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ABSTRACT 

Dental polymer-based composite materials are complex materials consisting of several 

components, the main components being filler particles (inorganic component) and 

polymer matrix (organic component). The organic component consists of monomers 

that usually are polymerized upon activation by visible light illumination.   

The polymerization process is never complete, and leakage of unreacted methacrylate 

monomers occurs during clinical service. Degradation processes may weaken the bond 

between the fillers and the matrix, leading to release of fillers particles and ions in 

addition to the organic components.  Clinical handling during placement and finishing 

has been shown to cause release of particulate matter to the air in dental clinics, which 

could be followed by exposure to tissue and saliva of the patients. Thus, both dental 

personnel and patients could be exposed to components of polymer-based dental 

materials.   

The main objective of the thesis was to characterize the toxic potential of selected 

inorganic filler particles (barium glass particles and silica particles) and methacrylates 

(HEMA, TEGDMA, BisGMA, GDMA, MMA) used in dental composite filling 

materials.  The results showed that both nano- and micro-sized filler particles could 

modulate the release of inflammatory mediators in vitro. The methacrylates 

investigated induced cytotoxicity, but the potency and the mechanism involved 

seemed to differ between the methacrylates.  HEMA was found to induce apoptosis 

and DNA damage followed by activation of DNA damage response. To address 

possible exposure to multiple components of polymer-based dental composite 

materials the effect of co-exposure to components was studied. An additive 

inflammatory response was observed with particles and TEGDMA co-exposure. 

Studies on the mechanisms of possible adverse biological responses to substances 

released from polymer-based dental materials could contribute to safer dental materials. 
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1. INTRODUCTION 

Polymer-based dental composite material is a class of biomaterials. A biomaterial is 

defined as any non-vital material intended to replace a part of or a function in the body 

(1). A biomaterial should be biocompatible, defined as the ability of a material to 

perform with an appropriate host response when applied as intended. The 

biocompatibility of a material is determined by its interaction with surrounding tissues 

and release of substances from the material (2).  

The use of polymer-based dental composites is high and is still increasing due to 

restriction in use of dental amalgam filling. The dental composites were introduced in 

the 1960s and were intended for anterior restorations due to their esthetic properties. 

The products have continued to develop and are currently used for a variety of dental 

applications. However, their use as filling materials is the main application (3, 4). Thus, 

a considerable proportion of the population from children to the elderly receives 

composite restorations. The fillings have shortcomings, such as wear discolorations, 

fractures, loosening and at risk for development of secondary caries (5, 6).  

Consequently, there is a demand for improved materials.   

Polymer-based dental composites mainly consist of inorganic filler particles embedded 

in an organic polymer matrix, hence the name composite (componere = to combine) 

(7). Both the polymer network and the inorganic part of the material represent an 

opportunity for improvements of the overall properties. To reduce shrinkage, 

development of methacrylate monomers systems have been introduced (5). However, 

it appears that the filler particles have been subject to the largest change over the years. 

The use of nanotechnology to improve properties of materials has been of great 

interest, and has also reached the field of dental biomaterials. Nanotechnology is 

known as the production, use and manipulation of materials and structures in the range 

of about 1–100 nanometers (nm) by various physical and chemical methods. This 

development, has led to use of smaller particles in dental materials (8, 9). 

The focus of this study was to evaluate the biological effects of components used in 

polymer-based dental fillings and other related polymer-containing dental filling 
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materials such as compomers and glassionomers. For simplicity, these materials are 

referred to as composite fillings throughout this thesis.  

 

1.1 Composition  

The main constituents of composite filling materials comprise inorganic filler particles, 

a polymer matrix and a coupling agent that bind the fillers to the polymer matrix.  In 

addition there are stabilizers and additives such as UV-stabilizers, inhibitors and 

coloring agents (figure 1) (10). Present-day composite are combined with an adhesive 

system that provides bonding to dentin and enamel. The adhesive can be considered as 

an integrated part of the composite system. The constituents of the adhesive systems 

are in principle similar to the composite filling materials (methacrylates, initiators, 

stabilizer, inhibitors and filler particles) (11), and are not discussed separately. 

 

1.1.1 Filler particles 

The purpose of the filler particles is to strengthen the composite and to reduce the 

matrix volume, thereby lowering the shrinkage that occurs during polymerization. 

Dental filler particles are coated with silane, which improve the binding between the 

polymer matrix and the particles (10).  

Traditionally dental composite filling materials are classified according to the size of 

the filler particles; macrofilled, microfilled and hybrids (12). Today, most materials are 

so called hybrids, using a mixture of micro-sized particles and nanoparticles (5). There 

are also materials with nanoparticles only, termed nanocomposites (9). Commonly 

used particles are amorphous silica particles, quarts, barium and lithium aluminium 

silica glasses (borosilicate glass, or barium, strontium, or zinc glasses). Elements of 

high atomic weight, such as barium and strontium are also incorporated to provide x-

ray opacity facilitating radiological monitoring in vivo (8, 10). Mechanical and esthetic 

properties of dental restorative composite materials depend on the chemical 

composition of the filler particles, the filler particle characteristics (filler surface 
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texture, filler shape, and size) and the filler loading (% by weight) (13, 14). 

