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ABSTRACT 

Chemotherapy has a long history in cancer treatment, and the anthracycline used in 

Paper I and II are among the most effective anti-cancer drugs developed. 

Unfortunately, the use of anthracyclines is dose-restricted due to the risk of 

cumulative toxicity in healthy tissue, most notably in the heart. Targeted therapy 

using all-trans retinoic acid (ATRA) is used to differentiate, and hence, eliminate 

acute promyelocytic leukemia (APL) cells, and is combined with low dose 

anthracyclines to remove live or ATRA resistant cells. Recently, cAMP was 

recommended as adjuvant to standard APL therapy since it enhances ATRA induced 

differentiation of APL cells. In Paper I we demonstrate that cAMP in fact abrogate 

the anti-cancer effect of the anthracycline Daunorubicine (DNR) in blasts from APL 

patients and also in ATRA-sensitive and insensitive APL cell lines. The protection 

was dependent on the cytoplasmic PKA-type I rather than perinuclear PKA type-II, 

and was associated with (inactivating) phosphorylation of pro-apoptotic Bad and 

(activating) phosphorylation of the acute myeloid leukemia (AML) oncogene cAMP-

responsive element binding protein (CREB). Mice with orthotopic NB4 cell leukemia 

showed a more rapid disease progression when given cAMP-increasing agents 

(prostaglandin E2 analog and aminophylline), both with and without DNR 

chemotherapy. Together this suggests that the beneficial pro-differentiating and non-

beneficial pro-survival APL cell effects of cAMP should be weighed against each 

other. Although the mechanism behind anthracycline mediated cardiotoxicity is 

highly contested, intramyocardial production of reactive oxygen species (ROS) is 

generally accepted as a strong candidate, and has increased the focus on antioxidants 

in cardioprotective strategies. In Paper II, we demonstrate that Red Palm Oil (RPO) 

supplemented diet during chemotherapy attenuate cardiotoxic side-effects of 

daunorubicin, by improving aortic output and coronary flow in the isolated working 

rat heart model. Improved hemodynamic was accompanied by stabilization of 

important antioxidant systems (SOD1 and NOS1) and reduction of stress-induced 

MAPK activation.  
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While cancer is a consequence of restricted cell death, the opposite scenario, with 

increased cell death is an important component of ischemia-reperfusion induced 

injury. Since prolonged ischemia may lead to cardiac cell death, rapid and adequate 

reperfusion is a necessity to salvage the compromised cardiac tissue. Paradoxically, 

reperfusion per se also induces cell death (lethal reperfusion injury) a process 

involving opening of the mitochondrial permeability transition pore (mPTP). 

Different ways to limit or delay cardiomyocyte cell death have emerged in the 

laboratory setting, and are evaluated as clinical candidates to further improve the 

outcome of patients with acute myocardial infarction (AMI). In paper III and IV we 

utilize the Langendorff perfusion setup for the ex vivo rat heart, to evaluate different 

therapeutic strategies to reduce ischemia-reperfusion induced injury. In Paper III we 

show that corticotropin releasing factor (CRF) significantly reduce infarct size when 

applied to the heart prior to a lethal ischemic insult, and was cytoprotective in 

neonatal mouse cardiomyocytes when added prior to a lethal simulated ischemic 

event (hypoxia). CRF was however not protective when administered at the point of 

ischemic reperfusion or hypoxic reoxygenation. The cardioprotective effects of CRF 

was mediated via activation of PKA and PKC dependent signaling pathways 

downstream of CRF receptor type 2 (CRFR2). In Paper IV we evaluated the possible 

additive effects of combining known cardioprotective treatments. We found that 

combining insulin reperfusion therapy with direct Glycogen synthase kinase 3 β 

(GSKβ) inhibition at reperfusion did not confer any additive effect, but showed 

similar cardioprotection as seen when the treatments were administered separately. 

Surprisingly, we found that combining either of the two pharmacologic interventions 

with ischemic postconditioning (IPost) abrogated all cardioprotective effect. This loss 

of cardioprotection was accompanied with blunted Akt phosphorylation. To our 

knowledge, we are the first to demonstrate the loss of protection when combining two 

otherwise cardioprotective regimes.  
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1. INTRODUCTION 

1.1 Preface 

This thesis represents basic research devoted to reduce the harmful consequence of 

myocardial ischemia, and also modulate classical anti-cancer therapy to alleviate drug 

associated toxicity. I have focused on modulation of cell death in the two different 

pathologic situations represented by ischemia-reperfusion induced injury and 

anthracycline induced apoptosis/cardiotoxicity. 

Cardiovascular diseases are the leading cause of death globally, estimated to 17.3 mill 

deaths in 2008, from where 42% were due to myocardial ischemia [1]. Myocardial 

ischemia is defined as “a condition in which the coronary blood flow is inadequate to 

permit the maintenance of a steady state metabolism” [2]. Therefore, rapid and 

adequate reperfusion of the compromised cardiac tissue is necessary, as prolonged 

ischemia will lead to cardiac cell death.  However, reperfusion itself induces cardiac 

injury, e.g. lethal reperfusion injury, contributing to the total infarct size and presents 

as an important target for additional cardioprotection. Although the precise 

mechanism needs to be fully elucidated, it is clear that cell death is the most 

important consequence of both ischemic as well as reperfusion induced injury. 

Contrary, attenuation of cell death is the key feature of cancer. Cancer is a 

heterogeneous group of diseases which are increasing both in incidence and 

mortality. Chemotherapy includes more than hundred different drugs used for cancer 

treatment, and the anthracyclines described and used in this thesis (daunorubicine-

DNR) has been among the most effective antitumor drugs ever developed. 

Unfortunately, due to the risk of cumulative cardiotoxicity the use of high dose 

anthracycline is hampered and may reduce its therapeutic potential. This thesis 

explores the possibility of, indirectly or directly, reducing the toxic side-effects of 

anthracycline treatment, by combining classical treatment with novel agents (Paper I 

and II) and also reducing ischemia-reperfusion induced cardiac injury using novel 

therapeutic strategies (Paper III and IV). 
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1.2 Cell death 

Precise description of  naturally occurring cell death was reported in more than 100 

papers as early as the 19th century (reviewed in [3]). However, the introduction of the 

term Programmed Cell Death (PCD) came in 1964 when Locksin and Williams 

realized that cell death occur at predicted time and places during development, and 

are programmed into the developmental plan of an organism [4]. Eight years later, 

Kerr, Wyllie and Currie further specialized the term by introducing apoptosis as a 

special variant of PCD. They described precise morphological features of apoptosis 

such as cell shrinkage and fragmentation, followed by phagocytosis of the apoptotic 

bodies. This process is highly distinguished from the pathological variant of cell 

death called necrosis (also called oncosis), where the cells tend to swell and rupture 

with subsequent inflammation [5] (Fig. 1.1). Necrosis has traditionally been 

considered as  an uncontrolled process, but accumulating evidence is now suggesting 

that necrosis can be finely regulated [6]. This process has been termed necroptosis 

and involves signaling via receptor-associated adaptor kinase RIP1 [7]. Finally, 

autophagy is also linked to PCD. Autophagy was described already in the 1960s, and 

is  a catabolic mechanism that involves degradation of damaged and dysfunctional 

cellular components through the lysosomal machinery [8]. The idea of autophagic 

cell death (ACD) gained its momentum in the 1990s with the discovery of the 

autophagy-related genes (ATG) [9] and the observation of caspase-independent cell 

death with non-apoptotic morphology [10]. However, ACD is only a morphological 

definition based on accumulation of autophagosomes in dying cells, and there is still 

an on-going debate whether ACD is actually cell death with autophagy rather than 

cell death by autophagy [11].  
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Figure 1.1 Two important types of cell death are depicted. Necrosis involves cell swelling and 
rupture of the cell membrane, with release of intracellular components leading to inflammatory 
reactions. Apoptosis is an organized and controlled process with cell shrinkage and chromatin 
condensation, followed by formation of apoptotic bodies which are phagocytized by surrounding 
cells without induction of inflammation (figure from [12] ). 

 

1.2.1 Cell Death in “health and disease” 

In the adult organism, apoptosis is important for the clearance of damaged cells and is 

necessary for normal cell maintenance by acting as a counterbalance to cell 

proliferation [13]. In average, 50-70 billion cells undergo apoptosis every day in an 

adult organism [14]. Malfunction of the apoptotic signaling/machinery may have 

severe consequences as both too little and too much cell death result in pathological 

conditions. Neurodegenerative disorders such as Alzheimer’s and Parkinson’s, 

immunodeficiency syndrome (AIDS) and ischemia-reperfusion injury (myocardial 

infarction) are all associated with increased apoptosis. Ischemia-reperfusion induced 

injury is a result of both necrosis and apoptosis [15]. Whether apoptosis/necrosis 



 18 

represents discriminate or more overlapping events leading to cell death is unclear, 

but it seems like necrosis is mainly found in the central part of the infarcted area, 

while apoptosis is more apparent at the border zone of the infarct [16]. In addition, 

recent reports indicate that apoptosis is accelerated by reperfusion [17-20]. Regarding 

autophagy, compelling evidence indicates up regulated levels of autophagy during 

ischemia-reperfusion [21, 22], however, the role of autophagy, whether being 

detrimental or beneficial to the ischemic myocardium, is a topic of growing interest 

and debate [23]. Contrary to ischemia-reperfusion injury, autoimmune disorders like 

Lupus, a variety of viral infections and last but not least, cancer, is associated with 

attenuation of apoptosis (for review see [24]). Evasion of apoptosis is actually one of 

the key components of malignant transformation [25],  and also an important 

mediator in the development of therapy resistance [26]. Therefore, detailed 

knowledge about the molecular mechanisms of both successful and failed treatments 

will facilitate an improved approach for anti-cancer treatment.  

1.2.2 Regulation of apoptosis 

Apoptosis is usually transmitted via two major signaling pathways (Fig.1.2). A 

variety of cellular stresses such as hypoxia and exposure to chemotherapeutic agents 

initiate the intrinsic pathway with release of several apoptosis related proteins from 

the mitochondrial inter-membrane space [27]. Released Cytochrome C, Apaf-1 and 

procaspase-9 oligomerize to form the “apoptosome” which activates caspase-3 and 

induce proteolysis of hundreds of proteins leading to apoptosis [28]. In the extrinsic 

pathway, cell-surface receptors connect death-promoting extracellular signals to 

apoptosis execution inside the cell. Ligand binding initiates assembly of the Death 

Inducing Signaling Complex (DISC), auto-activation of caspase-8 followed by 

caspase-3 activation and finally initiation apoptosis [29]. Another caspase-8 substrate 

is the BH3-only protein Bid. When activated, Bid translocate to the mitochondria, 

connecting the extrinsic pathway to the mitochondrial intrinsic pathway [30], and 

thereby amplifying the initial death receptor signal. The integrity of the mitochondrial 

membrane is regulated by the Bcl-2 family of proteins, which is divided into three 

groups. The anti-apoptotic proteins containing all four BH domains; Bcl-2, Bcl-XL, 
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Bcl-W and Mcl-1[31], the pro-apoptotic multi-BH domain proteins Bax, Bak and 

Bok [32] and the pro-apoptotic BH3-only proteins Bim, Bad, Bid, Puma and Noxa 

[33]. Members from the different groups may interact as homo- or heterodimers, and 

these interactions between pro and anti- apoptotic proteins act as checkpoints 

determining the cell fate.  

 

 

  

Figure 1.2 Apoptotic signaling induced via death receptor activation (extrinsic pathway) and stress-
induced stimuli (intrinsic pathway). Activation of death receptors leads to recruitment of specific 
adaptor proteins (FADD) and consequently recruitment and activation of pro-caspase 8. In the 
intrinsic pathway the mitochondria is perturbed in response to stress, which leads to release of 
proteins such as cytochrome c from the inter-mitochondrial membrane space. The release of 
mitochondrial proteins is regulated by anti-apoptotic proteins such as Bcl-2, Bcl-XL and Mcl-1 and 
pro-apoptotic proteins such as Bax, Bak and BH3-only proteins such as tBid and Bad. Once released, 
cytochrome c initiates the formation of the apoptosome complex and activation of the initiator 
caspase  9. Activated caspase 8 and  9 further activates the effector caspases 3,6 and 7 responsible for 
the cleavage of important cellular substrates,  giving the classic apoptotic phenotype (figure from 
[34] ). 
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1.3 Acute myeloid leukemia 

Acute myeloid leukemia (AML) is an aggressive hematological malignant disorder, 

characterized by accumulation of immature myeloid progenitor cells in the bone 

marrow and peripheral blood. The pathology is due to a block in differentiation in the 

early stage of hematopoiesis, combined with dysregulation of proliferation and 

apoptosis [35]. Since AML is a heterogeneous group of diseases the symptoms are 

diverse and nonspecific, but they are usually directly attributed to the leukemic 

infiltration of the bone marrow with concomitant cytopenia. Typical clinical signs are 

fatigue, hemorrhage,  infections and fever due to a decrease in platelets, red and white 

blood cells [36]. The major hypothesis of leukemogenesis is known as “the two hit 

model”, and was first presented by Gilliland in 2001. This hypothesis implies that 

two different mutations, in a transcription factor and a tyrosine kinase, will impair 

differentiation and confer survival and/or proliferative advantages, and are both 

necessary for AML development [37]. Acute promyelocytic leukemia (APL) is a 

subtype of AML, and accounts for more than 10% of all AML cases. It is 

characterized by accumulation of immature promyelocytes in the bone marrow and is 

highly associated with chromosomal translocation of the retinoic acid receptor alpha 

(RARα) on chromosome 17 [38]. RARs belongs to a family of nuclear hormone 

receptors which in complex with retinoic X receptor (RXR) acts as transcriptional 

repressors or activators [39]. In most chromosomal translocations (>98%), RARα is 

fused to the promyelocytic leukemia protein (PLM) gene on chromosome 15, 

resulting in the t(15;17) chromosomal translocation, generating the PML-RARα 

fusion protein. This fusion protein blocks differentiation by acting as a transcriptional 

repressor directly [40] or via recruitment of various partners [41, 42]. In addition, the 

fusion protein induces hypermethylation with silencing of genes necessary for 

promyelocytic differentiation [43, 44]. The prognosis of APL has changed 

dramatically the last three decades from being the worst subtype of AML to 

becoming the most favorable, all due to the first example of successful molecular 

targeted therapy. 
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1.3.1 The successes story of APL treatment 

Before the mid-80s, when chemotherapy was the sole agent in acute promyelocytic 

leukemia (APL) treatment, this malignancy was considered highly fatal with only 

40% 5-year disease free survival (DFS), despite a complete remission rate (CR) of 

80% [45]. However, in 1985 it was discovered that all-trans retinoic acid (ATRA) 

induce differentiation of immature promyelocytes to terminally differenced 

granulocytes, which eventually undergo apoptosis [40, 46]. This effect is attributed to 

the direct binding of ATRA to the ligand-binding site of the RARα moiety of the 

PML-RARα fusion protein, initiating the release of transcriptional co-repressors and 

recruitment of co-activators [45]. Although ATRA therapy alone had promising 

effect with CR up to 85%, prolonged ATRA treatment lead to ATRA resistance, early 

relapse and retinoic acid syndrome (RAS). An international effort to optimize the 

ATRA regime was initiated, and since the early 1990s  ATRA has been combined 

with conventional chemotherapy such as daunorubicine (DNR), resulting in  CR up to 

95% with 74% 5-year DFS [47]. During the 1990s one of the oldest drugs in 

medicine, namely arsenic (ATO; As2O3) further improved APL treatment. ATO 

targets the PLM moiety of the PML-RARα fusion protein and induce apoptosis of 

APL cells [48, 49]. During the last decade several clinical trials has shown promising 

results for the combination of ATRA/ATO in APL treatment [50].  

1.3.2 The NB4 cell line  

In 1991, an ATRA-maturation inducible cell line (NB4) were isolated from an acute 

promyelocytic leukemia (APL) patient in relapse [51]. After long-term ATRA 

treatment of the initially isolated NB4 cell line, a maturation resistant sub-line NB4-

RAr (NB4-Retinoic Acid resistant) was also isolated [52, 53]. The NB4 cell (and the  

RAr sublines R1 and R2) bear the APL specific t(15;17) chromosomal translocation, 

and are currently the only human APL cell lines available. The NB4 cell lines are 

unique tools to investigate in vitro biological responses of APL, and have been the 

major cell line used in Paper I of this thesis. The NB4-RAr is the only ATRA-

resistant cell line with the t(15;17) chromosomal translocation (APL specific), and the 
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occurrence of this subpopulation in APL patients may explain why patients invariably 

experience relapse with resistance to retinoic acid (RA). However, in vitro maturation 

of these “resistant” cells is possible using cAMP-elevating agents or stable cAMP 

analogs when the cells have become maturation competent using RA beforehand, a 

situation described as RA priming and cAMP triggering [53]. Since cAMP stimulates 

ATRA-induced maturation of ATRA “resistant” APL blasts [53], cAMP agonists 

have been contemplated as adjuncts to APL therapy [54-56]. Together, this creates 

the basis for initiating Paper I. 

1.4 cAMP signaling 

Second messengers are small molecules transmitting extracellular signals (from 

hormones, growth factors and neurotransmitters) to the inside of the cell, where they 

orchestrate a network of signaling events leading to a myriad of cellular actions. 3'-5'-

cyclic adenosine monophosphate (cAMP) was the first second messenger to be 

discovered more than 40 years ago [57], and has since then been the basis of research 

awarded with three Nobel prices (1971, 1992 and 1994). cAMP regulates a range of 

physiological processes, and are involved in almost every known cellular function 

such as  metabolism, gene transcription, cell division, growth and differentiation, 

apoptosis, secretion and neurotransmission [58]. It is produced from ATP upon G-

protein coupled receptor (GPCR) activation of adenylyl cyclase [59], giving an 

overall 1000-fold amplification of the initial signal [60]. The mammalian adenylyl 

cyclases are usually transmembrane receptors and are encoded by nine genes and 

constitute several splice variants [61]. The level of free cAMP in the cell is controlled 

by hydrolyzing phosphodiesterases (PDEs). The PDE superfamily currently 

constitute 11 families and more than 50 enzymes with different properties [62]. With 

so many different proteins involved in cAMP synthesis and degradation it is 

undisputed that regulation of cAMP in the cell is highly prioritized. Today, three 

receptors for cAMP are identified; cAMP dependent protein kinase A (PKA), the two 

isoforms of the exchange proteins directly activated by cAMP (Epac1/2) and cAMP 

ion channels (Fig. 1.4). 
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1.4.1 Protein kinase A  

Most of the intracellular effects of cAMP are mediated via protein kinase A (PKA), 

which is one of the most studied protein kinases. Inactive PKA presents as a tetramer, 

consisting of a regulatory (R) dimer subunit and two catalytic monomer subunits (C). 

Two mammalian R isoforms have been identified [63], with the RI distributed freely 

in the cytoplasm and the RII being mostly membrane-bound via PKA-anchoring 

proteins (AKAPs). The regulatory isoforms are further subdivided into RIα, RIβ, RIIα 

and RIIβ which is encoded by separate genes, and show different tissue distribution. 

Four different C-subunits are described (α,β,γ and PrKX), which is further sub-

divided based on post-translational modifications or splice variants [62]. Upon 

intracellular increase of cAMP, two molecules of cAMP binds to the A and B site of 

each R subunit, inducing a conformational change in the tetramer, leading to 

dissociation of the two C-subunits [64]. These catalytic subunits will subsequently 

phosphorylate a variety of both cytosolic and nuclear proteins (reviewed in [65]) (Fig. 

