≤ y and y ∈ S, then
also x ∈ S. We say that S is characterized by obstruction set FS if
S = {x ∈ P | ¬∃f∈FS

f ≤ x}. The following folklore observation has been
already expressed in Section 1.4.1.

Lemma 10 (Folklore). Let (P,≤) be a quasi-order. Then (P,≤) is a well-
quasi-ordering if and only if P does not contain any infinite decreasing
sequences and every subset of P closed under ≤ is characterized by a finite
obstruction set.



Chapter 3

Width parameters of graphs

3.1 The Graph Minors project

We first survey the achievements of the Graph Minors project of Robertson
and Seymour, which is the origin of the interest in width measures of
graphs. In Part II we consider a similar, but much simpler theory for
semi-complete digraphs. We hope that the following section will help
the reader see how the general concepts and results of the Graph Minors
project were an inspiration for our approach.

Recall that the main achievement of the work of Robertson and Sey-
mour is the Graph Minors Theorem:

Proposition 11 (Graph Minors Theorem, [287]). The minor order is a
well-quasi-ordering of the class of undirected graphs.

For a definition of a minor, see Section 2.3.1. We begin with an
extremely quick overview of the proof of Proposition 11; an interested
reader is also invited to the book of Diestel [112] for a more detailed
description. Our aim is to introduce the most important concepts and
explaining their origin in order to prepare the ground for further discussions.
Then we take a closer look at three topics that are of our main interest: the
Excluded Grid Minor Theorem, the Decomposition Theorem for H-minor
free graphs, and the algorithmic aspects of the project. Finally, we survey
what is known about the directed setting.

3.1.1 An express overview of the proof

The high-level strategy of the proof of Robertson and Seymour is to prove
the theorem for larger and larger subclasses of undirected graphs. Consider

41
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first the theorem restricted to planar graphs. Take any sequence of planar
graphs G0, G1, G2, . . . and for the sake of contradiction assume that there
are no indices i < j such that Gi � Gj , where � denotes the minor order.
In particular all the graphs Gj for j ≥ 1 do not contain H := G0 as a
minor; we say that they are H-minor free. Therefore, we need to answer
the following natural question: how do graphs excluding some fixed-size
planar graph H look like?

The answer to this problem comes via the so-called Excluded Grid
Minor Theorem. In the following, by a k × k grid we mean a graph with
vertex set {1, 2, . . . , k}×{1, 2, . . . , k} where (i, j) and (i′, j′) are neighbors
if and only if |i− i′|+ |j − j′| = 1.

Proposition 12 (Excluded Grid Minor Theorem, [281], see also [112,
113, 290]). There is a function r(k) such that every graph with treewidth
more than r(k) contains a k × k grid as a minor.

It can be easily observed that every planar graph H is a minor of a
f(|H|)× f(|H|)-grid for some function f . Hence, by excluding a constant
size planar graph H as a minor, we bound the treewidth of a graph by
a constant . Thus, all the graphs G1, G2, G3, . . . have in fact constant
treewidth, and we have reduced the problem from planar graphs to pla-
nar graphs of constant treewidth. However, the theorem for trees have
been already proven by Kruskal [233] (see also a shorter proof of Nash-
Williams [256]), and the proof can be lifted to graphs of constant treewidth
with some technical efforts [282].

By mimicking this strategy, in order to prove the general statement
we need to examine the structure of H-minor free graphs for general
H. Note that planar graphs are exactly {K3,3,K5}-minor free graphs, so
there is hope that for constant-size H, H-minor free graphs will be some
sort of generalization of planar graphs, to which the argumentation from
the planar case can be lifted. And indeed, Robertson and Seymour have
proven the so-called Decomposition Theorem [286] that intuitively says
the following: a graph excluding a fixed H as a minor can be obtained
from graphs that can be (almost) embedded without crossings on a surface
of constant genus, by gluing them along small interfaces. The formal
definition is somewhat technical and is not relevant for the content of this
thesis; we discuss its intuition in Section 3.1.3.

Thus, the ’only’ thing we need to do is to lift the proof from the
planar case to the case of graphs of bounded genus, then to handle almost
embeddability, and finally lift everything to H-minor free graphs via the
Decomposition Theorem. The first lift, presented in [283], is probably the
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most difficult one. It requires a careful induction on genus and several
auxiliary parameters, and application of the following WIN/WIN approach.
Very roughly speaking, we try to find a short cycle in the graph such
that cutting the surface along this cycle reduces genus. If such a cycle
exists, we may apply induction hypothesis. Otherwise, the graph under
consideration is complicated enough to admit every constant-size graph
of the same genus as a minor. The latter two lifts are more of technical
nature, but of course they require a number of non-trivial observations.
Summarizing, the proof consists of the following sequence of lifts:

Trees → Bounded treewidth → Planar
→ Bounded genus → Almost embeddable
→ H-minor free → General

The most important, and also the longest part of the proof is the
Decomposition Theorem itself. Intuitively, the crucial step of the reasoning
is to understand how non-existence of a purely combinatorial object, such
as a minor model, can be used to construct an embedding of a graph on a
surface. Finally, we remark that the ideas introduced in the proof of the
Graph Minors theorem can used to show that the immersion order is also
a well-quasi-ordering of the class of undirected graphs [288].

3.1.2 The Excluded Grid Minor Theorem

Because of its importance in the Graph Minors project and many applica-
tions outside it, the Excluded Grid Minor Theorem, i.e. Proposition 12,
was studied intensively. Proposition 12 precisely identifies the sole reason
of not admitting a tree decomposition of small width — this reason is
containing a large grid-like structure that cannot be cut in halves by a
small separator. Because of numerous algorithmic applications that we
will review in Section 3.2.4, pursuit of as good estimates on function r as
possible is a fundamental problem.

The first proof given by Robertson and Seymour provided only a non-
elementary bound on function r [281]. Later, Robertson, Seymour, and
Thomas gave an alternative proof of the Excluded Grid Minor Theorem
from which a bound r(k) ≤ 2O(k5) follows (see also much simpler proofs
achieving slightly weaker bounds [112, 113]), and conjectured that the
actual relation should be polynomial [290]. However, the best known
lower bound for r(k) is Ω(k2 log k) [290]. Further improvements have been
given by Kawarabayashi and Kobayashi [206] (r(k) ≤ 2O(k2 log k)) and by
Leaf and Seymour [237] (r(k) ≤ 2O(k log k)). Very recently, Chekuri and
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Chuzhoy have claimed the first polynomial bound of r(k) ≤ O(k228) [63],
thus resolving the problem of Robertson, Seymour, and Thomas.

As we will see in Section 3.2, from the point of view of applications
it is important to provide stronger versions of the Excluded Grid Minor
Theorem for classes of graphs with topological constraints, like planar
graphs, graphs of bounded genus and H-minor free graphs. Already
Robertson, Seymour, and Thomas [290] observed that if we assume that
the graph is planar, then in Proposition 12 one can use r(k) = 6k − 5.
Demaine and Hajiaghayi [107] have extended this result to H-minor free
graphs: for every fixed H one can take r(k) = cH · k for some constant cH
depending on H only. Recently, Gu and Tamaki [178] have shown that in
the planar case one can substitute 6k − 5 with 9

2k.

3.1.3 The Decomposition Theorem

Let us recall that the Decomposition Theorem states that a graph excluding
a fixed graph H as a minor can be constructed by iteratively gluing
graphs that are (almost) embeddable on a surface of constant genus
along small interfaces. First, we need to define what does it mean to
be almost embeddable. We remark here that different notions of almost
embeddability can be found in the literature, thus the corresponding
versions of the Decomposition Theorem differ in details.

Slightly informally speaking, we say that a graph G is (p, q, r, s)-almost
embeddable if there exists a set of vertices Z (called apices), |Z| ≤ s, such
that G \Z can be embedded on a surface of genus r apart from at most q
vortices . Each vortex R is a subgraph of G\Z of pathwidth at most p that
is to be embedded into a disk on the surface in such a manner that the disk
can contain crossings of edges of R, but the path decomposition of R must
be ’glued’ along disk’s boundary. In other words, an almost embeddable
graph is a graph that can be embedded into a surface of constant genus
apart from (i) a constant number of special vertices that cannot be fit into
the embedding, and (ii) a constant number of singularities on the surface
that can be, however, controlled by path decompositions of constant
width. For precise and formal statements of different versions of almost
embeddability see e.g. [174, 211, 286].

Finally, we need to define the notion of gluing along small interfaces.
Probably the cleanest way is to formalize this concept via tree decomposi-
tions. For a tree decomposition T of G and a node x ∈ V (T ), by torso of
x, denoted τx, we mean graph G[Bx]∪

⋃
xy∈E(T )K[Bx ∩By], where K[A]

stands for a clique on vertices from A, for A ⊆ V (G). In other words, we
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take the graph induced by the bag at x and for every neighboring node
y we put a complete graph on the vertices shared by Bx and By (on the
so-called adhesion). Finally, we can state the Decomposition Theorem of
Robertson and Seymour formally.

Proposition 13 (H-minor-free Decomposition Theorem, [286]). For every
graph H there are constants p, q, r, s such that any graph G on n vertices
admits a tree decomposition T where every torso is (p, q, r, s)-almost
embeddable. Moreover, given G and H, this decomposition along with
the corresponding embeddings can be computed in f(|H|) · n3 time, where
n = |V (G)| and f is some computable function.1

Existence of an almost embedding is an obstruction for admitting
large clique minors, cf. [198]. In particular, since τx have to be (p, q, r, s)-
almost embeddable for constants p, q, r, s depending on H only, then
the cliques introduced by the torso operation must be also of constant
size. Therefore, decomposition T given by Proposition 13 has to have
constant-size adhesions, where the constant depends on H only.

Let us remark that Robertson and Seymour did not give any bound
on the obtained functions p, q, r, s, f , but even very rough estimates show
that they are astronomical, and in particular non-elementary. Recently,
Kawarabayashi and Wollan [211] gave a simpler proof of the Decomposition
Theorem from which more explicit bounds on p, q, r, s can be derived.

The Decomposition Theorem is a very convenient tool for lifting
results from graphs embeddable on a surface of constant genus to graphs
excluding a constant-size H as a minor. One needs to handle three
additional technical aspects: apices, vortices, and gluing graphs along
small adhesions. Since there are only a constant number of apices in each
torso, and vortices are controllable via path decompositions of constant
width, many algorithms for graphs of constant genus can be generalized to
almost embeddable graphs with some technical efforts. To incorporate the
top-most tree decomposition layer of the theorem, one usually uses the
algorithm for almost embeddable graphs to construct a global dynamic
programming routine working on T . This general framework has been
successfully applied to many problems in parameterized complexity and
approximation, see for example [108, 109, 110, 131, 143]. It should be
mentioned that a vast majority of the problems to which the framework
can be applied is completely intractable in the general case. Therefore,

1The algorithmic statement was not claimed by Robertson and Seymour, but it
follows from the later work, e.g. [211].
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via the Decomposition Theorem we can expand greatly the class of inputs
on which we can handle these problems efficiently.

It is worth mentioning that Grohe and Marx [176] have recently ob-
tained a version of the Decomposition Theorem for graphs excluding a
fixed H as a topological subgraph; observe that this is a larger class of
graphs than H-minor free. Informally, while all the torsos in the De-
composition Theorem of Robertson and Seymour are almost embeddable,
Grohe and Marx allow also the second type of torsos, namely having
almost bounded degree. That is, after removing a constant number of
vertices the torso becomes a graph of constant maximum degree. The new
decomposition theorem has been already used to lift some results from
the H-minor free setting to the H-topological-subgraph-free setting [144].

Let us conclude by remarking that all the considered graph classes,
including H-minor free graphs and H-topological-subgraph free graphs,
are sparse. In particular, for every H there exists a constant d = d(H)
such that every H-minor and H-topological-subgraph free graph G is d-
degenerate [112]; recall that it means that every subgraph of G contains a
vertex of degree at most d. Since d-degeneracy of G implies that |E(G)| ≤
d|V (G)|, as a corollary we obtain that in H-minor free and H-topological-
subgraph free graphs the number of edges is linear in the number of
vertices. However, some works indicate that it is not d-degeneracy, but
rather constraints of topological nature that enable us to solve problems
efficiently, since many results cannot be lifted to general d-degenerate
graphs [87, 96].

3.1.4 Algorithmic problems

One of the main algorithmic corollaries of the Graph Minors project is
the FPT algorithm for testing the minor relation.

Proposition 14 ([285]). There exists an algorithm which, given graphs
G,H, checks whether H is a minor of G in time f(|H|) · n3, where
n = |V (G)| and f is some computable function.

Note that Proposition 14 is crucial in non-constructive proofs of ex-
istence of non-uniform FPT algorithms via the Graph Minors Theorem,
which we discussed in Section 1.4.1. The idea of the proof of Proposition 14
is to find an algorithm for the related Vertex Disjoint Paths problem
and use the same concepts for minor testing. Due to its importance in
this thesis, we state the Vertex Disjoint Paths problem explicitely.



47 CHAPTER 3. WIDTH MEASURES OF GRAPHS

Vertex Disjoint Paths

Input: An undirected graph G and k pairs of pairwise distinct
terminals (s1, t1), (s2, t2), . . . , (sk, tk)

Parameter: k

Question: Can one find vertex-disjoint paths P1, P2, . . . , Pk so
that Pi connects si with ti, for i = 1, 2, . . . , k?

By relaxing the requirement of vertex-disjointness to edge-disjointness
we obtain the Edge Disjoint Paths problem. Note that this problem
is easily reducible to Vertex Disjoint Paths by taking the line graph.
Both problems have been shown to be NP-hard by Karp [203].

Proposition 15 ([285]). The Vertex Disjoint Paths and Edge Dis-

joint Paths problems can be solved in time f(k) · n3, where n = |V (G)|
and f is some computable function.

We remark that recently Kawarabayashi et al. [207] have improved the
polynomial factor of the algorithms of Propositions 14 and 15 to quadratic
in terms of n.

The original proof of Proposition 15 of Robertson and Seymour is one
of the first applications of a WIN/WIN approach connected to treewidth,
and probably also one of the most involved ones. First, we try to find a
large (in terms of k) clique minor in G. If we succeed, then it is not very
difficult to identify a vertex in this minor that can be safely removed, since
some hypothetical solution can be assumed not to traverse it. Otherwise,
we try to find a tree decomposition of G of small width. Again, if we
succeed, then we can employ a simple dynamic program on this tree
decomposition.

The only situation left is when we know that G does not admit easily
identifiable clique minors, but it has also large treewidth. If we try
to apply a combination of the Excluded Grid Minor Theorem and the
Decomposition Theorem to this case, then we see that G should be formed
from large graphs embeddable on simple surfaces, which in particular
contain large grid-like structures. However, the Decomposition Theorem
has been developed only later in the series. For this reason, Robertson and
Seymour have proven the so-called Weak Structure Theorem [285] that
asserts that in this situation G must contain a large flat wall : a grid-like
structure that can be (almost) embedded in the plane so that only the
boundary of the wall is adjacent to the rest of the graph. Then, using
an involved argument Robertson and Seymour show how to identify an
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irrelevant vertex in a flat wall [289]. After deleting this vertex we restart
the whole algorithm.

FPT algorithms for Vertex Disjoint Paths and Edge Disjoint

Paths immediately give XP algorithms for testing topological containment
and immersion relations: we just need to guess the images of the vertices
of H and run the algorithm testing whether images of edges of H can be
constructed. However, fixed-parameter tractability of these problems has
been resolved only recently by Grohe et al. [173], after resisting attacks
as a long-standing open problem. The line of reasoning of Grohe et al.
follows in principles that of Robertson and Seymour.

Function f in the algorithm of Robertson and Seymour is again astro-
nomical, and finding algorithms with sensible dependence on k is a major
open problem. For the case of planar graphs, Adler et al. [2] have given
an algorithm with double-exponential dependence on k, and provided
examples suggesting that beating this running time would require a major
change of the strategy.

3.1.5 The theory of graph minors for directed graphs

It is natural to ask to what extent the achievements of the Graph Minors
project can be extended to directed graphs. Obviously, both the Vertex

Disjoint Paths and Edge Disjoint Paths problems can be generalized
to digraphs by requesting Pi to be a directed path from si to ti, for
i = 1, 2, . . . , k. The same generalization can be also performed for the
notions of topological containment and immersion. Since it is not clear how
the notion of a minor can be naturally generalized to directed graphs, it
is topological containment and immersion that are two main containment
relations considered in the directed setting.

Unfortunately, the classical result of Fortune, Hopcroft and Wyllie [150]
states that both Vertex Disjoint Paths and Edge Disjoint Paths are
already NP-hard for k = 2, and thus topological containment testing and
immersion testing are NP-hard for fixed-size digraphs H . Hence, one does
not expect existence of an algorithmically interesting topological theory
for general digraphs. Moreover, it is not clear how to define an analogue
of treewidth in the directed setting. We review some of the propositions
in Section 3.4, but none of them shares all the nice properties of treewidth.
For these reasons, the research concentrated on designing algorithms for
topological problems in subclasses of directed graphs. Essentially, three
major examples of subclasses have been considered.

First, mirroring the approach of the Graph Minors project it is natural
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to ask whether topological restrictions help in solving the Vertex (Edge)

Disjoint Paths problems. Of particular interest is the case of planar
digraphs. And indeed, Schrijver has shown that in this case an XP
algorithm can be designed for the Vertex Disjoint Paths problem [293].
Whether this result could be strengthened to fixed-parameter tractability
had been a major open problem in the field for several years [119], until
very recently Cygan et al. [90] have claimed an FPT algorithm with

running time O∗(22
kO(1)

). The approach of Cygan et al. mimics the
algorithm for the undirected case of Adler et al. [2], but introduces a
new kind of decomposition that is better suited for the algebraic tools of
Schrijver.

Second, if we require the digraph to be acyclic, then the Vertex

(Edge) Disjoint Paths problems can be solved in XP time [150], thus
yielding immediately XP algorithms for topological containment and
immersion testing. Unfortunately, Slivkins [300] has shown that both
problems are in fact W[1]-hard, thus completing the picture of their
parameterized complexity on DAGs. The author is not aware of any
significant structural results for general DAGs in the context of topological
problems.

Third, a sound containment theory, resembling the Graph Minors
project on a smaller scale, can be constructed for the class of tourna-
ments, or more generally semi-complete digraphs. Part II of this
thesis treats of our contribution to this theory; hence, we refer to the
introductory sections of this part for a broader discussion.

3.2 Treewidth and its applications

In this section we survey results on treewidth, which is arguably the most
important width measure of graphs. We hope that this will help the
reader to find similarities between the results on treewidth contained in
the literature and our study of width measures of semi-complete digraphs
in Part II. We first discuss different algorithms for computing treewidth
of a given graph. Then we review connections between treewidth and
logic, explaining relations with MSO2 and applications in model checking
FO on sparse graph classes. Finally, we survey applications of treewidth
and the Excluded Grid Minor Theorem in parameterized complexity, with
particular focus on bidimensionality.
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3.2.1 Algorithms for treewidth

The most classical algorithm for computing treewidth has been given
by Robertson and Seymour in the Graph Minors series [285]; see also a
self-contained explanation in the textbook of Kleinberg and Tardos [217].
This algorithm can be today called an FPT approximation. That is,
given a graph G on n vertices and an integer k, the algorithm works in
O(33k · n2) time and either returns a decomposition of width at most
4k + 3, or an obstacle for admitting a decomposition of width at most
k, called k-unbreakable set . This approximation framework, i.e., that
the algorithm is allowed to compute a decomposition of width slightly
larger than the given target, is commonly used when computing width
measures. Relaxation of the requirement on the target width allows us
to design faster algorithms, while usually obtaining a decomposition of
width bounded by a low function of the optimal width is harmless for the
algorithm’s applications. We will use this framework often in Part II.

In the early stages of the study of treewidth as a graph parameter, the
research concentrated on improving the polynomial factors of algorithms
computing it. An algorithm with running time 2O(k log k) · n log2 n and
outputting a decomposition of width at most 8k + 7 was proposed by
Lagergren et al. [235], which was later trimmed to 2O(k log k) · n log n by
Reed [275]. We remark here that Reed does not give the approximation
ratio of his algorithm explicitely, but it can be shown that the output
decomposition has width at most 8k+O(1). Finally, Bodlaender [42] gave
the first linear-time algorithm for treewidth, working in kO(k3) · n time.
The algorithm of Bodlaender is exact in the sense that it either provides
a tree decomposition of width at most k, or correctly claims that such a
decomposition does not exist. The previously known best algorithm for
computing treewidth exactly was due to Arnborg et al. [15] and worked
in XP time.

As far as approximation in polynomial time is concerned, the currently
best algorithm of Feige et al. [127] outputs a decomposition of width at
most O(k√log k), where k is the optimum width. As Austrin et al. [20]
show, under certain complexity assumptions no polynomial-time constant
factor approximation exists.

From the point of view of some applications, for instance the bidimen-
sionality theory that we discuss in Section 3.2.4, all three aspects of an
approximation algorithm for treewidth are important: the polynomial
factor, the dependence on the parameter, and the approximation ratio.
For this reason the problem of computing treewidth has been revisited
recently by Bodlaender et al. [46], who give an algorithm working in
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O(ck · n) time for some constant c, and outputting a tree decomposition
of width at most 5k + 4. We invite to the work of Bodlaender et al. for a
comprehensive overview of the known algorithms for treewidth.

3.2.2 Treewidth and MSO2

Let us start with recalling the famous Courcelle’s theorem.

Proposition 16 (Courcelle, [79]). There exists an algorithm that, given
an n-vertex graph G of treewidth t and a formula ϕ of MSO2, checks if
ϕ is satisfied in G in time f(||ϕ||, t) · n for some computable function f .

We remark that the formula ϕ in Proposition 16 can have some free
variables (vertex or edge, and possibly monadic) that have prescribed
interpretation in G.

In the classical proof of Proposition 16 one first computes a tree
decomposition T of G of width bounded by a function of t, using for
instance the algorithm of Bodlaender [42] (the original proof assumed
the tree decomposition to be given on input). Then, we encode this
tree decomposition as a binary tree T over an alphabet Σt, whose size
bounded by a function of t. Similarly, the MSO2 formula ϕ on graphs
can be translated to an equivalent MSO formula ϕ′ on trees over Σt. The
finishing step is to transform ϕ′ into a tree automaton A′ of size bounded
by a function of ||ϕ′||, and run it on T .

As usual with relations between MSO and automata, the size of
the obtained automaton may depend non-elementarily on ||ϕ||. Very
roughly speaking, each quantifier alternation in ϕ adds one level of a
tower to the dependence on t. However, it must be admitted that precise
tracking of the running time given by Courcelle’s theorem is generally
very difficult and of course depends on the used version of the proof.
For these reasons, algorithms given by Courcelle’s theorem are generally
regarded as inefficient, and to provide precise bounds on the running time
for a particular problem one usually needs to design an explicit dynamic
program by hand. However, there are a few attempts of implementing
Courcelle’s theorem efficiently [218, 219].

Courcelle’s theorem, as stated in Proposition 16, does not imply
directly tractability of many important problems. Consider for example
the Vertex Cover problem. Clearly, we can express that a graph admits
a vertex cover of size at most k by an MSO2 formula of length O(k2), but
this gives us only an algorithm with running time f(k, t) · n, instead of
f(t)·n; recall that the standard dynamic programming routine for Vertex
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Cover works in time O(2t · tO(1) · n), which is independent of the target
cardinality k. For this reason, the original framework of Courcelle has been
extended by Arnborg et al. [16] to include also optimization problems; we
remark that a very similar result was obtained independently by Borie et
al. [53]. In the framework of Arnborg et al. we are given anMSO2 formula
ϕ(X1, X2, . . . , Xq) with X1, X2, . . . , Xq being free monadic variables, and
a linear combination α(|X1|, |X2|, . . . , |Xq|) of cardinalities of these sets.
The result is that (i) one can in f(||ϕ||, t) · n time optimize (minimize or
maximize) the value of α(|X1|, |X2|, . . . , |Xq|) for sets X1, X2, . . . , Xq for
which ϕ is satisfied, (ii) in time f(||ϕ||, t)·nO(1) ask whether there exist sets
X1, X2, . . . , Xq satisfying ϕ with a precise value of α(|X1|, |X2|, . . . , |Xq|).
Thus, we can express finding minimum size vertex cover by taking a
constant-size formula ϕ(X) that checks whether X is a vertex cover, and
applying the result of Arnborg et al. for minimization.

The natural question to what extent the complexity blow-up in Cour-
celle’s theorem is necessary has also been intensively studied. Frick and
Grohe [154] have shown that, unless P=NP, no algorithm with running
time f(||ϕ||) ·nO(1) with elementary function f exists even for model check-
ing MSO on words. Note that we can interpret a word as a path equipped
with, for every symbol σ of the alphabet, a unary relation Uσ that is
true in vertices corresponding to positions on which σ occurs2. Thus,
model checking MSO2 on paths enriched by unary relation on vertices
is not likely to admit FPT model checking algorithms with elementary
dependence on the length of the input formula. Frick and Grohe also
proved the same lower bound for FO on trees under a stronger assumption
FPT �= AW [].

A different set of lower bounds have been given by Kreutzer and
Tazari [228, 231, 232] under ETH. Intuitively, they show that if for a
graph class C the treewidth of graphs from C cannot be bounded by logc n
for some universal constant c, then model checking MSO2 on this graph
class is not likely even to be in XP; we refer to these works for precise
statements of the results.

The same approach as in the proof of Courcelle’s theorem also shows
that for every t, the MSO2 theory of the class of graphs of treewidth at
most t is decidable; recall that this means that it is decidable to check for
a given MSO2 sentence ϕ whether there exists any graph of treewidth at
most t satisfying ϕ. Roughly speaking, we just need to transform ϕ to

2Formally, a formula of MSO on words can also use the order of positions in the
word. However, the order relation can be easily expressed in MSO using the successor
relation.
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a tree automaton A verifying satisfaction of ϕ on trees corresponding to
tree decompositions of width at most t, and check non-emptiness of the
language recognized by A intersected with the set of trees that represent
valid decompositions, which is expressible inMSO; cf. [78]. Seese [294] has
proven that the converse is also true: if a class of graphs C has decidable
MSO2 theory, then the treewidth of every its member is bounded by
some constant depending on the class only. We remark that the proof of
Seese is based on a clever use of a WIN/WIN approach. Shortly speaking,
if the treewidth of a graph from C is large, then by Proposition 12 it must
contain a large grid minor which can be used to encode a long run of a
Turing machine using an MSO2 sentence.

To conclude, all the aforementioned results show that treewidth as a
graph parameter corresponds to tractability of the MSO2 logic on graphs
in a well-defined and tight sense. It is notable that this uncovers an
elegant link between complexity of graphs as topological structures, and
complexity of model checking most natural variants of logic on them.

3.2.3 Model checking FO on sparse graph classes

As we have seen in the previous section, treewidth determines the limits
of tractability of MSO2 on graphs. It is an immediate follow-up question,
what kind of stronger tractability results can be proven when considering
weaker logics such as FO or MSO1? The pursuit of the answer to this
question has been particularly fruitful for FO and led to development of a
deep theory of sparse graphs . We refer to the book of Nešetřil and Ossona
de Mendez [258] for an introduction to the world of sparse graphs and
their connections to logic.

The first breakthrough result is due to Seese [295], who showed that
model checking FO is fixed-parameter tractable on graphs of bounded
degree.

Proposition 17 (Seese, [295]). There exists an algorithm that, given an
n-vertex graph G of maximum degree d and a formula ϕ of FO, checks if
ϕ is satisfied in G in time f(||ϕ||, d) · n for some computable function f .

Let us now shortly discuss the proof of Proposition 17 (in the form
presented by Frick and Grohe [153]), since its understanding will be
important in our further explanations.

First, using locality of FO we transform ϕ into an equivalent formula
ϕ′ which is a boolean combination of basic local sentences . This transfor-
mation has been formalized earlier by Gaifman [155]; however, locality of
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FO was exploited e.g. via Ehrenfeucht-Fräıse games much earlier, and in
fact the original proof of Seese used a slightly different form of locality. A
basic local sentence has the following form:

∃x1∃x2 . . . ∃xs

⎛
⎝∧

i<j

dist(xi, xj) > 2r ∧
∧
i

ψr(xi)

⎞
⎠ .

Here, dist(·, ·) > 2r denotes an FO formula that checks whether the
distance in G between vertices xi and xj is larger than some constant 2r,
while ψr(·) is an FO formula working on r-neighborhood of its argument,
that is, on the subgraph induced by vertices in distance at most r from the
argument. Informally speaking, a basic local sentence postulates existence
of a number of vertices in the graph such that (i) these vertices are in at
least a constant distance apart from each other, and (ii) a constant-radius
neighborhood of each vertex satisfies some FO-expressible property.

Let us concentrate on one basic local sentence α appearing in ϕ′.
Observe that in a graph of maximum degree at most d the r-neighborhoods
of vertices are of size at most (r + 1) · dr, i.e., of size depending on d and
r only. Therefore, in f(r, d) · n time we can check in which vertices of G
formula ψr is satisfied by employing a brute-force check on r-neighborhood
of every vertex. Thus, to check if α is true we need to solve some sort of
a constrained version of the 2r-Scattered Set problem. Namely, given
graph G of maximum degree d, a subset of vertices X (these are vertices
satisfying ψr), and integers r, s, we ask for existence of a subset Y ⊆ X
of size s such that each two elements of Y are in distance more than 2r.
This problem fortunately turns out to be fixed-parameter tractable when
parameterized by r, s, and d. Therefore, we can verify satisfaction of each
basic local sentence appearing in ϕ′ in FPT time, and use these values to
verify satisfaction of ϕ′.

Observe that the argument for checking for which vertices formula ψr

is satisfied seems like a clear overshot. We in fact employed a brute-force
check on each r-neighborhood using the fact that it is of bounded size.
Probably, using a more clever argument here we could strenghten the
result. For instance, if we assume that the r-neighborhood of each vertex
has treewidth bounded by a function of r only, then we can employ a
dynamic programming routine given by the Courcelle’s theorem instead.
This observation, due to Frick and Grohe [153], leads to the definition of
bounded local treewidth: a class of graphs C has bounded local treewidth
if r-neighborhood of each vertex has treewidth bounded by f(r), for some
function f . Thus, Frick and Grohe [153] have proven that Proposition 17
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can be lifted to any class of graphs of bounded local treewidth. Note
here that one needs to lift also the algorithm for the used variant of
2r-Scattered Set; however, as Frick and Grohe observe, the assumption
of having bounded local treewidth is sufficient for this as well. The classes
of graphs that have bounded local treewidth include for instance planar
graphs or graphs of bounded genus.

Clearly, the natural follow-up question is about H-minor free graphs:
even though they do not have bounded local treewidth because of possible
existence of apices, the Decomposition Theorem gives a hope that the
results can be lifted. This is indeed true and has been proven by Flum and
Grohe [131]. Further improvements have been given by Dawar et al. [99]
for the class of graphs with locally excluded minors, and by Dvořák et
al. [121] and by Grohe and Kreutzer [175] for graphs of bounded expansion;
we refer to these works for appropriate definitions. Recent research in the
topic focuses on the class of nowhere dense graphs. It appears that many
important FO-definable problems are indeed tractable in this class of
graphs [100], and there is hope that fixed-parameter tractability of model
checking the whole FO can be lifted there as well. This statement has been
recently claimed by Dawar and Kreutzer [229]; however, unfortunately
the claim needed to be retracted due to a flaw in the proof [229]. To the
best of author’s knowledge, the question of fixed-parameter tractability of
model checking FO on nowhere-dense graphs is still open.

3.2.4 WIN/WIN approaches

Exploiting a grid minor

The Excluded Grid Minor Theorem, i.e. Proposition 12, is a very con-
venient tool for designing FPT algorithms via WIN/WIN approaches.
Consider, for instance, the classical Feedback Vertex Set problem:
given a graph G and an integer k, determine if at most k vertices can
be deleted from G to obtain a forest. We employ the following ap-
proach. Given a graph G and an integer k, we first run, say, the
5-approximation algorithm for treewidth of Bodlaender et al. [46] for
parameter g(k) = r

(
2
⌈
(k + 1)1/2

⌉)
, where r is the function given by

Proposition 12. This algorithm works in 2O(g(k)) · n time, and either
provides a tree decomposition of G of width at most 5g(k)+4, or correctly
concludes that tw(G) > g(k).

If a decomposition is returned, then we may run a dynamic program-
ming routine for Feedback Vertex Set. The straightforward approach
gives a dynamic program with running time 2O(t log t) · n on graphs of
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treewidth t; however, a faster algorithm with running time 2O(t) · n has
been recently given by Bodlaender et al. [43]. Thus, we may solve the
problem completely in total time 2O(g(k)) · n.

On the other hand, if the approximation algorithm concluded that
tw(G) > g(k), then by Proposition 12 we can conclude that G contains a(
2
⌈
(k + 1)1/2

⌉)
×
(
2
⌈
(k + 1)1/2

⌉)
grid minor. However, it is easy to see

that such a minor contains
(⌈
(k + 1)1/2

⌉)2 ≥ k + 1 vertex-disjoint cycles;
see for example Figure 3.1. Observe that any feedback vertex set of G
must necessarily contain at least one vertex from each of these cycles,
which implies that no feedback vertex set of size at most k exists and we
may safely provide a negative answer. Note here that in order to perform
this reasoning we do not need a constructive proof of Proposition 12: there
is no need to construct the actual grid to provide a negative answer to
the problem, a proof of its existence is sufficient.

This meta-framework may be used to settle fixed-parameter tractability
of a number of classical problems; examples include Vertex Cover, k-
Path or Packing Vertex-Disjoint Cycles. For the technique to work
we need the following property of the problem: existence of a large grid
minor is a certificate of a trivial YES- or a trivial NO-answer. However,
the framework usually can be used only for classification purposes, as
the obtained algorithms are far from being optimal. For instance, in the
Feedback Vertex Set example we obtain a 2O(kO(1)) · n algorithm for
a large polynomial in the exponent, and the complexity is not double-
exponential only because of usage of the new proof of the Excluded Grid
Minor Theorem of Chekuri and Chuzhoy [63]. However, the Feedback
Vertex Set problem may be solved as fast as in O∗(3k) randomized
time [91] or O∗(3.592k) deterministic time [220].

Bidimensionality

The technique becomes really powerful when applied to the world of
planar graphs, or more generally graph classes with topological constraints.
Consider exactly the same algorithm for the Feedback Vertex Set

problem, but instead of the general Excluded Grid Minor Theorem we
use the version for planar graphs that has linear function r. Then, the

algorithm works in 2O(
√
k) ·n time, that is, in subexponential parameterized

time!

This observation was probably first noted by Fomin and Thilikos [147].
However, it should be remarked that existence of subexponential parame-
terized algorithms for problems on planar graphs was already observed
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Figure 3.1: A 6× 6 grid minor and 9 vertex-disjoint cycles in it.

earlier by Alber et al. [6, 7] using a much more involved layering technique
resembling the classical Baker’s approach. Notably, the approach can
be also applied to problems for which the framework on general graphs
fails. Consider for instance the Dominating Set problem. While the
problem is W [2]-hard on general graphs, it is easy to see that for planar
graphs existence of a (3�k + 1�)× (3�k + 1�) grid minor implies existence
of a 2-scattered set of size at least k + 1, i.e. a set of vertices in distance
at least 2 from each other. Such a scattered set, however, certifies that
any dominating set must be of size at least k + 1. Note that such a
reasoning breaks in the general case, as the whole grid minor can be
dominated by one vertex. Thus, while existence of an FPT algorithm
for the Dominating Set problem is implausible on general graphs, by
applying the same technique as for Feedback Vertex Set we obtain

an algorithm for planar graphs with running time 2O(
√
k) · n.

The name bidimensionality was probably first used by Demaine et
al. [104], who put the approach into a formalism of more general nature,
and also extended many of the results to the bounded-genus and H-minor-
free settings, thus expanding greatly capabilities of the technique. In the
sense of Demaine et al., a graph parameter must be bidimensional to
admit application of the technique. Roughly speaking, this means that
existence of a grid of size linear in the parameter must be a certificate of a
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YES- or a NO-answer. The technique was later generalized also for some
problems not falling directly under the regime of the proposed formalism,
for instance in the context of partial covering problems [140], or in the
context of other geometric graph classes [103, 141].

It appears that the insights given by the bidimensionality theory are
useful also in other fields. Of particular significance are applications in
kernelization [49, 137, 142, 143], where the tools of bidimensionality led
to development of the meta-kernelization framework of Bodlaender et
al. [49], further refined by Fomin et al. [142]: a powerful algorithmic
meta-technique that explains existence of many linear kernels on bounded
genus graphs and H-minor free graphs by expressibility in MSO2 and
further technical conditions related to bidimensionality. Bidimensionality
is also useful in the context of approximation, in particular it provides
tools for designing PTASes and EPTASes for many problems on planar,
bounded genus, and H-minor free graphs [105, 139].

We refer to surveys of Dorn et al. [118] and of Demaine and Haji-
aghayi [106] for more information on bidimensionality.

Other examples

Apart from the examples mentioned above, the Excluded Grid Minor
Theorem has found other multiple applications. Many of them are related
to topological problems and mimic the WIN/WIN approach used by
Robertson and Seymour in the algorithm for minor testing. Namely, we
aim at identifying a large, flat, grid-like structure such that (almost) no
vertices in the interior of the structure are adjacent to anything outside. If
such a structure can be found, we design an irrelevant vertex (edge) rule:
we prove that some hypothetical solution of the problem can be assumed
not to use one of the middle vertices (edges) of the structure. Hence,
this vertex (edge) may be safely deleted, and we can restart the whole
algorithm. If no grid-like structure can be found, then the treewidth of
the graph is small and we may employ a dynamic programming routine.

Since the arguments behind irrelevant vertex rules are usually very
technical and delicate, in order to have a better control of the situation
one usually uses more refined versions of obstructions instead of original
grid minors. In many cases it is convenient to work with a wall ; instead
of giving the definition of a wall formally, we hope that the reader will
understand this notion by examining Figure 3.2. It is easy to see that if G
admits a k × k grid minor, then it admits also a wall of height and width
linear in k as a topological subgraph. Conversely, a wall of height and
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width linear in k admits a k × k grid as a minor. Therefore, the problems
of finding large grid minors and large subdivisions of walls are almost
equivalent. However, the assumption that the wall is actually a topological
subgraph gives us more control over its combinatorial properties. Note,
for instance, that if a subdivision of a wall is a subgraph of a planar
graph, then every vertex of the wall not lying on its perimeter can be
adjacent only to vertices embedded into the three neighboring bricks, and
in particular it cannot be adjacent to any vertex embedded into the outer
face of the wall. This ’flatness’ condition can be generalized also to general
graphs via the concept of a flat wall , see e.g. [174, 285], which is a crucial
notion in the minor testing algorithm of Robertson and Seymour [285].

Figure 3.2: A wall of height 4 and width 4.

Examples of results that can be obtained via finding irrelevant objects
in large grid-like structures include: FPT algorithms for obtaining a planar
graph using at most k vertex deletions [205, 253]; FPT algorithms for
computing the crossing number of a graph [172, 208]; a polynomial-time
algorithm for finding induced paths of given parity between a pair of
vertices in a planar graph [199]; an FPT algorithm for checking whether a
bounded genus graph G can be contracted to a small graph H , whose size
is the parameter [200]; a double-exponential FPT algorithm for Vertex

Disjoint Paths on planar graphs [2]; and decidability of Hadwiger’s
conjecture [209], among many others.

3.3 Other undirected width measures

We now discuss other width measures of undirected graphs. We start
with cliquewidth and rankwidth that measure algebraic complexity of
a graph rather than topological. Then we proceed to close relatives of
treewidth, namely branchwidth and carving-width. Finally, we discuss
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width measures based on linear orderings of vertices, in particular cutwidth.

3.3.1 Cliquewidth and rankwidth

Cliquewidth has been introduced by Courcelle and Olariu [83] as a pa-
rameter that corresponds to MSO1 in the same manner as treewidth
corresponds to MSO2. Cliquewidth of a graph G is upper-bounded by
3·2tw(G)−1 [77]; however, there are classes of graphs of constant cliquewidth
and unbounded treewidth, e.g. cliques. Intuitively, graphs of cliquewidth
at most k may be constructed in a tree-like manner formalized in the
concept of a clique expression: at each point of the construction the
graph may be partitioned into at most k groups of vertices, such that
vertices in one group are already indistinguishable and will have the same
neighborhood in the part of the graph that is not yet introduced. We
refer to Section 2.3.3 for a formal definition.

Similarly to treewidth, also graphs of bounded cliquewidth admit sim-
ple dynamic programming routines. For instance, on graphs of cliquewidth
at most k one can solve the Independent Set problem in O(2k ·kO(1) ·(n+
m)) time [184] and the Dominating Set problem in O(4k ·kO(1) ·(n+m))
time [52]. We remark that in these results one assumes that the graph is
given together with an appropriate clique expression constructing it. The
following meta-result of Courcelle et al. [82] explains existence of these
dynamic programs via expressibility in MSO1, and is a direct analogue
of Courcelle’s theorem for treewidth (Proposition 16).

Proposition 18 ([82]). There exists an algorithm that, given a graph G
of cliquewidth at most k together with the corresponding clique expression
constructing it, and a formula ϕ of MSO1, checks if ϕ is satisfied in
G in time f(||ϕ||, k) · (n + m) for some computable function f , where
n = |V (G)| and m = |E(G)|.

Again, formula ϕ in Proposition 18 can have some free vertex variables
(possibly monadic) with prescribed interpretations in G. Similarly as in
the results of Arnborg et al. [16], also the result of Proposition 18 can be
generalized to encompass also optimization problems, and in particular
the aforementioned examples of the Independent Set and Dominating

Set problems. We note that a version of Proposition 18 for directed
graphs will be used in Part II of this thesis.

The definition of cliquewidth, as introduced in [83], is mostly inspired
by the earlier work of Courcelle et al. on graph rewriting grammars [80, 81].
Therefore, while very well-suited for designing dynamic programming rou-
tines, the combinatorics of cliquewidth turned out to be extremely difficult
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to handle, in particular when designing exact or approximation algorithms
is concerned. In fact, NP-hardness of computing cliquewidth exactly has
been established only a few years after introducing this parameter [129],
and it is still unknown whether computing cliquewidth exactly can be done
even in XP time. However, in order to remove from Proposition 18 the
inconvenient requirement of providing an explicit clique expression that
constructs the graph, it is sufficient just to design an FPT approximation
algorithm for cliquewidth.

This gap has been bridged by Oum and Seymour [265], who define
a new parameter rankwidth that can be viewed as a reformulation of
cliquewidth suited for computing its value. Intuitively, the main idea
of rankwidth is to measure diversity of neighborhoods in terms of the
rank of a certain adjacency matrix (see Section 2.3.4 for an appropriate
definition), and exploit submodularity of the rank function algorithmically.
For any graph G it holds that rw(G) ≤ cw(G) ≤ 2rw(G)+1−1 [265] and a
suitable clique expression may be constructed from the corresponding rank
decomposition of G. Therefore, in order to provide an FPT approximation
algorithm for cliquewidth it suffices to provide an FPT approximation
algorithm for rankwidth. Such an algorithm has been presented by Oum
and Seymour [265] in their work. The algorithm works in 2O(k) · n9 log n
time3 and either provides a decomposition of width at most 3k + 1 or
correctly concludes that rw(G) > k. The polynomial factor and the
approximation ratio of the algorithm has been later improved to n3 and
3k − 1, respectively [262]. An exact FPT algorithm for rankwidth has
been given by Hliněný and Oum [188].

It is also noteworthy that the algorithms designed for rankwidth can
be also used to compute branchwidth of matroids [188, 265]. On the other
hand, it appears that rankwidth and cliquewidth are tightly connected to
algebraic containment notions called vertex-minors and pivot-minors [261].
This leads to an elegant containment theory resembling the Graph Minors
project in principles, in which, however, answers to many problems are
still unknown. We refer to the work of Courcelle, Geelen, Jeong, Kwon,
and Oum [84, 163, 196, 261, 263, 264] for more details on this theory. We
also refer to a recent survey of Hliněný et al. [189] for a comprehensive
introduction to cliquewidth, rankwidth, and related width measures.

3The dependence on the parameter has not been provided in the work of Oum and
Seymour; however, a careful examination of the algorithm yields a 2O(k) bound on this
factor.
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3.3.2 Branchwidth and carving-width

Branchwidth has been introduced by Robertson and Seymour [284] as an
alternative definition of treewidth, for which some of the reasonings are
cleaner and more concise; we refer to Section 2.3.4 for a formal definition.
Branchwidth and treewidth are bounded by linear functions of each other;
more precisely, bw(G) − 1 ≤ tw(G) ≤ 3

2bw(G) − 1 for any graph G of
branchwidth more than 1 [284]. While branchwidth can be smaller than
treewidth, for many problems one can implement dynamic programming
routines working on a branch decomposition with only slightly larger base
of the exponent in the running time. For example, while the classical
dynamic program on tree decomposition for Independent Set works
in O(2t · tO(1) · n) time, where t is the width of given tree decomposition,
for branch decomposition of width k one can devise an algorithm with
running time O(2.28k · n) via fast matrix multiplication [117]. As Fomin
and Thilikos argue [147], branchwidth is probably a better-suited version
of treewidth in the context of planar graphs. In fact, somehow surprisingly
branchwidth of a planar graph can be computed in polynomial time [298],
while the classical complexity of computing treewidth of a planar graph
remains a notorious open problem.

Carving-width, introduced by Seymour and Thomas [298], is a similar
concept to branchwidth, but one defines it in a seemingly more natural
way by partitioning the vertex set instead of edge set, and measuring the
width by the number of edges cut instead of vertices; see Section 2.3.4
for a formal definition. While treewidth may be easily bounded by a
linear function of carving-width, carving-width of even as simple graphs as
stars is unbounded. For this reason it may be argued that carving-width
can behave counter-intuitively and does not correspond to any structural
properties of the graph. It can be however useful as an auxiliary parameter,
for instance in the context of branchwidth [298].

3.3.3 Pathwidth and cutwidth

Pathwidth is a linearized version of treewidth introduced in the Graph
Minors project [279], where we require the tree decomposition to be a
path instead of an arbitrary tree. While pathwidth of a graph is of course
at least its treewidth, it can be unbounded even on trees. Pathwidth can
be computed exactly by an FPT algorithm in time f(p) · n [42, 51] for
some computable function f , where p is the optimum value of pathwidth.

Dynamic programming routines working on tree decompositions can
be of course translated to path decompositions, and in some cases the
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base of the exponent can be made smaller. The reason is that in path
decompositions one does not need to consider the join operation; this
operation is usually the most expensive one when tree decompositions are
concerned, and makes the dynamic program work in quadratic time in
terms of the number of states, instead of linear. It has been observed only
recently by van Rooij et al. [305] that in most cases one can use fast subset
convolutions to speed-up the join operation, thus making the bases of
exponents for many important problems equal for path decompositions and
tree decompositions. However, for some algorithms it is still not known
how to speed-up the join operation using convolutions, with a notable
example of the currently fastest algorithm for Hamiltonian Cycle [88].

Pathwidth has also quite unexpected applications in the field of exact
algorithms. Fomin and Høie [134] have proved that pathwidth of an
n-vertex graph with maximum degree 3 (i.e., a subcubic graph) is at most
(16 + o(1))n. Pipelining this result with dynamic programming on path
decomposition gives best known exact algorithms on subcubic graphs
for many important problems, including Dominating Set [134] and
Hamiltonian Cycle [88].

Cutwidth, in turn, is an exemplary member of the family of graph
layout parameters, where we would like to order the vertices of a graph to
minimize some cost function. In case of cutwidth this function is defined
as naturally as the maximum number of edges between any prefix of
the ordering and the corresponding suffix; see Section 2.3.5 for a formal
definition. Cutwidth has been introduced already in 1973 by Adolphson
and Hu [3]. Thilikos et al. [302] have presented a linear-time FPT algorithm
that computes it exactly in f(c) · n time for some function f , where c
is the optimal value of cutwidth. The linearity of the definition can be
used to approach cutwidth and related width measures via automata, as
shown by Bodlaender et al. [48]. We refer to the surveys of Serna and
Thilikos [296] and of Diaz et al. [111] for more information on other graph
layout parameters.

3.4 Width measures of directed graphs

Due to importance of the concept of treewidth, there were several attempts
to find its natural analogue in the directed setting [30, 31, 193, 197, 292];
however, none of the proposed notions shares all the nice properties
of undirected treewidth. In this section we briefly survey three most
prominent propositions, namely directed treewidth, DAG-width and Kelly-
width. We also mention the existing work on directed pathwidth in



CHAPTER 3. WIDTH MEASURES OF GRAPHS 64

general digraphs, since this width notion will be crucial in our reasonings
for semi-complete digraphs in Part II. Finally, we survey results about
implausibility of existence of algorithmically and structurally interesting
width measures of digraphs.

3.4.1 Directed treewidth

Historically the first, directed treewidth was introduced by Johnson et
al. [197] as a generalization of the undirected notion contrived to solving
linkage problems like Vertex Disjoint Paths or Hamiltonian Cycle;
see also a short introductory note by Reed [276]. Similarly as in the
undirected setting, directed treewidth is defined via decompositions, called
in this case arboreal decompositions. An arboreal decomposition R of a
digraph D is an outbranching R (a rooted tree with all the edges directed
away from the root), where each node x ∈ V (R) has associated a set
of vertices Wx ⊆ V (D) and every arc a ∈ E(R) has associated a set of
vertices Xa ⊆ V (D). We require that (Wx)x∈V (R) is a partition of V (D)
into nonempty subsets. The separation property of undirected treewidth
is translated as follows. Take any arc a ∈ E(R) and let Va be the union
of bags Wx associated with nodes x ∈ V (R) that have a on the unique
directed paths connecting them to the root of R. Then we require that
there is no directed walk in D \Xa that starts and ends in Va \Xa and
which traverses a vertex belonging to V (D) \ (Va ∪Xa). The width of the
decomposition is defined as maxx∈V (D) |Wx∪

⋃
a∼xXa|−1 where ∼ stands

for the relation of incidence, and the directed treewidth is the minimum
possible width among all arboreal decompositions.

Johnson et al. prove a number of structural results about directed
treewidth. In particular, they relate it to the notion of havens , which are
obstacles for admitting an arboreal decomposition of small width. More
precisely, existence of a haven of order w certifies that directed treewidth
is at least w − 1, while every digraph with directed treewidth at least
3w − 1 has a haven of order w. The proof of this theorem can be turned
into an approximation algorithm for directed treewidth working in XP
time. However, havens are canonical obstacles of similar flavor as tangles
in the undirected setting, and therefore do not have form of embedded
combinatorial objects such as grid minors. Since having obstacles of the
second type is much more useful from the point of view of algorithmic
applications, for example for applying the irrelevant vertex technique, it
is important to find an analogue of the grid minor for directed treewidth
as well. Johnson et al. conjectured that such an obstacle is a directed
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Figure 3.3: A directed grid — the conjectured obstacle for small directed treewidth.

grid, depicted on Figure 3.3. More precisely, the conjecture is that there
exists a function r(·) such that any digraph of directed treewidth at least
r(w) contains a directed grid with w cycles and 2w paths crossing the
cycles as a butterfly minor (see [197] or [1] for a formal definition of this
containment notion). Johnson et al. claim that the conjecture holds
for planar graphs; however, the proof has never been published. Very
recently, Kawarabayashi and Kreutzer [227] have announced that they are
able to prove the conjecture for the class of digraphs whose underlying
undirected graph excludes H as a minor, for any fixed graph H ; note that
this generalizes the planar case. The general case still remains open.

Johnson et al. have proved that the Hamiltonian Cycle problem is
in XP when parameterized by directed treewidth, while Vertex Disjoint

Paths is in XP when parameterized by directed treewidth and the number
of terminal pairs. Both these results are essentially tight. Lampis et
al. [236] have shown that the Hamiltonian Cycle problem is W [2]-
hard when parameterized by directed treewidth, while Slivkins [300]
has shown that the Vertex (Edge) Disjoint Paths problems are
W [1]-hard when parameterized by the number of terminal pairs even
on DAGs, which have directed treewidth 0. The latter lower bound
suggests that directed treewidth is not likely to be helpful in devising FPT
algorithms for topological problems in directed graphs — XP running
time is the limit. Moreover, directed treewidth does not enjoy such
general meta-theorems as the Courcelle’s theorem (Proposition 16) or its
optimization version of Arnborg et al. [16]. In fact, as Ganian et al. [157]
and Kreutzer and Ordyniak [230] show, many important problems remain
NP-hard on digraphs of constant directed treewidth, with notable examples
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of Feedback Arc (Vertex) Set [230] and Directed Dominating

Set [157]. The latter result holds even for DAGs.

3.4.2 DAG-width and Kelly-width

DAG-width has been introduced independently by Berwanger et al. [29]
and by Obdržálek [259] as an alternative to directed treewidth; we re-
fer to the joint journal version [30] of these works for a comprehensive
introduction. The idea is to take as the starting point of generalization
not the concept of a tree decomposition, but the alternative definition
of treewidth via graph searching games that dates back to the work of
Seymour and Thomas [297].

Consider the following game on an undirected graph G, played by k
cops equipped with choppers and a robber. First, the cops place themselves
in vertices of G and the robber places herself in any unoccupied vertex.
The cops and the robber move in turns and the cops always see where the
robber is. During each turn, any subset of cops can lift in their choppers
declaring vertices where they will land. While the lifted cops are in the
air, the robber can move along any path in the graph, providing she does
not pass through any vertex occupied by a cop that has not lifted. Finally,
the lifted cops land and a new turn begins. The cops win by eventually
landing on a vertex occupied by the robber, while the robber wins by
evading the cops infinitely. As Seymour and Thomas [297] show, the
minimum number of cops for which a winning strategy for cops exists is
equal to tw(G) + 1.

By altering the game rules, for example visibility of the robber or
constraints on cops’/robber’s moves, we obtain different games that corre-
spond to different width parameters. The idea of DAG-width is to consider
the original game for treewidth of Seymour and Thomas on digraphs, and
to request the robber to respect the arc directions. However, the definition
also assumes a technical condition of monotonicity of the cops’ strategy,
that is, that by following the strategy the cops never land on a vertex
twice. While in the undirected setting the monotone and non-monotone
strategies are equivalent [297] (if k cops have a strategy to catch the
robber, then they have also a monotone one), this is already not true in
the directed setting, as shown by Kreutzer and Ordyniak [230].

DAG-width admits also a definition via a decomposition, where the
idea is to use a DAG instead of an outbranching as the decomposition’s
shape. As the directed treewidth of a digraph of DAG-width k is bounded
by 3k+1 [30], DAG-width inherits all the tractability results from directed
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treewidth; however, there exist families of digraphs with constant directed
treewidth and unbounded DAG-width [30]. Moreover, Berwanger et
al. [30] have shown that the Parity Games problem is in XP when
parameterized by the DAG-width; in fact, showing a tractability result for
Parity Games was the main motivation of [29]. In addition, DAG-width
can be computed exactly in XP time [30].

Kelly-width, introduced by Hunter and Kreutzer [193], is a concept
similar to DAG-width, but here the starting point of the generalization is
a relation between treewidth and chordal graphs via elimination orderings;
we refer to the work Hunter and Kreutzer for a formal definition that is
somewhat technical. Kelly-width admits also alternative definitions via
a version of cops-and-robber game and via a form of a decomposition
that is similar to the one used for DAG-width. The main advantage
of Kelly-width is the corresponding decomposition has linear size with
respect to the decomposed digraph, which is not the case for DAG-width.
In fact, for DAG-width we do not have even a polynomial bound on the
size of the decomposition, and hence it is unclear whether computing
DAG-width is in NP [30]. On the other hand, it is still not known whether
computing Kelly-width can be done in XP time [193].

The directed treewidth of a digraph of Kelly-width k is bounded
by 6k − 2, while there exist families of digraphs of constant directed
treewidth and unbounded Kelly-width [193]. An interesting open question,
formulated both in [193] and in [30], is to find relation between DAG-width
and Kelly-width. The authors conjecture that the two width measures
are within a constant multiplicative factor from each other.

