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Abstract

Learning of Long Term Optimal Capacity:
The Case of a Monopolist Facing Uncertainty.
by
Linda Margrethe Lien Knarvik, Master in Economics
University of Bergen, December 2013

Supervisor: Professor Sjur Didrik Fldm

The key question is: How can the optimal long term level of capacity be determined, if
only short term conditions are known, and the agent’s skills to uncover the long term
characteristics are limited?

This thesis develops a simple and unified solution algorithm as an alternative approach to
long term decisions under uncertainty. It is based on stochastic approximation and the
gradient method, and is designed such that an agent acquires knowledge of the best long

term capacity via adaptive learning from discrete observations in a stochastic market.

By non-linear programming, the choice of long term capacity made by a profit maximizing
monopolist under uncertainty is simulated numerically. The effect of various types of
uncertainty on the agent’s long term decisions are examined. Both one (capacity) and

multiple learning objects (capacity price & slope) are implemented in the experiments.

Based on the numerical experiments it is shown that the algorithms produce results in
line with economic intuition. The numerical results are also compliant to others findings
for a wide range of initial guesses, and for all types of uncertainty applied in this thesis.
Even when demand is unknown, and a proxy demand curve is applied, the algorithms
provides sufficient information so that the agent becomes able to make an effecient long
term capacity choice under uncertainty.

The computer program AMPL and the solver CPLEX 11.2 have been used to conduct the

numerical experiments.

Key words: Adaptive Learning - Gradient Method - Proxy Demand - Dual Value - Convergence -
Long Term Choice - Non-linear Programming.
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Chapter 1

Introduction

Capacity matters! In terms of money spent or money earned, all businesses have, at some
point, limits which restrain their possible output. It may be a physical limit, limited “know
how”, little, or no control over the availability of an input or even unknown demand.
Some of these limitations can easily be overcome by employing people with the right
knowledge, while others are more difficult to overcome. One such challenging constraint
may be the availability of a random input over which the producer has no control, possibly

with an unknown nature or unfamiliar distribution.

As an undergraduate in economics you encounter the method of maximization, usually
solved with a deterministic knowledge of parameters and constraints, or at least a known

distribution of those. A question then comesto mind:

How does one solve maximization problems, if the properties of random

values are unknown, or one lacks sufficient skills to asses their characteristics?

To solve maximization problems under uncertainty requires a relatively high level of
mathematics and statistics. Even with these kinds of skills, the problems may be hard to
find explicit solutions for and a simpler way to reach the target is in most cases preferable
if available. This thesis suggests one such simpler way to reach the target.

Section 1.1 presents the motivation for why capacity decisions are interesting and provide
the reader with the motivation for the experiments conducted in this thesis. This Section
will also present the main objective of the experiments. Section 1.2 discusses some of the
most significant limitations inherent in the model, and hence in the results derived from it.

The structure of the remainder of the thesis is presented in Section 1.3.
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1.1 Motivation and Objective

Limited physical transfer capacity through the electricity grid connecting domestic areas
in Norway to other countries can cause a sharp increase in prices. Subsequently this has
resulted in an uncomfortably high electricity bill for energy users. So lack of capacity does
matter and is potentially costly in money terms. A problem naturally then arise:

How can optimal capacity be determined, or learned, in a simple way based
on information available through realized values?

Optimization problems under uncertainty are usually solved by using some sort of simu-
lations, stochastic approximation or even more advanced statistical methods. Common
for these methods is a requirement of a relatively high level of mathematical and/or
statistical skills to both develop and analyze the results. Also a number of assumptions
are required, assumptions which may be more or less adequate for the real world problem
in question. More often than not, a huge amount of historical data must be examined,

both to implement the solution, and to control the accuracy of the findings.

This thesis will suggest an alternative approach to solving these kinds of problems, an
approach based on the ability to learn from discrete observations of current market
conditions. The purposed solution method can therefore be seen as a simpler way to find
an optimal solution in a world of uncertainty, as the assumptions and skills needed to be

able to implement the method are limited.

The main objective in this thesis is therefore to develop a unified and straightforward
solution algorithm which enables an average agent to learn the best choice of long term
capacity, when faced with varying market conditions. To be deemed a unified solution, the
method must be applicable for both deterministic and stochastic cases without significant

modifications.

Using a method similar to that presented by Fldm and Sandmark (2000), the agent will
adopt the needed knowledge trough discrete observations of current market conditions.
The agent will determine the best level of capacity when faced with both random input
availability and random demand, without any prior knowledge of the market conditions,
using a solution algorithm based on the gradient method and by using adaptive learning.

A non-deterministic economic reality with partially available information is assumed.
Realized random values can be observed before the short term decision is determined, but
only after the current capacity decision has been made. By assumption the capacity can
be changed by any incremental size at the end of each period, and will be available for

production in the forthcoming period.



1.2 Limitations 3

1.2 Limitations

This thesis is founded on a purely synthetic model, and is depolyed to display some
standard properties seen in the real world. The results, i.e. numerical values, have no
real interpretation for any real world problem and hence, can not be seen as a stand-alone
empirical result. Real valued data could have been applied in the solution algorithm, but
this would reduce the possibility to control the compliance between the results obtained
by the method and the expected theoretical results. In this thesis compliance control is

selected over application of data from a real economic setting.

The basic assumption of supply and demand is that the higher the price, the less quantity
sold, for normal goods (Jones, 2004, p. 87). This is applied in this thesis. Note that the
magnitudes of the effects are merely a result of choices made in the setup of the model,
and do not have any significant interest beside the direction of the effect.

Immediately effective incremental changes in capacity at no extra cost is a simplification
compared to a real world problem. The aim of this thesis is to show that a learning
heuristic! can produce results in line with economic intuition and compliant with others
findings. The aim is not to fully characterize optimal capacity under uncertainty. To
account for this flaw, a flexibility cost is included. Either way, a time-lag will give a

prolonged learning curve, but otherwise does not affect the results obtained.

The uncertainty is based on computer generated random values. In the computer program
AMPL (A Modeling Language for Mathematical Programming) applied to conduct the
experiments, the command param R default Uniform(a,b); produces a number
R within the range specified by a and b based on a seed provided by the system?. The
resulting values are therefore pseudo-random values only, but for the current project this
is deemed sufficient (Fourer, Gay, and Kernighan, 2003, p. 122 & p. 209).

This thesis is written in the document preparation system LaTgX (2009) and used the
bibliography management system BibTEX (2009), following the KTgX-distribution, trough
the program TeXnicCenter (2013). Being relatively new to this system, some words have
split at the wrong places, and some figures have been placed differently than intended,

and the reader are kindly asked to disregard this small errors.?

! Heuristic: Strategy for learning or problem solving, often based on experience.

? The seed can be predefined to assure reproducible results. Section 4.4 describe how this is done.

? The layout is based on a template provided by Thorsten Karrer, RWTH Aachen University (Karrer, 2012),
modified for the Norwegian letters e, @ and a in the Bibliography.
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1.3 Structure

This chapter has introduced the motivation for the experiments conducted in this thesis,
and asked the leading question on how to find a simple and unified solution method
applicable to solve difficult maximization problems if the agent has limited abilities. The
main objective was given and some of the limitations to the chosen set-up was discussed.

Chapter 2 presents some of the relevant background literature to which this thesis relates,
and give a brief summary of some selected papers on both production planning under
uncertainty and adaptive learning. This chapter also introduces a simple adaptive learning

model applied in the developed algorithms to unveil the true value of a learning subject.

Chapter 3 introduces the model for the agent’s business. Both the demand and cost
structure are described, and uncertainty as it is modelled in this thesis is presented. The
difference between ex-ante* and ex-post® decisions are discussed and formalized. The

chapter is concluded with a summary of the agent’s deterministic and stochastic objectives.

Chapter 4 considers the theoretical framework needed to develop a simple and unified so-
lution procedure for uncertainty problems. Stochastic approximation, the online gradient
method and the Kuhn-Tucker conditions are presented as they form the foundation on
which the algorithms rely. This chapter is concluded by a presentation of the algorithms
in pseudo code, and briefly discuss required syntax for programming in AMPL.

In Chapter 5, the results obtained from implementing the algorithms for various stochastic
cases are presented. These are then compared to the results obtained for the deterministic
case. This chapter also summarizes the numerical values assigned to the parameters in
the model, and presents the different initial values applied in the experiments.

In Chapter 6 the compliance between the obtained results and theoretical postulates is
discussed. An analysis of the reasoning behind the differing results between the algorithms
is included. The applied learning process and the assumptions is also discussed in this
chapter. By way of conclusion a critique of the main weaknesses of the applied method is
included.

Chapter 7 concludes the thesis and presents a short summary of contributions, points to

some avenues for further research and offers a conclusion.

* Ex-ante decision: A decision made before uncertainty is realized.
® Ex-post decision: A decision made after uncertainty is realized.



Chapter 2
Background

Consider a monopolist facing uncertain market conditions of some unspecified type. In
the search for answers on how the monopolist reacts to uncertainty, computer simulation
tools and numerical methods are applied. The experiment is founded on a rich literature
concerning the impact of uncertain demand, stochastic modeling, adaptive learning and
approximation theory. In order to frame the experiments, only a handful of related papers
are selected as the area spans more than half a century of research.

This thesis relates to existing literature along two main lines of research, namely the effect
of uncertainty in production and planning and research on adaptive learning, also called
Bayesian updating. In Section 2.1 the main findings from some of the literature concerning
uncertainty and production planning are presented, and provides an indication of what
to expect in terms of results from the conducted experiments. In Section 2.2 papers
considering the adaptive learning model are discussed, and will serve as an introduction
to the main driver of the applied method, namely the updating of the agent’s knowledge
between periods. The adaptive expectation hypothesis is defined in Section 2.2, and a
simple blueprint for an adaptive learning model is given.

2.1 Uncertainty in Production and Planning

Early research on the subject of uncertain demand conducted by Leland (1972) was
published in the article “Theory of the firm facing uncertain demand”. It introduced the
“principle of increasing uncertainty - PIU” (p. 279). The PIU, as Leland defined it, implied
an increased variation in total profit for increasing levels of profit, subject to changes in

either price or quantity.
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Leland (1972) used a framework of a utility maximizing agent under four different “be-
havioral modes” separated by which ex-post control the agent has to counter the effect of
the risk by, after the realization of uncertainty (p. 279). He showed that uncertainty will
affect the agent, and that the impact depends on the agent’s mode and risk attitude. Un-
ambiguous results derived by Leland showed that a monopolist would not be indifferent
between the choice of quantity or price as ex-post control when faced with a risk. This is
because the effect of the ex-post controls not only depends on the risk attitude, but also
on the nature of the risk and the demand and cost curves of the company (p. 286). It was
later shown by Korkie (1975) that Leland’s “"PIU” principle was easily violated for certain
types of uncertain demand dependent of behavioral mode. This issue is also discussed by
Hau (2004), among others.

Empirical findings to support, or counter, risk theory are limited in terms of actual agents
answering questions on his or here risk attitude. However, Aiginger (1985) conducted a
research specifically aimed at confronting existing risk theory with empirics by collecting
insight trough questioners. He aimed to show “sufficient conditions under which an
unambiguous answer” can be given about the effect of facing a risk on production levels
(p. 52). His main empirical findings point towards a tendency of reduced output, if faced

with uncertainty (p. 67).

Like Leland (1972), Aiginger (1985) also found unambiguous answers which pointed to
“risk attitude”, “technological concavity” and “ex-post-flexibility” as factors to consider
when addressing the impact of risk on production quantity choices. Aiginger (1987)
discusses the influence of uncertainty on optimal decisions and concludes that “production
will most probably be lower under uncertainty than under certainty” (p. 178).

The effect of a risk on the agent’s long term decision regarding production capacity
was considered neither by Leland (1972) nor Aiginger (1985) so their main findings are
not directly applicable in this context. However, one might expect a risk averse agent
(i.e. having linear utility and concave technology) to reduce output when faced with

uncertainty based on the propositions given by Leland and Aiginger.

Driver, Abubacker, and Argiris (1996) model a risk-neutral monopolist faced with multi-
plicative demand uncertainty, and determine using numerical methods that the “optimal
uncertainty capacity is often less than the certainty level” (p. 532). When deriving the
results, they use a price elasticity approach under a Leontief technology to show that
the optimal level of capacity under uncertainty depends on price elasticity and capital
intensity. They also conclude that the relation between fixed and variable cost will affect

the “downward bias” of the uncertain demand (p. 532).
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In contrast to the current model in this thesis, where perfectly reversible capacity decisions
are assumed, Driver, Abubacker, and Argiris (1996) assume capital costs to be irreversible
once the decision has been made. They also assume flexible prices and point out that
“price acts as an ex-post control to counter the risk of inflexible excess capacity” (p. 529)

These differences may affect the results obtained, and hence their findings are not directly
comparable to the ones derived in this thesis. However, the findings of Driver, Abubacker,
and Argiris (1996) might lead to the presumption that higher fixed costs compared to
variable costs will lead to a even lower long term capacity choice if faced with the same

uncertainty, despite a flexible capital assumption !.