Nanoparticles in composite fillings can be present as aggregates and agglomerates 

(nanocluster), non-agglomerated, non-aggregated nanoparticles (monodisperse 

nanoparticles) or as pre-polymerized resin filler (PPRF) (8, 14).  Nanoparticles are 

added to increase the filler load which theoretically can be as high as 90-95%. High 

filler load will reduce the polymerization shrinkage, but could also adversely affect 

handling properties as well as mechanical and physical properties (8).   

 

1.1.2 Polymer matrix  

The polymer matrix consists predominantly of dimethacrylates. These monomers are 

able to crosslink via their vinyl groups and form a polymer network. The 

polymerization process is usually activated by an initiator system and blue light.   

BisGMA, Bis-EMA, TEGDMA, GDMA and UDMA are commonly methacrylates 

used in composite filling materials. The low viscosity monomers such as TEGDMA 

are used as diluent for high viscosity monomers such as BisGMA (15). In adhesives 

and polymer-containing glassionomer cements HEMA is also used (11, 16). The 

fraction of carbon double bonds that react during polymerization is referred to as the 

degree of conversion. However the polymerization process is never complete, and the 

degree of conversion normally does not exceed 70% (17, 18).  
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Figure 1: Illustration of the composition of a composite filling. The SEM picture (left) 
is an example of the microstructure of a hybrid composite material consisting of both 
nanoparticles and microparticles. 

 

1.2 Exposure  

Both dental personnel and dental patients are exposed to components of dental 

restorative composite materials (figure 2) (19-22). However, the extent is unknown 

due to limited exposure data. These materials are polymerized in situ, which can 

increase the risk of exposure to components during handling and placement. The 

exposure situations are different between dental personnel and patients. Dental 

personnel are occupationally exposed, most likely to higher concentrations for short 

intermittent periods. Dermal exposure and inhalation will be the main exposure routs 

(19, 20, 22, 23). Patients on the other hand are exposed during treatment and due to 

wear and degradation of the material over time.  Leaching of components from 

composite fillings into the oral environment will occur. Thus, the oral cavity, the pulp 

and the gastrointestinal (GI) tract will be the main exposure routs (21, 24).  
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1.2.1 Exposure to particulates from composite materials 

Occupational exposure 

Dental personnel can be exposed to particulates from materials during trimming of 

models, material agitation, shaping of temporaries and hand mixing of materials (19). 

Hence the exposure is primarily due to inhalation. Recently, particulates from a 

controlled drilling procedure have been analyzed and the results revealed that the 

particles were irregularly shaped and had a very wide size distribution, from 7 nm to 

10-15 μm. The particulates consisted of pieces of polymer matrix, particles partly 

embedded in the polymer matrix and single filler particles. Different commercial 

composite materials can give rise to different size distribution of the dust particles (22). 

In studies on indoor quality in dental clinics the concentrations of particulate matter 

(PM2.5 and PM10) was reported to exceed the air quality limits suggested by the 

European Directive 1999/30/EC and the US Environmental Protection Agency, 1997 

(19).  

 

Patient exposure 

Patients are exposed to air-born particulates during dental treatments, but such 

exposure is infrequent and of short duration compared to the situation for dental 

personnel. In addition patients are exposed to particulates and ions that leach from the 

filler particles in the cured composite filling material (24-26). In vivo leaching has 

been reported to continue over longer periods (27).  There is scarce information on the 

release of particulates during wear, degradation and leaching processes as well as the 

morphological, physical and chemical characteristics of the particulates released from 

composite filling materials. 

Composite filling materials are used for restorations in all areas of the mouth and there 

are concerns regarding wear rate of restorations placed in high stress areas (28). 

Degradation of dental composite materials is influenced by the combined effect of 

mechanical and chemical forces, e.g. material stress and hydrolytic absorption. 

Absorption of water initiates a degradation process comprised of leaching of ions and 

residual unpolymerized monomers and disintegration of the polymer network (24, 29). 
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Salivary esterases can also degrade the surfaces of composite resins and increase the 

release of methacrylic substances (30). Particle pull-out is reported in composite filling 

materials. This is caused by breakdown of the silane bond between the resin and the 

filler particles (24). Material voids, filler aggregates of 20 μm in diameter can be 

completely removed from the surface of the materials due to mechanical stress and 

chemical degradation of the material (31).   

 

1.2.2 Exposure to methacrylate  

Occupational exposure  

Methacrylates have been measured in the air of dental practices (19, 20). Exposure is 

prevalent during mixing of volatile methacrylic compounds, grinding and drilling of 

composite materials, removal of old composite fillings and application of bonding and 

composite materials in the prepared cavity (19, 32). Hence, dental personnel are 

exposed to methacrylates on a daily basis.  

 

Patient exposure 

Patients are primarily exposed to methacrylate during setting of dental composite 

materials, by release of residual monomers due to incomplete polymerization (21), and 

wear and degradation of the composite filling material. Release of methacrylates due 

to wear and degradation are previously described (section 1.2.1, patient exposure). 