1.4). An important regulation of PKA is the involvement of PKA-anchoring proteins 

(AKAPs), which allow specificity of PKA signaling by constraining it to different 

compartments of the cell, close to specific effectors and substrates [66], and 

inhibition of the catalytic subunits by protein kinase inhibitors (PKIs). 
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Figure 1.4 Overview of cAMP signaling. Most cAMP effects are mediated by PKA type I and II, as 
well as the newly recognized Epac 1/2. Ligand binding to G-protein coupled receptors (GPCR) leads 
to activation of heterotrimeric G-proteins. The dissociated Gαs activates transmembrane Adenylyl 
Cyclase to synthesize cAMP (red dots) from ATP. Soluble AC is depicted as sAC. Binding of two 
molecules of cAMP to the R subunit of PKA lowers the affinity for the C subunit which will 
dissociate and catalyze phosphorylation of cytosolic proteins or translocate to the nucleus where it 
phosphorylates nuclear targets like cAMP –response element binding protein (CREB). PKA-II 
usually presents in association with A-kinase anchor proteins (AKAP). When stimulated by cAMP, 
Epac  activates Rap1,2 by exchanging the GDP to GTP. cAMP signaling is negatively regulated by 
both phosphodiesterase (PDE) and the protein kinase inhibitor (PKI) in the cytoplasm and nucleus 
(Figure from [62]). 
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1.4.2 Modulation of intracellular cAMP using PGE2, PDE inhibitors 
and cAMP analogs 

Induction of intracellular cAMP production can be manipulated at any level in the 

cAMP production cascade. Receptor agonists such as prostaglandin E2 (PGE2) will 

activate adenylyl cyclace through Gαs, and hence, increase the endogenous level of 

cAMP. Simultaneously, it is preferable to inhibit cAMP breakdown using 

phosphodiesterase (PDE) inhibitors such as isobuthylmethylxantine-IBMX (non-

selective) or rolipram (PDE4 spesific). Since receptor mediated activation of cAMP 

can be attenuated  by Gαs (stimulatory) to Gαi (inhibitory) switch [67] this can be 

overcome by activation of downstream targets such as cAMP receptors inside the cell 

using cAMP analogs. Since the discovery of cAMP in 1961, hundreds of synthetic 

analogs have been produced and tested for their therapeutic potential. Unfortunately, 

undesired side effects, metabolic instability, low cell penetration and the lack of 

tissue specificity were limiting factors for almost all of the first generation analogs. 

The N6-modified cAMP analogs like N6-benzoyl-cAMP (N2-benz-cAMP) and N6-

monobuturyl-cAMP (N6-MB-cAMP) have improved lipophilicity compared to 

cAMP, and are inefficient Epac activators while being full PKA activators [68]. 2´-O-

methyl substitution of cAMP improved the selectivity for Epac 10-100 fold, and 

phenylthio substitution at position 8, particularly with a MeO- or Cl- at para-position, 

improved the selectivity even more. The combination of these two modifications 

resulted in the Epac specific agonist 8-para-chlorophenylthio-2´-O-Methyl-cAMP 

[68], commercially named 007. At present, there exists no single analog to 

discriminate between the type I and type II subtype of PKA, but this can be achieved 

by using specific analog pairs as done in Paper I of this thesis. While the above-

mentioned cAMP analogs are referred to as activating analogs, there also exists 

inhibitory analogs, namely the Rp-cAMPS where the equatorial (Rp) oxygen is 

replaced by sulfur. These analogs are generally antagonistic or partially agonistic 

[69]. The use of synthetic cAMP analogs, targeted to specific proteins, are used as 

standard tools in current signal transduction research to study cell responses as well 

as mapping these responses to specific signaling pathways. An advantage of cAMP 

analogs is that they act within minutes, rather than hours or days, and can be easily 
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removed by washing the cells when applied in a cell culture system. In addition, the 

analog approach does not depend on artificially over expressed gene products, and 

can be used when transfection or microinjection is not applicable, e.g. in leukemia 

cells. 

1.5 Anthracyclines 

The idea of using chemotherapy as treatment for cancer dates back to the first world 

war, when mustard gas used in chemical warfare was discovered to be a potent 

suppressor of hematopoiesis [70]. Since then many new drugs have been developed, 

and today more than 100 cytostatic drugs are used either alone or in combination. 

These drugs vary widely in their chemical composition, physiological properties, 

delivery, specificity and side effects. However, a common feature is their ability to 

affect cell division or DNA synthesis in fast-dividing cells. Anthracyclines are 

cytotoxic antibiotics and are among the most effective antitumor drugs ever 

developed, widely used in the treatment of hematological disorders as well as solid 

tumors. The two first anthracyclines, Daunorubicin (DNR) and Doxorubicin (DOX) 

were isolated in the 1960s from the actinobacteria Streptomyces peucetius [71, 72]. 

The anthracyclines consists of a tetracyclic ring structure connected to a sugar group. 

Although very similar in chemical structure, their physiological properties and 

clinical application may be diverse (Fig. 1.5). 

 

Figure 1.5 The molecular structures of daunorubicin and three similar anthracycline drugs 
(doxorubicin, epirubicin, idarubicin). 
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1.5.1 The anti-tumor mechanism of anthracyclines  

After entering the cell through passive diffusion [73], anthracyclines bind the 

proteasome and the complex translocates into the nucleus of neoplastic and 

proliferating cells [74]. With higher affinity for the DNA molecule, anthracyclines 

intercalates between base pairs and thus  inhibits macromolecular synthesis, which 

was the first explanation for the antitumor effect of anthracyclines  [75]. Also, 

covalent modifications have been observed both in vitro and in vivo where the iron-

complex of the drug participates to produce a covalent attachment to the G-bases of 

the DNA. This creates a interstrand cross linker [76], and may enhance chromatin 

aggregation. A more recently discovered anthracycline target is the chromosomal 

protein Topoisomerase II [77]. Being “Topoisomerase poisoners”, anthracyclines 

stabilize an intermediate complex where the strands are cut and covalently linked to 

the enzyme. This hinders the relaxation of supercoiled DNA and block subsequent 

replication and transcription [78]. The final consequence is growth arrest in G1/G2 

followed by programmed cell death  [79]. Although numerous studies demonstrate 

anthracycline induced production of reactive oxygen species, evidence indicate that 

oxidative stress is unlikely to explain the anti-tumor effect [80, 81], but are of greater 

importance when describing the cardiotoxic side effects mediated by anthracyclines 

[82-87]. 

1.6 Reactive oxygen species (ROS) 

Free radicals are characterized by the presence of one or more unpaired electrons, and 

thus are extremely reactive compared to their electron paired counterparts. There are 

several different radicals, but those derived from oxygen are of most concern in 

biological systems, and are collectively known as reactive oxygen species (ROS). 

ROS are produced as necessary intermediates in a variety of normal biochemical 

reactions were they act as intracellular signaling molecules [88]. Under physiologic 

conditions, the level of ROS is kept low and in balance by biochemical antioxidant 
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systems, when this critical balance is disrupted, oxidative stress occurs as a 

consequence of excess ROS. The mitochondrial respiratory chain is a major source of 

ROS, with 1-2% of the consumed oxygen  being converted to superoxide [89], and 

even increase during hypoxia [90]. A common type of ROS is the superoxide radical, 

which is efficiently converted into hydrogen peroxide (H2O2) by superoxide 

dismutase (SOD). H2O2 may be converted into water by the enzymes catalase or 

glutathione peroxidase, or produce the highly reactive hydroxyl radical (OH˙) via the 

Fe2+-catalyzed Fenton reaction (for review see [91]). Unlike superoxide and hydrogen 

peroxide, hydroxyl radicals cannot be eliminated by enzymes. Therefore, hydroxyl 

radicals are highly toxic compounds, reacting with any substance in its vicinity such 

as lipids, nucleic acids and proteins [92]. Whenever free radicals are generated in 

living cells, the cellular response depends upon the cell type, in addition to 

intracellular localization, amplitude, life span and the type of reactive species [93]. 

1.7 Cardiotoxic side effects of anthracyclines 

As mentioned previously, anthracyclines are among the most effective drugs used in 

oncological practice. Unfortunately, their clinical use is hampered by side effects in 

healthy tissue, most notably in the form of chronic cardiomyopathy and congestive 

heart failure (CHF) [81]. The risk of toxic cardiomyopathy is restricting the 

cumulative dose of these drugs, and therefore may reduce their therapeutic potential. 

Anthracycline induced cardiotoxicity is divided into subcategories depending on the 

time of manifestation. Acute or subacute cardiotoxicity are rare and occur during, 

immediately after or within a week of drug administration. The injuries may be 

transient electrophysiological abnormalities, pericarditis-myocarditis syndrome or 

acute left ventricular failure [94-97]. Early chronic cardiotoxicity is more common 

and usually presents within a year. It usually presents as dilated cardiomyopathy in 

adults and restricted cardiomyopathy in pediatric patients [98-100]. Delayed 

cardiotoxicity was described in the early 1990s among survivors of childhood cancer 

[101, 102]. These cancer survivors may have normal cardiac function for longer 
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periods, but experience ventricular dysfunction [102-104], heart failure and 

arrhythmias [101, 102, 105] years to decades after completion of chemotherapy.  

1.7.1 The cardiotoxic mechanism 

It is of general agreement that the mechanism of anthracycline induced cardiotoxicity 

is different from those mediating their antitumor effect. This is a very important 

concept enabling strategies to prevent cardiotoxicity without diminishing the 

antitumor effect. As with the antitumor effect of anthracyclines, the cardiotoxicity of 

these drugs have been the subject of considerable controversy and numerous 

pathways have been proposed and studied. However, intramyocardial production of 

reactive oxygen species (ROS) is generally accepted as a strong candidate. This was 

indeed documented during the mid-70s with in vitro studies showing ROS production 

from both doxorubicine (DOX) and daunorubicine (DNR) [106, 107]. Concurrently, 

Myers et al. showed amelioration of anthracycline induced cardiotoxicity by Vitamin 

E (alpha- tocopherol) without interfering with its effectiveness as an anti-tumor agent 

[82]. This enforced oxidative stress as the new theory explaining anthracycline 

induced cardiotoxicity, and was subsequently strengthened by the cardioprotective 

effect of the iron-chelator dextrazoxane [83], as well as several studies with 

transgenic animals overexpressing physiological antioxidants [84-87]. The chemical 

structure of anthracyclines is the basis for its ability to induce ROS formation, with 

the quinone moiety notorious for undergoing redox cycling. As seen from figure 1.6,  

the quinone form of anthracyclines is reduced to the unstable semiquinone form by 

P450 reductase, particularly in myocardial cells with high levels of  flavin reductases 

[108]. This semiquinone is rapidly oxidized back to its original form, simultaneously 

creating superoxide anions. The latter can dismutate to form hydrogen peroxide 

(H2O2) and then hydroxyl radical, or it can react with nitric oxide to form 

peroxynitrite (ONOO−). The notorious consequence of this cascade includes 

peroxidation of lipids and oxidative damage to proteins and DNA [109]. One can ask 

the question why the heart as an organ would be so vulnerable to free radicals, and 

the answer may be attributed to its highly oxidative metabolism and low amount of 

antioxidant defense [110]. In addition, since anthracyclines selectively down-regulate 
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glutathione peroxidase [110], cardiomyocytes encounter high levels of hydrogen 

peroxide. Cardiomyocytes are rich in mitochondria, giving rise to 50% of the total 

cell mass which makes the them both a source and a target of ROS [109].  Finally, 

anthracyclines seem to be more retained within cardiomyocytes than other cell types 

[111], maybe due to its high affinity for cardiolipin, a phospholipid mainly present in 

the mitochondrial membranes of the heart [112].

 

 

Figure 1.6 The chemical structure of doxorubicin is the basis for its ability to induce the formation of 
ROS and is similar for daunorubicine, the anthracycline used in this thesis. Doxorubicin (and 
daunorubicine) consists of a tetracyclic ring containing adjacent quinone-hydroquinone groups in 
rings C–B, coupled with the sugar daunosamine attached by a glycosidic linkage to the ring A. One-
electron reduction of the quinone moiety results in the formation of a semiquinone radical that 
creates a superoxide anion when regenerated back to its the parent quinone. This initiates a reaction 
cascade with the formation of other reactive oxygen and nitrogen species (ROS, RNS) (figure from 
[109]). 

 

1.7.2 Strategies to prevent cardiotoxicity 

Since the manifestation of the cardiotoxic side effects is highly correlated to the total 

(cumulative) dose of the anthracycline given, the rationale was first and foremost to 

limit the total administration dose of the anthracyclines. Today there are maximum 
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recommended cumulative doses for all anthracyclines, such as 450 and 900 mg/m2 

for doxorubicin (DOX) and daunorubicin (DNR), respectively [113]. However, there 

is always an associated cardiotoxic risk when using anthracyclines. Some patients 

tolerate cumulative doses twice as large as recommended, while others experience 

cardiac injury at standard doses [114]. Another strategy to prevent anthracycline 

induced cardiotoxicity is altering the administration schedule, since cardiotoxicity is 

related to peak anthracycline doses. Several reports suggests that continuous infusion, 

compared to a single bolus injection of the drug, reduce the risk of cardiotoxicity 

[115, 116], while others found no relationship between administration schedule and 

cardiotoxicity [117]. Anthracycline analogues have been synthesized and tested for 

their ability to replace the conventional DOX and DNR, but none of them has shown 

convincing results in being more cytotoxic and less cardiotoxic [118].  However, 

some of these analogues, such as epirubicin and idarubicin, have shown decreased 

cardiotoxicity in preclinical and clinical studies [119, 120]. The introduction of 

liposomal anthracyclines changed tissue distribution away from sensitive organs such 

as the heart, as they cannot pass areas with tight capillary junctions. In addition, the 

drug release is slower and therefore high peak concentrations can be avoided [121]. 

Another possibility is combining anthracycline treatment with cardioprotectants. 

Several agents with antioxidant properties  such as Probucol [122], Amifostine [123], 

Carvedilol [124] and Sildenafil [125] have shown promising cardioprotective effects 

in vitro and in vivo. However, the iron-chelator Dexrazoxane is the only agent with 

proven cardioprotective effect, defined by reduced signs of congestive heart failure 

(CHF) in cancer patients receiving chemotherapy [126]. Finally, prevention or 

attenuation of anthracycline mediated cardiotoxicity have been demonstrated in 

animal studies by increasing endogenous antioxidants or introducing exogenous 

antioxidants. Although Vitamin E, Vitamin A and carotenoids individually 

demonstrate cardioprotective effects [82, 127-130], Stahl and Sies stated that a 

cocktail of antioxidants in naturally occurring compounds have far more profound 

effects due to synergistic actions of the individual compounds [131]. In Paper II we 

investigated the cardioprotective effect of dietary supplementation with the 

antioxidant-rich red palm oil.  
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1.8 Red Palm Oil 

Red Palm Oil (RPO) comes from the fruit of the oil palm (Elasis guineensis) and has 

been used as a nutritional source as well as medicine for more than 5000 years. 

Throughout history, RPO has been the primary source of dietary fat, and until modern 

medicine, also the choice of remedy for almost every illness in Africa and south-east 

Asia. It is a balanced oil with 50% saturated fatty acids in addition to 40% and 10% 

mono- and polyunsaturated fatty acids, respectively. More importantly, it contains a 

spectrum of vitamins and antioxidants such as carotenoids (vitamin A), tocopherols 

and tocotrienols (Vitamin E) [132]. RPO can be described as “a powerhouse of 

nutrition”, and is of high value in the treatment and prevention of malnutrition and 

vitamin deficiency. Being a good mix of fat and vitamins, RPO provides children 

with the daily recommended amount of Vitamin A from just one teaspoon. Further, 

RPO is regarded as a potent anti-cancer food due to its high content of antioxidants, 

especially tocotrienols. Tocotrienols are one of the most potent anticancer agents of 

all natural compounds [133] and has shown anti-proliferative and pro-apoptotic effect 

for skin, stomach, prostate, breast and other forms of cancer (for a review see [134]). 

During the past two decades, the effect of RPO on the cardiovascular system has been 

intensely investigated. Surprisingly, RPO is cardioprotective despite being the source 

of large amounts of saturated fat. Dietary RPO have shown to reverse the process of 

atherosclerosis [135], improve cholesterol levels [136, 137] and protects against 

ischemia induced stress [138]. In addition, it is an undisputed fact that countries with 

particularly high consumption of red palm oil, such as Malaysia, Indonesia and Papa 

New Guinea, are among the countries with the lowest incidents of heart disease.  

1.9 Myocardial ischemia and reperfusion 

Myocardial ischemia is a state where a coronary occlusion hinders the normal arterial 

blood supply to parts of the myocardium, which impairs normal oxidative metabolism 

[139]. The crucial initiating event leading to an occlusion is endothelial dysfunction. 

Each of the primary risk factors for coronary artery disease (hypercholesterolemia, 

hypertension and free radicals due to smoking) leads to endothelial injury, and hence, 
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entry of lipoprotein molecules and subsequent invasion of macromolecules into the 

intima of the artery wall [140]. The eventual result is formation of an atherosclerotic 

plaque, ready to rupture and initiate the formation of a potentially fatal thrombus. 

Following a cascade of ischemic events the final consequence is irreversible tissue 

damage as a result of apoptosis and necrosis [139]. 

1.9.1 The underlying mechanism of acute myocardial ischemia 

The heart is fully dependent on aerobic metabolism to make energy in the form of 

adenosine triphosphate (ATP) by mitochondrial oxidative phosphorylation. During 

ischemia, the myocardium switches to anaerobic metabolism via glycolysis in order 

to produce ATP. However, glycolytic production of ATP is not sufficient to cover the 

energy demand of the ischemic myocardium and to sustain the hearts contractile 

function [141, 142]. The two main consequences of ischemia are lack of adequate 

amounts of oxygen and nutrients, and reduced washout of metabolites such as lactate, 

protons, NADH2 and CO2 [139] (Fig. 1.7 A). The increase in anaerobic glycolysis 

leads to cellular acidosis, and together with accumulation of other metabolic waste 

products, this will inhibit  glycolysis and further reduce the levels of ATP [143]. The 

reduced energy level will subsequently inhibit ATP-powered ion pumps and lead to 

intracellular ionic alterations [144]. Excess internal sodium increase the osmotic 

pressure and cause cell swelling and rupture [145], while  calcium overload will 

induce electrical and mechanical abnormalities in cardiac tissue [146]. 

Simultaneously, accumulation of free fatty acid metabolites, together with acidosis 

induced lysosomal activation, may cause membrane injury [144]. The presence of 

residual oxygen during ischemia will produce and accumulate reactive oxygen 

species (ROS), which in turn may damage the cell membrane and further depolarize 

the mitochondria [147]. Taken together, the final events inducing myocardial 

infarction is mitochondrial damage due to calcium overload, general membrane 

damage and proteolysis, all leading to myocardial cell death via apoptosis, necrosis 

(and autophagy).  
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Figure 1.7 The main events of ischemia (A) and reperfusion (B) leading to myocardial infarct: (A) 
Reduced oxygen supply during ischemia will depress mitochondrial metabolism and results in 
reduced production of ATP while incomplete residual mitochondrial respiration will produces 
reactive oxygen species (ROS). With reduced respiration comes loss off membrane potential leading 
to reversal of the ATP synthase and hence hydrolysis of ATP into ADP and inorganic phosphate. 
Reduced wash out will accumulation lactate, protons and CO2 and lead to cellular acidosis and 
proteolysis. Depletion of ATP inhibit ATP dependent ion pumps resulting in increased cytosolic 
[Ca2+] due to Na+/H+ exchange and reversal of Na+/Ca2+ exchanger. The ischemic cascade culminates 
in cell death either by necrosis or apoptosis. (B) Reperfusion gives a sudden oxygen burst, which 
increases ROS production. Removal of extracellular H+ induce Na+/H+ exchange and further increase 
cytosolic [Ca2+] due to Na+/Ca2+ exchange. Subsequent mitochondrial [Ca2+] overload will together 
with ATP metabolites and increased ROS trigger opening of the mitochondrial permeability 
transition pore (mPTP).  mPTP opening will depolarize mitochondria, and hence,  induce additional 
ROS production  and accelerate mPTP opening,  finally culminating in cell death (figure modified 
from [148] ). 
 