Summing up the above, the authors point to the following results:

e Uncertainty in demand will most likely result in a lower choice of production, and

hence one might expect a lower best choice of long term capacity.

e Higher fixed costs compared to variable costs might imply an even lower long term
best choice of capacity, when faced with uncertainty in demand (given that all other
parameters are the same).

2.2 Adaptive Learning

The adaptive expectations hypothesis is a key factor in many economic models and has
been the subject for a lot of research and has resulted in an extensive literature. As early
as in the 1930’s John Maynard Keynes highlighted the influence of long term expectations
as opposed to short term expectations (Keynes, 1936).

The adaptive expectations hypothesis is an axiom on how economic agents form their
expectations about some future value of a factor by adjusting past observed values for the
same factor (Pallister and Law, 2006, p. 14). It can be formulated as a model of learning,
for example to learn a correct price. A simple construction of adaptive learning of price
can be given by:

pr1 < (1= 6)pe + 6up (2.1)

where p;,1 denotes expected price in the next period, p; is initial expected price and p;
is actual observed price, all within the current period, where ¢; is a weight parameter
assumed to be between 0 and 1. The above states that the future expected price will be
a projection of current best guess and an error-adjustment accounting for the deviation

between actual observed price and current best guess.

! A literature review of models in production planning under uncertainty can be found in Mula, Poler,
Garcia-Sabater, and Lario (2006).
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An early paper on learning in economics by Cross (1973) presents a scenario tree model,
where the agent chooses among alternative actions, each with a defined probability of
occurring. For the monopoly case, Cross shows that if an agent is faced with multiple
states of the world, “the learning process will lead to choices tending to maximize expected
pay-offs” (p. 254).

Research based on adaptive learning, or other learning heuristics has increased signifi-
cantly over the years following the paper of Cross (1973). Today adaptive learning is used
within a wide range of areas, spanning from physics and signal inference, to psychology
and behavioral studies using various heuristic models. In economics these methods,
combined with stochastic approximation are used in subjects such as decision making

under uncertainty, the theory of rationality and Bayesian updating.

The adaptive learning scheme implemented in this thesis is inspired by Flam and Sand-
mark (2000). Flam and Sandmark consider a market of producers who are incapable of
assessing their demand functions, but highly capable of knowing the marginal costs. They
suggest an “adaptive learning scheme” so the producers eventually learn the true market
conditions surrounding them. They show that repeated updating of beliefs as a moving
average, similar to eq. (2.1) provide convergence in expectations towards market clearing

prices and a individual optimal quantity. (p. 7)?

Behind the seemingly simple model suggested by Flam and Sandmark (2000) are some
rather complex stochastic approximations. Additionally advanced mathematical are used
to show the equilibrium properties for the solutions found. They show that a market
participant does not need any special skills to eventually learn the level of optimal output
and the correct price at which the product may be sold. Some of the same heuristics will
be applied in the proposed algorithm to show that an iterative process based on learning

can provide a good best choice of long term capacity when faced with uncertainty.

% Eq. (8) given in Flam and Sandmark (2000, p. 4) is p'** < (1 — &;)p’ + &:p" which equals eq. (2.1) for a
slightly different notation.



Chapter 3

Model

To understand how the hypothetical model is set up one may interpret it in a setting of
a hydrological production facility. The size of the reservoir is the capacity, the product
is electricity, and rainfall is the inflow. Under the random demand cases, production is
constrained by the capacity only and the price is the unknown component. In the random
inflow case, capacity is constrained by the size of the reservoir or the amount of rain.

e The short term problem is to choose the level of production (¢) for current period,
limited by the capacity of the reservoir: If rainfall, and hence inflow to the reservoir,
is very small the effective production will be constrained despite a large reservoir.

e The long term problem is to determine the optimal size of the reservoir (/) when

faced with uncertainty regarding future inflows or future prices.!

Assume a profit maximizing monopolist, the agent in this model, with a simple model for
the business process. He applies one input to produce one output (¢). All output units are
sold to the market at a price (P). The producer faces a production cost per unit (C), and
there are costs related to the currently installed capacity (¥). The agent’s main objective is

to determine the best choice of long term capacity to install in his simple business.

This chapter introduces the model and presents the agent’s objectives ex-ante and ex-post.
In Section 3.1 uncertainty as it is modeled in this thesis is presented. The capacity in the
agent’s business is described in Section 3.2, and will define how the capacity constrains the
agent’s production under uncertainty. Section 3.3 deals with the income side of the agent’s
business, and discusses how the demand function is modeled. The different types of

! The determination of the size of a water reservoir will, in the real world, be subject to analysis of typical
pattern of inflow at the location, an analysis conducted based on using historical data for catchment areas
published by Norwegian Water Resources and Energy Directorate (NVE).
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random demand are also presented. The cost structure of the agent’s business is described
in Section 3.4, and the difference between running costs associated wth production and
costs related to maintaining installed capacity are discussed. In Section 3.5 the formal
definition of the agent’s objectives both ex-post and ex-ante are given, and includes a short

discussion of the difference between the deterministic and stochastic cases.

Notational remarks:

The hat notation will from now on be used to denote realized values assumed to be
exogenously known at the start of period . By this notation K  is the currently installed
capacity and 6 is the realized value of uncertainty. In the following, time indexing is

suppressed unless it is needed, in order to ease readability.
3.1 Uncertainty

Uncertainty is introduced through a stochastic factor 0, applied differently in the different
cases. A uniform random variable is deemed sufficient to provide randomness in the
experiments conducted, thus the random factor is a real valued continuous uniformly

distributed random variable on the support [0, 6].

0, ~U (Q, 5) (3.1)

where: 0 < 0 <60 < 0

The parameters ¢ and #, and the significance of the distance between them, will be
discussed when results are presented. The uniform probability density function (pdf) of a
uniform random variable is given by (Hogg and Tanis, 2005, p. 147):

L for 0 € [0, 0]
7—0 (3.2)

0 otherwise

f0) =
Expectation of a uniform random variable is defined as (Hogg and Tanis, 2005, p. 154):

; B
E(9) = /9 0(0)do — % (3.3)

As the random factor is implemented differently in different cases, a shift in notation is
used to clarify which case is considered. The notation is given in eq. (3.4) for reference.

The general notation 6 is used if the equation is valid for all uncertainty cases.

0 := R Random Inflow

(3.4)
0 :=s Random Demand
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3.2 Capacity

At the start of each new period the installed capacity, K, is exogenously given as it results
from either an initial guess or an ex-ante decision made in previous period. Initially, the
agent chooses capacity more or less at random as the market conditions are unknown to
him. The capacity is however assumed bounded:

K<K<K (3.5)

where K is the lower bound and K is the upper bound of current capacity. Within the
hydrology analogy this assumption is partly justified by available historical data for
catchment areas published by the Norwegian Water Resources and Energy Directorate
(NVE), and partly by tractability in the modeling phase.?

The short term choice variable is the production ¢, naturally assumed to be non-negative.
In the deterministic case production is constrained by currently installed capacity A, and
hence the constraint in the deterministic case in each period is:

0<g¢<K (3.6)

The above constraint applies in the random demand case as the uncertainty enters the
model trough the demand function. If the uncertainty is introduced as random inflow,
the situation will be different as the production will be constrained by the smallest of
the realized random inflow (# := R) and current available capacity (k). This gives the

following effective capacity constraint in each period for the random inflow case:
0 < ¢ < min (K, ]:3) (3.7)

An inequality constraint of the type defined by eq. (3.6) for K, R > 0 may or may
not impose a limit on the production quantity compared to the current capacity, K.
The constraint can thus be seen as a chance constraint, and can be implemented in a
mathematical program by defining two separate constraints, one for each of the two

components.

? Based on the amount of available historical data for catchment areas published by NVE for Norway, we
may assume the upper limit of the inflow to be known, at least historically. (NVE)
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3.3 Demand

The demand during one period is given by a price curve, assumed to be continuous
and differentiable. As described in Section 1.2, empirical studies suggest that demand is
decreasing in quantity, thus the demand in each period is defined by eq. (3.8) for a,b > 0
which may be known or unknown by the agent. Marginal revenue is defined by eq. (3.9).

P(q)=a—bq (3.8)
oP (q) ‘

MR(q) = P(q) + 34

(3.9)
In the deterministic and random inflow cases the price depends only on the choice of
production level g. In the random demand cases the price also depends on the outcome of
the uncertainty parameter (6 := s), modeled as described in Section 3.1. Following Leland
(1972) and Hau (2004), both additive and various types of multiplicative uncertainty will

be examined.

Additive uncertainty, labeled “Type 1”7, describes a situation where the uncertainty term
is added to the demand function, shown in Figure 3.1 for s ~ #/(—0.5,0.5). Similarly,
multiplicative uncertainty describes a situation for which the uncertainty term is multiplied
by the demand function in some way. Two types of multiplicative uncertainty will be
examined, “Type 2” defined by eq. (3.11) and “Type 3” defined by eq. (3.12).

P(q,s) =a—bqg+s Type 1 (3.10)
P(q,s) =a— (b+ s)q Type 2 (3.11)
P(q,s) = (a —bqg)s Type 3 (3.12)

As pointed out above, and as Figure 3.1 (Type 1) and Figure 3.2 (Type 3) show, the resulting
price depends on how the uncertainty is introduced in the demand function. Note that the
bounds of the uncertainty parameter vary across types, and so will the expected value. To
assure a non-negative price and a negative marginal price in quantity in all cases, assume
a>b+sVs.

From Figure 3.1 we see that the outcome space® under the impact of Type 1 uncertainty is
constant and hence independent of quantity produced. For Type 3 uncertainty shown in
Figure 3.2 the outcome space is decreasing for increasing quantity, implying a reduced
volatility in prices, and thus reduced uncertainty for higher production quantities. For

Type 2 uncertainty, the situation will be the opposite compared to Type 3 uncertainty.

? Outcome space: Distance between upper and lower bound of the resulting prices under uncertainty,
indicated by the arrows in Figure 3.1 and Figure 3.2
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Additive Uncertainty Type 1: P(q,s) = P(q)+s

Assume s~U(-0.5, 0.5)

........ Eq. (3.10) for s =-0.5 Eq.(3.8) --------'Eq.(3.10) for s = 0.5

Figure 3.1: Additive Demand Type 1, eq. (3.10): The upper dotted line
show s = 0.5 and lower dotted line show s = —0.5, compared to deter-
ministic demand (middle line). | indicates the possible variation in prices
(P, +» P,) for the quantity ¢;, assuming s ~ U(—0.5,0.5)

Multiplicative Uncertainty Type 3: P(q,s) = P(q)*s

Pas) Assume s ~U(0.5, 1.5)

--------- Eq. (3.12)fors =0.5 Eq.(3.8) --------Eq.(3.12)fors =15

Figure 3.2: Multiplicative Demand Type 3: eq. (3.12) The upper dotted
line show s = 1.5 and lower dotted line show s = 0.5 compared to deter-
ministic demand (middle line). | indicates the possible variation in prices
(P, +» Py) for the quantity ¢;, assuming s ~ U(0.5, 1.5)
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3.4 Cost

As the agent owns the business, the cost structure of the business is by assumption known
to him. The total costs of the firm is a sum of production costs per unit and costs related to

currently installed capacity. The cost of producing one unit is:
C(q) = Aq + Bq® (3.13)

where the two parameters A and B is positive and presumably known to the agent. The
parameter A account for the major part of the production costs, while parameter B affects

the costs more for higher production. Marginal production cost is denoted M C/(q):
MC(q) = A+2Bg >0 (3.14)

The costs of current capacity consists of the depreciation rate, the interest rate paid for
the current capacity stock and a flexibility cost. The possibility to install or demolish any
incremental units of capacity at any time comes with a cost, called flexibility cost. This can
be seen as paying an additional running cost of capacity in order to have the possibility to
alter the capital stock as quickly as wanted. The cost of maintaining current capacity K is

o (K) —(r+d+f)K (3.15)

where r is the interest rate, d is the depreciation rate and f is the flexibility cost, assumed
known to the agent. The marginal cost of capacity, denoted MC(K) given by eq. (3.16),
will be positive and constant as long as current capacity is positive.

ov (K)

MC(K) = —5 = (r+d+f)=0 (3.16)

3.5 The Agent’s Objective

The main long term goal for the agent is to determine the long term level of capacity
which maximizes profit, given the outcome a random factor, when production is the
agent’s short term choice. Since the agent has a short term and a long term objective,
a distinction between decisions made before and after realization of the uncertainty is
necessary. Assume uncertainty is realized and thus known at the start of period ¢, while

next period’s uncertainty is still unknown at time ¢. The following definitions will be used:
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Definition 1 The agent’s objective ex-post is to maximize profits by choosing the optimal level
of production after uncertainty is realized at time t, subject to current capacity K (8; known).