Despite being possibly much larger than directed treewidth, both
DAG-width and Kelly-width do not admit many more tractability re-
sults. In fact, the negative results of Lampis et al. [236] (W[2]-hardness
of Hamiltonian Cycle parameterized by directed treewidth) and of
Kreutzer and Ordyniak [230] (NP-hardness of Feedback Arc (Vertex)

Set and other problems on digraphs of constant directed treewidth) can
be lifted to parameterizations by DAG-width and Kelly-width. Moreover,
since DAGs have DAG-width and Kelly-width equal to 1, the same holds
for the negative results of Slivkins [300] on the Vertex (Edge) Disjoint

Paths problems, and of Ganian et al. [157] for Directed Dominating

Set and other problems.
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3.4.3 Directed pathwidth

Directed pathwidth has been introduced in the 90s by Reed, Seymour, and
Thomas as a natural generalization of the undirected notion. Similarly
to its undirected analogue, directed pathwidth is defined via a notion
of a path decomposition. Again, a path decomposition is a sequence of
bags, but this time we require that every arc of the digraph is either
contained in some bag, or is directed from some bag appearing later in
the decomposition to an earlier one. In Section 5.2.3 we give a formal
definition of this notion, and provide a number of simple observations.

A digraph of directed pathwidth k has DAG-width at most k + 1 [30],
and a similar bound can be easily obtained for Kelly-width. Thus, both
Kelly-width and DAG-width are sandwiched between directed treewidth
and directed pathwidth. Unfortunately, this does not mean that pa-
rameterization by directed pathwidth gives more tractability results; the
aforementioned negative results [157, 236, 300] actually hold also when
using directed pathwidth as the parameter.

A version of cops-and-robber game for directed pathwidth has been
studied by Bárat [25]. Moreover, an XP exact algorithm for directed
pathwidth has been recently proposed by Tamaki [301]. To the best of
author’s knowledge, it remains unknown whether directed pathwidth of a
general digraph can be computed in fixed-parameter tractable time.

3.4.4 No good width measures for directed graphs?

The lower bounds given in the previous sections show that none of the
proposed width measures of digraphs enjoys even a fraction of algorithmic
properties of undirected treewidth. Moreover, it is also unclear how the
proposed width measures behave with respect to different containment
notions. For instance, Adler [1] has shown that taking a butterfly minor can
even increase the directed treewidth of a graph; recall that butterfly minors
were used to state the conjecture about existence of a large directed grid
in a digraph with large directed treewidth. In addition, natural cops-and-
robber games on digraphs behave counter-intuitively: in many cases non-
monotone strategies are provably stronger than monotone ones [1, 230].

Therefore, it is natural to ask whether there exists any sensible width
notion that is both algorithmically useful and has good structural proper-
ties, meaning that it is closed under some form of minor relation. This
question has been systematically investigated by Ganian et al. [158],
who propose the following formalizations of expressions ’sensible’, ’al-
gorithmically useful’ and ’good structural properties’. First, for being
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algorithmically useful Ganian et al. request that verifying satisfiability
of any sentence of MSO1 logic should be in XP when parameterized by
the considered width measure; note that this is a relaxation of results
like Courcelle’s theorem. Second, for good structural properties they
request that the considered width measure is closed under taking directed
topological minors ; the definition of this containment relation is somewhat
technical, however the authors argue that it naturally corresponds to
cops-and-robber games. Third, for sensibility Ganian et al. need one more
technical condition they call efficient orientability . Shortly speaking, a
width measure δ is efficiently orientable if given an undirected graph G one
can in polynomial time find an f(OPT )-approximation of the orientation
of edges of G that yields a digraph of the minimum possible value of δ.
Both DAG-width and Kelly-width are efficiently orientable.

Ganian et al. have proven a somewhat surprising result that requesting
the three aforementioned conditions already implies that the considered
width measure must be bounded by a function of treewidth of the under-
lying undirected graph, unless P=NP. Intuitively speaking, this means
that there is no width notion for general directed graphs that both shares
good properties of undirected treewidth and does not lose information
about orientation of arcs.



Chapter 4

The optimality program

The goal of the optimality program is to pursue tight bounds on the com-
plexity of parameterized problems, focusing particularly on dependence on
the parameter. In the literature one can find a full variety of functions f(k)
in the running times of FPT algorithms: from non-elementary given by the
Graph Minors theory or Courcelle’s theorem, through multiple-exponential
and single exponential for many classical problems, to even subexponential
as in the case of bidimensionality. The question of qualitative differences
between problems with different parameterized complexity is of main
interest of the optimality program. The thesis is that obtaining a tight
lower bound for a parameterized problem not only proves that further
efforts of designing faster algorithms are probably futile, but also gives
new insights into the problem’s structure by extracting and exhibiting the
source of intractability.

The formulation of ETH and SETH by Impagliazzo and Paturi [194]
(see Section 2.2.3 for formal definitions) provided very convenient complex-
ity assumptions for proving lower bounds that almost match known upper
bounds for many problems. Since then the optimality program became a
thriving subbranch of parameterized complexity, defined by Marx [252] as
one of the key future directions in the field. For reference we refer to the
survey of Lokshtanov et al. [240] and an appropriate section of the survey
of Marx [252], of which the following chapter is an updated compilation.

70



CHAPTER 4. THE OPTIMALITY PROGRAM 71

4.1 Results following immediately from ETH

4.1.1 Classical complexity

Essentially, it has been observed already by Impagliazzo et al. [195]
that assuming ETH one can exclude existence of algorithms that are
subexponential in terms of instance size for a number of classical NP-hard
problems1. More precisely, Impagliazzo et al. consider a syntactic class of
problems SNP (for a precise definition we refer to [195]) and showed that 3-
CNF-SAT is complete for SNP with respect to a form of reductions (called
SERF reductions) that preserve existence of subexponential algorithms.
In particular, any linear NP-hardness reduction from 3-CNF-SAT, i.e., a
reduction that takes an instance of 3-CNF-SAT with n variables and m
clauses and produces an equivalent instance of the target problem L of
size O(n+m), is a SERF reduction. Indeed, it can be easily seen that
pipelining such a reduction with the assumed subexponential algorithm
for L yields an algorithm for 3-CNF-SAT that works in 2o(n+m) time,
thus contradicting ETH by Corollary 5. Even though the notion of SERF

reductions is more general, for most classical NP-hard problems, like
Vertex Cover, Independent Set, Dominating Set, orHamiltonian

Cycle, the standard NP-hardness reductions known in the literature are
in fact linear. Thus, we immediately obtain as a corollary that none of
these problems admits a subexponential algorithm in terms of instance
size, unless ETH fails.

Following this line of reasoning, one can examine also classical NP-
hardness reductions for problems on planar graphs, like Planar Vertex

Cover, Planar Dominating Set or Planar Hamiltonian Cycle.
Typically, such reductions start with a concept of a linear construction
that does not necessarily preserve planarity, like, for instance, an NP-
hardness reduction for the problem in general graphs. Then one needs to
carefully design a planar crossover gadget that substitutes a crossing of
two edges of the preliminary construction, thus making the whole resulting
instance planar; see for reference NP-hardness reductions for Planar

Vertex Cover [161] or Planar Hamiltonian Cycle [162]. Thus, such
a reduction takes as input an instance of 3-CNF-SAT with n variables
and m clauses, and produces an instance of the target problem L of size
O((n+m)2): while the preliminary construction is linear, the instance size
can be blown up quadratically when introducing the crossover gadgets.

Observe now that if there existed an algorithm for L with running

1ETH has been formulated only in the later work of Impagliazzo and Paturi [194],
but this observation is already present in [195].
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time 2o(
√
N) where N is the total number of vertices of the graph, then

pipelining the reduction with such an algorithm would yield an algorithm
for 3-CNF-SAT that works in 2o(n+m) time, again contradicting ETH by
Corollary 5. As a result, neither of Planar Vertex Cover, Planar
Dominating Set or Planar Hamiltonian Cycle admits an algorithm

working in time 2o(
√
N), and the same result holds for many other problems

on planar graphs. Note, however, that all these problems in fact do admit

algorithms working in time 2O(
√
N). Such algorithms can be obtained

by Lipton-Tarjan separator theorem, or in more modern language, by
pipelining the fact that a planar graph on N vertices has treewidth O(

√
N)

with dynamic programming on a tree decomposition. Therefore, we obtain
surprisingly tight bounds on the complexity of the considered problems:

while algorithms of running time 2O(
√
N) exist, achieving running time

2o(
√
N) seems unlikely.

4.1.2 Parameterized complexity

Applicability of ETH to parameterized problems has been probably first
noted by Cai and Juedes [55], who observe that for all the problems where
the parameter is naturally bounded by the size of the instance, a lower
bound on the classical complexity of the problem implies a lower bound
on the parameterized complexity as well. For instance, for the Vertex

Cover problem a parameterized algorithm with running time O∗(2o(k))
has also classical complexity 2o(N) where N is the number of vertices
of the graph, and we have already refuted existence of such algorithms
under ETH. The same observation can be applied to other parameterized
problems; Cai and Juedes in fact consider a class of problems called
Max-SNP and show that an analogous corollary may be concluded for all
problems that are complete for Max-SNP with respect to SERF reductions.
Note that in the case of Vertex Cover this lower bound is essentially
tight, as the problem can be solved by a simple FPT branching algorithm
in time O∗(2k).

As observed by Cai and Juedes [55], this idea applies also to problems in

planar graphs. For instance, FPT algorithms with running time O∗(2o(
√
k))

for problems like Planar Vertex Cover, Planar Independent Set,

or Planar Dominating Set would have also classical complexity 2o(
√
N)

where N is the number of vertices of the graph. We have however already
refuted existence of such algorithms under ETH. Note moreover that these
lower bounds match the upper bounds given by the bidimensionality theory
(we discussed bidimensionality in Section 3.2.4): all three aforementioned
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problems are in fact solvable in time O∗(2O(
√
k)). Therefore, the square

root in the exponent of algorithms obtained using bidimensionality is not
just an artifact of the technique, but an intrinsic property of the problems’
complexity. Understanding this ’square root phenomenon’ is one of the
main goals of the bidimensionality theory, to which the optimality program
clearly contributes.

We remark that in order to exclude existence of an O∗(2o(k)) algorithm
under ETH it is sufficient to provide a polynomial-time reduction from
3-CNF-SAT that takes a formula with n variables and m clauses, and
produces an equivalent instance of the target problem whose size may be
superlinear, but whose parameter is linear in n+m. Pipelining such a
reduction with a hypothetical subexponential algorithm for the problem
would yield a 2o(n+m) algorithm for 3-CNF-SAT, thus contradicting ETH
by Corollary 5. More generally, to exclude running time O∗(2o(f(k))) the
output instance should have parameter bounded by O(f−1(n+m)), where
f−1 is the inverse function of f ; see also [132]. All the more recent lower
bounds under ETH, including the ones given in Chapters 8 and 9 of this
thesis, in fact use this framework; that is, one takes care of the output
parameter only and ignores the intermediate step of considering the total
size of the output instance.

4.2 The mysterious class SUBEPT

Recall that class SUBEPT, defined by Flum and Grohe [132, Chapter 16],
consists of parameterized problems solvable in O∗(2o(k)) time where k is
the parameter. While the bidimensionality theory is a natural explanation
of existence of subexponential algorithms for problems on geometric graph
classes, there exist also other families of problems that belong to SUBEPT.

The first natural examples of problems belonging to SUBEPT outside
the framework of bidimensionality were found in the context of tourna-
ments, with the most important example of the Feedback Arc Set

problem [10, 126, 204]. In Part II we consider parameterized problems
in tournaments, and in particular we design a few new subexponential
parameterized algorithms. We refer to the introductory chapter of this
part for an overview of the topic.

Recently, some surprising subexponential algorithms were found for
edge modification problems. In these problems one is given a graph G
and an integer k, which is the parameter, and the goal is to add or remove
(depending on the variant) at most k edges to make G satisfy some property.
Deletion problems allow only edge removals, completion problems allow
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only edge additions, while edition problems allow both operations. The first
breakthrough result is due to Fomin and Villanger [148] who have shown
that the Minimum Fill-in problem, i.e., edge completion to a chordal
graph (a graph with no induced cycle longer than 3), can be solved in time

O∗(2O(
√
k log k)), thus substantially improving upon a number of previous

algorithms with running times O∗(2O(k)). Later, Ghosh et al. [164] have
proven that also edge completion and edge deletion to a split graph (a
graph whose vertex set can be partitioned into a clique and an independent

set) can be solved in O∗(2O(
√
k log k)) time.

Contrary to the results given by the bidimensionality theory, we do
not have matching lower bounds for the aforementioned two families of
problems. As Fomin and Villanger [148] observe, the known NP-hardness
reduction for Minimum Fill-in excludes only existence of an algorithm
with running time O∗(2o(k

1/6)) under ETH, so we still have a large gap
between the upper and the lower bound. Similarly weak lower bounds
follow from the NP-hardness reductions for the Feedback Arc Set in

Tournament problem of Alon [9] and of Charbit et al. [60]. On the other
hand, the subexponential algorithms for problems in tournaments and for
edge modification problems can be obtained via a number of very different
techniques, like potential maximal cliques [148], chromatic coding [10],
or the technique of k-cuts that is presented in this thesis. For each of

these techniques the running time O∗(2O(
√
k·polylog(k))) seems very natural.

Finding matching lower bounds for all these problems is arguably one of
the most interesting open problems in the optimality program.

In Chapter 8 we make a step towards this goal. We consider there
the Cluster Editing problem: add or remove at most k edges of a
given graph to obtain a cluster graph, i.e., a disjoint union of cliques
(called clusters). It appears that the problem in general does not ad-
mit a subexponential parameterized algorithm; however, if one assumes
that the target number of clusters is p, then an algorithm with running
time O∗(2O(

√
pk)) can be designed. Thus, the problem can be solved in

subexponential parameterized time whenever p is a sublinear function of
k. Moreover, we have obtained also a matching lower bound under ETH
for all magnitudes of p = p(k) between a constant and a linear function
of k (see Chapter 8 for a precise statement of this claim). As a result,
Cluster Editing is perhaps the first edge modification problems for
which such a thorough complexity analysis has been performed.
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4.3 Slightly superexponential parameterized time

As we have seen, for many problems already the known NP-hardness
reductions are sufficient for settling tight bounds on their parameterized
complexity. Typically such problems admit an FPT with simple single
exponential dependence on the parameter, which is matched by a classical
reduction from 3-CNF-SAT that produces an instance with parameter
bounded linearly in the size of the input formula. For some important
classes of problems, however, the known FPT algorithms have higher
running times, which is therefore not matched by lower bounds derived in
this manner.

The first such class to be studied systematically was the class of prob-
lems solvable in O∗(2O(k log k)) time, also called slightly superexponential ;
this study is due to Lokshtanov et al. [241]. Such running time appears nat-
urally for branching FPT algorithms where the depth of the search tree is
bounded by O(k), but at each branching step the algorithm chooses one of
kO(1) possibilities. Lokshtanov et al. start with identifying problems that
one could call canonical for this class; in other words, problems where one
is asked to make k independent 1-in-k choices that can be checked against
each other. The first problem defined by Lokshtanov et al. is k×k Clique:
given a graph G on vertex set {1, 2, . . . , k}×{1, 2, . . . , k}, interpreted as a
k × k matrix, check if there exists a clique in G that contains exactly one
vertex from each row. The second problem is k× k Hitting Set: given a
family F of subsets of {1, 2, . . . , k} × {1, 2, . . . , k}, again interpreted as a
k×k matrix, verify whether there is a set X ⊆ {1, 2, . . . , k}×{1, 2, . . . , k}
that contains exactly one element from each row and that has nonempty
intersection with each element of F .

Observe that both k×k Clique and k×k Hitting Set can be solved
in O∗(kk) time by checking all possible choices of one vertex from each row
of the matrix. Lokshtanov et al. prove that a substantial improvement of
these brute-force algorithms is unlikely: existence of an algorithm for any
of these problems with running time O∗(2o(k log k)) would contradict ETH.
The idea of the proof is to first show a lower bound for k× k Clique, and
then reduce it further to k×k Hitting Set via a sequence of intermediate
steps.

The crucial step is of course the lower bound for k × k-Clique. Here,
one essentially needs to find a reduction from any problem known not
to admit a subexponential algorithm that produces an instance of k × k-
Clique with k = O(n/ log n), where n is the size of the input instance.
Hence, in some sense we need to devise a way to ’repack’ the information
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from a 2n search space in the input instance to a kk search space in
the output instance. Lokshtanov et al. find it most convenient to start
with an instance of 3-Coloring, and divide vertices of the input graph
into around Θ(n/ log n) groups of size around Θ(log n) each. Intuitively,
choosing a coloring of each group can thus express one of 3Θ(logn) = nΘ(1)

choices. Then groups correspond to rows of the matrix, while colorings of
one group correspond to vertices of the corresponding row.

Having established the canonical problems as a base for reductions,
Lokshtanov et al. provide a number of corollaries. For instance, they
consider the Closest String problem defined as follows: given a finite
alphabet Σ, two integers d, � and a family of strings u1, u2, . . . , ut over Σ
of length � each, decide whether there exists a string u ∈ Σ� that is in
Hamming distance at most d from each of ui, i.e., for each i = 1, 2, . . . , t
it holds that u and ui differ on at most d letters. The Closest String

problem can be solved in O∗(2O(d log d)) time [170] and in O∗(2O(d log |Σ|))
time [246]. Using the prepared tools Lokshtanov et al. were able to prove
that both these upper bounds are essentially tight: both existence of
an algorithm running in O∗(2o(d log d)) time or an algorithm running in
O∗(2o(d log |Σ|)) time would contradict ETH. Apart from this, Lokshtanov
et al. proved also a similar lower bound for the Distortion problem
that treats of embedding a graph into a metric space while approximately
preserving distances, and for the Vertex Disjoint Paths problem
parameterized by the treewidth of the input graph. The latter result will
be discussed in more details in the next section.

4.4 Dynamic programming on treewidth

It has been observed by Lokshtanov et al. [239] that SETH can be used
conveniently for proving lower bounds on the running time of dynamic
programming routines on tree decompositions. Recall that many classical
NP-hard problems admit efficient FPT algorithms when parameterized
by treewidth obtained via the dynamic programming principle. Existence
of such algorithms can be derived from expressibility in MSO2 by the
results of Courcelle (Proposition 16) and of Arnborg et al. [16]; however,
in many cases one can design an explicit dynamic program which works
in simple single exponential time, or slightly superexponential time. For
instance, for the Independent Set and Dominating Set problems the
running times on a tree decomposition of width t are O(2t · tO(1) · n) and
O(3t · tO(1) · n), respectively.

The question asked by Lokshtanov et al. [239] was whether the bases
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of the exponents (i.e., 2 and 3 in these examples) can be substantially
improved. As they show, this is implausible under SETH. More precisely,
unless the generalCNF-SAT can be solved in (2−ε0)n time for some ε0 > 0
(note that this assumption is slightly weaker than SETH), no algorithms
for Independent Set or Dominating Set can achieve running times
O∗((2−ε)p) and O∗((3−ε)p), respectively, where p is the width of a given
path decomposition and ε > 0 is any positive constant.

Let us shortly discuss the methodology used for obtaining such results.
We provide a reduction from the CNF-SAT problem; assume then that
we are given a CNF formula ϕ with n variables and m clauses. The
reduction should in polynomial time construct a graph G with a path
decomposition of width roughly n and compute an integer k, such that
G admits an independent set of size k if and only if ϕ is satisfiable. The
idea is to examine closely the known dynamic programming routine for
the Independent Set problem. Intuitively, the states of the dynamic
program correspond to partitions of the bag into vertices that are included
and excluded from the constructed independent set; thus, we have at most
2t+1 states per bag. Now the goal is to construct G in such a manner that
each of these 2t+1 states corresponds to one of 2n possible valuations of
variables of ϕ. Graph G is constructed by taking a sequence of Θ(m) bags.
In each bag we test satisfaction of one clause by attaching a constant-
treewidth verificator gadget, and moreover for each two consecutive bags
we need to ensure that the choice of the state in the first one is the same as
in the second one2. Thus, by choosing the intersection of the constructed
independent set with the first bag we in fact choose an evaluation of
variables of ϕ, and further bags verify whether this evaluation satisfies ϕ.

For Dominating Set the construction must be more involved, as
we need to pack search space of size 2n of a CNF-SAT instance into
3t+1 states of the dynamic program. Thus, the width of the constructed
path decomposition should be roughly n/ log 3 and one needs to devise
a clever way of repacking information. Lokshtanov et al. have extended
the technique also to other problems that were known to admit simple
single exponential algorithms parameterized by treewidth: for instance,
for q-Coloring the lower bound is O∗((q − ε)p) and for Odd Cycle

Transversal the lower bound is O∗((3− ε)p), for any ε > 0.

As mentioned in the previous section, in the second paper [241] Lok-
shtanov et al. proved also a lower bound on the running time of the
dynamic programming on a tree decomposition for Vertex Disjoint

2This is not entirely true in the technical construction of [239], but the intuition is
preserved.
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Paths. More precisely, no algorithm for Vertex Disjoint Paths can
achieve running time O∗(2o(p log p)) unless ETH fails, where p is the width
of a given path decomposition3. The idea is that the classical dynamic
program for Vertex Disjoint Paths has 2Θ(t log t) states per bag, and
one needs to translate the kk search space of the k × k Hitting Set

problem to 2Θ(t log t) states of the dynamic program, in a similar way as
the 2n search space of CNF-SAT was translated to 2Θ(t) states of simple
single exponential dynamic programs.

An immediate follow-up question of the works of Lokshtanov et
al. [239, 241] was whether other natural dynamic programming routines
working in time O∗(2O(t log t)) are optimal as well. Of particular interest
was a number of problems with connectivity constraints, like Hamilto-

nian Path, Connected Vertex Cover, or Connected Dominating

Set [239]; for these problems, the natural family of states is essentially
formed by partitions of the bag, whose number is 2Θ(t log t) in the worst
case. This has been later disproved by Cygan et al. [91] (see also the full
version [92]), who have presented a technique dubbed Cut&Count using
which one can obtain randomized simple single exponential algorithms
for many connectivity problems (see also [268] for a unified formalism
via a form of modal logics). For instance, it has been shown in [91] that
Hamiltonian Path can be solved in O∗(4t) time, Connected Vertex

Cover in O∗(3t) time and Connected Dominating Set in O∗(4t) time,
where t is the width of a given tree decomposition.

Cygan et al. augmented their results with a variety of lower bounds
in the spirit of the earlier work of Lokshtanov et al. [239, 241]. In par-
ticular, for many problems it turned out that the upper bound given by
Cut&Count can be matched by a lower bound: for example, Connected

Vertex Cover cannot be solved in O∗((3− ε)p) time and Connected

Dominating Set in O∗((4− ε)p) time unless SETH fails, where p is the
width of a given path decomposition and ε > 0 is any positive constant.
This proves that the obtained running times are not just artifacts of the
technique, but rather inherent properties of the corresponding problems.
Moreover, Cygan et al. have also shown a number of slightly superex-
ponential lower bounds, thus sketching the limits of the technique. For
example, the question whether at most r vertex-disjoint cycles can be
found in a graph can be solved in O∗(4t) time, while after replacing at
most by exactly or at least a O∗(2o(p log p)) lower bound under ETH can
be given.

3The result is stated in [241] only for treewidth, but a careful examination of the
proof shows that it holds also for pathwidth.
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It is worth mentioning that the motivation of the work of Cygan et
al. [91] was actually proving slightly superexponential lower bounds for
the aforementioned connectivity problems, and the Cut&Count technique
was discovered only after numerous attempts of constructing reductions.
This is a clear example of an achievement obtained by a systematic study
of the optimality program.

Later on, Bodlaender et al. [43] have derandomized the Cut&Count
technique at a cost of larger bases of the exponents using a new rank-
based approach, and also made the polynomial factors of the algorithms
linear. The particular case of Hamiltonian Cycle was considered by
Cygan et al. [88], since the upper bound given in [91] was not matched
by a lower bound. Surprisingly, it turned out that Hamiltonian Cycle

can be solved in O∗((2 +
√
2)p) randomized time, where p is the width

of a given path decomposition, while an O∗((2 +
√
2 − ε)p) algorithm

for any ε > 0 would give a O((2 − ε′)n) algorithm for CNF-SAT, thus
contradicting SETH. This tight bound on the base of the exponent being
2 +

√
2 is certainly one of the biggest surprises of the optimality program.

Unfortunately, so far it is not known whether also an algorithm working
in O∗((2 +

√
2)t) time on a tree decomposition of width t can be designed.

The obstacle is the join step: it is unclear whether with the current
formulation of the dynamic program one can avoid considering all pairs of
states via any kind of a fast convolution.

4.5 Lower bounds for XP algorithms

Let us consider the Clique problem. While a trivial algorithm with
running time nO(k) exists, we do not expect the problem to be solvable in
fixed-parameter tractable time, for existence of such an algorithm would
imply that FPT = W [1]. However, these lower and upper bounds still
have much room for improvement: for instance, would it be possible that

Clique solvable in nO(
√
k) time? Or maybe even nO(log log k) time would be

possible? The sole assumption of FPT �=W [1] seems not strong enough
to give a satisfactory answer to this question; however, it turns out that
we may provide much tighter lower bounds assuming ETH.

The question of optimality of XP algorithms for W [1]- and W [2]-hard
problem was first considered by Chen et al. [64, 66, 67]. The take-away
message of this study is that assuming non-existence of a subexponential
algorithm for 3-CNF-SAT, no algorithm for Clique, Independent Set,
Dominating Set, Set Cover, and many other W [1]- and W [2]-hard
problems, can achieve running time f(k)·no(k) for any computable function
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f . Note that this means that ETH implies that FPT �=W [1]. We remark
that for problems that are W [2]-hard, like Dominating Set or Set

Cover, even a weaker assumption of FPT �=W [1] suffices to state the
same lower bounds [67].

The parameterized complexity of Dominating Set has been later
revisited by Pătraşcu and Williams [272], who provided a sharper lower
bound assuming SETH. They proved that while Dominating Set can
be solved in nk+o(1) time for any k ≥ 7, existence of an algorithm solving
Dominating Set in time O(nk−ε) for any fixed k ≥ 3 and ε > 0 would
imply an algorithm for the general CNF-SAT problem with running time
(2− ε′)n for some ε′ > 0.

The results of Chen et al. [64, 66, 67] provide a convenient base of
further reductions, using which one can prove lower bounds on running
times of XP algorithms for other problems not likely to be in FPT. For
instance, in order to show that a parameterized problem L does not admit
an algorithm with running time f(k) · no(k) for any computable function
f , it suffices to present a reduction from the Clique problem to L with
the following properties. First, the reduction works in g(k) · nO(1) time
for some computable function g, where k is the parameter of the input
instance of Clique. Second, it produces an equivalent instance of L of
size polynomial in the input size and with parameter bounded linearly in k.
Such reductions are called by Chen et al. linear FPT reductions (see [66]
for a more detailed definition). As they observe, many of W [1]-hardness
and W [2]-hardness reductions present in the literature are in fact linear.

More generally, to exclude running time f(k) · no(m(k)) for any com-
putable function f , the reduction should produce an output instance with
parameter bounded by O(m−1(k)), where m−1 is the inverse function
of m. The framework of such parameter-preserving reductions has been
successfully applied several times to give tight bounds on the complexity
of various XP algorithms; let us now survey a few examples.

Fomin et al. [133] considered problems parameterized by cliquewidth,
and provided matching upper and lower bounds for two of them: Max-Cut

and Edge Dominating Set (we refer to [133] for problems’ definitions).
More precisely, both problems can be solved4 in nO(k) time on graphs of
cliquewidth k, while existence of an algorithm for any of them achieving
running time f(k) · no(k) for any computable function f would contradict
ETH. We remark that the study of Fomin et al. was a continuation of an
earlier work [133], whose main achievement was settling W [1]-hardness

4We assume that the algorithm is given an appropriate clique expression constructing
the graph.
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of cliquewidth parameterizations for a number of classical problems. For
many problems considered in [133] we still lack matching lower and upper
bounds, with a notable example of Hamiltonian Path (nO(k2) upper
bound, no(k) lower bound).

Similarly as in the case of bidimensionality, also in this setting ETH
can be also used to justify appearance of a square root for problems with
geometric constraints. For instance, Marx [248] has given a reduction
from Clique to Independent Set on unit disk graphs that produces an
instance with parameter bounded quadratically in the input parameter.
Thus, as an immediate corollary we obtain that Independent Set on unit

disk graphs does not admit an algorithm with running time f(k) · no(
√
k)

for any computable function f , unless ETH fails. This lower bound can

be matched by an upper bound of nO(
√
k) [8]. Interestingly, the main

motivation of the work of Marx was proving lower bounds on running
times of approximation schemes of classical problems on geometric graphs;
this shows applicability of the optimality program beyond parameterized
complexity.

Later, Klein and Marx [216, 251] have provided similar matching
bounds for the Edge Multiway Cut problem on planar graphs. The
problem is as follows: given a graph G with a set of terminals T ⊆ V (G)
and an integer k, one is asked to remove at most k edges of the graph so
that no two terminals remain in the same connected component. While
the problem is NP-hard on general graphs already for |T | = 3 [97], an XP
algorithm with running time nO(|T |) was known for planar graphs [186].
It had been then a long-standing open problem whether this result can
be improved to FPT time [119]. This question has been resolved by
Marx [251], who has shown that this is probably not the case: the problem
is W [1]-hard. In a companion paper together with Klein [216] they have
also shown an XP algorithm essentially matching the lower bound implied
by [251]. More precisely, Edge Multiway Cut can be solved in time

2O(|T |) · nO(
√

|T |) [216], while existence of an algorithm achieving running

time f(|T |) · no(
√

|T |) for any computable function f would contradict
ETH [251].

Marx [250] has also considered optimality of treewidth-based algo-
rithms for solving constraints-satisfaction problems (CSPs). It is known
that a CSP can be solved by a standard dynamic program in time nO(t),
where n is the total input size (size of the domain plus size of the primal
graph) and t is the treewidth of the primal graph; see [250] for appropriate
definitions. Marx has shown that this result cannot be substantially im-
proved: assuming ETH, there is no recursively enumerable class of graphs
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G with unbounded treewidth, for which there exists an algorithm solving
CSPs with primal graphs from G in time f(G) · no(t/ log t), where f(G) is
any function of the input graph. Marx also provides a number of strong
corollaries of this result, for instance in the context of the Subgraph

Isomorphism problem.
Finally, probably the most surprising tight result has been given by

Marx [249] for the Closest Substring problem, a close relative of the
Closest String problem considered in Section 4.3. In this problem one
is given a finite alphabet Σ, a sequence of strings u1, u2, . . . , uk over Σ,
and integers L and d. The question is to find one string u of length L,
such that each ui contains a consecutive substring u

∗
i of length L that

is in Hamming distance at most d from u, i.e., u and u∗i differ on at
most d letters. First, Marx shows two non-trivial algorithms solving the
problem in times f(d) · nO(log d) and g(k, d) · nO(log log k), respectively, for
some computable functions f, g. The surprise is that both of these running
times can be shown to be essentially tight. More precisely, assuming ETH
there is no algorithm solving Closest Substring in time f ′(k, d) ·no(log d)
or in time g′(k, d) ·no(log log k) for any computable functions f ′, g′. In order
to exclude such running times, Marx needed to construct a reduction
from the Clique problem with parameter t that produces an instance of
Closest Substring with d = 2O(t) and k = 22

O(t)
.

4.6 Linking brute-force and dynamic program-
ming to SETH

We conclude by reviewing the results of Cygan et al. [86] on optimality
of brute-force and dynamic programming algorithms under SETH. The
starting point of the study of Cygan et al. is an observation that many
classical parameterized problems solvable in O∗(2k) time, where k is the
parameter, can be classified into two categories.

• Search problems that can be solved in O∗(2k) time by a brute-force
check of a search space of size 2k. Examples of such problems are
q-CNF-SAT for q tending to infinity, Set Cover parameterized
by the size of the family, or Set Splitting (see [86] for the missing
problem definitions).

• Covering problems that can be solved in O∗(2k) time by dynamic
programming on subsets of a universe of size k. Examples of such
problems are Set Cover parameterized by the size of the universe,
Set Partitioning or Steiner Tree.
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The goal of Cygan et al. was to show that breaking the 2k barrier for
all these problems is equivalent, that is, existence of an algorithm for one
of them that runs in time O∗((2− ε)k) for some ε > 0 implies existence of
such algorithms for all of them, and in particular it refutes SETH. This
goal has been achieved only partially. Cygan et al. managed to show
equivalence of all the considered search problems and that non-existence
of better algorithms for the covering problems can be reduced to one
canonical case of Set Cover parameterized by the size of the universe.
However, the last reduction eluded the authors, so it may still be that Set
Cover parameterized by the universe size can be solved in O∗((2− ε)n)
time for some ε > 0 while SETH holds. Cygan et al. expect that the
missing link exists, and therefore state a conjecture that Set Cover

cannot be solved in O∗((2 − ε)n) time for any ε > 0, where n is the
cardinality of the universe.

To justify this claim, Cygan et al. observe that with high probability
an attempt of breaking the 2n barrier for Set Cover using standard
randomized-algebraic tools would also give an algorithm that counts the
number of set covers modulo 2 in O∗((2 − ε)n) time. However, when
one considers counting solutions modulo 2 instead of just existence of
solutions, then the missing link can be found! More precisely, the authors
show that if for some ε > 0 and every q there exists an algorithm counting
modulo 2 the number of set covers in O∗((2 − ε)n) time in instances
where the sets in the family are of size at most q, then for some ε′ > 0
and every q there exists an algorithm counting modulo 2 the number of
satisfying assignments of a q-CNF formula in time O∗((2− ε′)n), where
n is the number of variables. Existence of such an algorithm, however,
is known to violate SETH via standard isolation techniques [56, 304].
Therefore, assuming SETH any algorithm for Set Cover with running
time O∗((2− ε)n) for some ε > 0 cannot be able to count the number of
solutions modulo 2, which means that it would probably need to be based
on a new approach, still to be discovered.
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Chapter 5

Introduction to
tournaments and
semi-complete digraphs

5.1 Introduction

5.1.1 The theory of graph minors for digraphs

As we argued in Section 3.1.5, it is a very natural and important question,
whether techniques and results of Graph Minors can be applied in the
world of directed graphs or digraphs. In spite of many attempts, we are
still very far from the right answer. Even to capture a good analogue
for treewidth in digraphs is a non-trivial task and several notions like
directed treewidth [197], DAG-width [30] or Kelly-width [193] can be
found in the literature; recall that we have surveyed these propositions
in Section 3.4. However, none of them shares all the “nice” properties of
undirected treewidth. In fact this claim can be formalized and proved;
Ganian et al. [158] argued that “any reasonable algorithmically useful and
structurally nice digraph measure cannot be substantially different from
the treewidth of the underlying undirected graph”.

The notion of a graph minor is crucial in defining obstructions to small
treewidth in an undirected graph. There are several ways to generalize
this definition to digraphs and, as in case of treewidth, it is unclear which
of them is the most natural. One approach is to consider topological em-
beddings or immersions. An undirected graph H is a topological subgraph
(or topological minor) of an undirected graph G if a subdivision of H is a
subgraph of G. In other words, graph H can be embedded into graph G

85
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in such a way that vertices of H are mapped to pairwise different vertices
of G, edges of H are mapped to vertex-disjoint paths in G. An immersion
of a graph H into a graph G is defined like a topological embedding,
except that edges of H correspond to edge-disjoint paths in G. Both these
notions can be naturally translated to directed graphs by replacing paths
with directed paths.

It were long-standing open questions whether deciding if an undirected
graph H can be topologically embedded (immersed) into G is fixed-
parameter tractable, when parameterized by the size of H . Both questions
were answered positively only very recently by Grohe, Kawarabayashi,
Marx, and Wollan [173]. Unfortunately, the work of Grohe et al. cannot be
extended to directed graphs. By the classical result of Fortune, Hopcroft,
and Wyllie [150] the problem of testing whether a given digraph G contains
H as a (directed) topological subgraph is NP-complete even for very
simple digraphs H of constant size. Similar results can be easily obtained
for immersions. In fact, what Fortune et al. [150] showed is that the
Vertex (Edge) Disjoint Paths problems are NP-complete on general
digraphs even for k = 2, and the hardness of topological containment and
immersion testing are simple corollaries of this fact. Therefore, Vertex

(Edge) Disjoint Paths were studied intensively on different classes of
directed graphs. For example if we constrain the input digraphs to be
acyclic, then both variants still remain NP-complete when k is part of the
input [125], but are polynomial-time solvable for every constant number of
terminal pairs k [150], which was not the case in the general setting [150].
Slivkins [300] has shown that both problems are in fact W [1]-hard when
parameterized by k, thus completing the picture of their parameterized
complexity in this restricted case.

5.1.2 The containment theory for tournaments

Tournaments form an interesting and mathematically rich subclass of
digraphs. Formally, a simple digraph T is a tournament if for every pair
of vertices v, w, exactly one of arcs (v, w) or (w, v) is present in T . We
also consider a superclass of tournaments, called semi-complete digraphs,
where we require at least one of arcs (v, w) or (w, v) to be present in
T , thus allowing both of them to be present at the same time. Many
algorithmic problems were studied on tournaments, with notable examples
of problems strongly related to this work: Vertex (Edge) Disjoint

Paths and Feedback Arc (Vertex) Set problems. We refer to the
book of Bang-Jensen and Gutin [22] for a more thorough introduction to
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algorithms for digraphs, and in particular for tournaments.

The work on topological problems in semi-complete digraphs began
perhaps with the work of Bang-Jensen and Thomassen [21, 23], who
showed that in spite of the fact that the Vertex (Edge) Disjoint

Paths problems remain NP-complete on tournaments when k is a part of
the input, they are solvable in polynomial time for the case k = 2 even
on semi-complete digraphs. This line of research was later continued by
Chudnovsky, Fradkin, Kim, Scott, and Seymour [72, 73, 74, 151, 152, 215]
(CFKSS, for short).

The recent work of CFKSS drastically advanced the study of minor-
related problems in semi-complete digraphs by building an elegant con-
tainment theory for this class. The central notions of the theory are two
width measures of digraphs: cutwidth and pathwidth. The first one is based
on vertex orderings and resembles classical cutwidth in the undirected
setting [302], with the exception that only arcs directed forward in the
ordering contribute to the cut function. The second one is a similar
generalization of undirected pathwidth; recall that we have surveyed the
work on directed pathwidth in general digraphs in Section 3.4.3. For the
sake of introduction we do not need formal definitions of cutwidth and
pathwidth that are somewhat technical; however, the reader may find
them in Section 5.2.3.

Chudnovsky, Fradkin, and Seymour [72] proved a structural theo-
rem that provides a set of obstacles for admitting an ordering of small
(cut)width; a similar theorem for pathwidth was proven by Fradkin and Sey-
mour [152]. A large enough obstacle for cutwidth admits every fixed-size
digraph as an immersion, and the corresponding is true also for pathwidth
and topological containment. Basing on the first result, Chudnovsky and
Seymour [74] were able to show that immersion is a well-quasi-ordering on
the class of semi-complete digraphs. Indeed, following the same line of rea-
soning as in the Graph Minors project (see Section 3.1.1), it is sufficient to
prove the claim for the class of semi-complete digraphs that exclude some
fixed semi-complete digraph H0 as an immersion. Using the structural
theorem we infer that such digraphs have cutwidth bounded by a constant.
For graphs of constant cutwidth, however, the well-quasi-ordering claim
can be proven using a more direct approach via Higman’s lemma.

Unfortunately, the same reasoning breaks for topological contain-
ment, since it is already not true that topological containment is a well-
quasi-ordering of graphs of constant pathwidth. However, Kim and Sey-
mour [215] have recently introduced a slightly different notion of a minor
order, which indeed is a well-quasi-ordering of semi-complete digraphs.
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As far as the algorithmic aspects of the work of CFKSS are concerned,
the original proofs of the structural theorems can be turned into approxi-
mation algorithms, which given a semi-complete digraph T and an integer
k find a decomposition of T of width O(k2), or provide an obstacle for ad-
mitting decomposition of width at most k. For cutwidth the running time
on a semi-complete digraph on n vertices is O(n3), but for pathwidth it is
O(nO(k)) for some function m; this excludes usage of this approximation
as a subroutine in any FPT algorithm, e.g. for topological containment
testing.

As Chudnovsky, Fradkin, and Seymour [72] observe, existence of an
FPT approximation algorithm for cutwidth allows us to design FPT
algorithms for checking whether a given digraph H can be immersed into
a semi-complete digraph T . Consider the following WIN/WIN approach.
We run the approximation algorithm for cutwidth for some parameter that
is a (large) function of |H|. In case a decomposition of width bounded by a
function of |H| is returned, we can employ a dynamic programming routine
on this decomposition that solves the problem in FPT time. Otherwise, the
approximation algorithm provided us with a large combinatorial obstacle
into which every digraph of size at most |H| can be embedded. Therefore,
we can safely provide a positive answer. Fradkin and Seymour [152] observe
that the same approach can be applied to topological subgraph testing
using their approximation algorithm for pathwidth instead. However, this
approximation algorithm does not work in FPT time, so the obtained
topological containment test is also not fixed-parameter tractable. Let us
remark that the original dynamic programming routine for topological
containment working on a path decomposition, presented by Fradkin and
Seymour [152], was also not fixed-parameter tractable.

The approximation algorithms for cutwidth and for pathwidth either
provide an obstacle into which every digraph of size at most � can be
embedded, or construct a decomposition of width f(�) for some multiple-
exponential function f (yet elementary). Therefore, the obtained algorithm
for immersion testing also inherits this multiple-exponential dependence
on the size of the digraph to be embedded, i.e., it works in time f(|H|) ·n3
for some function f that is multiple-exponential, yet elementary. For
topological containment this problem is even more serious, since we obtain
multiple-exponential dependence on |H| in the exponent of the polynomial
factor, and not just in the multiplicative constant standing in front of it.

One of the motivations of the work of CFKSS was extending the
work of Bang-Jensen and Thomassen on the Vertex (Edge) Disjoint

Paths problems. The new containment theory turned out to be capable of
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answering many questions, yet not all of them. Using the approximation
algorithm for cutwidth, Fradkin and Seymour [151] designed an FPT
algorithm for Edge Disjoint Paths working in time f(k) · n5 for some
function f that is multiple-exponential, yet elementary. The algorithm
uses again the WIN/WIN approach: having approximated cutwidth, we
can either find an ordering of small width on which a dynamic program
can be employed, or we find a large combinatorial obstacle. In this case,
Chudnovsky, Fradkin, and Seymour are able to identify an irrelevant vertex
in the obstacle, which can be safely removed without changing existence
of a solution. That is, they design an irrelevant vertex rule. For the
Vertex Disjoint Paths problem, Chudnovsky, Scott, and Seymour [73]
give an XP algorithm using a different approach. To the best of author’s
knowledge, the question whether the Vertex Disjoint Paths problem
admits an FPT algorithm in semi-complete digraphs, is still open.

The Edge Disjoint Paths problem is a special case of the Rooted

Immersion problem defined as follows: given a digraph H with prescribed
pairwise different vertices u1, u2, . . . , uh, called roots , and a semi-complete
digraph T also with pairwise different roots v1, v2, . . . , vh, we ask whether
there exists an immersion of H in T that preserves roots, that is, maps
each ui to corresponding vi. The Edge Disjoint Paths problem can
be hence modeled as follows: we take H to be a digraph consisting of
k independent arcs, and all the vertices of H are roots required to be
mapped to respective endpoints of the paths that we seek for. In the same
manner we may define Rooted Topological Containment problem
that generalizes the Vertex Disjoint Paths problem. It appears that
the FPT algorithm for Edge Disjoint Paths of Fradkin and Seymour
can be generalized to solve also the Rooted Infusion problem, which is
a relaxation of Rooted Immersion where we do not require the images of
vertices of H to be distinct. Note that Rooted Infusion also generalizes
Edge Disjoint Paths in the same manner as Rooted Immersion does.
As Fradkin and Seymour admit, they were not able to solve the Rooted

Immersion problem in FPT time using their approach.

As far as computation of cutwidth and pathwidth exactly is concerned,
by the well-quasi-ordering result of Chudnovsky and Seymour [74] we
have that the class of semi-complete digraphs of cutwidth bounded by a
constant is characterized by a finite set of forbidden immersions; the result
of Kim and Seymour [215] proves that we can infer the same conclusion
about pathwidth and minors. Having approximated the corresponding
parameter in FPT or XP time, we can check if any of these forbidden
structures is contained in a given semi-complete digraph using dynamic
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programming. This gives FPT and XP exact algorithms for computing
cutwidth and pathwidth, respectively; however, they are both non-uniform
— the algorithms depend on the set of forbidden structures which is
unknown — and non-constructive — they provide just the value of the
width measure, and not the optimal decomposition. Also, we have virtually
no control on the dependence of the running time on the target width
value.

5.1.3 Tournaments and parameterized complexity

The class of tournaments received also a lot of attention from the point of
view of parameterized complexity, perhaps because of a vast number of
positive results that can be obtained in this setting. The two problems
that have been most intensively studied are Feedback Arc Set and
Feedback Vertex Set, defined as follows: given a tournament T and
an integer k, we ask whether one can delete at most k arcs (vertices) to
obtained an acyclic digraph.

Feedback Arc Set in Tournaments (FAST, for short) was per-
haps the first natural parameterized problem outside the framework of
bidimensionality shown to admit a subexponential parameterized algo-

rithm. The first such algorithm, with running time O∗(2O(
√
k log k)), is due

to Alon, Lokshtanov, and Saurabh [10]. This has been further improved
by Feige [126] and by Karpinski and Schudy [204], who have independently

shown two different algorithms with running time O∗(2O(
√
k)). The work

of Alon et al. introduced a novel technique called chromatic coding, while
the algorithms of Feige and of Karpinski and Schudy were based on the
degree ordering approach, and the techniques developed there were more
contrived to the problem. These results led to large interest in parame-
terized problems on tournament-like and generally dense settings, as it
turned out that the technique of chromatic coding proves to be useful also
in other problems [130, 138, 164, 180].

From the point of view of kernelization, FAST admits a kernel with at
most (2+ ε)k vertices for any ε > 0 [32]. The Feedback Vertex Set in

Tournaments problem is known to admit a kernel with at most O(k3)
vertices and an FPT algorithm working in O∗(2k) time via the technique
of iterative compression [115].

We would like to remark here that algorithmic problems on tour-
naments are also interesting for they model various ranking problems
naturally appearing in the theory of social choice. For example, one of
the motivations of the study of Karpinski and Schudy [204] was obtaining
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a subexponential parameterized algorithm for the well-studied Kemeny

Ranking Aggregation problem that reduces to the weighted variant
of FAST. Since these applications of algorithms on tournaments are not
in the scope of this thesis, we refer, e.g., to the work of Karpinski and
Schudy [204] or of Kenyon-Mathieu and Schudy [213] for more discussion
on this topic.

5.1.4 Our results and techniques

The material contained in this part originates in the results obtained in
the following three papers:

• Jungles, bundles, and fixed-parameter tractability, co-authored with
Fedor V. Fomin, and presented at the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New Orleans,
Louisiana, USA, January 6-8, 2013 [145];

• Computing cutwidth and pathwidth of semi-complete digraphs via
degree orderings, presented at the 30th International Symposium
on Theoretical Aspects of Computer Science, STACS 2013, Kiel,
Germany, February 27 - March 2, 2013 [269];

• Subexponential parameterized algorithm for computing the cutwidth
of a semi-complete digraph, co-authored with Fedor V. Fomin, and
to be presented at the 19th Annual European Symposium, ESA
2013, Sophia Antipolis, France, September 2-4, 2013 [146];

In this series, we addressed the plethora of open questions about fixed-
parameter tractability of topological problems in semi-complete digraphs
that arose from the containment theory of CFKSS. In particular, we
investigated possibility of designing efficient, in terms of dependence on the
parameter, fixed-parameter tractable algorithms for testing containment
relations and computing the width measures. Such algorithms are most
useful later as subroutines for algorithms for other problems, especially
given the well-quasi-ordering results of Chudnovsky and Seymour [74],
and of Kim and Seymour [215]. Figure on page 92 contains a summary of
the findings. This work is meant to be a comprehensive compilation of the
obtained results. We now present a chronological record of the findings in
order to give the reader an insight into our line of reasoning.

The results of [145]. The first obstacle that needed to be overcome
was the lack of an FPT approximation algorithm for pathwidth. Note that
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this was also the main reason why the algorithm for testing topological
containment was not fixed-parameter tractable. This gap has been bridged
in [145]. There, we have presented an FPT approximation algorithm for
pathwidth that, given a semi-complete digraph T on n vertices and an
integer k, either finds a path decomposition of T of width O(k2) or provides
an obstacle for admitting a path decomposition of width at most k, and
runs in 2O(k log k) · n3 log n time. The approach was based on replacing
the crucial part of the algorithm of Fradkin and Seymour [152] that was
implemented by a brute-force enumeration, by a more refined argument
based on the colour coding technique of Alon et al. [13]. Since we have
later found even faster algorithms, in this work we omit the description of
the approximation algorithm for pathwidth presented in [145].

Having an FPT approximation algorithm for pathwidth, we were able
to show an FPT algorithm testing topological containment. Note here that
to obtain this result one needs to implement the dynamic programming
routine working on a path decomposition in FPT time, while the original
routine of Fradkin and Seymour was not fixed-parameter tractable. This,
however, turned out to be less challenging, and it also follows from known
tools on model checking MSO1 on digraphs of bounded cliquewidth. We
give an introduction to tools borrowed from logic in Section 5.3, and
design an explicit dynamic programming routine in Section 7.4 in order
to give precise guarantees on the time complexity of the topological
containment test. Algorithms for immersion and minor testing can be
designed in a similar manner. Fixed-parameter tractability of immersion
and minor testing opens possibilities for proving meta-theorems of more
general nature via the well-quasi-ordering results of Chudnovsky and
Seymour [74], and of Kim and Seymour [215]. We give an example of such
a meta-theorem in Section 7.2.

Another problem that we were able to address using the FPT ap-
proximation for pathwidth, was the Rooted Immersion problem, whose
parameterized complexity was left open by Fradkin and Seymour [151].
Unlike Fradkin and Seymour, we have approached the problem via path-
width instead of cutwidth, having observed beforehand that a dynamic
programming routine testing immersion on a path decomposition of small
width can be designed similarly to topological containment. Hence, after
running the approximation algorithm for pathwidth, either we can apply
the dynamic programming on the obtained decomposition, or we are left
with an obstacle for pathwidth, called a triple, which is more powerful
than the obstacles for cutwidth used by Fradkin and Seymour. Similarly
to Fradkin and Seymour, we design an irrelevant vertex rule on a triple,
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that is, in polynomial time we identify a vertex that can be safely removed
from the triple without changing answer to the problem. Then we restart
the algorithm. Observe that the algorithm can make at most n iterations
before solving the problem by applying dynamic programming, since there
are only n vertices in the digraph. All in all, this gives an algorithm for
Rooted Immersion working in f(|H|) ·n4 log n time for some elementary
function f . We describe this algorithm in Section 7.3.

The results of [269]. In the next paper [269] we have discovered a
completely different approach, dubbed the degree ordering approach, that
enabled us to design much more efficient algorithms both for pathwidth
and for cutwidth. Using the new technique we were able to reprove
the structural theorems for both parameters in a unified and simplified
way, obtaining in both cases polynomial-time approximation algorithms
and, in case of pathwidth, even a constant-factor approximation. The
technique could be also used to develop FPT exact algorithm for both
width measures with single-exponential dependence of the running time
on the optimal width. Moreover, we were able to trim the dependence of
the running time on the size of the tested digraph to single-exponential in
all of the containment tests. All the algorithms obtained via the approach
of degree orderings have quadratic dependence on the number of vertices
of the given semi-complete digraph T ; note that this is linear in the input
size. Since the degree ordering approach will be the main tool used in the
following chapters, let us spend some space on explaining its main points.

The crucial observation of the degree ordering approach can be in-
tuitively formulated as follows: any ordering of vertices with respect to
increasing outdegrees is a good approximation of the order in which the
vertices appear in some path decomposition close to optimal. In fact, for
cutwidth this is true even in formal sense. We proved that any outdegree
ordering of vertices of a semi-complete digraph T has width at most
O(ctw(T )2), hence we have a trivial approximation algorithm that sorts
the vertices with respect to outdegrees. As far as computing cutwidth
exactly is concerned, the developed set of tools gives raise to an algorithm
testing whether the cutwidth of a given semi-complete digraph on n ver-
tices is at most k, working in 2O(k) · n2 time. Shortly speaking, we scan
through the outdegree ordering with a dynamic program, maintaining a
bit mask of length O(k) denoting which vertices of an appropriate interval
of the ordering are contained in a constructed prefix of an optimal ordering.
Since we later have found an even faster exact algorithm for cutwidth
of a semi-complete digraph, in this work we omit the description of this
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algorithm.

The case of pathwidth, which was of our main interest, is more com-
plicated. The intuitive outdegree ordering argument can be formalized as
follows: we prove that existence of 4k+2 vertices with outdegrees pairwise
not differing by more than k already forms an obstacle for admitting a
path decomposition of width at most k; we remark here that in [269] we
used a weaker bound 5k + 2, which led to worse approximation ratio for
the approximation algorithm. We call this obstacle a degree tangle. Hence,
any outdegree ordering of vertices of a given semi-complete digraph T
of small pathwidth must be already quite spread: it does not contain
larger clusters of vertices with similar outdegrees. This spread argument
is crucial in all our reasonings, and shows that finding new structural
obstacles can significantly improve our understanding of the problem.

Similarly as in the case of the exact algorithm for cutwidth, both the
approximation and the exact algorithm for pathwidth use the concept of
scanning through the outdegree ordering with a window — an interval in
the ordering containing 4k vertices. By the outdegree spread argument,
at each point we know that the vertices on the left side of the window
have outdegrees smaller by more than k that the ones on the right side;
otherwise we would have a too large degree tangle. For approximation,
we construct the consecutive bags by greedily taking the window and
augmenting this choice with a small coverage of arcs jumping over it.
The big gap between outdegrees on the left and on the right side of the
window ensures that nonexistence of a small coverage is also an evidence
for not admitting a path decomposition of small width. The obtained
approximation ratio is 6; in the original paper we claimed approximation
ratio 7 because of a weaker bound on the size of a degree tangle that is
an obstacle for pathwidth k. For the exact algorithm, we identify a set of
O(k2) vertices around the window, about which we can safely assume that
the bag is contained in it. Then we run a similar dynamic programming
algorithm as in the case of cutwidth.

The most technical part in the approximation and exact algorithms for
pathwidth is the choice of vertices outside the window to cover the arcs
jumping over it. It turns out that this problem can be expressed as trying
to find a small vertex cover in an auxiliary bipartite graph. However,
in order to obtain a feasible path decomposition we cannot choose the
vertex cover arbitrarily — it must behave consistently as the window slides
through the ordering. To this end, in the approximation algorithm we use
a 2-approximation of the vertex cover based on the theory of matchings
in bipartite graphs. In the exact algorithm we need more restrictions, as
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we seek a subset that contains every sensible choice of the bag. Therefore,
we use an O(OPT )-approximation of vertex cover based on the classical
kernelization routine for the problem of Buss [54], which enables us to
use stronger arguments to reason which vertices can be excluded from
consideration.

We also observe that the obtained set of obstacles for pathwidth
have much better properties than the ones introduced by Fradkin and
Seymour [152]. We show that there is a constant multiplicative factor
relation between the sizes of obstacles found by the algorithm and the
minimum size of a digraph that cannot be embedded into them. Hence, in
all the containment tests we just need to run the pathwidth approximation
with parameter O(|H|), and in case of finding an obstacle just provide
a positive answer. This trims the dependence of running time of all
the containment tests to single exponential in terms of the size of the
tested subgraph, compared to multiple-exponential following from the
previous work. In addition, if in the algorithm for Rooted Immersion

one substitutes the approximation algorithm for pathwidth of [145] by the
newer algorithm of [269], the polynomial factor gets reduced from n4 log n
to n3.