 

1.9.2 Lethal reperfusion induced injury 

Reperfusion is the restoration of blood flow to the ischemic area, and is a prerequisite 

to salvage affected myocardial tissue after an ischemic insult. Clinically, reperfusion 

is achieved by thrombolytic treatment, percutaneous coronary intervention (PCI) or 
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coronary artery bypass surgery. Paradoxically, reperfusion per se may contribute to 

the total infarcted area [141], a term described as lethal reperfusion injury, and is 

defined as injury to the tissue arising when the blood supply returns to the 

myocardium after a period of ischemia [149]. Other myocardial reperfusion-induced 

injuries are; 1) temporal depression of function known as myocardial stunning, 2) 

reduced perfusion due to microvascular damage and 3) reperfusion arrhythmias 

[150]. The existence of lethal reperfusion injury was for a long time highly debated, 

but today its existence is accepted as a contributor to the final infarct size after a 

prolonged period of ischemia followed by reperfusion. Proof of its existence, is the 

presence of viable cells after an ischemic event, which lose viability during the first 

hours of reperfusion [151]. In addition, administration of pharmacological agents at 

the immediate onset of reperfusion reduces the extent of cell death after an ischemic 

episode [18, 152-154]. The main event linking reperfusion injury to cell death is the 

opening of the mitochondrial permeability transition pore (mPTP) (Fig. 1.7 B). This 

is a Ca2+ and ROS dependent process [155], that is inhibited by the acidic 

environment during ischemia [156, 157]. Opening of the mPTP leads to influx of 

solutes and water, followed by swelling of the mitochondrial matrix. Subsequently, 

the outer mitochondrial membrane burst, and various pro-apoptotic substances leak 

into the cytosol and initiates apoptosis [158]. Since the discovery of the mPTP, 

research has focused on inhibition of the pore at reperfusion, a process shown to be 

cardioprotective by reducing the extent of lethal reperfusion injury [158-160]. 

1.10 Modulation of ischemia-reperfusion induced injury 

The achievements in cardiology regarding early reperfusion strategies have greatly 

improved the survival of patients with acute coronary syndromes. However, a 

limitation in the current clinical reperfusion strategies, such as thrombolysis, 

percutaneous coronary intervention (PCI) or coronary artery bypass surgery, is that 

they do not reduce the cellular consequences of lethal reperfusion induced injury. 

During the last decade, our understanding of the mechanisms underlying  reperfusion 

induced injury has been substantially enhanced, and animal studies have revealed that 
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lethal reperfusion injury contributes to nearly half of the total infarct size (Fig. 1.8) 

[161]. Different ways to limit or delay cardiomyocyte cell death have emerged in the 

laboratory and are evaluated as clinical candidates to further improve the outcome in 

patients suffering from acute myocardial ischemia (AMI). Since mPTP opening 

seems to be the “point of no return” in lethal reperfusion injury, a substantial amount 

of  research has focused on manipulating the intracellular milieu away from what 

facilitates mPTP opening during early reperfusion, such as maintaining acidosis 

[162], reducing Ca2+ overload [163] and scavenging ROS [164]. Other 

cardioprotective strategies include pharmacologic interventions and sub lethal 

ischemic conditioning. Many of these cardioprotective interventions have common 

features on their way to inhibit mPTP opening, involving the reperfusion injury 

salvage kinase (RISK) pathway.  

 

 

 
 

Figure 1.8 The figure illustrates the necessity of reperfusion to salvage the myocardium and also the 
benefits of a therapeutic intervention to prevent lethal reperfusion injury. Nearly 50% of the total 
infarct size is due to lethal reperfusion injury presenting it as an important target for additional 
cardioprotection (figure from [161]). 
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1.10.1 Reperfusion Injury Salvage Kinase Pathway (RISK) 

The RISK pathway is a “mind-made” and currently expanding signaling cascade, 

describing the molecular events mediating cardioprotection at the time of reperfusion. 

It was named by Hausenloy and Yellon in 2004, and involves activation of particular 

anti-apoptotic protein kinases such as PI3K-Akt and MEK1/2-Erk1/2 [153]. Later, 

many other kinases have been included in the RISK pathway such as protein kinase 

A, C and G (PKA, PKC, PKG) as well as ribosomal protein s6 kinase (p70s6k) and 

eNOS [165] (Fig. 1.9). A variety of agents have the ability to convey cardioprotection 

by activating the RISK signaling pathway (for review see [165]). Different RISK 

agonists mediate a signaling cascade from the cell membrane to the mitochondria, 

converging on the glycogen synthase kinase 3β (GSK3β) [166]. Inhibition of the 

mitochondrial permeability transition pore (mPTP) represents the end-effector which 

may involve activation of the mitochondrial ATP-sensitive potassium channel 

(mitoKATP). A more recently described signaling pathway is the survivor activating 

factor enhancement (SAFE) pathway introduced by Lecour in 2009 [167]. This 

signaling cascade involves the innate immune system and activation of the 

JAK/STAT-3 dependent signaling pathway by cytokines such as IL-6 and TNFα. 
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Figure 1.9 A simplified overview of the components linking IPC and IPost to cardioprotection. 
Autacoid activation of G-protein coupled receptors (GPCR) activates the reperfusion injury salvage 
kinase (RISK) pathway either via PI3K/Akt or MEK/ERK signaling cascade. The different signaling 
pathways converge on the mitochondria, with inhibition of the mitochondrial permeability transition 
pore (mPTP). Inhibition of mPTP may be direct, or via activation of the mitochondrial ATP-sensitive 
potassium (mitoKATP) and increased ROS production (figure from [168] ). 

 

1.11 Cardioprotective therapies 

1.11.1 Ischemic conditioning 

Ischemic conditioning (IC) entails cycles of alternate sub lethal ischemia and 

reperfusion, applied to the heart either before (preconditioning) [169] or after 

(postconditioning) [170] a lethal period of myocardial ischemia (index ischemia). 
Since its discovery in 1986 [169], the cardioprotective effect of  Ischemic 

Preconditioning (IPC) has been demonstrated in all species tested, including humans, 
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as well as non-cardiac tissues such as brain, liver, gut, bladder and skin [171]. A 

limitation of IPC as a clinical intervention is the prerequisite to be administered prior 

to the index ischemia, making it relevant only in planned cardiac procedures such as 

coronary artery bypass graft surgery. On the other hand, Ischemic Postconditioning 

(IPost) is applied to the heart at reperfusion to modulate the outcome of acute 

myocardial infarct, and therefore represents a more clinical relevant procedure. 

During both the pre- and post-conditioning phase several autacoids such as 

adenosine, bradykinin, opioids, norephinerine and cytokines are released and initiate 

a variety of signaling pathways within the same or nearby cells [172]. Regarding IPC, 

it is self-evident that signaling during the preconditioning phase is necessary to 

transduce signals from the cell surface to intracellular targets for condition initiated 

cardioprotection [173]. Intriguingly, the signaling pathways recruited at the first few 

minutes of reperfusion are equally important for IPC mediated cardioprotection 

[174]. In fact, the signaling pathways recruited at the onset of reperfusion during both 

IPC and IPost are highly similar, involving  cell surface receptors, protein kinases, 

redox signaling and finally inhibition of mPTP (for review see [168]) (Fig. 1.9). 

1.11.2 Pharmacologic therapy (insulin, GSK3βi and CRF) 

The invasive nature of both IPC and IPost involves series of inflations and deflations 

of a PCI balloon at the occluded area in a infarct-related artery. This may destabilize, 

and hence, loosen parts of the atherosclerotic plaques/thrombus which may cause 

additional occlusion downstream. As an alternative, pharmacologic intervention using 

a variety of different agents, has shown to be cardioprotective in pre-clinical studies 

[165], with activation of similar signaling pathways as observed for IPC and IPost 

[173]. Pharmacologic therapy may therefore be suitable alternatives to the 

mechanical IPC and IPost interventions. In Paper III and IV we explore the 

cardioprotective effect of insulin, corticotropin releasing factor (CRF) and a direct 

GSK3β inhibitor. 
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Insulin reperfusion therapy 
Insulin is a peptide hormone produced in the pancreas and is central in the regulation 

of carbohydrate and fat metabolism in the body. The insulin receptor (INSR) is a 

heterotetrameric glycoprotein situated in the plasma membrane. The two extracellular 

-subunits make up the insulin binding domain, while the two intracellular -subunits 

constitute the receptor tyrosine kinase (RTK) domain. Upon insulin binding the INSR 

form a dimer and the RTK is auto-phosphorylated, causing substrate binding and 

subsequent activation of signaling pathways such as RISK [175]. Administration of 

the “metabolic cocktail” compromising glucose, insulin and potassium (GIK) reduced 

mortality in patients with myocardial infarction undergoing reperfusion [176]. In 

2001, Jonassen et al. demonstrated in the ex vivo rat heart, that insulin was the 

important cardioprotective component of the cocktail [177]. When present from the 

onset of reperfusion, insulin mediate cardioprotection via the PI3K/Akt/p70s6k 

pathway [152]. Later, insulin has shown to inhibit mPTP opening [178] via NO 

signaling or GSK3β inhibition [159]. In the Paper IV we explore the possible 

additive effect of combining insulin treatment with other cardioprotective strategies.    

Inhibition of Glycogen synthase kinase 3 (GSK3β) 
Glycogen synthase kinase 3 (GSK3) is an evolutionary conserved protein kinase with 

homologs in every eukaryotic specie examined. There are two isoforms of the 

enzyme, namely GSK3α and GSK3β, both exerting catalytic activity towards a 

number of intracellular substrates [179]. The two isoforms have 98% identity in their 

central catalytic domain [180], however, the β isoform has reported to have a 

generally higher catalytic activity than the α isoform [179]. GSK3 was first identified 

as a regulator of glycogen metabolism where it phosphorylates and thereby inhibits 

glycogen synthase, the rate-limiting enzyme in glycogen metabolism [181]. Although 

the original name has stuck, the scope of GSK3 regulation extends way beyond 

intermediary metabolism, as the enzyme has emerged to become an important 

component of fundamental processes including cell fate determination, metabolism, 

transcriptional control, and, in mammals, oncogenesis and neurological diseases 

[182]. Unlike other kinases, GSK3 is constitutively active in resting cells, while 
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becoming inactivated in response to cellular stimuli [183]. Since GSK3β negatively 

regulates downstream signaling mechanisms, phosphorylation, and hence, 

inactivation of GSK3β stimulates many cellular functions by removing the negative 

constraint imposed by GSK3β. It is now 20 years since insulin was shown to be 

involved in GSK3 inhibition [184]. Today we know that inhibition of GSK3 requires 

phosphorylation of an N-terminal serine residue, and that protein kinase B (PKB/Akt) 

is responsible for insulin mediated inhibition of GSK3. The inhibitory N-terminal 

serine can also be targeted by other kinases such as p70 ribosomal S6 kinase-1 

(p70S6K1) and most of the downstream kinases of mitogen-activated protein kinase 

(MAPK) (Fig. 1.10). In addition, inhibitory GSK3 phosphorylation has also been 

demonstrated with cAMP elevating agents or cAMP analogs [185] (reviewed in 

[186]). In the Paper IV, we evaluate the combination of GSK3β inhibition with other 

cardioprotective strategies. 

 

 

 

 

Figure 1.10 Many upstream signaling kinases such as mTOR/p70s6K, protein kinase C 
(PKC), phosphatidylinositol 3- kinase (PI3K)/Akt and MAPK/MAPKAP-K1 are reported 
as inhibitors of GSK3β through phosphorylation at Ser-9. In addition, the commercially 
available GSK3β inhibitor (SB415286) used in Paper IV is depicted. 
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Cardioprotective effect of Corticotropin releasing factor (CRF) 

Corticotropin releasing factor (CRF) is a small hormone and neurotransmitter 

produced in the hypothalamus, where it plays a central role in behavioral and 

autonomic responses to stress, by stimulating the release of adrenocorticotropic 

hormone (ACTH) and b-endorphin from the pituitary [187]. The CRF family of 

peptides mediate their response via CRF receptors type -1 (CRFR1) and type- 2 

(CRFR2). Human and rodents express both receptors, however, with more splice 

variants of CRFR2 such as α, β and γ in humans and α and β in rodents [188]. The 

CRFR2 are situated in the peripheral vascular system with distinct cardiovascular 

responses, such as regulating vagal and sympathetic activity [189, 190]. In addition, 

CRF have shown to have direct cardiac effects in mice [191] , rats [192] and guinea 

pigs [193], probable via the highly expressed CRFR2. Previous results show that CRF 

are cardioprotective against a simulated ischemic event in rat neonatal 

cardiomyocytes [194], and the cardioprotective effect of preconditioned media was 

abolished in the presence of a CRF antagonist, indicating that CRF is released into 

the media during mild stress and act on other cells to stimulate protection [194]. In 

Paper III of this thesis we showed that the cardioprotective effect of CRF was 

mediated via CRFR2 both in cardiomyocytes as well as ex vivo rat heart, a 

mechanism that was dependent on PKA and PKC mediated signaling [195]. 
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2. SUMMARY OF RESULTS 

2.1 Paper I  

Cyclic AMP can promote APL progression and protect myeloid leukemia 
cells against anthracycline-induced apoptosis 
 

Recently, cAMP has been advocated to improve acute promyelocytic leukemia (APL) 

therapy since it enhance all-trans retinoic acid (ATRA) induced differentiation of 

APL cells [53]. This study was aimed to evaluate the influence of cAMP on 

anthracycline induced apoptosis of APL cells, since anthracyclines, such as 

daunorubicin (DNR), are a component of classic APL therapy. To our surprise, we 

found that elevated levels of cAMP antagonized DNR induced death of APL patient 

blasts, ATRA sensitive and resistant NB4 cells, most acute myeloid leukemia (AML) 

patient blasts, and some AML cell lines. Using receptor specific cAMP analogs we 

could determine the mechanism to be dependent on cytoplasmic PKA-I while 

independent of perinuclear PKA-II, an observation that was verified using 

NB4RII knockdown cells.  Pro-apoptotic Bad was strongly phosphorylated at PKA 

site Ser118 in cAMP-stimulated NB4 cells, whether exposed to DNR or not, which 

implies that cAMP-stimulation can release Bcl-2/-Xl bound to Bad and thereby 

protect against DNR. Another PKA substrate, the cAMP-responsive element binding 

protein (CREB), associated with therapy resistance in AML, was highly 

phosphorylated at Ser133 by elevated cAMP (for a summarized overview see Fig. 1). 

The protective effect of cAMP was also demonstrated in a hypoxic mimetic 

environment of leukemic bone marrow, and finally in immunodeficient NSG mice 

transplanted with NB4 cells. Animals given clinically relevant cAMP agonists had 

shorter life span and more rapid terminal weight loss than their corresponding 

counterparts. We conclude that cAMP agonists can accelerate the APL progression 

both in the absence and presence of DNR, and therefore suggests caution in using 

cAMP elevating drugs in combination with anthracyclines in APL patients. 
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Figure 2.1. Overview of the pathway(s) involved in cAMP promoted protection against daunorubicin 
(DNR) induced apoptosis. (1) Increased levels of cAMP were achieved by prostaglandin E2 induced 
activation of adenylyl cyclase together with inhibitors of cAMP phosphodiesterases 
(IBMX/Aminophylline), or by introducing synthetic cAMP analogs. (2) Two molecules of cAMP 
binds to the A and B site of each R subunit, inducing a conformational change in the tetramer, 
leading to the dissociation of the two C-subunits which can phosphorylate a variety of both cytosolic 
and nuclear proteins.  In unstimulated cells, pro-apoptotic Bad may complex with Bcl-2/Bcl-Xl and 
thereby block Bcl2 pro-survival functions. (3a) cAMP stimulation increased S118 phosphorylation of 
Bad which liberates Bcl-2/Bcl-Xl sequestered by Bad, and may compensate for DNR mediated down 
regulation of anti-apoptotic Mcl-1 in these cells. Since cAMP also showed Bad-independent 
protective effect, a search for additional survival-associated potential PKA targets revealed (3b) 
increased phosphorylation of the PKA specific Ser133 of CREB in NB4 cells. The broadly acting 
cyclin-dependent protein kinase (CDK) 7/9 inhibitor roscovitine (RCV) attenuated the protective 
effect of cAMP stimulators against DNR without affecting the phosphorylation of Bad. This 
supportes the existence of protective actions of cAMP involving CDK-dependent events, possibly 
mediated via PKA activation of CREB induced transcription. 



 45 

 

2.2 Paper II 

Dietary red palm oil protects the heart against the cytotoxic effects of 
anthracycline  
 

Anthracycline induced cardiotoxicity is directly correlated to the cumulative dose and 

may hamper the therapeutic effect of anthracyclines. Therefore, a current working 

hypothesis is that high enough anthracycline doses can be administered in 

combination with cardioprotectors, such as red palm oil (RPO). Male Wistar rats fed 

a standard rat chow (SRC) diet (control) or SRC supplemented with RPO 

(200ul/day), were treated with 2mg/kg-1 daunorubicine (DNR) (or saline as control) 

on alternated days for a 12 period. After completed treatment protocol, ex vivo heart 

function was evaluated using the Working Heart perfusion apparatus. At the end of 

perfusion protocol, hearts were freeze clamped and the tissue analyzed for mRNA or 

protein changes (RT-PCR and WB) of antioxidant systems and stress signaling 

proteins. We found that RPO diet supplementation improved cardiac function after 

treatment with DNR, with increased aortic output (25%) and coronary flow (26%). 

Also, RPO diet supplementation counteracts DNR mediated down regulation of 

superoxide dismutase 1 (SOD1) and nitric oxide synthase 1 (NOS1) mRNA. For 

SOD1 this was also mirrored at protein level. Finally, RPO prevented DNR induced 

activation of the stress related kinases p38 and JNK, and up regulated the pro-survival 

kinase ERK. Based on our results, circumstantial evidence indicate that RPO 

mediated antioxidant therapy may reduce the harmful consequence of anthracycline 

induced cardiotoxicity.  
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2.3 Paper III  

Activation of corticotropin releasing factor receptor type 2 in the heart by 
corticotropin releasing factor offers cytoprotection against ischemic 
injury via PKA and PKC dependent signaling.  
 

There is currently no clinical therapy for lethal reperfusion induced injury, which 

makes it an important target for residual cardioprotection. This study aimed to verify 

the possible cardioprotective effect of acute administration of Corticotropin releasing 

factor (CRF) in neonatal cardiac cells and ex vivo rat hearts, and further delineate the 

signaling pathway involved. CRF significantly reduced infarct size to 35.3 ± 3.1% 

from 52.1 ± 3.1% in control hearts.  In vitro, CRF was cytoprotective when 

administered prior to a lethal simulated ischemic event, reducing apoptotic and 

necrotic cell death by 18%. CRF was not protective when administered at the point of 

hypoxic reoxygenation or ischemic reperfusion. CRF induced cardioprotection was 

mediated via CRF receptor type 2 (CRFR2) since cardioprotection was abrogated in 

the presence of the CRFR2 inhibitor astressin-2B. The ERK1/2 inhibitor PD98059 

failed to inhibit cardioprotection in the ex vivo heart while inhibitors of both protein 

kinase A and protein kinase C abrogated CRF-mediated protection both ex vivo and 

in vitro. To summarize, acute pre-treatment with CRF peptide protects the heart from 

a lethal ischemic insult, reducing cell death in vitro and infarct size ex vivo. 

Consistent with previous studies using urocortins [196, 197], CRF mediates its 

protective effect against ischemic stress through CRFR2 activation. Finally, we 

suggest the involvement of both PKC and PKA while excluding ERK1/2 dependent 

signaling. 
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2.4 Paper IV 

Abrogated Cardioprotection and Blunted Akt Phosphorylation when 
Combining Ischemic Postconditioning with Pharmacological 
Reperfusion Therapy 
 

Several pre-clinical studies suggest strategies to reduce reperfusion induced cell 

death, and this study aimed to investigate whether the combination of 

cardioprotective treatments could afford additional effect when compared to the 

treatments given alone. We used the ex vivo Langendorff perfused rat heart model to 

modulate cell injury and evaluate infarct size induced by ischemia-reperfusion. 

Insulin and a direct GSK3β-inhibitor (GSK3βi) administered at immediate 

reperfusion reduced infarct size by approximately 50%. Combination of the two 

treatments did not have additive cardioprotective effect compared to the treatments 

given alone. Further, the cardioprotective effect of insulin and/or GSK3βi was lost in 

the presence of the ROS-scavenger MPG, indicating a ROS dependent signaling 

pathway for cardioprotection. Our data also suggests that cardioprotection induced by 

insulin administration at reperfusion, is mediated via mitoKATP and PKC dependent 

signaling. Surprisingly, the combination of ischemic postconditioning (IPost) with 

either of the two pharmacologic reperfusion therapies (Insulin or GSK3βi), abrogated 

cardioprotection imposed by the therapies given alone. Loss of cardioprotection was 

unaffected by MPG and was associated with blunted levels of phosphorylated Akt.  
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3.  AIMS OF THE STUDY 

 

The overall aim of this thesis was to participate in the search for ways to directly or 

indirectly minimize anthracycline mediated cardiotoxicity and also to reduce the 

degree of ischemia-reperfusion induced injury.  