Additionally, HEMA used in adhesives can diffuse through the dentin and lead to 

exposure of the pulp tissue (33).  
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Figure 2: Illustration of exposure, exposure sites and main routes of exposure during 
and after placement of dental composite filling materials.  
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1.3 Toxic responses  

Adverse reactions to dental composite filling materials do occur (34-39). 

Methacrylate-based materials are involved in about 30% of the reports submitted to the 

Norwegian Adverse Reaction Unit (40). However, relatively few adverse health effects 

are documented in the literature, and it is not established how cause and effect 

relationship could be evaluated in a clinical setting. 

Components released from dental materials can exert a toxic effect on target tissues 

(41). A toxic reaction to a xenobiotic can manifest in numerous ways: it can be local 

reactions or systemic reactions occasionally involving an allergic mechanism. The 

response depends on the type, dose and duration of the exposure (42). Particles and 

methacrylates used in dental composite filling materials can be distributed to various 

cell compartments allowing for interaction with multiple cellular structures (33, 43).  

 

1.3.1 Inflammatory responses  

The innate immune system is the first line of defence in the human body, while the 

adaptive immune system is antigen dependent and specific. Allergic reactions are 

antigen-specific reactions of the adaptive immune system. Inflammation is a tissue 

response to a microbial pathogen infection, chemical toxins and irritation and/or 

wounding, and can involve both the innate and the adaptive immune system (44, 45). 

An inflammatory response at the site of damage is characterized both by the local 

tissue response and infiltration of neutrophils, macrophages, dendritic cells and 

lymphocytes (immune cells) (44, 46). Cytokines are signalling molecules that are key 

mediators in both inflammatory and immune responses.  They play an important role 

in initiation and maintenance of inflammatory response, and are produced by 

numerous cell types including macrophages, monocytes, fibroblasts, endothelial and 

epithelial cells. There are two main groups of cytokines, pro-inflammatory and anti-

inflammatory. The latter are intended to modulate and inhibit excess inflammatory 

reactions. Important biological features of cytokines are their pleiotropic and 
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redundant properties allowing them to have multiple functions, in addition they can act 

synergistically and antagonistically. They can act in an endocrine, paracrine or 

autocrine manner through specific cell membrane receptors. Pro-inflammatory 

cytokines are produced early during an inflammatory response and are able to 

modulate the host response by recruitment of cells, initiate additional cytokine 

signalling, activating signaling cascades and induction of gene transcription (figure 3) 

(47, 48). Examples of pro-inflammatory cytokines are interleukin-1β (IL-1β), tumor 

necrosis factor-α (TNF- ), IL-8 and IL-6.  IL-8 is chemotactic cytokine that stimulates 

recruitment of inflammatory cells, while IL-6 is a cytokine that has both pro-

inflammatory and anti-inflammatory properties (48, 49).  IL1-β is a cytokine that 

exists as inactive pro- IL-1β, and is activated by cleavage executed by caspase 1 and, 

regulated by the assembly of the inflammasome complex (50). General principles of a 

cytokine response are illustrated in figure 4. 
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Figure 3: Illustration of possible induction of cytokine gene transcription and release 
after exposure to methacrylate and particles. Induction of cytokine release through toll 
like receptor 4 (TLR-4) is also illustrated. The numbers in circles indicate in which 
study the specific biological endpoint is described. 

 

1.3.2 Cellular responses 

Cellular oxidative stress  

Reactive oxygen species (ROS) are chemically highly reactive molecules that contain 

oxygen (O2-, OH-) and their reactivity is mainly due to an unpaired electron. In 

addition, non-radical, but highly reactive molecules such as H2O2 is also called ROS. 

ROS is a product of metabolisms in the cell, but can also be initiated by exogenous 

and endogenous stimuli (51-53).  Cells have defense mechanisms that maintain a 

controllable level of intracellular ROS. This includes non-enzymatic antioxidants such 

as glutathione (GSH), vitamin C and vitamin E, and antioxidant enzymes such as, 

thioredoxins, superoxid dismutase (SOD), catalase and gluthatione peroxidase. GSH is 

the most abundant non-protein thiol in the mammalian cell and is acting as reducing 
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agent.  GSH has a cysteine moiety that includes a thiol group (SH-group). This group 

is a biological active group that is easy to oxidize and is susceptible to nucleophilic 

attack.  Oxidized GSH termed GSSG is reduced back to GSH by the enzyme 

glutathione reductase (51).  Depletion of GSH can cause change in the GSH/GSSG 

status leading to elevate levels of ROS in the cells. ROS can also react with nitrogen 

oxides and make reactive nitrogen species (RNS) (52, 54). Increased levels of ROS in 

the cells may initiate DNA (55), lipid (56) and protein damages (57) and thereby 

inhibit and active enzymes such as phosphatases and enzymes involved in stress 

responses. These ROS-induced responses may also trigger increased inflammation and 

initiate cell death (52, 56).  

 

DNA damage 

DNA damage occurs during replication of the cell, but can also be a result of toxic 

conditions. If the damage is not too extensive it will be repaired and the cell survives. 

When DNA damage is extensive and beyond repair, cell death is induced. However, if 

the DNA repair fails but the cell survives, the results could be mutation, genomic 

instability and cancer initiation (58).  