The results of [146]. Finally, in the most recent paper of the series [146]
we have observed that the cutwidth of a semi-complete digraph can be
computed exactly even faster — in subexponential parameterized time.
To achieve this running time, we have adopted the technique of k-cuts,
developed earlier together with Fedor Fomin, Stefan Kratsch, Marcin
Pilipczuk and Yngve Villanger [136] in the context of clustering problems;
the results of [136] are presented in Chapter 8 in Part III. Shortly speaking,
the single-exponential dynamic programming algorithm presented in [269]
searched through a space of states of size 2O(k) ·n. The new observation is
that this search space can be in fact restricted tremendously to subexpo-
nential size by a more refined combinatorial analysis of the problem. The
main idea is to relate sensible states of the dynamic program (i.e., the
aforementioned k-cuts) to partition numbers: the partition number p(k)
is the number of different multisets of positive integers summing up to k.
The subexponential asymptotics of partition numbers have been very well
understood from the point of view of enumerative combinatorics [122, 185],
and we can use the results obtained there directly in our setting in order
to bound the number of states of the dynamic program. All in all, this
number turns out to be bounded by 2O(

√
k log k) · (n+ 1), and the whole

algorithm can be implemented in 2O(
√
k log k) · n2 time.
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As a byproduct of the approach taken, we also obtain a new algorithm
for Feedback Arc Set in semi-complete digraphs with running time

O(2c
√
k · kO(1) · n2) for c = 2π√

3·ln 2
≤ 5.24. The new algorithm is sim-

pler than the aforementioned algorithms of Feige [126] and of Karpinski

and Schudy[204], both also working in O∗(2O(
√
k)) time. It is also worth

mentioning that the explicit constant in the exponent obtained using our
approach is much smaller than the constants in the algorithms of Feige
and of Karpinski and Schudy; however, optimizing these constants was
not the purpose of these works.

Lastly, it appears that our approach can be also applied to other layout
problems in semi-complete digraphs. For example, we consider a natural
adaptation of the Optimal Linear Arrangement problem [71, 111]
to the semi-complete setting, and we prove that one can compute in
2O(k1/3·√log k) · n2 time an ordering of cost at most k, or conclude that it
is impossible (in Section 6.3.2 we give a precise definition of Optimal

Linear Arrangement in semi-complete digraphs). Although such a low
complexity may be explained by the fact that the optimal cost may be
even cubic in the number of vertices, we find it interesting that results of
this kind can be also obtained by making use of the developed techniques.

We remark that in the version presented in [146], the running times
of the algorithms actually contained larger polynomial factors hidden in
the O∗(·) notation. In this work we apply the ideas from [269] to obtain
algorithms that are at the same time subexponential, and quadratic in
terms of the number of vertices of the input semi-complete digraph.

Outline. Section 5.2 is devoted to extended preliminaries. After ex-
plaining notation and basic facts about semi-complete digraphs, we give
formal definitions of containment notions, of width measures, and prove a
number of results relating them. In particular, we show how the width
measures relate to each other, and which width measures are closed under
which containment relations. Apart from cutwidth and pathwidth that
are of main interest in this work, we introduce also cliquewidth. The
reason is that relations between cutwidth, pathwidth and cliquewidth in
semi-complete digraphs are crucial for Section 5.3, where we gather the
tools borrowed from logic that will be used later on.

In Chapter 6 we present the algorithms for computing pathwidth
and cutwidth of a semi-complete digraph. We begin with explaining
the set of obstacles for these width measures in Section 6.1, which gives
foundations for the degree ordering approach. Then the approximation
and exact algorithms for pathwidth are explained in Section 6.2, and the
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approximation and exact algorithms for cutwidth in Section 6.3. The
algorithms for Feedback Arc Set in semi-complete digraphs and for
Optimal Linear Arrangement are presented along with the exact
algorithm for cutwidth, since they use the same set of tools. In Section 6.4
we give some concluding remarks on problems concerning computational
complexity of cutwidth and pathwidth, and present a number of open
problems that arise from this work.

In Chapter 7 we utilize the results of Chapter 6 to design algorithms for
topological problems in semi-complete digraphs. We begin by presenting
the algorithms testing containment relations in Section 7.1. Then, in
Section 7.2 we give an example of a meta-theorem that can be proven
using a combination of our algorithms and the well-quasi-ordering results
of Chudnovsky and Seymour [74], and of Kim and Seymour [215]. In
Section 7.3 we give an algorithm for the Rooted Immersion problem.
Section 7.4 contains descriptions of explicit dynamic programming routines
for topological containment and immersion working on a path decom-
position, which are used in Sections 7.1 and 7.3. Even though general
construction of such routines follows directly from the tools borrowed
from logic, we need to construct them explicitely in order to give precise
upper bounds on the running times of the obtained algorithms. Finally,
in Section 7.5 we conclude and give some open problems.

5.2 Preliminaries

5.2.1 Folklore and simple facts

In this section we provide some simple facts about semi-complete digraphs
and tournaments that will be used in this chapter. We begin with some
observations on the out- and indegrees in semi-complete digraphs. Let T
be a semi-complete digraph. Note that for every v ∈ V (T ) we have that
d+(v) + d−(v) ≥ |V (T )| − 1, and that the equality holds for all v ∈ V (T )
if and only if T is a tournament.

Lemma 19. Let T be a semi-complete digraph. Then the number of
vertices of T with outdegrees at most d is at most 2d+ 1.

Proof. Let A be the set of vertices of T with outdegrees at most d, and
for the sake of contradiction assume that |A| > 2d + 1. Consider semi-
complete digraph T [A]. By a simple degree-counting argument, in every

semi-complete digraph S there is a vertex of outdegree at least |V (S)|−1
2 .

Hence, T [A] contains a vertex with outdegree larger than d. As outdegrees
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in T [A] are not smaller than in T , this is a contradiction with the definition
of A.

Lemma 20. Let T be a semi-complete digraph and let x, y be vertices
of T such that d+(x) > d+(y) + �. Then there exist at least � vertices
that are both outneighbors of x and inneighbors of y and, consequently, �
vertex-disjoint paths of length 2 from x to y.

Proof. Let α = d+(y). We have that d−(y) + d+(x) ≥ |V (T )| − 1 − α +
α + � + 1 = |V (T )| + �. Hence, by the pigeonhole principle there exist
at least � vertices of T that are both outneighbors of x and inneighbors
of y.

We now proceed to a slight generalization of a folklore fact that every
strongly connected tournament has a hamiltonian cycle; see for example
Problem 3 from the finals (third round) of XLI Polish Mathematical
Olympiad [14]. In fact, this observation holds also in the semi-complete
setting, and we include its proof for the sake of completeness.

Lemma 21. A semi-complete digraph T has a hamiltonian cycle if and
only if it is strongly connected.

Proof. Necessary condition being trivial, we proceed to the proof that
every strongly connected semi-complete digraph T has a hamiltonian cycle.
We proceed by induction on |V (T )|. The base cases when T has one or two
vertices are trivial, so we proceed with the assumption that |V (T )| > 2.

Let v be any vertex of T and let T ′ = T \ v. Let T1, T2, . . . , Tp be the
strongly connected components of T ′. Note that since T ′ is semi-complete,
the directed acyclic graph of its strongly connected components must be
also semi-complete, hence it must be a transitive tournament. Without
loss of generality let T1, T2, . . . , Tp be ordered as in the unique topological
ordering of this transitive tournament, i.e., for every v1 ∈ V (Ti) and
v2 ∈ V (Tj) where i �= j, we have that (v1, v2) ∈ E(T ′) if and only if i < j.
Since T1, T2, . . . , Tp are strongly connected, by inductive hypothesis let
C1, C2, . . . , Cp be hamiltonian cycles in T1, T2, . . . , Tp, respectively.

Observe that there must be some vertex v′ ∈ V (T1) such that (v, v′) ∈
E(T ), as otherwise (V (T1), {v} ∪

⋃p
i=2 V (Ti)) would be a partition of

V (T ) such that all the arcs between the left side and the right side of
the partition are directed from the left to the right; this would be a
contradiction with T being strongly connected. A symmetric reasoning
shows that there exists some vertex v′′ ∈ V (Tp) such that (v′′, v) ∈ E(T ).
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We now distinguish two cases. In the first case we assume that p = 1.
Let v1, v2, . . . , vn−1 be the vertices of V (T

′) = V (T1) ordered as on cycle
C1, i.e., (vi, vi+1) ∈ E(T ′) where index i behaves cyclically. Without loss
of generality assume that v1 = v′′. We claim that there are two vertices
vi, vi+1 (where again i behaves cyclically) such that (v, vi+1) ∈ E(T ) and
(vi, v) ∈ E(T ). If every vertex vi is a tail of an arc directed towards v, then
this claim is trivial: we just take index i such that vi+1 = v′. Otherwise
there are some vertices that are not tails of arcs directed towards v, and let
i+ 1 be the smallest index of such a vertex. Note that by the assumption
that v1 = v′′ we have that i+ 1 > 1. Since T is semi-complete, it follows
that (v, vi+1) ∈ E(T ). By the minimality of i + 1 and the fact that
i+ 1 > 1, it follows that (vi, v) ∈ E(T ), which proves that vertices vi, vi+1

have the claimed property. We now can construct a hamiltonian cycle C
for the whole digraph T by inserting v between vi and vi+1 in C1; note
that here we use the fact that |V (T )| > 2 so that vi and vi+1 are actually
two different vertices.

Now assume that p > 1. We construct a hamiltonian cycle C for the
whole T by concatenating cycles C1, C2, . . . , Cp. To construct C, take first
v and then place v′ followed by the whole cycle C1 traversed from v′ to
the predecessor of v′. Then proceed to an arbitrarily chosen vertex of C2

and traverse the whole cycle C2 from this vertex up to its predecessor.
Continue in this manner through the consecutive components, but when
considering Cp, instead of choosing an arbitrary vertex to begin with,
choose the successor of v′′ on Cp so that after traversing Cp we arrive
at v′′ that is a tail of an arc directed to v. It is easy to observe that C
constructed in this manner is indeed a hamiltonian cycle: it follows from
the fact that (v, v′), (v′′, v) ∈ E(T ), and for every two consecutive strongly
connected components Ti, Ti+1, there is an arc from every vertex of the
first component to every vertex of the second component.

5.2.2 Definitions of containment relations

In this section we introduce formally the containment notions that will be
of our interest. We start with the immersion and topological containment
relations, which are direct analogues of the classical undirected versions.
Then we proceed to the notion of minor, for which one needs to carefully
describe how the undirected notion is translated to the directed setting.

Let H,G be digraphs. We say that mapping η is a model of H in G, if
the following conditions are satisfied:

• for every vertex v ∈ V (H), η(v) is a subset of V (G);
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• for every arc (u, v) ∈ E(H), η((u, v)) is a directed path leading from
some vertex of η(u) to some vertex of η(v).

By imposing further conditions on the model we obtain various contain-
ment notions for digraphs. If we require that η:

• maps vertices of H to pairwise different singletons of vertices of G,

• and the paths in η(E(H)) are internally vertex-disjoint,

then we obtain the notion of topological containment. In this case we
say that η is an expansion of H in G, and we say that H is a topological
subgraph of G. As the images of vertices are singleton sets, we may
think that η simply maps vertices of H to vertices of G. If we relax the
condition on paths in η(E(H)) from being internally vertex-disjoint to
being arc-disjoint, we arrive at the notion of immersion; then η is an
immersion of H into G. Clearly, every expansion is also an immersion, so
if G topologically contains H , then it contains H as an immersion as well.

Sometimes in the literature this notion is called weak immersion to
distinguish it from strong immersion, where each image of an arc is
additionally required not to pass through images of vertices not being
the endpoints of this arc. In this work we are interested only in (weak)
immersions, as we find the notion of strong immersion not well-motivated
enough to investigate all the technical details that arise when considering
both definitions at the same time and discussing slight differences between
them.

Finally, we proceed to the notion of a minor . For this, we require
that η

• maps vertices of H to pairwise disjoint sets of vertices of G that
moreover induce strongly connected subdigraphs,

• and maps arcs from E(H) to arcs of E(G) in such a manner that
η((u, v)) is an arc from a vertex of η(u) to a vertex of η(v), for every
(u, v) ∈ E(H).

We then say that η is a minor model of H in G. In other words, we
naturally translate the classical notion from the undirected graphs to the
directed graphs by replacing the connectivity requirement with strong
connectivity.

The notion of a minor of digraphs was introduced by Kim and Sey-
mour [215], and we would like to remark that the original definition is
more general as it handles also the case of digraphs with multiple arcs and
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Figure 5.2: Expansion, immersion, and a minor model of the same 4-vertex digraph H
in a larger digraph G.

loops. As in this work we are interested in simple digraphs only, we will
work with this simplified definition, and we refer a curious reader to the
work of Kim and Seymour [215] for more details on the general setting.

The introduced minor order is not directly stronger or weaker than the
immersion or topological containment orders. In particular, contrary to
the undirected setting, it is not true that if G contains H as a topological
subgraph, then it contains H as a minor; as a counterexample take G
being a triangle (a tournament being a directed cycle of length 3) and H
being a complete digraph on 2 vertices (two vertices plus two arcs in both
directions).

However, in the semi-complete setting the minor containment testing
may be conveniently Turing-reduced to topological containment testing
using the following lemma. In the following, we use the notion of con-
strained topological containment . We say that a digraph H is topologically
contained in G with constraints F ⊆ E(H), if all the images of arcs of F
are of length 1, i.e., they are just single arcs in G.

Lemma 22. There is an algorithm that, given a digraph H, in 2O(|H| log |H|)

time computes a family FH of pairs (D,F ) where D is a digraph and
F ⊆ E(D), with the following properties:

(i) |FH | ≤ 2O(|H| log |H|);

(ii) |D| ≤ 5|H| for each (D,F ) ∈ FH ;

(iii) for any semi-complete digraph T , H is a minor of T if and only if
there is at least one pair (D,F ) ∈ FH such that D is topologically
contained in T with constraints F .

Proof. We present first how the family FH is constructed. For every
vertex u ∈ V (H), choose a number p(u) between 1 and d(u). Construct
a directed cycle Cu of length p(u) (in case p(u) = 1 take a single vertex
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without a loop), and let u1, u2, . . . , up(u) be vertices of Cu in this order.
For every arc (u, v) ∈ E(H), choose two integers i, j = i((u, v)), j((u, v))
such that 1 ≤ i ≤ p(u) and 1 ≤ j ≤ p(v), and add an arc (ui, vj). Family
FH consists of all the digraphs constructed in this manner, together with
the sets of all the arcs not contained in cycles C(u) as constraints.

Property (ii) follows directly from the construction, so let us argue
that property (i) is satisfied. For every vertex u we have at most d(u)
choices of p(u) and at most d(u)d(u) choices for integers i((u, v)) and
j((w, u)) for (u, v), (w, u) ∈ E(H). Hence, in total we have at most∏

u∈V (H) d(u)
d(u)+1 =

∏
u∈V (H) 2

O(d(u) log d(u)) choices. Since function t→
t log t is convex and

∑
u∈V (H) d(u) = O(|E(H)|), in total we will construct

at most 2O(|H| log |H|) digraphs. As each digraph from H is constructed in
polynomial time, the running time of the algorithm also follows.

We are left with proving that property (iii) is satisfied as well. Assume
first that we are given a semi-complete digraph T , and there is a pair
(D,F ) ∈ FH such that T contains expansion η of some D, where the arcs
of F are mapped to single arcs in T . Since cycles C(u) in D are strongly
connected, so do their images in η. Hence, to construct a minor model
of H in G, we can simply map every vertex of u ∈ V (H) to V (η(C(u))).
Existence of appropriate arcs modeling arcs of E(H) follows from the fact
that arcs of F are mapped to single arcs in T in η.

Assume now that G admits a minor model η of H. For every set
η(u) for u ∈ V (H), construct a hamiltonian cycle C0(u) in T [η(u)] using
Lemma 21. Then define a digraph D by taking T , and

• removing all the vertices not participating in any cycle C0(u),

• removing all the arcs not participating in any cycle C0(u) and not
being images of arcs of H in η,

• and contracting all the paths of vertices with degrees 2 on cycles
C0(u) to single arcs.

Observe that since at most d(u) vertices of C0(u) are incident to images
of arcs of H incident to u, then cycle C0(u) after contractions have
length at most d(u). Therefore, it can be easily seen that the obtained
digraph D is enumerated when constructing family FH , and moreover it is
enumerated together with the set of images of arcs of H in η as constraints.
Construction of D ensures that D is topologically contained in G with
exactly these constraints.

One of the motivations of work of Chudnovsky, Fradkin, Kim, Scott,and
Seymour, was finding containment notions that are well-quasi orders on
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the class of semi-complete digraphs. It appears that both immersion
and minor orders have this property. As far as topological containment
is concerned, Kim and Seymour [215] observe that it does not form a
well-quasi-ordering.

Proposition 23 ([74]). The immersion ordering is a well-quasi-ordering
of the class of semi-complete digraphs.1

Proposition 24 ([215]). The minor ordering is a well-quasi-ordering of
the class of semi-complete digraphs.

Finally, we say that G = (G; v1, . . . , vh) is a rooted digraph if G is
digraph and v1, . . . , vh are pairwise different vertices of V (G). The notions
of immersion and topological containment can be naturally generalized
to rooted digraphs. Immersion η is an immersion from a rooted digraph
H = (H ;u1, . . . , uh) to a rooted digraphG = (G; v1, . . . , vh) if additionally
η(ui) = vi for i ∈ {1, . . . , h}, that is, the immersion preserves the roots.
Such an immersion is called an H-immersion or a rooted immersion. In
the same manner we may define H-expansions or rooted expansions.

5.2.3 Width parameters

In this section we introduce formally the width notions of digraphs that will
be used in this chapter: cutwidth, pathwidth, and cliquewidth. As far as
cutwidth and pathwidth are of our prime interest, we introduce cliquewidth
for the sake of introducing meta-tools concerning model checking Monadic
Second-Order logic that will make some of our later arguments cleaner
and more concise. We first explain each of the parameters separately, and
then proceed to proving inequalities between them.

Cutwidth

The notion of cutwidth of digraphs resembles the classical definition in
the undirected setting, with an exception that only arcs directed forwards
in the ordering contribute to the cut function.

Definition 25. Given a digraph G = (V,E) and an ordering π of V , let
π[α] be the first α vertices in the ordering π. The width of π is equal to
max0≤α≤|V | |E(π[α], V \π[α])|; the cutwidth of G, denoted ctw(G), is the
minimum width among all orderings of V .

1Chudnovsky and Seymour state the result for tournaments only, but the proof
works actually also in the semi-complete setting; cf. [215].
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Note that any transitive tournament T has cutwidth 0: we simply
take the reversed topological ordering of T . It appears that cutwidth
is closed under taking immersions, i.e., if H is an immersion of G then
ctw(H) ≤ ctw(G).

Lemma 26. Let H,G be digraphs and assume that H can be immersed
into G. Then ctw(H) ≤ ctw(G).

Proof. Let σ be an ordering of V (G) of width ctw(G) and let η be
immersion of H into G. Define ordering σ′ of V (H) by setting u <σ′ v
if and only if η(u) <σ η(v). We claim that σ′ has width at most ctw(G).
Indeed, take any prefix σ′[t′] for 0 ≤ t′ ≤ |V (H)| and corresponding
suffix V (H) \ σ′[t′]. By the definition of σ′ we can chose a number
t, 0 ≤ t ≤ |V (G)| such that η(σ′[t′]) ⊆ σ[t] and η(V (H) \ σ′[t′]) ⊆
V (G) \ σ[t]. Now consider any arc (u, v) ∈ E(H) such that u ∈ σ′[t′] and
v ∈ V (H) \ σ′[t′]; we would like to prove that the number of such arcs is
at most ctw(G). However, η((u, v)) is a directed path from η(u) ∈ σ[t] to
η(v) ∈ V (G) \ σ[t]. All these paths are edge-disjoint and contain at least
one arc in E(σ[t], V (G) \ σ[t]). As the number of such arcs is at most
ctw(G), the lemma follows.

Pathwidth

Similarly to cutwidth, also the notion of pathwidth is a direct translation of
the definition in the undirected setting, again bearing in mind the intuition
that only arcs directed forwards in the decomposition are contributing to
the width.

Definition 27. Given a digraph G = (V,E), a sequenceW = (W1, . . . ,Wr)
of subsets of V is a path decomposition of G if the following conditions
are satisfied:

(i)
⋃

1≤i≤rWi = V ;

(ii) Wi ∩Wk ⊆Wj for 1 ≤ i < j < k ≤ r;

(iii) ∀ (u, v) ∈ E, either u, v ∈ Wi for some i or u ∈ Wi, v ∈ Wj for
some i > j.

We call W1, . . . ,Wr the bags of the path decomposition. The width of
a path decomposition is equal to max1≤i≤r(|Wi| − 1); the pathwidth of
G, denoted pw(G), is the minimum width among all path decompositions
of G.
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We would like to remark that conditions (i) and (ii) are equivalent
to saying that for every vertex v, the set of bags containing v form a
nonempty interval in the path decomposition. By IWv we denote this
interval inW , treated as an interval of indices; in the notation we drop the
decomposition W whenever it is clear from the context. Then condition
(iii) is equivalent to saying that if (u, v) is an arc, then it cannot occur that
Iu ends in the decomposition W before Iv starts. We use this equivalent
definition interchangeably with the original one.

Note that Definition 27 formally allows having duplicate bags in the
decomposition, thus making it possible for a path decomposition to have
unbounded length. However, of course we may remove any number of
consecutive duplicate bags while constructing the decomposition. Hence,
we will implicitly assume that in all the path decompositions any two
consecutive bags are different. Then, for any two consecutive bagsWi,Wi+1

there exists a vertex v ∈ V (T ) such that interval Iv either ends in i or
begins in i+ 1. Since there are 2|V (T )| beginnings and ends of intervals
Iv for v ∈ V (T ) in total, we infer that any path decomposition W of T
which does not contain any two consecutive equal bags has length at most
2|V (T )|+ 1.

Note that any transitive tournament T has pathwidth 0: we can
construct a decomposition W of width 0 by taking singletons of all the
vertices and ordering them according to the reversed topological ordering
of T . Again, it appears that pathwidth is closed both under taking minors
and topological subgraphs, i.e., if H is a topological subgraph or a minor
of G then pw(H) ≤ pw(G). The second observation was also noted by
Kim and Seymour [215]; we include both of the proofs for the sake of
completeness.

Lemma 28. Let H,G be digraphs and assume that H is a topological
subgraph of G. Then pw(H) ≤ pw(G).

Proof. Let W be a path decomposition of G of width pw(G), and let η
be an expansion of H in G. Take any (u, v) ∈ E(H) and examine path
Q = η(u, v). For two vertices x, y ∈ V (Q), x �= y, we say that x and y
communicate if Ix ∩ Iy �= ∅. By a communication graph C(Q) we mean
an undirected graph defined on V (Q), where two vertices are connected
via an edge if and only if they communicate.

We say that an arc (u, v) ∈ E(H) is problematic, if interval Iη(v) starts
in W after Iη(u) ends. We claim now that if (u, v) is a problematic arc
then η(u) and η(v) are in the same connected component of C(Q) for
Q = η((u, v)). Assume otherwise. Let C1, C2, . . . , Cp be the connected
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components of C(Q), where without loss of generality η(u) ∈ V (C1) and
η(v) ∈ V (C2). By the definition of communication, for every i = 1, 2, . . . , p
we have that ICi =

⋃
x∈V (Ci)

Ix is an interval, and these intervals are
pairwise disjoint. Since Iη(v) starts after Iη(u) finishes, we have that IC2

is situated after IC1 in the decomposition. Now consider consecutive
arcs (x, x′) of the path Q, and observe that by the definition of a path
decomposition, it follows that either x and x′ belong to the same component
Ci, or the interval of the component to which x

′ belongs must be situated
in the decomposition before the interval of the component of x. Hence,
all the intervals IC2 , IC3 , . . . , ICp must be in fact situated before IC1 in
the path decomposition, which is a contradiction with the fact that IC2 is
situated after.

Let L(Q) be the set of internal vertices of any path connecting η(u)
and η(v) in C(Q). Note that by the definition of communication, Iη(u) ∪⋃

x∈L(Q) Ix is an interval in the path decomposition, and sets L(η(a)) are
disjoint for different problematic arcs a ∈ E(H).

We now construct a decomposition of the graph H. Take the decom-
position W and:

• for every u ∈ V (H), replace each occurrence of η(u) by u in every
bag of W ;

• for every problematic arc (u, v) ∈ E(H), replace each occurrence
of any vertex from L(η(u, v)) with u (and remove duplicates, if
necessary);

• remove all the remaining vertices of G from all the bags of decom-
position W .

Let us denote the obtained sequence of bags by W ′. Clearly, bags of W ′

contain only vertices of H, and they are of size at most pw(G) + 1, so it
remains to prove that W ′ is a correct path decomposition of H.

Firstly, take any vertex u ∈ V (H) and observe that the set of all
the bags of W ′ containing u consists of bags with indices from Iη(u)
plus

⋃
x∈L((u,v)) Ix for each problematic arc (u, v) ∈ E(H). Since Iη(u) ∪⋃

x∈L((u,v)) Ix is an interval containing nonempty Iu for any such arc (u, v),
we infer that the union of all these intervals is also a nonempty interval.
This proves properties (i) and (ii).

Secondly, examine any arc (u, v) ∈ E(H). If (u, v) is non-problematic,
then either IWη(u) and I

W
η(v) overlap or I

W
η(u) is situated after I

W
η(v). Since

IWη(u) ⊆ IW
′

u and IWη(v) ⊆ IW
′

v , condition (iii) holds for non-problematic
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arcs. Assume then that (u, v) is a problematic arc. But then IWη(u) ∪⋃
x∈L((u,v)) I

W
x ⊆ IW

′
u , and by the definition of L((u, v)) we have that

IWη(u)∪
⋃

x∈L((u,v)) I
W
x has a nonempty intersection with IWη(v). Since I

W
η(v) ⊆

IW
′

v , we have that IW
′

u and IW
′

v intersect. This proves property (iii).

Lemma 29 (1.2 of [215]). Let H,G be digraphs and assume that H is a
minor of G. Then pw(H) ≤ pw(G).

Proof. Let W be a path decomposition of G of width pw(G), and let η
be a minor model of H in G. We construct a path decomposition W ′ of
H as follows. Take the decomposition W and

• for every u ∈ V (H), replace each occurrence of a vertex from η(u)
with u (and remove duplicates, if necessary);

• remove all the remaining vertices of G from all the bags of decom-
position W .

Clearly, bags ofW ′ contain only vertices of H , and they are of size at most
pw(G)+1, so it remains to prove that W ′ is a correct path decomposition
of H.

Firstly, take any vertex u ∈ V (H) and observe that the set of all the
bags of W ′ containing u consists of bags with indices from

⋃
x∈η(u) I

W
x .

Clearly
⋃

x∈η(u) I
W
x is nonempty, and we claim that it is an interval. For

the sake of contradiction assume that
⋃

x∈η(u) I
W
x is not an interval. Hence,

η(u) can be partitioned into two nonempty subsets R1, R2, such that in W
every interval of a vertex of R1 would end before the start of any interval
of a vertex of R2. However, since η(u) is strongly connected, then there
must be an arc from R1 to R2 in G, which is a contradiction with the
fact that W is a path decomposition of G. We infer that

⋃
x∈η(u) I

W
x is a

nonempty interval, so properties (i) and (ii) are satisfied.

Secondly, take any arc (u, v) ∈ V (H). By the definition of the minor
model, there exists x ∈ η(u) and y ∈ η(v) such that (x, y) ∈ E(G). Then
property (iii) for the arc (u, v) in decomposition W ′ follows from property
(iii) for the arc (x, y) in decomposition W , and the fact that IWx ⊆ IW

′
u

and IWy ⊆ IW
′

v .

Similarly as in the case of treewidth, for the sake of constructing
dynamic programming routines it is convenient to work with nice path
decompositions. We say that a path decomposition W = (W1, . . . ,Wr) is
nice if it has following two additional properties:
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• W1 =Wr = ∅;

• for every i = 1, 2, . . . , r − 1 we have that Wi+1 =Wi ∪ {v} for some
vertex v /∈Wi, or Wi+1 =Wi \ {w} for some vertex w ∈Wi.

If Wi+1 =Wi ∪ {v} then we say that in bag Wi+1 we introduce vertex v,
while if Wi+1 =Wi \ {w} then we say that in bag Wi+1 we forget vertex
w. Given any path decomposition W of width p, in O(p|V (T )|) time
we can construct a nice path decomposition W ′ of the same width in a
standard manner: we first introduce empty bags at the beginning and at
the end, and then between any two consecutive bags Wi,Wi+1 we insert
a sequence of new bags by first forgetting the vertices of Wi \Wi+1, and
then introducing the vertices of Wi+1 \Wi.

The following lemma uses the concept of a nice path decomposition to
prove existence of vertices of small out- and indegrees.

Lemma 30. Let T be a semi-complete digraph of pathwidth at most k.
Then T contains a vertex of outdegree at most k, and a vertex of indegree
at most k.

Proof. Let W = (W1, . . . ,Wr) be a nice path decomposition of T of width
at most k, and let v0 be the vertex that is forgotten first in this path
decomposition, i.e., the index i of the bag where it is forgotten is minimum.
By minimality of i and the definition of path decomposition, every vertex
that is an outneighbor of v0 needs to be contained in Wi. Since there is
at most k vertices other than v0 in Wi, it follows that the outdegree of v0
is at most k. The proof for indegree is symmetric — we take v0 to be the
vertex that is introduced last.

Path decompositions can be viewed also from a different perspective:
a path decomposition naturally corresponds to a monotonic sequence of
separations. This viewpoint will be very useful when designing exact and
approximation algorithms for pathwidth.

Definition 31. A sequence of separations ((A0, B0), . . . , (Ar, Br)) is called
a separation chain if (A0, B0) = (∅, V (T )), (Ar, Br) = (V (T ), ∅) and
Ai ⊆ Aj , Bi ⊇ Bj for all i ≤ j. The width of the separation chain is equal
to max1≤i≤r |Ai ∩Bi−1| − 1.

Lemma 32. The following holds.

• Let W = (W1, . . . ,Wr) be a path decomposition of a digraph T of
width at most p. Then sequence ((A0, B0), . . . , (Ar, Br)) defined as
(Ai, Bi) = (

⋃i
j=1Wj ,

⋃r
j=i+1Wj) is a separation chain in T of width

at most p.
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• Let ((A0, B0), . . . , (Ar, Br)) be a separation chain in a digraph T of
width at most p. Then W = (W1, . . . ,Wr) defined by Wi = Ai∩Bi−1

is a path decomposition of T of width at most p.

Proof. For the first claim, it suffices to observe that (Ai, Bi) are indeed
separations, as otherwise there would be an edge (v, w) ∈ E(T ) such that
v can belong only to bags with indices at most i and w can belong only to
bags with indices larger than i; this is a contradiction with property (iii)
of path decomposition. The bound on width follows from the fact that
Ai ∩Bi−1 =Wi by property (ii) of path decomposition.

For the second claim, observe that the bound on width follows from
the definition of a separation chain. It remains to carefully check all the
properties of a path decomposition. Property (i) follows from the fact that
A0 = ∅, Ar = V (T ) and Wi ⊇ Ai \ Ai−1 for all 1 ≤ i ≤ r. Property (ii)
follows from the fact that Ai ⊆ Aj , Bi ⊇ Bj for all i ≤ j: the interval in
the decomposition containing any vertex v corresponds to the intersection
of the prefix of the chain where v belongs to sets Ai, and the suffix where
v belongs to sets Bi.

For property (iii), take any (v, w) ∈ E(T ). Let α be the largest index
such that v ∈ Wα and β be the smallest index such that w ∈ Wβ. It
suffices to prove that α ≥ β. For the sake of contradiction assume that
α < β and consider separation (Aα, Bα). By maximality of α it follows
that v /∈ Bα; as β > α and β is minimal, we have also that w /∈ Aα. Then
v ∈ Aα \ Bα and w ∈ Bα \ Aα, which contradicts the fact that (Aα, Bα)
is a separation.

Note that the transformations in the first and in the second claim of
Lemma 32 are inverse to each other and can be carried out in O(p|V (T )|)
assuming that we store separations along with separators. Hence, instead
of looking for a path decomposition of width p one may look for a separation
chain of width at most p. Note also that if decomposition W does not
contain a pair of consecutive equal bags, then the corresponding separation
chain has only separations of order at most p.

Assume that ((A0, B0), . . . , (Ar, Br)) is a separation chain correspond-
ing to a nice path decomposition W in the sense of Lemma 32. Since
A0 = ∅, Ar = V (G), and |Ai| can change by at most 1 between two con-
secutive separations, for every �, 0 ≤ � ≤ |V (G)|, there is some separation
(Ai, Bi) for which |Ai| = � holds. Let W [�] denote any such separation;
note that the order of W [�] is at most the width of W .

Before we proceed, let us state one simple, but very important fact
about separations in semi-complete digraphs. Assume that T is a semi-
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complete digraph and let (A,B) be a separation of T . We know that
E(A \B,B \A) = ∅, so E(B \A,A \B) = (B \A)× (A \B) because T
is semi-complete. A simple application of this observation is the following.
If W is a nice path decomposition of T , then by Lemma 32 every bag Wi

is a separator separating the vertices that are not yet introduced from
the vertices that are already forgotten. Therefore, there is no arc from a
vertex that is forgotten to a vertex that is not yet introduced, but from
every vertex not yet introduced there is an arc to every vertex that is
already forgotten.

Cliquewidth

Finally, we introduce the notion of cliquewidth for digraphs. The defini-
tion for digraphs is identical to the definition for undirected graphs, cf.
Section 2.3.3, with exception of the join operation. In the directed setting
join operation ηi,j((G,α)) creates all possible arcs with tail labeled with i
and head labeled with j. We remark that this definition appeared already
in the original paper of Courcelle and Olariu [83] where the concept of
cliquewidth has been introduced.

Comparison of the parameters

Lemma 33. For every digraph D, it holds that pw(D) ≤ 2 · ctw(D).
Moreover, given an ordering of V (D) of cutwidth c, one can in O(|V (D)|2)
time compute a path decomposition of width at most 2c.

Proof. We provide a method of construction of a path decomposition of
width at most 2c from an ordering of V (D) of cutwidth c.

Let (v1, v2, . . . , vn) be the ordering of V (D) of cutwidth c. Let F ⊆
E(D) be the set of edges (vj , vi) such that j > i; edges from F will
be called back edges. We now construct a path decomposition W =
(W1,W2, . . . ,Wn) of D by setting

W� = {v�} ∪
⋃
{{vi, vj} | i ≤ � < j ∧ (vj , vi) ∈ E(D)}.

In other words, for each cut between two consecutive vertices in the order
(plus one extra at the end of the ordering) we construct a bag that contains
(i) endpoints of all the back edges that are cut by this cut, and (ii) the
last vertex before the cut. Observe that |W�| ≤ 2c+1 for every 1 ≤ � ≤ n.
It is easy to construct W in O(|V (D)|2) time using one scan through
the ordering (v1, v2, . . . , vn). We are left with arguing that W is a path
decomposition. Clearly

⋃n
i=1Wi = V (D), so property (i) holds
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Consider any vertex v� and an index j �= �, such that v� ∈Wj . Assume
first that j < �. By the definition of W , there exists an index i ≤ j
such that (v�, vi) ∈ E(D). Existence of this arc implies that v� has to
be contained in every bag between Wj and W�, by the definition of W .
A symmetrical reasoning works also for j ≥ �. We infer that for every
vertex v� the set of bags it is contained in form an interval in the path
decomposition. This proves property (ii).

To finish the proof, consider any edge (vi, vj) ∈ E(G). If i > j then
{vi, vj} ⊆Wj , whereas if i < j then vi ∈Wi and vj ∈Wj . Thus, property
(iii) holds as well.

Lemma 34. For every semi-complete digraph T , it holds that cw(T ) ≤
pw(T ) + 2. Moreover, given a path decomposition of width p, one can in
O(|V (T )|2) time compute a clique expression constructing T using p+ 2
labels.

Proof. We provide a method of construction of a clique expression using
p+ 2 labels from a path decomposition of width p. Let (W1,W2, . . . ,Wr)
be a path decomposition of T of width p. Without loss of generality we
can assume that the given path decomposition is nice. As in a nice path
decomposition every vertex is introduced and forgotten exactly once, we
have that r = 2|V (T )|+ 1.

We now build a clique expression using p+ 2 labels that constructs
the semi-complete digraph T along the path decomposition. Intuitively,
at each step of the construction, every vertex of the bag Wi is assigned a
different label between 1 and p+1, while all forgotten vertices are assigned
label p+ 2. If we proceed in this manner, we will end up with the whole
digraph T labeled with p+ 2, constructed for the last bag. As we begin
with an empty graph, we just need to show what to do in the introduce
and forget vertex steps.

Introduce vertex step.

Assume that Wi =Wi−1 ∪ {v}, i.e., bag Wi introduces vertex v. Note
that this means that |Wi−1| ≤ p. As labels from 1 up to p+1 are assigned
to vertices of Wi−1 and there are at most p of them, let q be a label that
is not assigned. We perform following operations; their correctness is
straightforward.

• perform ⊕ιq: we introduce the new vertex with label q;

• for each w ∈Wi−1 with label q
′, perform join ηq,q′ if (v, w) ∈ E(D)

and join ηq′,q if (w, v) ∈ E(D);
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• perform join ηq,p+2 since the new vertex has an outgoing arc to every
forgotten vertex.

Forget vertex step.

Assume that Wi = Wi−1 \ {w}, i.e., bag Wi forgets vertex w. Let
q ∈ {1, 2, . . . , p+ 1} be the label of w. We just perform relabel operation
ρq→p+2, thus moving w to forgotten vertices.

5.3 MSO and semi-complete digraphs

Recall that we have defined MSO1 and MSO2 logic for digraphs in
Section 2.3.6. MSO1 is Monadic Second-Order Logic with quantification
over subsets of vertices but not of arcs, while in MSO2 we allow also
quantification over arc sets.

In the undirected setting, it is widely known that model checking
MSO2 is fixed-parameter tractable, when the parameters are the length
of the formula and the treewidth of the graph; cf. Proposition 16. As
far as MSO1 is concerned, model checking MSO1 is fixed-parameter
tractable, when the parameters are the length of the formula and the
cliquewidth of the graph; cf. Proposition 18. These results in fact hold
not only for undirected graphs, but for structures with binary relations in
general, in particular for digraphs. The following result follows from the
work of Courcelle, Makowsky and Rotics [82]; we remark that the original
paper treats of undirected graphs, but in fact the results hold also in the
directed setting (cf. [156, 159, 201]).

Proposition 35 ([82]). There exists an algorithm with running time
f(||ϕ||, k) ·n2 that given an MSO1 formula ϕ checks whether ϕ is satisfied
in a digraph G on n vertices, given together with a clique expression using
at most k labels constructing it.

Lemma 34 asserts that cliquewidth of a semi-complete digraph is
bounded by its pathwidth plus 2. Moreover, the proof gives explicit
construction of the corresponding expression. Hence, the following meta-
theorem follows as an immediate corollary.

Theorem 36. There exists an algorithm with running time f(||ϕ||, p) ·n2
that given an MSO1 formula ϕ checks whether ϕ is satisfied in a semi-
complete digraph T on n vertices, given together with a path decomposition
of width p.
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We note that by pipelining Lemmas 33 and 34 one can show that an
analogous result holds also for cutwidth.

It is tempting to conjecture that the tractability result for MSO1

and pathwidth or cutwidth could be extended also to MSO2, as the
decompositions resemble path decompositions in the undirected setting.
We use the following lemma to show that this is unfortunately not true.

Lemma 37. There exists a constant-size MSO2 formula ψ over a signa-
ture enriched with three unary relations on vertices, such that checking
whether ψ is satisfied in a transitive tournament with three unary relations
on vertices is NP-hard.

Proof. We provide a polynomial-time reduction from the 3-CNF-SAT

problem. We are given a boolean formula ϕ with n variables x1, x2, . . . , xn
andm clauses C1, C2, . . . , Cm. We are to construct a transitive tournament
T with three unary relations on vertices such that ϕ is satisfiable if and
only if ψ, the constant size MSO2 formula that will be constructed while
describing the reduction, is true in T . Intuitively, the unary relations in
T will encode the whole formula ϕ, while ψ is simply an MSO2-definable
check that nondeterministically guesses the evaluation of variables and
checks it.

We will use three unary relations on vertices, denoted P , B and C.
The tournament consists of m(2n + 1) + 1 vertices v0, v1, . . . , vm(2n+1),
where the edge set is defined as E(T ) = {(vi, vj) | i > j}. We define B
(for border) to be true in vi if and only if i is divisible by 2n+1. Thus, the
whole tournament is divided into m intervals between consecutive vertices
satisfying B, each of size 2n. Each of these intervals will be responsible for
checking one of the clauses. The 2n vertices in each interval correspond to
literals of variables of ϕ. We define P (for parity) to be satisfied in every
second vertex of each interval, so that P is satisfied in the first vertex
of each interval. The first pair of vertices corresponds to literals x1,¬x1,
the second to x2,¬x2 etc. In the i-th interval we make the C (for check)
relation true in vertices corresponding to literals appearing in clause Ci.
This concludes the construction.

We now build the formula ψ that checks existence of an assignment
satisfying ϕ. The correctness of the reduction will follow directly from the
construction of ψ.

Firstly, we quantify existentially over a subset of edges M and subset
of vertices X, which will be the set of all vertices corresponding to literals
that are true in the assignment. We will construct ψ in such a manner that
M will be exactly the set of arcs {(vi+2n+1, vi) | 0 ≤ i ≤ (m− 1)(2n+1)}.
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We use M to transfer information on the assignment between consecutive
intervals.

Formally, in ψ we express the following properties of X and M . Their
expressibility in MSO2 by formulas of constant size is straightforward.
We just remark that we can test whether two vertices x, y are consecutive
by checking if arc (y, x) exists and that there is no z for which arcs (y, z)
and (z, x) simultaneously exist; similarly, we can test whether x, y are
subsequent vertices satisfying B.

(1) (v2n+1, v0) ∈M (note that v0 and v2n+1 can be defined as the first
and second vertex satisfying B).

(2) For every two pairs of consecutive vertices vi, vi+1 and vj , vj+1, if
(vj , vi) ∈M then (vj+1, vi+1) ∈M .

(3) For every subset N ⊆M , if N satisfies (1) and (2) then N =M .

(4) Vertices satisfying B are not in X.

(5) For every two consecutive vertices vi, vi+1, such that vi, vi+1 /∈ B,
vi ∈ P and vi+1 /∈ P , exactly one of the vertices vi, vi+1 belongs to
X (exactly one literal of every variable is true).

(6) For every (vi, vj) ∈M , vi ∈ X if and only if vj ∈ X.

(7) For every interval between two subsequent vertices satisfying B, at
least one of the vertices of this interval satisfies C and belongs to X.

Properties (1), (2) and (3) assert that M = {(vi+2n+1, vi) | 0 ≤ i ≤
(m− 1)(2n+ 1)}. Properties (4) and (5) assert that in each interval X
corresponds to some valid assignment, while property (6) asserts that the
assignments in all the intervals are equal. Property (7) checks whether
each of the clauses is satisfied.

The following theorem follows immediately from Lemma 37, and shows
that the tractability result for MSO1 cannot be extended to MSO2.

Theorem 38. There exists a constant-size MSO2 formula ψ, such that
checking whether ψ is true in a semi-complete digraph of constant cutwidth
and pathwidth is NP-hard.

Proof. Consider the construction of Lemma 37. Observe that one can
replace each vertex with a constant size strongly connected semi-complete
digraph that encodes satisfaction of unary relations. The arcs between
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these strongly connected digraphs are defined naturally, i.e., if (v, w) was
an arc, then we put an arc between every vertex of the digraph replacing
v and every vertex of the digraph replacing w. In ψ we then replace the
unary relations with constant size formulas testing the shape of strongly
connected components, thus obtaining a constant size formula ψ′ whose
model checking on semi-complete digraphs of constant pathwidth and
cutwidth is NP-hard.

We remark that Courcelle et al. [82] have proven a result similar to
Lemma 37 for cliques instead of transitive tournaments. More precisely,
assuming a stronger assumption P1 �= NP1, there is a constant-size formula
ψ of MSO2 such that verifying satisfaction of ψ on cliques without any
unary relations cannot be performed in polynomial time. By ignoring arc
directions, the same proof as in [82] can be carried out also in our setting.
Thus we can obtain a version of Theorem 38 that assumes P1 �= NP1, and
provides a formula ψ whose satisfaction cannot be verified in polynomial
time even on transitive tournaments. Since we include Theorem 38 for
demonstrative purposes only, we omit the details here.



Chapter 6

Computing width measures
of semi-complete digraphs

6.1 The obstacle zoo

In this section we describe the set of obstacles used by the algorithms.
We begin with jungles, the original obstacle introduced by Fradkin and
Seymour [152], and their enhanced versions that will be used extensively
in this chapter, namely short jungles. It appears that the enhancement
enables us to construct large topological subgraph, minor or immersion
models in short jungles in a greedy manner, and this observation is the key
to trimming the running times for containment tests. We then recall the
notion of a triple that is an important concept introduced by Fradkin and
Seymour [152], and which we will also use for irrelevant vertex rules in
Chapter 7. Finally, we continue with further obstacles that will be used in
the algorithms: degree and matching tangles for pathwidth, and backward
tangles for cutwidth. Each time we describe one of these obstacles, we
prove two lemmas. The first asserts that existence of the structure is
indeed an obstacle for having small width, while the second shows that
one can constructively find an appropriate short jungle in a sufficiently
large obstacle.

6.1.1 Jungles and short jungles

Definition 39. Let T be a semi-complete digraph and k be an integer. A
k-jungle is a set X ⊆ V (T ) such that (i) |X| = k; (ii) for every v, w ∈ X,
v �= w, either (v, w) ∈ E(T ) or there are k internally vertex-disjoint paths
from v to w.

117
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It is easy to observe that existence of a (k + 1)-jungle is an obstacle
for admitting a path decomposition of width smaller than k, as in such a
decomposition there would necessarily be a bag containing all the vertices
of the jungle. The work of Fradkin and Seymour [152] essentially says
that containing a large jungle is the only reason for not admitting a
decomposition of small width: if pw(T ) ≥ f(k) for some function f (that
is actually quadratic), then T must necessarily contain a k-jungle. In this
chapter we strenghten this result by providing linear bounds on function
f , and moreover showing that in the obtained jungle the paths between
vertices may be assumed to be short, as in the definition below.

Definition 40. Let T be a semi-complete digraph and k, d be integers. A
(k, d)-short (immersion) jungle is a set X ⊆ V (T ) such that (i) |X| ≥ k;
(ii) for every v, w ∈ X, v �= w, there are k internally vertex-disjoint
(edge-disjoint) paths from v to w of length at most d.

We remark that in this definition we treat a path as a subdigraph.
Thus, among the k vertex-disjoint paths from v to w only at most one
can be of length 1. We remark also that in all our algorithms, every short
jungle is constructed and stored together with corresponding families of k
paths for each pair of vertices.

The restriction on the length of the paths enables us to construct
topological subgraph and immersion models in short jungles greedily. This
is the most useful advantage of short jungles over jungles, as it enables us
to reduce the time complexity of containment tests to single-exponential.

Lemma 41. If a digraph T contains a (dk, d)-short (immersion) jungle
for some d > 1, then it admits every digraph S with |S| ≤ k as a topological
subgraph (as an immersion).

Proof. Firstly, we prove the lemma for short jungles and topological
subgraphs. Let X be the short jungle whose existence is assumed. We
construct the expansion greedily. As images of vertices of S we put
arbitrary |V (S)| vertices of X. Then we construct paths being images of
arcs in S; during each construction we use at most d− 1 new vertices of
the digraph for the image. While constructing the i-th path, which has to
lead from v to w, we consider dk vertex-disjoint paths of length d from v
to w. So far we used at most k + (i− 1)(d− 1) < dk vertices for images,
so at least one of these paths does not traverse any used vertex. Hence,
we can safely use this path as the image and proceed; note that thus we
use at most d− 1 new vertices.

Secondly, we prove the lemma for short immersion jungles and immer-
sions. Let X be the short immersion jungle whose existence is assumed.
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We construct the immersion greedily. As images of vertices of S we put
arbitrary |V (S)| vertices of X. Then we construct paths being images
of arcs in S; during each construction we use at most d new arcs of the
digraph for the image. While constructing the i-th path, which has to
lead from v to w, we consider dk edge-disjoint paths of length d from v
to w. So far we used at most (i− 1)d < dk arcs, so at least one of these
paths does not contain any used arc. Hence, we can safely use this path
as the image and proceed; note that thus we use at most d new arcs.

We now prove the analogue of Lemma 41 for minors. We remark that
unlike Lemma 41, the proof of the following lemma is nontrivial.

Lemma 42. If a digraph T contains a (2dk + 1, d)-short jungle for some
d > 1, then it admits every digraph S with |S| ≤ k as a minor.

Proof. Let S′ be a digraph constructed as follows: we take S and whenever
for some vertices v, w arc (v, w) exists but (w, v) does not, we add also the
arc (w, v). We have that |S′| ≤ 2|S| ≤ 2k, so since T contains a (2dk+1, d)-
jungle, by Lemma 41 we infer that T contains S′ as a topological subgraph.
Moreover, since for every two vertices of this jungle there is at most one
path of length 1 between them, in the construction of Lemma 41 we may
assume that we always use one of the paths of length longer than 1. Hence,
we can assume that all the paths in the constructed expansion of S′ in T
are of length longer than 1.

Let η′ be the constructed expansion of S′ in T . Basing on η′, we build
a minor model η of S′ in T ; since S is a subdigraph of S′, the lemma will
follow. We start with η(v) = {η′(v)} for every v ∈ V (S′) and gradually
add vertices to each η(v).

Consider two vertices v, w ∈ V (S′) such that (v, w), (w, v) ∈ E(S′).
We have then two vertex disjoint paths P = η′((v, w)) and Q = η′((w, v))
that lead from η′(v) to η′(w) and vice versa. We know that P and Q are
of length at least 2. Moreover, without loss of generality we may assume
that for any pair of vertices (x, y) on P that are (i) not consecutive, (ii)
y appears on P1 after x, and (iii) (x, y) �= (η′(v), η′(w)), we have that
(y, x) ∈ E(T ). Indeed, otherwise we would have that (x, y) ∈ E(T ) and
path P could be shortcutted using arc (x, y) without spoiling the property
that it is longer than 1. We can assume the same for the path Q.

Assume first that one of the paths P,Q is in fact of length greater
than 2. Assume without loss of generality that it is P , the construction
for Q is symmetric. Let p1 and p2 be the first and the last internal vertex
of P , respectively. By our assumptions about nonexistence of shortcuts
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on P and about |P | > 2, we know that p1 �= p2, (p2, η
′(v)) ∈ E(T ) and

(η′(w), p1) ∈ E(T ). Observe that the subpath of P from η′(v) to p2, closed
by the arc (p2, η

′(v)) forms a directed cycle. Include the vertex set of this
cycle into η(v). Observe that thus we obtain an arc (p2, η

′(w)) from η(v)
to η(w), and an arc (η′(w), p1) from η(w) to η(v).

Now assume that both of the paths P,Q are of length exactly 2, that
is, P = η′(v)→ p→ η′(w) for some vertex p, and Q = η′(w)→ q → η′(v)
for some vertex q �= p. Since T is semi-complete, at least one of arcs
(p, q), (q, p) exists. Assume without loss of generality that (p, q) ∈ E(T );
the construction in the second case is symmetric. Note that η′(v)→ p→
q → η′(v) is a directed cycle; include the vertex set of this cycle into η(v).
Observe that thus we obtain an arc (p, η′(w)) from η(v) to η(w), and an
arc (η′(w), q) from η(w) to η(v).

Concluding, for every v ∈ V (T ) the final η(v) consists of η′(v) plus
vertex sets of directed cycles that pairwise meet only in η′(v). Thus,
T [η(v)] is strongly connected for each v ∈ V (T ). Moreover, for every pair
of vertices v, w ∈ V (S′) such that (v, w), (w, v) ∈ E(S′), we have pointed
out an arc from η(v) to η(w) and from η(w) to η(v). Hence, η is a minor
model of S′.

6.1.2 Triples

We now recall the notion of a triple, an obstacle extensively used in the
approach of Fradkin and Seymour [152].

Definition 43. Let T be a semi-complete digraph. A triple of pairwise
disjoint subsets (A,B,C) is called a k-triple if |A| = |B| = |C| = k
and there exist orderings (a1, . . . , ak), (b1, . . . , bk), (c1, . . . , ck) of A,B,C,
respectively, such that for all indices 1 ≤ i, j ≤ k we have (ai, bj), (bi, cj) ∈
E(T ) and for each index 1 ≤ i ≤ k we have (ci, ai) ∈ E(T ).

The main observation of [152] is that for some function f , if a semi-
complete digraph contains an f(k)-jungle, then it contains also a k-triple
[152, (2.6)]. Moreover, if it contains a k-triple, then every digraph of size at
most k is topologically contained in this triple [152, (1) in the proof of (1.1)].
We remark that Fradkin and Seymour actually attribute this observation to
Chudnovsky, Scott, and Seymour. The following lemma is an algorithmic
version of the aforementioned observation and will be needed in our
algorithms. The proof closely follows the lines of argumentation contained
in [152]; we include it for the sake of completeness.
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A C

Figure 6.1: A 4-triple.

Lemma 44. There exists an elementary function f , such that for every
k ≥ 1 and every semi-complete graph T on n vertices, given together
with a f(k)-jungle in it, it is possible to construct a k-triple in T in time
O(n3 log n).

Proof. For an integer k, let R(k, k) denote the Ramsey number, that is
the smallest integer such that every red-blue coloring of the edges of the
complete graph on R(k, k) vertices contains a monochromatic clique of size

k. By the theorem of Erdős and Szekeres [124], R(k, k) ≤ (1 + o(1))4
k−1√
πk
.

For k ≥ 1, we define function the function f as

f(k) = 212·2
R(2k,2k)

.

Moreover, let r = R(2k, 2k), s = 2r, and m = 212s = f(k).
We say that a semi-complete digraph is transitive if it contains a

transitive tournament as a subdigraph. Every tournament on m vertices
contains a transitive tournament on log2m vertices as a subdigraph. Also
an induced acyclic subdigraph of an oriented (where there is at most one
directed arc between a pair of vertices) m-vertex digraph with log2m
vertices can be found in time O(m2 logm) [274]. This algorithm can be
modified into an algorithm finding a transitive semi-complete digraph in
semi-complete digraphs by removing first all pairs of oppositely directed
arcs, running the algorithm for oriented graphs, and then adding some of
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the deleted arcs to turn the acyclic digraph into a transitive semi-complete
digraph. Thus, if X0 is an m-jungle in T , then X0 contains a subset
X that is a 12s-jungle in T and that induces a transitive semi-complete
digraph. Moreover, such a set X can be found in time O(n2 log n).

The next step in the proof of Fradkin and Seymour is to partition the
set X into parts X1 and X2 of size 6s each such that X1 is complete to
X2, i.e., for each x1 ∈ X1 and x2 ∈ X2 we have (x1, x2) ∈ E(T ). Such a
partition of the vertex set of the transitive semi-complete digraph can be
easily found in time O(|X|2). Because X is a 12s-jungle in T , there are at
least 6s vertex-disjoint paths from X2 to X1 in T . Indeed, otherwise by
Menger’s theorem there would be a separation (A,B) of order less than
6s such that X2 ⊆ A and X1 ⊆ B, and such a separation would separate
some vertex from X1 from some vertex of X2, contradicting existence of
6s internally vertex-disjoint paths between these two vertices. Let R be a
minimal induced subdigraph of T such that X ⊆ V (R) and there are 6s
vertex-disjoint paths from X2 to X1 in R. Such a minimal subgraph R can
be found in time O(n3 log n) by repeatedly removing vertices v ∈ V (T )\X
if there are 6s vertex-disjoint paths from X2 to X1 in V (T ) \ {v}. As
the subroutine for finding the paths we use the classical Ford-Fulkerson
algorithm, where we finish the computation after finding 6s paths. Hence,
the running time one application of this algorithm is O(sn2). As we make
at most n tests and s = O(log n), the claimed bound on the runtime
follows.