 

Paper I:        Evaluate the influence of cAMP on anthracycline induced apoptosis of 

acute promyelocytic leukemia (APL) cells, since cAMP has been 

advocated as adjuvant to classical APL therapy. 

 

Paper II:      Study the possible cardioprotective effect of Red Palm Oil against 

anthracycline mediated cardiotoxicity. 

 

Paper III:    Delineate the cardioprotective effect of corticotropin releasing factor 

(CRF) against ischemia-reperfusion induced injury. 

 

Paper IV:     Investigate the combination of known protective therapies against 

ischemia-reperfusion induced injury. 
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4. METHODOLOGICAL CONSIDERATIONS 

This chapter will describe the main methods used in the thesis, with special emphasis 

on the favorable or unfavorable aspects for the given methods. For a detailed 

description of materials and methods the reader is referred to the articles.  

4.1 Cell culture experiments 

4.1.1 Immortalized cell lines, primary cells and patient material  

Immortalized cell lines is an invaluable resource as they are easy to handle, are a 

limitless self-replicating source and have relatively high degree of homogeneity. 

Several characterized acute myeloid leukemia (AML) cell lines are regarded as 

typical for different AML subtypes, and are often used as in vitro models for AML 

disease. The NB4 cell line used in Paper I was originally isolated from bone marrow 

of an acute promyelocytic leukemia (APL) patient in relapse [51], and is currently the 

only APL specific cell line available. The NB4 cells harbor the t(15;17) translocation 

and differentiates into granulocytes upon ATRA-treatment [51], and undergoes 

apoptosis in response to arsenic trioxide  (ATO) and anthracyclines [198, 199]. The 

NB4-LR1 and NB4-LR2 sublines used in Paper I, represents the two retinoic acid 

“resistant” cell lines, where LR1 but not LR2 has the ability to mature in the presence 

of cAMP. The letter “L” stands for Prof.Lanotte and represents the laboratory from 

which the NB4 subline has been isolated. The HL60 cell line was also isolated from a 

patient with APL, but is a less differentiated variant compared to NB4. It presents 

without the APL specific t(15;17) translocation, and is now recognized to be an AML 

cell line [200], but still has the APL phenotype in response to ATRA [201] . Mv4-11 

is an AML cell line that in contrast to NB4 and HL60 expresses wt p53, which have 

shown to be important for cAMP mediated cell survival [202]. Even though cell lines 

are important tools for biochemical research, one should never neglect the artificial 

aspect of cell lines represented by a homogenous group of immortalized cells. Since 

they can grow continuously in culture, they are prone to genotypic and phenotypic 

changes. Subcultures can arise with the most rapidly growing clones within the 
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culture being selected [203]. Primary cells can be more attractive since they are 

genetically stable and have characteristics very close to the tissue of origin [203]. In 

Paper III we isolated neonatal mouse cardiomyocytes, and within 2 days a confluent 

monolayer of spontaneously beating cardiomyocytes was formed and ready for 

experiment. Also, human primary cells/patient material can be used to determine 

accuracy of extrapolating human data from an animal model, as done in Paper I. 

Although there are advantages of using primary cell lines, their limitations are slow 

doubling time and restricted passages. The strength of a paper will increase when 

including more than one model. In Paper I we have studied several AML cell lines, 

included patient material from 10 AML/APL patients and also an in vivo mouse 

model. In Paper III we have performed experiments on primary mouse 

cardiomyocytes as well as whole heart preparation (Langendorff) from rat. 

4.1.2 Isolation of neonatal mouse cardiomyocytes and simulated 
ischemia 

To evaluate any anti-apoptotic action of corticotropin releasing factor (CRF) against 

ischemia-reperfusion induced injury, neonatal mouse cardiomyocytes was isolated 

and subjected to simulated ischemia. Isolated cardiomyocytes from heart tissue are, 

as expected, fully differentiated and morphologically similar to the cells of the donor 

organ, but presents without interstitial tissue and the presence of other cell types 

which may complicate the measurements in intact tissue. In addition, it enables the 

study of single cell populations subjected to identical defined conditions such as 

media constituents, humidity and partial pressure. The disadvantage of using primary 

cells is the risk of contamination and also the loss of their natural environment with 

regards to neurological input, nutrients and physical contact (cell-cell and cell-

matrix).  The cells may therefore change during isolation which may affect their 

reliability as a physiological cell model. With regards to simulated ischemia-

reoxygenation, control of incubation conditions is easy. However, compared to the 

intact organ, cell-culture presents without the interaction between cardiomyocytes, 

endothelium and the intracellular space.  
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4.1.3 Drug doses and evaluation of apoptosis 

For a cell-culture experiment to be clinically relevant, it is important utilize drug 

concentrations that are comparable to what patients experience during therapy. 

Minotti et al. reported that anthracyclines given in clinical relevant doses induce 

DNA breaks via inhibition of Topoisomerase II, while ROS induced breakage was 

only relevant as supra-clinical doses [81]. In addition, the anthracycline dose also 

influence apoptotic cell morphology, since the classical features of apoptosis such as 

membrane blebbing and chromatin condensation are absent at high doses, a 

phenomenon described as “frozen” cell death [204]. The peak plasma concentrations 

of daunorubicine (DNR) in patients is approximately 5 μM, but most often in the 

range of 1-2 μM [80]. In Paper I, we used both a high (5μM) and also lower doses 

(0.1μM and 0.5μM) of DNR, which are comparable to the measured levels in patient 

plasma. However, different cell lines show varying ability to accumulate drugs 

intracellularly [205], and therefore the intracellular drug concentrations can be 

difficult to predict. Idarubicin (IDA) is a more lipophilic drug compared to DNR, and 

accumulates more easily inside cells. It is considered 4-8 times more efficient in 

inducing apoptosis compared to doxorubicine (DOX) [206]. The IDA doses used in 

Paper I ranged between 0.01-0.5 μM. In vitro determination of cell viability (Paper 

I) was assessed by light microscopy to visualize membrane budding/blebbing, and 

differential interference contrast microscopy to visualize chromatin condensation in 

response to Hoechst staining. This is a well-established routine assay to evaluate 

apoptosis. Evaluation of apoptotic cell death in Paper III was assessed using a 

commercial single-stranded DNA (ssDNA) apoptosis ELISA (Enzyme-Linked 

ImmunoSorbent Assay detection) kit (Chemicon) according to the manufacturer's 

instructions 
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4.2 Animal work 

4.2.1 Animal strain and anastetichs 

In Paper I we established an in vivo leukemic model by transplanting male NOD-

scid IL2rγnull (NSG) mice with NB4 cells (acute promyelocytic leukemia (APL) 

cells). The NSG mouse is the best model to choose for cancer zenograft since it is 

the most immunodeficient mouse (lacking mature T cells and B cells, functional 

natural killer cells and are deficient in cytokine signaling) and therefore easily 

engraft human cells and tissues. In Paper II, III and IV hearts from male Wistar 

rats were used in the ex vivo isolated heart perfusions. Wistar rats are a frequently 

used and all-purpose animal model for biomedical research. In most published 

studies, including our own, we utilize young and healthy animals which may not be 

the best representation of the cancer patient (Paper II) or elderly CVD patient 

(Paper III and IV), which often presents with a complicated medical history and 

treatment regime. As an anesthetic agent we used sodium pentobarbital (i.p 

injection) commonly used for animal research, due to practicality, low cost and 

little to no influence on the study design. Although being a cardio depressant [207], 

it does not influence the final infarct size [208] as is documented for other volatile 

anesthetics such as isoflurane [209]. 

4.2.2 The isolated Langendorff and Working heart perfusion model 

The isolated Langendorff and Working Heart perfused preparations are ex vivo setups 

where the heart is excised from the animal and mounted by aorta to the perfusion 

apparatus. These highly reproducible preparations allow studies of cardio-specific 

effects without the confounding influence of the circulation or neurological factors. 

However, this also makes the model less clinical relevant than an in vivo preparation. 

While oxidation of fatty acids is the main energy source for the in vivo heart, glucose 

is usually the only substrate present in the perfusion fluid for the ex vivo preparation.  
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The Langendorff heart preparation 

In the Langendorff perfusion setup, first described by Oscar Langendorff in 1895 

[210], the heart is retrogradely perfused with oxygenated Krebs-Henseleit buffer 

(KHB) (37ºC) at a constant hydrostatic pressure (80mmHg) (or constant flow rate). In 

both settings the aortic valve is forced shut, directing the fluid into the coronary ostia, 

perfusing the entire ventricular mass of the heart and finally draining into the right 

atrium. This effluent can be collected and measured (coronary flow; CF). Due to lack 

of serum proteins and blood cells, the KHB have reduced oncotic pressure and 

oxygen-carrying capacity, which increase CF and the risk of edema in isolated hearts 

compared to the in vivo setting [211]. Due to the ex vivo nature of the setup, the heart 

function will deteriorate throughout the protocol at a rate of 5-10%/h depending on 

different factors such as the skills of the operator, specie, perfusion fluid and animal 

age [212]. A water-filled latex balloon connected to a pressure transducer is inserted 

into the left ventricle, via the left atrium, enabling functional data such as heart rate 

(HR), left ventricular developed pressure (LVDP) and contractility (dP/dT) to be 

recorded. Great care must be taken when inserting and securing the balloon to 

minimalize the amount of mechanical stress imposed on the heart. Finally, 

maintaining the heart at physiologic temperature is highly necessary as both hypo- 

and hyper-thermia can influence contractility, heart rate as well as the final infarct 

size [213]. Prior to the experiments, a set of inclusion parameters were defined and 

experiments were aborted if they failed to meet these criteria. Our inclusion criteria 

were as followed; at the end of stabilization - LVDP > 80 mmHg and CF; 8-16 

ml/min and at the end of reperfusion - LVDP > 30 mmHg or CF > 4 ml / min. 

The Working heart preparation 

Although the Langendorff perfused isolated heart is beating, it is considered as 

“nonworking” since no perfusate is ejected from the left ventricle. Some major 

modifications were made to the model, and the isolated working heart preparation 

was presented by Neely and Morgan in the 1960s [214]. It is a more complex 

preparation in which the perfusate is delivered to the left ventricle via the cannulated 
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left atrium and ejected in the normal direction via the left ventricle and out the 

cannulated aorta. This preparation is a left ventricular ejecting heart, thereby a heart 

performing work, giving the ability to measure pump function with different filling 

pressures and afterloads. The preload of the preparation is determined by the height 

of the atrial perfusion reservoir relative to the heart, but is usually set to 20 cm for rat 

heart preparations. The left ventricle then pumps the perfusate through the aorta 

against a hydrostatic pressure (afterload), which is determined by the height of the 

fluid column above the aortic cannula and is usually set to 60-100cm for a rat heart. 

In the ventricular ejection phase a portion of the perfusate enters the coronary ostia, 

and thereby perfuses the heart muscle. This coronary flow can be collected and 

measured as described for the Langendorff preparation.  

These two perfusion models (reterograde and working) are optimized for 

investigation of distinct end-points. While the Langendorff setup is a perfect model 

for determination of infarct size, the working heart perfusion is more suitable for 

evaluation of cardiac function [215].    

4.3 Examination of signaling pathways 

4.3.1 Western Blotting 

When doing Western Blot (WB) analysis, proteins are separated by size on a 

polyacrylamide gel and transferred onto a membrane. The primary antibody binds to 

the protein of interest or a posttranslational modification such as phosphorylation. 

The secondary antibody binds the primary antibody, and is conjugated to a reporter 

group which produces a detectible signal when the appropriate substrate is added. 

WB is regarded as a semi-quantitative analysis due to its indirect measurements as 

well as being a multi-step procedure, the latter increasing the possibility of variation. 

As a result, relative quantities of samples on the same blot can be compared. WB 

results are illustrated by presenting representative blots as done in Paper I that can be 

supplemented with the densitometrical readings of all blots as done in Paper II, III 

and IV. Phosphorylated proteins were normalized to the total level of the 



 55 

corresponding protein to determine phosphorylation mediated regulation. To ensure 

equal loading on the gels, housekeeping proteins such as Actin or GAPDH were 

visualized simultaneously as the proteins of interest. 

In Paper II, III and IV, phosphorylated proteins and stress induced proteins were 

analyzed in heart tissue. To minimalize the amount of handling induced stress and de-

phosphorylation, hearts were allowed to stabilize for 20 min before introducing 

regional ischemia (Paper III and IV), snap frozen in liquid nitrogen at the end of 

perfusion protocol and lysed in in the presence of protease inhibitors. 

 

4.3.2 Intracellular Phospho-flow Cytometry 

Flow cytometry is a technique to count and analyze cells in a fluid stream as they 

pass by an electronic detection apparatus. Phospho-flow cytometry combines the 

ability of monoclonal antibodies (mAb) to recognize post-translational modifications, 

such as phosphorylation, and the single-cell analysis of flow cytometry. It is therefore 

a fantastic tool for analyzing signaling pathways, because it can identify cellular 

subpopulations and simultaneously analyze biochemical processes within single cells. 

Constantly, major advances are made to the method, expanding the number of 

simultaneous multiparametric analysis of physical and/or chemical characteristics. 

Compared to more conventional techniques, phospho-flow cytometry can analyze 

multiple parameters in single cells in a heterogeneous and small cell population at a 

rapid pace.  

In Paper I we used phopho-spesific antibodies to investigate the signaling cascade in 

NB4 cells subjected to daunorubicin (DNR) and cAMP. After stimulation, the cells 

were fixed in paraformaldehyde (PFA) and permealized in methanol as suggested by 

Krutzik and Nolan 2003 [216]. Methanol dehydrates the cells and denatures the 

proteins which may destroy epitopes recognized by the monoclonal antibodies 

(mAbs). However, this process is reduced when the methanol is applied ice cold. In 

addition, methanol makes nuclear proteins available which is necessary when looking 

at e.g. the different Stat proteins. Otherwise, it is important to be consistent with 
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regards to time and temperature during fixation, permeabilization and mAb staining, 

since variations may affect measurements of phosphorylation induction [216]. Also, it 

is important to know that the amount of mAb is dependent of volume and not cell 

number, as absolute intensities change almost linearly with mAb concentration [216]. 

4.3.3 qRT-PCR 

Quantitative real time polymerase chain reaction (qRT-PCR) is a method based on 

standard polymerase chain reaction (PCR), and is used to amplify and simultaneously 

quantify a targeted DNA sequence. The results can be presented as an absolute 

number of copies or a relative value when normalized to a reference gene. qRT-PCR 

can produce accurate quantitative data, is sensitive, requires low amounts of RNA 

template, but unfortunately requires expensive equipment and reagents. 

Normalization of gene expression data is used to correct sample-to-sample variation. 

Real-time results are usually normalized to a “housekeeping gene”, coding a protein 

required for basic cellular function with a relatively constant expression in all cells of 

an organism. The qRT-PCR experiments in this thesis (Paper II) are in concordance 

with other cardiac qRT-PCR studies [217], and use glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) as the reference gene. In a study on cardiac stem cells, 

GAPDH was the most consistent housekeeping gene under normoxic conditions, 

while beta-actin was the most consistent during hypoxia [218]. However, a recent 

study on the stability of different “housekeeping genes” showed that the anti-cancer 

drug irinotecan upregulate the level of GAPDH in the rat colon. They encourage the 

use of normalization couples, but presented ubiquitin C as the most favorable gene if 

restricted to only one normalization gene (in a rat model of irinotecan-induced 

mucositis) [219]. We should therefore in future experiments consider to normalize the 

values to more than one “housekeeping gene”. 
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5. DISCUSSION 

5.1 Evaluation of cAMP as adjuvant in APL treatment 

A major concern with conventional cancer therapy is that only subgroups of patients 

respond favorably to a given treatment, and that side effects often limit the dose 

efficiency of the treatment. These two issues are addressed in Paper I and Paper II, 

respectively. Over the years, new treatment modalities with more targeted therapy are 

evaluated, and one successful approach is the use of all-trans retinoic acid (ATRA) in 

acute promyelocytic leukemia (APL), and has changed the prognosis from the most 

rapidly fatal leukemia two decades ago to the most curable leukemia subtype today. 

Current first-line APL therapy is based on differentiation-associated maturation, and 

hence, elimination of the leukemic cells by ATRA, which is combined with an 

anthracycline (Daunorubicine-DNR) to eliminate residual cells [220]. However, the 

occurrence of ATRA resistant cell populations in APL patients may explain why in 

vivo treatments invariably lead to relapse with resistance to ATRA [52]. The ATRA-

maturation inducible cell line NB4 [51] and the maturation resistant sublines NB4-

RAr (R1 and R2) [52, 53] were isolated from an APL patient in relapse. Although the 

NB4-RAr cell lines are retinoic acid (RA) maturation resistant, the R1 subline 

responds to RA by other means (proliferation at low doses) [53], meaning that the RA 

signaling is not defective. Interestingly, the maturation resistant cell line (R1) can 

actually undergo terminal maturation when ATRA is combined with cAMP elevating 

agents [53]. The authors describe this as an RA-dependent priming step making the 

cells competent to undergo maturation, followed by cAMP-dependent triggering of 

the primed cells to undergo terminal maturation [53]. It is clear that both these 

processes are necessary for maturation since the RA resistant R2 subline lack the RA-

dependent component, making it unresponsive to cAMP triggered maturation [53]. In 

addition, subtle changes in cAMP levels using antagonizing cAMP analogs ((RP)-

8Cl-cAMPS) disturbed maturation of RA-sensitive NB4 cells [53]. This emphasizes 

the crosstalk between RA and cAMP as a key component in ATRA mediated therapy, 

where endogenous cAMP seems sufficient for sensitive NB4 cells to mature. An 
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important paper by Ruchaud et al. implies that uncoupled priming and triggering may 

explain APL relapse with resistance to ATRA and advocates cAMP as an adjunct to 

current APL therapy to improve further the long-term survival of these patients [53]. 

Thus, recent studies demonstrate cAMP enhanced ATRA effect on survival of 

syngenic PML-RARA APL mice and mice transplanted with NB4 cells [54-56], and 

also retarded the APL progression in a patient [55]. However, none of these studies 

incorporate anthracyclines in their experiments, and therefore no study has evaluated 

the impact of cAMP on the anti-leukemic effect of anthracyclines which is currently 

an important component of first-line APL therapy. In Paper I we found that cAMP 

abrogate the anti-leukemic effect of daunorubicin (DNR) in acute promyelocytic 

leukemia (APL) cells. These findings suggest awareness when cAMP stimulation is 

considered combined with ATRA to boost APL cell differentiation since the expected 

beneficial effect of cAMP on APL cell maturation may be outweighed by enhanced 

survival of ATRA-resistant APL blasts. Awareness should also be undertaken when 

patients who experience increased cAMP levels are treated with anthracyclines, such 

as patients with inflammatory pulmonary diseases who are treated with 

phosphodiesterase inhibitors.    

5.1.1 The plethora of cAMP signaling 

cAMP is a remarkable regulator of fundamental cell processes, including cell 

proliferation, differentiation and apoptosis [221]. cAMP activity is mainly mediated 

via cAMP-dependent protein kinase A type I and II (PKA I and PKA II) or cAMP-

stimulated exchange factor Epac 1 and Epac 2 [221]. The versatility of cAMP 

signaling is highly represented in hematopoietic cells, with induction of apoptosis in 

thymocytes [222, 223] and the myeloid leukemia (AML) cell line IPC-81[224], while 

protecting mature neutrophilic granulocytes against TNFα induced death [225]. In 

addition, cAMP synergizes with glucocorticoids and PKC signaling in inducing 

apoptosis in immature murine T cells [226, 227], while it cooperates with retinoic 

acid in the differentiation of various leukemia cells, such as NB4 [53, 228, 229]. The 

findings in Paper I present another example of the diverse nature of cAMP signaling. 