Cellular response to DNA damage is mediated through a complex network of signaling.   

Mediators of this transduction can be categorized into sensors, transducers and 

effectors depending on their role in the DNA damage response. However, the 

mediators can also have multiple roles. DNA damage sensors such as the 

NBS1/MRE11/Rad50 (MRN) complex and  members the phosphatidylinositol 3 

kinase-like kinase (PIKK) family,  ataxia telangiectasia mutated (ATM), ataxia 

telangiectasia and RAD3 related (ATR) and DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs) are engaged in monitoring the DNA. DNA damage sensors are 

activated upon DNA damage and the type of sensor activated is dependent upon the 

type of DNA damage. Generally ATM is activated upon double strand break (DSB) 

and ATR upon single strand break and DNA damage associated with replication (59-

62). ATM can be a transducer of DNA damage signaling pathways and thereby 

activate and stimulate multiple DNA-damage effector proteins. For example ATM can 
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regulate effector proteins such as p53, mdm2 and chk2.  ATM, ATR and DNA-PK 

also activates H2AX (denoted γH2AX when activated) early in the DNA-damage 

response. γH2AX have multiple functions and in additions to serve as a sensor for 

DNA damage it can also function as a docking site for DNA repair and cell cycle 

proteins (59).  General principles of DNA-damage response is illustrated in figure 4. 

 

Cell death 

Cellular stress and extensive DNA damage can result in cell death (63, 64).  Generally, 

cell death is divided into two main types; necrosis and apoptosis. In addition, 

autophagy is proposed as a third form of cell death (65). Apoptosis is an active ATP-

requiring and controlled process morphologically defined by nuclear shrinkage and 

condensation, membrane blebbing, and release of apoptotic bodies. Apoptotic cell 

death is important to maintain normal cellular turnover (65-67). Autophagy involves 

digestion of the cells own organelles, often activated upon starvation In contrast to 

apoptosis and autophagy, necrosis is a passive process which is traditionally defined 

by swelling of the cell, rupture of the cell membrane followed by inflammation. Both 

accelerated and insufficient cell death is involved in many diseases (68, 69).  

 

1.3.3 Toxic responses to methacrylate monomers  

Methacrylate-induced cell death and underlying cellular mechanisms are studied in 

several in vitro cellular systems (70-74). Observed responses to methacrylates include 

increased apoptosis and cell cycle alterations (70, 75), induction of mitogen-activated 

protein kinases (MAPK) (76), micronuclei formation (77) and  DNA damage (78-80) 

followed by DNA damage response (75). Methacrylate binding to GSH probably 

through a Michael-type addition has been pointed out as a key event in the observed 

toxic response to methacrylates. GSH-methacrylate adduct formation are reported to 

result in GSH depletion and increased ROS formation (81). Clinically, adverse 

reactions to methacrylates have been observed both in patients and dental personnel. 

Contact dermatitis among dental personnel is the most common type of adverse 
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reactions to methacrylates (23, 35). The allergic response is proposed to be initiated by 

HEMA binding to proteins such as serum albumin (82). Reactions to materials in 

patients are less frequent, but lichenoid reactions are observed in relation to composite 

filling materials (38).   

 

1.3.4 Toxic responses to particles 

The toxicology of particulates has emerged as a field in toxicology involving exposure, 

distribution and elimination of particulate matter. The first studies on toxicology of 

particulates were associated with exposure to urban air particles. During the last 

decade toxicological studies on particles used in engineered materials, particularly 

nanomaterials (nanotoxicology) have emerged as a separate discipline in toxicology 

(83). Nanoparticles exist in a domain between quantum physics and bulk chemistry.  

The nanometer size of particles results in increased surface area pr mass. These 

properties are associated with altered physicochemical properties as well as increased 

biological reactivity (84).  

A wide variety of different particles has been investigated both in vitro and in vivo. 

The biological responses to particles are largely governed by the physicochemical 

characteristics. As a consequence it is problematic to generalize responses to particles 

therefore, only examples are mentioned here. Silica particles are among the most 

studied particles (SiO2) and occur in crystalline (quartz) and amorphous forms (glass). 

Occupational exposure to crystalline silica is associated with silicosis, fibrotic lung 

diseases, chronic obstructive lung disease (COPD), and lung cancer. In general, 

exposure to silica particles induces severe inflammation which seems to be a common 

step for silica-induced diseases. In vitro SiO2 exposure is associated with cell death, 

increased cytokine release and ROS formation (85). Particulate wear debris (metals, 

ceramics, polymers) from orthopedic joint implants with articulating surfaces can 

initiate a local inflammatory response through release of proinflammatory proteins 

such as IL-6, IL-8, IL-1β and TNF-α. Such immune responses can initiate bone 

resorption by osteoclasts (46, 86, 87) and have been shown to disturb differentiation of 
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mesenchyme stem cells (88). In addition wear debris from implants are associated with 

altered collagen synthesis (87), and apoptosis (89). 
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Figure 4: Simplified illustration of cellular DNA damage response to a genotoxic 
compounds or ROS generation. P53 (effector) activation through ATM (sensor) and 
chk2 (transducer) are exemplified in the figure. Circles indicate in which study the 
specific biological endpoint is described. 
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2. AIMS OF THE STUDY 

The overall hypothesis of the present work was that organic and inorganic components 

of polymer-based dental materials, alone and in combination, can induce biological 

responses. 