Let P1, P2, . . . , P6s be vertex-disjoint paths from X2 to X1 in R. The
arguments given by Fradkin and Seymour prove that the set of vertices
Q formed by the first two and the last two vertices of these 6s paths
contains a k-triple. Thus, by checking every triple of subsets of Q of size
k in time polynomial in k, we can find a k-triple. This step takes time

O
((

24s
k

)3
kO(1)

)
= no(1), as s = O(log n) and k = O(log log n).

6.1.3 Degree tangles

The degree tangle is intuitively a concentration of vertices with very similar
outdegrees. Surprisingly, a large degree tangle forms already an obstacle
for admitting a path decomposition of small width. This observation is
the main idea behind the degree ordering approach that we use in this
chapter.

Definition 45. Let T be a semi-complete digraph and k, � be integers. A
(k, �)-degree tangle is a set X ⊆ V (T ) such that (i) |X| ≥ k; (ii) for every
v, w ∈ X we have |d+(v)− d+(w)| ≤ �.
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Lemma 46. Let T be a semi-complete digraph. If T contains a (4k+2, k)-
degree tangle X, then pw(T ) > k.

Proof. For the sake of contradiction, assume that T admits a (nice) path
decomposition W of width at most k. Let α = minv∈X d+(v) and β =
maxv∈X d+(v); we know that β − α ≤ k. Let (A,B) =W [α]. Recall that
(A,B) =W [α] is any separation in the separation chain corresponding to
W in the sense of Lemma 32 such that |A| = α. We know that |A∩B| ≤ k
and |A| = α.

Firstly, observe that X ∩ (A \B) = ∅. This follows from the fact that
vertices in A \B can have outneighbors only in A, so their outdegrees are
upper bounded by |A| − 1 = α− 1.

Secondly, |X ∩ (A ∩B)| ≤ k since |A ∩B| ≤ k.
Thirdly, we claim that |X ∩ (B \ A)| ≤ 3k + 1. Assume otherwise.

Consider subdigraph T [X ∩ (B \ A)]. Since this is a subdigraph of a
semi-complete digraph of pathwidth at most k, it has also pathwidth at
most k. By Lemma 30 we infer that there exists a vertex v ∈ X ∩ (B \A)
whose indegree in T [X ∩ (B \ A)] is at most k. Since T [X ∩ (B \ A)] is
semi-complete and |X ∩ (B \A)| ≥ 3k + 2, we infer that the outdegree of
v in T [X ∩ (B \A)] is at least 2k + 1. As (A,B) is a separation and T is
semi-complete, all the vertices of A \ B are also outneighbors of v in T .
Note that |A \B| = |A| − |A ∩ B| ≥ α− k. We infer that v has at least
α−k+2k+1 = α+k+1 > β outneighbors in T , which is a contradiction
with v ∈ X.

Summing up the bounds we get 4k+ 2 ≤ |X| ≤ k+ 3k+ 1 = 4k+ 1, a
contradiction.

The author would like to thank Stéphan Thomassé for an excellent
remark after the presentation during STACS 2013, which enabled to prove
the bound 4k + 2 in Lemma 46 instead of original 5k + 2. Consequence of
this better bound is approximation ratio 6 for pathwidth of a semi-complete
digraph, instead of original 7.

Lemma 47. Let T be a semi-complete digraph and let X be a (26k, k)-
degree tangle in T . Then X contains a (k, 3)-short jungle which can be
found in O(k3n2) time, where n = |V (T )|.

Proof. We present a proof of the existential statement. The proof can be
easily turned into an algorithm finding the jungle; during the description
we make remarks at the places where it may be non-trivial to observe
how the algorithm should perform to achieve the promised running-time
guarantee.
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By possibly trimming X, assume without loss of generality that |X| =
26k. Take any v, w ∈ X. We either find a (k, 3)-short jungle inX explicitly,
or find k vertex-disjoint paths from v to w of length at most 3. If for
no pair v, w an explicit short jungle is found, we conclude that X is a
(k, 3)-short jungle itself.

Let us consider four subsets of V (T ) \ {v, w}:

• V ++ = (N+(v) ∩N+(w)) \ {v, w},

• V +− = (N+(v) ∩N−(w)) \ {v, w},

• V −+ = (N−(v) ∩N+(w)) \ {v, w},

• V −− = (N−(v) ∩N−(w)) \ {v, w}.

Clearly, |V ++|+ |V −+|+ |V +−|+ |V −−| ≥ n−2. Note that equality holds
for the tournament case — in this situation these four subsets form a
partition of V (T ) \ {v, w}.

If |V +−| ≥ k, then we already have k vertex-disjoint paths of length 2
from v to w. Assume then that |V +−| < k.

Observe that d+(v) ≤ |V ++|+ |V +−|+1 and d+(w) ≥ |V ++|+ |V −+ \
V ++|. Since v, w ∈ X, we have that d+(w)− d+(v) ≤ k, so

|V −+ \V ++| ≤ d+(w)−|V ++| ≤ k+d+(v)−|V ++| ≤ k+1+ |V +−| ≤ 2k.

Let A = V ++ \V +− and B = V −− \V +−. Note that A and B are disjoint,
since V ++ ∩ V −− ⊆ V +−. Let H be a bipartite graph with bipartition
(A,B), such that for a ∈ A and b ∈ B we have ab ∈ E(H) if and only if
(a, b) ∈ E(T ). Every edge ab of H gives raise to a path v → a→ b→ w
of length 3 from v to w. Hence, if we could find a matching of size k
in H, then this matching would form a family of k vertex disjoint paths
of length at most 3 from v to w. Note that testing existence of such a
matching can be done in O(kn2) time, as we can run the algorithm finding
an augmenting path at most k times.

Assume then that such a matching does not exist. By Kőnig’s theorem
we can find a vertex cover C of H of cardinality smaller than k; again,
this can be found in O(kn2) time. As A ∪ B ∪ (V −+ \ V ++) ∪ V +− =
V (T )\{v, w} while (V −+\V ++)∪V +− contains at most than 3k−1 vertices
in total, A∪B must contain at least (26k−2)− (3k−1) = 23k−1 vertices
from X. We consider two cases: either |A ∩X| ≥ 16k, or |B ∩X| ≥ 7k.

Case 1. In the first case, consider set Y0 = X∩(A\C). Since |A∩X| ≥ 16k
and |A ∩ C| < k, we have that |Y0| > 15k. Let Y be any subset of Y0 of
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size 15k. Take any vertex y ∈ Y and consider, where its outneighbors
can lie. These outneighbors can be either in {v} (at most 1 of them), in
(V −+ \ V ++)∪ V +− (less than 3k of them), in B ∩C (at most k of them),
or in A. As d+(v) ≥ |A| and v, y ∈ X, we have that d+(y) ≥ |A| − k. We
infer that y must have at least |A| − 5k outneighbors in A. As |Y | = 15k,
we have that y has at least 10k outneighbors in Y .

Note that in the tournament case we would be already finished, as
this lower bound on the outdegree would imply also an upper bound on
indegree, which would contradict the fact that T [Y ] contains a vertex of

indegree at least |Y |−1
2 . This also shows that in the tournament setting

a stronger claim holds that in fact X is a (k, 3)-jungle itself. In the
semi-complete setting, however, we do not have any contradiction yet. In
fact no contradiction is possible as the stronger claim is no longer true.
To circumvent this problem, we show how to find an explicit (k, 3)-short
jungle within Y .

Observe that the sum of outdegrees in T [Y ] is at least 10k ·15k = 150k2.
We claim that the number of vertices in Y that have indegrees at least
6k is at least k. Otherwise, the sum of indegrees would be bounded by
15k · k+6k · 14k = 99k2 < 150k2 and the sums of the indegrees and of the
outdegrees would not be equal. Let Z be any set of k vertices in Y that
have indegrees at least 6k in T [Y ]. Take any z1, z2 ∈ Z and observe that
in T [Y ] the set of outneighbors of z1 and the set of inneighbors of z2 must
have intersection of size at least k, as d+T [Y ](z1) ≥ 10k, d−T [Y ](z2) ≥ 6k and

|Y | = 15k. Through these k vertices one can rout k vertex-disjoint paths
from z1 to z2, each of length 2. Hence, Z is the desired (k, 3)-short jungle.

Case 2. This case will be similar to the previous one, with the exception
that we only get a contradiction: there is no subcase with finding an
explicit smaller jungle. Consider set Y0 = X ∩ (B \C). Since |B∩X| ≥ 7k
and |B ∩ C| < k, we have that |Y0| > 6k. Let Y be any subset of Y0 of
size 6k + 1. Take any vertex y ∈ Y that has outdegree at least 3k in T [Y ]
(since |Y | = 6k + 1, such a vertex exists), and consider its outneighbors.
As y /∈ C we have that all the vertices of A \ C are the outneighbors of y
(more than |A|−k of them), and there are at least 3k outneighbors within
B. Hence d+(y) > |A|+2k. On the other hand, the outneighbors of v have
to lie inside A ∪ V +− ∪ {w}, so d+(v) ≤ |A ∪ V +− ∪ {w}| ≤ |A|+ k. We
infer that d+(y)− d+(v) > k, which is a contradiction with v, y ∈ X.
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6.1.4 Matching tangles

Definition 48. Let T be a semi-complete digraph and k, � be integers. A
(k, �)-matching tangle is a pair of disjoint subsets X,Y ⊆ V (T ) such that
(i) |X| = |Y | = k; (ii) there exists a matching from X to Y , i.e., there is
a bijection f : X → Y such that (v, f(v)) ∈ E(T ) for all v ∈ X; (iii) for
every v ∈ X and w ∈ Y we have that d+(w) > d+(v) + �.

Lemma 49. Let T be a semi-complete digraph. If T contains a (k+1, k)-
matching tangle (X,Y ), then pw(T ) > k.

Proof. For the sake of contradiction assume that T has a (nice) path
decomposition W of width at most k. Let α = minw∈Y d+(w) and let
(A,B) =W [α]. Recall that |A| = α and |A ∩B| ≤ k.

Firstly, we claim that X ⊆ A. Assume otherwise that there exists
some v ∈ (B \A)∩X. Note that all the vertices of A \B are outneighbors
of v, so d+(v) ≥ |A| − k = α − k. Hence d+(v) ≥ d+(w) − k for some
w ∈ Y , which is a contradiction.

Secondly, we claim that Y ⊆ B. Assume otherwise that there exists
some w ∈ (A \B) ∩ Y . Then all the outneighbors of w are in A, so there
is less than α of them. This is a contradiction with the definition of α.

As |A∩B| ≤ k and there are k+1 disjoint pairs of form (v, f(v)) ∈ E(T )
for v ∈ X, we conclude that there must be some v ∈ X such that v ∈ A\B
and f(v) ∈ B\A. This contradicts the fact that (A,B) is a separation.

Lemma 50. Let T be a semi-complete digraph and let (X,Y ) be a (5k, 3k)-
matching tangle in T . Then Y contains a (k, 4)-short jungle which can be
found in O(k3n) time, where n = |V (T )|.

Proof. We present the proof of the existential statement; all the steps of
the proof are easily constructive and can be performed within the claimed
complexity bound.

Let Z be the set of vertices of Y that have indegrees at least k + 1
in T [Y ]. We claim that |Z| ≥ k. Otherwise, the sum of indegrees in
T [Y ] would be at most k · 5k + 4k · k = 9k2 <

(
5k
2

)
, so the total sum of

indegrees would be strictly smaller than the number of arcs in the digraph.
It remains to prove that Z is a (k, 4)-short jungle.

Take any v, w ∈ Z; we are to construct k vertex-disjoint paths from v to
w, each of length at most 4. Let R0 = N−

T [Y ](w)\{v}. Note that |R0| ≥ k,

hence let R be any subset of R0 of cardinality k and let P = f−1(R). We
are to construct k vertex-disjoint paths of length 2 connecting v with every
vertex of P and not passing through P ∪R∪{w}. By concatenating these
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paths with arcs of the matching f between P and R and arcs leading from
R to w, we obtain the family of paths we look for.

The paths from v to P are constructed in a greedy manner, one by
one. Each path construction uses exactly one vertex outside P ∪R. Let
us take the next, i-th vertex p ∈ P . As d+(v) > d+(p) + 3k, by Lemma 20
there exist at least 3k vertices in T that are both outneighbors of v and
inneighbors of p. At most 2k of them can be inside P ∪ R, at most
i − 1 ≤ k − 1 of them were used for previous paths, so there is at least
one that is still unused; let us denote it by q. If in fact q = w, we build a
path of length 1 directly from v to w thus ignoring vertex p; otherwise we
can build the path of length 2 from v to p via q and proceed to the next
vertex of P .

6.1.5 Backward tangles

Definition 51. Let T be a semi-complete digraph and k be an integer. A
k-backward tangle is a partition (X,Y ) of V (T ) such that (i) there exist
at least k arcs directed from X to Y ; (ii) for every v ∈ X and w ∈ Y we
have that d+(w) ≥ d+(v).

Lemma 52. Let T be a semi-complete digraph. If T contains an (m+1)-
backward tangle (X,Y ) for m = 64k2 + 18k + 1, then ctw(T ) > k.

Proof. For the sake of contradiction, assume that V (T ) admits an ordering
π of width at most k. Let α be the largest index such that (Xα, Yα) =
(π[α], V (T ) \ π[α]) satisfies Y ⊆ Yα. Similarly, let β be the smallest
index such that (Xβ , Yβ) = (π[β], V (T ) \ π[β]) satisfies X ⊆ Xβ. Note
that |E(Xα, Yα)|, |E(Xβ , Yβ)| ≤ k. Observe also that α ≤ β; moreover,
α < |V (T )| and β > 0, since X,Y are non-empty.

Let (Xα+1, Yα+1) = (π[α+ 1], V (T ) \ π[α+ 1]). By the definition of α
there is a unique vertex w ∈ Xα+1 ∩ Y . Take any vertex v ∈ V (T ) and
suppose that d+(w) > d+(v) + (k + 1). By Lemma 20, there exist k + 1
vertex-disjoint paths of length 2 from w to v. If v was in Yα+1, then each
of these paths would contribute at least one arc to the set E(Xα+1, Yα+1),
contradicting the fact that |E(Xα+1, Yα+1)| ≤ k. Hence, every such v
belongs to Xα+1 as well. By Lemma 46 we have that the number of
vertices with outdegrees in the interval [d+(w)−(k+1), d+(w)] is bounded
by 8k + 1, as otherwise they would create a (8k + 2, 2k)-degree tangle,
implying by Lemma 46 that pw(T ) > 2k and, consequently by Lemma 33,
that ctw(T ) > k (here note that for k = 0 the lemma is trivial). As
Xα = Xα+1 \ {w} is disjoint with Y and all the vertices of X have degrees
at most d+(w), we infer that |X \Xα| ≤ 8k + 1.
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A symmetrical reasoning shows that |Y \ Yβ | ≤ 8k + 1. Now observe
that

|E(X,Y )| ≤ |E(Xα, Y )|+ |E(X,Yβ)|+ |E(X \Xα, Y \ Yβ)|
≤ |E(Xα, Yα)|+ |E(Xβ , Yβ)|+ |E(X \Xα, Y \ Yβ)|
≤ k + k + (8k + 1)2 = 64k2 + 18k + 1.

This is a contradiction with (X,Y ) being an (m+1)-backward tangle.

Lemma 53. Let T be a semi-complete digraph and let (X,Y ) be an m-
backward tangle in T for m = 1092k. Then X or Y contains a (k, 4)-short
immersion jungle which can be found in O(k3n2) time, where n = |V (T )|.

Proof. We present the proof of the existential statement; all the steps of
the proof are easily constructive and can be performed within the claimed
complexity bound.

Let P0 ⊆ X and Q0 ⊆ Y be the sets of heads and of tails of arcs
from E(X,Y ), respectively. As |E(X,Y )| ≤ |P0| · |Q0|, we infer that
|P0| ≥ 109k or |Q0| ≥ 109k. Here we consider the first case; the reasoning
in the second one is symmetrical.

Let P1 be the set of vertices in P0 that have outdegree at least α− 4k,
where α = minw∈Y d+(w); note that α ≥ maxv∈X d+(v) by the definition
of a backward tangle. If there were more than 104k of them, they would
create a (104k, 4k)-degree tangle, which due to Lemma 47 contains a
(4k, 3)-short jungle, which is also a (k, 4)-short immersion jungle. Hence,
we can assume that |P1| < 104k. Let P be any subset of P0 \P1 of size 5k.
We know that for any v ∈ P and w ∈ Y we have that d+(w) > d+(v)+4k.

Consider semi-complete digraph T [P ]. We have that the number of
vertices with outdegrees at least k in T [P ] is at least k, as otherwise the
sum of outdegrees in T [P ] would be at most k ·5k+4k ·k = 9k2 <

(
5k
2

)
, so

the sum of outdegrees would be strictly smaller than the number of arcs
in the digraph. Let Z be an arbitrary set of k vertices with outdegrees at
least k in T [P ]. We prove that Z is a (k, 4)-short immersion jungle.

Let us take any v, w ∈ Z; we are to construct k edge-disjoint paths
from v to w of length 4. Since the outdegree of v in T [P ] is at least
k, as the first vertices on the paths we can take any k outneighbors of
v in P ; denote them v11, v

1
2, . . . , v

1
k. By the definition of P0, each v

1
i is

incident to some arc from E(X,Y ). As the second vertices on the paths
we choose the heads of these arcs, denote them by v2i , thus constructing
paths v → v1i → v2i of length 2 for i = 1, 2, . . . , k. Note that all the arcs
used for constructions so far are pairwise different.
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We now consecutively finish paths v → v1i → v2i using two more arcs
in a greedy manner. Consider path v → v1i → v2i . As v

2
i ∈ Y and w ∈ P ,

we have that d+(v2i ) > d+(w) + 4k. Hence, by Lemma 20 we can identify
4k paths of length 2 leading from v2i to w. At most 2k of them contain
an arc that was used in the first phase of the construction (two first arcs
of the paths), and at most 2(i− 1) ≤ 2k − 2 of them can contain an arc
used when finishing previous paths. This leaves us at least one path of
length 2 from v2i to w with no arc used so far, which we can use to finish
the path v → v1i → v2i .

6.2 Algorithms for pathwidth

In this section we present approximation and exact algorithms for path-
width. As described in Section 5.1.4, both of the algorithms employ the
technique of sliding through the outdegree ordering of the vertices using
a window of small width, and maintaining some coverage of arcs that
jump over the window. This coverage can be expressed as a vertex cover
of an auxiliary bipartite graph. Therefore, we start our considerations
by presenting two ways of selecting a vertex cover in a bipartite graph,
called subset selectors. The first subset selector, based on the matching
theory, will be used in the approximation algorithm, while the second,
based on the classical kernel for the Vertex Cover problem of Buss [54],
will be used in the exact algorithm. Armed with our understanding of
the introduced subset selectors, we then proceed to the description of the
algorithms.

6.2.1 Subset selectors for bipartite graphs

In this subsection we propose a formalism for expressing selection of a
subset of vertices of a bipartite graph. Let B be the class of undirected
bipartite graphs with fixed bipartition, expressed as triples: left side, right
side, the edge set. Let μ(G) be the size of a maximum matching in G.

Definition 54. A function f defined on B is called a subset selector if
f(G) ⊆ V (G) for every G ∈ B. A reversed subset selector f rev is defined
as f rev((X,Y,E)) = f((Y,X,E)). We say that subset selector f is

• a vertex cover selector if f(G) is a vertex cover of G for every G ∈ B,
i.e., every edge of G has at least one endpoint in f(G);

• symmetric if f = f rev;
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• monotonic if for every graph G = (X,Y,E) and its subgraph G′ =
G \ w where w ∈ Y , we have that f(G) ∩ X ⊇ f(G′) ∩ X and
f(G) ∩ (Y \ {w}) ⊆ f(G′) ∩ Y .

For our purposes, the goal is to find a vertex cover selector that is at the
same time reasonably small in terms of μ(G), but also monotonic. As will
become clear in Section 6.2.2, only monotonic vertex cover selectors will
be useful for us, because monotonicity is essential for obtaining a correct
path decomposition where for every vertex the set of bags containing it
forms an interval. The following observation expresses, how monotonic
subset selectors behave with respect to modifications of the graph; a reader
well-familiar with constructing various graph decompositions will probably
already see from its statement why monotonicity is so important for us.
By addition of a vertex we mean adding a new vertex to the vertex set,
together with an arbitrary set of edges connecting it to the old ones.

Lemma 55. Assume that f and f rev are monotonic subset selector and
let G = (X,Y,E) be a bipartite graph.

• If v ∈ f(G) ∩ Y then v stays chosen by f after any sequence of
additions of vertices to the left side and deletions of vertices (different
from v) from the right side.

• If v ∈ X \ f(G) then v stays not chosen by f after any sequence of
additions of vertices to the left side and deletions of vertices from
the right side.

Proof. For both claims, staying (not) chosen after a deletion on the right
side follows directly from the definition of monotonicity of f . Staying
(not) chosen after an addition on the left side follows from considering
deletion of the newly introduced vertex and monotonicity of f rev.

The matching selector

In this section we define the subset selector that will be used for the
approximation algorithm for pathwidth. Throughout this section we
assume reader’s knowledge of basic concepts and definitions from the
classical matching theory (see [112] or [270] for reference). However, we
remind the most important facts in the beginning in order to establish
notation.

For a bipartite graph G = (X,Y,E) with a matching M , we say that
a walk W is an alternating walk for M , if
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• W starts in a vertex that is unmatched in M ;

• edges from M and outside M appear on W alternately, beginning
with an edge outside M .

Whenever M is clear from the context, we omit it. If W is in fact a
simple path, we say that W is an alternating path. A simple shortcutting
arguments show that every alternating walk from v to w has an alternating
path from v to w as a subsequence. Thus for every vertex v /∈ V (M), the
set of vertices reachable by alternating walks from v is the same as the
set of vertices reachable by alternating paths from v.

Assume we are given a matching M and an alternating path W with
respect to M , such that either W is of even length, or the last vertex
of W is unmatched in M . Then we may construct a matching M ′ by
removing fromM all the edges belonging to E(W )∩M , and adding all the
remaining edges of W . This operation will be called switching along path
W . Note that ifW is of even length, then |M ′| = |M |, while ifW is of odd
length and the last vertex of W is unmatched, then |M ′| = |M |+1. In the
latter case we say that W is an augmenting path for M , since switching
along W increases the size of the matching. The core observation of the
classical algorithm for maximum matching in bipartite graphs is that a
matching is not maximum if and only if there is an augmenting path for it.

A vertex cover of a graph is a set of vertices X such that every edge
of the graph is incident to at least one vertex of X. Clearly, the size of a
maximum matching is a lower bound for the size of a minimum vertex
cover, as each vertex from the vertex cover can cover at most one edge of
the matching. The classical Kőnig’s theorem [214] states that for bipartite
graphs equality holds: there exists a vertex cover of size μ(G), which is
the minimum possible size. The set of arguments contained in this section
in fact prove Kőnig’s theorem.

The subset selector that will be used for the approximation of path-
width is the following:

Definition 56. By matching selector M we denote a subset selector that
assigns to every bipartite graph G the set of all the vertices of G that are
matched in every maximum matching in G.

Clearly, for any bipartite graph G = (X,Y,E) we have that |M(G) ∩
X|, |M(G) ∩ Y | ≤ μ(G), as any maximum matching of G is of size μ(G).
It appears that M is a symmetric and monotonic vertex cover selector.
The symmetry is obvious. The crucial property of M is monotonicity: its
proof requires technical and careful analysis of alternating and augmenting
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paths in bipartite graphs. M admits also an alternative characterization,
expressed in Lemma 59, point (ii): it can be computed directly from
any maximum matching by considering alternating paths originating in
unmatched vertices. This observation can be utilized to construct an
algorithm that maintains M(G) efficiently during graph modifications.
Moreover, from this alternative characterization it is clear that M is a
vertex cover selector. The following lemma expresses all the vital properties
of M that will be used in the approximation algorithm for pathwidth.

Lemma 57. M is a symmetric, monotonic vertex cover selector, which
can be maintained together with a maximum matching of G with updates
times O((μ(G) + 1) · n) during vertex additions and deletions, where
n = |V (G)|. Moreover, |M(G)∩X|, |M(G)∩Y | ≤ μ(G) for every bipartite
graph G = (X,Y,E).

We now proceed to the proof of Lemma 57. We split the proof into
several lemmas. First, we show that M is indeed monotonic.

Lemma 58. M is monotonic.

Proof. Let G′ = G \ w, where G = (X,Y,E) is a bipartite graph and
w ∈ Y .

Firstly, we prove that M(G)∩ (Y \ {w}) ⊆M(G′)∩Y . For the sake of
contradiction, assume that there is some v ∈M(G) ∩ Y, v �= w, such that
v /∈M(G′) ∩ Y . So there exists a maximum matching N of G′ in which
v is unmatched; we will also consider N as a (possibly not maximum)
matching in G. Let M be any maximum matching in G. Since v ∈M(G),
we have that v is matched in M . Construct a maximum path P in G that
begins in v and alternates between matchings M and N (i.e., edges of P
belong alternately to M and to N), starting with M . Note that every
vertex of P that belongs to X is entered via an edge from M , and every
vertex of P that belongs to Y is entered via an edge from N . As both w
and v belong to Y and are not matched in N , this path does not enter w
or v, hence it ends in some other vertex. Note also that P has length at
least one as v is matched in M . Let x /∈ {v, w} be the last vertex of P .
We consider two cases.

Assume first that x ∈ X, i.e., x is a vertex of the left side that is not
matched in N . Then P is an augmenting path for N fully contained in
G′. This contradicts the maximality of N .

Assume now that x ∈ Y , i.e., x is a vertex of the right side that is not
matched in M . Then P is an alternating path for M in G and switching
along P leaves v unmatched. This contradicts the fact that v ∈M(G).
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Now we prove that M(G) ∩X ⊇M(G′) ∩X. We consider two cases.

Assume first that w ∈ M(G). As w is matched in every maximum
matching of G, after deleting w the size of the maximum matching drops
by one: if there was a matching of the same size in G′, it would constitute
also a maximum matching in G that does not match w. Hence, if we take
any maximum matching M of G and delete the edge incident to w, we
obtain a maximum matching of G′. We infer thatM(G)∩X ⊇M(G′)∩X,
as every vertex of X that is unmatched in some maximum matching M in
G, is also unmatched in some maximum matching G′, namely in M with
the edge incident to w removed.

Assume now that w /∈M(G). Let M be any maximum matching of
G in which w is unmatched. As M is also a matching in G′, we infer
that M is also a maximum matching in G′ and the sizes of maximum
matchings in G and G′ are equal. Take any v ∈M(G′) ∩X and for the
sake of contradiction assume that v /∈ M(G). Let N be any maximum
matching in G in which v is unmatched. Note that since v ∈M(G′) ∩X
and M is a maximum matching in G′, then v is matched in M . Similarly
as before, let us now construct a maximum path P in G that begins in v
and alternates between matchings M and N , starting with M . Note that
every vertex of P that belongs to X is entered via an edge from N , and
every vertex of P that belongs to Y is entered via an edge from M . As
v ∈ X, w ∈ Y , v is unmatched in N and w is unmatched in M , this path
does not enter w or v, hence it ends in some other vertex. Note also that
P has length at least one as v is matched in M . Let x /∈ {v, w} be the
last vertex of P . Again, we consider two subcases.

In the first subcase we have x ∈ X, i.e., x is a vertex of the left side
that is not matched in M . Then P is an alternating path for M in G′

and switching along P leaves v unmatched. This contradicts the fact that
v ∈M(G′).

In the second subcase we have x ∈ Y , i.e., x is a vertex of the right
side that is not matched in N . Then P is an augmenting path for N in
G, which contradicts the maximality of N .

In order to prove that M is a vertex cover selector and can be com-
puted efficiently, we prove the following alternative characterization. The
following lemma might be considered a folklore corollary of the classical
matching theory, but for the sake of completeness we include its proof.

Lemma 59. Let G = (X,Y,E) be a bipartite graph and let M be any
maximum matching in G. Let A0 = X \ V (M) be the set of unmatched
vertices on the left side, and B0 = Y \ V (M) be the set of unmatched
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vertices on the right side. Moreover, let A be the set of vertices of X that
can be reached via an alternating path from A0, and symmetrically let B
be the set of vertices of Y reachable by an alternating path from B0. Then

(i) there is no edge between A and B, and

(ii) M(G) = V (G) \ (A ∪B).

Proof. We first prove point (i). For the sake of contradiction, assume
that there is an edge between A and B, i.e., there is a vertex w in the
set N(A) ∩ B. Let v be a neighbor of w in A. We claim that w is
reachable from A0 via an alternating path. Assume otherwise, and take an
alternating path P from A0 reaching v. Observe that this path does not
traverse w because then w would be reachable from A0 via an alternating
path. Moreover, vw /∈M , since if this was the case then vw would be used
in P to access v. Hence, we can prolong P by the edge vw, thus reaching
w by an alternation path from A0, a contradiction. By the definition of B,
w is also reachable from B0 via an alternating path. The concatenation of
these two paths is an alternating walk from A0 to B0, which contains an
alternating simple subpath from A0 to B0. This subpath is an augmenting
path for M , which contradicts maximality of M . Thus we infer that there
is no edge between A and B, and point (i) is proven.

We now proceed to the proof that M(G) = V (G) \ (A ∪B). On one
hand, every vertex v belonging to A or B is not matched in some maximum
matching: we just modify M by switching along the alternating path
connecting a vertex unmatched in M with v, obtaining another maximum
matching in which v is unmatched. Hence, M(G) ⊆ V (G) \ (A ∪B). We
are left with proving that M(G) ⊇ V (G) \ (A ∪B).

Consider the set A and the set N(A). We already know that N(A) is
disjoint with B, so also from B0. Hence, every vertex of N(A) must be
matched in M . Moreover, we have that every vertex of N(A) must be in
fact matched to a vertex of A, as the vertices matched to N(A) are also
reachable via alternating walks from A0. Similarly, every vertex of N(B)
is matched to a vertex of B.

We now claim that |X \A|+ |N(A)| = |M |. As A0 ⊆ A, every vertex
of X \ A as well as every vertex of N(A) is matched in M . Moreover,
as there is no edge between A and Y \ N(A), every edge of M has an
endpoint either in X \A or in N(A). It remains to show that no edge ofM
can have one endpoint in X \A and second in N(A); this, however follows
from the fact that vertices of N(A) are matched to vertices of A, proved in
the previous paragraph. Similarly we have that |Y \B|+ |N(B)| = |M |.
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It follows that sets (X \ A) ∪ N(A) and N(B) ∪ (X \ B) are vertex
covers of G of size |M |. Note that every vertex cover C of G of size
|M | must be fully matched by any matching N of size |M |, as every
edge of N is incident to at least one vertex from C. Hence, every vertex
of both (X \ A) ∪ N(A) and of N(B) ∪ (X \ B) is matched in every
maximum matching of G. Since N(A) ⊆ Y \ B and N(B) ⊆ X \ A, we
have that (X \ A) ∪ N(A) ∪ N(B) ∪ (Y \ B) = V (G) \ (A ∪ B). Thus
M(G) ⊇ V (G) \ (A ∪B).

From now on we use the terminology introduced in Lemma 59. Note
that Lemma 59 implies that sets A,B do not depend on the choice of
matchingM , but only on graph G. Also, point (i) of Lemma 59 shows that
M is a vertex cover selector. We now present an incremental algorithm
that maintains M(G) together with a maximum matching of G during
vertex additions and deletions.

Lemma 60. There exists an algorithm that maintains a maximum match-
ing M and M(G) for a bipartite graph G = (X,Y,E) during vertex
addition and deletion operations. The update time is O((μ(G) + 1) · n),
where n = |V (G)|.

Proof. Observe that, by Lemma 59, M(G) can be computed from M
in O(|G|) time: we simply compute sets A0, B0 and apply breadth-first
search from the whole A0 to compute A, and breadth-first search from the
whole B0 to compute B. Both of these searches take O(|G|) time; note
that by Kőnig’s theorem a bipartite graph G on n vertices can have at
most O(μ(G) · n) edges, so |G| = O((μ(G) + 1) · n). Hence, we just need
to maintain a maximum matching.

During vertex addition, the size of the maximum matching can increase
by at most 1, so we may simply add the new vertex and run one iteration
of the standard breadth-first search procedure checking, whether there is
an augmenting path in the new graph; this takes O(|G|) time. If this is
the case, we modify the matching along this path and we know that we
obtained a maximum matching in the new graph. Otherwise, the size of
the maximum matching does not increase, so we do not need to modify
the current one. Similarly, during vertex deletion we simply delete the
vertex together with possibly at most one edge of the matching incident to
it. The size of the stored matching might have decreased by 1; in this case
again we run one iteration of checking whether there is an augmenting
path, again in O(|G|) time. If this is the case, we augment the matching
using this path, obtaining a new matching about which we know that it
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is maximum. Otherwise, we know that the current matching is maximum,
so we do not need to modify it.

Lemmas 58, 59 and 60 together with previous observations prove
Lemma 57.

Let us conclude with the following remark. Instead of selector M one
could introduce a selector M′ defined as follows in terms of Lemma 59:
M′((X,Y,E)) = (X \A)∪N(A). The proof of Lemma 59 shows that this
definition does not depend on the choice of maximum matching M , and
moreover that selector M′ is in fact a vertex cover selector of size exactly
μ(G). Obviously, M′ can be maintained in the same manner as M during
vertex additions and deletions, so the only missing piece is showing that
both M′ and M′rev are monotonic; note here that since M is symmetric,
when working with M we needed to perform just one such check. This
claim appears to be true; however, the proof is significantly longer and
more technical than the proof of Lemma 58. In addition, even though
selector M′ has better guarantees on the size than M, unfortunately
this gain appears to be not useful at the point when we apply M in the
approximation algorithm for pathwidth. In other words, replacing M with
M′ does not result in better approximation ratio, even though it may be
shown that when M′ is applied instead of M, we have a better guarantee
of 5k instead of 6k on the sizes of intersections of each two consecutive
bags (so-called adhesions). Therefore, for the sake of simpler and more
concise arguments we have chosen to include analysis using selector M
instead of M′.

The Buss selector

In this subsection we introduce the subset selector that will be used in the
exact algorithm for pathwidth. This selector is inspired by the classical
kernelization algorithm for the Vertex Cover problem of Buss [54].

Definition 61. Let G = (X,Y,E) be a bipartite graph and � be a non-
negative integer. A vertex v is called �-important if d(v) > �, and �-
unimportant otherwise. A Buss selector is a subset selector B� that
returns all vertices of X that are either �-important, or have at least one
�-unimportant neighbor.

Note that Buss selector is highly non-symmetric, as it chooses vertices
only from the left side. Moreover, it is not necessarily a vertex cover
selector. However, both B� and Brev

� behave in a nice manner.
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Lemma 62. Both B� and Brev
� are monotonic.

Proof. Monotonicity of B� is equivalent to the observation that if v ∈ X
is �-unimportant and has only �-important neighbors, then deletion of any
vertex of Y cannot make v �-important or create �-unimportant neighbors
of v. This holds because the degrees of surviving neighbors of v do not
change.

Monotonicity of Brev
� is equivalent to the observation that if w ∈ Y is

chosen by Brev
� because it is �-important, then after deletion of any other

w′ ∈ Y its degree does not change so it stays �-important, and if it had
an �-unimportant neighbor, then after deletion of any other w′ ∈ Y this
neighbor will still be �-unimportant.

We now prove that B� does not choose too many vertices unless the
bipartite graph G contains a large matching.

Lemma 63. If |B�(G)| > �2+ �, then G contains a matching of size �+1.

Proof. As |B�(G)| > �2 + �, in B�(G) there are at least �+ 1 �-important
vertices, or at least �2 + 1 vertices with an �-unimportant neighbor. In
both cases we construct the matching greedily.

In the first case we iteratively take an �-important vertex of B�(G)
and match it with any its neighbor that is not matched so far. As there is
at least �+ 1 of these neighbors and at most � were used so far, we can
always find one not matched so far.

In the second case we take an arbitrary vertex v1 of B�(G) that has
an �-unimportant neighbor, and find any its �-unimportant neighbor w1.
We add v1w1 to the constructed matching and mark all the at most �
neighbors of w1 as used. Then we take an arbitrary unused vertex v2 of
B�(G) that has an �-unimportant neighbor, find any its �-unimportant
neighbor w2 (note that w2 �= w1 since v2 was not marked), add v2w2 to
the constructed matching and mark all the at most � neighbors of w2 as
used. We continue in this manner up to the point when a matching of size
�+ 1 is constructed. Note that there will always be an unmarked vertex
of B�(G) with an �-unimportant neighbor, as at the beginning there are
at least �2 + 1 of them and after i iterations at most i · � are marked as
used.

We prove that B� can be also evaluated efficiently.

Lemma 64. There exists an algorithm which maintains B�(G) for a
bipartite graph G = (X,Y,E) during operations of vertex addition and
vertex deletion with update times O(�n), where n = |V (G)|.
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Proof. With every vertex of X we maintain its degree and a counter of
�-unimportant neighbors. We also maintain degrees of vertices of Y . The
degree gives us information whether the vertex is �-important.

Let us first examine adding vertex v to the left side. We need to
increase the degrees of neighbors of v, so some of them may become
�-important. For every such vertex that became �-important — note that
its degree is exactly �+1 — we examine its �+1 neighbors and decrement
their �-unimportant neighbors’ counters. If it drops to zero, we delete this
vertex from B�(G) unless it’s �-important. Finally, we count how many
neighbors of v are �-unimportant, set the counter appropriately and add
v to B�(G) if necessary.

Let us now examine adding vertex w to the right side. We need to
increase the degrees of neighbors of w, so some of them may become
�-important and thus chosen by B�(G). Moreover, if w is �-unimportant,
then we increment the �-unimportant neighbors’ counters of neighbors of
w; if it is incremented from 0 to 1, then the vertex becomes chosen by
B�(G), assuming that it was not already �-important.

Now we examine deleting vertex v from the left side. We iterate through
the neighbors of v and decrement their degrees. If any of them ceases to
be �-important, we iterate through all its � neighbors and increment the
counters of �-unimportant neighbors. If for some of these neighbors the
counter was incremented from 0 to 1, the neighbor becomes chosen by
B�(G), assuming that it was not already �-important.

Finally, we examine deleting vertex w from the right side. Firstly,
we check if w was �-important. Then we iterate through neighbors of w
decreasing the degree and �-unimportant neighbors’ counters, if necessary.
If any of the neighbors ceases to be �-important or have an �-unimportant
neighbor, it becomes not chosen to B�(G).

6.2.2 The algorithms

In this subsection we present the algorithms for computing pathwidth.
We begin with the approximation algorithm and then proceed to the exact
algorithm. We introduce the approximation algorithm with an additional
parameter �; taking � = 4k gives the promised 6-approximation, but as we
will see in Chapter 7, modifying � may be useful to improve the quality of
obtained degree tangle.

Theorem 65. There exists an algorithm that given a semi-complete di-
graph T on n vertices and integers k and � ≥ 4k, in time O(kn2) outputs
one of the following:
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• an (�+ 2, k)-degree tangle in T ;

• a (k + 1, k)-matching tangle in T ;

• a path decomposition of T of width at most �+ 2k.

In the first two cases the algorithm can correctly conclude that pw(T ) > k.

Proof. The last sentence follows from Lemmas 46 and 49. We proceed to
the algorithm.

The algorithm first computes any outdegree ordering σ = (v1, v2, . . . , vn)
of V (T ) in O(n2) time. Then in O(n) time we check if there is an index i
such that d+(vi+�+1) ≤ d+(vi)+k. If this is true, then {vi, vi+1, . . . , vi+�+1}
is an (� + 2, k)-degree tangle which can be safely output by the algo-
rithm. From now on we assume that such a situation does not occur, i.e,
d+(vi+�+1) > d+(vi) + k for every index i.

Let separation sequence R0 = ((A0, B0), (A1, B1), . . . , (An−�, Bn−�))
be defined as follows. Let us define S0

i = {vi+1, vi+2, . . . , vi+�} and let
Hi = (Xi, Yi, Ei) be a bipartite graph, where Xi = {v1, . . . , vi}, Yi =
{vi+�+1, vi+�+2, . . . , vn} and xy ∈ Ei if and only if (x, y) ∈ E(T ). If
μ(Hi) > k, then vertices matched in a maximum matching of Hi form
a (k + 1, k)-matching tangle in T , which can be safely output by the
algorithm. Otherwise, let Si = S0

i ∪M(Hi) and we set Ai = Xi ∪ Si and
Bi = Yi ∪ Si; the fact that (Ai, Bi) is a separation follows from the fact
that M is a vertex cover selector. Finally, we add separations (∅, V (T ))
and (V (T ), ∅) at the ends of the sequence, thus obtaining separation
sequence R. We claim that R is a separation chain. Note that if we
prove it, by Lemma 32 the width of the corresponding path decomposition
is upper bounded by max0≤i≤n−�−1 |{vi+1, vi+2, . . . , vi+�+1} ∪ (M(Hi) ∩
Xi) ∪ (M(Hi+1) ∩ Yi+1)| − 1 ≤ �+ 1 + 2k − 1 = �+ 2k, by monotonicity
of M (Lemma 58).

It suffices to show that for every i we have that Ai ⊆ Ai+1 and
Bi ⊇ Bi+1. This, however, follows from Lemma 55 and the fact that M is
symmetric and monotonic. Hi+1 differs from Hi by deletion of one vertex
on the right side and addition of one vertex on the left side, so we have
that Ai+1 differs from Ai only by possibly incorporating vertex vi+�+1

and some vertices from Yi+1 that became chosen by M, and Bi+1 differs
from Bi only by possibly losing vertex vi+1 and some vertices from Xi

that ceased to be chosen by M.
Separation chain R can be computed in O(kn2) time: we consider

consecutive sets S0
i and maintain the graph Hi together with a maximum

matching in it and M(Hi). As going to the next set S
0
i can be modeled by
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one vertex deletion and one vertex additions in graph Hi, by Lemma 57
we have that the time needed for an update is O(kn); note that whenever
the size of the maximum matching exceeds k, we terminate the algorithm
by outputting the obtained matching tangle. As we make O(n) updates,
the time bound follows. Translating a separation chain into a path
decomposition can be done in O(�n) time, since we can store the separators
along with the separations when constructing them.

We now present the exact algorithm for pathwidth.

Theorem 66. There exists an algorithm that, given a semi-complete
digraph T on n vertices and an integer k, in 2O(k log k) · n2 time computes
a path decomposition of T of width at most k, or correctly concludes that
no such exists.

Proof. We say that a separation chain R in T is feasible if it has width at
most k. By the remarks after Lemma 32, instead of looking for a path
decomposition of width k we may look for a feasible separation chain.
Transformation of this separation chain into a path decomposition can be
carried out in O(kn) time, assuming that we store the separators along
with the separations.

The opening step of the algorithm is fixing some outdegree ordering
σ = (v1, v2, . . . , vn) of V (T ). For i = 0, 1, . . . , n, letHi be a bipartite graph
with left side Xi = {v1, v2, . . . , vi} and right Yi = {vi+1, vi+2, . . . , vn},
where xy ∈ E(Hi) if (x, y) ∈ E(T ). As in the proof of Theorem 65, in
O(n) time we check if there is an index i such that d+(vi+4k+1) ≤ d+(vi)+k.
If this is true, then {vi, vi+1, . . . , vi+4k+1} is a (4k + 2, k)-degree tangle
and the algorithm may safely provide a negative answer by Lemma 46.
From now on we assume that such a situation does not occur.

We define a subclass of trimmed separation chains. Every feasible
separation chain can be adjusted to a trimmed separation chain by deleting
some vertices from sets Ai, Bi; note that the new separation chain created
in such a manner will also be feasible, as bags of the corresponding path
decomposition can only get smaller. Hence, we may safely look for a
separation chain that is trimmed.

Before proceeding with formal arguments, let us explain some intuition
behind trimmed separation chains. A priori, a bag of a path decomposition
of T of width at most k can contain some redundant vertices that do not
really contribute to the separation property (Property (iii) of Definition 27).
For instance, if T admits a decomposition of width k/2, then one could
pick an arbitrary set of k/2 vertices of T and incorporate them in every
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bag; this gives us roughly nk/2 possible decompositions, which is too large
a number for an FPT algorithm. Hence, we need to restrict our attention
to path decompositions that are cleaned from redundant parts of bags;
these decompositions are precisely the ones that correspond to trimmed
separation chains. The Buss selector B� will be the tool responsible for
identifying which part of the bags are redundant and can be removed.

We proceed to the definition of a trimmed separation chain. We fix
m = 5k + 1. Let (A,B) be any separation in T , and let α, β be any
indices between 0 and n such that α = max(0, β − (4k + 1)). We say that
(A,B) is trimmed with respect to (α, β) if (i) Yβ ⊆ B ⊆ Yα ∪Bm(Hα) and
(ii) Xα ⊆ A ⊆ Xβ ∪Brev

m (Hβ). (A,B) is trimmed if it is trimmed with
respect to any such pair (α, β). A separation chain is trimmed if every its
separation is trimmed.

For a separation (A,B) let us define the canonical index β = β((A,B))
as the only integer between 0 and n such that d+(vj) < |A| for j ≤ β
and d+(vj) ≥ |A| for j > β. Similarly, the canonical index α = α((A,B))
is defined as α((A,B)) = max(0, β((A,B))− (4k + 1)). Observe that by
the assumed properties of ordering σ we have that vertices in Xα have
outdegrees smaller than |A| − k.

Firstly, we observe that if (A,B) is a separation and α, β are its
canonical indices, then Xα ⊆ A and Yβ ⊆ B. This follows from the
fact that vertices in A \B have outdegrees smaller than |A|, hence they
cannot be contained in Yβ , while vertices in B \A have outdegrees at least
|A \ B| ≥ |A| − k, hence they cannot be contained in Xα. Concluding,
vertices of Xα may belong only to A \ B or A ∩ B (left side or the
separator), vertices of Yβ may belong only to B \A or A ∩B (right side
or the separator), while for vertices of the remaining part Yα ∩Xβ neither
of the three possibilities is excluded.

We now show how to transform any separation chain into a trimmed
one. Take any separation chain R that contains only separations of order
at most k, and obtain a sequence of separations R′ as follows. We take
every separation (A,B) from R; let α, β be its canonical indices. We
delete Xα \Bm(Hα) from B and Yβ \Brev

m (Hβ) from A, thus obtaining a
new pair (A′, B′) that is inserted into R′ in place of (A,B).

Claim 1. R′ is a trimmed separation chain.

Proof. We need to prove that every such pair (A′, B′) is a separation, and
that all these separations form a separation chain. The fact that such
a separation chain is trimmed follows directly from the definition of the
performed operation and the observations on canonical indices.
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First, we check that A′ ∪B′ = V (T ). This follows from the fact from
A we remove only vertices of Yβ while from B we remove only vertices
from Xα, but after the removal Xα is still covered by A′ and Yβ by B′.

Now we check that E(A′ \ B′, B′ \ A′) = ∅. Assume otherwise, that
there is a pair (v, w) ∈ E(T ) such that v ∈ A′ \ B′ and w ∈ B′ \ A′. By
the construction of (A′, B′) and the fact that (A,B) was a separation we
infer that either v ∈ Xα \Bm(Hα) or w ∈ Yβ \Brev

m (Hβ). We consider
the first case, as the second is symmetrical.

Since w /∈ A′ and Xα ⊆ A′, we have that w ∈ Yα, so vw is an edge in
Hα. As v /∈ Bm(Hα), we have that in Hα vertex v is m-unimportant and
has only m-important neighbors. Hence w is m-important in Hα. Observe
now that w cannot be contained in B \ A, as there is more than m > k
vertices in Xα being tails of arcs directed toward w, and only k of them
can be in separator A ∩B leaving at least one belonging to A \B (recall
that vertices from Xα cannot belong to B \A). Hence w ∈ A. As w /∈ A′,
we have that w ∈ Yβ \Brev

m (Hβ). However, w was an m-important vertex
on the right side of Hα, so as it is also on the right side of Hβ, it is also
m-important in Hβ . This is a contradiction with w /∈ Brev

m (Hβ).

We conclude that (A′, B′) is indeed a separation.
Finally, we check that R′ is a separation chain. Consider two sepa-

rations (A1, B1), (A2, B2) in R, such that A1 ⊆ A2 and B1 ⊇ B2. Let
α1, β1, α2, β2 be canonical indices of (A1, B1) and (A2, B2), respectively.
It follows that α1 ≤ α2 and β1 ≤ β2. Hence, graph Hα2 can be obtained
from Hα1 via a sequence of vertex deletions on the right side and vertex
additions on the left side. As Bm and Brev

m are monotonic (Lemma 62), by
Lemma 55 we have that every vertex deleted from B1 while constructing
B′

1 is also deleted from B2 while constructing B
′
2 (assuming it belongs to

B2). Hence, B
′
2 ⊆ B′

1. A symmetric argument shows that A′
2 ⊇ A′

1. �

We proceed to the algorithm itself. As we have argued, we may
look for a trimmed feasible separation chain. Indeed if T admits a path
decomposition of width at most k, then by Lemma 32 it admits a feasible
separation chain, which by Claim 1 can be turned into a trimmed feasible
separation chain. On the other hand, if T admits a trimmed feasible
separation chain, then this separation chain can be turned into a path
decomposition of T of width at most k using Lemma 32.

Let N be the family of trimmed separations of T of order at most
k. We construct an auxiliary digraph D with vertex set N by putting
an arc ((A,B), (A′, B′)) ∈ E(D) if and only if A ⊆ A′, B ⊇ B′ and
|A′ ∩B| ≤ k+1. Then paths in D from (∅, V (T )) to (V (T ), ∅) correspond



CHAPTER 6. TOURNAMENTS & WIDTH MEASURES 143

to feasible trimmed separation chains.
We prove that either the algorithm can find an obstacle for admitting

path decomposition of width at most k, or D has size at most 2O(k log k) ·n
and can be constructed in time 2O(k log k) · n2. Hence, any linear-time
reachability algorithm in D runs within claimed time complexity bound.

Consider any indices α, β such that α = max(0, β− (4k+1)). Observe
that if |Bm(Hα)| > m2 +m, by Lemma 63 we can find a matching of size
m+ 1 in Hα. At most 4k + 1 = m− k edges of this matching have the
right endpoint in Yα ∩Xβ, which leaves us at least k + 1 edges between
Xα and Yβ. Such a structure is a (k + 1, k)-matching tangle in T , so by
Lemma 49 the algorithm may provide a negative answer. A symmetrical
reasoning shows that if |Brev

m (Hβ)| > m2+m, then the algorithm can also
provide a negative answer.

If we assume that these situations do not occur, we can characterize
every trimmed separation (A,B) of order at most k by:

• a number β, where 0 ≤ β ≤ n;

• a mask on the vertices from Yα ∩ Xβ, denoting for each of them
whether it belongs to A \ B, A ∩ B or to B \ A (at most 34k+1

options);

• subsets of size at most k ofXα∩Bm(Hα) and Yβ∩Brev
m (Hβ), denoting

which vertices belong to A ∩ B (at most
(
k
(O(k2)

k

))2
= 2O(k log k)

options).

Moreover, if (A′, B′) is an outneighbor of (A,B) in D, then it must have
parameter β′ not larger than β+(5k+2), as otherwise we have a guarantee
that |A′ ∩B| ≥ |Xα′ ∩ Yβ | ≥ k+2, and also not smaller than β− (5k+2),
as otherwise we have a guarantee that |A| ≥ |Xα| > |A′|. Hence, the
outdegrees in D are bounded by 2O(k log k).

This gives raise to the following algorithm constructing D in time
2O(k log k) · n2.

• First, we enumerate N . We scan through the order σ with an index
β maintaining graphs Hα, Hβ for α = max(0, β − (4k + 1)), along
with Bm(Hα) and Brev

m (Hβ). Whenever cardinality of any of these
sets exceedsm2+m, we terminate the algorithm providing a negative
answer. By Lemma 64 we can bound the update time by O(kn). For
given index β, we list all 2O(k log k) pairs (A,B) having this particular
β in characterization from the previous paragraph. For every such
pair, in O(kn) we check whether it induces a separation of order
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k, by testing emptiness of set E(A \B,B \A) using at most O(k)
operations of vertex deletion/addition on the graph Hα. We discard
all the pairs that do not form such a separation; all the remaining
ones are exactly separations that are trimmed with respect to (α, β).

• For every separation (A,B) characterized by parameter β, we check
for all the 2O(k log k) separations (A′, B′) with parameter β′ between
β − (5k + 2) and β + (5k + 2), whether we should put an arc from
(A,B) to (A′, B′). Each such a check can be performed in O(k) time,
assuming that we store the separator along with the separation.

Having constructed D, we run a linear-time reachability algorithm to
check whether (V (T ), ∅) can be reached from (∅, V (T )). If not, we provide
a negative answer; otherwise, the path corresponds to a feasible separation
chain which can be transformed into a path decomposition in O(kn)
time.

6.3 Algorithms for cutwidth and other ordering
problems

In this section we present the algorithms for computing cutwidth and
related problems. We start with the approximation algorithm for cutwidth,
which follows immediately from the results of Section 6.1. Then we proceed
to describing the exact algorithms. It appears that using our approach
it is possible to show subexponential parameterized algorithm not only
for cutwidth, but also for two related problems, namely Feedback Arc

Set and Optimal Linear Arrangement. Both of these problems have
been discussed in Section 5.1, so after defining them formally we proceed
to explanation of the approach.

6.3.1 Approximation of cutwidth

Results of Section 6.1 immediately yield the following theorem.

Theorem 67. Let T be a semi-complete digraph and let m(t) = 64t2+18t+
1. Then any outdegree ordering of V (T ) has width at most m(ctw(T )).

Proof. Let σ be any outdegree ordering of V (T ). If σ had width more
than m(ctw(T )), then one of the partitions (σ[α], V (T ) \ σ[α]) would be
a (m(ctw(T )) + 1)-backward tangle. Existence of such a structure is a
contradiction with Lemma 52.
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This gives raise to a straightforward approximation algorithm for
cutwidth of a semi-complete digraph that simply sorts the vertices with
respect to outdegrees, and then scans through the ordering checking
whether it has small width. Note that this scan may be performed in
O(|V (T )|2) time, as we maintain the cutset between the prefix and the
suffix of the ordering by iteratively moving one vertex from the suffix to
the prefix.

Theorem 68. There exists an algorithm which, given a semi-complete
digraph T on n vertices and an integer k, in time O(n2) outputs an
ordering of V (T ) of width at most m(k) or a (m(k) + 1)-backward tangle
in T , where m(t) = 64t2 + 18t + 1. In the second case the algorithm
concludes that ctw(T ) > k.

6.3.2 Additional problem definitions

We now introduce the formal definitions of problems Feedback Arc Set

and Optimal Linear Arrangement, and prove their basic properties
that will be useful in the algorithms.

Feedback Arc Set

Definition 69. Let T be a digraph. A subset F ⊆ E(T ) is called a
feedback arc set if T \ F is acyclic.

The Feedback Arc Set problem in semi-complete digraphs is then
defined as follows.

Feedback Arc Set (FAS) in semi-complete digraphs

Input: A semi-complete digraph T and a nonnegative integer k.

Parameter: k

Question: Is there a feedback arc set of T of size at most k?

We have the following easy observation that enables us to view FAS

as a graph layout problem.

Lemma 70. Let T be a digraph. Then T admits a feedback arc set of size
at most k if and only if there exists an ordering (v1, v2, . . . , vn) of V (T )
such that at most k arcs of E(T ) are directed forward in this ordering,
i.e., are of form (vi, vj) for i < j.
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Proof. If F is a feedback arc set in T then the ordering can be obtained by
taking any reverse topological ordering of T \F . On the other hand, given
the ordering we may simply define F to be the set of forward edges.

Optimal Linear Arrangement

Definition 71. Let T be a digraph and (v1, v2, . . . , vn) be an ordering of
its vertices. Then the cost of this ordering is defined as

∑
(vi,vj)∈E(T )

(j − i) · [j > i],

that is, every arc directed forwards in the ordering contributes to the cost
with the distance between the endpoints in the ordering.

Whenever the ordering is clear from the context, we also refer to the
contribution of a given arc to its cost as to the length of this arc. By a
simple reordering of the computation we obtain the following:

Lemma 72. For a digraph T and ordering (v1, v2, . . . , vn) of V (T ), the
cost of this ordering is equal to:

n−1∑
t=1

|E({v1, v2, . . . , vt}, {vt+1, vt+2, . . . , vn})|.