We found that cAMP abrogate the anti-leukemic effect of daunorubicin (DNR) in 



 59 

acute promyelocytic leukemia (APL) cells. Protection was dependent on the generally 

cytoplasmic PKA-I rather than perinuclear PKA-II, and was independent of Epac. 

PKA I dependency is also described for cAMP induced apoptosis in the AML cell 

line IPC-81 [230], while recent findings by Nguyen et al. demonstrate that activation 

of both PKA type I and PKA type II is required for ATRA-induced maturation of the 

APL cell line NB4 [231]. cAMP is also involved in heart physiology and pathology. 

In cardiomyocytes, cAMP is the main second messenger, orchestrating the signals in 

sympathetic and parasympathetic systems, mediated via Gs-and Gi-protein 

respectively. More recently, cAMP was found to be involved in the regulation of 

cardiomyocyte cell death. Increased endogenous cAMP protects neonatal rat 

cardiomyocytes against NO-induced apoptosis, a mechanism involving both 

PKA/CREB and Epac/Akt-dependent pathways [232]. Also, cAMP reduces the 

mortality after acute myocardial infarct (AMI) in transgenic mice overexpressing 

adenylate cyclase VI, by attenuating adverse left ventricular (LV) remodeling and 

preserving LV contractile function [233]. It has been documented a nearly twofold 

rise in cAMP levels during myocardial ischemia [234]. Paradoxically, Lochner et al. 

showed cyclic increase in tissue cAMP during the classical multi-cycle 

preconditioning protocol [235], and others have shown that  brief  periods of 

increased tissue cAMP, as a result of β-adrenergic [236] or ischemic preconditioning 

[234, 237], are cardioprotective against a subsequent ischemic period [237-240]. This 

cardioprotection is abolished in the presence of the β-adrenergic blocker alprenolol, 

indicating that temporally dependent increase in tissue cAMP during ischemic 

preconditioning is essential for its cardioprotection [237, 240]. The cAMP receptor, 

PKA, is suggested to be important in the cardioprotective mechanisms of ischemic 

preconditioning [239, 241]. This is supported by Sanada et al. showing that 

pharmacological preconditioning using a PKA directed cAMP analogue protects the 

in vivo myocardium against ischemia-reperfusion injury [239], which cannot be 

achieved using the Epac directed cAMP analog [242]. In Paper III of this thesis, we 

showed that acute pre-ischemic treatment with corticotropin releasing factor (CRF) 

reduced neonatal cardiomyocyte death in vitro and infarct size in intact ex vivo rat 

hearts exposed to lethal ischemic induced stress. The CRF mediated cyto-
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/cardioprotection was mediated through CRFR2 and involved activation of PKC and 

PKA dependent signaling pathways. This involvement of PKA is in contrast to the 

mechanism of urocortin (UCN) peptides against ischemia-reperfusion injury [196, 

197]. Recently, it has been shown that UCN evoke inotropic and lusitropic effects in 

the ex vivo rat heart through Epac activation [243], indicating a link between CRFR2 

and Epac in the heart. 

5.2 The clinical picture of anthracycline mediated 
cardiotoxicity 

Acute and subacute anthracycline induced cardiotoxicity is relatively rare and occur 

in 1-2% of patients [244], while the types of chronic cardiotoxicity is clinically 

significant and requires long-term therapy [114, 245-249]. A highly quoted study by 

Von Hoff and colleagues from 1979, gave early recommendations for a maximum 

dose of 550mg/m2 doxorubicin (DOX) [250], based on relatively low incidence of 

heart failure up to that level. Since then, it has become evident that the predicted 

incidents of anthracycline induced cardiotoxic events was underestimated, as 

suggested by the authors themselves [250]. A large retrospective analysis of three 

Phase III trials, published by Swain in 2003, found the level of cardiotoxic incidents 

to be higher than previously described [251]. They observed an estimated cumulative 

percentage of patients with DOX-related congestive heart failure (CHF) to be 5%, 

26% and 48% at cumulative doses of 400 mg/m2, 550 mg/m2, 700 mg/m2 respectively 

[251]. In addition, they estimated a significant risk of cardiotoxicity at relatively low 

anthracycline doses (200-250mg/m2) [251], an observation supported by others [252]. 

The introduction of the anthracyclines has played an important role in the 

improvement of cancer therapy and has created a population of childhood cancer 

survivors almost reaching 350000 in the US alone (in 2005) [253]. For many 

oncologists the risk of cardiotoxicity has, and for some still are, a pale problem 

compared to the cancer itself. Although presenting as a secondary priority, 

cardiotoxicity must never be ignored. Therefore, research devoted to prevention and 

early diagnosis of anthracycline induced cardiotoxicity is very important. Today, 
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ultrasound or MUltiple Gated Acquisition scan (MUGA) are used to evaluate left 

ventricle ejection fraction before, during and after chemotherapeutic treatment, to 

follow heart function and to early diagnose cardiomyopathy [254]. Unfortunately, 

limited studies with long-term follow up of heart function have been conducted, 

which is necessary since anthracyclines also are used to treat curable tumors which 

enable the patients to live for decades thereafter.  A study of 201 survivors of 

childhood cancer, found 38% and 63% to have abnormal cardiac function, using 

noninvasive imaging, when exposed to 495mg/m2 and 500mg/m2 DOX, respectively 

[102]. In another study, 229 adults treated with DOX during childhood cancer was 

diagnosed with symptomatic (10%) and asymptomatic (6%) heart failure more than 

15 years after treatment [255]. To sum up; anthracycline has contributed to an 

excellent survival rate of childhood cancer patients. Unfortunately, for some the price 

is paid later with cardiac failure, and is an increasing cause of heart transplantation in 

young adults [256].  

5.3 Cardiac antioxidant therapy 

The molecular mechanisms of the anthracycline mediated anti-cancer effect and 

toxicity in healthy tissue are mediated at two fundamental levels, by interference with 

DNA and increased oxidative stress. However, it is fairly accepted that the 

cardiotoxic effect of anthracyclines are attributed to the latter, with elevated levels of 

ROS and interference with mitochondrial function. In addition, a review by Gewirtz 

et al. suggests that the anti-cancer effect of anthracycline at clinical doses is mediated 

by DNA interference and not increased ROS [80]. Still, many oncologists believe that 

ROS induction is an important component of anthracycline mediated removal of 

cancer cells, and therefore do not recommend antioxidant diet/supplementation 

during chemotherapy since it can interfere with the anti-cancer effect of the 

anthracycline. In a systematic review of randomized, controlled clinical trials, none of 

the studies reported any evidence of significant decrease in efficiency of 

chemotherapy when combined with antioxidant supplementation [257]. In fact, most 

studies reported decreased general toxicity in healthy tissue when chemotherapy was 
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accompanied with antioxidant supplementation [257, 258]. Numerous antioxidants 

and ROS scavengers have been in vitro and in vivo assayed for the prevention of 

cardiotoxicity (for review see [259, 260]). As previously mentioned, Stahl and Sies 

[131] stated that a cocktail of antioxidants in naturally occurring compounds have far 

more profound effects due to synergistic actions of the individual compounds. Paper 

II of this thesis report that Red Palm Oil stabilize important antioxidant systems in 

cardiac tissue otherwise down regulated by daunorubicin (anthracycline) [131]. While 

the majority of preclinical studies indicate a potential benefit of certain dietary 

agents, some studies cannot find any benefit of the same antioxidants. For that reason 

the authors “stress the difficulty to extract unequivocal conclusions from such a wide 

number of studies using many different concentrations of antioxidants, in different 

experimental models, and especially with many different doses of the drug” [260]. The lack 

of high quality clinical studies does not enable firm conclusions to be made. Studies 

with long-term follow-up, which can identify late-onset cardiotoxicity, evaluating 

both cardiotoxicity and anti-tumor effect are necessary. Today, only one compound, 

the iron-chelator Dexrazoxane, show consistent cardioprotective effect in preclinical 

[261] and clinical studies [262], without any influence on the anti-tumor effect of the 

drug. The American Society of Clinical Oncology recommends dexrazoxane as a 

cardioprotector for patients with metastatic breast cancer who will benefit from a 

cumulative dose of doxorubicin (DOX) exceeding 300mg/m2. The same is 

recommended for other adult patients, with caution of possible, currently unknown, 

anti-anthracycline effects in mind [263]. As mentioned above, we have shown (Paper 

II) that daunorubicin significantly down regulate cardiac levels of important 

antioxidant systems. Consumption of endogenous cardiac antioxidants, such as 

oxidation of glutathione, are also demonstrated during ischemia-reperfusion e.g. in 

patients undergoing coronary bypass surgery with aortic cross-clamping [264]. 

Several studies, with varying results, have evaluated the cardioprotective effect of 

different antioxidants against ischemia-reperfusion induced injury in patients 

undergoing planned cardiac surgery [264]. The use of N-acetylcysteine (NAC) to 

enhance intracellular glutathione has shown promising results in small-scale trials to 
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improve patient outcome after acute myocardial infarction or surgery induced 

ischemia [265].   

5.4 Modulation of myocardial ischemia-reperfusion injury 

In 1972 it was established that myocardial reperfusion of the occluded coronary 

artery would reduce myocardial infarct size [266]. Today, reperfusion strategies using 

thrombolytic treatment and percutaneous coronary intervention (PCI) represents the 

cornerstones of current therapy for patients suffering from acute myocardial 

infarction (AMI). However, in-hospital mortality of this patient group are still 6-14% 

[267], urging the need for novel interventions to further reduce infarct size and 

improve survival rates of these patients. Although reperfusion is a necessity for 

myocardial salvage, the price to pay is accompanying reperfusion injury (Fig. 1.8). 

There is currently no clinical therapy for lethal reperfusion injury, which makes it an 

important target for residual cardioprotection. Lethal reperfusion injury represents a 

hot area of ongoing research and has led to the discovery of several pre-clinical 

therapies (mechanical and pharmaceutical), with potential of being administered 

simultaneously as classical reperfusion strategies to further reduce the final infarct 

size.  

5.4.1 “From Bench to Bedside” 

Unfortunately, it is often difficult to transfer promising pre-clinical strategies into 

clinical interventions which actually improve the outcome of AMI patients. The 

reason for this may be attributed to confounding factors involving patient selection, 

reperfusion strategy (thrombolytic treatment, PCI or coronary artery bypass surgery), 

administration time of the novel reperfusion intervention as well as varying 

determinants of infarct size such as ischemic time, area at risk, collateral flow and the 

endpoints evaluated for cardioprotection (reviewed in [268]). While coronary heart 

disease (CHD), is caused by or associated with, risk-factors and co-morbidities such 

as aging, hypertension, diabetes and left ventricular hypertrophy [269], most pre-

clinical studies, including our own, evaluate the effect of novel cardioprotective 
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strategies using healthy and juvenile animals. In fact, atrial tissue from elderly [270] 

and diabetic patients [271] was resistant to ischemic preconditioning (IPC) in the in 

vitro hypoxia-reoxygenation model. Further, diabetic patients has twice as high 

glycogen synthase kinase 3β (GSK3β) activity compared to non-diabetic patients, and 

since we (Paper IV) and others [159] have demonstrated an important role for 

GSK3β inhibition during cardioprotection, it is possible that this can explain why the 

protective effect of IPC and IPost are lost in diabetic animal models [272, 273]. 

Another major confounding factor is concomitant patient medication either directed 

against the ongoing MI or associated risk factors and co-morbidities. Several 

independent studies have demonstrated that different pharmaceuticals may actually 

be cardioprotective themselves (β-blockers and ACE inhibitors)  or they can abrogate 

the otherwise cardioprotective effect (anti-diabetic sulfonylurea and chronic use of 

statins) (reviewed in [274]). Paper IV of this thesis contributes to the literature by 

demonstrating the latter. We found that the combination of IPost with 

pharmacological treatment strategies, here represented by insulin or GSK3β 

inhibition, completely abrogated cardioprotection afforded by the separate treatment 

given alone. Loss of cardioprotection was associated with reduced phosphorylation of 

the pro-survival kinase Akt. The molecular explanation for this observation is still not 

resolved. It does, however, imply that drugs which can modulate Akt, GSK3β or 

other components of the RISK pathway may interfere with IPost mediated 

cardioprotection. Hence, Paper IV provide with suggestions as to why clinical trials 

using IPost have shown varying result. 

5.5 Similarities of anthracycline and ischemia-reperfusion 
mediated cell injury 

The myocardium is generally considered a postmitotic organ, excluding any 

cardiomyocyte turnover in the normal or diseased organ. With the idea of terminally 

differentiated cardiac cells came also the controversy of cardiomyocyte cell death 

[275], as this would eventually lead to the loss of myocardial mass. Today, scientists 

are suggesting that death and regeneration are part of the normal homeostasis of the 
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heart [276], and we know that cell death is involved in both ischemia-reperfusion 

induced injury [125, 277, 278] as well as anthracycline induced cardiotoxicity [279]. 

As described in the introduction, anthracycline mediated cardiotoxicity is believed to 

be distinct from its anti-tumor effect, and is likely to be a result of ROS mediated 

cardiomyocyte damage. Concomitantly, ROS is an important component of ischemia-

reperfusion mediated cell death, and it is therefore relevant to believe that free radical 

injury to the myocardium induced by anthracyclines is similar to that induced by 

ischemia-reperfusion. This is supported by studies demonstrating pharmacological 

cardioprotection against both ischemia-reperfusion injury as well as anthracycline 

induced cardiotoxicity [280, 281]. More interestingly, the most effective experimental 

treatment against ischemia-reperfusion injury, ischemic preconditioning (IPC), are 

also protective against anthracycline (epirubicin) induced cardiotoxicity [282]. 

Conversely, the only approved clinical cardioprotector used to attenuate anthracycline 

mediated cardiotoxicity,  the iron-chelator Dexrazoxane,  are protective against 

ischemia-reperfusion in the ex vivo rat heart [283].  

5.5.1 Increased intracellular  ROS  

Induction of myocardial oxidative stress is the most frequently proposed mechanism 

of anthracycline mediated cardiotoxicity and is described in the cytoplasm, 

mitochondria and sarcoplasmic reticulum [92]. Redox cycling of anthracyclines are 

based on the quinone moiety of the molecule and also their ability to form 

anthracycline-iron complexes [92]. Increased cardiac ROS may injure cell 

membranes and nuclear/mitochondrial DNA leading to changed protein pattern, 

disturbed cell signaling and altered membrane permeability, all culminating in 

increased Ca2+ and apoptosis [109]. It is also of general agreement that increased 

ROS production is involved in myocardial reperfusion injury [150, 284, 285]. Under 

normal conditions, O2
−· would be converted to H2O2 by superoxide dismutase. 

However, due to acidosis during ischemia, ferric and ferrous ions released from 

metalloproteins, catalyze the generation of highly reactive hydroxyl radical from both 

O2·− and H2O2 (Fenton reaction) [286]. Paradoxically, we (Paper IV) and others have 

demonstrated that transient and low concentrations of RNS/ROS are required at 
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immediate reperfusion to mediate cardioprotection elicited by ischemic conditioning 

[287-289]. In summary, this thesis illustrates the myriad roles of ROS in a biological 

system. Harmful in one setting (anthracycline induced cardiotoxicity), protective in 

another (ischemic pre- and post-conditioning), and also being necessary for steady 

state signaling. It is obvious that strict regulation is a prerequisite to handle the 

diverse effects of ROS, which involves time-, concentration- and location 

dependencies of different reactive oxygen species.  

5.5.2 Mitochondrial related death/survival pathways 

The effects of oxidative stress on the mitochondrial intrinsic pathway are well 

described, but the involvement of the extrinsic pathway is not yet clarified. Most of 

the ROS induced cellular events described in the above section contribute to cell 

death via apoptosis and necrosis, and is believed to be the primary mechanism of 

anthracycline induced cardiomyopathy [290]. Anthracyclines create Ca2+ flux 

aberration, and hence, increased mitochondrial [Ca2+]. This leads to dissipation of the 

transmembrane potential, mitochondrial swelling and leakage of apoptotic signaling 

molecules, a process involving opening of the mitochondrial permeability transition 

pore (mPTP) [290]. Similarly, (as described in section 1.9.2) the main event linking 

ischemia-reperfusion to cell death is also opening of the mPTP. This is a Ca2+ and 

ROS dependent process [155], inhibited by the acidic environment during ischemia 

while manifested at immediate reperfusion [156, 157]. Attenuation of mPTP opening 

during early reperfusion has gained increased focus, and many cardioprotective 

interventions activate important anti-apoptotic protein kinases such as PI3K-Akt and 

MEK1/2-Erk1/2 (RISK pathway) [153]. Inhibition of mPTP by ischemic conditioning 

involves mitoKATP, PKC and ROS signaling but has previously not been linked to 

insulin and GSK3βi mediated cardioprotection. However, our results in Paper IV 

indicate dependency on PKC and mitoKATP mediated signaling in cardioprotection 

afforded by post-ischemic insulin treatment. It is possible that the administration time 

(pre or post ischemia) explain the opposing findings presented in Paper IV compared 

to others [159, 291].  Recently, inhibition of glycogen synthase kinase 3β (GSK3β) 

has been suggested as the key event linking cardioprotection to inhibition of mPTP 
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[159], and the involvement of Akt phosphorylation and GSK3β inhibition during 

cardioprotection are described in Paper IV. Similarly, anthracyclines seems to inhibit 

Akt phosphorylation and thereby increase the activity of GSK3β [292]. In addition, 

upstream kinase activation of PI3K-Akt with subsequent GSK3β inhibition, are 

protective against anthracycline induced cardiomyocyte apoptosis [292].  
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6. CONCLUSION 

The overall aim of this thesis was to participate in the search for ways to directly or 

indirectly minimize anthracycline mediated cardiotoxicity, and also to reduce the 

amount of ischemia-reperfusion injury. We therefore addressed and answered the 

following specific aims: 

Paper I – Evaluate the influence of cAMP on anthracycline induced apoptosis of 
acute promyelocytic leukemia (APL) cells, since cAMP has been advocated as 
adjuvant to classical APL therapy. 
We found that cAMP abrogates anthracycline induced APL cell death in a PKA type 

I dependent manner. The mechanism was associated with inhibition of pro-apoptotic 

Bad and activation of the acute myeloid leukemia (AML) oncogene CREB. In vitro 

findings were mirrored in vivo (NSG mice with orthotopic NB4 cell leukemia) were 

cAMP induced more rapid APL progression. Together these data suggests that the 

beneficial pro-differentiating effects of cAMP should be weighed against the non-

beneficial pro-survival effect found in this study. 

Paper II - Study the possible cardioprotective effect of Red Palm Oil against 
anthracycline mediated cardiotoxicity 
Red palm oil (RPO) diet supplementation improved cardiac output in hearts from 

animals treated with anthracycline, and also stabilized important antioxidant systems 

such as SOD 1, otherwise decreased by anthracycline treatment. RPO also inhibited 

anthracycline induced stress kinases such as p38 and JNK and up regulated the pro-

survival kinase ERK. 

Paper III - Delineate the cardioprotective effect of corticotropin releasing factor 
(CRF) against ischemia-reperfusion injury 
CRF offered cytoprotection when administered prior to a simulated ischemic insult 

and also reduced infarct size in the ex vivo perfused rat heart. CRF had no protective 

effect when administered at the time of reoxygenation/reperfusion. The protective 

effect of CRF was mediated via CRFR2 and was dependent on PKC and PKA 

signaling.  
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Paper IV - Investigate the combination of known protective therapies against 
ischemia-reperfusion injury 
In this study we found that combination of two pharmacologic reperfusion therapies 

(Insulin or GSK3β-inhibition) did not lead to additive cardioprotection compared to 

the two treatments given alone. However, combining ischemic postconditioning with 

either of the two pharmacologic therapies (Insulin or GSK3β-inhibitor) completely 

abrogated cardioprotection afforded by the separate therapies. This loss of 

cardioprotection was associated with blunted Akt phosphorylation. 

6.1 Concluding Remarks 

This thesis has indirectly (Paper I) and directly (Paper II, III, IV) focused on the 

heart as the primary organ for protection. In Paper I we have participated in the 

search for ways to improve current acute promyelocytic leukemia (APL) treatment. 