 

The toxic potential of selected inorganic filler particles and methacrylates commonly 

used in polymer-based dental materials were to be characterized. The specific aims 

were to: 

1) Study the in vitro inflammatory potential of filler particles and monomers alone 

and in combination  

2) Study the in vitro potential of methacrylates to induce cell death and to 

elucidate underlying mechanisms. 
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3. SUMMARY OF RESULTS 

 

Paper I: Filler particles used in dental biomaterials induce production and 

release of inflammatory mediators in vitro 

In paper I the potential of particles to induce cytokines IL-6 and IL-8 was studied in 

BEAS 2B cell after 24h of exposure (2.5-40 μg/cm2). Two types of ceramic particles 

with a mean particle size of 1μM were used (BaAlSi and BaAlSiF particles). Both 

types of particle increased the release of IL-6 and IL-8 in a dose-dependent manner. 

BaAlFSi particles induced a more marked IL-8 response compared to BaAlSi particles. 

Mechanistic studies using specific inhibitors and activators indicated that cyclic AMP-

dependent protein kinase A is partly involved in the observed IL-8 response; this 

inhibitory effect was not observed for IL-6. An increase in the transcription of the IL-6 

and IL-8 gene was also observed. We concluded that these particles which are used in 

composite filling materials have the potential to induce adverse inflammatory response 

in BEAS 2B cells.   

 

Paper II: Cell toxicity of methacrylate monomers – the role of glutathione adduct 

formation. 

The aim of this study was to explore the mechanism of toxicity of five commonly used 

methacrylates monomers. The methacrylate monomers studied were HEMA, 

TEGDMA, BisGMA, GDMA and MMA. Methacrylate-GSH adducts formation and 

GSH depletion were studied and related to the toxicity of the methacrylates. All 

methacrylates were found able to deplete GSH levels in cells and/or cell-free 

environment, but the methacrylates differed in the potency to deplete GSH. Moreover, 

BisGMA was found not spontaneously form adducts with GSH. The toxicity of the 

methacrylates did not fully correspond to their ability to deplete GSH. A similar lack 

of correlation was also observed in the cell cycle analyses where only HEMA induced 

significant alteration. Together, the results indicate that mechanisms other than a GSH-

dependent mechanism are involved in the toxicity of the investigated methacrylates. 
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Paper III: DNA-damage, cell-cycle arrest and apoptosis induced in BEAS-2B cells 

by 2-hydroxyethyl methacrylate (HEMA)   

The aim of study III was to investigate mechanisms of HEMA-induced toxicity. Cells 

from BEAS-2B human lung epithelial cell line was exposed to HEMA (1-8 mM) for 

up to 48 h. Depletion of cellular glutathione (GSH) and an increased level of reactive 

oxygen species (ROS) were seen after 2 h of exposure, but the levels were restored to 

control levels after 12 h.  24 h of exposure to HEMA inhibited cell proliferation. At 24 

h apoptotic cell death were also found. The result of the Comet assay indicates that 

HEMA induced DNA damage. In addition, phosphorylation of DNA-damage-

associated signaling proteins including Chk2, H2AX, and p53 were observed. HEMA 

also induced an accumulation in the s-phase of the cell cycle.  The antioxidant trolox 

did not counteract this HEMA-induced cell-cycle arrest, which indicates that the DNA 

damage is of non-oxidative origin. 

 

 

Paper IV: TEGDMA and filler particles used in dental composites additively 

attenuate LPS-induced cytokine release from the monocyte-macrophage cell line 

RAW 264. 

This study investigated if combined exposures to (methacrylate) monomers and 

particles from composite fillings caused additive, synergistic, or antagonistic effects on 

LPS-induced cytokine release in RAW264.7 cell line. The cells were exposed to The 

TEGDMA, silica (SiO2) nanoparticles (12 nm) or quartz microparticles (1 μm) either 

alone or in combination. Both nanosilica and quarz particles reduced LPS induced IL-

1β release in RAW264.7. However, only for nanosilica this reduction was significant 

(4 μg/cm2). The cellular viability and the TNF-α release were not significantly affected 

by the exposures. To evaluate possible additive and synergistic response the induced 

effect of the combined exposure was compared to the sum of the individual exposure 

(calculated additive effect).   Co-exposure to nanosilica and quartz resulted in an 

additive attenuation of the LPS-induced IL-1β release. The effect of co-exposure to 

TEGDMA and to the filler particles was also additive.   
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4. DISCUSSION  

In recent years the amount and number of different dental composite filling materials 

on the market have increased. Short-term and long-term implications of exposure to 

particles and monomers from dental materials are not established.  In line with the 

precautionary principle, biological mechanisms that could be involved in clinical 

effects should be addressed.  

 

4.1 Methodological considerations  

In vitro toxicity assays do not replace an in vivo system for exposure and toxicity. 