Proof. Observe that

∑
(vi,vj)∈E(T )

(i− j) · [i > j] =
∑

(vi,vj)∈E(T )

n−1∑
t=1

[i ≤ t < j]

=

n−1∑
t=1

∑
(vi,vj)∈E(T )

[i ≤ t < j]

=
n−1∑
t=1

|E({v1, . . . , vt}, {vt+1, . . . , vn})|.

The problem Optimal Linear Arrangement in semi-complete
digraphs is then defined as follows.
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Optimal Linear Arrangement (OLA) in semi-complete digraphs

Input: A semi-complete digraph T and a nonnegative integer k.

Parameter: k

Question: Is there an ordering of V (T ) of cost at most k?

6.3.3 k-cuts of semi-complete digraphs

In this section we provide all the relevant observations on k-cuts of
semi-complete digraphs. We start with the definitions and enumeration
algorithms for k-cuts, and then proceed to bounding the number of k-cuts
when the given semi-complete digraph is close to a structured one.

Enumerating k-cuts

Definition 73. A k-cut of a multidigraph T is a partition (X,Y ) of V (T )
with the following property: there are at most k arcs (u, v) ∈ E(T ) such
that u ∈ X and v ∈ Y . For a multidigraph T , by N (T, k) we denote the
family of all the k-cuts of T .

The following lemma shows that k-cuts can be enumerated efficiently.

Lemma 74. Let D be a multidigraph and let X0, Y0 be disjoint sets of
vertices of D. Then the family of all the k-cuts (X,Y ) such that X0 ⊆ X
and Y0 ⊆ Y can be enumerated with polynomial-time delay, where each
k-cut is enumerated together with number |E(X,Y )|.
Proof. Let σ = (v1, v2, . . . , vp) be an arbitrary ordering of vertices of
V (D) \ (X0 ∪ Y0). We perform a classical branching strategy. We start
with X = X0 and Y = Y0, and consider the vertices in order σ, at each step
branching into one of the two possibilities: vertex vi is to be incorporated
into X or into Y . However, after assigning each consecutive vertex we run
a max-flow algorithm from X to Y to find the size of a minimum edge cut
between X and Y . If this size is more than k, we terminate the branch
as we know that it cannot result in any solutions found. Otherwise we
proceed. We output a partition after the last vertex, vn, is assigned a
side; note that the last max-flow check ensures that the output partition
is actually a k-cut, and finds the output size of the cut as well. Moreover,
as during the algorithm we consider only branches that can produce at
least one k-cut, the next partition will be always found within polynomial
waiting time, proportional to the depth of the branching tree times the
time needed for computations at each node of the branching tree.
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Setting X0 = Y0 = ∅ gives an algorithm enumerating k-cuts of D with
polynomial-time delay. The running time of Lemma 74 is unfortunately not
satisfactory if one would like to design a linear-time algorithm. Therefore,
we prove that k-cuts of a semi-complete digraph of small cutwidth can be
enumerated more efficiently.

Lemma 75. There exists an algorithm that, given a semi-complete digraph
T on n vertices together with nonnegative integers k and B, works in
O(n2 +B · kO(1) · n), and either:

• correctly concludes that ctw(T ) > k;

• correctly concludes that the number of k-cuts of T is more than B;

• or outputs the whole family N (T, k) of k-cuts of T with a guarantee
that |N (T, k)| ≤ B, where each k-cut (X,Y ) is output together with
|E(X,Y )|.

Proof. If n ≤ 8k+1, we run the enumeration algorithm of Lemma 74 and
terminate it if the number of enumerated k-cuts exceeds B. Since k-cuts
are enumerated with polynomial delay and n = O(k), the algorithm works
in O(B · kO(1)) time.

Assume then that n > 8k + 1. First, the algorithm computes in
O(n2) time any outdegree ordering σ = (v1, v2, . . . , vn) of T and all the
outdegrees in T . We check in O(n) time, whether there exists an index
i, 1 ≤ i ≤ n − 8k − 1, such that d+(vi+8k+1) ≤ d+(vi) + 2k. If such an
index i is found, we infer that {vi, vi+1, . . . , vi+8k+1} a (8k + 2, 2k)-degree
tangle, implying that pw(T ) > 2k by Lemma 46 and, consequently, that
ctw(T ) > k by Lemma 33. Hence, in this case the algorithm can conclude
that ctw(T ) > k. We proceed with the assumption that this did not take
place, i.e., d+(vi+8k+1) > d+(vi) + 2k for all 1 ≤ i ≤ n− 8k − 1.

For an index i, 1 ≤ i ≤ n − 8k, let us define a multidigraph Hi as
follows. Start with T [{vi, vi+1, . . . , vi+8k}] and add two vertices: vprefix
and vsuffix that correspond to the prefix σ[i− 1] and suffix V (T ) \σ[i+8k].
For every j ∈ {i, i+ 1, . . . , i+ 8k}, add min(k+ 1, |E(σ[i− 1], {vj})|) arcs
from vprefix to vj , and min(k + 1, |E({vj}, V (T ) \ σ[i+ 8k])|) arcs from vj
to vsuffix. Finally, add min(k + 1, |E(σ[i− 1], V (T ) \ σ[i+ 8k])|) arcs from
vprefix to vsuffix. Note that Hi defined in this manner has size polynomial
in k.

The algorithm proceeds as follows. We iterate through consecutive
indices i, maintaining the graph Hi. Observe that Hi can be maintained
with O(n) update times, since each update requires inspection of incidence
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relation between vi and the whole V (T ), and between vi+8k+1 and the
whole V (T ). Thus, the total time spent on maintaining Hi is O(n2).
For each index i, we enumerate all the k-cuts (X ′, Y ′) of Hi such that
vprefix ∈ X ′ and vsuffix ∈ Y ′ using Lemma 74. This enumeration takes
time proportional to their number times a polynomial of the size of Hi,
that is, times a polynomial of k. For each enumerated k-cut (X ′, Y ′) we
construct in O(n) time one k-cut (X,Y ) of T equal to (σ[i − 1] ∪ (X ′ \
vprefix), (Y

′ \ vsuffix) ∪ (V (T ) \ σ[i+ 8k]). By the definition of Hi we infer
that (X,Y ) is indeed a k-cut of T , and moreover |E(X,Y )| = |E(X ′, Y ′)|,
so the size of the cut output by the algorithm of Lemma 74 can be stored
as |E(X,Y )|. We store all the k-cuts constructed so far as binary vectors
of length n in a prefix tree (trie). Thus in O(n) time we can check whether
(X,Y ) has not been already found, in which case it should be ignored,
and otherwise we add it to the prefix tree in O(n) time. If the total
number of constructed k-cuts exceed B at any point of the construction,
we terminate the algorithm and provide the answer that |N (T, k)| > B.
Otherwise, we output all the constructed k-cuts. Since maintenance of
graph Hi take O(n2) time in total, and each next k-cut is identified and
constructed within time O(kO(1) + n), for the claimed running time it
suffices to show that each k-cut of T is found in this procedure at most
O(k) times.

It remains to argue that (i) in case when the algorithm is providing
the family of k-cuts, in fact every k-cut of T is contained in this family,
(ii) each k-cut of T is constructed at most O(k) times. We prove both
of the claims at the same time. Let then (X,Y ) be a k-cut of T and
without loss of generality assume that X and Y are nonempty, since
k-cuts (∅, V (T )) and (V (T ), ∅) are enumerated exactly once, for i = 1
and i = n− 8k respectively. Let α be the maximum index of a vertex of
X in σ, and β be the minimum index of a vertex of Y in σ. We claim
that β − 1 ≤ α ≤ β + 8k. Observe that if this claim is proven, then
both conditions (i) and (ii) follow: cut (X,Y ) is constructed exactly when
considering indices i such that i ≤ β and i + 8k ≥ α, and the claimed
inequalities show that the number of such indices is between 1 and 8k + 2.

We first show that β−1 ≤ α. Consider two cases. If β = 1, then in fact
all the elements of X have indices larger than β, so in particular α > β.
Otherwise β > 1, and by the minimality of β we have that xβ−1 ∈ X.
Consequently, α ≥ β − 1.

We are left with proving that α ≤ β+8k. For the sake of contradiction
assume that α > β + 8k, so in particular 1 ≤ β ≤ n − 8k − 1. By the
assumption that d+(vi+8k+1) > d+(vi) + 2k for all 1 ≤ i ≤ n − 8k − 1,
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we have that d+(vα) ≥ d+(vβ+8k+1) > d+(vβ) + 2k. By Lemma 20 we
infer that there exist 2k vertex-disjoint paths of length 2 from vα to vβ.
Since vα ∈ X and vβ ∈ Y , each of these paths must contain an arc from
E(X,Y ). This is a contradiction with the assumption that (X,Y ) is a
k-cut.

In our dynamic programming algorithms we need to define what does
it mean that one k-cut is a possible successor of another k-cut. This is
encapsulated in the following definition.

Definition 76. Let T be a digraph and (X1, Y1) and (X2, Y2) be two
partitions of V (G). We say that cut (X2, Y2) extends cut (X1, Y1) using
vertex v if there is one vertex v ∈ Y1 such that X2 = X1 ∪ {v} and,
equivalently, Y2 = Y1 \ {v}.

The following lemma shows that the relation of extension can be
computed efficiently within the enumeration algorithm of Lemma 75.

Lemma 77. If the algorithm of Lemma 75, run on a semi-complete
digraph T for parameters k,B, provides the family N (T, k), then for each
k-cut of T there are at most 8k + 1 k-cuts of T that extend it. Moreover,
the algorithm of Lemma 75 can within the same running time in addition
construct for each k-cut of T a list of pointers to all the k-cuts that extend
it, together with vertices used in these extensions.

Proof. We only add one additional subroutine to the algorithm of Lemma 75
which computes the lists after the enumeration has been concluded. As-
sume that during enumeration we have constructed a k-cut (X,Y ). Let α
be the maximum index of a vertex of X in σ, and let β be the minimum
index of a vertex of Y in σ (we take α = 0 if X = ∅ and β = n+1 if Y = ∅).
In the proof of Lemma 75 we have proven that β − 1 ≤ α ≤ β + 8k (this
claim is trivial for X = ∅ or Y = ∅), unless the algorithm already provided
a negative answer. Let (X ′, Y ′) be a k-cut that extends (X,Y ), and let vγ
be the vertex used in this extension; thus {vγ} = X ′ ∩ Y . Define indices
α′, β′ in the same manner for (X ′, Y ′). Note that they satisfy the same
inequality, i.e. β′ − 1 ≤ α′ ≤ β′ + 8k, and moreover α ≤ α′ and β ≤ β′.

We now claim that β ≤ γ ≤ β + 8k. The first inequality follows from
the fact that vγ ∈ Y . For the second inequality, assume for the sake of
contradiction that γ > β+8k. Then β �= γ, and since vγ is the only vertex
that belongs to Y but not to Y ′, we have that vβ ∈ Y ′. We infer that
β′ = β. On the other hand, vγ ∈ X ′ implies that α′ ≥ γ. Therefore

β′ = β < γ − 8k ≤ α′ − 8k,
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which is a contradiction with the fact that α′ ≤ β′ + 8k.

Hence, there are only 8k+1 possible candidates for k-cuts that extend
(X,Y ), that is (X ∪ {vγ}, Y \ {vγ}) for β ≤ γ ≤ β + 8k and vγ ∈ Y . For
each of these candidates we may test in O(n) time whether it belongs to
enumerated family N (T, k), since N (T, k) is stored in a prefix tree; note
that computing index β also takes O(n) time. Hence, construction of the
lists takes additional O(B · k · n) time.

k-cuts of a transitive tournament and partition numbers

For a nonnegative integer n, a partition of n is a multiset of positive
integers whose sum is equal to n. The partition number p(n) is equal to
the number of different partitions of n. Partition numbers were studied
extensively in analytic combinatorics, and there are sharp estimates on
their values. In particular, we will use the following:

Lemma 78 ([122, 185]). There exists a constant A such that for every

nonnegative k it holds that p(k) ≤ A
k+1 · exp(C

√
k), where C = π

√
2
3 .

We remark that the original proof of Hardy and Ramanujan [185]
shows moreover that the optimal constant A tends to 1

4
√
3
as k goes to

infinity, i.e., limk→+∞
p(k)·(k+1)

exp(C
√
k)
= 1

4
√
3
. From now on, we adopt constants

A,C given by Lemma 78 in the notation. We use Lemma 78 to obtain
the following result, which is the core observation of this section.

Lemma 79. Let T be a transitive tournament on n vertices and k be a
nonnegative integer. Then T has at most A · exp(C

√
k) · (n+ 1) k-cuts,

where A,C are defined as in Lemma 78.

Proof. We prove that for any number a, 0 ≤ a ≤ n, the number of k-cuts
(X,Y ) such that |X| = a and |Y | = n− a, is bounded by A · exp(C

√
k);

summing through all the possible values of a proves the claim.

We naturally identify the vertices of T with numbers 1, 2, . . . , n, such
that arcs of T are directed from larger numbers to smaller, i.e., we order
the vertices as in the reversed topological ordering of T . Let us fix some
k-cut (X,Y ) such that |X| = a and |Y | = n− a. Let x1 < x2 < . . . < xa
be the vertices of X.

Let mi = xi+1−xi−1 for i = 0, 1, . . . , a; we use convention that x0 = 0
and xa+1 = n+1. In other words, mi is the number of elements of Y that
are between two consecutive elements of X. Observe that every element
of Y between xi and xi+1 is the head of exactly a− i arcs directed from



152 CHAPTER 6. TOURNAMENTS & WIDTH MEASURES

X to Y : the tails are xi+1, xi+2, . . . , xa. Hence, the total number of arcs
directed from X to Y is equal to k′ =

∑a
i=0mi ·(a−i) =

∑a
i=0ma−i ·i ≤ k.

We define a partition of k′ as follows: we take ma−1 times number 1,
ma−2 times number 2, and so on, up to m0 times number a. Clearly, a
k-cut of T defines a partition of k′ in this manner. We now claim that
knowing a and the partition of k′, we can uniquely reconstruct the k-cut
(X,Y ) of T , or conclude that this is impossible. Indeed, from the partition
we obtain all the numbers m0,m1, . . . ,ma−1, while ma can be computed
as (n − a) −∑a−1

i=0 mi. Hence, we know exactly how large must be the
intervals between consecutive elements of X, and how far is the first and
the last element of X from the respective end of the ordering, which
uniquely defines sets X and Y . The only possibilities of failure during
reconstruction are that (i) the numbers in the partition are larger than a,
or (ii) computed ma turns out to be negative; in these cases, the partition
does not correspond to any k-cut. Hence, we infer that the number of
k-cuts of T having |X| = a and |Y | = n − a is bounded by the sum of
partition numbers of nonnegative integers smaller or equal to k, which by
Lemma 78 is bounded by (k + 1) · A

k+1 · exp(C
√
k) = A · exp(C

√
k).

k-cuts of semi-complete digraphs with a small FAS

We have the following simple fact.

Lemma 80. Assume that T is a semi-complete digraph with a feedback
arc set F of size at most k. Let T ′ be a transitive tournament on the
same set of vertices, with vertices ordered as in any topological ordering
of T \ F . Then every k-cut of T is also a 2k-cut of T ′.

Proof. The claim follows directly from the observation that if (X,Y ) is
a k-cut in T , then at most k additional arcs directed from X to Y can
appear after introducing arcs in T ′ in place of deleted arcs from F .

From Lemmata 79 and 80 we obtain the following corollary.

Corollary 81. If T is a semi-complete digraph with n vertices that has
a feedback arc set of size at most k, then the number of k-cuts of T is
bounded by A · exp(C

√
2k) · (n+ 1).

k-cuts of semi-complete digraphs of small cutwidth

To bound the number of k-cuts of semi-complete digraphs of small cutwidth,
we need the following auxiliary combinatorial result.
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Lemma 82. Let (X,Y ) be a partition of {1, 2, . . . , n} into two sets. We
say that a pair (a, b) is bad if a < b, a ∈ Y and b ∈ X. Assume that for
every integer t there are at most k bad pairs (a, b) such that a ≤ t < b.
Then the total number of bad pairs is at most k(1 + ln k).

Proof. Let y1 < y2 < . . . < yp be the elements of Y . Let mi be equal
to the total number of elements of X that are greater than yi. Note
that mi is exactly equal to the number of bad pairs whose first element
is equal to yi, hence the total number of bad pairs is equal to

∑p
i=1mi.

Clearly, sequence (mi) is non-increasing, so let p
′ be the last index for

which mp′ > 0. We then have that the total number of bad pairs is equal

to
∑p′

i=1mi. Moreover, observe that p
′ ≤ k, as otherwise there would be

more than k bad pairs (a, b) for which a ≤ yp′ < b: for a we can take any
yi for i ≤ p′ and for b we can take any element of X larger than yp′ .

We claim that mi ≤ k/i for every 1 ≤ i ≤ p′. Indeed, observe that
there are exactly i ·mi bad pairs (a, b) for a ≤ yi and b > yi: a can be
chosen among i distinct integers y1, y2, . . . , yi, while b can be chosen among
mi elements of X larger than yi. By the assumption we infer that i·mi ≤ k,
so mi ≤ k/i. Concluding, we have that the total number of bad pairs is

bounded by
∑p′

i=1mi ≤
∑p′

i=1 k/i = k · H(p′) ≤ k · H(k) ≤ k(1 + ln k),

where H(k) =
∑k

i=1 1/i is the harmonic function.

The following claim applies Lemma 82 to the setting of semi-complete
digraphs.

Lemma 83. Assume that T is a semi-complete digraph on n vertices that
admits an ordering of vertices (v1, v2, . . . , vn) of width at most k. Let T ′ be
a transitive tournament on the same set of vertices, where (vi, vj) ∈ E(T ′)
if and only if i > j. Then every k-cut of T is a 2k(1 + ln 2k)-cut of T ′.

Proof. Without loss of generality we assume that T is in fact a tournament,
as deleting any of two opposite arcs connecting two vertices can only make
the set of k-cuts of T larger, and does not increase the width of the
ordering.

Identify vertices v1, v2, . . . , vn with numbers 1, 2, . . . , n. Let (X,Y ) be
a k-cut of T . Note that arcs of T ′ directed from X to Y correspond to
bad pairs in the sense of Lemma 82: every arc (b, a) ∈ E(T ′) such that
a < b, a ∈ Y , and b ∈ X, corresponds to a bad pair (a, b), and vice versa.
Therefore, by Lemma 82 it suffices to prove that for every integer t, the
number of arcs (b, a) ∈ E(T ′) such that a ≤ t < b, a ∈ Y , and b ∈ X, is
bounded by 2k. We know that the number of such arcs in T is at most k,
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as there are at most k arcs directed from X to Y in T in total. Moreover,
as the considered ordering of T has cutwidth at most k, at most k arcs
between vertices from {1, 2, . . . , t} and {t+ 1, . . . , n} can be directed in
different directions in T and in T ′. We infer that the number of arcs
(b, a) ∈ E(T ′) such that a ≤ t < b, a ∈ Y , and b ∈ X, is bounded by 2k,
and so the lemma follows.

From Lemmata 79 and 83 we obtain the following corollary.

Corollary 84. Every semi-complete digraph on n vertices and of cutwidth
at most k, has at most A · exp(2C

√
k(1 + ln 2k)) · (n+ 1) k-cuts.

k-cuts of semi-complete digraphs with an ordering of small cost

We firstly show the following lemma that proves that semi-complete
digraphs with an ordering of small cost have even smaller cutwidth.

Lemma 85. Let T be a semi-complete digraph on n vertices that admits
an ordering (v1, v2, . . . , vn) of cost at most k. Then the width of this
ordering is at most (4k)2/3.

Proof. We claim that for every integer t ≥ 0, the number of arcs in T
directed from the set {v1, . . . , vt} to {vt+1, . . . , vn} is at most (4k)2/3. Let
� be the number of such arcs; without loss of generality assume that � > 0.
Observe that at most one of these arcs may have length 1, at most 2 may
have length 2, etc., up to at most �

√
�� − 1 may have length �

√
�� − 1.

It follows that at most
∑


√
��−1

i=1 i ≤ �/2 of these arcs may have length
smaller than �

√
��. Hence, at least �/2 of the considered arcs have length

at least �
√
��, so the total sum of lengths of arcs is at least �·


√
��

2 ≥ �3/2

4 .

We infer that k ≥ �3/2

4 , which means that � ≤ (4k)2/3.

Lemma 85 ensures that only (4k)2/3-cuts are interesting from the
point of view of dynamic programming. Moreover, from Lemma 85 and
Corollary 84 we can derive the following statement that bounds the number
of states of the dynamic program.

Corollary 86. If T is a semi-complete digraph with n vertices that admits
an ordering of cost at most k, then the number of (4k)2/3-cuts of T is
bounded by A · exp(2C · (4k)1/3 ·

√
1 + ln(2 · (4k)2/3)) · (n+ 1).
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6.3.4 The algorithms

We firstly show how using the approach one can find a simple algorithm
for Feedback Arc Set.

Theorem 87. There exists an algorithm that, given a semi-complete
digraph T on n vertices and an integer k, in time O(exp(C

√
2k) ·kO(1) ·n2)

either finds a feedback arc set of T of size at most k or correctly concludes

that this is impossible, where C = π
√

2
3 .

Proof. We apply the algorithm of Lemma 75 in T for parameter k and
the bound A · exp(C

√
2k) · (n+1) given by Corollary 81. If the algorithm

concluded that ctw(T ) > k, then also the minimum feedback arc set must
be of size more than k, and we may provide a negative answer. Similarly,
if the algorithm concluded that |N (T, k)| > A · exp(C

√
2k) · (n+ 1), by

Corollary 81 we may also provide a negative answer. Hence, from now
on we assume that we have the set N := N (T, k) and we know that
|N | ≤ A · exp(C

√
2k) · (n+ 1). Note that application of Lemma 75 takes

O(exp(C
√
2k) · kO(1) · n2) time.

We now describe a dynamic programming procedure that computes
the size of optimal feedback arc set basing on the set of k-cuts N . We
define an auxiliary weighted digraph D with vertex set N . Intuitively,
a vertex from N corresponds to a partition into prefix and suffix of the
ordering.

We define arcs of D as follows. For every pair of k-cuts (X1, Y1),
(X2, Y2) such that (X2, Y2) extends (X1, Y1) using vertex v, we put an arc
from cut (X1, Y1) to cut (X2, Y2), where the weight of this arc is equal to
|E(X1, {v})|, that is, the number of arcs that cease to be be directed from
the left side to the right side of the partition when moving v between these
parts. Construction of arcs D may be performed in O(|N | · kO(1) ·n) time,
assuming that the enumeration of Lemma 75 constructed also extension
lists using Lemma 77. Moreover, the weight of each arc can be computed in
O(n) time by examining outneighbors of v, hence the total time spent on
computing weights of arcs is O(|N |·k ·n). Summarizing, the whole digraph
D may be constructed in O(|N | · kO(1) · n) = O(exp(C

√
2k) · kO(1) · n2)

time, and has |N | vertices and O(|N | · k) arcs.
Observe that a path from vertex (∅, V (T )) to a vertex (V (T ), ∅) of

total weight � defines an ordering of vertices of T that has exactly �
forward arcs — each of these arcs was taken into account while moving
its head from the right side of the partition to the left side. On the other
hand, every ordering of vertices of T that has exactly � ≤ k forward arcs
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defines a path from (∅, V (T )) to (V (T ), ∅) in D of total weight �; note
that all partitions into prefix and suffix in this ordering are k-cuts, so they
constitute legal vertices in D. Hence, we need to check whether vertex
(V (T ), ∅) can be reached from (∅, V (T )) by a path of total weight at most
k. This, however, can be done in time O((|V (D)|+ |E(D)|) log |V (D)|) =
O(exp(C

√
2k) · kO(1) · n log n) using Dijkstra’s algorithm. The feedback

arc set of size at most k can be easily retrieved from the constructed path
in O(n2) time.

We remark that it is straightforward to adapt the algorithm of Theo-
rem 87 to the weighted case, where all the arcs are assigned a real weight
larger or equal to 1 and we parametrize by the target total weight of the
solution. As the minimum weight is at least 1, we may still consider only
k-cuts of the digraph where the weights are forgotten. On this set we
employ a modified dynamic programming routine, where the weights of
arcs in digraph D are not simply the number of arcs in E({v}, X1), but
their total weight.

We now proceed to the main result of this section, i.e., the subexpo-
nential algorithm for cutwidth of a semi-complete digraph.

Theorem 88. There exists an algorithm that, given a semi-complete
digraph T on n vertices and an integer k, in time 2O(

√
k log k) · n2 either

computes a vertex ordering of width at most k or correctly concludes that
this is impossible.

Proof. We apply the algorithm of Lemma 75 in T for parameter k and
the bound A · exp(2C

√
k(1 + ln 2k)) · (n + 1) = 2O(

√
k log k) · n given by

Corollary 84. If the algorithm concluded that ctw(T ) > k, then we may
provide a negative answer. Similarly, if the algorithm concluded that
|N (T, k)| > A · exp(2C

√
k(1 + ln 2k)) · (n+ 1), by Corollary 84 we may

also providing a negative answer. Hence, from now on we assume that we
have the set N := N (T, k) and we know that |N | ≤ 2O(

√
k log k) · n. Note

that application of Lemma 75 takes O(2O(
√
k log k) · n2) time.

We now describe a dynamic programming routine that basing on the
set N computes an ordering of width at most k, or correctly concludes
that it is impossible. The routine is very similar to that of Theorem 87,
so we describe only the necessary modifications.

We define an auxiliary digraph D on the vertex set N exactly in the
same manner as in the proof of Theorem 87, but this time D is unweighted.
Similarly as before, D may be constructed in time O(|N | · kO(1) · n) =
2O(

√
k log k) · n2, and has |N | vertices and O(|N | · k) arcs. Clearly, paths
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in D from (∅, V (T )) to (V (T ), ∅) correspond to orderings of V (T ) of
cutwidth at most k. Therefore, it suffices check whether in D there exists
a path from (∅, V (T )) to (V (T ), ∅) using depth-first search, which takes
O(|V (D)|+ |E(D)|) = 2O(

√
k log k)n time.

Finally, we present how the framework can be applied to the OLA

problem.

Theorem 89. There exists an algorithm that, given a semi-complete
digraph T on n vertices and an integer k, in time 2O(k1/3

√
log k) · n2 either

computes a vertex ordering of cost at most k, or correctly concludes that
it is not possible.

Proof. We apply the algorithm of Lemma 75 in T for parameter (4k)2/3

and the bound A · exp(2C · (4k)1/3 ·
√
1 + ln(2 · (4k)2/3)) · (n + 1) =

2O(k1/3
√
log k) · n given by Corollary 86. If the algorithm concluded that

ctw(T ) > (4k)2/3, then by Lemma 85 we may provide a negative answer.
Similarly, if the algorithm concluded that |N (T, (4k)2/3)| > A · exp(2C ·
(4k)1/3 ·

√
1 + ln(2 · (4k)2/3)) · (n+1), by Corollary 86 we may also provide

a negative answer. Hence, from now on we assume that we have the set
N := N (T, (4k)2/3) and we know that |N | ≤ 2O(k1/3

√
log k) · n. Note that

application of Lemma 75 takes 2O(k1/3
√
log k) · n2 time.

In order to construct the dynamic programming routine, we proceed
very similarly to the proof of Theorem 87. Define the same auxiliary
digraph D on the vertex set N , where we put an arc from (X1, Y1) to
(X2, Y2) if and only if (X2, Y2) extends (X1, Y1); this time, the weight of
this arc is equal to |E(X1, Y1)|. As in the proof of Theorem 87, the digraph
D may be constructed in time O(|N | · kO(1) · n), and has |N | vertices and
O(|N | ·k) arcs; note here that we do not need to additionally compute the
weights of arcs in D, since values |E(X,Y )| have been provided together
with the cuts (X,Y ) by the enumeration algorithm.

Now observe that paths from (∅, V (T )) to (V (T ), ∅) of total weight � ≤
k correspond one-to-one to orderings with cost �: the weight accumulated
along the path computes correctly the cost of the ordering due to Lemma 72.
Note that Lemma 85 ensures that in an ordering of cost at most k,
the only feasible partitions into prefix and suffix of the ordering are
in N , so they constitute legal vertices in D. Hence, we may apply
Dijkstra’s algorithm to check whether vertex (V (T ), ∅) is reachable from
(∅, V (T )) via a path of total weight at most k, and this application

takes O((|V (D)|+ |E(D)|) log |V (D)|) = 2O(k1/3
√
log k) · n log n time. The

corresponding ordering may be retrieved from this path in O(n) time.
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Similarly to Theorem 87, it is also straightforward to adapt the algo-
rithm of Theorem 89 to the natural weighted variant of the problem, where
each arc is assigned a real weight larger or equal to 1, each arc directed
forward in the ordering contributes to the cost with its weight multiplied
by the length of the arc, and we parametrize by the total target cost. One
needs also to maintain the total weight of the cut in the enumeration
algorithm of Lemma 75 to avoid its recomputation for every arc of D,
which done by brute-force would increase the running time from quadratic
in terms of n to cubic.

6.4 Conclusions and open problems

In this chapter we have presented new methods of computing the two main
width measures of semi-complete digraphs: cutwidth and pathwidth. For
both of the width measures we have designed a polynomial-time approxi-
mation algorithm as well as an FPT exact algorithm. Our algorithms have
better guarantees on performance than previous methods mainly thanks
to a new set of combinatorial obstacles. We believe that the current work
settles good foundations for future research on topological problems in
semi-complete digraphs, since computing exactly or approximately a width
measure of a combinatorial object often serves as a crucial subroutine in
algorithms for other problems.

Nevertheless, the results of this chapter leave a number of thrilling open
questions about the complexity of computing the cutwidth and pathwidth
of a semi-complete digraph. To begin with, we are still lacking proofs that
computing cutwidth and pathwidth of a semi-complete digraph exactly is
NP-hard. It is very hard to imagine that any of these problems could be
solved in polynomial-time; however, proving NP-hardness of computing
width measures is usually technically very challenging. For example, NP-
hardness of computing cliquewidth of an undirected graph has been shown
only in 2006 by Fellows et al. [129], after resisting attacks for a few years
as a long-standing open problem. Furthermore, proving NP-hardness
results for problems in tournaments is also known to be extremely difficult,
because the instance obtained in the reduction is already very much
constrained by the fact that it must be a tournament. The Feedback

Arc Set problem, which is a simpler relative of the problem of computing
exactly the cutwidth of a tournament, was proven to be NP-hard also
only recently. First, Ailon et al. proved that the problem is NP-hard
under randomized reductions [5], and then Alon [9] and Charbit et al. [60]
independently presented proofs that used only deterministic reductions,
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thus settling NP-hardness of the problem in the classical sense. Therefore,
the author conjectures that it should be very challenging to show that
computing exactly the cutwidth of a semi-complete digraph is hard: one
needs both to overcome complications that arise when considering a width
measure that is defined via existence of a global decomposition, and to
solve problems that made the reduction for Feedback Arc Set so elusive.
The author’s feeling is that settling NP-hardness of computing exactly
the pathwidth of a semi-complete digraph should be more attainable, and
therefore it is a natural next step.

When it comes to approximation algorithms, the obvious open question
is to determine whether cutwidth admits a constant factor approximation;
recall that the algorithm presented in this chapter is only an O(OPT )-
approximation. As far as pathwidth is concerned, it is natural to ask if
the parameter admits a PTAS, or whether computing it is APX-hard.
Obviously, we need first to answer the question about NP-hardness, which
is still unclear. The author’s feeling is that APX-hardness should follow
from the NP-hardness reduction.

Finally, the exact algorithms also give much room for improvement.
For pathwidth it is natural to ask for an algorithm working in O∗(2O(k))
time. Currently, the additional log k factor in the exponent is an artifact
of using quadratic kernel of Buss for identifying sets of candidates for
consecutive bags. If one was able for every bag to find a set of candidates
for elements of this bag which was of size linear in k instead of quadratic,
then an algorithm working in time O∗(2O(k)) would immediately follow.
As far as cutwidth is concerned, the log k factor under the square root in
the exponent seems also artificial. At this moment, appearance of this
factor is a result of pipelining Lemma 79 with Lemma 82 in the proof
of Lemma 83. A closer examination of the proofs of Lemmas 79 and 82
shows that bounds given by them are essentially optimal on their own;
yet, it is not clear whether the bound given by pipelining them is optimal
as well. The author conjectures that it should be possible to obtain

an O∗(2O(k)) algorithm for pathwidth and an O∗(2O(
√
k)) algorithm for

cutwidth, and that these upper bounds can be matched by tight lower

bounds (i.e., no O∗(2o(k)) and O∗(2o(
√
k)) algorithms, respectively) under

Exponential-Time Hypothesis. Of course, obtaining such lower bounds
would be even more difficult than settling NP-hardness, which is still
open.



Chapter 7

Solving topological
problems

7.1 Algorithms for containment testing

In this section we utilize the results of the last chapter to give fast
algorithms for containment testing. As described in Chapter 5, the
WIN/WIN approach employed for containment testing makes use of
dynamic programming routines that work on decompositions of bounded
width. More precisely, we would like to design a dynamic programming
routine that on decomposition of width p of a semi-complete digraph
T on n vertices, works in time f(|H|, p) · n2 for some (possibly small)
function f . Existence of such an algorithm for the topological subgraph
and minor relations follows immediately from Theorem 36, as the definition
of containing H as a topological subgraph or a minor can be trivially
expressed by a MSO1 formula of length depending on |H| only. For the
immersion relation one can use the following result of Ganian et al. [159].

Proposition 90 ([159]). For every � there exists an MSO1 formula
π�(s1, s2, . . . , s�, t1, t2, . . . , t�) that for a digraph with distinguished ver-
tices s1, s2, . . . , s�, t1, t2, . . . , t� (some of which are possibly equal) asserts
whether there exists a family of arc-disjoint paths P1, P2, . . . , P� such that
Pi begins in si and ends in ti, for i = 1, 2, . . . , �.

Therefore, in order to construct a formula expressing that a digraph
T contains a digraph H as an immersion, we can quantify existentially
the images of vertices of H, verify that they are pairwise different, and
then use formula π|E(H)| to check existence of arc-disjoint paths between
corresponding images. Unfortunately, for Theorem 36 only very crude

160
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upper bounds on the obtained function f can be given. Essentially, as
described in Sections 3.2.2 and 3.3.1, the engine behind Theorem 36 is
translation of formulas of MSO logic on trees to tree automata. It is
known that the dependence of the size of the automaton obtained in the
translation on the size of the formula is roughly q-times exponential, where
q is the quantifier rank of the formula. Moreover, this is unavoidable in
the following sense: the size of the automaton cannot be bounded by any
elementary function of the length of the formula. Since formulas expressing
the topological subgraph and minor relations have constant quantification
rank, the function f(·, ·) given by an application of Theorem 36 will be
in fact elementary. As far as the immersion relation is concerned, the
quantification rank of the formula given by Proposition 90 is linear in �,
and thus we cannot even claim elementary running time bounds.

Instead, in order to give explicit bounds on the running time of
topological subgraph, immersion, and minor testing, we design explicit
dynamic programming routines. The routines are presented in Section 7.4,
and here we only state the results. We remark that the routines can in
fact check more involved properties, which will be useful in applications.

Theorem 91. There exists an algorithm that given a digraph H with
k vertices, � arcs, a set F ⊆ E(H) of constraints, and a semi-complete
digraph T on n vertices together with its path decomposition of width p,
checks whether H is topologically contained in T with constraints F in
time 2O((p+k+�) log p) · n.
Theorem 92. There exists an algorithm that, given a rooted digraph
(H; v1, v2, . . . , vt) with k vertices and � arcs, and a semi-complete rooted
digraph (T ;w1, w2, . . . , wt) on n vertices together with its path decomposi-
tion of width p, checks whether H can be immersed into T while preserving
roots in time 2O(k log p+p�(log �+log p)) · n.

It may be somewhat surprising that the algorithms of Theorems 91
and 92 work in time linear in n, while representation of T using adjacency
matrix uses O(n2) space. Note however, that a representation of a path
decomposition of width p uses only O(pn) space. In these theorems
we assume that the algorithm is given access to an adjacency matrix
representing T that can be queried in constant time. Both algorithms
perform one linear scan through the given path decomposition using the
adjacency matrix as a black-box, and performing only a linear number of
queries on it.

By pipelining Lemma 22 and Theorem 91 we obtain also the routine
for the minor relation.
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Theorem 93. There exists an algorithm that given digraph H with k
vertices and � arcs, and a semi-complete digraph T together with its path
decomposition of width p, checks in time 2O((p+k+�)(log p+log k+log �)) · n,
whether H is a minor of T .

We are ready to provide formal descriptions of the containment testing
algorithms.

Theorem 94. There exists an algorithm that, given a semi-complete T
on n vertices and a digraph H with k = |H|, in time 2O(k log k) · n2 checks
whether H is topologically contained in T .

Proof. We run the algorithm given by Theorem 65 for parameters 20k and
520k, which either returns a (520k+2, 20k)-degree tangle, a (20k+1, 20k)-
matching tangle or a decomposition of width at most 560k. If the last
is true, we run the dynamic programming routine of Theorem 91, which
works in 2O(k log k) · n time. However, if the approximation algorithm
returned an obstacle, by Lemmas 47, 50 and 41 we can provide a positive
answer: existence of a (520k + 2, 20k)-degree tangle or a (20k + 1, 20k)-
matching tangle ensures that H is topologically contained in T .

By plugging in the dynamic programming routine for immersion (The-
orem 114 with no roots specified) instead of topological containment, we
obtain the following:

Theorem 95. There exists an algorithm that, given a semi-complete T
on n vertices and a digraph H with k = |H|, in time 2O(k2 log k) ·n2 checks
whether H can be immersed into T .

Finally, in the same manner we can use the algorithm of Theorem 93
and substitute the usage of Lemma 41 with Lemma 42 to obtain the algo-
rithm for testing the minor relation. Note that application of Lemma 42
requires providing a slightly larger jungle; hence, in the application of
Theorem 65 we use parameters 45k and 1170k instead of 20k and 520k.

Theorem 96. There exists an algorithm that, given a semi-complete T
on n vertices and a digraph H with k = |H|, in time 2O(k log k) · n2 checks
whether H is a minor of T .

7.2 Containment testing and meta-theorems

We observe that FPT algorithms for testing containment relations can be
used also to prove meta-theorems of more general nature using the WQO
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results of Chudnovsky and Seymour [74] and of Kim and Seymour [215].
We explain this on the following example. Let Π be a class of digraphs
and denote by Π + kv the class of digraphs, from which one can delete at
most k vertices to obtain a member of Π. We study the following problem:

Π + kv Recognition

Input: Digraph D and a non-negative integer k

Parameter: k

Question: Is there S ⊆ V (D), |S| ≤ k, such that D \ S ∈ Π?

We are interested in classes Π which are closed under immersion. For
example the class of acyclic digraphs, or digraphs having cutwidth at
most c, where c is some constant, are of this type (see Lemma 26). In
particular, the parameterized Feedback Vertex Set in directed graphs
is equivalent to Π + kv Recognition for Π being the class of acyclic
digraphs. Chudnovsky and Seymour [74] showed that immersion order on
semi-complete digraphs is a well-quasi-order, see Proposition 23. Based
on this result and the approximation algorithm for pathwidth, we are
able to prove the following meta-theorem. Note that it seems difficult to
obtain the results of this flavor using cutwidth, as cutwidth can decrease
dramatically even when one vertex is deleted from the digraph.

Theorem 97. Let Π be an immersion-closed class of semi-complete di-
graphs. Then Π+ kv Recognition is FPT on semi-complete digraphs.

Proof. As Π is immersion-closed, by Proposition 23 we infer that Π can
be characterized by admitting no member of a family of semi-complete
digraphs {H1, H2, . . . , Hr} as an immersion, where r = r(Π) depends only
on the class Π. We will again make use of Proposition 90. For every
i ∈ {1, 2, . . . , r} we construct an MSO1 formula ϕi(X) with one free
monadic vertex variable X that is true if and only if digraph G\X contains
Hi as an immersion. We simply quantify existentially over the images of
vertices of Hi, use the appropriate formula π|E(H)| for quantified variables
to express existence of arc-disjoint paths, and at the end relativize the
whole formula to the subdigraph induced by V (T )\X. Hence, if we denote
by ψk(X) the assertion that |X| ≤ k (easily expressible in FO by a formula,
whose length depends on k), the formula ϕ = ∃Xψk(X) ∧

∧r
i=1 ¬ϕi(X) is

true exactly in semi-complete digraphs from which one can delete at most
k vertices in order to obtain a semi-complete digraphs belonging to Π.

Observe that every member of class Π has pathwidth bounded by a
constant depending on Π only, as by Theorem 65 and Lemmas 47, 50
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and 41, a semi-complete digraph of large enough pathwidth contains a
sufficiently large short jungle, in which one of the digraphs Hi is topo-
logically contained, so also immersed. It follows that if the pathwidth
of every member of Π is bounded by cΠ, then the pathwidth of every
member of Π + kv is bounded by cΠ + k. Therefore, we can apply the
following WIN/WIN approach. We apply Theorem 65 for parameters
k′ and 4k′ where k′ = cΠ + k. This application takes time g(k)|V (T )|2
and provides either an obstacle for admitting a path decomposition of
width at most cΠ + k, which is sufficient to provide a negative answer, or
a path decomposition of width at most 6(cΠ + k), on which we can run
the algorithm given by Theorem 36 applied to formula ϕ.

7.3 The algorithm for Rooted Immersion

In this section we apply the developed tools to solve the Rooted Immer-

sion problem in semi-complete digraphs, i.e., testing whether one digraph
H is an immersion of another semi-complete digraph T where some of the
vertices have already prescribed images.

The algorithm of Theorem 95 cannot be used to solve Rooted Im-

mersion because in the case when an obstacle is found, we are unable
to immediately provide the answer: even though H can be found in the
obstacle as an immersion, this embedding can have nothing to do with
the roots. Therefore, we need to exploit the identified obstacle in a dif-
ferent way. Following the classical approach in such a case, we design an
irrelevant vertex rule. That is, given the obstacle we find in polynomial
time a vertex that can be assumed to be not used by some solution, and
which therefore can be safely deleted from the graph. After this deletion
we simply restart the algorithm. Thus at each step of this process the
algorithm either solves the problem completely using dynamic program-
ming on a path decomposition of small width, or removes one vertex of
the graph; as a result, we run the approximation algorithm of Theorem 65
and identification of an irrelevant vertex at most n times.

The design of the irrelevant vertex rule needs very careful argumen-
tation, because one has to argue that some vertex is omitted by some
solution without having any idea about the shape of this solution, or even
of existence of any solutions at all. Therefore, instead of short jungles
that were the main tool used in Section 7.1, we use the original obstacle
introduced by Fradkin and Seymour [152], namely the triple.
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7.3.1 Irrelevant vertex in a triple

In this section we show how to identify a vertex that is irrelevant for the
Rooted Immersion problem in a semi-complete graph with a sufficiently
large triple. Let p(k) = 80k2 + 80k + 5. We prove the following theorem.

Theorem 98. Let I = ((H;u1, u2, . . . , ut), (T ; v1, v2, . . . , vt)) be an in-
stance of the Rooted Immersion problem, where k = |H| and T is
a semi-complete graph on n vertices containing a p(k)-triple (A,B,C)
disjoint with {v1, v2, . . . , vt}. Then it is possible in time O(p(k)2 · n2)
to identify a vertex x ∈ B such that I is a YES instance of Rooted

Immersion if and only if I ′ = ((H,u1, u2, . . . , ut), (T \ {x}, v1, v2, . . . , vt))
is a YES instance.

Before we proceed with the proof of Theorem 98, we need to make
several auxiliary observations.

Let η be a solution to the Rooted Immersion instance and let Q be
the family of paths being images of all the arcs in H, i.e., Q = η(E(H)).
We call an arc (a vertex) used by a path P if it is traversed by P . We say
that an arc (a vertex) is used by Q if it is used by any path of Q. We
omit the family Q whenever it is clear from the context. An arc (a vertex)
which is not used is called a free arc (vertex).

Observation 99. If Q is a family of paths containing simple paths only,
then every vertex in T is adjacent to at most k used incoming arcs and at
most k used outgoing arcs.

Proof. Otherwise, there is a path in the solution that visits that vertex at
least two times. Therefore, there is a cycle on this path, which contradicts
its simplicity.

Let η be a solution to Rooted Immersion instance I that minimizes
the total sum of length of paths in η(E(H)), and let Q = η(E(H)). Firstly,
we observe some easy properties of Q.

Observation 100. Every path from Q uses at most 2 arcs from the
matching between C and A.

Proof. Assume otherwise, that there is a path P ∈ Q that uses three arcs
of the matching: (c1, a1), (c2, a2), (c3, a3), appearing in this order on the
path. By Observation 99, for at most k vertices of v ∈ B the arc (a1, v)
is used. For the same reason, for at most k vertices v ∈ B the arc (v, c3)
is used. As |B| > 2k, there exists v ∈ B such that (a1, v) and (v, c3) are
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not used. Now replace the part of P appearing between a1 and c3 with
a1 → v → c3. We obtain a solution with smaller sum of lengths of the
paths, a contradiction.

Observation 101. Every path from Q uses at most 2k+4 vertices from A.

Proof. Assume otherwise, that there is a path P ∈ Q passing through at
least 2k + 5 vertices from A. By Observation 100, at most 2k of them
are endpoints of used arcs of the matching between C and A. Therefore,
there are at least 5 visited vertices, which are endpoints of an unused
arc of the matching. Let us denote any 5 of them by a1, a2, a3, a4, a5 and
assume that they appear on P in this order. Let (c5, a5) be the arc of the
matching between C and A that is incident to a5. By the same reasoning
as in the proof of Observation 100, there exists a vertex v ∈ B, such
that (a1, v) and (v, c5) are unused arcs. Substitute the part of the path P
between a1 and a5 by the path a1 → v → c5 → a5, which consists only
of unused arcs. We obtain a solution with smaller sum of lengths of the
paths, a contradiction.

A symmetrical reasoning yields the following observation.

Observation 102. Every path from Q uses at most 2k+4 vertices from C.

Finally, we prove a similar property for B.

Observation 103. Every path from Q uses at most 4 vertices from B.

Proof. Assume otherwise, that there is a path P ∈ Q such that it passes
through at least 5 vertices from B. Let us denote any 5 of them by
b1, b2, b3, b4, b5 and assume that they appear on P in this order. By
Observation 99 there are at most k outgoing arcs incident to b1 used,
and there are at most k incoming arcs incident to b5 used. Moreover,
by Observation 100 there are at most 2k arcs of the matching between
C and A used. As p(k) > 4k, we conclude that there is an unused
arc of the matching (c, a), such that arcs (b1, c) and (a, b5) are also
unused. Substitute the part of the path P between b1 and b5 by the path
b1 → c → a → b5. We obtain a solution with smaller sum of lengths of
the paths, a contradiction.

From Observations 101-103 we obtain the following corollary.

Corollary 104. In B there are at most 4k vertices used by Q, so in
particular there are at least 5k + 1 vertices free from Q. Moreover, within
the matching between C and A there are at least 4k arcs having both
endpoints free from Q.
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We note that the Corollary 104 holds also for much larger values than
5k + 1, 4k, respectively; we choose to state it in this way to show how
many free vertices from B and free arcs of the matching we actually use
in the proof of Theorem 98. We need one more auxiliary lemma that will
prove to be useful.

Lemma 105. Let T = (V1 ∪ V2, E) be a semi-complete bipartite digraph,
i.e., a directed graph, where arcs are only between V1 and V2, but for every
v1 ∈ V1 and v2 ∈ V2 at least one of the arcs (v1, v2) and (v2, v1) is present.
Then at least one of the assertions holds:

(a) for every v1 ∈ V1 there exists v2 ∈ V2 such that (v1, v2) ∈ E;

(b) for every v2 ∈ V2 there exists v1 ∈ V1 such that (v2, v1) ∈ E.

Proof. Assume that (a) does not hold. This means that there is some
v0 ∈ V1 such that for all v2 ∈ V2 we have (v2, v0) ∈ E. Then we can always
pick v0 as v1 in the statement of (b), so (b) holds.

Observe that by reversing all the arcs we can obtain a symmetrical
lemma, where we assert existence of inneighbors instead of outneighbors.

We are now ready to prove Theorem 98. Whenever we will refer to
the matching, we mean the matching between C and A.

Proof of Theorem 98. To prove the theorem we give an algorithm that
outputs a vertex x ∈ B, such that if there exists a solution to the the
given instance, then there exists also a solution in which no path passes
through x. The algorithm will run in time O(p(k)2 · n2).

We proceed in three steps. The first step is to identify in O(p(k)2 · n2)
time a set X ⊆ B, |X| ≥ 16k2 + 16k+ 1, such that if I is a YES instance,
then for every x ∈ X there is a solution η with P = η(E(H)) having the
following properties:

(1.i) at least 3k + 1 vertices of B are free from P;

(1.ii) at least 2k arcs of the matching have both endpoints free from P;

(1.iii) if x is accessed by some path P ∈ P from a vertex v, then v ∈ A.

The second step of the proof is to show that one can identify in
O(p(k)2 · n2) time a vertex x ∈ X such that if I is a yes instance, then
there is a solution with P = η(E(H)) having the following properties:

(2.i) at least k + 1 vertices of B are free from P;
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(2.ii) if x is accessed by some path P ∈ P from a vertex v, then v ∈ A;

(2.iii) if x is left by some path P ∈ P to a vertex v, then v ∈ C.

The final, concluding step of the proof is to show that there is a
solution P = η(E(H)) such that

(3.i) No path from P is using x.

We proceed with the first step. Let Q = η(E(H)), where η is the
solution for the Rooted Immersion instance with the minimum sum of
lengths of the paths.

For every vertex b ∈ B, we identify two sets: Gb, Rb. The set Rb

consists of those inneighbors of b outside A, which are inneighbors of at
least 6k vertices from B, while Gb consists of the rest of inneighbors of b
outside A. Formally,

Rb = {v | v ∈ V (T ) \A ∧ (v, b) ∈ E ∧ |N+(v) ∩B| ≥ 6k},
Gb = {v | v ∈ V (T ) \A ∧ (v, b) ∈ E ∧ |N+(v) ∩B| < 6k}.

Note that Rb, Gb can be computed inO(n2) time. Let B∅ be the set of those
vertices b ∈ B, for which Gb = ∅. We claim that if |B∅| ≥ 16k2 + 16k + 1,
then we can set X = B∅.

Take any b ∈ B∅. We argue that we can reroute the paths of Q that
access b from outside A in such a manner, that during rerouting each
of them we use at most one additional free vertex from B and at most
one additional arc from the matching. We reroute the paths one by one.
Take path P that accesses b from outside A, and let v be the previous
vertex on the path. As Gb = ∅, v ∈ Rb. Therefore, v has at least 6k
outneighbors in B. Out of them, at most 4k are not free with respect to
Q, due to Observation 103, while at most k − 1 were used by previous
reroutings. Therefore, there is a vertex b′ ∈ B ∩ N+(v), such that b′ is
still free. Thus we can substitute usage of the arc (v, b) on P by the path
v → b′ → c → a → b, where (c, a) is an arbitrary arc of the matching
that still has both endpoints free, which exists due to using at most k − 1
of them so far. After the rerouting we examine the obtained walk and
remove all the cycles on this walk so that we obtain a simple path. Note
that this shortcutting step cannot spoil property (1.iii) for this path.

We are now left with the case when |B∅| < 16k2 + 16k + 1. Let
Bg = B \ B∅. Then |Bg| ≥ 4(16k2 + 16k + 1). We construct a semi-
complete digraph S = (Bg, L) as follows. For every b1, b2 ∈ Bg, b1 �=
b2, we put arc (b1, b2) if for every v ∈ Gb1 , either v ∈ Gb1 ∩ Gb2 or
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v has an outneighbor in Gb2 . Similarly, we put arc (b2, b1) into L if
for every v ∈ Gb2 , either v ∈ Gb1 ∩ Gb2 or v has an outneighbor in
Gb1 . By applying Lemma 105 to the semi-complete bipartite graph
((Gb1 \Gb2) ∪ (Gb2 \Gb1), E(Gb1 \Gb2 , Gb2 \Gb1)) we infer that for every
pair of distinct b1, b2 ∈ Bg there is at least one arc with endpoints b1
and b2. Hence S is semi-complete. The definition of S gives raise to a
straightforward algorithm constructing it in O(p(k)2 · n2) time.

B

A C

Gb Rb

G
b′ R

b′

v

v
b′

b b′

Figure 7.1: Rerouting strategy for a path accessing vertex b from Gb. The original path
is depicted in violet, while the rerouted path is depicted in blue.

Let X be the set of vertices of Bg that have outdegree at least 6k
2+6k

in S; note that X can be constructed in O(p(k)2) time. Observe that
|X| ≥ 16k2+16k+1, since otherwise the sum of the outdegrees in S would
be at most (16k2 + 16k)(|Bg| − 1) + (|Bg| − 16k2 − 16k)(6k2 + 6k − 1),

which is smaller than
(|Bg |

2

)
for |Bg| ≥ 4(16k2 + 16k + 1).

We now claim that for every b ∈ X, every path of Q using vertex b can
be rerouted at the cost of using at most two free vertices of B and at most
two arcs from the matching that have still both endpoints free. We perform
reroutings one by one. Assume that there is a path P ∈ Q accessing b
from outside A. Let v be the predecessor of b on P . If v ∈ Rb, then we use
the same rerouting strategy as in the case of large B∅. Assume then that
v ∈ Gb. As b ∈ X, its outdegree in S is at least 6k2+6k. This means that
there are at least 6k2 + 6k vertices b′ in Bg and corresponding vertices
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vb′ ∈ N−(b′), such that for every b′ either vb′ = v or (v, vb′) ∈ E. Out of
these 6k2 + 6k vertices b′, at most 4k are not free due to Observation 103,
at most 2k − 2 were used in previous reroutings, which leaves us with at
least 6k2 vertices b′ still being free. If for any such b′ we have vb′ = v, we
follow the same rerouting strategy as in the case of large B∅. Assume then
that these 6k2 vertices vb′ are all distinct from v; note that, however, they
are not necessarily distinct from each other. As each vb′ belongs to Gb′ ,
vb′ can have at most 6k−1 outneighbors in B. Hence, each vertex of V (T )
can occur among these 6k2 vertices vb′ at most 6k − 1 times, so we can
distinguish at least k + 1 pairwise distinct vertices vb′ . We have that arcs
(v, vb′) and (vb′ , b

′) exist, while b′ is still free. By Observation 99, at most
k arcs (v, vb′) are used by some paths, which leaves us at least one vb′ , for
which arc (v, vb′) is free. We can now substitute the arc (v, b) in P by the
path v → vb′ → b′ → c→ a→ v, where (c, a) is an arbitrarily chosen arc
from the matching that still has both endpoints free, which exists due
to using at most 2k − 2 of them so far. See Figure 7.1. After rerouting,
remove all cycles that appeared on the obtained walk in order to obtain a
simple path; again, this shortcutting step does not spoil property (1.iii)
for the path. Thus, Observation 99 still holds after rerouting. Observe
that in this manner we use additional vertex b′ that was free, additional
one arc (c, a) from the matching, whereas passing the path through vb′

can spoil at most one arc of the matching that still had both endpoints
free, or at most one free vertex from B. This concludes the construction
of the set X.

We proceed with the second step of the proof. We mimic the rerouting
arguments from the first step to obtain a vertex x ∈ X with the following
property: the rerouted family of paths P obtained in the first step that
can access x only from A, can be further rerouted so that every path can
only leave x by accessing some vertex from C.

For every b ∈ X consider sets R′
b and G

′
b defined similarly as before:

R′
b = {v | v ∈ V (T ) \ C ∧ (b, v) ∈ E ∧ |N−(v) ∩B| ≥ 8k},
G′

b = {v | v ∈ V (T ) \ C ∧ (b, v) ∈ E ∧ |N−(v) ∩B| < 8k}.