Definition 2 The agent’s objective ex-ante is to select a level of capacity before next period’s
uncertainty will be known at time t 4+ 1 in order to maximize long term profits (6y11 unknown).

All model components needed are described in the Sections 3.2, 3.3 and 3.4, so without

any further discussion the deterministic objective for the agent in period ¢ is given by:

max m(K) = max {mgxx m(q, f()} (3.17)

Where 7(q, K) = P(q)q — C(q) — ¥(K)
Such that: 0 < ¢ < K

where 7 (g, K) is profits, P(q) is unit price obtained in the market as given by eq. (3.8) C(q)

is unit cost of production as given by eq. (3.13) and ¥(K) is the cost of maintaining the
currently installed capacity K as given in eq. (3.15).

For a given level of capacity determined in the previous period, the agent chooses ¢ in
order to solve max, 7(¢, K) within the current period to maximize current profit. The
deterministic objective in eq. (3.17) can be solved by analytical expressions if such are
available as there will be no difference between ex-ante and ex-post decisions due to no
uncertainty. If, however, the analytical expressions are unavailable, numerical methods

such as the gradient method can be applied. This method will be presented in Section 4.1.

As there will be differences between ex-ante and ex-post objectives in the uncertainty
cases, the agent’s ex-ante objective in the stochastic cases is formulated as an expected
value, dependent on the outcome 6. The distribution of § may or may not be known to the
agent, and this will make the calculation of the stochastic ex-ante objective a non-trivial

job, as discussed in 1.1. The stochastic objective ex-ante is thus formally defined by:
max Ey {mgux H(q,f(,é)} (3.18)

where IT is the profit dependent on current outcome of uncertainty § and current level of
capacity K. The production ¢ is the control variable in each period and FE is the expectation
operator as defined in Sydseeter, Strem, and Berck (2002, Def. 31.10, p. 180).

Solving eq. (3.18) directly may require skills the agent does not have, or involve an
evaluation of the expectation of a random factor with unknown distribution. Thus in
order to proceed in this non-trivial task, define 7(K,0) as the profit which results from
solving the objective ex-post. That is: Solve max, II(K 8, ¢) and find optimal quantity
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production subject to current (known) values of random variable (§) and capacity (K).
The ex-post objective is then defined by:

m(K,0) = max (¢, K,0) (3.19)
Note that the right hand side of eq. (3.19) are the inner problem of the expectation in the
ex-ante objective for the stochastic case given in eq. (3.18). To progress further one utilizes
that for a specific value of the random value § one may define the ex-post approximation

of expected profit, conditional on 4 by:
m(K) = E; {(K,0)} (3.20)

Why define an ex-post objective? 7(K’, 0) is the result when short term choice of optimal
production is determined by max, I1(¢, K, §) subject to current capacity and realized
random factor. The agent decides the short term choice ¢ subject to K and § ex-ante.
Ex-post the approximation of expected profit found from the ex-ante choice can be then
utilized by the agent to approximate the real long term target, which is to determine the
best overall choice of capacity.

In principle, by using the definitions in eq. (3.19) and (3.20), the agent will in every period
set g—l’; = 0. In practice a change in capacity will be approximated ex-post by using the
value of g—}g found from solving max, I1(g, K ,0) ex-ante. By applying the Kuhn-Tucker
first order necessary conditions to eq. (3.20) an ex-post estimate of expected change in profit
for a change in capacity, dependent on current market conditions can be estimated for

each period. The stochastic objective can be summarizes as follows:

The stochastic Objective:

max I1(K) = max By ¢ max 11 (¢, K0 } (3.21)
where II (q,f(,é) = P(q,é q—C (q,é) - v (K)
Such that either (1) : 0 < ¢ < K
or(2):0<¢q< mm(K’,é)

where constraint (1) in eq. (3.21) is defined by eq. (3.6) and is valid for the random
demand cases. Constraint (2) are given in eq. (3.7) and valid for the random inflow cases.
As discussed in Section 3.2, this is due to the fact that the agent faces different types of
uncertainty in the stochastic cases, and dependent on the type of uncertainty, the constraint
for the production therefore varies. Since the production is influenced by uncertainty, the

A

costs also vary dependent on the outcome of 6, hence the notation C(g, ) in eq. (3.21).
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Chapter 4

Method

In order to perform an experiment by appropriate tools, the theoretical framework need
to be considered. The objective given in Section 1.1 is twofold:

1. Develop a simple and unified solution procedure for complex uncertainty problems.

2. Experiment to see how uncertainty influence a long term capacity decision.

In this chapter an adaptive learning scheme is developed, which creates a solution proce-
dure sufficient for the above requirements. Based on the properties of the components in

the method, the results will be in line with stochastic theory.

In Section 4.1 the main ideas of stochastic approximation are introduced. The online
gradient method applied as optimization is presented, along with an alternative imple-
mentation to accommodate multiple learning subjects for the agent. The weight shifting

parameter called step-size is introduce, along with its required properties.

In Section 4.2 the Kuhn-Tucker Conditions (KKT) for both deterministic and stochastic
(random demand and random input) cases are derived. It is shown that the derived
expression can be interpreted as an ex-post approximation for the derivative, and hence
can replace the general gradient in the online gradient method when the numerical

experiment is conducted.

In Section 4.3 the applied algorithms as pseudo code is given. The algorithms are imple-
mented by non-linear programming in AMPL. Section 4.4 covers some basic AMPL syntax,
and discusses some of the most significant commands. For a detailed presentation of the
programing, please see Appendix A. The programs developed to conduct the experiments

are given in Appendix B and C for the single and multiple learning objects respectively.
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4.1 Stochastic Approximation

A stochastic approximation algorithm typically solves a problem of finding a root of an un-
known function based on noisy measurements of the function. Robbins and Monro (1951)
is a classic reference for recursive stochastic approximation, often called the RM-algorithm.
Robbins and Monro showed that the method implied convergence in probability towards

a consistent! estimator for a constant root of an unknown function (Lemma 1, p. 403).

Kiefer and Wolfowitz (1952) applied the RM-algorithm to estimate a stationary point for
an unknown function, often called the KW-algorithm. To estimate a stationary point is
to approximate the value of a variable for which the derivative of the unknown function
is zero. The KW-algorithm was originally developed for a finite difference replacing the
assumed unobservable derivative for the function of interest.

Following the RM- and KM-algorithm, many iterative methods have been developed. One
such method is the gradient method. The gradient method can be seen as both an iterative
optimization method and as a learning mechanism applied to uncover the true value of a

learning subject by gradually adapting information from observations in the real world.

4.1.1 Online Gradient Method

The slope of a line describes the steepness, or rate of change, for that line. In the n-variable
case, a gradient describes the steepness and direction of the slope. This vector function
has given the name to the gradient method. The term “online” refers to how the estimate
of the learning subject is approximated from observed values. The online gradient method
approximates the value of the learning subject from values observed in the real world
(Bottou, 2004, p. 155). In this thesis the online gradient method is used 2.

The online gradient method is an iterative first order method which starts of by an arbitrary
initial guess for the target variable. Then the target variable is gradually increased (if
maximization) or decreased (if minimization) by a fraction of the current observed gradient
of the objective. The online gradient method is dependent on the nature of the gradient,
applicable for both deterministic and stochastic problems.

Let {J; } be a sequence of positive fixed constants, called step-size, and let ﬁ%’i be a gradient

! Consistent: The mean squared difference between actual and estimated root tend to zero.

? The literature discuss the difference between optimizing an empirical value versus an expected value.
Vapnik (1999) derive and discuss asymptotic results. The online gradient method provide on average an
approximation of the learning subject which converge towards the expected learning subject.
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for the current objective. Also, let { K;} be a non-stationary Markov Chain for an arbitrary

initial value K and define the following relation:

AT,
AK,

Kii1 =Ky + 6 (4.1)
The relation given in eq. (4.1) is the iterative step in the gradient method, and dependent

on which case is considered, the gradient is either a deterministic or a stochastic value.

However, the main goal of the agent is to determine a level of capacity at which the profit
is maximized, in other words he will determine a (unique) root for the profit function. For
an arbitrary chosen value of initial capacity (/) the corresponding profit is observed. By
performing the iteration in eq. (4.1) an approximation of the new level of capacity K is
determined, and the process is repeated.

The sequence of positive fixed constants (J;) must be defined in such a way that some
standard conditions are satisfied in order for the Markov Chain defined by eq. (4.1) to
converge. Before these properties are addressed in Section 4.1.3 it is convenient to set up

the general online gradient method in the case of a maximization problem:

Online Gradient Method:

1. Initial guess: K; = Ky

2. Repeat K; 1 <+ K; + 6t§—?(i

3. Until K41 — K} is sufficiently small.

4. Claim K1 — K™ ast increases.

The gradient £Z in step 2 can be an ordinary derivative (g—[”() if available, or a proxy such

as a point estimated difference. Either way, if
tll)Iglo(KH_l — Kt) —0
results from repeated iterations of eq. (4.1) in point 2 of the online gradient method, the
method converge towards a long term capacity equal to a root of the profit function K*,
that is lim;_, K¢41 — K*. A unified solution procedure for uncertainty problems based
on the online gradient method requires an expression for the gradient valid for all types
of uncertainty. As will be seen in Section 4.2 such a unified criterion can be derived based
on the Kuhn-Tucker conditions. Before the unified criterion is developed, the inclusion of

other learning objects for the agent will be described in Section 4.1.2.
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4.1.2 Gradient Method & Learning

The online gradient method presented in Section 4.1.1 include only the capacity as a
learning object for the agent, and hence must bee seen as an iterative optimization method.
If, however, the agent holds an a-prior belief about price (py) and slope (dpy) when
choosing production, the solution algorithm can include simultaneous learning of the true

price and slope, alongside the learning of best choice of capacity.

The incremental updating of capacity is done in the second step of the general online
gradient method and the adaptive learning scheme as presented in Section 2.2 can be
implemented at this step. To update the knowledge about the learning objects the adaptive
learning model given in eq. (2.1) is included for each of the learning objects. The agent
then updates his knowledge of both learning objects p; and dp; according to:

Learning Price  p1 < (1 — 0¢)pe + 0epr 42)
Learning Slope dpi11 < (1 — 6)dp; + 6tcfpt '

where p, is the realized price, p; is the initial guess of price and p;1 is the updated belief.
Similarly, dApt is the realized change in price, dp; is the initial guess of slope, and dp;+1
is the updated belief the agent holds for next periods change in price. As before ¢; is
a sequence of positive fixed constants, called step-size. Including a secondary learning
object in the online gradient method will give the following iterative step:

Repeat:

e Eq. (4.1) for capacity: K41 «+ K; + 5t§7112

e Eq. (4.2) for price & slope: pi11 < (1 — 6¢)pt + 0P and dpyy1 <+ (1 — 0¢)dp: + 5tdApt

Assume the initial guess for capacity (K; = Kj) and for the learning objects (pg = po
and dp; = dpy) are given. The iterations are repeated until a sufficiently small difference
between current and updated belief is reached. In Section 4.1.3 the standard properties
of the step-size (0;) required to assure that learning may take place in every iteration are
discussed.

4.1.3 Step-Size

The adaptive learning scheme defined as a moving average in eq. (4.2) should be designed
such that new information has high weight in the start of the learning process, since
the agent have limited information (and knowledge) at this point. As more information
accumulates, and the agent’s knowledge builds up, the last arriving information should
have less weight.
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The step-size is used in step 2 of the gradient method to iteratively develop the best choice
of the learning objects by shifting weight between new and old information. In order
to have this desired weight shifting effect, a step-size must be defined to meet certain

properties. Standard assumptions for a step-size used in stochastic approximation is >:

lim §; — 0 (4.3)
t—o0
> b6 =+o00 (4.4)
t—o0
> 67 < +oo (4.5)
t—o0

The assumption in eq. (4.3) contributes to higher weight on already accumulated knowl-
edge through diminishing weight on new information in eq. (4.1) and eq. (4.2). As more
information on the correct capacity is compiled over the iterations, the assumption in eq.
(4.3) contributes to a decreasing short term error in the prevailing long term capacity.