The introduction of novel agents to current treatment regimens may reduce, and 

hopefully someday replace, the use of anthracyclines, and thereby alleviate some of 

the cardiotoxic side effects imposed by these agents. In Paper II we demonstrate the 

potential of a natural antioxidant source, the red palm oil (RPO), as a cardioprotector 

against anthracycline induced cardiotoxicity. RPO is also cardioprotective against 

ischemia-reperfusion induced injury and has highly anti-cancer potential due to the 

high level of tocotrienols. Paper III and IV contribute with pharmacologic and 

mechanical treatments to reduce ischemia-reperfusion induced injury. In Paper III 

we show that the novel agent Corticotropin releasing factor (CRF) exerts 

cardioprotection, and demonstrated that the time of administration (pre or post 

ischemia) may give distinct outcome. Finally, Paper IV highlights the importance of 

the finely tuned cellular signaling involved in cardioprotection, as the combination of 

cardioprotective treatments may counteract each other, and address the struggle of 

pre-clinical studies to successfully translate into the clinic.  As a final remark, my 

thesis emphasizes the similarities of anthracycline and ischemia-reperfusion induced 

cell injury. This encourages a more tight collaboration of oncologists and 

cardiologists in the clinic, as well as between pre-clinical researchers from these to 

experimental fields.  
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7. FUTURE PERSPECTIVES 

7.1 Paper I 

cAMP has been suggested as adjuvant to current acute promyelocytic leukemia 

(APL) therapy due to its pro-differentiating effects on ATRA sensitive and in-

sensitive cells. In Paper I we have demonstrated that cAMP attenuate daunorubicin 

induced apoptosis in acute myeloid leukemia (AML) and APL patient cells and the 

APL cell line NB4. The next step would be to combine ATRA with daunorubicine 

(DNR), in the presence and absence of cAMP, to evaluate the net effect of cAMP 

stimulation regarding increased differentiation versus reduced apoptosis.   

Both Bad and CREB phosphorylation are under current investigation as therapeutic 

targets in AML and other malignancies. CREB is an AML proto-oncogene, and 

overexpression is associated with a poor outcome in the patients. Small molecules 

that inhibit binding of CREB to its partners have been identified, and was effective at 

micromolar concentrations, without off-target inhibition of transcriptional machinery 

[293]. Therefore, in vivo experiments with clinical relevant inhibitors of Bad and 

CREB should be tested for their ability to inhibit cAMP induced protection of 

leukemic cells.  

7.2 Paper II 

Paper II demonstrate that diet-supplementation with red palm oil (RPO) during 

chemotherapy protect the rat heart against daunorubicin induced cardiotoxicity, with 

improved aortic output and coronary flow. However, in a follow-up study we would 

lengthen the perfusion protocol in order to achieve a clearer difference between the 

groups regarding the hemodynamic parameters. More importantly, in order to 

investigate if RPO exert any adverse effect in regards to the anti-cancer effect of the 

anthracycline, we would like to evaluate the cardioprotective effects of RPO in a 

leukemia rat model. 
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7.3 Paper III 

Since we strive to perform clinical relevant basic research, we were disappointed 

when corticotropin releasing factor (CRF) did not have any cardioprotective effect 

when administered at reperfusion/reoxygenation. However, there is a possibility that 

CRF could exert protection if applied in another concentration. This further warrants 

a set of dose-response experiments with CRF administration at the moment of 

reperfusion.  

7.4 Paper IV 

Previous studies have shown that insulin has to be present from the onset of 

reperfusion to be cardioprotective, and that cardioprotection is lost when insulin 

administration was delayed 15 min into reperfusion. Similarly, the mechanical 

intervention of IPost has to be performed at early reperfusion. It is likely that the loss 

of protection, when combining IPost with insulin therapy (or GSK3i), is due to 

abrogation of, or interference with, the pro-survival signaling mechanisms activated 

by these treatments when administered separately. Intriguingly, the lack of 

cardioprotection was associated with blunted Akt phosphorylation at early 

reperfusion. In the continuation of this study, we would like to investigate if 

increased phosphatase activity and/or reduced receptor signaling is involved in this 

phenomenon. 

  

 

 

 

 



 72 

8. REFRENCES 

 

1. WHO, W.H.O., Cardiovascular diseases. 2011. 
2. Hearse, D.J., Myocardial ischaemia: can we agree on a definition for the 21st 

century? Cardiovasc Res, 1994. 28(12): p. 1737-44: discussion 1745-6. 
3. Clarke, P.G. and S. Clarke, Nineteenth century research on naturally occurring cell 

death and related phenomena. Anatomy and embryology, 1996. 193(2): p. 81-99. 
4. Lockshin, R.A. and C.M. Williams, Programmed Cell Death--I. Cytology of 

Degeneration in the Intersegmental Muscles of the Pernyi Silkmoth. Journal of insect 
physiology, 1965. 11: p. 123-33. 

5. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon 
with wide-ranging implications in tissue kinetics. British journal of cancer, 1972. 
26(4): p. 239-57. 

6. Golstein, P. and G. Kroemer, Cell death by necrosis: towards a molecular definition. 
Trends Biochem Sci, 2007. 32(1): p. 37-43. 

7. Degterev, A., et al., Identification of RIP1 kinase as a specific cellular target of 
necrostatins. Nat Chem Biol, 2008. 4(5): p. 313-21. 

8. Choi, A.M., S.W. Ryter, and B. Levine, Autophagy in human health and disease. N 
Engl J Med, 2013. 368(7): p. 651-62. 

9. Nakatogawa, H., et al., Dynamics and diversity in autophagy mechanisms: lessons 
from yeast. Nat Rev Mol Cell Biol, 2009. 10(7): p. 458-67. 

10. Kitanaka, C. and Y. Kuchino, Caspase-independent programmed cell death with 
necrotic morphology. Cell Death Differ, 1999. 6(6): p. 508-15. 

11. Kroemer, G. and B. Levine, Autophagic cell death: the story of a misnomer. Nat Rev 
Mol Cell Biol, 2008. 9(12): p. 1004-10. 

12. BioNinja Available from: http://www.vce.bioninja.com.au/aos-3-heredity/cell-
reproduction/cell-death.html. 

13. Ulukaya, E., C. Acilan, and Y. Yilmaz, Apoptosis: why and how does it occur in 
biology? Cell Biochem Funct, 2011. 29(6): p. 468-80. 

14. Reed, J.C., Dysregulation of apoptosis in cancer. J Clin Oncol, 1999. 17(9): p. 2941-
53. 

15. Kajstura, J., et al., Apoptotic and necrotic myocyte cell deaths are independent 
contributing variables of infarct size in rats. Lab Invest, 1996. 74(1): p. 86-107. 

16. Hamacher-Brady, A., N.R. Brady, and R.A. Gottlieb, The interplay between pro-
death and pro-survival signaling pathways in myocardial ischemia/reperfusion 
injury: apoptosis meets autophagy. Cardiovasc Drugs Ther, 2006. 20(6): p. 445-62. 

17. Gottlieb, R.A., et al., Reperfusion injury induces apoptosis in rabbit cardiomyocytes. 
J Clin Invest, 1994. 94(4): p. 1621-8. 

18. Mocanu, M.M., G.F. Baxter, and D.M. Yellon, Caspase inhibition and limitation of 
myocardial infarct size: protection against lethal reperfusion injury. Br J Pharmacol, 
2000. 130(2): p. 197-200. 

19. Zhao, Z.Q., et al., Reperfusion induces myocardial apoptotic cell death. Cardiovasc 
Res, 2000. 45(3): p. 651-60. 

20. Freude, B., et al., Apoptosis is initiated by myocardial ischemia and executed during 
reperfusion. J Mol Cell Cardiol, 2000. 32(2): p. 197-208. 

21. Kyosola, K., Mitochondrial injury and autophagocytosis within the myocardial cell 
after the cold ischaemic anoxic asystole. Scand J Thorac Cardiovasc Surg, 1981. 
15(1): p. 83-5. 



 73 

22. Yan, L., et al., Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci U 
S A, 2005. 102(39): p. 13807-12. 

23. Dong, Y., et al., Autophagy: definition, molecular machinery, and potential role in 
myocardial ischemia-reperfusion injury. J Cardiovasc Pharmacol Ther, 2010. 15(3): 
p. 220-30. 

24. Granville, D.J., et al., Apoptosis: molecular aspects of cell death and disease. Lab 
Invest, 1998. 78(8): p. 893-913. 

25. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-
70. 

26. Johnstone, R.W., A.A. Ruefli, and S.W. Lowe, Apoptosis: a link between cancer 
genetics and chemotherapy. Cell, 2002. 108(2): p. 153-64. 

27. Kroemer, G. and J.C. Reed, Mitochondrial control of cell death. Nat Med, 2000. 
6(5): p. 513-9. 

28. Li, P., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 
complex initiates an apoptotic protease cascade. Cell, 1997. 91(4): p. 479-89. 

29. Salvesen, G.S. and V.M. Dixit, Caspase activation: the induced-proximity model. 
Proc Natl Acad Sci U S A, 1999. 96(20): p. 10964-7. 

30. Li, H., et al., Cleavage of BID by caspase 8 mediates the mitochondrial damage in 
the Fas pathway of apoptosis. Cell, 1998. 94(4): p. 491-501. 

31. Youle, R.J. and A. Strasser, The BCL-2 protein family: opposing activities that 
mediate cell death. Nature reviews. Molecular cell biology, 2008. 9(1): p. 47-59. 

32. Westphal, D., et al., Molecular biology of Bax and Bak activation and action. 
Biochim Biophys Acta, 2011. 1813(4): p. 521-31. 

33. Shamas-Din, A., et al., BH3-only proteins: Orchestrators of apoptosis. Biochim 
Biophys Acta, 2011. 1813(4): p. 508-20. 

34. Schafer ZT, K.S., The apoptosome: physiological, developmental, and pathological 
modes of regulation. 

35. Sawyers, C.L., C.T. Denny, and O.N. Witte, Leukemia and the disruption of normal 
hematopoiesis. Cell, 1991. 64(2): p. 337-50. 

36. Lowenberg, B., J.R. Downing, and A. Burnett, Acute myeloid leukemia. N Engl J 
Med, 1999. 341(14): p. 1051-62. 

37. Gilliland, D.G., Hematologic malignancies. Curr Opin Hematol, 2001. 8(4): p. 189-
91. 

38. Melnick, A. and J.D. Licht, Deconstructing a disease: RARalpha, its fusion partners, 
and their roles in the pathogenesis of acute promyelocytic leukemia. Blood, 1999. 
93(10): p. 3167-215. 

39. Chambon, P., A decade of molecular biology of retinoic acid receptors. FASEB J, 
1996. 10(9): p. 940-54. 

40. Ablain, J. and H. de The, Revisiting the differentiation paradigm in acute 
promyelocytic leukemia. Blood, 2011. 117(22): p. 5795-802. 

41. Grignani, F., et al., Fusion proteins of the retinoic acid receptor-alpha recruit histone 
deacetylase in promyelocytic leukaemia. Nature, 1998. 391(6669): p. 815-8. 

42. Zhu, J., et al., A sumoylation site in PML/RARA is essential for leukemic 
transformation. Cancer Cell, 2005. 7(2): p. 143-53. 

43. Di Croce, L., et al., Methyltransferase recruitment and DNA hypermethylation of 
target promoters by an oncogenic transcription factor. Science, 2002. 295(5557): p. 
1079-82. 

44. Martens, J.H., et al., PML-RARalpha/RXR Alters the Epigenetic Landscape in Acute 
Promyelocytic Leukemia. Cancer Cell, 2010. 17(2): p. 173-85. 



 74 

45. Wang, Z.Y. and Z. Chen, Acute promyelocytic leukemia: from highly fatal to highly 
curable. Blood, 2008. 111(5): p. 2505-15. 

46. Huang, M.E., et al., Use of all-trans retinoic acid in the treatment of acute 
promyelocytic leukemia. Blood, 1988. 72(2): p. 567-72. 

47. Quignon, F., Z. Chen, and H. de The, Retinoic acid and arsenic: towards oncogene-
targeted treatments of acute promyelocytic leukaemia. Biochim Biophys Acta, 1997. 
1333(3): p. M53-61. 

48. Chen, G.Q., et al., In vitro studies on cellular and molecular mechanisms of arsenic 
trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces 
NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-
RAR alpha/PML proteins. Blood, 1996. 88(3): p. 1052-61. 

49. Chen, G.Q., et al., Use of arsenic trioxide (As2O3) in the treatment of acute 
promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL 
cells. Blood, 1997. 89(9): p. 3345-53. 

50. Shen, Z.X., et al., All-trans retinoic acid/As2O3 combination yields a high quality 
remission and survival in newly diagnosed acute promyelocytic leukemia. Proc Natl 
Acad Sci U S A, 2004. 101(15): p. 5328-35. 

51. Lanotte, M., et al., NB4, a maturation inducible cell line with t(15;17) marker 
isolated from a human acute promyelocytic leukemia (M3). Blood, 1991. 77(5): p. 
1080-6. 

52. Duprez, E., et al., A retinoid acid 'resistant' t(15;17) acute promyelocytic leukemia 
cell line: isolation, morphological, immunological, and molecular features. 
Leukemia, 1992. 6(12): p. 1281-7. 

53. Ruchaud, S., et al., Two distinctly regulated events, priming and triggering, during 
retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line. 
Proc Natl Acad Sci U S A, 1994. 91(18): p. 8428-32. 

54. Parrella, E., et al., Phosphodiesterase IV inhibition by piclamilast potentiates the 
cytodifferentiating action of retinoids in myeloid leukemia cells. Cross-talk between 
the cAMP and the retinoic acid signaling pathways. J Biol Chem, 2004. 279(40): p. 
42026-40. 

55. Guillemin, M.C., et al., In vivo activation of cAMP signaling induces growth arrest 
and differentiation in acute promyelocytic leukemia. J Exp Med, 2002. 196(10): p. 
1373-80. 

56. Nasr, R. and H. de The, Eradication of acute promyelocytic leukemia-initiating cells 
by PML/RARA-targeting. Int J Hematol, 2010. 91(5): p. 742-7. 

57. Sutherland, E.W. and G.A. Robison, The role of cyclic-3',5'-AMP in responses to 
catecholamines and other hormones. Pharmacological reviews, 1966. 18(1): p. 145-
61. 

58. Sutherland, E.W., Studies on the mechanism of hormone action. Science, 1972. 
177(4047): p. 401-8. 

59. Beavo, J.A. and L.L. Brunton, Cyclic nucleotide research -- still expanding after half 
a century. Nature reviews. Molecular cell biology, 2002. 3(9): p. 710-8. 

60. Levitzki, A., From epinephrine to cyclic AMP. Science, 1988. 241(4867): p. 800-6. 
61. Kamenetsky, M., et al., Molecular details of cAMP generation in mammalian cells: a 

tale of two systems. J Mol Biol, 2006. 362(4): p. 623-39. 
62. Kleppe, R., et al., The cAMP-dependent protein kinase pathway as therapeutic 

target: possibilities and pitfalls. Curr Top Med Chem, 2011. 11(11): p. 1393-405. 
63. Corbin, J.D., S.L. Keely, and C.R. Park, The distribution and dissociation of cyclic 

adenosine 3':5'-monophosphate-dependent protein kinases in adipose, cardiac, and 
other tissues. J Biol Chem, 1975. 250(1): p. 218-25. 



 75 

64. Kopperud, R., et al., Formation of inactive cAMP-saturated holoenzyme of cAMP-
dependent protein kinase under physiological conditions. J Biol Chem, 2002. 
277(16): p. 13443-8. 

65. Shabb, J.B., Physiological substrates of cAMP-dependent protein kinase. Chem Rev, 
2001. 101(8): p. 2381-411. 

66. Michel, J.J. and J.D. Scott, AKAP mediated signal transduction. Annu Rev 
Pharmacol Toxicol, 2002. 42: p. 235-57. 

67. Appert-Collin, A., L. Baisamy, and D. Diviani, Regulation of g protein-coupled 
receptor signaling by a-kinase anchoring proteins. J Recept Signal Transduct Res, 
2006. 26(5-6): p. 631-46. 

68. Christensen, A.E., et al., cAMP analog mapping of Epac1 and cAMP kinase. 
Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically 
to promote PC-12 cell neurite extension. J Biol Chem, 2003. 278(37): p. 35394-402. 

69. Christensen AE, D.S., Cyclic nucleotide analogs as tools to investigate cyclic 
nucleotide signaling. Handbook of cell signalling, 2003. 2. 

70. Krumbhaar, E.B. and H.D. Krumbhaar, The Blood and Bone Marrow in Yelloe Cross 
Gas (Mustard Gas) Poisoning: Changes produced in the Bone Marrow of Fatal 
Cases. The Journal of medical research, 1919. 40(3): p. 497-508 3. 

71. Arcamone, F., et al., Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic 
from S. peucetius var. caesius. Reprinted from Biotechnology and Bioengineering, 
Vol. XI, Issue 6, Pages 1101-1110 (1969). Biotechnology and bioengineering, 2000. 
67(6): p. 704-13. 

72. Tan, C., et al., Daunomycin, an antitumor antibiotic, in the treatment of neoplastic 
disease. Clinical evaluation with special reference to childhood leukemia. Cancer, 
1967. 20(3): p. 333-53. 

73. Skovsgaard, T. and N.I. Nissen, Membrane transport of anthracyclines. Pharmacol 
Ther, 1982. 18(3): p. 293-311. 

74. Kiyomiya, K., S. Matsuo, and M. Kurebe, Mechanism of specific nuclear transport of 
adriamycin: the mode of nuclear translocation of adriamycin-proteasome complex. 
Cancer research, 2001. 61(6): p. 2467-71. 

75. Marco, A. and F. Arcamone, DNA complexing antibiotics: daunomycin, adriamycin 
and their derivatives. Arzneimittelforschung, 1975. 25(3): p. 368-74. 

76. Rabbani, A., R.M. Finn, and J. Ausio, The anthracycline antibiotics: antitumor drugs 
that alter chromatin structure. Bioessays, 2005. 27(1): p. 50-6. 

77. Tewey, K.M., et al., Adriamycin-induced DNA damage mediated by mammalian 
DNA topoisomerase II. Science, 1984. 226(4673): p. 466-8. 

78. Moro, S., et al., Interaction model for anthracycline activity against DNA 
topoisomerase II. Biochemistry, 2004. 43(23): p. 7503-13. 

79. Perego, P., et al., Role of apoptosis and apoptosis-related genes in cellular response 
and antitumor efficacy of anthracyclines. Curr Med Chem, 2001. 8(1): p. 31-7. 

80. Gewirtz, D.A., A critical evaluation of the mechanisms of action proposed for the 
antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. 
Biochemical pharmacology, 1999. 57(7): p. 727-41. 

81. Minotti, G., et al., Anthracyclines: molecular advances and pharmacologic 
developments in antitumor activity and cardiotoxicity. Pharmacological reviews, 
2004. 56(2): p. 185-229. 

82. Myers, C.E., W. McGuire, and R. Young, Adriamycin: amelioration of toxicity by 
alpha-tocopherol. Cancer treatment reports, 1976. 60(7): p. 961-2. 

83. Perkins, W.E., et al., Effect of ICRF-187 on doxorubicin-induced myocardial effects 
in the mouse and guinea pig. British journal of cancer, 1982. 46(4): p. 662-7. 



 76 

84. Kang, Y.J., Y. Chen, and P.N. Epstein, Suppression of doxorubicin cardiotoxicity by 
overexpression of catalase in the heart of transgenic mice. J Biol Chem, 1996. 
271(21): p. 12610-6. 

85. Shioji, K., et al., Overexpression of thioredoxin-1 in transgenic mice attenuates 
adriamycin-induced cardiotoxicity. Circulation, 2002. 106(11): p. 1403-9. 

86. Sun, X., Z. Zhou, and Y.J. Kang, Attenuation of doxorubicin chronic toxicity in 
metallothionein-overexpressing transgenic mouse heart. Cancer research, 2001. 
61(8): p. 3382-7. 

87. Yen, H.C., et al., The protective role of manganese superoxide dismutase against 
adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest, 1996. 
98(5): p. 1253-60. 

88. Kamata, H. and H. Hirata, Redox regulation of cellular signalling. Cell Signal, 1999. 
11(1): p. 1-14. 

89. Ott, M., et al., Mitochondria, oxidative stress and cell death. Apoptosis, 2007. 12(5): 
p. 913-22. 

90. Guzy, R.D., et al., Mitochondrial complex III is required for hypoxia-induced ROS 
production and cellular oxygen sensing. Cell Metab, 2005. 1(6): p. 401-8. 