However, in vitro toxicity assays provide information which can accompany risk 

assessment (90). Choosing appropriate in vitro methods could be challenging and 

methods are not always accessible. As all in vitro methods have strengths and 

limitations, ideally more than one method should be applied (91). 

 

4.1.1 Methods applied  

Table 1 present the use of different in vitro model systems, biological endpoints and 

the methods used in the current studies.  

 

4.1.2 Biological model system  

In the current studies, in vitro cell line models were used to study effects of 

constituents in dental restorative materials. In paper I, II and III a human epithelial 

bronchial cell line (BEAS-2B) were used. BEAS-2B is an adenovirus transfected cell 

line and is chosen as a model system for an inhalation exposure and exposure of the 

GI-tract. The mice macrophage cell line (RAW246.7) was used as a model system in 

paper IV. Exposure to material constituents may lead to a local tissue response 

followed by infiltration of macrophages.  



28  
 
Cell lines are useful biological tool for studying cellular mechanisms, and results can 

be used as an indicator for important mechanisms involved in adverse health effects. 

However, cell lines can have altered properties compared with primary cells and the 

complexity of an in vivo situation, where multiple cells and factors constantly interact 

are absent. Consequently, results from studies on cell lines cannot be extrapolated 

directly to a clinical setting. On the other hand, cell lines are cost effective, easy to 

work with and have high reproducibility compared with primary cells and in vivo 

systems. In addition to the relevancy of the origin of the cell line a, stable model 

system that produces reproducible results is also of importance. In the current studies 

stable and well characterized cellular model systems were used. 
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Table 1: Overview of used methods, in vitro model systems and measured endpoints. 

 

 

4.1.3 Cellular exposure 

Particles  

The particles used in the current studies are commonly used particles in commercial 

composite filling materials. To avoid interference from silane with the biological 

system the particles in the present studies were not silane treated. Due to water 
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absorption which could be followed by hydrolysis of silane bond, released particles in 

vivo could also lack the silane coating (92). 

 In vitro particle exposure presents several methodical challenges. Cell culture media, 

agglomeration state and sedimentation rate are of importance when evaluating particle 

toxicity in vitro (66). Physicochemical characterization (e.g. shape, aggregation, 

surface properties) of particles is essential for understanding interactions with 

biological environments (84, 93). For the particles used in the current studies, 

information on particle size and chemistry was provided by the manufacturer. 

Additional analysis of the size in solution as well as analysis of surface charge (zeta-

potential) and morphology was performed (table 1) (paper I, IV).  

A protein corona forms on the particle surface when suspended in protein containing 

media (94).  This will influence the biological interactions with cells (94, 95). The 

corona formed is dependent on the particle surface characteristics and the proteins 

available in the media. Hence, the activity of the particles may differ with type and 

concentration of protein and serum in the cell culture media, and is also likely to differ 

from particle exposure in vivo (96). In the current studies low serum media was used in 

paper I while media with higher serum content was used in paper IV. It has been 

demonstrated a lower toxicity of SiO2 in high serum media compared with serum free 

media, possibly due to flocculation and therby increased particle size. Results from the 

dynamic light scattering (DLS) revealed probable agglomeration of SiO2 nanoparticles 

(paper IV). Agglomeration of particles could interfere with cellular interaction and 

uptake (95). However, this is not the case for particles in general, for example, 

addition of bovine serum albumin is also used to inhibit aggregation of nanoparticles 

(97).  

To disperse agglomerates and aggregates before exposure the particle solutions used 

were subjected to ultrasound (sonicated). This is a commonly used procedure in in 

vitro nanotoxicology studies, but relevance can be questioned as it might not be likely 

that single particle exposure represents a realistic in vivo scenario.  
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Particle mass per surface area or volume is the most used dose measure exposing cells 

in vitro. However, the use of mass as an estimate for dose in toxicity studies of 

nanoparticles are currently debated (98). Number of particles or total particle surface 

area has been proposed as more appropriate measure for assessing the dose.  In the 

present studies nano- and microparticles were used. It is problematic to compare the 

toxicity of nano- and microparticles based on a mass as a dose measure, as 

nanoparticles have much higher surface area pr mass compared to microparticles. 

However, accurate use of these metrics are difficult to accomplish technically (99). 

 

Methacrylates 

Concentrations of methacrylate monomers used in the present studies are in line with 

those used in other published works (63, 71, 75).  HEMA, TEGDMA, GDMA, 

BisGMA and MMA were studied presently. All but MMA are used in both the dental 

filling composite and the adhesive systems. MMA is included in this study as a 

reference material. MMA are used in a number of medical, dental and industrial 

applications and has been extensively studied (100).   

The solubility of methacrylate monomers in cell culture media varies. In the present 

studies HEMA, TEGDMA, MMA and GDMA were dissolved in medium, while 

BisGMA was dissolved in dimethyl sulfoxide (DMSO). BisGMA is highly viscous 

and has relatively low solubility in water, making it necessary to use a stock solution 

in DMSO. Concentration of DMSO used (<0.01 %) did not influence the endpoints 

studied. In line with this, other studies have reported similar results (101, 102).  