The second assumption, given in eq. (4.4), states that learning is unbounded over iterations.
This implies a possibility to learn at every iterative step, since the step-size is always
positive. The last property given in eq. (4.5) is a sufficient condition for convergence. Let
the step-size be a dynamic parameter defined by:

1

_ 4.6
m+ kt (4.6)

Ot41 =

It can be shown that a step-size defined by eq. (4.6) will, for some positive constants m
and k, have the desired properties and provide convergence between updated capacity
and current best choice of capacity over time. A level which may, or may not, be equal to
the free optimal capacity.

For constants m = k = 1 a step-size as defined by eq. (4.6) applied in the learning step as
defined by eq. (4.2) will provide a long term learning object at a level equal to an empirical

average, that is

po+pi+...4pt dpo+dp1+...+dpt
D171 and dpt+1t+—1

after ¢ iterations. From statistical theory the updated learning parameter will comply with
Bayesian updating 4. This contributes to the agent’s subjective perception of best choice in
such a way that all knowledge based on available observations is incorporated in to the
choice made prior to the next period. Thus, the agent chooses a level of the learning such
that his choice is in line with his perception.

? Robbins and Monro (1951, p. 401-403) develop the convergence properties needed for a positive sequence
to converge. The same standard properties is applied in FlJdm and Sandmark (2000, p. 5).

* Bayesian updating or learning refer to a subjective probability interpretation and essentially the applica-
tion of Bayes’s Theorem, discussed in Hogg and Tanis (2005, Ch. 7).
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When the step-size, as defined by eq. (4.6), is applied in the gradient method one might

show the convergence by taking the limit on both sides of the iterative step (point 2 of the
gradient method). When doing so, the following results:

Am

Jim K Jim [ K+ |

. . . A
Jim Ky lim K + lim {6AK}
—_——
(St—>0

lim Kt+1 < lim Kt
t—o00 t—o00

From the above it can be seen that there will be (at least) two reasons for the gradient
method to converge. First the step-size parameter will approach zero as time increases, as
is given by the first condition in eq. (4.3). Second, the gradient, denoted ﬁ—}; in the second
step of the method may become zero, as it will if the first order condition is fulfilled for the
current capacity level. For a sufficiently small change in capacity,i.e. if AK = K — K* — 0

the following yields:®
Am on

Alli<n—l>0 AK Klglfl( oK 0
It should be noted that convergence in the sense considered here, need not be convergence
in terms of the most efficient, or best overall optimal sense (Robbins and Monro, 1951,
p- 401). The term convergence in this case should be interpreted as finding a level of
capacity where the change in capacity from one period to the next is sufficiently small, i.e.
less than or equal to some predefined value.

Implemented in the gradient method, convergence is checked by evaluating the absolute
difference between K; 1 and K*, and is stopped if sufficiently small. Also note that the
positive constants m and k in eq. (4.6) are chosen after a series of trials. This will be
discussed when the results from the numerical experiments are presented in Chapter 5.

4.2 The Kuhn-Tucker Conditions

Linear programming is a solution method used to solve problems of optimizing a linear
objective subject to linear constraints, i.e. both objective and constraints represents straight
lines. If either of the objective or the constraints are of the non-linear type, the Kuhn-Tucker
(KKT) conditions must be applied (Fourer et al., 2003, Ch. 18; Adams, 2003, p. 805-806).

® See Definition (5) given in Appendix D: ;3% = 0if K" is a stationary point for m(K).
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From the objectives given by either eq. (3.17) or eq. (3.21), one observes that non-linearity
will be the case, since the agent’s objective is a continuous concave® (non-linear) profit
function subject to linear inequality constraints, and hence non-linear methods must be
applied.

In addition to Lagrange multipliers, called dual values, as in ordinary Lagrange method,
the KKT conditions introduce a complementary slackness condition, and the primal and
dual feasible condition. The presentation of the KKT conditions is limited in this thesis,
for a thorough discussion one might consult Kuhn and Tucker (1951). The following
definition for a dual value will be used:

Definition 3 The multiplier \;, called dual value, denotes the price of a slack in constraint i, and

gives the slope of the objective at current level of capacity: \; = ag(}g{) . (Fourer et al., 2003, p. 243)

As the objectives are different in the different cases the KKT conditions must be calculated
separately for each case. In Section 4.2.1 the KKT conditions for the deterministic case
are presented, while in Section 4.2.2 the stochastic case is discussed. The goal is a unified
solution procedure in any case, and based on Section 4.2.1 and 4.2.2 a unified long term

break-even criterion can be determined, and it is presented in Section 4.2.3.

42,1 Deterministic KKT-Conditions

Consider the constrained deterministic objective given in eq. (3.17) for a given capacity
K. A solution to this problem is classified as optimal if the KKT-conditions, called the
first order necessary conditions for non-linear programing are satisfied. To derive the first
order necessary conditions for such a non-linear program start by defining the Lagrange
function for the problem given in eq. (3.17) and introduce dual values \; for the constraint
0<g¢g<K:

£(g,R) =7(g, K) + M(K = q) + dog (4.7)

Maximize the Lagrange function given in eq. (4.7) by finding the first order condition
(FOC) with respect to the control variable g:

oL  on(q, K)

— =" _ X+ X=0
9 04 1+ A2

Introduce complementary slackness conditions (CSC) for the constraints:

Al(K—q) =0and )\Qq:()

¢ Appendix D give the definitions of continuous and concave by Definition 4 and 5, respectively.
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Define the primal feasible condition (PFC) for the problem:

A

g<Kandg=>0
Define the dual feasible conditions (DFC) for the constraints:
A =0and Ay >0

The first order necessary conditions given above define a feasible set (2 = {q!q < K and q = O}
in which an optimal solution to the problem in eq. (3.17) must be contained. For the
above problem, let § = ¢(K) denote optimal quantity for a given capacity K. Then, for
appropriate dual values A1, Ao > 0, the KKT conditions for the Lagrangian in eq. (4.7) can

be given more compactly by:

0 if0<g<K
—A\ f0<g=K ;=0 (4.8)
Xy f0=g< K

oL(q. k) _ on(a.K) |
dq N dq

where A\ (K — q) = 0 and \og = 0 are the complementary slackness conditions (CSC)
which states that either a constraint is binding” or the corresponding dual value must be
zero. Hence, if the capacity is binding then \; > 0 for § = K < K*, if K* denotes the free
optimal level of capacity. At optimum the constrained first order condition in eq. (4.8) is

zero, and thus the marginal change in profit for a change in production is:

on(a. &) 0 if0<g<K
45%;—: AN O if0<g=K
—Xo f0=g< K

To find the marginal change in profit for a change in capacity at current level of produc-
tion one might use the envelope theorem. Let £*(K) denote the maximal value of the
Lagrangian when § = ¢(K) is the optimal production quantity subject to current capacity
K. Then the envelope theorem states that the rate of change in the maximal value of the
Lagrangian subject to a change in capacity can be found by the partial derivative of the
maximal value when holding production fixed at the maximal level g. Hence, by the

envelope theorem the marginal change in the Lagrangian for a change in capacity is:

0L(q. &) _ on(q. K)

~ + A\
oK oK

7 Definition of a binding constraint can be found in Sydsaeter et al. (2002, p. 98)
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and thus the marginal change in profit for a change in capacity is denoted by:

on(q, K)

o =M MC(K) (4.9)

Eq. (4.9) states that the optimal choice of capacity level is obtained when marginal cost
of current capacity equals the associated dual value. Intuitively this is natural as it is
the level at which the potential profit from an additional unit of production equates the
cost of the last incremental unit of production capacity installed. It is also in line with
fundamental economic theory. Thus, in the long term eq. (4.9) can be interpreted as a
break-even criterion, or the target for the agent.

4.2.2 Stochastic KKT-Conditions

The KKT conditions for the stochastic case are divided into two separate cases as the
uncertainty impose two different constraints on the objective according to eq. (3.21). As
discussed in Section 3.5 a separation between objective ex-ante and ex-post is utilized
in the short term decision. Under uncertainty both the marginal revenue and marginal
cost of producing are expected values conditional regarding a specific outcome of the
uncertainty.

First consider the random demand case. The objective given by eq. (3.19) is maximized
ex-post subject to constraint (1) in eq. (3.21) valid for the random demand case: 0 < ¢ < K.
The first order necessary conditions for this non-linear problem are derived by defining the

Lagrange function for the problem including dual values );, one for each of the constraints:
£ (g K. 50) =10 (0. K.8) + A1 (K —g) + dog (4.10)

To maximize the Lagrangian in eq. (4.10) one follows the same approach as in the deter-
ministic case by applying the KKT-conditions. For the ex-post objective given by eq. (3.19)
subject to the constraint (1) in eq. (3.18), the following FOC, CSC, PFC and DFC conditions
for the random demand case results:

e (o
"9 9q
CSC:Al(f(—q)ZOandAQq:o

FOC —AM+2=0

PFC:g< Kandgq>0
DFC:>\1>Oand)\2>O

Similar to the deterministic case the KKT conditions can be given compactly. Let § denote
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current realization of uncertainty under current capacity K.and letg = q(f( , 8) denote
optimal quantity found when solving eq. (3.19) subject to 0 < g < K. Then, for a pair of
suitable multipliers A1, A2 > 0, the Lagrangian will by the first order necessary condition

be zero: N
ILGK.s) O@GK.s) 0 ifo<g< K
©2,5) TR L ifo<g=K =0 4.11)

0 N 0 N
1 1 A if0= qg< K
At the optimum eq. (4.11) yields a marginal change in profit for a change in production

under current outcome of uncertainty given by:

0 ifo
M if0<g=K (4.12)
—Xo fO=g< K

ol(q, K,35)
Jdq N

A

where \{ (K — ¢) = 0 and A\2¢ = 0 are the CSC from the KKT conditions. The marginal
change in the Lagrangian for a change in capacity, under current realization of random
demand, is by the envelope theorem thus given by:

0L(3,K,8) _ 91(g, K, 3)

ok~ ok ™M

And hence, the marginal change in profit for a change in capacity, under current realized
random demand, is: .
oll(q, K, 5)
0K

As the agent maximizes short term production ex-post, i.e. when current random demand

=\ — MC(K) (4.13)

is known, the deterministic and random demand cases are essentially equal problems in
the short term, hence the similarity in the break-even criteria’s given by eq. (4.9) and eq.
(4.13), despite the stochastic objective. This leads to the analog stochastic interpretation
that the long term target is to install a level of capacity at which the expected marginal

profit of production equals the cost of the last incremental unit of capacity installed.

Next consider the random input case. The objective in the random input case is, as
in the random demand case, given by eq. (3.19), and maximized ex-post. Since the
uncertainty now enters the problem trough the constraint, constraint (2) in eq. (3.18) are
implemented. The Lagrangian for the random input case including dual values for the
constraint 0 < ¢ < min(K, R) is thus:

E(q;)\i):H(q,K,ﬁ)—F)\l (K’—q) TP (Ji’—q)+/\3q

By applying the KKT-conditions to the objective ex-post, the FOC, CSC, PFC and DFC
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conditions which results for the random input case is given by:

oL oIl
FOC: —=——-X1— X2+ X3=0

9 94 1 2+ A3
CSC:Al(K—q):O,Ag(R—q>:0and)\3q:0
PFC:q< K ,qg<Randq>

0
DFC:)\120,/\2>0and)\3>O

The last two CSC’s state that if current capacity is binding, i.e. if ¢ < K < R then the dual
value of the capacity constraint is positive and the dual value of the random factor is zero,
thus A; > 0 and A2 = 0. If, however, the random input is the binding constraint, i.e. if

¢ < R < K, then the opposite relation emerges, thus \; = 0 and Ay > 0.