91. Blokhina, O., E. Virolainen, and K.V. Fagerstedt, Antioxidants, oxidative damage 
and oxygen deprivation stress: a review. Ann Bot, 2003. 91 Spec No: p. 179-94. 

92. Simunek, T., et al., Anthracycline-induced cardiotoxicity: overview of studies 
examining the roles of oxidative stress and free cellular iron. Pharmacol Rep, 2009. 
61(1): p. 154-71. 

93. Goswami, S.K., N. Maulik, and D.K. Das, Ischemia-reperfusion and 
cardioprotection: a delicate balance between reactive oxygen species generation and 
redox homeostasis. Ann Med, 2007. 39(4): p. 275-89. 

94. Steinberg, J.S., et al., Acute arrhythmogenicity of doxorubicin administration. 
Cancer, 1987. 60(6): p. 1213-8. 

95. Lenaz, L. and J.A. Page, Cardiotoxicity of adriamycin and related anthracyclines. 
Cancer treatment reviews, 1976. 3(3): p. 111-20. 

96. Ferrans, V.J., Overview of cardiac pathology in relation to anthracycline 
cardiotoxicity. Cancer treatment reports, 1978. 62(6): p. 955-61. 

97. Harrison, D.T. and L.A. Sanders, Letter: Pericarditis in a case of early daunorubicin 
cardiomyopathy. Annals of internal medicine, 1976. 85(3): p. 339-41. 

98. Von Hoff, D.D., et al., Risk factors for doxorubicin-induced congestive heart failure. 
Annals of internal medicine, 1979. 91(5): p. 710-7. 

99. Praga, C., et al., Adriamycin cardiotoxicity: a survey of 1273 patients. Cancer 
treatment reports, 1979. 63(5): p. 827-34. 

100. Lefrak, E.A., et al., A clinicopathologic analysis of adriamycin cardiotoxicity. 
Cancer, 1973. 32(2): p. 302-14. 

101. Lipshultz, S.E., et al., Late cardiac effects of doxorubicin therapy for acute 
lymphoblastic leukemia in childhood. N Engl J Med, 1991. 324(12): p. 808-15. 

102. Steinherz, L.J., et al., Cardiac toxicity 4 to 20 years after completing anthracycline 
therapy. JAMA, 1991. 266(12): p. 1672-7. 

103. Haq, M.M., et al., Doxorubicin-induced congestive heart failure in adults. Cancer, 
1985. 56(6): p. 1361-5. 

104. Schwartz, R.G., et al., Congestive heart failure and left ventricular dysfunction 
complicating doxorubicin therapy. Seven-year experience using serial radionuclide 
angiocardiography. Am J Med, 1987. 82(6): p. 1109-18. 

105. Yeung, S.T., et al., Functional myocardial impairment in children treated with 
anthracyclines for cancer. Lancet, 1991. 337(8745): p. 816-8. 



 77 

106. Goodman, J. and P. Hochstein, Generation of free radicals and lipid peroxidation by 
redox cycling of adriamycin and daunomycin. Biochem Biophys Res Commun, 1977. 
77(2): p. 797-803. 

107. Handa, K. and S. Sato, Generation of free radicals of quinone group-containing anti-
cancer chemicals in NADPH-microsome system as evidenced by initiation of sulfite 
oxidation. Gann, 1975. 66(1): p. 43-7. 

108. Pai, V.B. and M.C. Nahata, Cardiotoxicity of chemotherapeutic agents: incidence, 
treatment and prevention. Drug Saf, 2000. 22(4): p. 263-302. 

109. Tokarska-Schlattner, M., et al., New insights into doxorubicin-induced 
cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol, 2006. 
41(3): p. 389-405. 

110. Doroshow, J.H., G.Y. Locker, and C.E. Myers, Enzymatic defenses of the mouse 
heart against reactive oxygen metabolites: alterations produced by doxorubicin. J 
Clin Invest, 1980. 65(1): p. 128-35. 

111. Johnson, B.A., M.S. Cheang, and G.J. Goldenberg, Comparison of adriamycin 
uptake in chick embryo heart and liver cells an murine L5178Y lymphoblasts in vitro: 
role of drug uptake in cardiotoxicity. Cancer research, 1986. 46(1): p. 218-23. 

112. Goormaghtigh, E., et al., Structure of the adriamycin-cardiolipin complex. Role in 
mitochondrial toxicity. Biophys Chem, 1990. 35(2-3): p. 247-57. 

113. Longo, B.A.C.a.D.L., Cancer Chemotherapy and Biotherapy Principles and 
Practice. Fourth ed. 2006, Philadelphia USA: Lippincott Williams & Wilkins. 

114. Lipshultz, S.E., et al., Chronic progressive cardiac dysfunction years after 
doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol, 2005. 
23(12): p. 2629-36. 

115. Legha, S.S., et al., Reduction of doxorubicin cardiotoxicity by prolonged continuous 
intravenous infusion. Annals of internal medicine, 1982. 96(2): p. 133-9. 

116. Hortobagyi, G.N., et al., Decreased cardiac toxicity of doxorubicin administered by 
continuous intravenous infusion in combination chemotherapy for metastatic breast 
carcinoma. Cancer, 1989. 63(1): p. 37-45. 

117. Levitt, G.A., et al., Does anthracycline administration by infusion in children affect 
late cardiotoxicity? Br J Haematol, 2004. 124(4): p. 463-8. 

118. Weiss, R.B., The anthracyclines: will we ever find a better doxorubicin? Semin 
Oncol, 1992. 19(6): p. 670-86. 

119. Perez, D.J., et al., A randomized comparison of single-agent doxorubicin and 
epirubicin as first-line cytotoxic therapy in advanced breast cancer. J Clin Oncol, 
1991. 9(12): p. 2148-52. 

120. Anderlini, P., et al., Idarubicin cardiotoxicity: a retrospective study in acute myeloid 
leukemia and myelodysplasia. J Clin Oncol, 1995. 13(11): p. 2827-34. 

121. Gabizon, A.A., Liposomal anthracyclines. Hematol Oncol Clin North Am, 1994. 
8(2): p. 431-50. 

122. Siveski-Iliskovic, N., et al., Probucol protects against adriamycin cardiomyopathy 
without interfering with its antitumor effect. Circulation, 1995. 91(1): p. 10-5. 

123. Nazeyrollas, P., et al., Efficiency of amifostine as a protection against doxorubicin 
toxicity in rats during a 12-day treatment. Anticancer Res, 2003. 23(1A): p. 405-9. 

124. Matsui, H., et al., Protective effects of carvedilol against doxorubicin-induced 
cardiomyopathy in rats. Life Sci, 1999. 65(12): p. 1265-74. 

125. Fisher, P.W., et al., Phosphodiesterase-5 inhibition with sildenafil attenuates 
cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of 
doxorubicin cardiotoxicity. Circulation, 2005. 111(13): p. 1601-10. 



 78 

126. Cvetkovic, R.S. and L.J. Scott, Dexrazoxane : a review of its use for cardioprotection 
during anthracycline chemotherapy. Drugs, 2005. 65(7): p. 1005-24. 

127. Tesoriere, L., et al., Effect of vitamin A administration on resistance of rat heart 
against doxorubicin-induced cardiotoxicity and lethality. J Pharmacol Exp Ther, 
1994. 269(1): p. 430-6. 

128. Kalender, S., et al., Protective role of antioxidant vitamin E and catechin on 
idarubicin-induced cardiotoxicity in rats. Braz J Med Biol Res, 2002. 35(11): p. 
1379-87. 

129. Thabrew, M.I., et al., Effect of oral supplementation with vitamin E on the oxido-
reductive status of red blood cells in normal mice and mice subject to oxidative stress 
by chronic administration of adriamycin. Ann Clin Biochem, 1999. 36 ( Pt 2): p. 
216-20. 

130. Vile, G.F. and C.C. Winterbourn, Inhibition of adriamycin-promoted microsomal 
lipid peroxidation by beta-carotene, alpha-tocopherol and retinol at high and low 
oxygen partial pressures. FEBS letters, 1988. 238(2): p. 353-6. 

131. Stahl, W. and H. Sies, Bioactivity and protective effects of natural carotenoids. 
Biochim Biophys Acta, 2005. 1740(2): p. 101-7. 

132. Sundram, K., R. Sambanthamurthi, and Y.A. Tan, Palm fruit chemistry and nutrition. 
Asia Pac J Clin Nutr, 2003. 12(3): p. 355-62. 

133. Yano, Y., et al., Induction of cytotoxicity in human lung adenocarcinoma cells by 6-
O-carboxypropyl-alpha-tocotrienol, a redox-silent derivative of alpha-tocotrienol. 
Int J Cancer, 2005. 115(5): p. 839-46. 

134. Ling, M.T., et al., Tocotrienol as a potential anticancer agent. Carcinogenesis, 2012. 
33(2): p. 233-9. 

135. Tomeo, A.C., et al., Antioxidant effects of tocotrienols in patients with 
hyperlipidemia and carotid stenosis. Lipids, 1995. 30(12): p. 1179-83. 

136. Qureshi, A.A., et al., Response of hypercholesterolemic subjects to administration of 
tocotrienols. Lipids, 1995. 30(12): p. 1171-7. 

137. Tan, D.T., et al., Effect of a palm-oil-vitamin E concentrate on the serum and 
lipoprotein lipids in humans. Am J Clin Nutr, 1991. 53(4 Suppl): p. 1027S-1030S. 

138. Esterhuyse, A.J., E.D. Toit, and J.V. Rooyen, Dietary red palm oil supplementation 
protects against the consequences of global ischemia in the isolated perfused rat 
heart. Asia Pac J Clin Nutr, 2005. 14(4): p. 340-7. 

139. Opie, L.H., Myocardial ischemia--metabolic pathways and implications of increased 
glycolysis. Cardiovasc Drugs Ther, 1990. 4 Suppl 4: p. 777-90. 

140. Ross, R., Atherosclerosis--an inflammatory disease. N Engl J Med, 1999. 340(2): p. 
115-26. 

141. Jennings, R.B. and K.A. Reimer, Lethal myocardial ischemic injury. Am J Pathol, 
1981. 102(2): p. 241-55. 

142. Steenbergen, C., et al., Correlation between cytosolic free calcium, contracture, ATP, 
and irreversible ischemic injury in perfused rat heart. Circ Res, 1990. 66(1): p. 135-
46. 

143. Dennis, S.C., W. Gevers, and L.H. Opie, Protons in ischemia: where do they come 
from; where do they go to? J Mol Cell Cardiol, 1991. 23(9): p. 1077-86. 

144. Opie, L.H., Heart Physiology From Cell to Circulation. Fourth ed. 2004: Lippincott 
Williams & Wilkins. 

145. Jennings, R.B., K.A. Reimer, and C. Steenbergen, Myocardial ischemia revisited. 
The osmolar load, membrane damage, and reperfusion. J Mol Cell Cardiol, 1986. 
18(8): p. 769-80. 



 79 

146. Vassalle, M. and C.I. Lin, Calcium overload and cardiac function. J Biomed Sci, 
2004. 11(5): p. 542-65. 

147. Levraut, J., et al., Cell death during ischemia: relationship to mitochondrial 
depolarization and ROS generation. Am J Physiol Heart Circ Physiol, 2003. 284(2): 
p. H549-58. 

148. Crompton, M., The mitochondrial permeability transition pore and its role in cell 
death. Biochem J, 1999. 341 ( Pt 2): p. 233-49. 

149. Braunwald, E. and R.A. Kloner, Myocardial reperfusion: a double-edged sword? J 
Clin Invest, 1985. 76(5): p. 1713-9. 

150. Yellon, D.M. and D.J. Hausenloy, Myocardial reperfusion injury. N Engl J Med, 
2007. 357(11): p. 1121-35. 

151. Matsumura, K., et al., Progression of myocardial necrosis during reperfusion of 
ischemic myocardium. Circulation, 1998. 97(8): p. 795-804. 

152. Jonassen, A.K., et al., Myocardial protection by insulin at reperfusion requires early 
administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ 
Res, 2001. 89(12): p. 1191-8. 

153. Hausenloy, D.J. and D.M. Yellon, New directions for protecting the heart against 
ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase 
(RISK)-pathway. Cardiovasc Res, 2004. 61(3): p. 448-60. 

154. Jonassen, A.K., et al., Glucose-insulin-potassium reduces infarct size when 
administered during reperfusion. Cardiovasc Drugs Ther, 2000. 14(6): p. 615-23. 

155. Crompton, M., A. Costi, and L. Hayat, Evidence for the presence of a reversible 
Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem 
J, 1987. 245(3): p. 915-8. 

156. Cohen, M.V., X.M. Yang, and J.M. Downey, The pH hypothesis of postconditioning: 
staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. 
Circulation, 2007. 115(14): p. 1895-903. 

157. Ohashi, T., et al., Transient reperfusion with acidic solution affects postischemic 
functional recovery: studies in the isolated working rat heart. J Thorac Cardiovasc 
Surg, 1996. 111(3): p. 613-20. 

158. Hausenloy, D.J. and D.M. Yellon, The mitochondrial permeability transition pore: 
its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol 
Cell Cardiol, 2003. 35(4): p. 339-41. 

159. Juhaszova, M., et al., Glycogen synthase kinase-3beta mediates convergence of 
protection signaling to inhibit the mitochondrial permeability transition pore. J Clin 
Invest, 2004. 113(11): p. 1535-49. 

160. Gross, E.R., A.K. Hsu, and G.J. Gross, Delayed cardioprotection afforded by the 
glycogen synthase kinase 3 inhibitor SB-216763 occurs via a KATP- and MPTP-
dependent mechanism at reperfusion. Am J Physiol Heart Circ Physiol, 2008. 294(3): 
p. H1497-500. 

161. Frohlich, G.M., et al., Myocardial reperfusion injury: looking beyond primary PCI. 
Eur Heart J, 2013. 

162. Inserte, J., et al., Effect of acidic reperfusion on prolongation of intracellular acidosis 
and myocardial salvage. Cardiovasc Res, 2008. 77(4): p. 782-90. 

163. Avkiran, M., et al., Na+/H+ exchange in ischemia, reperfusion and preconditioning. 
Cardiovasc Res, 2001. 50(1): p. 162-6. 

164. Kowaltowski, A.J., R.F. Castilho, and A.E. Vercesi, Mitochondrial permeability 
transition and oxidative stress. FEBS letters, 2001. 495(1-2): p. 12-5. 

165. Hausenloy, D.J. and D.M. Yellon, Reperfusion injury salvage kinase signalling: 
taking a RISK for cardioprotection. Heart Fail Rev, 2007. 12(3-4): p. 217-34. 



 80 

166. Miura, T. and T. Miki, GSK-3beta, a therapeutic target for cardiomyocyte 
protection. Circ J, 2009. 73(7): p. 1184-92. 

167. Lecour, S., Activation of the protective Survivor Activating Factor Enhancement 
(SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J 
Mol Cell Cardiol, 2009. 47(1): p. 32-40. 

168. Hausenloy, D.J. and D.M. Yellon, Preconditioning and postconditioning: united at 
reperfusion. Pharmacol Ther, 2007. 116(2): p. 173-91. 

169. Murry, C.E., R.B. Jennings, and K.A. Reimer, Preconditioning with ischemia: a 
delay of lethal cell injury in ischemic myocardium. Circulation, 1986. 74(5): p. 1124-
36. 

170. Zhao, Z.Q., et al., Inhibition of myocardial injury by ischemic postconditioning 
during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart 
Circ Physiol, 2003. 285(2): p. H579-88. 

171. Hausenloy, D.J. and D.M. Yellon, The evolving story of "conditioning" to protect 
against acute myocardial ischaemia-reperfusion injury. Heart, 2007. 93(6): p. 649-
51. 

172. Schulz, R., et al., Signal transduction of ischemic preconditioning. Cardiovasc Res, 
2001. 52(2): p. 181-98. 

173. Yellon, D.M. and J.M. Downey, Preconditioning the myocardium: from cellular 
physiology to clinical cardiology. Physiol Rev, 2003. 83(4): p. 1113-51. 

174. Hausenloy, D.J., et al., Ischemic preconditioning protects by activating prosurvival 
kinases at reperfusion. Am J Physiol Heart Circ Physiol, 2005. 288(2): p. H971-6. 

175. Nystrom, F.H. and M.J. Quon, Insulin signalling: metabolic pathways and 
mechanisms for specificity. Cell Signal, 1999. 11(8): p. 563-74. 

176. Diaz, R., et al., Metabolic modulation of acute myocardial infarction. The ECLA 
(Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation, 1998. 
98(21): p. 2227-34. 

177. Jonassen, A.K., et al., Insulin administered at reoxygenation exerts a 
cardioprotective effect in myocytes by a possible anti-apoptotic mechanism. J Mol 
Cell Cardiol, 2000. 32(5): p. 757-64. 

178. Davidson, S.M., et al., Signalling via the reperfusion injury signalling kinase (RISK) 
pathway links closure of the mitochondrial permeability transition pore to 
cardioprotection. Int J Biochem Cell Biol, 2006. 38(3): p. 414-9. 

179. Plyte, S.E., et al., Glycogen synthase kinase-3: functions in oncogenesis and 
development. Biochim Biophys Acta, 1992. 1114(2-3): p. 147-62. 

180. Woodgett, J.R., Molecular cloning and expression of glycogen synthase kinase-
3/factor A. EMBO J, 1990. 9(8): p. 2431-8. 

181. Embi, N., D.B. Rylatt, and P. Cohen, Glycogen synthase kinase-3 from rabbit 
skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and 
phosphorylase kinase. Eur J Biochem, 1980. 107(2): p. 519-27. 

182. Grimes, C.A. and R.S. Jope, The multifaceted roles of glycogen synthase kinase 
3beta in cellular signaling. Prog Neurobiol, 2001. 65(4): p. 391-426. 

183. Ali, A., K.P. Hoeflich, and J.R. Woodgett, Glycogen synthase kinase-3: properties, 
functions, and regulation. Chem Rev, 2001. 101(8): p. 2527-40. 

184. Sutherland, C., I.A. Leighton, and P. Cohen, Inactivation of glycogen synthase 
kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-
factor signalling. Biochem J, 1993. 296 ( Pt 1): p. 15-9. 

185. Rockel, J.S., et al., Cyclic AMP regulates extracellular matrix gene expression and 
metabolism in cultured primary rat chondrocytes. Matrix Biol, 2009. 28(6): p. 354-
64. 



 81 

186. Frame, S. and P. Cohen, GSK3 takes centre stage more than 20 years after its 
discovery. Biochem J, 2001. 359(Pt 1): p. 1-16. 

187. Spiess, J., et al., Primary structure of corticotropin-releasing factor from ovine 
hypothalamus. Proc Natl Acad Sci U S A, 1981. 78(10): p. 6517-21. 

188. Eckart, K., et al., Pharmacology and biology of corticotropin-releasing factor (CRF) 
receptors. Receptors Channels, 2002. 8(3-4): p. 163-77. 

189. Hashimoto, K., et al., Urocortins and corticotropin releasing factor type 2 receptors 
in the hypothalamus and the cardiovascular system. Peptides, 2004. 25(10): p. 1711-
21. 

190. Wood, S.K. and J.H. Woods, Corticotropin-releasing factor receptor-1: a 
therapeutic target for cardiac autonomic disturbances. Expert Opin Ther Targets, 
2007. 11(11): p. 1401-13. 

191. Stiedl, O., et al., Corticotropin-releasing factor receptor 1 and central heart rate 
regulation in mice during expression of conditioned fear. J Pharmacol Exp Ther, 
2005. 312(3): p. 905-16. 

192. Grunt, M., et al., Dilatory and inotropic effects of corticotropin-releasing factor 
(CRF) on the isolated heart. Effects on atrial natriuretic peptide (ANP) release. 
Horm Metab Res, 1992. 24(2): p. 56-9. 

193. Richter, R.M. and M.J. Mulvany, Comparison of hCRF and oCRF effects on 
cardiovascular responses after central, peripheral, and in vitro application. Peptides, 
1995. 16(5): p. 843-9. 