Assume first that there is some y ∈ X, such that G′
y = ∅. We argue that

we can in such a case set x = y. Firstly, reroute a solution that minimizes
the total sum of lengths of the paths obtaining a solution with the family
of paths P that uses at most 2k additional free vertices from B and at
most 2k additional arcs from the matching that had both endpoints free,
but does not access x from outside A. One by one we reroute paths that
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traverse y. Each rerouting will cost at most one free vertex from B and
at most one arc from the matching that has still both endpoints free. Let
P be a path from the solution that passes through y and let v ∈ R′

y be
the next vertex on P . The vertex v has at least 8k inneighbors in B; at
most 4k of them could be used by the original solution, at most 2k of
them could be used in rerouting during the first phase and at most k − 1
of them could be used during previous reroutings in this phase. Therefore,
we are left with at least one vertex y′ ∈ B that is still free, such that
(y′, v) ∈ E(T ). We can now substitute the arc (y, v) in P by the path
y → c → a → y′ → v, where (c, a) is an arbitrarily chosen arc from the
matching that was not yet used, which exists due to using at most 3k − 1
of them so far. Again, we shortcut all the cycles that appeared after this
substitution so that we obtain a simple path. Note that this shortcutting
step spoils neither property (2.ii) nor (2.iii) for the path.

We are left with the case when G′
y is nonempty for all y ∈ X. Construct

a digraph S′ = (X,L′) in symmetrically to the previous construction: put
arc (b1, b2) into L

′ iff for every vb2 ∈ G′
b2
there exists vb1 ∈ G′

b1
such that

vb1 = vb2 or (vb1 , vb2) ∈ E. The remark after Lemma 105 ensures that S′

is semi-complete. Again, S′ can be computed in O(p(k)2 · n2) time.
As |X| ≥ 16k2 + 16k + 1, there exists x ∈ X, which has indegree at

least 8k2+8k in S′; note that x can be found in O(p(k)2) time. As before,
we argue that after the first rerouting phase for x, we can additionally
reroute the paths so that every path can leave x only into C. We reroute
the paths one by one; each rerouting uses at most two free vertices from
B and at most two arcs from the matching that still had both endpoints
free. As the indegree of x in S′ is at least 8k2 + 8k, we have at least
8k2 + 8k vertices x′ ∈ X and corresponding vx′ ∈ G′

x′ , such that vx′ = v
or (vx′ , v) ∈ E. At most 4k of them were used in Q, at most 2k were
used in the first phase of rerouting, and at most 2k− 2 of them were used
in this phase of rerouting. This leaves at least 8k2 vertices x′ which are
still free. If for any of them we have vx′ = v, we can make the rerouting
similarly as in the previous case: we substitute the arc (x, v) with the path
x→ c→ a→ x′ → v, where (c, a) is an arbitrary arc of the matching that
still has both endpoints free, which exists due to using at most 4k − 2 of
them so far. Assume then, that all vertices vx′ are distinct from v; note
that, however, they are not necessarily distinct from each other. As for
every x′ we have vx′ ∈ G′

x′ , by the definition of G′
x′ the vertices vx′ can

have at most 8k − 1 inneighbors in X. This means that every vertex of
V (T ) can occur among vertices vx′ at most 8k − 1 times, which proves
that there are at least k + 1 pairwise distinct vertices among them. By
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Observation 99, for at most k of them the arc outgoing to v can be already
used, which leaves us with a single vertex x′ such that arcs (x′, vx′) and
(vx′ , v) exist and are not yet used, whereas x′ is still free. Now we can
perform the rerouting as follows: we substitute the arc (x, v) in P by the
path x → c → a → x′ → vx′ → v, where (c, a) is an arbitrary arc from
the matching that still had both endpoints free. Such an arc exists since
we used at most 2k such arcs in the first phase of the rerouting, and at
most 2k − 2 in this phase of the rerouting. Similarly as before, we use
one additional free vertex x′ from B, one additional arc (c, a) from the
matching, while usage of vx′ can spoil at most one free vertex from B or
at most one arc from the matching. After this, we delete all the possible
cycles created on the path in order to make Observation 99 still hold;
again, this shortcutting step spoils neither property (2.ii) nor property
(2.iii). This concludes the construction of the vertex x.

To finish the proof it remains to show that after performing the two
phases of rerouting and obtaining a solution η′, whose paths can access
and leave x only from A and into C, we can reroute every path so that
it does not traverse x at all. Note that so far we have used at most 4k
vertices from B, so we still have at least k + 1 vertices unused. Observe
that at most k of these vertices can belong to η′(V (H)), which leaves us
with at least one vertex x′ that is still free and is not an image of any
vertex of H in η′.

If x ∈ η(u) for some u ∈ V (H), then we simply move the image
u: we consider η′′ that differs from η′ by replacing x with x′ both in
the image of u and in all the paths from η′(E(H)) which traverse x.
Note that we can make this move since x is not a root vertex: the
triple does not contain any roots. In case when x /∈ η(V (H)) we can
perform the same rerouting scheme: in all the paths from η′(E(H)) we
substitute every appearance of x with x′. Then no path traverses x, so
I ′ = ((H,u1, u2, . . . , ut), (T \ {x}, v1, v2, . . . , vt)) is a YES instance if I
was.

7.3.2 Applying the irrelevant vertex rule

Armed with the irrelevant vertex rule, we can proceed to the algorithm
for Rooted Immersion.

Theorem 106. There exists an algorithm that, given a rooted semi-
complete digraph T on n vertices and a rooted digraph H, in time f(|H|)·n3
checks whether there exists a rooted immersion from H to T, for some
elementary function f .



CHAPTER 7. SOLVING TOPOLOGICAL PROBLEMS 173

Proof. Let f be the function given by Lemma 44; i.e., basing on a f(t)-
jungle in any semi-complete digraph S, one can find a t-triple in S in
time O(|V (S)|3 log |V (S)|). Moreover, let p be the polynomial given by
Theorem 98; i.e., in a p(|H|)-triple that is disjoint from the roots one
can find an irrelevant vertex for the Rooted Immersion problem in
O(p(|H|)2 · n2) time.

Given the input semi-complete rooted digraph T and a rooted digraph
H, we run the approximation algorithm of Theorem 65 for parameters
5k and 130k on T with the roots removed, where k = f(p(|H|)); this
takes at most g(|H|) · n2 time for some elementary function g. If the
algorithm returns a decomposition of T without roots of width at most
140k, we include all the roots in every bag of the decomposition and
finalize the algorithm by running the dynamic programming routine for
Rooted Immersion (Theorem 92), which takes h(|H|) · n time for some
elementary function h. Otherwise, using Lemma 47 or Lemma 50 we
extract a (k, 4)-short jungle X from the output (130k + 2, 5k)-degree
tangle or (5k + 1, 5k)-matching tangle; this takes O(k3 · n2) time.

Obviously, X is also a k-jungle in the sense of Fradkin and Seymour,
so we are tempted to run the algorithm of Lemma 44 to extract a triple;
however, the running time is a bit too much. We circumvent this obstacle
in the following manner. As X is a (k, 4)-short jungle, then if we define
S to be the subdigraph induced in T by X and, for every pair v, w of
vertices in X, k internally vertex-disjoint paths of length at most 4 from v
to w, then X is still a (k, 4)-short jungle in S, but S has size polynomial
in k. As we store the short jungle together with the corresponding family
of paths between the vertices, we can construct S in O(kO(1)) time and,
using Lemma 44, in O(kO(1)) time find a p(|H|)-triple inside S. This
p(|H|)-triple is of course also a p(|H|)-triple in T . We apply Theorem 98
to find an irrelevant vertex in this triple in p(|H|)2 ·n2 time, delete it, and
restart the algorithm.

Since there are n vertices in the graph, the algorithm makes at most n
iterations. Since every iteration takes h(k) · n2 time for some elementary
function h, the claim follows.

7.4 Dynamic programming routines for contain-
ment relations

In this section we provide details of the dynamic programming routines
that solve containment problems when a path decomposition of small
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width is given. First, we explain the terminology used to describe the
constructed parts of expansions or immersions. Then we explain the
routine for topological containment that is somewhat simpler, and finally
proceed to immersion. But before all of these, let us give some intuition
behind the algorithms.

The main idea of our routine is as follows: we will encode the interaction
of the model of H with all the already introduced vertices as sequences
of paths in a standard folio manner. Every such path has to end in the
separator, but can begin in any forgotten vertex since it may be accessed
from a vertex not yet introduced. In general setting the dynamic program
would need to remember this first vertex in order to check whether it can
be indeed accessed; that would yield an XP algorithm and, in essence, this
is exactly the idea behind the algorithm of Fradkin and Seymour [152].
However, if the digraph is semi-complete, then between every not yet
introduced vertex and every forgotten vertex there is an arc. Therefore,
we do not need to remember the forgotten vertex itself to check accessibility;
a marker saying forgotten, together with information about which markers
in fact represent the same vertices in case of immersion, will suffice.

We hope that a reader well-familiar with construction of dynamic
programs on various decompositions already has a crude idea about how
the computation will be performed. Let us proceed with the details in the
next subsections.

7.4.1 Terminology

First, we need to introduce definitions that will enable us to encode all the
possible interactions between a model of a digraph H and a separation.
Let (A,B) be a separation of T , where T is a given semi-complete digraph.

In the definitions we use two special symbols: F,U; the reader can
think of them as an arbitrary element of A \ B (forgotten) and B \ A
(unknown), respectively. Let ι : V (T ) → (A ∩ B) ∪ {F,U} be defined as
follows: ι(v) = v if v ∈ A∩B, whereas ι(v) = F for v ∈ A\B and ι(v) = U
for v ∈ B \A.

Definition 107. Let P be a path. A sequence of paths (P1, P2, . . . , Ph) is
a trace of P with respect to (A,B), if Pi for 1 ≤ i ≤ h are all maximal
subpaths of P that are fully contained in T [A], and the indices in the
sequence reflect their order on path P .

Let (P1, P2, . . . , Ph) be the trace of P with respect to (A,B). A signa-
ture of P on (A,B) is a sequence of pairs ((b1, e1), (b2, e2), . . . , (bh, eh)),
where bh, eh ∈ (A ∩B) ∪ {F}, such that for every i ∈ {1, 2, . . . , h}:
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• bi is the beginning of path Pi if bi ∈ A ∩B, and F otherwise;

• ei is the end of path Pi if ei ∈ A ∩B, and F otherwise.

In other words, bi, ei are images of the beginning and the end of path Pi

in mapping ι. Observe the following properties of the introduced notion:

• Signature of a path P on separation (A,B) depends only on its
trace; therefore, we can also consider signatures of traces.

• It can happen that bi = ei �= F only if Pi consists of only one vertex
bi = ei.

• From the definition of separation it follows that only for i = h it
can happen that ei = F, since there is no arc from A \B to B \A.

• The empty signature corresponds to P entirely contained in B \A.

Now we are able to encode relevant information about a given expansion
of H.

Definition 108. Let η be an expansion of a digraph H in T . An expansion
signature of η on (A,B) is a mapping ρ such that:

• for every v ∈ V (H), ρ(v) = ι(η(v));

• for every a ∈ E(H), ρ(a) is a signature of η(a) on (A,B).

The set of possible expansion signatures on separation (A,B) will
be denoted by V(A,B). Observe that in an expansion η all the paths in
η(E(H)) are internally vertex-disjoint, so the non-forgotten beginnings
and ends in all the signatures of paths from ρ(E(H)) can be equal only
if they are in the same pair or correspond to a vertex from ρ(V (H)) at
the beginning or at the end of a signature of some path. Armed with this
observation, we can bound the number of possible expansion signatures
on a separation of small order.

Lemma 109. If |V (H)| = k, |E(H)| = �, |A ∩B| = m, then the number
of possible different expansion signatures on (A,B) is at most

(m+ 2)k · (m+ 2)m ·m� ·m! · (m+ 2)� · (m+ 2)� = 2O((k+�+m) logm).

Moreover, all of them can be enumerated in 2O((k+�+m) logm) time.

Proof. The consecutive terms correspond to:
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1. the choice of mapping ρ on V (H);

2. for every element of (A ∩ B) \ ρ(V (H)), choice whether it will be
the end of some subpath in some path signature, and in this case,
the value of corresponding beginning (a vertex from A ∩B or F);

3. for every pair composed in such manner, choice to which ρ(a) it will
belong;

4. the ordering of pairs along the path signatures;

5. for every (v, w) ∈ E(H), choice whether to append a pair of form
(b, ρ(w)) at the end of the signature ρ((v, w)), and in this case, the
value of b (a vertex from A ∩B or F).

6. for every (v, w) ∈ E(H), choice whether to append a pair of form
(ρ(v), e) at the beginning of the signature ρ((v, w)), and in this case,
the value of e (a vertex from A ∩B or F).

It is easy to check that using all these information one can reconstruct
the whole signature. For every object constructed in the manner above
we can check in time polynomial in k, �,m, whether it corresponds to a
possible signature. This yields the enumeration algorithm.

We now proceed to encoding intersection of an immersion with a given
separation (A,B). Unfortunately, the definition must be slightly more
complicated for the following reason. Assume that we have two subpaths
P1, P2 in some path traces that both start in some vertices b1, b2 that are
forgotten, i.e., b1, b2 ∈ A \ B. Observe that not only need to remember
that ι(b1) = ι(b2) = F, but also need to store the information whether
b1 = b2: in the future computation we might need to know whether b1
and b2 are actually not the same vertex, in order to prevent using twice
the same arc incoming to this vertex from the unknown region, in two
different images of paths. Fortunately, this is the only complication.

Definition 110. Let η be an immersion of a digraph H in T . An immer-
sion signature of η on (A,B) is a mapping ρ together with an equivalence
relation ≡ on the set of all the pairs of form (F, e) appearing in the image
of ρ, such that:

• for every v ∈ V (H), ρ(v) = ι(η(v));

• for every a ∈ E(H), ρ(a) is a signature of η(a);
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• (F, e1) ≡ (F, e2) if and only if markers F in both pairs correspond to
the same forgotten vertex before being mapped by ι.

We remark that the same pair of form (F, e) can appear in different
signatures; in this case, by somehow abusing the notation, we consider all
the appearances as different pairs. Also, we often treat the equivalence
relation ≡ as part of the mapping ρ, thus denoting the whole signature
by ρ. We denote the set of possible immersion signatures on separation
(A,B) by E(A,B). Similarly as in Lemma 109, we can bound the number
of immersion signatures on a separation of small order.

Lemma 111. If |V (H)| = k, |E(H)| = �, |A ∩B| = m, then the number
of possible different immersion signatures on (A,B) is bounded by

(m+2)k · ((m+2)m ·m! · (m+2)2)� ·B(m+2)� = 2O(k logm+m�(log �+logm)).

Moreover, all of them can be enumerated in 2O(k logm+m�(log �+logm)) time.

Proof. The consecutive terms correspond to:

1. the choice of mapping ρ on V (H);

2. for every arc a = (v, w) ∈ E(H) the complete information about the
signature ρ(a):

• for every element of A ∩ B, whether it will be the end of
some path in the signature, and in this case, the value of
corresponding beginning (a vertex from A ∩B or F),

• the ordering of pairs along the signature,

• whether to append a pair of form (b, ρ(w)) at the end of the
signature ρ(a), and in this case, the value of b (a vertex from
A ∩B or F),

• whether to append a pair of form (ρ(v), e) at the beginning of
the signature ρ(a), and in this case, the value of e (a vertex
from A ∩B or F).

3. partition of at most (m+2)l pairs in all the signatures from ρ(E(H))
into equivalence classes with respect to ≡.

In the last term we used Bell numbers Bn, for which a trivial bound
Bn ≤ nn applies.

It is easy to check that using all these information one can reconstruct
the whole signature. For every object constructed in the manner above
we can check in time polynomial in k, l,m, whether it corresponds to a
possible signature. This yields the enumeration algorithm.
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7.4.2 The algorithm for topological containment

Finally, we are able to present the dynamic programming routine for
topological containment. Recall that we will solve a slightly more general
problem, where arcs from some subset F ⊆ E(H), called constraints, are
required to be mapped to single arcs instead of possibly longer paths. We
first prove a simple lemma that will be useful to handle the constraints.

Lemma 112. Let H,G be simple digraphs, and let F ⊆ E(H). Then
H can be topologically embedded in G with constraints F if and only if
H ′ = H \ F can be topologically embedded in G using expansion η such
that (η(v), η(w)) ∈ E(G) for every (v, w) ∈ F .

Proof. From left to right, if η is an expansion of H in G that respects
constraints F , then η restricted to H ′ is also an expansion of H ′ in G,
and moreover (η(v), η(w)) ∈ E(G) for every (v, w) ∈ F since η respects
constraints F . From right to left, assume that η is an expansion of H ′

in G such that (η(v), η(w)) ∈ E(G) for every (v, w) ∈ F . Then we can
extend η to H by setting η((v, w)) = (η(v), η(w)) for every (v, w) ∈ F , and
these new paths will be pairwise internally vertex-disjoint, and internally
vertex-disjoint from η(a) for a /∈ F .

We are ready to provide the dynamic programming routine.

Theorem 113 (Theorem 91, restated). There exists an algorithm that,
given a digraph H with k vertices, � arcs, a set F ⊆ E(H) of constraints,
and a semi-complete digraph T on n vertices together with its path decom-
position of width p, checks whether H is topologically contained in T with
constraints F in time 2O((p+k+�) log p) · n.

Proof. LetH ′ = H\F , and letW = (W1, . . . ,Wr) be a path decomposition
of T of width p. Without loss of generality we assume that W is a nice
path decomposition and r = O(n).

By Lemma 109, for every separation (A,B) = (
⋃i

j=1Wj ,
⋃r

j=iWj) with

separator Wi the number of possible signatures is 2
O((p+k+�) log p). We

will consecutively compute the values of a binary table D(A,B) : V(A,B) →
{⊥, } with the following meaning. For ρ ∈ V(A,B), D(A,B)[ρ] tells whether
there exists a mapping ρ with the following properties:

• for every v ∈ V (H), ρ(v) = ρ(v) if ρ(v) ∈ (A ∩ B) ∪ {U} and
ρ(v) ∈ A \B if ρ(v) = F;

• for every a = (v, w) ∈ E(H ′), ρ(a) is a correct path trace with
signature ρ(a), beginning in ρ(v) if ρ(v) ∈ A and anywhere in A
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otherwise, ending in ρ(w) if ρ(w) ∈ A and anywhere in A ∩ B
otherwise;

• path traces ρ(a) are vertex-disjoint, apart possibly from meeting at
the ends if the ends correspond to images of appropriate endpoints
of arcs in ρ;

• for every a = (v, w) ∈ F , if ρ(v) �= U and ρ(w) �= U, then
(ρ(v), ρ(w)) ∈ E(T ).

Such mapping ρ will be called a partial expansion of H ′ on (A,B) respecting
constraints F . Note that we may also talk about signatures of partial
expansions; in the definition above, ρ is the signature of ρ on (A,B).

For the first separation (∅, V (T )) we have exactly one signature with
value  , being the signature which maps all the vertices into U and all
the arcs into empty signatures. By Lemma 112, the result of the whole
computation should be the value for the signature on the last separation
(V (T ), ∅) which maps all vertices into F and arcs into signatures consisting
of one pair (F,F). Therefore, it suffices to show how to fill the values of
the table for introduce vertex step and forget vertex step. Note that
the introduce bags of the decomposition may be viewed as introducing
a vertex v to a separation (A,B), i.e., considering the next separation
(A ∪ {v}, B) for v /∈ A, v ∈ B. Similarly, forget bags may be viewed as
forgetting a vertex w from a separation (A,B ∪ {w}) with w ∈ A, w /∈ B,
i.e., considering the next separation (A,B).

Introduce vertex step. Let us introduce vertex v ∈ B \ A to the
separation (A,B), i.e., we consider the new separation (A ∪ {v}, B). Let
ρ ∈ V(A∪{v},B). We show that D(A∪{v},B)[ρ] can be computed using
the stored values of D(A,B) by analyzing the way signature ρ interferes
with vertex v. In each case we argue that one can take D(A∪{v},B)[ρ] =∨

ρ′∈G D(A,B)[ρ
′] for some set G that corresponds to possible trimmings of

ρ to the previous separation of smaller order. Formally, one needs to argue
that (i) if there exists a partial expansion with signature ρ on (A∪{v}, B),
then after deleting vertex v this partial expansion has some signature
ρ′ ∈ G on (A,B), and (ii) if there exists a partial expansion with signature
ρ′ on (A,B) such that ρ′ ∈ G, then one can extend this partial expansion
using vertex v to obtain a partial expansion on (A∪{v}, B) with signature
ρ. Since this check in each case follows directly from the explanations
provided along with the construction of G, we leave the formal verification
of this statement to the reader.
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Case 1: v /∈ ρ(V (H)), that is, v is not an image of a vertex of H. Observe
that in this situation v can be contained in at most one pair of at
most one signature ρ(a) for some a ∈ E(H ′).

Case 1.1: bi = v = ei for some pair (bi, ei) ∈ ρ(a) and some a ∈ E(H ′).
This means that the signature of the partial expansion truncated
to separation (A,B) must look exactly like ρ, but without
this subpath of length zero. Thus D(A∪{v},B)[ρ] = D(A,B)[ρ

′],
where ρ′ is constructed from ρ by deleting this pair from the
corresponding signature.

Case 1.2: bi = v �= ei for some pair (bi, ei) ∈ ρ(a) and some a ∈ E(H ′).
This means that the partial expansion truncated to separation
(A,B) has to look the same but for the path corresponding
to this very pair, which needs to be truncated by vertex v.
The new beginning has to be either a vertex in A ∩ B, or
a forgotten vertex from A \ B. As T is semi-complete and
(A,B) is a separation, there is an arc from v to every vertex
of A \B. Therefore, D(A∪{v},B)[ρ] =

∨
ρ′ D(A,B)[ρ

′], where the
disjunction is taken over all signatures ρ′ differing from ρ as
follows: in ρ′ the pair (bi, ei) is substituted with (b′i, ei), where
b′i = F or b′i is any vertex of A ∩ B such that there is an arc
(v, b′i).

Case 1.3: bi �= v = ei for some pair (bi, ei) ∈ ρ(a) and some a ∈ E(H ′).
Similarly as before, the partial expansion truncated to sep-
aration (A,B) has to look the same but for the path cor-
responding to this very pair, which needs to be truncated
by vertex v. As (A,B) is a separation, the previous vertex
on the path has to be in the separator A ∩ B. Therefore,
D(A∪{v},B)[ρ] =

∨
ρ′ D(A,B)[ρ

′], where the disjunction is taken
over all signatures ρ′ differing from ρ as follows: in ρ′ the pair
(bi, ei) is substituted with (bi, e

′
i), where e

′
i is any vertex of

A ∩B such that there is an arc (e′i, v).

Case 1.4: v is not contained in any pair in any signature from ρ(E(H ′)).
Either v lies on some path in the partial expansion, or it
does not. In the first case the corresponding path in partial
expansion on (A ∪ {v}, B) has to be split into two subpaths,
when truncating the expansion to (A,B). Along this path, the
arc that was used to access v had to come from inside A∩B, due
to (A,B) being a separation; however, the arc used to leave v
can go to A∩B or to any forgotten vertex from A\B, as (A,B)
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is a separation and T is a semi-complete digraph. In the second
case, the signature of the truncated expansion stays the same.
Therefore, D(A∪{v},B)[ρ] = D(A,B)[ρ]∨

∨
ρ′ D(A,B)[ρ

′], where the
disjunction is taken over all signatures ρ′ differing from ρ as
follows: in ρ′ exactly one pair (bi, ei) is substituted with two
pairs (bi, e

′
i) and (b

′
i, ei), where e

′
i ∈ A ∩B with (e′i, v) ∈ E(T ),

whereas b′i = F or b′i ∈ A ∩B with (v, b′i) ∈ E(T ).

Case 2: v = ρ(u) for some u ∈ V (H). For every (u, u′) ∈ E(H ′), v has to be
the beginning of the first pair of ρ((u, u′)); otherwise, D(A∪{v},B)[ρ] =
⊥. Similarly, for every (u′, u) ∈ E(H ′), v has to be the end of the
last pair of ρ((u′, u)); otherwise, D(A∪{v},B)[ρ] = ⊥. Furthermore,
for every (u, u′) ∈ F such that ρ(u′) �= U, if ρ(u′) ∈ A ∩ B then
(ρ(u), ρ(u′)) must be an arc of T ; otherwise, D(A∪{v},B)[ρ] = ⊥.
Finally, for every (u′, u) ∈ F such that ρ(u′) �= U, it must hold
that ρ(u′) ∈ A ∩B and (ρ(u′), ρ(u)) must be an arc of T ; otherwise,
D(A∪{v},B)[ρ] = ⊥. Assume then that all these four assertions hold.
Then D(A∪{v},B)[ρ] =

∨
ρ′ D(A,B)[ρ

′], where the disjunction is taken
over all signatures ρ′ such that: (i) ρ′ differs on V (H) from ρ only by
having ρ′(u) = U; (ii) the first pairs of all ρ((u, u′)) are truncated as
in Case 1.2 for all (u, u′) ∈ E(H) (or as in Case 1.1, if the beginning
and the end coincide), and (iii) the last pairs of all ρ((u′, u)) are
truncated as in Case 1.3 for all (u′, u) ∈ E(H) (or as in Case 1.1, if
the beginning and the end coincide).

Forget vertex step Let us forget vertex w ∈ A\B from the separation
(A,B∪{w}), i.e., we consider the new separation (A,B). Let ρ ∈ V(A,B); we
argue that D(A,B)[ρ] =

∨
ρ′∈G D(A∪{w},B)[ρ

′] for some set G ⊆ V(A∪{w},B),
which corresponds to possible extensions of ρ to the previous separation
of larger order. Formally, one needs to argue that (i) if there exists a
partial expansion with signature ρ on (A,B), then this partial expansion
has signature ρ′ ∈ G on (A,B ∪ {w}), and (ii) if there exists a partial
expansion with signature ρ′ on (A,B ∪ {w}) such that ρ′ ∈ G, then the
signature of this partial expansion on (A,B) is ρ. Since this check in
each case follows directly from the explanations provided along with the
construction of G, we leave the formal verification of this statement to the
reader.

We now discuss, which signatures ρ′ are needed in G by considering
all the signatures ρ′ ∈ V(A∪{w},B) partitioned with respect to behaviour
on vertex w. For a fixed signature ρ′ we put constraints on how ρ′ must
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look like to be included in G: we first put a constraint on the image of
V (H) in ρ′, and then for every a ∈ E(H ′) we list the possible values of
ρ′(a). In G we take into the account all signatures ρ′ that (i) satisfy the
imposed constraints on the image of V (H), (ii) have one of the correct
values for every a ∈ E(H ′).

Case 1: w /∈ ρ′(V (H)), that is, w is not in the image of V (H). In this case
we require that ρ′|V (H) = ρ|V (H). We now inspect one arc a ∈ E(H ′)
and determine the correct values of ρ′(a) by looking at all possible
values of ρ′(a) partitioned with respect to behaviour on w.

Case 1.1: bi = w = ei for some pair (bi, ei) ∈ ρ′(a). This means that in
the corresponding partial expansions w had to be left to B \A;
however, in T there is no arc from w to B \A since (A,B) is a
separation. Therefore, in G we consider no signatures ρ′ having
such a behaviour on any arc a.

Case 1.2: bi = w �= ei for some pair (bi, ei) ∈ ρ′(a). If we are to consider
ρ′ in G, then w must prolong some path from the signature ρ
in such a manner that w is its beginning. After forgetting w
the beginning of this path belongs to the forgotten vertices;
therefore, in G we consider only signatures with ρ′(a) differing
from ρ(a) on exactly one pair: in ρ′(a) there is (w, ei) instead
of (F, ei) in ρ(a).

Case 1.3: bi �= w = ei for some pair (bi, ei) ∈ ρ′(a). This means that in
the corresponding partial expansions w have to be left to B \A;
however, in T there is no arc from w to B \A since (A,B) is
a separation. We obtain a contradiction; therefore, in G we
consider no signatures having such a behaviour on any arc a.

Case 1.4: w is not contained in any pair of ρ′(a). In this case, in the
corresponding partial expansions w has to be either unused by
the trace of a, or be an internal vertex of a path in this trace.
In both cases the signatures on (A,B ∪{w}) and on (A,B) are
equal. It follows that in G we can consider only signatures with
ρ′(a) = ρ(a) for such arcs a.

Case 2: w = ρ′(u) for some u ∈ V (H). We consider in G signatures ρ′ that
differ from ρ in following manner: (i) ρ′ differs on V (H) from ρ
only by having ρ′(u) = w for exactly one vertex u ∈ V (H) whereas
ρ(u) = F; (ii) for all arcs (u, u′) ∈ E(H ′), the first pair of ρ′((u, u′))
is of form (w, e1), whereas the first pair of ρ((u, u

′)) is of form (F, e1);
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(iii) for all arcs (u′, u) ∈ E(H ′), the last pair of ρ′((u′, u)) is of form
(bh, w), whereas the last pair of ρ((u

′, u)) is of form (bh,F) (or (F,F)
in case bh = w).

Updating tableD(A,B) for each separation requires at most O(|V(A,B)|2·
(p+k+�)O(1)) = 2O((p+k+�) log p) time, and since the number of separations
in the path decomposition W is O(n), the theorem follows.

7.4.3 The algorithm for Rooted Immersion

Theorem 114 (Theorem 114, restated). There exists an algorithm that,
given a rooted digraph (H; v1, v2, . . . , vt) with k vertices and � arcs and
a semi-complete rooted digraph (T ;w1, w2, . . . , wt) on n vertices together
with its path decomposition of width p, checks whether H can be immersed
into T while preserving roots in time 2O(k log p+p�(log �+log p)) · n.

Proof. Let W = (W1, . . . ,Wr) be the given path decomposition of T of
width p. Without loss of generality we assume that W is a nice path
decomposition and r = O(n).

By Lemma 111, for every separation (A,B) = (
⋃i

j=1Wj ,
⋃r

j=iWj)
with separator Wi we can bound the number of possible signatures by
2O(k log p+p�(log �+log p)). We show how to compute the values of a binary
table D(A,B) : E(A,B) → {⊥, } with the following meaning. For ρ ∈
E(A,B), D(A,B)[ρ] tells, whether there exists a mapping ρ with the following
properties:

• for every v ∈ V (H), ρ(v) = ρ(v) if ρ(v) ∈ (A ∩ B) ∪ {U} and
ρ(v) ∈ A \B if ρ(v) = F;

• for every i = 1, 2, . . . , t, ρ(vi) = wi if wi ∈ A and ρ(vi) = U otherwise;

• for every a = (v, w) ∈ E(H), ρ(a) is a correct path trace with
signature ρ(a), beginning in ρ(v) if ρ(v) ∈ A and anywhere in A
otherwise, ending in ρ(w) if ρ(w) ∈ A and anywhere in A ∩ B
otherwise;

• all the paths in path traces ρ(a) are arc-disjoint for a ∈ E(H).

Such mapping ρ will be called a partial immersion of H on (A,B). Note
that we may also talk about signatures of partial immersions; in the
definition above, ρ is the signature of ρ on (A,B).

For the first separation (∅, V (T )) we have exactly one signature with
value  , being the signature which maps all the vertices into U and all
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the arcs into empty signatures. The result of the whole computation
should be the value for the signature on the last separation (V (T ), ∅),
which maps all the vertices to F and arcs to signatures consisting of one
pair (F,F). Therefore, it suffices to show how to fill the values of the
table for introduce vertex step and forget vertex step. Similarly as in
Theorem 113, we view these steps as introducing and forgetting a vertex
from a separation.

Introduce vertex step Let us introduce vertex v ∈ B \ A to the
separation (A,B), i.e., we consider the new separation (A ∪ {v}, B). Let
ρ ∈ E(A∪{v},B), we need to show how to compute D(A∪{v},B)[ρ] by a careful
case study of how the signature ρ interferes with vertex v. If v = wi for
some i ∈ {1, 2, . . . , t}, then we consider only such ρ for which ρ(vi) = v; for
all the others we fill false values. Let us fix one ρ ∈ E(A∪{v},B). We argue
that D(A∪{v},B)[ρ] =

∨
ρ′∈G D(A,B)[ρ

′] for some set G that corresponds
to possible trimmings of ρ to the previous separation of smaller order.
Formally, one needs to argue that (i) if there exists a partial immersion
with signature ρ on (A ∪ {v}, B), then after deleting vertex v this partial
immersion has some signature ρ′ ∈ G on (A,B), and (ii) if there exists
a partial immersion with signature ρ′ on (A,B) such that ρ′ ∈ G, then
one can extend this partial immersion using vertex v to obtain a partial
immersion on (A ∪ {v}, B) with signature ρ. Since this check in each case
follows directly from the explanations provided along with the construction
of G, we leave the formal verification of this statement to the reader.

We examine every signature ρ′ ∈ E(A,B) and put constraints on how ρ′

must look like to be included in G: we first put a constraint on the image
of V (H) in ρ′, and then for every a ∈ E(H) we list the possible values of
ρ′(a). The set G consists of all the signatures ρ′ that (i) satisfy the imposed
constraints on the image of V (H), (ii) have one of the correct values for
every a ∈ E(H), and (iii) satisfy some additional, global constraints that
are described later.

Case 1: v /∈ ρ(V (H)), that is, v is not being mapped on by any vertex of H.
In this case we require that ρ′|V (H) = ρ|V (H). We now examine one
arc a ∈ E(H) and list the correct values of ρ′(a).

Case 1.1: bi = v = ei for some pair (bi, ei) ∈ ρ(a). This means that the
signatureρ(a) truncated to separation (A,B) must look exactly
like ρ(a), but without this subpath of length one. Thus we have
one possible value for ρ′(a), being ρ(a) with this pair deleted.
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Case 1.2: bi = v �= ei for some pair (bi, ei) ∈ ρ(a). This means that the
signature ρ(a) truncated to separation (A,B) has to look the
same as ρ(a) but for the path corresponding to this very pair,
which needs to be truncated by vertex v. The new beginning
has to be either a vertex in A ∩B, or a forgotten vertex from
A \B. As T is semi-complete and (A,B) is a separation, there
is an arc from v to every vertex of A \ B. Therefore, in ρ′(a)
the pair (bi, ei) has to be replaced with (b

′
i, ei), where b

′
i = F

or b′i is any vertex of A ∩ B such that there is an arc (v, b′i).
All the vertices b′i �= F obtained in this manner have to be
pairwise different. Moreover, we impose a condition that for all
a ∈ E(H) for which some pair of form (v, ei) has been truncated
to (F, ei), these pairs have to be pairwise non-equivalent with
respect to ≡ in ρ′; in this manner we forbid multiple usage of
arcs going from v to the forgotten vertices.

Case 1.3: bi �= v = ei for some pair (bi, ei) ∈ ρ(a). Similarly as before,
signature ρ(a) truncated to separation (A,B) has to look the
same as ρ(a) but for the path corresponding to this very pair,
which needs to be truncated by vertex v. As (A,B) is a separa-
tion, the previous vertex on the path has to be in the separator
A∩B. Therefore, in G we take into consideration all signatures
ρ′ such that in ρ′ the pair (bi, ei) is replaced with (bi, e′i), where
e′i is any vertex of A ∩B such that there is an arc (e′i, v). Also,
all the vertices e′i used in this manner for all a ∈ E(H) have to
be pairwise different.

Case 1.4: v is not contained in any pair in ρ(a). Either v lies in the interior
of some subpath from ρ(a), or it is not used by ρ(a) at all. In
the first case the corresponding path in partial immersion on
(A ∪ {v}, B) has to be split into two subpaths when truncating
the immersion to (A,B). Along this path, the arc that was
used to access v had to come from inside A∩B, due to (A∪B)
being a separation. However, the arc used to leave v can go
to A ∩B as well as to any forgotten vertex from A \B, since
(A,B) is a separation and T is a semi-complete digraph. In the
second case, the signature of the truncated immersion stays the
same. Therefore, in G we take into consideration signatures ρ′

such that they not differ from ρ on a, or in ρ′(a) exactly one
pair (bi, ei) is replaced with two pairs (bi, e

′
i) and (b

′
i, ei), where

e′i ∈ A ∩ B with (e′i, v) ∈ E(T ), whereas b′i = F or b′i ∈ A ∩ B
with (v, b′i) ∈ E(T ). Similarly as before, all vertices b′i �= F used
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have to be pairwise different and different from those used in
Case 1.2, all vertices e′i used have to be pairwise different and
different from those used in Case 1.3, and all the pairs (F, ei)
created in this manner have to be pairwise non-equivalent and
non-equivalent to those created in Case 1.2 (with respect to ≡
in ρ′).

Case 2: v = ρ(u) for some u ∈ V (H). For every (u, u′) ∈ E(H), v has to be
the beginning of the first pair of ρ((u, u′)); otherwise, D(A∪{v},B) = ⊥.
Similarly, for every (u′, u) ∈ E(H), v has to be the end of the last
pair of ρ((u′, u)); otherwise, D(A∪{v},B)[ρ] = ⊥. Assuming both of
these assertions hold, into G we can take all signatures ρ′ such that:
(i) ρ′ differs on V (H) from ρ only by having ρ′(u) = U; and (ii)
the images from ρ′(E(H)) follow exactly the same rules as in Cases
1.1-1.4.

Forget vertex step Let us forget vertex w ∈ A\B from the separation
(A,B∪{w}), i.e., we consider the new separation (A,B). Let ρ ∈ E(A,B); we
argue that D(A,B)[ρ] =

∨
ρ′∈G D(A∪{w},B)[ρ

′] for some set G ⊆ E(A∪{w},B),
which corresponds to possible extensions of ρ to the previous separation
of larger order. Formally, one needs to argue that (i) if there exists a
partial immersion with signature ρ on (A,B), then this partial immersion
has signature ρ′ ∈ G on (A,B ∪ {w}), and (ii) if there exists a partial
immersion with signature ρ′ on (A,B ∪ {w}) such that ρ′ ∈ G, then the
signature of this partial immersion on (A,B) is ρ. Since this check in
each case follows directly from the explanations provided along with the
construction of G, we leave the formal verification of this statement to the
reader.

We now discuss which signatures ρ′ are needed in G by considering all
the signatures ρ′ ∈ E(A∪{w},B) partitioned with respect to behaviour of the
vertex w. For a fixed signature ρ′ we put constraints on how ρ′ must look
like to be included in G: we first put a constraint on the image of V (H)
in ρ′, and then for every a ∈ E(H) we list the possible values of ρ′(a). In
G we take into the account all signatures ρ′ that (i) satisfy the imposed
constraints on the image of V (H), (ii) have one of the correct values for
every a ∈ E(H), and (iii) satisfy some additional, global constraints that
are described later.

Case 1: w /∈ ρ′(V (H)), that is, w is not an image of a vertex of H. In
this case we require that ρ′|V (H) = ρ|V (H). We now examine one
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arc a ∈ E(H) and list the correct values of ρ′(a) by looking at all
possible values of ρ′(a) partitioned with respect to behaviour on w.

Case 1.1: bi = w = ei for some pair (bi, ei) ∈ ρ′(a). This means that
in the corresponding partial immersions w had to be left to
B \A; however, in T there is no arc from w to B \A as (A,B)
is a separation. Therefore, in G we consider no signatures ρ′

behaving in this manner on any arc a.

Case 1.2: bi = w �= ei for some pair (bi, ei) ∈ ρ′(a). If we are to consider
ρ′ in G, then w must prolong some path from the signature ρ
in such a manner, that w is its beginning. After forgetting w
the beginning of this path belongs to the forgotten vertices;
therefore, in G we consider only signatures ρ′ in which ρ′(a)
differs from ρ(a) on exactly one pair: in ρ′(a) there is (w, ei)
instead of (F, ei) in ρ. Moreover, all such pairs (F, ei) that were
extended by w have to form one whole equivalence class with
respect to ≡ in ρ.

Case 1.3: bi �= w = ei for some pair (bi, ei) ∈ ρ′(a). This means that in
the corresponding partial expansions w have to be left to B \A;
however, in T there is no arc from w to B \A since (A,B) is
a separation. We obtain a contradiction; therefore, in G we
consider no signatures ρ′ behaving in this manner on any arc a.

Case 1.4: w is not contained in any pair in ρ′(a). In this case, in the
corresponding partial expansions w has to be either unused by
the trace of a, or be an internal vertex of a path in this trace.
In both cases the signatures on (A,B ∪{w}) and on (A,B) are
equal. It follows that in G we can consider only signatures with
ρ′(a) = ρ(a) for such arcs a.

Case 2: w = ρ′(u) for some u ∈ V (H). We consider in G signatures ρ′ that
differ from ρ in following manner: (i) ρ′ differs on V (H) from ρ
only by having ρ′(u) = w for exactly one vertex u ∈ V (H) whereas
ρ(u) = F; (ii) for all arcs (u, u′) ∈ E(H) the first pair of ρ′((u, u′)) is
of form (w, e1), whereas the first pair of ρ((u, u

′)) is of form (F, e1);
(iii) for all arcs (u′, u) ∈ E(H) the last pair of ρ′((u′, u)) is of form
(bh, w), whereas the last pair of ρ((u

′, u)) is of form (bh,F) (or (F,F)
in case bh = w); (iv) for all arcs a ∈ E(H) non-incident with u we
follow the same truncation rules as in Cases 1.1-1.4. Moreover, all
the pairs in which w has been replaced with F marker have to form
one whole equivalence class with respect to ≡.
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Since updating the table D(A,B) for every separation (A,B) requires

at most O(|E(A,B)|2) = 2O(k log p+p�(log �+log p)) steps, while the number
of separations in the pathwidth decomposition is O(n), the theorem
follows.

7.5 Conclusions and open problems

In this chapter we have presented how the approximation algorithm for
pathwidth can be used to design FPT algorithms for testing various con-
tainment relations, and applied these algorithms to obtain some exemplary
meta-results. We have also shown how to design an irrelevant vertex rule
on a triple for rerouting a family of arc-disjoint paths, which leads to an
FPT algorithm for the Rooted Immersion problem. It is noteworthy
that the presented algorithms have much better running time guarantees
than their famous analogues in the Graph Minors series of Robertson
and Seymour. For instance, the celebrated algorithm testing whether
H is a minor of G [285] runs in time f(|H|) · |V (G)|3 for a gargantuan
function f that is not even specified; in particular, f is not elementary.
The algorithms presented in this chapter have good dependency both on
the size of the digraph to be embedded (single exponential), and on the
size of the semi-complete digraph into which we embed (linear). This is
mostly thanks to the usage of the new set of obstacles, especially the short
jungles.

The first natural question stemming from the work of this chapter
is whether this new set of obstacles, and in particular the short jungles,
can give raise to more powerful irrelevant vertex rules. For example, if
we consider the Rooted Immersion problem, it is tempting to try to
replace finding an irrelevant vertex in a triple with a direct irrelevant
vertex rule on a short jungle of size polynomial in the size of the digraph
to be immersed. If this was possible, the running time of the algorithm
for Rooted Immersion could be trimmed to single-exponential in terms
of the size of the digraph to be immersed.

Perhaps a much more important question is whether one can also
design an FPT algorithm for the rooted variant of topological containment
testing, called further Rooted Topological Containment, since this
was possible for Rooted Immersion. Observe that the classical Vertex

Disjoint Paths is in fact a special case of Rooted Topological Con-

tainment where all the vertices of H have specified images. Chudnovsky,
Scott and Seymour [73] proved that k-Vertex Disjoint Paths is in
class XP on semi-complete digraphs using a different approach. Their
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results also imply that the Rooted Topological Containment is
in XP on semi-complete graphs. To the best of author’s knowledge, the
question whether Vertex Disjoint Paths in semi-complete digraphs
can be solved in FPT time is still open.

Unfortunately, our approach used for Rooted Immersion does not
apply directly to this problem. Dynamic programming on path decompo-
sition works fine but the problem is with the irrelevant vertex arguments.
Even for k = 2 there exist tournaments that contain arbitrarily large
triples, but in which every vertex is relevant; let us now provide such an
example.

For even n we construct a tournament Tn with two pairs of vertices
(s1, t1), (s2, t2) so that the following properties are satisfied:

(i) Tn contains an (n/2− 1)-triple;

(ii) there is exactly one solution to Vertex Disjoint Paths instance
(Tn, {(s1, t1), (s2, t2)}) in which all the vertices of V (Tn) lie on one
of the paths.

This example shows that even though a graph can be complicated from
the point of view of path decompositions, all the vertices can be relevant.

a2 b2

a3 b3

s1 = a1

t1 = a4

b1 = t2

b4 = s2

Figure 7.2: Tournament T4.

Let V (Tn) = {ai, bi : 1 ≤ i ≤ n}, where s1 = a1, t1 = an, s2 = bn and
t2 = b1. Construct following arcs:
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• for every i ∈ {1, 2, . . . , n− 1} create an arc (ai, ai+1);

• for every i, j ∈ {1, 2, . . . , n}, i < j − 1 create an arc (aj , ai);

• for every i ∈ {1, 2, . . . , n− 1} create an arc (bi+1, bi);

• for every i, j ∈ {1, 2, . . . , n}, i > j + 1 create an arc (bj , bi);

• for every i ∈ {1, 2, . . . , n} create an arc (ai, bi);

• for every i, j ∈ {1, 2, . . . , n}, i �= j create an arc (bj , ai).

To see that Tn satisfies (i), observe that

( {b1, b2, . . . , bn/2−1},
{an/2+1, an/2+2, . . . , an},
{a1, a2, . . . , an/2−1} )

is a (n/2−1)-triple. To prove that (ii) is satisfied as well, observe that there
is a solution to Vertex Disjoint Paths problem containing two paths
(a1, a2, . . . , an) and (bn, bn−1, . . . , b1) which in total use all the vertices of
Tn. Assume that there is some other solution and let k be the largest index
such that the path connecting a1 to an begins with prefix (a1, a2, . . . , ak).
As the solution is different from the aforementioned one, it follows that
k < n. Therefore, the next vertex on the path has to be bk, as this is the
only unused outneighbor of ak apart from ak+1. But if the path from a1
to an already uses {a1, a2, . . . , ak, bk}, we see that there is no arc going
from {ak+1, ak+2, . . . , an, bk+1, bk+2, . . . , bn} to {b1, b2, . . . , bk−1}, so we are
already unable to construct a path from bn to b1. This is a contradiction.

The presented example suggests that a possible way of obtaining an
FPT algorithm for Vertex Disjoint Paths problem requires another
width parameter admitting more powerful obstacles.



Part III

In search for optimality
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Chapter 8

Tight bounds for
parameterized complexity of
Cluster Editing

8.1 Introduction

Correlation clustering, also known as clustering with qualitative informa-
tion or cluster editing, is the problem to cluster objects based only on
the qualitative information concerning similarity between pairs of them.
For every pair of objects we have a binary indication whether they are
similar or not. The task is to find a partition of the objects into clusters
minimizing the number of similarities between different clusters and non-
similarities inside of clusters. The problem was introduced by Ben-Dor,
Shamir, and Yakhini [28] motivated by problems from computational biol-
ogy, and, independently, by Bansal, Blum, and Chawla [24], motivated by
machine learning problems concerning document clustering according to
similarities. The correlation version of clustering was studied intensively,
including [5, 11, 17, 61, 62, 166, 299].

The graph-theoretic formulation of the problem is the following. A
graphK is a cluster graph if every connected component ofK is a complete
graph. Let G = (V,E) be a graph; then F ⊆ V × V is called a cluster
editing set for G if G�F = (V,E�F ) is a cluster graph (recall that E�F
denotes the symmetric difference between E and F ). In the optimization
version of the problem the task is to find a cluster editing set of minimum
size. Constant factor approximation algorithms for this problem were
obtained in [5, 24, 61]. On the negative side, the problem is known to

192



CHAPTER 8. CLUSTER EDITING 193

be NP-complete [299] and, as was shown by Charikar, Guruswami, and
Wirth [61], also APX-hard.

Giotis and Guruswami [166] initiated the study of clustering when
the maximum number of clusters that we are allowed to use is stipulated
to be a fixed constant p. As observed by them, this type of clustering
is well-motivated in settings where the number of clusters might be an
external constraint that has to be met. It appeared that p-clustering
variants posed new and non-trivial challenges. In particular, in spite of
the APX-hardness of the general case, Giotis and Guruswami [166] gave a
PTAS for this version of the problem.

A cluster graphG is called a p-cluster graph if it has exactly p connected
components or, equivalently, if it is a disjoint union of exactly p cliques.
Similarly, a set F is a p-cluster editing set of G, if G�F is a p-cluster graph.
In parameterized complexity, correlation clustering and its restriction to
bounded number of clusters were studied under the names Cluster

Editing and p-Cluster Editing, respectively.

Cluster Editing

Input: A graph G = (V,E) and a nonnegative integer k.

Parameter: k

Question: Is there a cluster editing set for G of size at most k?

p-Cluster Editing

Input: A graph G = (V,E) and nonnegative integers p and k.

Parameter: p, k

Question: Is there a p-cluster editing set for G of size at most k?

The parameterized version of Cluster Editing, and variants of it,
were studied intensively [38, 39, 40, 41, 47, 98, 128, 167, 182, 183, 222, 271].
The problem is solvable in time O(1.62k + n+m) [38] and it has a kernel
with 2k vertices [57, 70]. Shamir et al. [299] showed that p-Cluster

Editing is NP-complete for every fixed p ≥ 2. A kernel with (p+ 2)k + p
vertices was given by Guo [181].

Our results. In this chapter, based on the results of [136], we study the
impact of the interaction between p and k on the parameterized complexity
of p-Cluster Editing. The main algorithmic result is the following.
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Theorem 115. p-Cluster Editing is solvable in time O(2O(
√
pk) +

m+ n), where n is the number of vertices and m the number of edges of
the input graph G.

It is straightforward to modify the algorithm to work also in the
following variants of the problem, where each edge and non-edge is assigned
some edition cost: either (i) all costs are at least one and k is the bound
on the maximum total cost of the solution, or (ii) we ask for a set of at
most k edits of minimum cost. Let us also remark that, by Theorem 115,
if p = o(k) then p-Cluster Editing can be solved in O∗(2o(k)) time, and
thus it belongs to complexity class SUBEPT defined by Flum and Grohe
[132, Chapter 16]; see also Section 4.2 for a broader overview. Until very
recently, the only natural problems known to be in the class SUBEPT were
the problems with additional constraints on the input, like being a planar,
H-minor-free, or tournament graph [10, 104]. However, recent algorithmic
developments indicate that the structure of the class SUBEPT is much
more interesting than expected. It appears that some parameterized
problems related to edge modifications, like Minimum Fill-in or Split
Edge Deletion, are also in SUBEPT [148, 164].

We would like to remark that p-Cluster Editing can be also solved
in worse time complexity O((pk)O(

√
pk) +m+ n) using simple guessing

arguments. One such algorithm is based on the following observation:
Suppose that, for some integer r, we know at least 2r+1 vertices from each
cluster. Then, if an unassigned vertex has at most r incident modifications,
we know precisely to which cluster it belongs: it is adjacent to at least
r+1 vertices already assigned to its cluster and at most r assigned to any
other cluster. On the other hand, there are at most 2k/r vertices with
more than r incident modifications. Thus (i) guessing 2r+1 vertices from
each cluster (or all of them, if there are less than 2r+1), and (ii) guessing
all vertices with more than r incident modifications, together with their
alignment to clusters, results in at most n(2r+1)pn2k/rp2k/r subcases. By
pipelining it with the kernelization of Guo [181] and with simple reduction
rules that ensure p ≤ 6k (see Section 8.3.1 for details), we obtain the
claimed time complexity for r ∼

√
k/p.

An approach via chromatic coding , introduced by Alon et al. [10],

also leads to an algorithm with running time O(2O(p
√
k log p) + n + m).

However, one needs to develop new concepts to construct an algorithm for
p-Cluster Editing with complexity bound as promised in Theorem 115,
and thus obtain a subexponential complexity for every sublinear p.

The crucial observation is that a p-cluster graph, for p = O(k), has
2O(

√
pk) edge cuts of size at most k (i.e., k-cuts). As in a YES-instance
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to the p-Cluster Editing problem each k-cut is a 2k-cut of a p-cluster
graph, we infer a similar bound on the number of cuts if we are dealing
with a YES-instance. This allows us to use dynamic programming over
the set of k-cuts. Pipelining this approach with a kernelization algorithm
for p-Cluster Editing proves Theorem 115.

Following the direction of pursuit of asymptotically tight bounds
on the complexity of parameterized problems, described in Chapter 4,
we complement Theorem 115 with two lower bounds. The first, main
lower bound is based on the following technical Theorem 116, which
shows that the exponential time dependence of the presented algorithm is
asymptotically tight for any choice of parameters p and k, where p = O(k).
As one can provide polynomial-time reduction rules that ensure that
p ≤ 6k (see Section 8.3.1 for details), this provides a full and tight picture
of the multivariate parameterized complexity of p-Cluster Editing:
we have asymptotically matching upper and lower bounds on the whole
interval between p being a constant and linear in k. To the best of our
knowledge, this is the first fully multivariate and tight complexity analysis
of a parameterized problem.

Theorem 116. There is δ > 0 and a polynomial-time algorithm that,
given positive integers p and k and a 3-CNF-SAT formula Φ with n
variables and m clauses, such that k, n ≥ p and n,m ≤ √pk, computes a
graph G and integer k′, such that k′ ≤ δk, |V (G)| ≤ δ

√
pk, and

• if Φ is satisfiable then there is a 6p-cluster graph G0 with V (G) =
V (G0) and |E(G)�E(G0)| ≤ k′;

• if there exists a p′-cluster graph G0 with p′ ≤ 6p, V (G) = V (G0)
and |E(G)�E(G0)| ≤ k′, then Φ is satisfiable.

As the statement of Theorem 116 may look technical, we gather its two
main consequences in Corollaries 117 and 118. We state both corollaries
in terms of an easier p≤-Cluster Editing problem, where the number
of clusters has to be at most p instead of precisely equal to p. Clearly,
this version can be solved by an algorithm for p-Cluster Editing with
an additional p overhead in time complexity by trying all possible p′ ≤ p,
so the lower bound holds also for harder p-Cluster Editing; however,
we are not aware of any reduction in the opposite direction. In both
corollaries we use the fact that existence of a subexponential, in both the
number of variables and clauses, algorithm for verifying satisfiability of
3-CNF-SAT formulas would violate ETH (Corollary 5).
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Corollary 117. Unless ETH fails, for every 0 ≤ σ ≤ 1 there is p(k) ∈
Θ(kσ) such that p≤-Cluster Editing restricted to instances where p =

p(k) is not solvable in time O∗(2o(
√
pk)).

Proof. Assume we are given a 3-CNF-SAT formula Φ with n variables
and m clauses. If n < m, then �(m− n)/2� times perform the following
operation: add three new variables x, y and z, and clause (x ∨ y ∨ z). In
this way we preserve the satisfiability of Φ, increase the size of Φ at most
by a constant multiplicative factor, and ensure that n ≥ m.

Take now k = �n
2

1+σ �, p = �n
2σ
1+σ �. As n ≥ m and 0 ≤ σ ≤ 1, we

have k, n ≥ p and n,m ≤ √pk but n+m = Ω(
√
pk). Invoke Theorem 116

for the formula Φ and parameters p and k, obtaining a graph G and a
parameter k′. Note that 6p ∈ Θ(kσ). Apply the assumed algorithm for
the p≤-Cluster Editing problem to the instance (G, 6p, k′). In this way
we resolve the satisfiability of Φ in time O∗(2o(

√
pk)) = 2o(n+m), which

contradicts ETH by Corollary 5.

Corollary 118. Unless ETH fails, for every constant p ≥ 6 there is no

algorithm solving p≤-Cluster Editing in time O∗(2o(
√
k)) or 2o(|V (G)|).

Proof. We prove the corollary for p = 6; the claim for larger values of p
can be proved easily by taking the graph obtained in the reduction and
introducing additional p− 6 cliques of its size.

Assume we are given a 3-CNF-SAT formula Φ with n variables and m
clauses. Take k = max(n,m)2, invoke Theorem 116 for the formula Φ and
parameters 1 and k, obtaining a graph G and a parameter k′ = O(k). Note
that |V (G)| = O(

√
k). Apply the assumed algorithm for the p≤-Cluster

Editing problem to the instance (G, 6, k′). In this way we resolve the

satisfiability of Φ in time O∗(2o(
√
k)) = 2o(n+m), contradicting ETH.