The KKT conditions can, as in the other cases, be given more compactly, thus let R
denote the current realization of uncertainty under current capacity K ,letg = q(f( , f%)
denote the optimal quantity found when solving eq. (3.19) subject to the constraint
0 < ¢ < min(K, R). Then, following the KKT conditions for a triplet of suitable multipliers

A1, A2, A3 > 0, the Lagrangian will by the first order necessary condition be equal to zero:

0 if0<g<K<R

aﬁ(q,K,R)_aH(q,K,R)+ —\ if0<g=K<R o
dq dq —Xs if0<g=R<K

A3 f0=¢<K<R

Which at the optimum yields the following rate of change in profit for a change in

production:
0 if0<g<K<R
oT(q, K, R) _ A ifo<q=1:(<{% 14)
dq N if0<g=R< K

—X3 f0=¢g<K<R

where /\1(I§' —q) =0, )\2(]?{ — ) = 0 and A3q = 0 are the familiar CSC’s from the KKT
conditions. The envelope theorem gives the marginal expected change in the Lagrangian
under current realization of uncertainty for a change in capacity by:

0L(q, K, R) _ oll(g K, R)

ok~ ok M

Hence, marginal changes in profit for a change in capacity under current inflow is:

oll(q, K, R)

b =M — MO(K) (4.15)
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Again, the random inflow break-even criterion given by eq. (4.15) is similar to the deter-
ministic criterion in eq. (4.9). Note, however, that the objectives naturally are different
since the stochastic cases maximize a conditional objective ex-post (II), while the deter-
ministic case maximize the certain objective (7). Since the dual value A; in both eq. (4.13)
and eq. (4.15) is dependent on one specific outcome of a stochastic variable (3 or &), the
dual value must be considered a stochastic variable.

Let E;M R(q) denote expected marginal revenue and let E;MC(q) denote expected
marginal cost of production. Then, at optimum the change in marginal profit for a
change in production given by eq. (4.12) or eq. (4.14) can be rewritten in terms of a sum of
expected marginal revenue and costs. For the stochastic cases the marginal profit for a

change in production then is generally denoted by:

o1l(q, K, )

94 = E;MR(q) + E;MC(q)

From which it is clear that the properties of the random factor may influence the level of
long term capacity choice in the stochastic cases, since one might have M R(q) # E;M R(q)
or MC(q) # E;MC(q) or both. The magnitude and direction of the effect of uncertainty,
compared to the deterministic optimal choice of capacity, will thus be determined by how
the expected marginal revenue and expected marginal costs are influenced by the random

factor.

4.2.3 The Long Term Criterion

Intuitively the agent should build up the capacity only if he expects an increase in future
profit as a result of the increased capacity. Hence, when the ex-post dual value of capacity
is higher than marginal cost of capacity, an increase in potential profit is expected, and the
agent should install additional units of capacity. If the opposite situation occurs, the agent
should demolish some of the installed capacity as the expected marginal change in profit

for an additional unit of capacity then will be negative.

In the above sections, the KKT-conditions were presented for all cases considered in this
thesis. By the envelope theorem the marginal change in profit for a change in capacity
is given by eq. (4.9), eq. (4.13) and eq. (4.15) for each case respectively. Despite the
differences in objectives and constraints, the equations forms a unified long term criterion

for the capacity development process in all cases, and is summarized in eq. (4.16).
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aﬂg%{K) Deterministic

Ar % oIl(q,K ,3)

AR M —MC(K) = T Random Demand (4.16)
w Random Input

If the dual value of capacity is less than marginal cost of capacity, the long term criterion
is negative, and otherwise positive. The long term criterion defined by eq. (4.16) thereby
follows economic intuition in all cases. A unified solution procedure is thus achieved, and
hence, eq. (4.16) replaces the gradient in the (deterministic or stochastic) online gradient
method when the experiments are conducted.

4.3 Algorithms

As described in Section 4.1 the agent may have a single learning object (capacity) or
multiple learning objects (capacity, price and slope). The number of learning objects
does not alter the long term criterion given by eq. (4.16). However, different numbers of
learning objects requires different iterative algorithms. Pseudo code for the single learning
object (capacity) algorithm (Algorithm 1) is given below.

Algorithm 1 - Algorithm for learning capacity:
1. Initial guess: K; = Ky
2. If stochastic: Draw 6; := 6 (If deterministic, go to Step 3).

3. Solve Objective:
(a) Either solve the deterministic objective given by eq. (3.17).
(b) Or solve the stochastic ex-ante objective given by eq. (3.19).
4. Repeat: Ky := K + 0 {/\K — MC(IA()}
5. Checkif K;41 € (K, K):
(a) If Kiy1 < K then K41 := K.
(b) If K;11 > K then K;;1 := K.
6. Stop Criterion: (Assume € := numeric value.)
(a) Stopif |K1 — K| <e.
(b) Otherwise Repeat from Step 2 (Stochastic) or Step 3 (Deterministic)

For the agent, Step 1 in Algorithm 1 is the only step where he more or less randomly
chooses some initial capacity without any prior knowledge. In all subsequent periods, the
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available capacity is predetermined from previous iterations based on learning. In the
deterministic case, all subsequent adjustments of capacity level is a consequence of the
outcome in Step 4 or 5. For the stochastic cases, subsequent adjustments will also depend
on the stochastic factor drawn at Step 3.

The algorithm for multiple learning objects includes some additional initial values, several
iterative updates and one stop-if criterion for each of the learning objects. The complete
algorithm for multiple learning objects (Algorithm 2) is given below.

Algorithm 2 - Algorithm for learning capacity, price and slope:
1. Initial guess: K; = Ky (capacity), p+ = po (price) and dp; = dpy (slope)
2. If stochastic: Draw 6; := 0 (If deterministic, go to Step 3).

3. Solve Objective:
(a) Either solve the deterministic objective given by eq. (3.17).
(b) Or solve the stochastic ex-ante objective given by eq. (3.19).
4. Repeat:
(a) Capacity: K1 := K; + 0 {)\K — MC’(IA()}
(b) Price: pr1 <+ (1 — &¢)pe + Sepy
(c) Slope: dp;y1 + (1 — 6;)dp; + 6:dp,
5. Check if K;11 € (K, K):
(@ If K411 < K then Ky = K.
(b) If K411 > K then K; 1 := K.
6. Stop Criteria: (Assume e := numeric value.)
(a) Stopif: K1 — K| < eand |piy1 — pe| < eand |dpir1 — dpy| < e.
(b) Otherwise Repeat from Step 2 (Stochastic) or Step 3 (Deterministic)

Again, Step 1 in Algorithm 2 is the only step where the agent makes any decisions more
or less random, and without any prior knowledge. Naturally Algorithm 2 is similar to
Algorithm 1, except for the multiple updates and the multiple stop criteria in Step 4 and
Step 6 respectively.

Step 5 in both Algorithm 1 and Algorithm 2 is essentially a projection of the new guess of
capacity into a predefined allowed range. If the agent believes the bounds of the capacity is
unbounded, Step 5 may be omitted. The overall results will not be affected by omitting this
step. Either way, Algorithm 1 is terminated if absolute change in capacity from one period
to the next is smaller than some predefined threshold. Similarly, Algorithm 2 is stopped if
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the absolute change for all learning objects is bounded by the predefined threshold.

The agent may have the needed skills to solve the problems analytically, or he may not.
Either way, the proposed algorithms requires nothing more from the agent but to guess
some initial values and choose the best possible production in each period, subject to
current capacity, and keep on updating as described in either of the two algorithms.

44 AMPL

There are several computer programs designed to solve iterative problems. In this thesis
AMPL (a Modeling Language for Mathematical Programming) is chosen due to an intuitive
syntax and it’s flexible data input. AMPL also facilitates for interactive dialog with
predefined solvers to perform optimization of a non-linear objective subject to linear
constraints (Fourer et al., 2003, Ch. 18). This section describes some basic AMPL syntax,
and present the most significant commands applied in the AMPL programs.

An AMPL program consists of keywords with a predefined interpretation:
e set T; Defines a set of values named T.
e param A; Defines a (single valued) constant named 2.
e var g; Defines a variable in the model, usually the control variable.
e maximize profit; Tell AMPL to maximize the objective named profit.
e subject to Kconst; Defines a constraint named Kconst
The model is solved iteratively, by conditional incremental adjustments of the capac-

ity at the end of each period. To do so, the commands for, break-continue and

if-then-else is implemented. For example is Step 6 of Algorithm 2 programmed by:

for {t in T} {
if n >= 2
then if abs(K[n+l1l]-K[n]) <= stoplF
and abs (phat[n+l]-phat[n]) <= stoplF
and abs (dphat [n+t+1]-dphat[n]) <= stoplF
then break;

else continue }

The syntax for {t in T} {...} evaluates all statements contained in the body ({...})
for each member of the set T. To control the calculations and eventually terminate the
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for-loop, a logic condition in a break-continue command is used, together with an
if-then-else syntax. The above code snippet will, for iteration 2 or higher, check the
absolute difference between new and old belief for all the learning subjects. If it is small
enough, i.e. smaller than the st opIF criterion, the for-loop is terminated by break or

otherwise repeated.

As discussed in Section 1.2, uncertainty is represented by computer generated random
values, usually based on a seed provided by the system. The seed can be predefined to

assure reproducible results by including the following lines of code in the run-file®:

param 1 := 4; # Assign 1 a numeric value.

let X := 1; # then assign the value to X.

let randseed[l] := X; # and assign X to the random seed.
option randseed (X); # Result is a predefined seed := 4.

The above code only sets a predefined seed, so in order to assure the pseudo-random
numbers generated inside the for-loop to be different numbers in each iteration, the

following lines is included.

reset data s_nr; # Resets previous random number

let s[n] := s_nr; # Assigns a new random number to s.

This section is concluded by a few words on the selection of CPLEX 11.2 as solver (Tech-
nologies, 2010). CPLEX handles both nonlinear and linear constraints, and it provides
suffixes for analysis as a part of the solver code (Ch. 8). Also, CPLEX applies to continuous

quadratic objective functions as assumed in this thesis (p. 30). By the line:

option solver cplex; option cplex_options ’"sensitivity’;

the CPLEX solver is selected, and both sensitivity and dual value suffixes is activated.
Then dual values for a constraint can be accessed by adding the suffix . dual to the name

of the constraint.

A more detailed presentation of the programing is given in Appendix A. The complete
programs for the numerical experiments can be found in Appendix B and C for the single

and multiple learning objects respectively.

® Code snippet is selected from Section B.2 of Appendix B. The applied seeds are listed in Table 5.1. The
construction to set a seed is based on page 122 and 209 in the book by Fourer, Gay, and Kernighan (2003).
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Chapter 5

Results

Based on the objectives given in Chapter 1 and the model presented in Chapter 3, a
unified solution method for learning in both the deterministic and stochastic cases was
developed in Chapter 4. Two algorithms were summarized in Section 4.3, one for the
learning of optimal capacity (Algorithm 1) and one for multiple learning objects (Algorithm
2). The influence of uncertainty on the level of long term capacity is examined by applying
numerical experiments, and both of the developed algorithms are tested. This chapter
presents the results from these experiments.

To conduct the experiments, the parameters in the model have been assigned numerical
values. These values are presented in Section 5.1. The different initial values for capacity,
price, slope and the seed for the random number generator which have been implemented

in the experiments is also presented in Section 5.1

In order to ease comparisons between the results for the stochastic cases and the un-
constrained optimal solution, the analytical solution to the unconstrained deterministic
problem is derived in Section 5.2. The results obtained by the single object learning al-
gorithm (Algorithm 1), for both the deterministic and stochastic (random demand and
random inflow) cases are presented in Section 5.3. In Section 5.4 the results derived using
the multiple learning objects algorithm (Algorithm 2) are presented.

Tables of the numerical results (excerpts) obtained by applying Algorithm 1 for the Ex1-
combination are given in Appendix B. Similarly, Appendix C includes excerpts of the
numerical Ex1-results obtained by applying Algorithm 2 for each case. This chapter is
concluded by Table 5.3 which summarizes the results from all the experiments performed

by implementing both algorithms for all cases considered in this thesis.



34 5 Results

5.1 Applied Initial Values and Data

As described in the introduction to this chapter, several combinations of initial values for
price, slope and capacity have been used in the experiments. The random seeds also varies
across the experiments when stochastic values are included. The different combinations

of random seed and initial values are listed in Table 5.1.

Matrix of initial value-combinations.

Label: Ko Do dpg seed
Exl 0 50 1 1
Ex2 10 100 5 2
Ex3 20 150 12 3
Ex4 30 300 15 4

AMPL K[0] phat[0] dphat[0] 1

Table 5.1: Initial values and seeds set for the random values applied
in the experiments. The labels are used in the graphs, and indicates the
combination of initial values applied to produce a particular result.

Each type of the stochastic cases have been simulated once for each of the four different
sets of initial values in Table 5.1. The labels Ez1-Ex4 in Table 5.1 will also serve as a
reference for the labels applied in the graphs (and tables) which is presented in this thesis,
such that one particular label indicates the specific set of initial values which have been
applied to obtain a particular result.

The functions in the model presented in Chapter 3 have been assigned numerical parame-
ter values in order to conduct the numerical experiments. The numerical values assigned
to the parameters are summarized in Table 5.2.