194. Brar, B.K., et al., CRH-like peptides protect cardiac myocytes from lethal ischaemic 
injury. Mol Cell Endocrinol, 1999. 158(1-2): p. 55-63. 

195. Jonassen, A.K., et al., Activation of corticotropin releasing factor receptor type 2 in 
the heart by corticotropin releasing factor offers cytoprotection against ischemic 
injury via PKA and PKC dependent signaling. Regul Pept, 2012. 174(1-3): p. 90-7. 

196. Brar, B.K., et al., Urocortin-II and urocortin-III are cardioprotective against 
ischemia reperfusion injury: an essential endogenous cardioprotective role for 
corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology, 
2004. 145(1): p. 24-35; discussion 21-3. 

197. Brar, B.K., et al., Urocortin protects against ischemic and reperfusion injury via a 
MAPK-dependent pathway. J Biol Chem, 2000. 275(12): p. 8508-14. 

198. Mathieu, J. and F. Besancon, Arsenic trioxide represses NF-kappaB activation and 
increases apoptosis in ATRA-treated APL cells. Ann N Y Acad Sci, 2006. 1090: p. 
203-8. 

199. Luo, Z.G., et al., [Effect of daunorubicin and cytarabine on cell line NB4]. Zhonghua 
Xue Ye Xue Za Zhi, 2007. 28(4): p. 247-9. 

200. Dalton, W.T., Jr., et al., HL-60 cell line was derived from a patient with FAB-M2 and 
not FAB-M3. Blood, 1988. 71(1): p. 242-7. 

201. Breitman, T.R., S.E. Selonick, and S.J. Collins, Induction of differentiation of the 
human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci 
U S A, 1980. 77(5): p. 2936-40. 

202. Naderi, E.H., et al., Activation of cAMP signaling inhibits DNA damage-induced 
apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood, 2009. 
114(3): p. 608-18. 

203. R.I, F., Culture of animal cells; a manual of basic techniquesand specialized 
applications. 6th ed. 2010, New Jearsy: Jon Wiley & Sons, Inc. 

204. Gausdal, G., et al., Abolition of stress-induced protein synthesis sensitizes leukemia 
cells to anthracycline-induced death. Blood, 2008. 111(5): p. 2866-77. 



 82 

205. Belhoussine, R., et al., Confocal scanning microspectrofluorometry reveals specific 
anthracyline accumulation in cytoplasmic organelles of multidrug-resistant cancer 
cells. J Histochem Cytochem, 1998. 46(12): p. 1369-76. 

206. Smith, P.J., C. Rackstraw, and F. Cotter, DNA fragmentation as a consequence of 
cell cycle traverse in doxorubicin- and idarubicin-treated human lymphoma cells. 
Ann Hematol, 1994. 69 Suppl 1: p. S7-11. 

207. Price, H.L. and M. Helrich, The effect of cyclopropane, diethyl ether, nitrous oxide, 
thiopental, and hydrogen ion concentration on the myocardial dunction of the dog 
heart-lung preparation. J Pharmacol Exp Ther, 1955. 115(2): p. 206-16. 

208. Ytrehus, K., et al., Rat and rabbit heart infarction: effects of anesthesia, perfusate, 
risk zone, and method of infarct sizing. Am J Physiol, 1994. 267(6 Pt 2): p. H2383-
90. 

209. Dolman, J. and D.V. Godin, Myocardial ischaemic/reperfusion injury in the 
anaesthetized rabbit: comparative effects of halothane and isoflurane. Can Anaesth 
Soc J, 1986. 33(4): p. 443-52. 

210. Langendorff, O., Untersuchungen am iiberlebenden Säugethierherzen. 1895. 
211. Liao, R., B.K. Podesser, and C.C. Lim, The continuing evolution of the Langendorff 

and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol 
Heart Circ Physiol, 2012. 303(2): p. H156-67. 

212. Sutherland, F.J. and D.J. Hearse, The isolated blood and perfusion fluid perfused 
heart. Pharmacol Res, 2000. 41(6): p. 613-27. 

213. Bell, R.M., M.M. Mocanu, and D.M. Yellon, Retrograde heart perfusion: the 
Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol, 2011. 50(6): 
p. 940-50. 

214. Neely, J.R., et al., Effect of pressure development on oxygen consumption by isolated 
rat heart. Am J Physiol, 1967. 212(4): p. 804-14. 

215. Lochner, A., S. Genade, and J.A. Moolman, Ischemic preconditioning: infarct size is 
a more reliable endpoint than functional recovery. Basic Res Cardiol, 2003. 98(5): p. 
337-46. 

216. Krutzik, P.O. and G.P. Nolan, Intracellular phospho-protein staining techniques for 
flow cytometry: monitoring single cell signaling events. Cytometry A, 2003. 55(2): p. 
61-70. 

217. Huelsenbeck, J., et al., Inhibition of Rac1 signaling by lovastatin protects against 
anthracycline-induced cardiac toxicity. Cell Death Dis, 2011. 2: p. e190. 

218. Tan, S.C., et al., Identification of valid housekeeping genes for quantitative RT-PCR 
analysis of cardiosphere-derived cells preconditioned under hypoxia or with prolyl-
4-hydroxylase inhibitors. Mol Biol Rep, 2012. 39(4): p. 4857-67. 

219. Al-Dasooqi, N., et al., Selection of housekeeping genes for gene expression studies in 
a rat model of irinotecan-induced mucositis. Chemotherapy, 2011. 57(1): p. 43-53. 

220. Jens Hammerstrøm, N.S.O.h.l., et al., Nasjonalt handlingsprogram med 
retningslinjer for diagnostikk, behandling og oppfølging av maligne blodsykdommer. 
2012. 

221. Cheng, X., et al., Epac and PKA: a tale of two intracellular cAMP receptors. Acta 
Biochim Biophys Sin (Shanghai), 2008. 40(7): p. 651-62. 

222. Kizaki, H., et al., Adenosine receptor-mediated accumulation of cyclic AMP-induced 
T-lymphocyte death through internucleosomal DNA cleavage. J Biol Chem, 1990. 
265(9): p. 5280-4. 

223. McConkey, D.J., M. Jondal, and S. Orrenius, Cellular signaling in thymocyte 
apoptosis. Semin Immunol, 1992. 4(6): p. 371-7. 



 83 

224. Lanotte, M., et al., Programmed cell death (apoptosis) is induced rapidly and with 
positive cooperativity by activation of cyclic adenosine monophosphate-kinase I in a 
myeloid leukemia cell line. J Cell Physiol, 1991. 146(1): p. 73-80. 

225. Krakstad, C., A.E. Christensen, and S.O. Doskeland, cAMP protects neutrophils 
against TNF-alpha-induced apoptosis by activation of cAMP-dependent protein 
kinase, independently of exchange protein directly activated by cAMP (Epac). J 
Leukoc Biol, 2004. 76(3): p. 641-7. 

226. Gruol, D.J. and J. Altschmied, Synergistic induction of apoptosis with 
glucocorticoids and 3',5'-cyclic adenosine monophosphate reveals agonist activity by 
RU 486. Mol Endocrinol, 1993. 7(1): p. 104-13. 

227. Suzuki, K., et al., 12-O-tetradecanoylphorbol 13-acetate potentiates the action of 
cAMP in inducing DNA cleavage in thymocytes. Biochem Biophys Res Commun, 
1990. 171(2): p. 827-31. 

228. Olsson, I.L., T.R. Breitman, and R.C. Gallo, Priming of human myeloid leukemic cell 
lines HL-60 and U-937 with retinoic acid for differentiation effects of cyclic 
adenosine 3':5'-monophosphate-inducing agents and a T-lymphocyte-derived 
differentiation factor. Cancer research, 1982. 42(10): p. 3928-33. 

229. Gianni, M., et al., All-trans retinoic acid and cyclic adenosine monophosphate 
cooperate in the expression of leukocyte alkaline phosphatase in acute promyelocytic 
leukemia cells. Blood, 1995. 85(12): p. 3619-35. 

230. Huseby, S., et al., Cyclic AMP induces IPC leukemia cell apoptosis via CRE-and 
CDK-dependent Bim transcription. Cell Death Dis, 2011. 2: p. e237. 

231. Nguyen, E., et al., Activation of Both Protein Kinase A (PKA) Type I and PKA Type 
II Isozymes Is Required for Retinoid-Induced Maturation of Acute Promyelocytic 
Leukemia Cells. Mol Pharmacol, 2013. 83(5): p. 1057-65. 

232. Kwak, H.J., et al., PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-
induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal, 2008. 
20(5): p. 803-14. 

233. Takahashi, T., et al., Increased cardiac adenylyl cyclase expression is associated 
with increased survival after myocardial infarction. Circulation, 2006. 114(5): p. 
388-96. 

234. Sandhu, R., et al., Effect of ischemic preconditioning of the myocardium on cAMP. 
Circ Res, 1996. 78(1): p. 137-47. 

235. Lochner, A., et al., Protection of the ischaemic heart: investigations into the 
phenomenon of ischaemic preconditioning. Cardiovasc J Afr, 2009. 20(1): p. 43-51. 

236. Moolman, J.A., et al., A comparison between ischemic preconditioning and anti-
adrenergic interventions: cAMP, energy metabolism and functional recovery. Basic 
Res Cardiol, 1996. 91(3): p. 219-33. 

237. Lochner, A., et al., Ischemic preconditioning and the beta-adrenergic signal 
transduction pathway. Circulation, 1999. 100(9): p. 958-66. 

238. Frances, C., et al., Role of beta 1- and beta 2-adrenoceptor subtypes in 
preconditioning against myocardial dysfunction after ischemia and reperfusion. J 
Cardiovasc Pharmacol, 2003. 41(3): p. 396-405. 

239. Sanada, S., et al., Protein kinase A as another mediator of ischemic preconditioning 
independent of protein kinase C. Circulation, 2004. 110(1): p. 51-7. 

240. Inserte, J., et al., Ischemic preconditioning attenuates calpain-mediated degradation 
of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc 
Res, 2004. 64(1): p. 105-14. 



 84 

241. Yang, C., et al., Early ischaemic preconditioning requires Akt- and PKA-mediated 
activation of eNOS via serine1176 phosphorylation. Cardiovasc Res, 2013. 97(1): p. 
33-43. 

242. Duquesnes, N., et al., Epac stimulation induces rapid increases in connexin43 
phosphorylation and function without preconditioning effect. Pflugers Arch, 2010. 
460(4): p. 731-41. 

243. Calderon-Sanchez, E., et al., Urocortin induces positive inotropic effect in rat heart. 
Cardiovasc Res, 2009. 83(4): p. 717-25. 

244. Buzdar, A.U., et al., Early and delayed clinical cardiotoxicity of doxorubicin. 
Cancer, 1985. 55(12): p. 2761-5. 

245. Oeffinger, K.C., et al., Chronic health conditions in adult survivors of childhood 
cancer. N Engl J Med, 2006. 355(15): p. 1572-82. 

246. Mertens, A.C., et al., Late mortality experience in five-year survivors of childhood 
and adolescent cancer: the Childhood Cancer Survivor Study. J Clin Oncol, 2001. 
19(13): p. 3163-72. 

247. Moller, T.R., et al., Decreasing late mortality among five-year survivors of cancer in 
childhood and adolescence: a population-based study in the Nordic countries. J Clin 
Oncol, 2001. 19(13): p. 3173-81. 

248. de Graaf, H., et al., Cardiotoxicity from intensive chemotherapy combined with 
radiotherapy in breast cancer. Br J Cancer, 1997. 76(7): p. 943-5. 

249. Aleman, B.M., et al., Late cardiotoxicity after treatment for Hodgkin lymphoma. 
Blood, 2007. 109(5): p. 1878-86. 

250. Von Hoff, D.D., et al., Risk factors for doxorubicin-induced congestive heart failure. 
Ann Intern Med, 1979. 91(5): p. 710-7. 

251. Swain, S.M., F.S. Whaley, and M.S. Ewer, Congestive heart failure in patients 
treated with doxorubicin: a retrospective analysis of three trials. Cancer, 2003. 
97(11): p. 2869-79. 

252. Hudson, M.M., et al., Noninvasive evaluation of late anthracycline cardiac toxicity in 
childhood cancer survivors. J Clin Oncol, 2007. 25(24): p. 3635-43. 

253. Mariotto, A.B., et al., Long-term survivors of childhood cancers in the United States. 
Cancer Epidemiol Biomarkers Prev, 2009. 18(4): p. 1033-40. 

254. Cytostatikaboken, 2009. 7. 
255. Pein, F., et al., Cardiac abnormalities 15 years and more after adriamycin therapy in 

229 childhood survivors of a solid tumour at the Institut Gustave Roussy. Br J 
Cancer, 2004. 91(1): p. 37-44. 

256. Levitt, G., et al., Cardiac or cardiopulmonary transplantation in childhood cancer 
survivors: an increasing need? Eur J Cancer, 2009. 45(17): p. 3027-34. 

257. Block, K.I., et al., Impact of antioxidant supplementation on chemotherapeutic 
efficacy: a systematic review of the evidence from randomized controlled trials. 
Cancer Treat Rev, 2007. 33(5): p. 407-18. 

258. Block, K.I., et al., Impact of antioxidant supplementation on chemotherapeutic 
toxicity: a systematic review of the evidence from randomized controlled trials. Int J 
Cancer, 2008. 123(6): p. 1227-39. 

259. Wouters, K.A., et al., Protecting against anthracycline-induced myocardial damage: 
a review of the most promising strategies. Br J Haematol, 2005. 131(5): p. 561-78. 

260. Quiles, J.L., et al., Antioxidant nutrients and adriamycin toxicity. Toxicology, 2002. 
180(1): p. 79-95. 

261. Herman, E.H., et al., Reduction of chronic daunorubicin cardiotoxicity by ICRF-187 
in rabbits. Res Commun Chem Pathol Pharmacol, 1981. 31(1): p. 85-97. 



 85 

262. Marty, M., et al., Multicenter randomized phase III study of the cardioprotective 
effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients 
treated with anthracycline-based chemotherapy. Ann Oncol, 2006. 17(4): p. 614-22. 

263. Schuchter, L.M., et al., 2002 update of recommendations for the use of chemotherapy 
and radiotherapy protectants: clinical practice guidelines of the American Society of 
Clinical Oncology. J Clin Oncol, 2002. 20(12): p. 2895-903. 

264. Marczin, N., et al., Antioxidants in myocardial ischemia-reperfusion injury: 
therapeutic potential and basic mechanisms. Arch Biochem Biophys, 2003. 420(2): 
p. 222-36. 

265. Sochman, J., N-acetylcysteine in acute cardiology: 10 years later: what do we know 
and what would we like to know?! J Am Coll Cardiol, 2002. 39(9): p. 1422-8. 

266. Ginks, W.R., et al., Coronary artery reperfusion. II. Reduction of myocardial infarct 
size at 1 week after the coronary occlusion. J Clin Invest, 1972. 51(10): p. 2717-23. 

267. Mandelzweig, L., et al., The second Euro Heart Survey on acute coronary 
syndromes: Characteristics, treatment, and outcome of patients with ACS in Europe 
and the Mediterranean Basin in 2004. Eur Heart J, 2006. 27(19): p. 2285-93. 

268. Hausenloy, D.J., et al., Translating cardioprotection for patient benefit: position 
paper from the Working Group of Cellular Biology of the Heart of the European 
Society of Cardiology. Cardiovasc Res, 2013. 98(1): p. 7-27. 

269. Ferdinandy, P., R. Schulz, and G.F. Baxter, Interaction of cardiovascular risk factors 
with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. 
Pharmacol Rev, 2007. 59(4): p. 418-58. 

270. Bartling, B., et al., Ischemic preconditioning is not cardioprotective in senescent 
human myocardium. Ann Thorac Surg, 2003. 76(1): p. 105-11. 

271. Hassouna, A., et al., Mitochondrial dysfunction as the cause of the failure to 
precondition the diabetic human myocardium. Cardiovasc Res, 2006. 69(2): p. 450-8. 

272. Tosaki, A., et al., The evolution of diabetic response to ischemia/reperfusion and 
preconditioning in isolated working rat hearts. Cardiovasc Res, 1996. 31(4): p. 526-
36. 

273. Przyklenk, K., et al., Cardioprotection with postconditioning: loss of efficacy in 
murine models of type-2 and type-1 diabetes. Antioxid Redox Signal, 2011. 14(5): p. 
781-90. 

274. Heusch, G., Cardioprotection: chances and challenges of its translation to the clinic. 
Lancet, 2013. 381(9861): p. 166-75. 

275. Anversa, P., Myocyte death in the pathological heart. Circ Res, 2000. 86(2): p. 121-
4. 

276. Nadal-Ginard, B., et al., Myocyte death, growth, and regeneration in cardiac 
hypertrophy and failure. Circ Res, 2003. 92(2): p. 139-50. 

277. Zhao, Z.Q., Oxidative stress-elicited myocardial apoptosis during reperfusion. Curr 
Opin Pharmacol, 2004. 4(2): p. 159-65. 

278. Gottlieb, R.A., Cell death pathways in acute ischemia/reperfusion injury. J 
Cardiovasc Pharmacol Ther, 2011. 16(3-4): p. 233-8. 

279. Zhang, Y.W., et al., Cardiomyocyte death in doxorubicin-induced cardiotoxicity. 
Arch Immunol Ther Exp (Warsz), 2009. 57(6): p. 435-45. 

280. Bozcali, E., et al., Cardioprotective effects of zofenopril, enalapril and valsartan 
against ischaemia/reperfusion injury as well as doxorubicin cardiotoxicity. Acta 
Cardiol, 2012. 67(1): p. 87-96. 

281. Reiter, R.J., et al., Melatonin protects the heart against both ischemia/reperfusion 
injury and chemotherapeutic drugs. Cardiovasc Drugs Ther, 2002. 16(1): p. 5-6. 



 86 

282. Schjott, J., et al., Pretreatment with ischaemia attenuates acute epirubicin-induced 
cardiotoxicity in isolated rat hearts. Pharmacol Toxicol, 1996. 78(6): p. 381-6. 

283. Ramu, E., et al., Dexrazoxane prevents myocardial ischemia/reperfusion-induced 
oxidative stress in the rat heart. Cardiovasc Drugs Ther, 2006. 20(5): p. 343-8. 

284. Murphy, E. and C. Steenbergen, Mechanisms underlying acute protection from 
cardiac ischemia-reperfusion injury. Physiol Rev, 2008. 88(2): p. 581-609. 

285. Penna, C., et al., The paradigm of postconditioning to protect the heart. J Cell Mol 
Med, 2008. 12(2): p. 435-58. 

286. Williams, R.E., J.L. Zweier, and J.T. Flaherty, Treatment with deferoxamine during 
ischemia improves functional and metabolic recovery and reduces reperfusion-
induced oxygen radical generation in rabbit hearts. Circulation, 1991. 83(3): p. 
1006-14. 

287. Penna, C., et al., Post-conditioning induced cardioprotection requires signaling 
through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and 
protein kinase C activation. Basic Res Cardiol, 2006. 101(2): p. 180-9. 

288. Hausenloy, D.J., A.M. Wynne, and D.M. Yellon, Ischemic preconditioning targets 
the reperfusion phase. Basic Res Cardiol, 2007. 102(5): p. 445-52. 

289. Liu, Y., et al., Redox signaling at reperfusion is required for protection from 
ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol, 
2008. 103(1): p. 54-9. 

290. Montaigne, D., C. Hurt, and R. Neviere, Mitochondria death/survival signaling 
pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted 
therapies. Biochem Res Int, 2012. 2012: p. 951539. 

291. Baines, C.P., et al., Myocardial protection by insulin is dependent on 
phospatidylinositol 3-kinase but not protein kinase C or KATP channels in the 
isolated rabbit heart. Basic Res Cardiol, 1999. 94(3): p. 188-98. 

292. Kim, K.H., G.Y. Oudit, and P.H. Backx, Erythropoietin protects against 
doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent 
pathway. J Pharmacol Exp Ther, 2008. 324(1): p. 160-9. 

293. Cho, E.C., B. Mitton, and K.M. Sakamoto, CREB and leukemogenesis. Crit Rev 
Oncog, 2011. 16(1-2): p. 37-46. 

 

 