Note that Theorem 116 and Corollary 117 do not rule out possibility
that the general Cluster Editing is solvable in subexponential time.
Our second, complementary lower bound shows that when the number
of clusters is not constrained, then the problem cannot be solved in
subexponential time unless ETH fails. This disproves the conjecture
of Cao and Chen [57]. We note that Theorem 119 was independently
obtained by Komusiewicz in his PhD thesis [221]; however, we choose to
include it for the sake of completeness of our study.

Theorem 119. Unless ETH fails, Cluster Editing cannot be solved
in time O∗(2o(k)).
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Clearly, by Theorem 115 the reduction of Theorem 119 must produce
an instance where the number of clusters in any solution, if there exists any,
is Ω(k). Therefore, intuitively the hard instances of Cluster Editing

are those where every cluster needs just a constant number of adjacent
editions to be extracted.

Organization of the chapter. In Section 8.2 we recall some results
that will be of use later. Section 8.3 contains description of the subexpo-
nential algorithm for p-Cluster Editing, i.e., the proof of Theorem 115.
Section 8.4 is devoted to the multivariate lower bound, i.e., the proof of
Theorem 116, while in Section 8.5 we give the lower bound for the general
Cluster Editing problem, i.e., the proof of Theorem 119. In Section 8.6
we gather some concluding remarks and propositions for further work.

8.2 Preliminaries

In this chapter we will use notation uv both to denote edges and non-edges,
that is, unordered pairs of different vertices that are not contained in the
edge set of the given graph. To simplify the notation, we will also often
treat sets of ordered pairs as sets of unordered pairs. Thus, for instance,
for vertex sets X,Y by X ×Y we denote the set of all xy such that x ∈ X
and y ∈ Y .

In our algorithm we need the following result of Guo [181].

Proposition 120 ([181]). p-Cluster Editing admits a kernel with at
most (p+ 2)k + p vertices. More precisely, there exists an algorithm that,
given an instance (G, p, k) of p-Cluster Editing such that |V (G)| = n
and |E(G)| = m, runs in time O(n + m) and outputs an equivalent
instance (G′, p′, k′) of p-Cluster Editing such that k′ ≤ k, p′ ≤ p, and
|V (G′)| ≤ (p′ + 2)k′ + p′.

We remark that Guo [181] does not mention explicitely that the
algorithm can only decrease values of p and k, but this can be easily
checked by examining the single reduction rule presented in [181].

The following lemma is used in both our lower bounds. Its proof is
almost identical to the proof of Lemma 1 in [181], and we provide it here
for reader’s convenience.

Lemma 121. Let G = (V,E) be an undirected graph and X ⊆ V be a set
of vertices such that G[X] is a clique and each vertex in X has the same
set of neighbors outside X (i.e., NG[v] = NG[X] for each v ∈ X). Let
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F ⊆ V ×V be a set such that G�F is a cluster graph where the vertices of
X are in at least two different clusters. Then there exists F ′ ⊆ V ×V such
that: (i) |F ′| < |F |, (ii) G�F ′ is a cluster graph with no larger number
of clusters than G�F , (iii) in G�F ′ the clique G[X] is contained in one
cluster.

Proof. For a vertex v ∈ X, let F (v) = {u /∈ X : vu ∈ F}. Note that, since
NG[v] = NG[X] for all v ∈ X, we have F (v) = F (w) if v and w belong to
the same cluster in G�F .

Let Z be the vertex set of a cluster in G�F such that there exists
v ∈ Z ∩X with smallest |F (v)|. Construct F ′ as follows: take F , and for
each w ∈ X replace all elements of F incident with w with {uw : u ∈ F (v)}.
In other words, we modify F by moving all vertices of X \Z to the cluster
Z. Clearly, G�F ′ is a cluster graph, X is contained in one cluster in
G�F ′ and G�F ′ contains no more clusters than G�F . To finish the
proof, we need to show that |F ′| < |F |. The sets F and F ′ contain the
same set of elements not incident with X. As |F (v)| was minimum possible,
for each w ∈ X we have |F (w)| ≥ |F ′(w)|. As X was split between at
least two connected components of G�F , F contains at least one edge
of G[X], whereas F ′ does not. We infer that |F ′| < |F | and the lemma is
proven.

8.3 A subexponential algorithm

In this section we prove Theorem 115, i.e., we show an algorithm for
p-Cluster Editing running in time O(2O(

√
pk) + n+m).

8.3.1 Reduction for large p

The first step of our algorithm is an application of the kernelization
algorithm by Guo [181] (Proposition 120) followed by some additional
preprocessing rules that ensure that p ≤ 6k. These additional rules are
encapsulated in the following lemma; the rest of this section is devoted to
its proof.

Lemma 122. There exists a polynomial time algorithm that, given an
instance (G, p, k) of p-Cluster Editing, outputs an equivalent instance
(G′, p′, k), where G′ is an induced subgraph of G and p′ ≤ 6k.

Before we proceed to formal argumentation, let us provide some intu-
ition. The key idea behind Lemma 122 is an observation that if p > 2k,



CHAPTER 8. CLUSTER EDITING 199

then at least p− 2k clusters in the final cluster graph cannot be touched
by the solution, hence they must have been present as isolated cliques
already in the beginning. Hence, if p > 6k then we have to already see
p− 2k > 4k isolated cliques; otherwise, we may safely provide a negative
answer. Although these cliques may be still merged (to decrease the
number of clusters) or split (to increase the number of clusters), we can
apply greedy arguments to identify a clique that may be safely assumed to
be untouched by the solution. Hence we can remove it from the graph and
decrement p by one. Although the greedy arguments seem very intuitive,
their formal proofs turn out to be somewhat technical.

We now proceed to a formal proof of Lemma 122. Let us fix some
optimal solution F , i.e., a subset of V × V of minimum cardinality such
that G�F is a p-cluster graph.

Consider the case when p > 6k. Observe that only 2k out of p resulting
clusters in G�F can be adjacent to any pair from the set F . Hence at
least p− 2k clusters must be already present in the graph G as connected
components being cliques. Therefore, if G contains less than p − 2k
connected components that are cliques, then (G, p, k) is a NO-instance.

Rule 1. If G contains less than p − 2k connected components that are
cliques, answer NO.

As p > 6k, if Rule 1 was not triggered then we have more than 4k
connected components that are cliques. The aim is now to apply greedy
arguments to identify a component that can be safely assumed to be
untouched. As a first step, consider a situation when G contains more
than 2k isolated vertices. Then at least one of these vertices is not incident
to an element of F , thus we may delete one isolated vertex and decrease
p by one.

Rule 2. If G contains 2k + 1 isolated vertices, pick one of them, say v,
and delete it from G. The new instance is (G \ v, p− 1, k).

Safeness of this rule is straightforward. We are left with the case where
G contains more than 2k connected components that are cliques, but not
isolated vertices. At least one of these cliques is untouched by F . Note that
even though the number of cliques is large, some of them may be merged
with other clusters (to decrease the number of connected components), or
split into more clusters (to increase the number of connected components),
and we have no a priori knowledge about which clique will be left untouched.
We argue that in both cases, we can greedily merge or split the smallest
possible clusters. Thus, without loss of generality, we can assume that
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the largest connected component of G that is a clique is left untouched in
G�F . We reduce the input instance (G, p, k) by deleting this cluster and
decreasing p by one.

Rule 3. If G contains 2k+1 isolated cliques that are not isolated vertices,
pick a clique C of largest size and delete it from G. The new instance is
(G \ C, p− 1, k).

We formally verify safeness of Rule 3 by proving the following lemma.
Without loss of generality, we may assume that the solution F , among
all the solutions of minimum cardinality, has minimum possible number
of editions incident to vertices of connected components of G that are
cliques of largest size.

Lemma 123. Let D1, D2, . . . , D� be connected components of G that are
cliques, but not isolated vertices. Assume that � ≥ 2k + 1. Then there
exists a component Di that has the largest size among D1, D2, . . . , D� and
none of the pairs from F is incident to any vertex of Di.

Proof. Let C1, C2, . . . , Cp be clusters of G�F . We say that cluster Ci

contains component Dj if V (Dj) ⊆ V (Ci), and component Dj contains
cluster Ci if V (Ci) ⊆ V (Dj). Moreover, we say that these containments
are strict if V (Dj) � V (Ci) or V (Ci) � V (Dj), respectively.

Claim 1. For every cluster Ci and component Dj, either V (Ci) and
V (Dj) are disjoint, or Ci contains Dj, or Dj contains Ci.

Proof. We need to argue that the situation when sets V (Ci) ∩ V (Dj),
V (Ci) \ V (Dj), V (Dj) \ V (Ci) are simultaneously nonempty is impossible.
Assume otherwise, and without loss of generality assume further that
|V (Ci) \ V (Dj)| is largest possible among pairs (Ci, Dj) satisfying the
stated condition. As V (Dj) \ V (Ci) �= ∅, take some Ci′ �= Ci such that
V (Ci′) ∩ V (Dj) �= ∅. By the choice of Ci we have that |V (Ci) \ V (Dj)| ≥
|V (Ci′) \ V (Dj)| (note that V (Ci′) \ V (Dj) is possibly empty). Consider
a new cluster graph H obtained from G�F by moving V (Ci) ∩ V (Dj)
from the cluster Ci to the cluster Ci′ . Clearly, H still has p clusters
as V (Ci) \ V (Dj) is nonempty. Moreover, the edition set F

′ that needs
to be modified in order to obtain H from G, differs from F as follows:
it additionally contains (V (Ci) ∩ V (Dj)) × (V (Ci′) \ V (Dj)), but does
not contain (V (Ci) ∩ V (Dj))× (V (Ci) \ V (Dj)) nor (V (Ci) ∩ V (Dj))×
(V (Ci′) ∩ V (Dj)). As |V (Ci) \ V (Dj)| ≥ |V (Ci′) \ V (Dj)|, we have that

|(V (Ci)∩V (Dj))×(V (Ci′)\V (Dj))| ≤ |(V (Ci)∩V (Dj))×(V (Ci)\V (Dj))|
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and

|(V (Ci) ∩ V (Dj))× (V (Ci′) ∩ V (Dj))| > 0.

Hence |F ′| < |F |, which is a contradiction with minimality of F . This
settles Claim 1. �

We say that a component Dj is embedded if some cluster Ci strictly
contains it. Moreover, we say that a component Dj is broken if it strictly
contains more than one cluster; Claim 1 implies that then V (Dj) is the
union of vertex sets of the clusters it strictly contains. Component Dj

is untouched if none of the pairs from F is incident to a vertex from Dj .
Claim 1 proves that every component Dj is either embedded, broken or
untouched.

Claim 2. It is impossible that some component Dj is broken and some
other Dj′ is embedded.

Proof. Aiming towards a contradiction assume that some component Dj is
broken and some other Dj′ is embedded. Let Ci1 , Ci2 be any two clusters
contained in Dj and let Ci′ be the cluster that strictly contains Dj′ .
Consider a new cluster graph H obtained from G�F by merging clusters
Ci1 ,Ci2 and splitting cluster Ci′ into clusters on vertex sets V (Ci′)\V (Dj′)
and V (Dj′). As V (Ci′)\V (Dj′) �= ∅, H is still a p-cluster graph. Moreover,
the edition set F ′ that need to be modified in order to obtain H from
G, differs from F by not containing V (Ci1)× V (Ci2) and not containing
(V (Ci′) \ V (Dj′)) × V (Dj′). Both of this sets are nonempty and hence
|F ′| < |F |, which is a contradiction with minimality of F . This settles
Claim 2. �

Claim 2 implies that either none of the components is broken, or none
is embedded. We firstly prove that in the first case the lemma holds. Note
that as � > 2k, at least one component Dj is untouched.

Claim 3. If none of the components D1, D2, . . . , D� is broken, then there
is an untouched component Dj with the largest number of vertices among
D1, D2, . . . , D�.

Proof. Aiming towards a contradiction assume that all the components
with largest numbers of vertices are not untouched, hence they are em-
bedded. Take any such component Dj and let Dj′ be any untouched
component; by the assumption we infer that |V (Dj)| > |V (Dj′)|. Let Ci

be the cluster that strictly contains Dj and let Ci′ be the cluster corre-
sponding to the (untouched) component Dj′ . Consider a cluster graph
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H obtained from G�F by exchanging sets V (Dj) and V (Dj′) between
clusters Ci and Ci′ . Observe that the edition set F ′ that needs to be
modified in order to obtain H from G, differs from F by not containing
(V (Ci) \ V (Dj))× V (Dj) but containing (V (Ci) \ V (Dj))× V (Dj′). How-
ever, |V (Dj)| > |V (Dj′)| and |V (Ci) \ V (Dj)| > 0, so |F ′| < |F |. This
contradicts minimality of F and settles Claim 3. �

We are left with the case when all the clusters are broken or untouched.

Claim 4. If none of the components D1, D2, . . . , D� is embedded, then
there is an untouched component Dj with the largest number of vertices
among D1, D2, . . . , D�.

Proof. Aiming towards a contradiction assume that all the components
with largest numbers of vertices are not untouched, hence they are broken.
Take any such component Dj and let Dj′ be any untouched component;
by the assumption we infer that |V (Dj)| > |V (Dj′)|. Assume that Dj is

broken into q+1 clusters (q ≥ 1) of sizes a1, a2, . . . , aq+1, where
∑q+1

i=1 ai =
|V (Dj)|. The number of editions needed inside component Dj is hence
equal to

(|V (Dj)|
2

)
−

q+1∑
i=1

(
ai
2

)
≥

(|V (Dj)|
2

)
−
(|V (Dj)| − q

2

)
− q
(
1

2

)

=

(|V (Dj)|
2

)
−
(|V (Dj)| − q

2

)
.

The inequality follows from convexity of function t→
(
t
2

)
. We now consider

two cases.
Assume first that |V (Dj′)| > q. Let us change the edition set F

into F ′ by altering editions inside components Dj and Dj′ as follows:
instead of breaking Dj into q + 1 components and leaving Dj′ untouched,
leave Dj untouched and break Dj′ into q + 1 components by creating q
singleton clusters and one cluster of size |V (Dj′)| − q. Similar calculations
to the ones presented in the paragraph above show that the edition

cost inside components Dj and Dj′ is equal to
(|V (Dj′ )|

2

)
−
(|V (Dj′ )|−q

2

)
<(|V (Dj)|

2

)
−
(|V (Dj)|−q

2

)
. Hence, we can obtain the same number of clusters

with a strictly smaller edition set, a contradiction with minimality of F .
Assume now that |V (Dj′)| ≤ q. Let us change the edition set F into F ′

by altering editions inside components Dj and Dj′ as follows: instead of
breakingDj into q+1 components and leavingDj′ untouched, we breakDj′

totally into |V (Dj′)| singleton clusters and break Dj into q − |V (Dj′)|+ 1
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singleton clusters and one of size |V (Dj)|−q+ |V (Dj′)|−1. Clearly, we get
the same number of clusters in this manner. Similar calculations as before
show that the number of new editions needed inside clusters Dj and Dj′

is equal to
(|V (Dj′ )|

2

)
+
(|V (Dj)|

2

)
−
(|V (Dj)|−q+|V (Dj′ )|−1

2

)
; it may be readily

checked that this value is always not larger than
(|V (Dj)|

2

)
−
(|V (Dj)|−q

2

)
for |V (Dj′)| ≥ 1 and |V (Dj)| ≥ q + 1. Recall now that components
D1, D2, . . . , D� are not independent vertices, so |V (Dj′)| ≥ 2 and F ′ is
obtained by removing from F some editions that were adjacent to the
vertex set of Dj , and inserting at most the same number of editions, at
least one of which being adjacent only to vertices of Dj′ . Hence, we can
obtain the same number of clusters with a not larger edition set and with
a smaller number of editions incident to components of G that are cliques
of largest size. This contradicts the choice of F . We have obtained a
contradiction in both cases, so Claim 4 follows. �

Lemma 123 follows directly from Claims 1, 2, 3, and 4.

Clearly, an instance on which none of the Rules 1–3 may be triggered
has p ≤ 6k. This proves Lemma 122.

8.3.2 Bounds on binomial coefficients

In the running time analysis we need some combinatorial bounds on
binomial coefficients. More precisely, we use the following inequality.

Lemma 124. If a, b are nonnegative integers, then
(
a+b
a

)
≤ 22

√
ab.

We start with the following simple observation.

Lemma 125. If a, b are positive integers, then
(
a+b
a

)
≤ (a+b)a+b

aabb
.

Proof. In the proof we use a folklore fact that the sequence an = (1+1/n)n

is increasing. This implies that
(
1 + 1

b

)b ≤ (1 + 1
a+b

)a+b
, equivalently

(a+b)a+b

bb
≤ (a+b+1)a+b

(b+1)b
.

Let us fix a; we prove the claim via induction with respect to b. For
b = 1 the claim is equivalent to aa ≤ (a + 1)a and therefore trivial. In
order to check the induction step, notice that(

a+ b+ 1

a

)
=

a+ b+ 1

b+ 1
·
(
a+ b

a

)
≤ a+ b+ 1

b+ 1
· (a+ b)a+b

aabb

≤ a+ b+ 1

b+ 1
· (a+ b+ 1)a+b

aa(b+ 1)b
=
(a+ b+ 1)a+b+1

aa(b+ 1)b+1
.
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We proceed to the proof of Lemma 124.

Proof of Lemma 124. Firstly, observe that the claim is trivial for a = 0
or b = 0; hence, we can assume that a, b > 0. Moreover, without losing
generality assume that a ≤ b. Let us denote

√
ab = � and a

b = t, then
0 < t ≤ 1. By Lemma 125 we have that(

a+ b

a

)
≤ (a+ b)a+b

aabb
=

(
1 +

b

a

)a

·
(
1 +

a

b

)b

=

⎡
⎣(1 + 1

t

)√
t

1

·
(
1 +

t

1

) 1√
t

⎤
⎦
�

.

Let us denote g(x) = x ln
(
1 + x−2

)
+x−1 ln

(
1 + x2

)
. As

(
a+b
a

)
≤ e�·g(

√
t),

it suffices to prove that g(x) ≤ 2 ln 2 for all 0 < x ≤ 1. Observe that

g′(x) = ln
(
1 + x−2

)
− x · 2x−3 · 1

1 + x−2
− x−2 ln

(
1 + x2

)
+x−1 · 2x · 1

1 + x2

= ln
(
1 + x−2

)
− 2

1 + x2
− x−2 ln

(
1 + x2

)
+

2

1 + x2

= ln
(
1 + x−2

)
− x−2 ln

(
1 + x2

)
.

Let us now introduce h : (0, 1] → R, h(y) = g′(
√
y) = ln

(
1 + y−1

)
−

y−1 ln (1 + y). Then,

h′(y) = −y−2 · 1

1 + y−1
+ y−2 ln (1 + y)− y−1 · 1

1 + y

= y−2 ln (1 + y)− 2

y + y2
.

We claim that h′(y) ≤ 0 for all y ≤ 1. Indeed, from the inequality
ln(1 + y) ≤ y we infer that

y−2 ln (1 + y) ≤ y−1 =
2

y + y
≤ 2

y + y2
.

Therefore, h′(y) ≤ 0 for y ∈ (0, 1], so h(y) is non-increasing on this interval.
As h(1) = 0, this implies that h(y) ≥ 0 for y ∈ (0, 1], so also g′(x) ≥ 0 for
x ∈ (0, 1]. This means that g(x) is non-decreasing on the interval (0, 1],
so g(x) ≤ g(1) = 2 ln 2.
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8.3.3 Small cuts

We now proceed to the algorithm itself. Let us introduce the key notion,
whose directed analogue was considered in Section 6.3.

Definition 126 (see also Definition 73). Let G = (V,E) be an undirected
graph. A partition (V1, V2) of V is called a k-cut of G if |E(V1, V2)| ≤ k.

Lemma 127 (see also Lemma 74). k-cuts of a graph G can be enumerated
with polynomial-time delay.

Proof. We follow a standard branching. We order the vertices arbitrarily,
start with empty V1, V2 and for each consecutive vertex v we branch into
two subcases: we put v either into V1 or into V2. Once the alignment of
all vertices is decided, we output the cut. However, each time we put a
vertex in one of the sets, we run a polynomial-time max-flow algorithm
to check whether the minimum edge cut between V1 and V2 constructed
so far is at most k. If not, then we terminate this branch as it certainly
cannot result in any solutions found. Thus, we always pursue a branch
that results in at least one feasible solution, and finding the next solution
occurs within a polynomial number of steps.

Intuitively, k-cuts of the graph G form the search space of the algorithm.
Therefore, we would like to bound their number. We do this by firstly
bounding the number of cuts of a cluster graph, and then using the fact
that a YES-instance is not very far from some cluster graph.

Lemma 128. Let K be a cluster graph containing at most p clusters,
where p ≤ 6k. Then the number of k-cuts of K is at most 28

√
pk.

Proof. By slightly abusing the notation, assume that K has exactly p
clusters, some of which may be empty. Let C1, C2, . . . , Cp be these clusters
and c1, c2, . . . , cp be their sizes, respectively. We firstly establish a bound
on the number of cuts (V1, V2) such that the cluster Ci contains xi vertices
from V1 and yi from V2. Then we discuss how to bound the number of
ways of selecting pairs xi, yi summing up to ci for which the number of
k-cuts is positive. Multiplying the obtained two bounds gives us the claim.

Having fixed the numbers xi, yi, the number of ways in which the
cluster Ci can be partitioned is equal to

(
xi+yi
xi

)
. Note that

(
xi+yi
xi

)
≤

22
√
xiyi by Lemma 124. Observe that there are xiyi edges between V1

and V2 inside the cluster Ci, so if (V1, V2) is a k-cut, then it follows that∑p
i=1 xiyi ≤ k. By applying the classical Cauchy-Schwarz inequality we
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infer that
∑p

i=1

√
xiyi ≤

√
p ·
√∑p

i=1 xiyi ≤
√
pk. Therefore, the number

of considered cuts is bounded by

p∏
i=1

(
xi + yi
xi

)
≤ 22

∑p
i=1

√
xiyi ≤ 22

√
pk.

Moreover, observe that min(xi, yi) ≤
√
xiyi; hence,

∑p
i=1min(xi, yi) ≤√

pk. Thus, the choice of xi, yi can be modeled by first choosing for each
i, whether min(xi, yi) is equal to xi or to yi, and then expressing �

√
pk�

as the sum of p+ 1 nonnegative numbers: min(xi, yi) for 1 ≤ i ≤ p and
the rest, �√pk� −∑p

i=1min(xi, yi). The number of choices in the first

step is equal to 2p ≤ 2
√
6pk, and in the second is equal to

(
√pk�+p
p

)
≤

2
√
pk+

√
6pk. Therefore, the number of possible choices of xi, yi is bounded

by 2(1+2
√
6)
√
pk ≤ 26

√
pk. Hence, the total number of k-cuts is bounded by

26
√
pk · 22

√
pk = 28

√
pk, as claimed.

Armed with Lemma 128, we are ready to prove a bound on the number
of k-cuts.

Lemma 129. If (G, p, k) is a YES-instance of p-Cluster Editing with
p ≤ 6k, then the number of k-cuts of G is bounded by 28

√
2pk.

Proof. Let K be a cluster graph with at most p clusters such that
H(G,K) ≤ k. Observe that every k-cut of G is also a 2k-cut of K,
as K differs from G by at most k edge modifications. The claim follows
from Lemma 128.

8.3.4 The algorithm

We are finally ready to present the full algorithm, that is, to prove
Theorem 115.

Proof of Theorem 115. Let (G = (V,E), p, k) be the given p-Cluster

Editing instance. By making use of Proposition 120 we can assume that
G has at most (p+2)k+p vertices, thus all the factors polynomial in the size
of G can be henceforth hidden within the 2O(

√
pk) factor. Application of

Proposition 120 gives the additional O(n+m) summand to the complexity.
By further usage of Lemma 122 we can also assume that p ≤ 6k. Note
that application of Lemmas 122 and 120 can only decrease the original
parameters p, k. Note also that application of Lemma 122 can spoil the
bound |V | ≤ (p+2)k+p as p can decrease; however the number of vertices
of the graph is still bounded in terms of original p and k.
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We now enumerate k-cuts of G with polynomial time delay. If during
enumeration we exceed the bound 28

√
2pk given by Lemma 129, we know

that we can safely answer NO, so we immediately terminate the computa-
tion and give a negative answer. Therefore, we can assume that we have
computed the set N of all k-cuts of G and |N | ≤ 28

√
2pk.

Assume that (G, p, k) is a YES-instance and let K be a cluster graph
with at most p clusters such that H(G,K) ≤ k. Again, let C1, C2, . . . , Cp

be the clusters of K. Observe that for every j ∈ {0, 1, 2, . . . , p}, the
partition

(⋃j
i=1 V (Ci),

⋃p
i=j+1 V (Ci)

)
has to be the k-cut with respect

to G, as otherwise there would be more than k edges that need to be
deleted from G in order to obtain K. This observation enables us to use
a dynamic programming approach on the set of cuts.

We construct a directed graph D, whose vertex set is equal to N ×
{0, 1, 2, . . . , p} × {0, 1, 2, . . . , k}; note that |V (D)| = 2O(

√
pk). We create

arcs going from ((V1, V2), j, �) to ((V
′
1 , V

′
2), j+1, �′), where V1 � V ′

1 (hence
V2 � V ′

2), j ∈ {0, 1, 2, . . . , p − 1} and �′ = � + |E(V1, V ′
1 \ V1)| + |E(V ′

1 \
V1, V

′
1 \ V1)| ((V,E) is the complement of the graph G). The arcs can

be constructed in 2O(
√
pk) time by checking for all the pairs of vertices

whether they should be connected. We claim that the answer to the
instance (G, p, k) is equivalent to reachability of any of the vertices of
form ((V, ∅), p, �) from the vertex ((∅, V ), 0, 0).

In one direction, if there is a path from ((∅, V ), 0, 0) to ((V, ∅), p, �) for
some � ≤ k, then the consecutive sets V ′

1 \ V1 along the path form clusters
Ci of a cluster graph K, whose editing distance to G is accumulated on
the last coordinate, and is thus bounded by k. In the second direction,
if there is a cluster graph K with clusters C1, C2, . . . , Cp within editing
distance at most k from G, then vertices of form

⎛
⎝
⎛
⎝ j⋃

i=1

V (Ci),

p⋃
i=j+1

V (Ci)

⎞
⎠ , j,H

(
G

[
j⋃

i=1

V (Ci)

]
,K

[
j⋃

i=1

V (Ci)

])⎞⎠

constitute a path from ((∅, V ), 0, 0) to ((V, ∅), p,H(G,K)). Note that all
these triples are indeed vertices of the graph D, since all the partitions of

the form
(⋃j

i=1 V (Ci),
⋃p

i=j+1 V (Ci)
)
are k-cuts of G.

Reachability in a directed graph can be tested in linear time with
respect to the number of vertices and arcs. We can now apply this
algorithm to the digraph D and conclude solving the p-Cluster Editing

instance in total O(2O(
√
pk) + n+m) time.
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8.4 Multivariate lower bound

This section contains the proof of Theorem 116. The proof consists of four
parts. In Section 8.4.1 we preprocess the input formula Φ to make it more
regular. Section 8.4.2 contains the details of the construction of the graph
G. In Section 8.4.3 we show how to translate a satisfying assignment of Φ
into a 6p-cluster graph G0 close to G and we provide a reverse implication
in Section 8.4.4. The constants hidden in the O-notation correspond to
the factor δ in the statement of Theorem 116.

8.4.1 Preprocessing of the formula

We start with a step that regularizes the input formula Φ, while increasing
its size only by a constant multiplicative factor. The purpose of this step
is to ensure that, when we translate a satisfying assignment of Φ into a
cluster graph G0 in the completeness step, the clusters are of the same
size, and therefore contain the minimum possible number of edges. This
property is used in the argumentation of the soundness step.

Lemma 130. There exists a polynomial-time algorithm that, given a
3-CNF formula Φ with n variables and m clauses and an integer p, p ≤ n,
constructs a 3-CNF formula Φ′ with n′ variables and m′ clauses together
with a partition of the variable set Vars(Φ′) into p parts Varsr, 1 ≤ r ≤ p,
such that following properties hold:

(a) Φ′ is satisfiable iff Φ is;

(b) in Φ′ every clause contains exactly three literals corresponding to
different variables;

(c) in Φ′ every variable appears exactly three times positively and exactly
three times negatively;

(d) n′ is divisible by p and, for each 1 ≤ r ≤ p, |Varsr| = n′/p (i.e., the
variables are split evenly between the parts Varsr);

(e) if Φ′ is satisfiable, then there exists a satisfying assignment of
Vars(Φ′) with the property that in each part Varsr the numbers
of variables set to true and to false are equal.

(f) n′ +m′ = O(n+m).
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Proof. We modify Φ while preserving satisfiability, consecutively ensuring
that properties (b), (c), (d), and (e) are satisfied. Satisfaction of (f) will
follow directly from the constructions used.

First, delete every clause that contains two different literals corre-
sponding to the same variable, as they are always satisfied. Remove copies
of the same literals inside clauses. Until all the clauses have at least two
literals, remove every clause containing one literal, set the value of this
literal so that the clause is satisfied and propagate this knowledge to the
other clauses. At the end, create a new variable p and for every clause C
that has two literals replace it with two clauses C∨p and C∨¬p. All these
operations preserve satisfiability and at the end all the clauses consist of
exactly three different literals.

Second, duplicate each clause so that every variable appears an even
number of times. Introduce two new variables q, r. Take any variable x,
assume that x appears positively k+ times and negatively k− times. If
k+ < k−, introduce clauses (x∨q∨r) and (x∨¬q∨¬r), each k−−k+

2 times,

otherwise introduce clauses (¬x ∨ q ∨ r) and (¬x ∨ ¬q ∨ ¬r), each k+−k−
2

times. These operations preserve satisfiability (as the new clauses can
be satisfied by setting q to true and r to false) and, after the operation,
every variable appears the same number of time positively as negatively
(including the new variables q, r).

Third, copy each clause three times. For each variable x, replace all
occurrences of the variable x with a cycle of implications in the following
way. Assume that x appears 6d times (the number of appearances is
divisible by six due to the modifications in the previous paragraph and the
copying step). Introduce new variables xi for 1 ≤ i ≤ 3d, yi for 1 ≤ i ≤ d
and clauses (¬xi ∨ xi+1 ∨ y�i/3�) and (¬xi ∨ xi+1 ∨ ¬y�i/3�) for 1 ≤ i ≤ 3d
(with x3d+1 = x1). Moreover, replace each occurrence of the variable x
with one of the variables xi in such a way that each variable xi is used
once in a positive literal and once in a negative one. In this manner each
variable xi and yi is used exactly three times in a positive literal and three
times in a negative one. Moreover, the new clauses form an implication
cycle x1 ⇒ x2 ⇒ . . .⇒ x3d ⇒ x1, ensuring that all the variables xi have
equal value in any satisfying assignment of the formula.

Fourth, to make n′ divisible by p we first copy the entire formula
three times, creating a new set of variables for each copy. In this way we
ensure that the number of variables is divisible by three. Then we add
new variables in triples to make the number of variables divisible by p;
note that since the number of variables is divisible by 3, there exists a
number b, 0 ≤ b < p, such that after introducing b triples of variables
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the total number of variables will be divisible by p. For each triple x, y, z
of new variables, we introduce six new clauses: all possible clauses that
contain one literal for each variable x, y and z except for (x ∨ y ∨ z) and
(¬x∨¬y∨¬z). Note that the new clauses are easily satisfied by setting all
new variables to true, while all new variables appear exactly three times
positively and three times negatively. Moreover, as initially p ≤ n, this
step increases the size of the formula only by a constant multiplicative
factor.

Finally, to achieve (d) and (e) take Φ′ = Φ ∧ Φ, where Φ is a copy
of Φ on a disjoint copy of the variable set and with all literals reversed,
i.e., positive occurrences are replaced by negative ones and vice versa. Of
course, if Φ′ is satisfiable then Φ as well, while if Φ is satisfiable, then we
can copy the assignment to the copies of variables and reverse it, thus
obtaining a feasible assignment for Φ′. Recall that before this step the
number of variables was divisible by p. We can now partition the variable
set into p parts, such that whenever we include a variable into one part,
we include its copy in the same part as well. In order to prove that the
property (e) holds, take any feasible solution to Φ′, truncate the evaluation
to Vars(Φ) and copy it while reversing on Φ.

8.4.2 Construction

In this section we show how to compute the graph G and the integer
k′ from the formula Φ′ given by Lemma 130. As Lemma 130 increases
the size of the formula by a constant multiplicative factor, we have that
n′,m′ = O(√pk) and |Varsr| = n′/p = O(

√
k/p) for 1 ≤ r ≤ p. Since

each variable of Φ′ appears in exactly 6 clauses, and each clause contains
3 literals, it follows that m′ = 2n′.

Let L = 1000 ·
(
1 + n′

p

)
= O(

√
k/p). For each part Varsr, 1 ≤ r ≤ p,

we create six cliques Qr
α, 1 ≤ α ≤ 6, each of size L. Let Q be the set

of all the vertices of all cliques Qr
α. In this manner we have 6p cliques.

Intuitively, if we seek for a 6p-cluster graph close to G, then the cliques are
large enough so that merging two cliques is expensive — in the intended
solution we have exactly one clique in each cluster.

For every variable x ∈ Varsr create six vertices wx
1,2, w

x
2,3, . . . , w

x
5,6, w

x
6,1.

Connect them into a cycle in this order; this cycle is called a 6-cycle for
the variable x. Moreover, for each 1 ≤ α ≤ 6 and v ∈ V (Qr

α), create edges
vwx

α−1,α and vw
x
α,α+1 (we assume that the indices behave cyclically, i.e.,

wx
6,7 = wx

6,1, Q
r
7 = Qr

1 etc.). Let W be the set of all vertices wx
α,α+1 for all

variables x. Intuitively, the cheapest way to cut the 6-cycle for variable
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x is to assign the vertices wx
α,α+1, 1 ≤ α ≤ 6 all either to the clusters

with cliques with only odd indices or only with even indices. Choosing
even indices corresponds to setting x to false, while choosing odd ones
corresponds to setting x to true.

Let r(x) be the index of the part that contains the variable x, that is,
x ∈ Varsr(x).

In each clause C we (arbitrarily) enumerate variables: for 1 ≤ η ≤ 3,
let var(C, η) be the variable in the η-th literal of C, and sgn(C, η) = 0 if
the η-th literal is negative and sgn(C, η) = 1 otherwise.

For every clause C create nine vertices: sCβ,ξ for 1 ≤ β, ξ ≤ 3. The

edges incident to the vertex sCβ,ξ are defined as follows:

• for each 1 ≤ η ≤ 3 create an edge sCβ,ξw
var(C,η)
2β+2η−3,2β+2η−2;

• if ξ = 1, then for each 1 ≤ η ≤ 3 connect sCβ,ξ to all vertices of one of

the cliques the vertex w
var(C,η)
2β+2η−3,2β+2η−2 is adjacent to depending on

the sign of the η-th literal in C, that is, the clique Q
r(var(C,η))
2β+2η−2−sgn(C,η);

• if ξ > 1, then for each 1 ≤ η ≤ 3 connect sCβ,ξ to all vertices of

both cliques the vertex w
var(C,η)
2β+2η−3,2β+2η−2 is adjacent to, that is, the

cliques Q
r(var(C,η))
2β+2η−3 and Q

r(var(C,η))
2β+2η−2 .

We note that for a fixed vertex sCβ,ξ, the aforementioned cliques sCβ,ξ
is adjacent to are pairwise different, and they have pairwise different
subscripts (but may have equal superscripts, i.e., belong to the same part).
See Figure 8.1 for an illustration.

Let S be the set of all vertices sCβ,ξ for all clauses C. If we seek a

6p-cluster graph close to the graph G, it is reasonable to put a vertex sCβ,ξ
in a cluster together with one of the cliques this vertex is attached to. If

sCβ,ξ is put in a cluster together with one of the vertices w
var(C,η)
2β+2η−3,2β+2η−2

for 1 ≤ η ≤ 3, we do not need to cut the appropriate edge. The vertices
sCβ,1 verify the assignment encoded by the variable vertices w

x
α,α+1; the

vertices sCβ,2 and s
C
β,3 help us to make all clusters of equal size (which is

helpful in the soundness argument).

We note that |V (G)| = 6pL+O(n′ +m′) = O(√pk).
We now define the budget k′ for edge editions. To make the presenta-
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Figure 8.1: A part of the graph G created for the clause C = (¬x ∨ ¬y ∨ z), with
var(C, 1) = x, var(C, 2) = y and var(C, 3) = z. Note that the parts r(x), r(y) and r(z)
may be not be pairwise distinct. However, due to the rotation index β, in any case
for a fixed vertex sCβ,ξ the cliques this vertex is adjacent to on this figure are pairwise
distinct and have pairwise distinct subscripts.

tion more clear, we split this budget into few summands. Let

kQ−Q = 0, kQ−WS = (6n′ + 36m′)L,

kallWS−WS = 6p

(6n′+9m′
6p

2

)
, kexistWS−WS = 6n′ + 27m′,

ksaveW−W = 3n′, ksaveW−S = 9m′,

and finally

k′ = kQ−Q + kQ−WS + kallWS−WS + kexistWS−WS − 2ksaveW−W − 2ksaveW−S .



CHAPTER 8. CLUSTER EDITING 213

Note that since p ≤ k, L = O(
√
k/p) and n′,m′ = O(√pk), we have

k′ = O(k).
The intuition behind this split is as follows. The intended solution

for the p-Cluster Editing instance (G, 6p, k′) creates no edges between
the cliques Qr

α, each clique is contained in its own cluster, and kQ−Q = 0.
For each v ∈ W ∪ S, the vertex v is assigned to a cluster with one clique
v is adjacent to; kQ−WS accumulates the cost of removal of other edges
in E(Q,W ∪ S). Finally, we count the editions in (W ∪ S)× (W ∪ S) in
an indirect way. First we cut all edges of E(W ∪ S,W ∪ S) (summand
kexistWS−WS). We group the vertices of W ∪ S into clusters and add edges

between vertices in each cluster; the summand kallWS−WS corresponds to
the cost of this operation when all the clusters are of the same size (and
the number of edges is minimum possible). Finally, in summands ksaveW−W
and ksaveW−S we count how many edges are removed and then added again in
this process: ksaveW−W corresponds to saving three edges from each 6-cycle
in E(W,W) and ksaveW−S corresponds to saving one edge in E(W,S) per
each vertex sCβ,ξ.

8.4.3 Completeness

We now show how to translate a satisfying assignment of the input formula
Φ into a 6p-cluster graph close to G.

Lemma 131. If the input formula Φ is satisfiable, then there exists a
6p-cluster graph G0 on vertex set V (G) such that H(G,G0) = k′.

Proof. Let φ′ be a satisfying assignment of the formula Φ′ as guaranteed
by Lemma 130. Recall that in each part Varsr, the assignment φ′ sets the
same number of variables to true as to false.

To simplify the presentation, we identify the range of φ′ with integers:
φ′(x) = 0 if x is evaluated to false in φ′ and φ′(x) = 1 otherwise. Moreover,
for a clause C by η(C) we denote the index of an arbitrarily chosen literal
that satisfies C in the assignment φ′.

We create 6p clusters Kr
α, 1 ≤ r ≤ p, 1 ≤ α ≤ 6, as follows:

• Qr
α ⊆ Kr

α for 1 ≤ r ≤ p, 1 ≤ α ≤ 6;

• for x ∈ Vars(Φ′), if φ′(x) = 1 then wx
6,1, w

x
1,2 ∈ K

r(x)
1 , wx

2,3, w
x
3,4 ∈

K
r(x)
3 , wx

4,5, w
x
5,6 ∈ K

r(x)
5 ;

• for x ∈ Vars(Φ′), if φ′(x) = 0 then wx
1,2, w

x
2,3 ∈ K

r(x)
2 , wx

3,4, w
x
4,5 ∈

K
r(x)
4 , wx

5,6, w
x
6,1 ∈ K

r(x)
6 ;
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• for each clause C of Φ′ and each 1 ≤ β, ξ ≤ 3 we assign the vertex

sCβ,ξ to the cluster K
r(var(C,η))
2β+2η−2−φ′(var(C,η)), where η = η(C) + ξ − 1.

Note that in this way sCβ,ξ belongs to the same cluster as its neighbor

w
var(C,η)
2β+2η−3,2β+2η−2, where η = η(C)+ξ−1. See Figure 8.2 for an illustration.
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Figure 8.2: Parts of clusters for variables x, y and z with φ′(x) = 1, φ′(y) = 0, φ′(z) = 1,
and a clause C = (¬x ∨ ¬y ∨ z) with var(C, 1) = x, var(C, 2) = y, var(C, 3) = z and
η(C) = 2 (note that both y and z satisfy C in the assignment φ′, but y was chosen as a
representative).

Let us now compute H(G,G0). We do not need to add nor delete
any edges in G[Q]. We note that each vertex v ∈ W ∪ S is assigned
to a cluster with one clique Qr

α it is adjacent to. Indeed, this is only
non-trivial for vertices sCβ,1 for clauses C and 1 ≤ β ≤ 3. Note, however,

that sCβ,1 is assigned to a cluster with the clique Q
r(var(C,η(C)))
2β+2η(C)−2−φ′(var(C,η(C)))
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and is adjacent to the clique Q
r(var(C,η(C)))
2β+2η(C)−2−sgn(var(C,η(C))), but since literal

with variable var(C, η(C)) satisfies C in the assignment φ′, it follows that
φ′(var(C, η(C))) = sgn(var(C, η(C))).

Therefore we need to cut kQ−WS = (6n′+36m′)L edges in E(Q,W∪S):
L edges adjacent to each vertex wx

α,α+1, 2L edges adjacent to each vertex

sCβ,1, and 5L edges adjacent to each vertex sCβ,2 and s
C
β,3. We do not add

any new edges between Q and W ∪ S.
To count the number of editions in G[W∪S], let us first verify that the

clusters Kr
α are of equal sizes. Fix cluster Kr

α, 1 ≤ α ≤ 6, 1 ≤ r ≤ p. Kr
α

contains two vertices wx
α−1,α and w

x
α,α+1 for each variable x with φ

′(x)+α
being even. Since φ′ evaluates the same number of variables in Varsr

to true as to false, we infer that each cluster Kr
α contains exactly n′/p

vertices from W , corresponding to n′/(2p) = |Varsr|/2 variables of Varsr.
Now we need to verify that each cluster Kr

α contains the same number
of vertices from S. Let f be a function that maps the vertices of S to

clusters they are belonging to. Recall that f(sCβ,ξ) = K
r(var(C,η))
2β+2η−2−φ′(var(C,η)),

where η = η(C) + ξ − 1. We now claim the following.

Claim 1. Fix a part r, 1 ≤ r ≤ p, and an index α, 1 ≤ α ≤ 6. Then to
each pair (x,C), where x is a variable with r(x) = r present in a clause
C, and φ′(x) = α mod 2, one can assign a pair of indices (β, ξ) with
1 ≤ β, ξ ≤ 3 such that f(sCβ,ξ) = Kr

α. Moreover, this assignment can be
constructed in such a manner that for all pairs (x,C) the corresponding
vertices sCβ,ξ are pairwise different.

Proof. Let η be such that x = var(C, η). Define indices (β, ξ) as follows:

ξ = η − η(C) + 1,

β =
α+ φ′(x)

2
− η + 1,

where the arithmetic operations are defined cyclically in a natural manner.
Note that β is an integer since φ′(x) = α mod 2. From these equalities it
follows that:

η = η(C) + ξ − 1,

α = 2β + 2η − 2− φ′(var(C, η)),

and so f(sCβ,ξ) = Kr
α. We are left with proving that triples (C, β, ξ) are

pairwise different for different pairs (x,C). However, note that for different
variables x appearing in C we have different indices η, and so the defined
indices ξ will be different. �
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Observe that for a fixed part r and index α, there are exactly 3|Varsr| =
3n′/p pairs (x,C) satisfying the assumption in Claim 1: there are |Varsr|/2
variables in Varsr that are evaluated to α mod 2 in φ′, and each variable
appears in 6 different clauses. Thus, Claim 1 ensures that the preimage
under f of each cluster is of cardinality at least 3n′/p. Since there are
6p clusters in total, we infer that the union of these preimages is of
cardinality at least 18n′ = 9m′ (recall that m′ = 2n′). However, we have
that |S| = 9m′. Consequently, it follows that the preimage under f of
each cluster is of size exactly 3n′/p, so each cluster contains the same
number of vertices from S.

We now count the number of editions in G[W ∪ S] as sketched in
the construction section. The subgraph G[W ∪ S] contains 6n′ + 27m′

edges: one 6-cycle for each variable and three edges incident to each
of the nine vertices sCβ,ξ for each clause C. Each cluster Kr

α contains

n′/p vertices from W and 3m′
2p vertices from S. If we deleted all edges in

G[W ∪ S] and then added all the missing edges in the clusters, we would
make kexistWS−WS + kallWS−WS editions, due to the clusters being equal-sized.
However, in this manner we sometimes delete an edge and then introduce
it again; thus, for each edge of G[W ∪ S] that is contained in one cluster
Kr

α, we should subtract 2 in this counting scheme.
For each variable x, exactly three edges of the form wx

α−1,αw
x
α,α+1 are

contained in one cluster; this gives a total of ksaveW−W = 3n′ saved edges.
For each clause C each vertex sCβ,ξ is assigned to a cluster with one of the

vertices w
var(C,η)
2β+2η−3,2β+2η−2, 1 ≤ η ≤ 3, thus exactly one of the edges incident

to sCβ,ξ is contained in one cluster. This sums up to k
save
W−S = 9m′ saved

edges, and we infer that the 6p-cluster graph G0 can be obtained from G
by exactly k′ = kQ−Q+kQ−WS +kexistWS−WS +k

all
WS−WS −2ksaveW−W −2ksaveW−S

editions.

8.4.4 Soundness

We need the following simple bound on the number of edges of a cluster
graph.

Lemma 132. Let a, b be positive integers and H be a cluster graph with
ab vertices and at most a clusters. Then |E(H)| ≥ a

(
b
2

)
and equality holds

if and only if H is an a-cluster graph and each cluster of H has size
exactly b.

Proof. It suffices to note that if not all clusters of H are of size b, there is
one of size at least b+ 1 and one of size at most b− 1 or the number of
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clusters is less than a; then, moving a vertex from the largest cluster of
H to a new or the smallest cluster strictly decreases the number of edges
of H.

We are ready to show how to translate a p′-cluster graph G0 with
p′ ≤ 6p and H(G0, G) ≤ k′, into a satisfying assignment of the input
formula Φ.

Lemma 133. If there exists a p′-cluster graph G0 with V (G) = V (G0),
p′ ≤ 6p, and H(G,G0) ≤ k′, then the formula Φ is satisfiable.

Proof. By Lemma 121, we may assume that each clique Qr
α is contained

in one cluster in G0. Let F = E(G0)�E(G) be the editing set, |F | ≤ k′.
Before we start, we present some intuition. The cluster graph G0 may

differ from the one constructed in the completeness step in two significant
ways, both leading to some savings in the edges incident to W ∪ S that
may not be included in F . First, it may not be true that each cluster
contains exactly one clique Qr

α. However, since the number of cliques is
at most 6p, this may happen only if some clusters contain more than one
clique Qr

α, and we need to add L2 edges to merge each pair of cliques
that belong to the same cluster. Second, a vertex v ∈ W ∪ S may not be
contained in a cluster together with one of the cliques it is adjacent to.
However, as each such vertex needs to be separated from all its adjacent
cliques (compared to all but one in the completeness step), this costs us
additional L edges to remove. The large multiplicative constant in the
definition of L ensures us that in both these ways we pay more than we
save on the edges incident with W ∪ S. We now proceed to the formal
argumentation.

We define the following quantities.

�Q−Q = |F ∩ (Q×Q)|,
�Q−WS = |F ∩ EG(Q,W ∪ S)|,

�allWS−WS = |E(G0[W ∪ S])|,
�saveW−W = |EG(W,W) ∩ EG0(W,W)|,
�saveW−S = |EG(W,S) ∩ EG0(W,S)|.

Recall that kexistWS−WS = |E(G[W ∪ S])| = 6n′ + 27m′. Similarly as in the
completeness proof, we have that

|F | ≥ �Q−Q + �Q−WS + �allWS−WS + kexistWS−WS − 2�saveW−W − 2�saveW−S .
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Indeed, �Q−Q and �Q−WS count (possibly not all) edges of F that are
incident to the vertices of Q. The edges of F ∩ ((W ∪ S)× (W ∪ S)) are
counted in an indirect way: each edge of G[W ∪ S] is deleted (kexistWS−WS)
and each edge of G0[W ∪ S] is added (�allWS−WS). Then, the edges that
are counted twice in this manner are subtracted (�saveW−W and �saveW−S).

We say that a cluster is crowded if it contains at least two cliques
Qr

α and proper if it contains exactly one clique Qr
α. A clique Qr

α that is
contained in a crowded (proper) cluster is called a crowded (proper) clique.

Let a be the number of crowded cliques. Note that �Q−Q − kQ−Q =
|F ∩ (Q×Q)| − 0 ≥ aL2/2, since each vertex in a crowded clique needs
to be connected to at least one other crowded clique.

We say that a vertex v ∈ W ∪ S is attached to a clique Qr
α, if it is

adjacent to all vertices of the clique in G. Moreover, we say that a vertex
v ∈ W ∪ S is alone if it is contained in a cluster in G0 that does not
contain any clique v is attached to. Let nalone be the number of alone
vertices.

Let us now count the number of vertices a fixed clique Qr
α is attached

to. Recall that |Varsr| = n′/p. For each variable x ∈ Varsr the clique Qr
α

is attached to two vertices wx
α−1,α and wx

α,α+1. Moreover, each variable
x ∈ Varsr appears in exactly six clauses: thrice positively and thrice
negatively. For each such clause C, Qr

α is attached to the vertex sCβ,2
for exactly one choice of the value 1 ≤ β ≤ 3 and to the vertex sCβ,3 for
exactly one choice of the value 1 ≤ β ≤ 3. Moreover, if x appears in C
positively and α is odd, or if x appears in C negatively and α is even,
then Qr

α is attached to the vertex sCβ,1 for exactly one choice of the value
1 ≤ β ≤ 3. We infer that the clique Qr

α is attached to exactly fifteen
vertices from S for each variable x ∈ Varsr. Therefore, there are exactly
17|Varsr| = 17n′/p vertices of W ∪ S attached to Qr

α: 2n
′/p from W and

15n′/p from S.
Take an arbitrary vertex v ∈ W ∪ S and assume that v is attached to

bv cliques, and av out of them are crowded. As F needs to contain all
edges of G that connect v with cliques that belong to a different cluster
than v, we infer that |F ∩EG({v},Q)| ≥ (bv −max(1, av))L. Moreover, if
v is alone, |F ∩ EG({v},Q)| ≥ bvL ≥ 1 · L+ (bv −max(1, av))L. Hence

�Q−WS = |F ∩ EG(Q,W ∪ S)|
≥ naloneL+

∑
v∈W∪S

(bv −max(1, av))L

≥ naloneL+
∑

v∈W∪S
(bv − 1)L−

∑
v∈W∪S

avL.
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Recall that
∑

v∈W∪S(bv − 1)L = kQ−WS . Therefore, using the fact
that each clique is attached to exactly 17n′/p vertices of W∪S, we obtain
that

�Q−WS − kQ−WS = |F ∩ EG(Q,W ∪ S)| − kQ−WS

≥ naloneL−
∑

v∈W∪S
avL = naloneL− 17aLn′/p.

In G0, the vertices ofW∪S are split between p′ ≤ 6p clusters and there
are 6n′ + 9m′ of them. By Lemma 132, the minimum number of edges of
G0[W ∪ S] is attained when all clusters are of equal size and the number
of clusters is maximum possible. We infer that �allWS−WS ≥ kallWS−WS .

We are left with bounding �saveW−W and �saveW−S . Recall that ksaveW−W
counts three edges out of each 6-cycle constructed per variable of Φ′,
|ksaveW−W | = 3n′, whereas ksaveW−S counts one edge per each vertex sCβ,ξ ∈ S,
ksaveW−S = 9m′ = |S|.

Consider a crowded cluster K with c > 1 crowded cliques. We say
that K interferes with a vertex v ∈ W ∪ S if v is attached to a clique in
K. As each clique is attached to exactly 17n′/p vertices of W ∪ S, 2n′/p
belonging to W and 15n′/p to S, in total at most 2an′/p vertices of W
and at most 15an′/p vertices of S interfere with a crowded cluster.

Fix a variable x ∈ Vars(Φ′). If none of the vertices wx
α,α+1 ∈ W

interferes with any crowded cluster K, then all the cliques Q
r(x)
α′ , 1 ≤ α′ ≤

6, are proper cliques, each contained in a different cluster in G0. Moreover,
if additionally no vertex wx

α,α+1, 1 ≤ α ≤ 6, is alone, then in the 6-cycle
constructed for the variable x at most three edges are not in F . On the
other hand, if some of the vertices wx

α,α+1 ∈ W interfere with a crowded
cluster K, or at least one of them is alone, it may happen that all six
edges of this 6-cycle are contained in one cluster of G0. The total number
of 6-cycles that contain either alone vertices or vertices interfering with
crowded clusters is bounded by nalone + an′/p, as every clique is attached
to exactly n′/p 6-cycles. In ksaveW−W we counted three edges per a 6-cycle,
while in �saveW−W we counted at most three edges per every 6-cycles except
6-cycles that either contain alone vertices or vertices attached to crowded
cliques, for which we counted at most six edges. Hence, we infer that

�saveW−W − ksaveW−W ≤ 3(nalone + an′/p).

We claim that if a vertex sCβ,ξ ∈ S (i) is not alone, and (ii) is not
attached to a crowded clique, and (iii) is not adjacent to any alone vertex
in W , then at most one edge from E({sCβ,ξ},W) may not be in F . Recall
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that sCβ,ξ has exactly three neighbors in W, each of them attached to
exactly two cliques and all these six cliques are pairwise distinct; moreover,
sCβ,ξ is attached only to these six cliques, if β = 2, 3, or only to three out of

these six, if β = 1. Observe that (i) and (ii) imply that sCβ,ξ is in the same
cluster as exactly one of the six cliques attached to his neighbors in W,
so if it was in the same cluster as two of his neighbors in W , then at least
one of them would be alone, contradicting (iii). Therefore, if conditions
(i), (ii), and (iii) are satisfied, then at most one edge adjacent to sCβ,ξ may
be not contained in F . However, if at least one of (i), (ii) or (iii) is not
satisfied, then all three edges incident to sSβ,ξ may be contained in one
cluster. As each vertex in W is adjacent to at most 18 vertices in S (at
most 3 per every clause in which the variable is present), there are at
most 18nalone vertices sCβ,ξ that are alone or adjacent to an alone vertex in
W. Note also that the number of vertices of S interfering with crowded
clusters is bounded by 15an′/p, as each of a crowded cliques has exactly
15n′/p vertices of S attached. Thus, we are able to bound the number of
vertices of S for which (i), (ii) or (iii) does not hold by 18nalone + 15an′/p.
As in ksaveW−S we counted one edge per every vertex of S, while in �saveW−S
we counted at most one edge per every vertex of S except vertices not
satisfying (i), (ii), or (iii), for which we counted at most three edges, we
infer that

�saveW−S − ksaveW−S ≤ 2(18nalone + 15an′/p).

Summing up all the bounds:

|F | − k′ ≥ (�Q−Q − kQ−Q) + (�Q−WS − kQ−WS)

+(�allWS−WS − kallWS−WS)− 2(�saveW−W − ksaveW−W)

−2(�saveW−S − ksaveW−S)

≥ aL2/2 + naloneL− 17aLn′/p+ 0

−6(nalone + an′/p)− 4(18nalone + 15an′/p)

≥ a+ nalone ≥ 0.

The second to last inequality follows from the choice of the value of L,

L = 1000 ·
(
1 + n′

p

)
; note that in particular L ≥ 1000.