Parameter values for the functions.

parameter: a b A B r d f
value: 150 2 6 05 015 010  3.75
function: P(q) P(q) C(g) Clg Y(K) Y(K) Y(K)

Table 5.2: The table summarize the numerical values assigned to the
parameters in the model. These values are applied in all of the experiments
reported in Chapter 5, and will not vary across the cases.
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5.2 Benchmark Results

The unconstrained deterministic problem is somewhat trivial as long as the analytical
expressions are known. Even so, to facilitate easy comparison to the outcome of the
different numerical experiments for the various stochastic cases, the analytical result for

the unconstrained certainty problem is summarized below.

To maximize the unconstrained deterministic problem, let demand be given by eq. (3.8)
let unit production costs be defined by eq. (3.13) and let the cost of capacity be defined by
eg. (3.15). Then the objective is given by a profit function such that the problem is:

max 7(q) = max {(a —bg)q — (Ag+ Bg*) — (r+d + f)K}

The problem is maximized with respect to both production ¢ and capacity K, and the first
order condition! for the profit is given by the total derivative set to zero.

0= (a—2bg) —(A+2Bq) — (r+d+ f) (5.1)

Since the problem is unconstrained, let ¢ := K and solve eq. (5.1) for K to find the
unconstrained optimal capacity (K*). For the parameters values in Table 5.2 K* is:
a—A—(r+d+f) 150 —6 — (0.15+ 0.10 + 3.75)

K =q = 2(b + B) - 2(2+ 0.5) =% 062

Thus, a unconstrained deterministic optimal capacity and production equal to 28 gives a
maximized profit of 1960. The numeric values have not any real interpretation or specific
measurement of any kind. They merely serve as a benchmark to facilitate comparison,
when assessing how uncertainty affects the agent’s decision about long term capacity
when he is faced with uncertainty of various types.

5.3 Results when Learning Capacity - Algorithm 1

The results obtained by Algorithm 1 are presented in separate sections according to which
case is considered. In Section 5.3.1 the results when the agent implements Algorithm 1
for the deterministic case are presented. The results for both multiplicative and additive
stochastic demand are presented in Section 5.3.2, while Section 5.3.3 reports the results
for the random inflow case. The AMPL-programs used in these experiments are given as
codes in Appendix B, seperately for each of the cases considered in this thesis.

o
OK*

! Definition (5) given in Appendix D: = 0if K" is a stationary point for 7 (K).
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The results are mainly presented as graphs which shows the development in capacity
during the learning process. Though, excerpts of the tables of the numerical results are
given for the Ex1-experiments (Section B.4 of Appendix B). Table 5.3 summarize all the
results for all experiments conducted in this thesis.

Recall that the agent updates his knowledge about the best choice of capacity according
to Step 4 of Algorithm 1 given in Section 4.3 when the general gradient is replaced by the
unified long term criterion developed in Section 4.2, defined by eq. (4.16) for all cases.

4. Repeat: Ki11 := K; + 0, [)\K — MC(IA()}

5.3.1 Learning Capacity under Certainty

The results from applying Algorithm 1 in the deterministic case are presented in Figure 5.1
for different initial values of capacity, and are compared to the unconstrained optimal level
of capacity found analytically by eq. (5.2). Figure 5.1 shows that the agent, by applying
the developed method, learns a best choice of capacity equal to the unconstrained optimal
level fairly quickly. The change in capacity is less than 5% already at iteration 12. The
average long term capacity found by applying Algorithm 1 is 28, with 100% capacity
utilization. The step-size regime used in the trials shown in Figure 5.1 was §; = . This

10+t
step-size gave rise to a 10% change in capacity from the first period to the next.

From Table 5.3 one finds that the number of iterations needed to obtain convergence is
in the range of 29 to 40, dependent on the initial choice of capacity. From Figure 5.1 one
observes that a small gap between the initial guess and the target requires less learning
time before the target is reached, then is the case for a larger gap. Intuitively this is natural
since the agent needs to learn less for a small discrepancy than if the discrepancy is high,
and hence needs less time to acquire the needed knowledge. Due to this dependency, the
speed of convergence can be increased (decreased) by a decrease (increase) in the length
of the step-size. Tests show that a step-size of §; = -1 would require only 11 iterations to

+
obtain convergence in this experiment.

A reduction in number of iterations required to learn the best long term capacity choice can
potentially increase total profit in a business, if the full lifetime of a project is considered.
As will be seen in the stochastic cases, this speedy learning rate is somewhat unrealistic
in face of uncertainty. Even in the deterministic case for multiple learning objects, a

significant increase in the learning rate is found, as will be seen in Section 5.4.1.
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Capacity Deterministic (Algorithm 1)
35+
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Figure 5.1: The graph shows the deterministic results obtained by Algo-
rithm 1 for the initial values of capacity in Table 5.1 versus K*. Average
long term capacity is 28, on average obtained at ¢ = 34. Numeric results
for Ky = 0is given in Table B.1. Table 5.3 summarizes the trials (DET Alg.1).

5.3.2 Learning Capacity under Random Demand

The random demand cases mimics a situation where the agent faces stochastic demand
conditions, simulated by a random factor included in the demand function. As described
in Section 3.3 both multiplicative and additive uncertainty is examined. The results
are derived by running the appropriate AMPL-program in Appendix B.2 and will be
summarized separately for each type.

When stochastic demand enters the problem, the agent maximizes the stochastic objective
summarized in eq. (3.21) subject to the constraint given by eq. (3.6). For the additive
stochastic demand case, called Type 1, the uncertainty is a zero mean random factor, that
is E(s) = 0. For the multiplicative stochastic demand of Type 2, the random factors have a
positive expectation defined by E(s) = 1.5. For the multiplicative stochastic demand of
Type 3, the random factor has an expectation given by E(s) = 1.

Random Demand - Type 1

A zero mean random factor is assumed when the experiments for the additive random
demand of Type 1, defined by eq. (3.10) is performed for all initial values in Table 5.1.
The random factor is defined by eq. (3.1) for E(s) = 0. For a zero mean uncertainty, the
outcome space is constant and symmetric, as shown in Figure 3.1 and intuitively one

might expect convergence towards a long term capacity close to the free optimal capacity.
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Capacity Random Demand - Type 1 (Algorithm 1)
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Figure 5.2: The graph shows the results for a Type 1 random demand case
obtained by Algorithm 1 for the initial value as given by Table 5.1 compared
to K*. Average long term capacity is 28, on average obtained at ¢t = 82.
Capacity utilization is close to 100%. Numeric results for Ex1 is given in
Table B.2 and all trials are summarized in Table 5.3 (Rows: T1 Alg.1).

Figure 5.2 shows the results derived for the Type 1 experiments for a step-size set to ﬁ.
It is clear from Figure 5.2 that the agent finds a long term level of capacity very close to the
benchmark level. Algorithm 1 requires on average 82 iterations for the agent to acquire this
knowledge. The required number of iterations is thus higher than in the deterministic case,
but the capacity development in Figure 5.2 has a close resemblance to the development in

the deterministic case shown in Figure 5.1.

A zero mean noise has an impact on the price which is independent of selected production
level. The empiric expectation found for the realized random values in this case is
E(s) = —0.0059, and the results obtained by applying Algorithm 1 for the Type 1 demand
are therefore directly comparable to the findings in the certainty case since the empirical
expectation is (close to) zero.

Random Demand - Type 2

For a multiplicative random demand defined by eq. (3.11) the random value is added
to the slope in the demand function according to P(q,s) = a — (b + s)q. For a zero
mean random factor, the Type 2 uncertainty creates a symmetric outcome space around
the deterministic demand curve. However, the variation in price is proportional to the

production level such that an increase in uncertainty for higher production results.



5.3 Results when Learning Capacity - Algorithm 1 39

Capacity Random Demand - Type 2 (Algorithm 1)
351
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Figure 5.3: The graph shows the results for a Type 2 random demand
case obtained by Algorithm 1 for the initial values in Table 5.1 compared to
K* and E(g|s). Average long term capacity is 22.3, on average obtained at
t = 468. Capacity utilization is 82%. Numeric results for Ex1 is given in
Table B.3 and all trials are summarized in Table 5.3 (Rows: T2 Alg.1).

If the expectation for the random factor is positive, the expected price is lower than the
deterministic price since uncertainty enters the demand as a negative factor?. The long
term capacity choice acquired by the method should reflect this downward bias. For a
step-size given by 5#“ and a random factor with E(s) = 1.5 it is from Figure 5.3 obvious
that the convergence level is lower than K™ in all trials. Algorithm 1 requires 468 iterations

to reach a capacity level of 22.3 on average.

During the process, the capacity utilization is close to 82% with an average production
of only 18.2 units. Based on this, one may conclude that the agent acquires the needed
knowledge by applying the method to make a capacity choice which reflects the increased
uncertainty for higher levels of production, and which is compliant with basic economic

intuition without any prior knowledge about the market.

Random Demand - Type 3

A random demand of Type 3 is of a multiplicative type for which the uncertainty term is
multiplied by the demand function according to eq. (3.12): P(q,s) = (a — bg)s. As in the
previous case, the effect of uncertainty on demand depends on both expectation of the
random factor and the chosen level of production. For a random factor as defined by eq.

2By eq. (3.1) for s := 0 & 5 := 3 then E(s) = 1.5 by eq. (3.3) and hence E(P) < P (See Appendix D).
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Capacity Random Demand - Type 3 (Algorithm 1)
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Figure 5.4: The graph shows the results for a Type 3 random demand
case obtained by Algorithm 1 for the initial values in Table 5.1 compared
to K*. Average long term capacity is 28.94 on average obtained at ¢ = 351.
Capacity utilization is close to 95.5%. Numeric results for Ez1 are given in
Table B.4 and all trials are summarized in Table 5.3 (Rows: T3 Alg.1).

(3.1) with E(s) = 1 the expected price is equal to the sure price>. However, as discussed in
Section 3.3 and as shown in Figure 3.2, a decreasing volatility in prices for an increasing
production quantity results. Thus, a reduced variation in price for higher quantities might
lead the agent to choose a production, and hence capacity, higher than previously found.

Figure 5.4 shows the results obtained by applying Algorithm 1 when E(s) = 1 for the
combination of initial values in Table 5.1, using a step-size set to ﬁ. From Figure 5.4 it
can be seen that the agent consequently selects a higher level of long term capacity than
in any of the previous experiments. The average long term capacity is 28.94, on average
found at iteration 351. During the learning process, the average production is close to
27.7, such that the capacity utilization is slightly above 95% on average.

5.3.3 Learning Capacity under Random Inflow

In the random inflow case, the agent faces uncertain inflow of raw materials, such that
the random factor may, or may not inflict a binding constraint on the short term choice of
production. The implemented stochastic objective is summarized in eq. (3.21) in which the
applied constraint, defined by eq. (3.7) is labeled as constraint (2). This section presents
the results obtained by running the AMPL-program in Appendix B.3 for each of the initial
value combinations given in Table 5.1.

3By eq. (3.1) for s := 0.5and 3 := 1.5 then E(s) = 1 by eq. (3.3) and hence E(P) = P (See Appendix D).
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Figure 5.5: The graph shows the results for the random inflow case ob-
tained by Algorithm 1 for the initial values in Table 5.1 compared to K*.
Average long term capacity is 24.5 on average obtained at ¢t = 1991. Capac-
ity utilization is 59.5% and the input utilization is 96.5%. Numeric result
for Ex1 is given in Table B.5 and summarized in Table 5.3 (Rows: RDI Alg.1).

The random factors follows a uniform distribution, defined by eq. (3.1) such that the
expected outcome is E(R) = 15. Figure 5.5 displays the results obtained for the random
inflow experiments. Average long term capacity is 24.5, thus approximately 87.5% of the
free optimal level of capacity. The average production during the development process
shown in Figure 5.4 is 14.6, which gives a capacity utilization as low as 60% for the four

trials.

A

From Table 5.3 we find that the empirical expectation is E(R) = 15.14 over the trials
displayed in Figure 5.5. The input utilization is close to 97%, and hence only 3% of the
inflows goes to waste. If the long term capacity found by the algorithm is close to the free
optimal level, the long term criterion should be close to zero. In this case the gradient is
—4 at the convergence step in all of the trials. At iteration 1991 the absolute value of the
new information? is less than the defined stopIF criteria (set to 0.002) and the iterations

is terminated. Convergence is thus obtained, mostly due to the definition of the step-size.

A long term capacity of 9.5 units above the expected level of inflow enables the agent to
utilize approximately 63% of the inflows at levels above expected inflow. However, the
probability of overcapacity is as high as 0.82 at this level°. In the experiments we find that
overcapacity occurs in 81% of the iterations, consistent with the calculated probability.

* The absolute value of the new information is given by |81991[Ax — MC(K)]|.