 

4.2 Discussion of results 

Composite fillings can release multiple components and create a complex exposure 

scenario. The microbial environment in the mouth will also add to the complexity of 

the system (103). Whether released monomers and particles can induce cell death, 

tissue inflammation or other adverse effects are important to clarify. Although, results 
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in an in vitro study cannot be directly extrapolated to an in vivo situation it provides 

useful insight into possible mechanisms involved in the toxicity of these materials. 

 

4.2.1 Inflammatory potential of filler particles and methacrylates  

An increased incidence of silicosis and respiratory conditions such as asthma, allergic 

alveolitis and rhinitis have been found among dental personnel, and are reported to be 

increasing (37, 104, 105). Local Inflammation, immunological effects (35, 37, 106), 

long term pulpal inflammation and irritation (107) and lichenoid reactions (38, 39) are 

clinically observed in relation to composite fillings. However, the cause and effect is 

difficult to establish. It has also been proposed that methacrylates used in composite 

filling materials can facilitate bacterial growth (41, 103).  

An important topic in the present studies is the pro-inflammatory proteins, IL-6, IL-8, 

IL1β and TNF-alpha (paper I, IV). Altered levels of these cytokines have been 

implicated in many diseases including oral chronic inflammatory conditions such as 

periodontal diseases and oral lichen planus (108-111). In the recent years increased 

and chronic inflammation has also been associated with the onset and progression of 

cancer (112). Elevated levels of IL-6 are found in the saliva of patients with oral 

cancer and cancer of the head and neck (113). Cytokine signaling consists of complex 

networks where cytokines exert both pleiotropic and redundant effects. Studying 

release of only one cytokine in vitro will give an incomplete picture of the complex in 

vivo situation. Nonetheless, in vitro studies are important to study the potential 

involvement of single cytokines in biological responses to toxic components in a 

controlled environment. 

In BEAS 2B cells particles increased release of cytokines (IL-6 and IL-8) (paper I) 

while in LPS-stimulated RAW 246.7 cells particles and monomers reduced the 

cytokine response (IL-1 β) (paper IV). The reason for this difference in response could 

be the use of different cells and exposure protocols. Relatively high exposure 

concentrations were used in paper I compared to paper IV. The concentrations chosen 

in paper IV aimed to use clinically relevant exposure, whereas the aim of paper I was 
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to address the potential to induce inflammatory mediators. However, the relevance of 

high dose acute exposure is a debated subject, as the real life setting will probably be 

chronic exposure to low concentrations over an extended time period. 

The size of the dust particles released from composite filling materials due to wear and 

degradation can be influenced by the material composition (22). Also, particle size, 

size distribution and shape could potentially influence the degree of conversion and 

wear of the materials (13). Particle characteristics such as, chemical composition, size 

and morphology are also determinants for the biological interactions (93, 97). The 

specific properties of nanoparticles that are desirable and unique may also induce 

adverse biological effects. For example, higher cytotoxicity is observed for 

nanoparticles compared to micro particles of the same material (114, 115). The 

influence of particle composition and size is exemplified in paper I, where the 

potential to induce IL-8 differed significantly between two particles that differed 

slightly in their chemical composition. Moreover, SiO2 nanoparticles showed higher 

toxicity at the same mass compared to the microparticles (paper 1). The mechanisms 

by which particles induce cytokine induction and transcription are in the current study 

not fully elucidated, but signaling pathways involving activation of MAP-kinase (116), 

NFκB (117), GSH/ROS (115, 117) and activation of the inflammasome (118) may 

take part in the inflammatory response to particles in general. Necrotic cell death can 

also initiate an inflammatory response due to release of intracellular substances to the 

surroundings (119). Cell death was therefore monitored to ensure that the observed 

response was not due to necrotic cell death.  

The cytokine response in BEAS 2B cells was not investigated after exposure to 

monomers. However, in RAW 246.7 cells (paper IV) and in several other studies the 

inflammatory potential of methacrylate monomers has been explored. Methacrylates 

have been shown to both reduce (paper IV) (118, 120) and increase (121) cytokine 

release. Methacrylate-induced cytokine release could be due to increased cellular ROS, 

cellular stress responses and activation of NFκB (120). Mechanisms involved in the 

reduction of cytokines are unclear, but it has been suggested that it can be regulated 

posttranscriptional (118). 
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4.2.2 Methacrylate-induced cell death  

Increased intracellular ROS due to GSH-methacrylate adduct formation has been 

suggested as the main mechanism involved in methacrylate-induced cell death. The 

GSH-methacrylate adduct is formed when the electrophilic β-carbon of the 

methacrylate undergoes a michael-type addition to nucleophiles (122). Altered ROS 

homeostasis in the cell leads to activation of numerous cellular stress responses and 

cell death (76, 123). In addition to DNA damage caused by ROS (52, 123), 

methacrylates have been proposed to directly interact with DNA which could lead to 

apoptotic cell death if the damage is extensive (124, 125).   

Methacrylates induce cell death in a variety of both cell lines and primary cells 

although the potency to do so may vary (paper II) (77, 101).  MTT/XTT assays are the 

most commonly used methods to evaluate methacrylate-induced cytotoxicity, 

recording SDH-activity as a measure of cytotoxicity and cell proliferation. 