We infer that a = 0, that is, each clique Qr
α is contained in a different

cluster of G0, and each cluster of G0 contains exactly one such clique.
Moreover, nalone = 0, that is, each vertex v ∈ W ∪ S is contained in a
cluster with at least one clique v is attached to; as all cliques are proper,
v is contained in a cluster with exactly one clique v is attached to and
�Q−WS = kQ−WS .
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Recall that |F ∩((W∪S)×(W∪S))| = �allWS−WS+k
exist
WS−WS−2�saveW−W−

2�saveW−S . As each clique is now proper and no vertex is alone, for each
variable x at most three edges out of the 6-cycle wx

α,α+1, 1 ≤ α ≤ 6, are

not in F , that is, �saveW−W ≤ ksaveW−W . Moreover, for each vertex sCβ,ξ ∈ S, the
three neighbors of sCβ,ξ are contained in different clusters and at most one

edge incident to sCβ,ξ is not in F , that is, �
save
W−S ≤ ksaveW−S . As |F | ≤ k′ and

�allWS−WS ≥ kallWS−WS , these inequalities are tight: exactly three edges out
of each 6-cycle are not in F , and exactly one edge adjacent to a vertex in
S is not in F .

Consider an assignment φ′ of Vars(Φ′) that assigns φ′(x) = 1 if the

vertices wx
α,α+1, 1 ≤ α ≤ 6 are contained in clusters with cliques Q

r(x)
1 ,

Q
r(x)
3 , and Q

r(x)
5 (i.e., the edges wx

6,1w
x
1,2, w

x
2,3w

x
3,4 and w

x
4,5w

x
5,6 are not in

F ), and φ′(x) = 0 otherwise (i.e., if the vertices wx
α,α+1, 1 ≤ α ≤ 6 are

contained in clusters with cliques Q
r(x)
2 , Q

r(x)
4 and Q

r(x)
6 ) — a direct check

shows that these are the only ways to save 3 edges inside a 6-cycle. We
claim that φ′ satisfies Φ′. Consider a clause C. The vertex sC1,1 is contained
in a cluster with one of the three cliques it is attached to (as nalone = 0),
say Qr

α′ , and with one of the three vertices of W it is adjacent to, say
wx
α,α+1. Therefore r(x) = r, wx

α,α+1 is contained in the same cluster as
Qr

α′ , and it follows that the literal in C that contains x satisfies C in the
assignment φ′.

8.5 General clustering under ETH

In this section we prove Theorem 119, namely that the Cluster Editing

problem without restriction on the number of clusters in the output does
not admit a O∗(2o(k)) algorithm unless the Exponential Time Hypothesis
fails. The following lemma provides a linear reduction from the 3-CNF-

SAT problem.

Lemma 134. There exists a polynomial-time algorithm that, given a
3-CNF formula Φ with n variables and m clauses, constructs a Cluster

Editing instance (G, k) such that (i) Φ is satisfiable if and only if (G, k)
is a YES-instance, and (ii) |V (G)|+ |E(G)|+ k = O(n+m).

Proof. By standard arguments (see for instance Lemma 130), we may
assume that each clause of Φ consists of exactly three literals with different
variables and each variable appears at least twice: at least once in a positive
literal and at least once in a negative one. Let Vars(Φ) denote the set of
variables of Φ. For a variable x, let sx be the number of appearances of x
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py
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Figure 8.3: The gadget for a clause C with variables x, y and z.

in the formula Φ. For a clause C with variables x, y, and z, we denote by
lx,C the literal of C that contains x (i.e., lx,C = x or lx,C = ¬x).
Construction. We construct a graph G = (V,E) as follows. First, for
each variable x we introduce a cycle Ax of length 4sx. For each clause C
where x appears we assign four consecutive vertices ajx,C , 1 ≤ j ≤ 4 on
the cycle Ax. If the vertices assigned to a clause C

′ follow the vertices
assigned to a clause C on the cycle Ax, we let a

5
x,C = a1x,C′ .

Second, for each clause C with variables x, y, and z we introduce
a gadget with 6 vertices VC = {px, py, pz, qx, qy, qz} with all inner edges
except for qxqy, qyqz, and qzqx (see Figure 8.3). If lx,C = x then we connect
qx to the vertices a

1
x,C and a2x,C , and if lx,C = ¬x, we connect qx to a2x,C and

a3x,C . We proceed analogously for variables y and z in the clause C. We
set k = 8m+ 2

∑
x∈Vars(Φ) sx = 14m. This finishes the construction of the

Cluster Editing instance (G, k). Clearly |V (G)|+|E(G)|+k = O(n+m).
We now prove that (G, k) is a YES-instance if and only if Φ is satisfiable.

Completeness. Assume that Φ is satisfiable, and let φ be a satisfying
assignment for Φ. We construct a set F ⊆ V ×V as follows. First, for each
variable x we take into F the edges a2x,Ca

3
x,C , a

4
x,Ca

5
x,C for each clause C if

φ(x) is true and the edges a1x,Ca
2
x,C , a

3
x,Ca

4
x,C for each clause C otherwise.

Second, let C be a clause of Φ with variables x, y, and z and, without
loss of generality, assume that the literal lx,C satisfies C in the assignment
φ. For such a clause C we add to F eight elements: the edges qxpx, qxpy,
qxpz, the four edges that connect qy and qz to the cycles Ay and Az, and
the non-edge qyqz.
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Clearly |F | =∑x∈Vars(Φ) 2sx + 8m = k. We now verify that G�F is
a cluster graph. For each cycle Ax, the removal of the edges in F results
in splitting the cycle into 2sx two-vertex clusters. For each clause C with
variables x, y, z, satisfied by the literal lx,C in the assignment φ, the
vertices px, py, pz, qy, and qz form a 5-vertex cluster. Moreover, since lx,C
is true in φ, the edge that connects the two neighbors of qx on the cycle
Ax is not in F , so qx and these two neighbors form a three-vertex cluster.

Soundness. Let F be a minimum size feasible solution to the Cluster

Editing instance (G, k). By Lemma 121, for each clause C with variables
x, y, and z, the vertices px, py, and pz are contained in a single cluster in
G�F . Denote the vertex set of this cluster by ZC ; note that clusters ZC

for different clauses C are not necessarily different. For a minimum size
feasible solution F , let Λ(F ) denote the set of clauses C such that cluster
ZC fully contained in the vertex set VC . Without loss of generality we
choose a minimum size feasible solution F such that |Λ(F )| is maximum
possible.

Informally, we are going to show that the solution F needs to look
almost like the one constructed in the proof of completeness. The crucial
observation is that if we want to create a six-vertex cluster ZC = VC then
we need to put nine (instead of eight) elements in F that are incident to
VC . Let us now proceed to the formal arguments.

Fix a variable x and let Fx = F ∩ (V (Ax)× V (Ax)). We claim that
|Fx| ≥ 2sx and, moreover, if |F | = 2sx then Fx consists of every second
edge of the cycle Ax. Note that Ax�Fx is a cluster graph; assume that
there are γ clusters in Ax�Fx with sizes αj for 1 ≤ j ≤ γ. If γ = 1 then,
as sx ≥ 2,

|Fx| = |α1| =
(
4sx
2

)
− 4sx = 8s2x − 6sx > 2sx.

Otherwise, in a cluster with αj vertices we need to add at least
(αj

2

)
−

(αj − 1) edges and remove at least two edges of Ax leaving the cluster.
Using

∑
αj = 4sx, we infer that

|Fx| ≥ γ +

γ∑
j=1

((
αj

2

)
− (αj − 1)

)

=
1

2

γ∑
j=1

(α2
j − 3αj + 4)

= 2sx +
1

2

γ∑
j=1

(αj − 2)2.
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Thus |Fx| ≥ 2sx, and |Fx| = 2sx only if for all 1 ≤ j ≤ γ we have αj = 2
and in each two-vertex cluster of Ax�Fx, Fx does not contain the edge
in this cluster and contains two edges of Ax that leave this cluster. This
situation occurs only if Fx consists of every second edge of the cycle Ax.

We now focus on a gadget for some clause C with variables x, y, and
z. Let FC = F ∩ (VC × (VC ∪ V (Ax) ∪ V (Ay) ∪ V (Az))). We claim that
|FC | ≥ 8 and there are very limited ways in which we can obtain |FC | = 8.

Recall that the vertices px, py, and pz are contained in a single cluster
in G�F with vertex set ZC . We now distinguish subcases, depending on
how many of the vertices qx, qy, and qz are in ZC .

If qx, qy, qz /∈ ZC , then {px, py, pz} × {qx, qy, qx} ⊆ FC and |FC | ≥ 9.

If qx ∈ ZC , but qy, qz /∈ ZC , then {px, py, pz} × {qy, qz} ⊆ FC . If there
is a vertex v ∈ ZC \ VC , then F needs to contain three elements vpx, vpy,
and vpz. In this case F

′ constructed from F by replacing all elements
incident to {qx, px, py, pz} with all eight edges of G incident to this set is
a feasible solution to (G, k) of size smaller than F , a contradiction to the
assumption of the minimality of F . Thus, ZC = {qx, px, py, pz}, and FC

contains the eight edges of G incident to ZC .

If qx, qy ∈ ZC but qz /∈ ZC , then qzpx, qzpy, qzpz, qxqy ∈ FC . If there
is a vertex v ∈ ZC \ VC , then FC contains the three elements vpx, vpy, vpz
and at least one of the elements of {vqx, vqy}. In this case F ′ constructed
from F by replacing all elements incident to {px, py, pz, qx, qy} with all
seven edges of G incident to this set and the non-edge qxqy is a feasible
solution to (G, k) of size not greater than F . From the construction it also
follows that Λ(F ′) � Λ(F ), which is a contradiction with the choice of F .
Thus ZC = {px, py, pz, qx, qy} and FC contains all seven edges incident to
ZC and the non-edge qxqy.

In the last case we have that VC ⊆ ZC , and qxqy, qyqz, qzqx ∈ FC .
There are six edges connecting VC and V (Ax)∪ V (Ay)∪ V (Az) in G, and
all these edges are incident to different vertices of V (Ax)∪V (Ay)∪V (Az).
Let uv be one of these six edges, u ∈ VC , v /∈ VC . If v ∈ ZC then F
contains five non-edges connecting v to VC \ {u}. Otherwise, if v /∈ ZC

then F contains the edge uv. We infer that FC contains at least six
elements that have exactly one endpoint in VC , and hence |FC | ≥ 9.

We now note that the sets FC for all clauses C and the sets Fx for all
variables x are pairwise disjoint. Recall that |Fx| ≥ 2sx for any variable
x and |FC | ≥ 8 for any clause C. As |F | ≤ 14m = 8m +

∑
x 2sx, we

infer that |Fx| = 2sx for any variable x, |FC | = 8 for any clause C and F
contains no elements that are not in any set Fx or FC .

As |Fx| = 2sx for each variable x, the set Fx consists of every second



CHAPTER 8. CLUSTER EDITING 225

edge of the cycle Ax. We construct an assignment φ as follows: φ(x) is
true if for all clauses C where x appears we have a2x,Ca

3
x,C , a

4
x,Ca

5
x,C ∈ F

and φ(x) is false if a1x,Ca
2
x,C , a

3
x,Ca

4
x,C ∈ F . We claim that φ satisfies Φ.

Consider a clause C with variables x, y, and z. As |FC | = 8, by the analysis
above one of two situations occur: |ZC | = 4, say ZC = {px, py, pz, qx}, or
|ZC | = 5, say ZC = {px, py, pz, qx, qy}. In both cases, FC consists only
of all edges of G that connect ZC with V (G) \ ZC and the non-edges
of G[ZC ]. Thus, in both cases the two edges that connect qz with the
cycle Az are not in F . Thus, the two neighbors of qz on the cycle Az are
connected by an edge not in F , and it follows that the literal lz,C satisfies
the clause C in the assignment φ.

Lemma 134 directly implies the proof of Theorem 119.

Proof of Theorem 119. A subexponential algorithm for Cluster Edit-

ing, combined with the reduction shown in Lemma 134, would give a
subexponential (in the number of variables and clauses) algorithm for
verifying satisfiability of 3-CNF formulas. Existence of such algorithm
contradicts ETH by Corollary 5.

We note that the graph constructed in the proof of Lemma 134 is
of maximum degree 5. Thus our reduction intuitively shows that sparse
instances of Cluster Editing where in the output the clusters are of
constant size are already hard.

8.6 Conclusion and open questions

In this chapter we have given an algorithm that solves p-Cluster Editing

in time O(2O(
√
pk) + n+m) and complemented it by a multivariate lower

bound, which shows that the running time of the presented algorithm is
asymptotically tight for all p sublinear in k.

In our multivariate lower bound it is crucial that the cliques and clusters
are arranged in groups of six. However, the drawback of this construction
is that Theorem 116 settles the time complexity of p-Cluster Editing

problem only for p ≥ 6 (Corollary 118). It does not seem unreasonable
that, for example, the 2-Cluster Editing problem, already NP-complete
[299], may have enough structure to allow an algorithm with running time

O(2o(
√
k) + n + m). Can we construct such an algorithm or refute its

existence under ETH?
Secondly, we would like to point out an interesting link between

the subexponential parameterized complexity of the problem and its
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approximability. When the number of clusters drops from linear to
sublinear in k, we obtain a phase transition in parameterized complexity
from exponential to subexponential. As far as approximation is concerned,
we know that bounding the number of clusters by a constant allows us to
construct a PTAS [166], whereas the general problem is APX-hard [61].
The mutual drop of the parameterized complexity of a problem — from
exponential to subexponential — and of approximability — from APX-
hardness to admitting a PTAS — can be also observed for many hard
problems when the input is constrained by additional topological bounds,
for instance excluding a fixed pattern as a minor [104, 105, 139]. It
is therefore an interesting question, whether p-Cluster Editing also
admits a PTAS when one assumes that the target number of clusters is
bounded by a non-constant, yet sublinear function of the optimum number
of modifications k, for instance p =

√
k.



Chapter 9

Tight bounds for
parameterized complexity of
Edge Clique Cover

9.1 Introduction

As described in Chapter 4, recently there is much interest in pursuing tight
bounds on parameterized complexity of classical NP-hard problems. The
Exponential Time Hypothesis of Impagliazzo and Paturi [194] provides
solid complexity foundations for proving sharp lower bounds, which in
many cases essentially match known upper bounds. Such lower bounds
often follow immediately from known NP-hardness reductions, when one
considers classical problems that admit algorithms working in simple single
exponential time in term of a natural parameter. However, more involved
frameworks for different parameterizations and running times have been
developed. Among others, reduction frameworks have been proposed for
slightly superexponential running time [241], i.e., O∗(2O(k log k)), as well as
for parameterizations by treewidth, for both simple single exponential and
slightly superexponential running time [91, 239, 241]. A class of problems
receiving a lot of attention recently are problems admitting subexponential
parameterized algorithms, i.e., working in time O∗(2o(k)) for k being the
parameter. We have already seen examples of such algorithms in Chapter 6
and in Chapter 8.

In this chapter we make one step further in the quest of finding tight
runtime bounds for parameterized problems by presenting (to the best
of our knowledge) the first natural double-exponential tight bound. Our

227
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problem of interest is an important combinatorial problem called Edge

Clique Cover.

Edge Clique Cover

Input: An undirected graph G and a non-negative integer k.

Parameter: k

Question: Does there exist a set of k subgraphs of G, such that
each subgraph is a clique and each edge of G is con-
tained in at least one of these subgraphs?

Edge Clique Cover is known to be NP-complete even in very re-
stricted graph classes [59, 190, 260] and was widely studied under a few
different names: Covering by Cliques (GT17) [160], Intersection
Graph Basis (GT59) [160] and Keyword Conflict [212]. It is known
that the Edge Clique Cover problem is equivalent to the problem of
finding a representation of a graph G as an intersection model with at
most k elements in the universe [123, 177, 278]. Therefore, a covering of
a complex real-world network by a small number of cliques may reveal
its hidden structure [179]. Further applications of Edge Clique Cover

can be found in such various areas as computational geometry [4], ap-
plied statistics [169, 267], and compiler optimization [273]. Due to its
importance, the Edge Clique Cover problem was studied from various
perspectives, including approximation upper and lower bounds [19, 245],
heuristics [26, 169, 212, 223, 267, 273] and polynomial-time algorithms for
special graph classes [190, 191, 247, 260].

From the point of view of exact algorithms, a natural parameteri-
zation of Edge Clique Cover by the number of cliques was studied
by Gramm et al. [168]. The authors propose a set of simple rules that
reduce the number of vertices of the input graph to 2k, that is, they
provide a kernel with at most 2k vertices. Currently the best known
fixed-parameter algorithm for Edge Clique Cover parameterized by k
is a straightforward dynamic programming on the 2k-vertex kernel, which
runs in double-exponential time in terms of k. Due to the importance
of the Edge Clique Cover problem on one hand, and the lack of any
improvement upon the very simple approach of Gramm et al. [168] on the
other hand, Edge Clique Cover became a seasoned veteran of open
problem sessions (with the most recent occurrence on the Workshop on
Kernels in Vienna, 2011).

The first improvement came only recently, when together with Cygan,
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Kratsch, Pilipczuk, and Wahlström [89] we have shown that Edge Clique

Cover is OR-compositional, refuting (under the assumption that NP �
coNP/poly) existence of a polynomial kernel for the problem. First,
an AND-composition for the problem had been presented, which was
then modified to an OR-composition. As AND-conjecture has been later
proved to follow from assumption NP � coNP/poly by Drucker [120],
both an AND-composition and an OR-composition refutes existence of a
polynomial kernel under NP � coNP/poly. The results of Drucker were
not known at the time of preparation of [89], so it was essential to show
also an OR-composition in order to ground the result on an established
conjecture that NP � coNP/poly, rather than on AND-conjecture that
was still speculated at this point.

Our results. In this chapter, based on the results of [94], we complete
the picture of the parameterized complexity of Edge Clique Cover.
Since the results of the aforementioned previous work [89] are superseded
by the results presented here, we choose to omit their description. The
main technical result of this chapter is the following reduction.

Theorem 135. There exists a polynomial-time algorithm that, given
a 3-CNF-SAT formula with n variables and m clauses, constructs an
equivalent Edge Clique Cover instance (G, k) with k = O(log n) and
|V (G)| = O(n+m).

The above theorem immediately gives the following lower bound.

Corollary 136. Unless ETH fails, there does not exist an algorithm
solving Edge Clique Cover in time O∗(22

o(k)
).

Proof. Assume that such an algorithm exists, and consider pipelining it
with the reduction of Theorem 135. We obtain an algorithm for 3-CNF-

SAT working in 2o(n) time, which contradicts ETH.

We note that ETH is not necessary to refute existence of single expo-
nential algorithms for the problem; the same reduction proves also the
following lower bound. Recall that a problem is solvable in quasipolynomial

time if it admits an algorithm running in time 2O(logO(1) n), where n is the
total input length.

Corollary 137. Unless all problems in NP are solvable in quasipolynomial
time, there does not exist an algorithm solving Edge Clique Cover in
time O∗(2O(kO(1))).
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Proof. Assume that such an algorithm exists, and consider pipelining it
with the reduction of Theorem 135. We obtain an algorithm for 3-CNF-

SAT working in 2O(logO(1) n) time, which means that all problems in NP
are solvable in quasipolynomial time.

We now show that our reduction can be used to prove that Edge

Clique Cover does not admit a subexponential kernel even under the
assumption that P �=NP. We remark that in [94] we claimed the follow-
ing hardness result only under the assumption of ETH, and under the
assumption of NP � coNP/poly.

Corollary 138. There exists a universal constant ε > 0 such that, unless
P=NP, there is no constant λ and a polynomial-time algorithm B that takes
an instance (G, k) of Edge Clique Cover, and outputs an equivalent
instance (G′, k′) of Edge Clique Cover with binary encoding of length
at most λ · 2εk.

Proof. Let us fix some binary encoding of instances of the 3-CNF-SAT

problem such that an instance with n variables has encoding of length
at least n. In the following, we also say bitsize for the length of the
binary encoding. Aiming towards a contradiction, assume that such a
constant λ and algorithm B exist for some small ε > 0, to be determined
later. Let A be the algorithm given by Theorem 135; that is, A takes
an instance Φ of 3-CNF-SAT on n variables, and returns an instance
A(Φ) of Edge Clique Cover with parameter k ≤ κ1 · log n for some
universal constant κ1. Moreover, since the unparameterized version of
Edge Clique Cover belongs to NP, and 3-CNF-SAT is NP-complete,
there exists a polynomial-time reduction from Edge Clique Cover to
3-CNF-SAT. More precisely, there exists an algorithm C that for a given
instance (G, k) of Edge Clique Cover with bitsize at most m, returns
an equivalent instance of 3-CNF-SAT with bitsize at most κ2 ·mκ3 , where
κ2, κ3 are some universal constants.

Let now D be an algorithm obtained by pipelining algorithms A,B,C
in this order. Clearly, since A,B,C work in polynomial-time, then so does
D. Moreover, D takes as input an instance of 3-CNF-SAT, and outputs
an equivalent instance of 3-CNF-SAT. We now examine how the size of
the instance at hand changes when the algorithms A,B,C are applied
consecutively in the algorithm D.

Assume that algorithm D is given an instance Φ with bitsize exactly n.
Therefore, the number of variables in Φ is at most n, and the application
of A turns Φ into an equivalent instance (G, k) of Edge Clique Cover,
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where |G| is polynomial in n and k ≤ κ1 · log n. Next, we apply the
kernelization algorithm B to (G, k) and obtain an equivalent instance
(G′, k′) of Edge Clique Cover with bitsize at most λ·2ε·κ1·logn = λ·nε·κ1 .
Finally, we apply the reduction C and obtain an equivalent instance Φ′ of
3-CNF-SAT with bitsize at most κ2 · (λ · nε·κ1)κ3 = (κ2 · λκ3) · nε·κ1·κ3 .

Let us now take any ε > 0 such that ε < 1
κ1·κ3

; recall that κ1, κ3 are
universal constant, so ε is also a universal constant. Thus, the algorithm D
takes an instance of 3-CNF-SAT with bitsize n, and returns an equivalent
instance of 3-CNF-SAT with bitsize at most (κ2 · λκ3) · nε·κ1·κ3 . Assume

that n > κ0, where κ0 = (k2 · λk3)
1

1−ε·κ1·κ3 . Then,

n = n1−ε·κ1·κ3 · nε·κ1·κ3 > (k2 · λk3) · nε·κ1·κ3

Therefore, the algorithm D outputs an instance with strictly shorter binary

encoding unless n ≤ (k2 · λk3)
1

1−ε·κ1·κ3 .
Consider now the following algorithm for the 3-CNF-SAT problem.

Take an instance of the 3-CNF-SAT problem, and consecutively apply
algorithm D to it until the bitsize of the instance at hand shrinks to at
most κ0. Then, apply any brute-force algorithm for the 3-CNF-SAT

problem to resolve the instance in constant time. Note that in each
application of algorithm D the bitsize of the instance at hand gets reduced
by at least 1, so D is applied at most n times, where n is the bitsize of
the original input instance. Each application of D runs in polynomial
time, so the whole presented algorithm runs in polynomial time as well.
Thus we have solved the 3-CNF-SAT problem in polynomial time, which
contradicts the assumption that P �=NP.

Finally, we show that under a stronger assumption of NP � coNP/poly
we can refute existence of not only kernelization, but also of compression
into any language L with subexponential guarantee on the output size. For
this we use the results of Dell and van Melkebeek [102] on lower bounds
for compressibility of the 3-CNF-SAT problem (see Proposition 9).

Corollary 139. There exists a universal constant ε > 0 such that, unless
NP ⊆ coNP/poly, there is no constant λ, language L ⊆ {0, 1}∗, and
a polynomial-time algorithm B that, given an Edge Clique Cover

instance (G, k), outputs an equivalent instance B(G, k) of L (that is,
B(G, k) ∈ L iff (G, k) is a YES-instance) with bitsize at most λ · 2εk.

Proof. Again, fix some binary encoding of the instances of the 3-CNF-

SAT problem such that an instance with n variables has encoding of
length at least n. Aiming towards a contradiction, assume that such a
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constant λ, language L and algorithm B exist for some small ε > 0, to
be determined later. Let A be the algorithm given by Theorem 135; that
is, A takes an instance Φ of 3-CNF-SAT on n variables, and returns an
instance A(Φ) of Edge Clique Cover with parameter k ≤ κ1 · log n for
some universal constant κ1.

Consider now algorithm D obtained by pipelining algorithms A and
B. Clearly, D works in polynomial time, and given an instance Φ of
3-CNF-SAT it outputs an equivalent instance of L. We now examine
how the size of the instance at hand changes when the algorithms A and
B are applied consecutively in the algorithm D.

Assume that algorithm D is given an instance Φ with bitsize exactly n.
Therefore, the number of variables in Φ is at most n, and the application
of A turns Φ into an equivalent instance (G, k) of Edge Clique Cover,
where |G| is polynomial in n and k ≤ κ1 · log n. Next, we apply the
compression algorithm B to (G, k) and obtain an equivalent instance of L
with bitsize at most λ · 2ε·κ1·logn = λ · nε·κ1 . Observe now, that if we fix
any ε such that 0 < ε < 3

κ1
, then the output instance is of size O(n3−ε′)

for ε′ = 3 − ε · κ1 > 0. By Proposition 9, existence of algorithm D is a
contradiction with the assumption NP � coNP/poly.

To the best of our knowledge, the only known kernelization lower
bounds that use the assumption P �=NP instead of stronger assumption
NP � coNP/poly, are the lower bounds for linear parameter-preserving
kernels for problems on planar graphs obtained by the technique of Chen
et al. [65]. Here, by parameter-preserving kernel we mean a kernelization
algorithm which outputs instances with parameters bounded by the orig-
inal parameter, instead of any function of the original parameter. Very
roughly speaking, in this framework one proves that if the parameterized
dual of a problem admits a parameter-preserving kernel of size at most
αk for some constant α, where k is the dual parameter, then the problem
itself cannot admit a kernel of size βk for β < 1 + 1

α−1 . The reason is
that if both these kernelization algorithms existed, then one could apply
them alternately so that the size of the instance at hand would decrease at
each step until it becomes bounded by some constant. Thus, by showing
a linear kernel for the parametric dual we can at the same time exclude
existence of very efficient kernelization algorithms for the problem itself.
See [65, 224] for examples.

The approach presented in Corollary 138 has some similarities with the
framework of Chen et al. [65]: the contradiction with P �=NP is obtained
by showing an efficient algorithm that can always strictly reduce the
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size of the instance at hand until it becomes a constant. However, the
logical structure of the technique is very different. While the approach
of Chen et al. [65] alternates between the problem and its dual and the
technical difficulty is construction of the kernel for the dual, in our proof
we alternate between 3-CNF-SAT and Edge Clique Cover and the
crucial part is to prove an efficient way of translating these problems to
one another. Moreover, in our technique we do not need the assumption
that the kernel is parameter-preserving. Of course, the presented approach
is also substantially different from the hardness results obtained using the
composition framework of Bodlaender et al. [45], which hold under the
assumption that NP � coNP/poly.

Throughout the chapter we investigate the graph we denote as H�,
which is isomorphic to a clique on 2� vertices with a perfect matching
removed, called the cocktail party graph. The core idea of the proof of
Theorem 135 is the observation that a graph H� is a hard instance for
the Edge Clique Cover problem, at least from the point of view of
the currently known algorithms. Such a graph, while being immune to
the reductions of Gramm et al. [168], can be quite easily covered with
2� cliques, and there are multiple solutions of such size. Moreover, it is
non-trivial to construct smaller clique covers for H� (but they exist).

In fact, the optimum size of a clique cover of cocktail party graphs
with 2n vertices is proved to be min(k : n ≤

(
k−1
�k/2�

)
) for all n > 1 by

Gregory and Pullman [171]. Moreover Chang et al. study cocktail party
graphs in terms of rankwidth, which they prove to be unbounded in case
of edge clique graphs of cocktail party graphs [58] (we refer to their work
for appropriate definitions).

9.2 Double-exponential lower bound

This section is devoted to the proof of Theorem 135. In the following, for
a bit-string c by c we denote its bitwise negation.

Recall that graph H� is defined as a clique on 2
� vertices with a perfect

matching removed. In Section 9.2.1 we analyze in details graphs H�. It
turns out that there is a large family of clique covers of size 2�, where the
clique cover consists of pairs of cliques whose vertex sets are complements
of each other. We refer to such pairs as to clique twins and a clique cover
consisting of clique twins is a twin clique cover. In particular, given any
clique C of size 2�−1 in graph H�, we can construct a twin clique cover
of H� that contains C. Note that we have 2

2�−1
such starting cliques C
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in H�: for each edge of the removed perfect matching, we choose exactly
one endpoint into the clique. In our construction � = Θ(log n) and this
clique C encodes the assignment of the variables in the input 3-CNF-SAT
formula.

Section 9.2.2 contains the details of our construction. We construct a
graph G with edge set E(G) partitioned into two sets Eimp and Efree. The
first set contains the important edges, that is, the ones that are nontrivial
to cover and play important role in the construction. The second set
contains edges that are covered for free; in the end we add simplicial
vertices (i.e., with neighborhood being a clique) to the graph G to cover
Efree. Note that without loss of generality we can assume that a closed
neighborhood of a non-isolated simplicial vertex is included in any optimal
clique cover; however, we need to take care that we do not cover any
edge of Eimp with such a clique and that we use only O(log n) simplicial
vertices (as each such vertex adds a clique to the solution).

While presenting the construction in Section 9.2.2, we give informal
explanations of the role of each gadget. In Section 9.2.3 we show formally
how to translate a satisfying assignment of the input formula into a clique
cover of the constructed graph, whereas the reverse translation is provided
in Section 9.2.4.

9.2.1 Cocktail party graph

In this section we analyze graphs H� known as cocktail party graphs; see
Figure 9.1 for an illustration for small values of �. Recall that for an
integer � ≥ 1 graph H� is defined as a complete graph on 2

� vertices with
a perfect matching removed. Note that a maximum clique in H� has 2

�−1

vertices (i.e., half of all the vertices), and contains exactly one endpoint
of each non-edge of H�. Moreover, if C is a maximum clique in H�, so is
its complement V (H�) \ C. This motivates the following definition.

Definition 140. A pair of maximum cliques C and V (H�) \ C in H� is
called clique twins. A clique cover of H� that consists of clique twins is
called a twin clique cover.

The following lemma describes structure of twin clique covers of H� of
size 2� (i.e., containing � twins).

Lemma 141. Assume we are given a set C0 of 1 ≤ δ ≤ � clique twins with
the following property: if we choose one clique from each of the δ clique
twins, the intersection of the vertex sets of these cliques has size exactly
2�−δ. Then there exists a twin clique cover C of size 2� that contains C0.
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Figure 9.1: The graphs H� for � = 2 and � = 3. In the first case the optimum clique
cover contains four two-vertex cliques and is a twin clique cover. In the second case an
example twin clique cover is the set of all six faces of the cube; however, there exists a
non-twin clique cover of H3 of size five.

Proof. We arbitrarily number the clique twins from C0 with numbers from
1 to δ, and in each clique twin we distinguish one clique labeled 0 and one
labeled 1. Then, to each vertex v ∈ V (H�), we assign a δ-bit string cv that
on a position γ (1 ≤ γ ≤ δ) contains the bit assigned to the clique that
contains v from the γ-th clique twins. Since all subgraphs in C0 are cliques,
for any non-edge uv of H� the strings cu and cv are bitwise negations.

Fix a δ-bit string c and considerXc = {v ∈ V (H�) : cv = c}. Note that
any clique in C0 contains entire Xc or entire Xc and, by the assumptions
of the lemma, |Xc| = 2�−δ. Moreover, as for a non-edge uv the strings cu
and cv are bitwise negations, each non-edge of H� connects a vertex from
Xc, for some c, with a vertex from Xc. We can now label each vertex
v ∈ Xc with bit string c′v of length (�− δ), such that in Xc each vertex
receives a different label, and if uv is a non-edge of H�, then c′u = c′v. In
this manner each vertex v ∈ V (H�) receives a unique �-bit label cvc

′
v and

for any non-edge uv of H� we have cuc
′
u = cvc′v.

For an integer 1 ≤ γ ≤ � and a bit c ∈ {0, 1}, consider a set Cγ,c

consisting of those vertices of H� whose aforementioned �-bit labels have
γ-th bit set to c. As in H� a vertex v is connected with all other vertices
except the one labeled with the bitwise negation of the label of v, Cγ,c

induces a clique. Moreover, for any edge uv ∈ E(H�), the labels of u and
v agree on at least one bit, and the corresponding clique Cγ,c contains the
edge uv. As Cγ,0 = V (H�) \Cγ,1, we infer that the family C = {Cγ,c : 1 ≤
γ ≤ �, c ∈ {0, 1}} is a twin clique cover of H� of size 2�. We finish the proof
of the lemma by noticing that {Cγ,c : 1 ≤ γ ≤ δ, c ∈ {0, 1}} = C0.

Note that the above lemma for δ = 1 implies that for any maximum
clique C in H� there exists a twin clique cover of size 2� that contains C.
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The next lemma treats about optimum twin clique covers of H�.

Lemma 142. Let C be a clique cover of H� that contains at least � − 1
clique twins. Then |C| ≥ 2� and, if |C| = 2�, then C is a twin clique cover
of H�.

Proof. Let C0 ⊆ C be a set of 2�− 2 cliques that form the assumed �− 1
clique twins. We use the family C0 to label the vertices of H� with (�− 1)-
bit labels as in the proof of Lemma 141. That is, we arbitrarily number
these clique twins with numbers 1 to � − 1, and in each clique twin we
distinguish one clique labeled 0 and one labeled 1; a string cv for v ∈ V (H�)
consists of (�− 1) bits assigned to the cliques containing v. Again, for any
non-edge uv of H�, the strings cu and cv are bitwise negations.

Fix a (� − 1)-bit string c and consider Xc = {v ∈ V (H�) : cv = c}.
Note that any clique in C0 contains entire Xc or entire Xc and thus no
clique in C0 covers the edges of E(Xc, Xc). Moreover, as for any non-edge
uv we have cu = cv, the sets Xc and Xc are of equal size.

As C is a clique cover of H�, C \ C0 covers E(Xc, Xc). As H�[Xc ∪Xc]
is isomorphic to K2|Xc| with a perfect matching removed, a direct check
shows that if |Xc| ≥ 3 then |C \ C0| ≥ 3, that is, we need at least three
cliques to cover E(Xc, Xc). Thus, if |C| ≤ 2� then for each string c we
have |Xc| ≤ 2. As there are 2�−1 bit strings c and 2� vertices of H�, we
infer that in this case |Xc| = 2 for each bit string c.

From now on assume that |C| ≤ 2�. Fix a bit string c. Since |Xc| = 2,
then H�[Xc ∪Xc] is isomorphic to a 4-cycle and E(Xc, Xc) contains two
opposite edges of this cycle. These edges cannot be covered with a single
clique. We infer that |C \ C0| ≥ 2, i.e., |C| ≥ 2�. Hence |C| = 2� and let
C \C0 = {C,C ′}. Note that for any bit string c the clique C contains both
endpoints of one edge of E(Xc, Xc), and C

′ contains the endpoints of the
second edge. Therefore C = V (H�) \ C ′ and the lemma follows.

Let us remark that Lemma 142 implies that one cannot cover the graph
H� with less than � clique twins, i.e., the bound given by Lemma 141 is
tight. Indeed, assume that there exists a twin clique cover of H� using
�′ < � clique twins. If necessary, copy some of the clique twins in order to
obtain a cover that uses exactly �−1 twins. However, from Lemma 142 we
infer that this cover needs to contain in fact more cliques, a contradiction.

9.2.2 Construction

Recall that, given a 3-CNF-SAT formula Φ, we are to construct an
equivalent Edge Clique Cover instance with the target number of
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cliques bounded logarithmically in the number of variables of Φ. We
start with an empty graph G, and we subsequently add new gadgets to
G. Recall that the edge set of G is partitioned into Efree and Eimp; at
the end of this section we show how to cover the set Efree with a small
number of cliques, each induced by a closed neighborhood of a simplicial
vertex. We refer to Figure 9.2 for an illustration of the construction.
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Figure 9.2: Illustration of the construction of graph G. Solid edges belong to the set
Eimp and dashed edges to Efree. The simplicial vertices are not illustrated, nor are the
details which edges between the clause gadgets Pj and the assignment gadgets Hη are
present in the graph G. Moreover, not all edges of Efree between the vertices of gadgets
Q and Pj are shown.
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Preprocessing of the formula Φ

Let Vars denote the set of variables of Φ. By standard arguments, we
can assume that in Φ each clause consists of exactly 3 literals, these
literals contain different variables and no clause appears more than once.
Moreover, we perform the following two regularization operations on Φ.
First, we introduce some dummy variables into Vars so that the number
of variables is a power of two, and that there exists at least one dummy
variable (i.e., a variable that does not appear in any clause). This operation
at most doubles the number of variables in Vars. Second, we ensure that if
Φ is satisfiable, then there exists a satisfying assignment of Φ that assigns
true to exactly half of the variables, and false to the other half. This can
be done by transforming Φ into Φ′ = Φ ∧ Φ, where Φ is a copy of Φ on
duplicated set of variables Vars and, moreover, all the literals in Φ are
replaced with their negations. Clearly, if Φ′ has a satisfying assignment φ′,
then restricting φ′ to Vars gives a satisfying assignment for Φ. Moreover,
note that any assignment φ satisfying Φ can be extended to an assignment
φ′ satisfying Φ′ by assigning each copy of a variable the negation of the
value of the original; the new assignment φ′ assigns true to exactly half
of the variables, and false to the other half. Observe that the second
operation does not change the properties ensured by the first operation,
and it exactly doubles the number of variables. Moreover, in the satisfying
assignment we can fix value of one dummy variable in Vars.

After performing the described operations, let n be the number of
variables in Vars, m be the number of clauses of Φ, and n = 2�. Note that
m = O(n3) and logm = O(log n) = O(�).

Assignment-encoding gadget

We assume that Vars = {x0, x1, . . . , xn−1} and that the 0-th variable is
a dummy one (it serves in the construction as a true pattern). Take a
graph H isomorphic to H�+1 and denote its vertices by wi,c for 0 ≤ i < n,
c ∈ {0, 1}; the non-edges of H�+1 are {wi,0wi,1 : 0 ≤ i < n}. Let
Wc = {wi,c : 0 ≤ i < n} and W =W0 ∪W1. We put the edges of H[W0]
and H[W1] into E

free and E(W0,W1) into E
imp.

Moreover, we add (� − 1) vertices uγ , 1 ≤ γ < �, to the graph H.
Each vertex uγ is connected to all vertices of W via edges belonging to
Eimp. This finishes the description of the assignment-encoding gadget
H. We add two copies of the gadget H to the graph G, and denote the
vertices of the η-th copy (η ∈ {1, 2}) by wη

i,c and uηγ . We define W η,
W η

0 , W
η
1 and Hη in the natural way. In the graph G, for all indices
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(i, c, i′, c′) ∈ ({0, 1, . . . , n− 1} × {0, 1})2 we connect each pair of vertices
w1
i,c and w2

i′,c′ with an edge from Efree, i.e., we introduce a complete

bipartite graph with edges belonging to Efree between W 1 and W 2.

Let us now describe the intuition behind this construction. In the
gadget H, the neighborhood of each vertex uγ is not a clique, thus any
clique cover of H needs to include at least two cliques that contain uγ .
However, if we are allowed to use only two cliques per vertex uγ , these
cliques need to induce clique twins in the subgraph H�+1 of H. With the
assumption of only two cliques per vertex uγ , the set of (�− 1) vertices
uγ ensures that when covering H�+1 we use � clique twins: (�− 1) from
the vertices uγ and one given by the edges in Efree (cliques W0 and
W1). Lemma 142 asserts that the optimal way to complete a clique
cover of H�+1 is to use one more pair of clique twins: this clique twins,
called the assignment clique twins, encode the assignment (and, as they
are not bounded by the vertices uγ , they can be used to verify the
assignment in the forthcoming gadgets). Finally, we need two copies of
the gadget H , as in the soundness proof we have one free clique that spoils
the aforementioned budget-tightness argument; however, as the vertices
{uηγ : 1 ≤ γ < �, η ∈ {1, 2}} form an independent set, it cannot spoil it
in both copies at the same time. The edges between the sets W in the
copies allow us to use the same two cliques as the assignment clique twins
in both copies of the gadget H.

One could ask why we put edges from H[W0] and H[W1] into E
free,

since in the previous section we have assumed that all the edges of H� are
to be covered. The reason for this is that additional cliques with several
vertices from W0 or W1 will appear in order to cover other edges of E

free.
Hence, we need to put edges from H[W0] and H[W1] into E

free to allow
other cliques covering Efree to have larger intersections with W without
covering any important edges.

Clause gadgets

We now introduce gadgets that verify correctness of the assignment en-
coded by the assignment clique twins, described in the previous paragraphs.

First, let us extend our notation. Let Φ = Ψ0 ∧Ψ1 ∧ . . . ∧Ψm−1 and
for integers j, α let i(j, α) be the index of the variable that appears in
α-th literal in the clause Ψj . Moreover, let c(j, α) = 0 if the α-th literal
of Ψj is negative (i.e., ¬xi(j,α)) and c(j, α) = 1 otherwise.

For each clause Ψj , we introduce into G a subgraph Pj isomorphic
to 3K2, that is, V (Pj) = {pj,α,β : 1 ≤ α ≤ 3, β ∈ {1, 2}} and E(Pj) =
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{pj,α,1pj,α,2 : 1 ≤ α ≤ 3}. Moreover, we introduce into G a guard
subgraph Q isomorphic to 2K2, that is, V (Q) = {q1,1, q1,2, q2,1, q2,2} and
E(Q) = {q1,1q1,2, q2,1q2,2}.

All the edges in all the gadgets Pj and Q belong to Eimp. Moreover,
we introduce the following edges to Efree. First, for each vertex of Q, we
connect it with all vertices of all the subgraphs Pj . Second, we connect each
vertex pj,α,β with all the vertices pj′,α′,β′ for j′ �= j, 1 ≤ α′ ≤ 3, β′ ∈ {1, 2}.
Third, we connect each vertex pj,α,β with all the vertices in the sets W
in both copies of the gadget H, except for wη

0,1 and wη
i(j,α),1−c(j,α) for

η ∈ {1, 2}. This finishes the description of the clause gadgets.
Let us now describe the intuition behind this construction. In each

gadget Pj and in the guard subgraph Q the edges are independent, thus
they need to be covered by different cliques. Two cliques are used to cover
the edges of Q, and they can cover two out of three edges from each of the
clause gadget Pj . The third one needs to be covered by the assignment
clique twins from the gadgets H (as the gadgets Pj are not adjacent to
the vertices uηγ), and it corresponds to the choice which literal satisfies
the clause Ψj . The missing edges pj,α,βw

η
0,1 ensures that only one clique

of the assignment clique twins is used to cover the edges of Pj . Finally,
the missing edge pj,α,βw

η
i(j,α),1−c(j,α) verifies that this clique encodes a

satisfying assignment of Φ.

We note that it is non-trivial to cover the edges of Efree with O(�) =
O(log n) cliques induced by closed neighborhoods of simplicial vertices.
This is done in the next sections by appropriately using bit-vectors.

Budget

We set the number of cliques to cover the edges of Eimp as

k0 = 2 · 2 · (�− 1) + 2 + 2 = 4�,

that is, two for each vertex uηγ , two for the assignment clique twins in H,
and two for the cliques that contain the edges of Q. The final number of
cliques k is the sum of k0 and the number of simplicial vertices introduced
in the next section.

Covering the free edges

In this section we show that the edges of Efree can be covered by a
small number of cliques without accidentally covering any edge of Eimp.
Moreover, such covering can be constructed in polynomial time. To
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construct the final Edge Clique Cover instance, for each clique of this
clique cover we introduce a simplicial vertex adjacent to the vertex set of
this clique, and raise the desired number of cliques by one.

Lemma 143. The graph Gfree = (V (G), Efree) admits a clique cover of
size 46 + 36�logm�+ 24� = O(log n). Moreover, such a clique cover can
be constructed in polynomial time.

Proof. We start by noting that the free edges in the copies of the gadget
H, and between these copies, can be covered by four cliques: W 1

c ∪W 2
c′

for (c, c′) ∈ {0, 1} × {0, 1}. Similarly, the edges incident to the guard
gadget Q can be covered with 24 cliques: {qα,β} ∪ {pj,α′,β′ : 0 ≤ j < m}
for (α, β, α′, β′) ∈ {1, 2} × {1, 2} × {1, 2, 3} × {1, 2}.

Covering the edges between different gadgets Pj requires a bit more
work. For each 1 ≤ γ ≤ �logm� and (α, β, α′, β′) ∈ ({1, 2, 3}× {1, 2})2 we
take a clique CP

γ,α,β,α′,β′ that contains exactly one vertex from each gadget
Pj : if the γ-th bit of the binary representation of j equals 0, pj,α,β ∈
CP
γ,α,β,α′,β′ , and otherwise pj,α′,β′ ∈ CP

γ,α,β,α′,β′ . Clearly, CP
γ,α,β,α′,β′ induces

a clique in Gfree, as it contains exactly one vertex from each gadget Pj . Let
us now verify that all edges between the gadgets Pj are covered by these
36�logm� cliques. Take any edge pj,α,βpj′,α′,β′ ∈ Efree, j �= j′. Assume
that the binary representations of j and j′ differ on the γ-th bit; without
loss of generality, assume that the γ-th bit of j is 0, and the γ-th bit of j′

is 1. Then the clique CP
γ,α,β,α′,β′ contains both pj,α,β and pj′,α′,β′ .

We now handle the edges that connect the two copies of the gadget
H with the gadgets Pj . First, we take care of the edges that are incident
to the vertices wη

0,0. This can be easily done with 6 cliques: for each

(α, β) ∈ {1, 2, 3} × {1, 2} we take a clique that contains w1
0,0, w

2
0,0 as well

as all vertices pj,α,β for 0 ≤ j < m. Second, we take care of the edges
pj,α,βw

η
i(j,α),c(j,α). To this end, we take 12 cliques: for each (α, β, c) ∈

{1, 2, 3} × {1, 2} × {0, 1} we take a clique that contains wη
i,c for 1 ≤ i < n,

η ∈ {1, 2} as well as all the vertices pj,α,β that satisfy c(j, α) = c.
We are left with the edges of form pj,α,βw

η
i,c for i /∈ {0, i(j, α)}. These

edges can be covered in a similar fashion to the edges between the gadgets
Pj . For each 1 ≤ γ ≤ � and (α, β, c, c′) ∈ {1, 2, 3} × {1, 2} × {0, 1}2 we
construct a clique CW

γ,α,β,c,c′ that contains all vertices w
η
i,c for η ∈ {1, 2}

and 1 ≤ i < n such that the γ-th bit of the binary representation of i
equals c′, as well as all vertices pj,α,β for 0 ≤ j < m such that the γ-th bit
of the binary representation of i(j, α) equals 1−c′. To see that CW

γ,α,β,c,c′ is

indeed a clique in Gfree, note that it contains only edges in G[W 1
0 ∪W 2

0 ] or
G[W 1

1 ∪W 2
1 ], between different gadgets Pj , and edges of the form pj,α,βw

η
i,c
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where i �= 0 and i �= i(j, α) (the indices i and i(j, α) must differ on the
γ-th bit if both pj,α,β and w

η
i,c are included in the clique C

W
γ,α,β,c,c′). We

finish the proof of the lemma by verifying that all the edges of the form
pj,α,βw

η
i,c for i /∈ {0, i(j, α)} are covered by these 24� cliques. As i �= i(j, α),

there exists 1 ≤ γ ≤ � such that i and i(j, α) differ on the γ-th bit of their
binary representations. Let c′ be the γ-th bit of the binary representation
of i. We infer that both pj,α,β and w

η
i,c are included in the clique Cγ,α,β,c,c′

and the lemma is proven.

Recall that for each clique constructed by Lemma 143 we add a
simplicial vertex to G that is adjacent to all vertices of this clique. The
simplicial vertices are independent in G. As discussed earlier, we can
assume that for any non-isolated simplicial vertex s in G, any optimal
clique cover in G contains a clique whose vertex set equals to the closed
neighborhood of s.

We conclude the construction section by setting the desired number of
cliques k to be the sum of k0 and the number of aforementioned simplicial
vertices, k = 4�+ 46 + 36�logm�+ 24� = O(log n).

9.2.3 Completeness

In this section we show how to translate a satisfying assignment of the
input formula Φ into a clique cover of G of size k.

Lemma 144. If the input formula Φ is satisfiable, then there exists a
clique cover of the graph G of size k.

Proof. Let φ : {0, 1, . . . , n− 1} → {0, 1} be a satisfying assignment of Φ,
that is, φ(i) is the value of xi, 0 stands for false and 1 stands for true.
By the properties of the preprocessing step of the construction, we may
assume that |φ−1(0)| = |φ−1(1)| = |Vars|/2 = 2�−1 and that φ(0) = 0 (as
x0 is a dummy variable).

We start the construction of the clique cover C of the graph G by
taking into C, for each of the 46 + 36�logm�+ 24� simplicial vertices of G
constructed in Lemma 143, a clique induced by the closed neighborhood
of the simplicial vertex. In this manner we cover all the edges of Efree,
and we are left with a budget of 4� cliques.

We define the assignment clique twins CA
0 and CA

1 . For each clause
Ψj of Φ, let α(j) be an index of a literal that is satisfied by φ in Ψj (if
there is more than one such literal, we choose an arbitrary one). The
clique CA

0 contains the vertices wη
i,φ(i) for 0 ≤ i < n and η ∈ {1, 2} as well

as the following vertices from the clause gadgets: pj,α(j),β for 0 ≤ j < m,
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β ∈ {1, 2}. Note that CA
0 is indeed a clique, since the only missing edges

between vertices wη
i,c and pj,α,β are either incident to w

η
0,1 (but φ(0) = 0)

or of the form wη
i(j,α),1−c(j,α)pj,α,β (but φ(i(j, α(j))) satisfies the α(j)-th

literal of Ψj , i.e., c(j, α(j)) = φ(i(j, α(j)))).

The clique CA
1 is the twin (complement) of the clique CA

0 in both
copies of the graph H�+1, i.e., C

A
1 = {wη

i,1−φ(i) : 0 ≤ i < n, η ∈ {1, 2}}.
Clearly, CA

1 is a clique in G.

Let us now fix η ∈ {1, 2} and focus on the graph G[W η] isomorphic to
H�+1. The edges of E

free in this subgraph form clique twins {wη
i,c : 0 ≤ i <

n} for c ∈ {0, 1}. The assignment clique twins CA
0 and CA

1 form second
clique twins in G[W η], after truncating them to this subgraph. Moreover,
the assumption that φ evaluates exactly half of the variables to false and
half to true implies that these two clique twins satisfy the assumptions of
Lemma 141. We infer that all remaining edges of G[W η] can be covered
by � − 1 clique twins; we add the vertex uηγ to both cliques of the γ-th
clique twin, and add these clique twins to the constructed clique cover C.
In this manner we cover all the edges incident to all the vertices uηγ for
1 ≤ γ < �, η ∈ {1, 2}. As we perform this construction for both values
η ∈ {1, 2}, we use 4� − 4 cliques, and we are left with a budget of two
cliques.

The cliques introduced in the previous paragraph cover all the edges
in Eimp in both copies of the assignment gadget H. We are left with the
clause gadgets Pj and the guard gadget Q. Recall that the clique CA

0

covers one out of three edges in each gadget Pj . Hence, it is straightforward
to cover the remaining edges with two cliques: each clique contains both
endpoints of exactly one uncovered edge from each gadget Pj and from
the gadget Q. This finishes the proof of the lemma.

9.2.4 Soundness

In this section we show a reverse transformation: a clique cover of G of
size at most k cannot differ much from the one constructed in the proof of
Lemma 144 and, therefore, encodes a satisfying assignment of the input
formula Φ.

Lemma 145. If there exists a clique cover of G of size at most k, then
the input formula Φ is satisfiable.

Proof. Let C be a clique cover of size at most k of G. As G contains k−4�
simplicial vertices, without loss of generality we may assume that, for each
such simplicial vertex s, the family C contains a clique induced by the
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closed neighborhood of s. These cliques cover the edges of Efree, but no
edge of Eimp. Let C0 ⊆ C be the set of the remaining cliques; |C0| ≤ 4�.

Let us start with analyzing the guard gadget Q. It contains two inde-
pendent edges from Eimp. Thus, C0 contains two cliques, each containing
one edge of Q. Denote this cliques by CQ

1 and CQ
2 . Note that each clause

gadget Pj contains three independent edges, and only two of them may

be covered by the cliques CQ
1 and CQ

2 . Thus there exists at least one
additional clique in C0 that contains an edge of at least one gadget Pj ;
let us denote this clique by CA

0 (if there is more than one such clique, we
choose an arbitrary one).

Each vertex uηγ for 1 ≤ γ < �, η ∈ {1, 2}, needs to be contained in at
least two cliques of C0, since all its incident edges are in Eimp and the
neighborhood of uηγ is not a clique. Moreover, no vertex u

η
γ may belong to

CQ
1 , C

Q
2 nor to CA

0 , as these vertices are not adjacent to the vertices of Pj

and Q. As there are 2�− 2 vertices uηγ , the vertices u
η
γ are independent,

and |C0 \ {CQ
1 , C

Q
2 , C

A
0 }| ≤ 4� − 3, we infer that at most one vertex uηγ

may be contained in more than two cliques from C0. Without loss of
generality we can assume that this vertex belongs to the second copy of
the assignment gadget H , that is, each vertex u1γ for 1 ≤ γ < � belongs to

exactly two cliques CU
γ,0, C

U
γ,1 ∈ C0.

Note that the only way to cover the edges incident to u1γ with only

two cliques CU
γ,0, C

U
γ,1 is to take these cliques to induce clique twins in

G[W 1] ∼= H�+1. That is, C
U
γ,0 consists of u

1
γ and exactly one endpoint of

each non-edge of G[W 1], and CU
γ,1 = {u1γ} ∪ (W 1 \ CU

γ,0).

We infer that the cliques {CU
γ,c : 1 ≤ γ < �, c ∈ {0, 1}}, together with

the clique twins formed by the edges of Efree in G[W 1], induce � clique
twins in G[W 1] ∼= H�+1. Moreover, the remaining edges of G[W

1] need to
be covered with only two additional cliques (including CA

0 ): there are at
least 4� − 4 cliques that contain vertices u1γ or u

2
γ , out of which exactly

2l − 2 can contain vertices from W 1, while at least two other cliques have
to contain vertices of Q thus having to be disjoint with W 1. Lemma 142
asserts that the only way to cover the edges of G[W 1] ∼= H�+1 is to use
one additional pair of cliques that are clique twins; thus, CA

0 ∩W 1 is a
maximum clique in G[W 1] and C0 contains also a clique CA

1 such that
CA
1 ∩W 1 =W 1 \ CA

0 .

Recall that the clique CA
0 contained an edge from at least one gadget

Pj . Therefore, x
1
0,1 /∈ CA

0 , as x
1
0,1 is not adjacent to any vertex in any

gadget Pj . Since C
A
0 and CA

1 induce clique twins in G[W1], we infer that
x10,1 ∈ CA

1 and CA
1 is disjoint with all the gadgets Pj . As the vertices
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uηγ are not adjacent to the gadgets Pj , the cliques that cover the edges
incident to the vertices uηγ cannot cover any edges of the gadgets Pj either.
We infer that the edges of the gadgets Pj are covered by only three cliques

— CA
0 , C

Q
1 and CQ

2 — and that in each gadget Pj , each of this three cliques
contains exactly one edge. For a clause Ψj , let α(j) be the index of the
literal whose edge is covered by CA

0 .
We claim that an assignment φ : {0, 1, . . . , n−1} → {0, 1} that assigns

the value φ(i) to the variable xi in such a manner that w1
i,φ(i) ∈ CA

0 ,
satisfies the formula Φ. More precisely, we claim that for each clause
Ψj , the α(j)-th literal of Ψj satisfies this clause in the assignment φ.
Indeed, as pj,α(j),β ∈ CA

0 for β ∈ {1, 2}, and pj,α(j),β is not adjacent to

w1
i(j,α(j)),1−c(j,α(j)), we have that w

1
i(j,α(j)),c(j,α(j)) ∈ CA

0 and φ(i(j, α(j))) =

c(j, α(j)). This finishes the proof of the lemma and concludes the proof
of Theorem 135.
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