*P(0 < R <24.5) = 22 = 0.82
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The cost of maintaining a capacity of 24.5 units is 98, independent of actual inflows in
each period. By inserting E(R) for K in eq. (3.15) the cost of maintaining a capacity level
equal to the expected inflow is 60, and the cost of overcapacity is thus 38. The probability
of observing inflows between expected level and the selected long term level of capacity
is 0.32 and expected additional profit is 124 for inflows in this range®. Hence, the expected
additional profit more than outweighs the additional cost. For the range between the long
term choice and free optimal level of capacity, expected additional profit is 3.57. Since the
capacity cost increase by 14 over this interval, these units has a net negative contribution

to the agent’s profit’.

5.4 Results when Learning Capacity, Price & Slope - Algorithm 2

When the agent applies Algorithm 1 he presumably knows the demand function, and
hence knows the price he can get for the produced quantity. In Algorithm 2 the agent is
by assumption unfamiliar with the actual demand function, and instead he holds a firm
initial belief about the nature of it. Hence, unfamiliar with the actual demand in eq. (3.8)
the agent optimizes his short term profit by solving a maximization problem for the actual
demand replaced by a proxy demand curve.

~ d,

Pq) = pi — S (5.3)

For a proxy given by eq. (5.3) the agent believe his ex-post stochastic objective is

maxI1(q) = max { Pq)q — C(q) - W(K)} (5.4)
for an initial guess of capacity given by K. The agent maximizes the believed profit function
in eq. (5.4) subject to a capacity constraint given by either eq. (3.6) (deterministic and
random demand cases) or eq. (3.7) (random inflow case). When multiple learning objects
are implemented in the experiments, the perceived problem in eq. (5.4) thereby replaces
the agent’s original problem given in either eq. (3.17) (deterministic case) or eq. (3.21)
(stochastic cases). By following the same approach as described in Section 4.2 the marginal
change in the agent’s perceived profit for a change in capacity can be found by the envelope
theorem. The perceived marginal change in profit for a change in capacity is thus

(g, K) .
—Eﬁ—_AK—MaK) (5.5)

® E[ATI(15 < R < 24.5)]
7 E[ATI(24.5 < R < 28)]

P(15 < R < 24.5)[T1(24.5) — TI(15)

] = 24:5-15[391.88] = 124.29
P(24.5 < R < 28)[I1(28) — T1(24.5)]

28- 24 28-24.5130.63] = 3.57
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when holding production fixed at the maximal level g. The proxy first order criteria for
the agent’s perceived problem in eq. (5.5) equals the long term break-even criteria in eq.
(4.16) and hence, the developed algorithms in Chapter 4 applies without modifications.
Recall that the agent updates his beliefs according to Step 4 in Algorithm 2.

4. Repeat:
(a) Capacity: K1 := Ky + 6 {)\K — MC(IA()}
(b) Price: pi1 := (1 — 6¢)pt + 6Pt
(c) Slope: dp;+1 == (1 — &;)dp; + dpdp,

Step 4.a and 4.b follows the adaptive learning scheme as described in Section 2.2. By
rewriting the average function constructed for learning in eq. (2.1) to psy1 < pe+0: (Dt —pr)
it is evident that future expected price is a projection of current best guess (p:) and an
error-adjustment term accounting for deviation between belief and observation (p; — p).

This learning heuristic also applies to learning of correct slope.

The observed price is given by the demand curve valid in each case. In the deterministic
and random inflow cases eq. (3.8) applies, such that py = a — bg;. For the random
demand cases the observed prices results from applying eq. (3.10), eq. (3.10) or eq. (3.10)
respectively. In the random inflow case and in the deterministic case, the observed slope
is dp; = b. Similarly, the observed slope is case dependant in the random demand cases.
In Section 5.4.1 results for the deterministic case are presented, while the random demand
results are presented in Section 5.4.2. In Section 5.4.3 the results from implementing

Algorithm 2 in the random inflow case are discussed.

5.4.1 Learning Capacity, Price and Slope under Certainty

The results acquired by applying Algorithm 2 in the deterministic case are presented in
Figure 5.6, compared to the free optimal level of capacity (K*) given by eq. (5.2). These
results are obtained by running the run-file in Section B.1 modified with the changes
described in Section C.3 for the initial values of capacity, price and slope as given in Table
5.1 using data from Table 5.2.

From Figure 5.6 it is clear that the agent obtains knowledge of a long term capacity very
close to the benchmark level by applying Algorithm 2, however the number of iterations
increases significantly compared to Algorithm 1. In the Ex1-experiment, the agent adapts
his knowledge over 759 iterations. From an initial perceived price of 50, the agent learns
the price to be 93.85, close to the actual price (94) for capacity and production equal to 28.
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Capacity Deterministic (Algorithm 2)
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Figure 5.6: The graph shows the results for the deterministic case ob-
tained by Algorithm 2 for the initial values in Table 5.1 compared to K*.
Average long term capacity is 28 on average obtained at ¢ = 1773. Capacity
utilization is &~ 100%. Numeric result for Ex1 is given in Table C.1 and
summarized in Table 5.3 (Rows: DET Alg.2).

Notice that the development pattern of the capacity during the learning process is different
in Figure 5.6 than what was seen in the experiments reported in Figure 5.1. Since the
perceived nature of demand differs from the true nature of it, the information obtained
by the agent is slightly different than in the previous experiments. When the difference
between believed and observed values decrease over the learning process, the building
pattern becomes more similar to the pattern found in Figure 5.1. This issue is discussed in
Section 6.2 since the difference in perceived and observed marginal revenue affects the

long term adaption, dependant on the type of uncertainty which is considered.

In this experiment, the marginal change in profit for a change in capacity is found to
be 0.003, and thus the long term criteria is close to zero, and one may conclude that the
agent choose a long term capacity very close to the efficient level. From Table C.1 and the
summary in Table 5.3 one also see that the agent learns both price and slope with high
accuracy compared to the deterministic values. How will the agent adjust his capacity
when Algorithm 2 is applied in the random demand cases?

5.4.2 Learning Capacity, Price and Slope under Random Demand

This section presents the results obtained by implementing Algorithm 2 for the stochastic
demand cases, when the agent is presumably unfamiliar with the original demand curve,

as discussed in Section 5.4.1. Instead the agent maximizes profit for a proxy demand curve
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given by eq. (5.3) (15 (q) =pt + %qt). Learning occurs according to Step 4 in Algorithm
2, and for the random demand cases the observed price j; and slope dp, are set according
to the specific functions applied in the previous random demand experiments. That is:

e Type 1: Let p; := a — bg; + s; and let cfpt =0, fors; ~U(—1,1).
e Type 2: Let p; := a — (b+ s¢)q; and let Cfpt :=b+ s, for sy ~U (0, 3).
e Type 3: Let f; := (a — bg;)s; and let dp, := b - s, for s; ~ U (0.5, 1.5).

The results are derived by running the type-specific AMPL program in Appendix C for the
data in Table 5.2 and for the initial values in Table 5.1. The agent learns price, slope and
capacity when using Algorithm 1, although the long term capacity in some cases differs

from the results obtained by applying Algorithm 1.

Random Demand - Type 1

As discussed in the introduction to this section, the observed demand is given by eq. (3.10)
in this case assuming a zero mean random factor with a symmetric outcome space as
shown in Figure 3.1 and the risk is from the agent’s perspective perceived as constant over
the entire range of possible production choices.

Figure 5.7 displays the capacity development in the random demand Type 1 case. Again
one notice the similarity to the deterministic analogue experiment in Figure 5.6. No matter
what initial price, slope or capacity the agent starts off with, convergence is on average
obtained at the 1116'" iteration for a long term capacity equal to 28. The most significant
difference compared to applying Algorithm 1 is the increased number of iterations required.

The agent’s initial beliefs about price spans from 50 to 300 over the four experiments. When
convergence is obtained, the agent’s belief has adjusted such that the price is perceived to
be in the range from 93.34 (Ez1) to 95.23 (Ez4), close to the actual price of 94 obtained for
a production of 28 units. Similarly the agent has a prior belief about slope varying over the
range from 1 to 15. By the end of the learning process, the perceived slope is in the range
from 1.97 (Ex1) to 2.04 (Ez4). The actual slope is b = 2, and again a good approximation

to the actual market conditions surrounding the agent results from the learning process.

Based on Table 5.3 the empirical average of the random factors is 0.0029, thus the random
values reflects a zero mean noise. On average the long term criteria in eq. (4.16) is close to
Zero (% = 0.0992) for the four trial, which confirms that the long term capacity is close
to the efficient level. Thus, despite the wide range of initial beliefs, the agent acquires the
needed knowledge by applying Algorithm 2 to be optimally adjusted in terms of price,

slope and capacity when the learning process is complete.
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Capacity Random Demand - Type 1 (Algorithm 2)
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Figure 5.7: The graph shows the results for the random demand Type 1
case obtained by Algorithm 2 for the initial values in Table 5.1 compared
to K*. Average long term capacity is 28 on average obtained at t = 669.
Capacity utilization is 99%. Numeric result for Fz1 is given in Table C.2
and summarized in Table 5.3 (Rows: T1 Alg.2).

Random Demand - Type 2

Observed demand is, for stochastic demand of Type 2, given by eq. (3.11) for an uncertainty
factor with positive expectation, thus E(s) = 1.5. As discussed in Section 5.3.2 this result
in a downward bias on the production since the risk perceived by the agent is increasing
for an increasing production, and thereby may result in a reduced long term capacity.

Figure 5.8 displays the results for Algorithm 2 for a random demand Type 2 uncertainty,
from which it is obvious that the long term capacity is below the benchmark level. This
is the same as found by Algorithm 1, although the level of the long term capacity differs
slightly between the algorithms. The average long term capacity over the four trials is 17.5
versus 22.3 found by Algorithm 1. On average 1041 iterative steps are required to obtain
convergence, more than twice as many iterations are applied to obtain convergence when

learning capacity, price and slope simultaneously, as compared to Algorithm 1.

When the learning process ends, the perceived price is in the range 88.56 — 89.59 for a
slope in the range 3.48 — 3.57 over the four trials. Based on Table 5.3 the average random
factor is 1.51. Expected price given by eq. (3.11) is 88.78 for a production of 17.46 units
when E(38) = 1.51, and thus the agent adjusts his knowledge into a narrow, and quite
accurate estimate for both price and slope. However, note that the capacity utilization
increases from 82% in Algorithm 1 to 99.8% in Algorithm 2.
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Capacity Random Demand - Type 2 (Algorithm 2)
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Figure 5.8: The graph shows the results for the random demand Type 2
case obtained by Algorithm 2 for the initial values in Table 5.1 compared to
K*. Average long term capacity is 17.46 on averagee obtained at ¢t = 1041
with an average capacity utilization close to 99.8%. Numeric result for Ex1
is given in Table C.3 and summarized in Table 5.3 (Rows: T2 Alg.2).

Since the random demand Type 2 uncertainty is such that the slope of the actual demand
is affected by the uncertainty, the use of a proxy affects the long term choice made by the
agent. The agent does not face the uncertainty directly through the price when applying a
proxy, and hence adapts differently in the long run. These characteristics are discussed in
Section 6.2.

Random Demand - Type 3

This section presents the agent’s choice of long term capacity when the observed price
is of the random demand Type 3, defined by eq. (3.12). Assume E(s) = 1, such that the
agent faces a decreasing volatility in prices for an increase in production, as shown in
Figure 3.2. According to the results in Section 5.3.2 the agent installed a long term level of
capacity higher than the unconstrained optimal level when Algorithm 1 was applied.

Figure 5.9 shows how the the agent’s perception about price and slope affects the expected
positive bias for higher production levels. The average long term capacity is 28.03 for a
Type 3 uncertainty when using Algorithm 2. This long term choice differs only slightly
from the optimal level found analytically by eq. (5.2) and it is 0.9 units less than previously
found. At the end of the learning process the agent has obtained a capacity utilization of
99.6% on average, approximately 4.2% higher than in the previous Type 3 experiment. On

average convergence is obtained at iteration number 1091.
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Capacity Random Demand - Type 3 (Algorithm 2)
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Figure 5.9: The graph shows the results for the random demand Type 3
case obtained by Algorithm 2 for the initial values in Table 5.1 compared to
K*. Average long term capacity is 28.03 on average obtained at ¢t = 1091
with an average capacity utilization close to 99.6%. Numeric result for Fx1
is given in Table C.4 and summarized in Table 5.3 (Rows: T3 Alg.2).