Methacrylates are reported to induce both growth inhibition and cell death (70). 

However, studies have shown accordance between MTT/XTT data and microscopic 

evaluation of cell death (63, 126).   

GDMA, TEGDMA and BisGMA induced dose-dependent cell death in BEAS 2B cells 

(paper II). In contrast HEMA and MMA did not induce measurable cell death at the 

concentrations used. Moreover, HEMA, UDMA, BisGMA and TEGDMA have 

induced significant dose-dependent cell death in other cell lines (64, 126, 127). In 

general, apoptotic cell death seems to be more prevalent in the lower concentration 

range whereas necrosis seems to dominate when cells are exposed to higher 

concentrations (76, 126). Results from paper II revealed that other mechanisms other 

than GSH-dependent are likely to be involved in the toxicity of these methacrylates. 

Cell death induced by BisGMA was prevalent at low concentration where GSH 

depletion was not found. Hence, BisGMA seem to be a methacrylate causing toxicity 

independent of GSH binding.  

DNA damage can be initiated by direct interaction with DNA. Possible mechanisms 

are nucleophilic attack on DNA leading to formation of methacrylate-DNA adduct 
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(125) and DNA interactions through methacrylate intermediate epoxide formation 

(128, 129). In paper II it was observed that the potential to induce alterations in the cell 

cycle differed between the methacrylates, and that the ability to deplete GSH did not 

appear to be the main factor involved, as HEMA was the only methacrylate that 

induced alterations in the cell cycle. In paper III the mechanism of HEMA induced 

toxicity with emphasis on the potential to induce DNA damage was investigated. 

Activation of signaling proteins involved in the DNA damage sensor, transducer and 

effector signaling was observed. In cells exposed to HEMA H2AX and Chk2, but not 

Chk1 were activated. The absence of Chk1 activation indicates that HEMA induces 

double strand breaks (58). Genotoxic potential of MMA, BisGMA, GDMA and 

TEGDMA in BEAS2B cells cannot be ruled out.  DNA damage can be present without 

inducing cell cycle arrest or cell death due to rapid repair of the damage. Induction of 

DNA damage response, repair and cell death if the damage is too extensive is a crucial 

response due to the importance of eliminating damaged cells.  Overall, the present 

studies demonstrate that methacrylate monomers can initiate DNA damages. However, 

DNA damages may not always be recognized and repaired, advancing the damaged 

cells as a possible outcome.  

 

4.2.3 Combined exposure  

Particles from wear and handling consist of mixture of both particles and particle 

embedded in matrix (22). Although it would be comparable to the clinical situation, 

such an exposure system would be very complex and could produce data that are 

difficult to interpret due to the multiple and uncontrolled variables.  

In the present study we used a “bottom up” approach for combined exposure was 

applied (paper IV).  Meaning that cells are exposed to individual components to 

elucidate separate mechanism and secondary investigate possible interactions. A 

different approach would be to expose to a complex mixture (“top down”) (130).  

Effect of compounds in a mixture that have the similar mode of action would probably 

be different compared to compounds that have a dissimilar mode of action (131). This 
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emphasizes the importance of elucidating biological mechanisms for the individual 

compounds. Synergism and antagonism have previously been demonstrated for 

methacrylates in vitro (132). In paper IV co-exposure to particles and monomer 

(TEGDMA) had an additive effect on the IL-1β release in RAW 246.7 cells. Thus, 

interactions between components in composite filling materials could result in a higher 

total biological burden than from the individual exposures.  
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5. CONCLUSIONS 

The present study has provides new information about the toxicity of particles and 

methacrylates used in polymer-based dental materials. The overall hypothesis is 

supported as components in polymer-based dental materials are shown to induce toxic 

responses. 

 

1. Micro- and nanoparticles show inflammatory potential in vitro. However, there 

is a difference in the inflammatory potential between the particles studied. 

Combined exposure to monomers and particles induce an inflammatory 

response, this response is additive. 

 

2. The methacrylate monomers in this study induce cell death, but the potential 

differs. GSH adduct formation appears not be the main mechanism of toxicity 

of methacrylates. In contrast to the other methacrylates studied HEMA induces 

cell cycle alterations. HEMA also induces DNA damage and DNA damage 

associated responses.  
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FUTURE PERSPECTIVES 

The present work presents new results regarding the potential of components in dental 

filling materials to induce adverse biological responses, but also opened new questions 

that should be addressed in future studies.  

In the current studies pure particles were used. In the future clinically relevant wear 

particulates should both be characterized and studied biologically. In paper IV the 

interesting aspect of co-exposure to methacrylates and particulates was raised. This is 

clinically relevant for both personnel and dental patients and further studies on co-

exposure are needed to elucidate the toxicity of composite filling materials. 

Several new research questions emerged regarding the mechanism of toxicity of 

methacrylates. Differences in the mechanisms were found between methacrylates, 

especially BisGMA seemed to have a mechanism of toxicity that was not dependent 

on adduct formations with GSH, and induced toxicity at low exposure concentrations. 

Further studies that enlighten the relation between the chemical structures and toxicity 

should be undertaken. 
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