The agent’s knowledge about price has been narrowed from the wide range of initial
values in Table 5.2 into a perceived range between 93.33 and 95.68. Again we see that the
agent learns a price which is close to the actual price for an efficient choice of capacity
and production. The agent learns the slope to be in the range 1.99 — 2.08 over the four
trials. The average gradient is close to zero (0.337), and hence the agent has adjusted his
knowledge by applying Algorithm 2 such that an efficient long term capacity is selected,
and a quite accurate estimate for both price and slope is obtained.

5.4.3 Learning Capacity, Price and Slope under Random Inflow

In the random inflow case the agent maximizes the perceived objective in eq. (5.4) subject
to the chance constraint in eq. (3.7). This section presents the results obtained from
applying Algorithm 2 in the random input case, derived by running the appropriate AMPL-
program in Appendix C for the data in Table 5.2 and the initial values in Table 5.1. Similar
to Algorithm 1, the random inflow is a uniform random variable defined according to eq.
(3.1) on the support [0, 30], thus the expected inflow is E(R) = 15 by eq. (3.3).

Figure 5.10 displays the random inflow results when using Algorithm 2. Average long term
capacity is 26.5, close to 95% of the free optimal level, an increase of 7% from the previous
experiment. An increase in capacity results in a decrease in capacity utilization since the

inflows are almost equal. Thus, the capacity utilization is only 56% versus 60% previously,
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Figure 5.10: The graph shows the results for the random inflow case
obtained by Algorithm 2 for initial values in Table 5.1. Average long term
capacity is 26.56 on average obtained at ¢ = 1993. Average capacity utiliza-
tion is 56% with 98% input utilization. Numeric result for Ex1 is given in
Table C.4 and summarized in Table 5.3 (Rows: RDI Alg.2).

the lowest utilization in all the cases. However, a capacity higher than expected inflow
enables the agent to utilize more of the inflows, and a capacity of 26.5 enables a utilization

of 77% of the inflows above the expected level.

The initial values applied in Algorithm 2 (Table 5.1) spans a wide range. During the
learning process is the agent’s perception about price and slope compressed such that
the perceived price is in the range from 119.9 to 120.8, and slope is on average dp = 2.03.
Both are close to what would be obtained by deterministic demand in eq. (3.8) for the
same production. Again a good approximation of the market conditions results from the

learning process.

When using a proxy demand function, the perceived profit is given by eq. (5.4) as opposed
to the actual profit defined by eq. (3.21). By eq. (5.4) the expected additional profit for
inflows in the range from 15 to 26.5 is found to be close to 211, thus higher than expected
overcapacity costs which is 46. Thus, the installed long term capacity is perceived to
contribute positively in expectation®. For capacities in the range from K = 26.5 to K = 28
the expected additional profit is only 2 versus additional expected capacity cost close to

5.8, and thus perceived to have a negative contribution to expected profit.

8 E[Am(15 < R < 26.54)] = P(15 < R < 26.54)[r(26.54) — 7(15)] =~ 211
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Summary of Results Obtained by Algorithm 1 and Algorithm 2.
TYPE seed Kot K iYl,g ixt,e AL pe dp
Benchmark 28.00 28.00 0.0000  94.00 2
DET Alg.1 0 40 28.00 27.13 0.0093  95.75
Deterministic 10 37 28.00 27.39 0.0083 95.22
Algorithm 1 20 31 28.00 27.68 0.0077  94.64
30 29 28.00 28.17 -0.0076  93.66
DET Alg.2 0 758 28.00 27.96 0.0033 93.85 1.994
Deterministic 10 1297 28.00 27.87 -0.0010  94.26 2.009
Algorithm 2 20 2372 28.00 27.82 -0.0006 9447 2.017
30 2701 28.00 27.88 -0.0001 9454 2.019
T1Alg.1 1 0 57 28.01 2691 -0.007  0.0130  96.17
RD Type 1 2 10 60 2796 27.32 -0.089  0.0021  95.26
Algorithm 1 3 20 55 28.02 27.68 0.029 -0.0034 94.67
4 30 155 28.00 28.04 0.044 0.0264 93.95
T1 Alg.2 1 0 164 28.01 27.95 -0.007 -0.0022 93.34 1.976
RD Type 1 2 10 327 2799 27.84 -0.001  0.0149 95.02 2.036
Algorithm 1 3 20 995 28.00 27.75 -0.001  0.0196 95.14 2.041
4 30 1191 28.00 27.75 0.020 0.0078  95.23 2.044
T2 Alg.1 1 0 678 2221 18.26 1.492 0.0890 86.24 3.492
RD Type 2 2 10 115 2287 18.22 1.504 -0.0231 86.15 3.504
Algorithm 1 3 20 698 2247 18.17 1.507 0.0145 86.27 3.507
4 30 379 21.96 18.09 1.521 0.0537 86.29 3.521
T2 Alg.2 1 0 841 1755 17.52 1.490 -0.0676  88.56 3.480
RD Type 2 2 10 1233 17.39 17.51 1.512 -0.0157 88.51 3.517
Algorithm 2 3 20 915 1748 17.32 1.509 -0.1569 89.36 3.548
4 30 1176 17.41 17.41 1.529 0.0316  89.59 3.569
T3 Alg.1 1 0 286 2881 27.64 0.993 -0.0447  94.06
RD Type 3 2 10 382 28.83 27.40 0.981 -0.0354 93.36
Algorithm 1 3 20 595 29.03 27.66 1.005 -0.1099  95.16
4 30 140 29.10 27.84 1.025 0.0221 96.70
T3 Alg.2 1 0 529 2794 27.95 0.993 -0.0026  93.33 1.983
RD Type 3 2 10 1233 28.07 27.84 1.004 0.0144 9472 2.017
Algorithm 2 3 20 614 28.05 27.24 1.004 0.0497 96.33 2.076
4 30 787 28.05 27.73 1.008 -0.1217 96.40 2.084
RDI Alg.1 1 0 1990 24.49 14.40 14916 -4.0000 121.21
Random Inflow 2 10 1990 24.66 14.76 15.300 -4.0000 120.49
Algorithm 1 3 20 1990 24.42 14.53 15.039 -4.0000 120.94
4 30 1993 24.60 14.77 15.272  -4.0000 120.47
RDI Alg.2 1 0 1991 2657 14.65 14.916 -4.0000 120.39 1.996
Random Inflow 2 10 1992 26.68 15.02 15.296 -4.0000 119.87 2.014
Algorithm 2 3 20 1993 26.31 14.69 15.045 -4.0000 120.74 2.045
4 30 1994 26.60 15.00 15.271 -4.0000 120.82 2.058

Table 5.3: Summary of the results obtained by the algorithms in each
case/type, for all the initial values in Table 5.1.
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Chapter 6

Discussion

By the results reported in Chapter 5 it was shown that the method developed in Chapter
4 provides convergence towards a long term level of capacity for the varying stochastic
market situations which is considered in this thesis. To evaluate the performance of
the method, this chapter discusses the compliance between the results obtained by the

algorithms versus both theoretical expectations and the research presented in Chapter 2.

Since the model is known, expectations and marginal values for the various stochastic
cases can be derived. Section 6.1 derives the most significant of these, and discuss the
compliance between the numerical findings and theoretical expectations. When the proxy
demand function is applied, a divergence occurs between the long term decisions in some
of the cases, as seen in Chapter 5. A discussion on the reason for the differing results
which is caused by the application of a proxy demand curve is given in Section 6.2. By
way of conclusion the main features of the method is discussed in Section 6.3.

Note: To ease readability, the notation f, = %(f) is applied. Appendix D refer the
calculations (intermediate or complete) used to derive the results and marginal values

which is applied in this chapter.

6.1 Discussion of Compliance to Theory

Recall from Chapter 2 that uncertainty might lead to a “tendency of reduced output” (Le-
land, 1972, p. 67). Risk attitude is also considered important when this issue is addressed.
No explicit assumptions have been made about the agent’s risk attitude, however, a linear
utility (U (7, q) = am + 3, for a, 8 > 0) would imply that the agent is risk averse since the

technology is concave (i.e. due to a concave profit function).
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To check compliance to research, proposition 2 in Aiginger (1985, p. 55) will be used
when applicable. The proposition states that “a linear utility and technological concav-
ity, neutrality, convexity (Il;ss < 0,11, = 0,115 > 0) yield the following sufficient
condition”:

Mss S0 =4S¢ (6.1)

The proof of eq. (6.1) is obtained by applying Jensen’s inequality E[f(z)] < f(E[z]) for a
concave function (Sydseeter et al., 2002, p.181, def. 31.19)%. Thereby one may utilize that
the effect of uncertainty on expected marginal revenue and marginal cost will determine
the agent’s adoption both in the short and long term, since profit is concave.

If the rate of change in marginal revenue is increasing in s (M R,s > 0), then expected
marginal revenue is decreasing for a change in uncertainty. In order to keep expected
marginal revenue in line with marginal costs in this situation, the agent can reduce pro-
duction or increase price compared to benchmark level. Similarly, if the rate of change in
marginal cost is decreasing in s (M Css > 0), thus the expected marginal cost is increasing
in uncertainty. To keep it in line with marginal revenue, production may increase or price
may decrease compared to benchmark level. A combination of changes in both price and
production may also occur as a response to uncertainty. If expected marginal revenue is
unaffected by uncertainty (M R,; = 0) then production will be equal to the benchmark
decision. Similar reasoning is given by Aiginger (1987, p. 52-53) and Leland (1972, p. 282).

Based on the definition of uncertainty which is examined in the experiments, the expecta-
tions can be derived. For an additive random demand defined by eq. (3.10), a zero-mean

assumption and an additive nature will give an expected price equal to the certain price.

EIP(.9)] = [ lo—bg+5)£(s) ds = P(q) if E(s) = 0
s
As discussed in Section 5.3.2 this is intuitive since a zero-mean random variable produces a
symmetric outcome space which is equally positive and negative around the deterministic
demand curve, as seen in Figure 3.1. Since marginal cost is linear, and since the effect on
marginal cost and revenue from a change in uncertainty is oppositely dependant on the
sign of s, (M Cs % 0if s § 0and MR, § 0if s % 0> no distortion caused by uncertainty
occurs if the rate of change in marginal cost from uncertainty is zero. For the Type 1
uncertainty M Cs, = 0, and no distortion from benchmark level is detected in either Figure
5.2 nor Figure 5.7. From Table 5.3 we find that the price is only 0.5 above the benchmark
price, for an average of 0.5 units lower production. Thus, one may conclude that the
algorithms give results in line with Aiginger’s proposition quoted in eq. (6.1) and in line

with expectations for the Type 1 uncertainty case since the difference is negligible.

! For a convex function, the inequality is reversed. Aiginger (1985, note 5, p. 73) gives a proof for eq. (6.1).
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For a multiplicative demand defined by eq. (3.11) with a positive expectation, the situation
will according to Leland (1972) and Aiginger (1987) be different. Since the uncertainty is

added to the slope, the expected price is decreasing for all outcomes of uncertainty?.

EIP(@.9)] = [ la= (b+5)a £(5)ds < P(@) if E(s) > 0
A lower price affects the production costs since they are dependant on the selected level
of production. For any given level of production, quantity can be given as a function of
price since the functions are invertible. Let P denote the price corresponding to quantity g,
and let s denote uncertainty. Then the following apply:

- - P
P=a—-(b+s)] & Ej:a

To find marginal change in quantity subject to a change in uncertainty (gs), differentiate

the inverse expression for quantity with respect to uncertainty (s):

a— P
(s+b)2

a—P
s+b

00

= 95~ 0s

<0Vs>=0

From the above expression it is clear that an increase in s will reduce the production if price
remains unchanged. Since ¢; < 0 and hence M C, < 0 for all s > 0, such that E(s) > 0
implies a negative relation between uncertainty and costs. By inserting E(s) = 1.5 for s
in the first order criteria in eq. (5.1) the optimal production is found to be 17.5, which is
lower than the long term capacity derived by applying Algorithm 1. This divergence is
caused by two simultaneous shifts with opposite effect, namely M Cy < 0 and M R, > 0,
for Type 2 uncertainty when Algorithm 1 is applied.

As discussed above, a negative rate of change in marginal revenue (MR, < 0) implies
that the agent will reduce his production compared to benchmark in order to keep expected
marginal revenue in line with marginal costs. However, since M R; > 0 and MC, < 0,
the production will occur at a level below the certain production, but above the level
found by eq. (5.1) for s = 1.5, since some of the downward bias is countered by a positive,
but diminishing rate of change in profit for a change in uncertainty (II;s; > 0V s) when
Algorithm 1 is applied. According to Aiginger (1987, p. 55) a convex marginal cost in
uncertainty will result in a reduced price compared to the deterministic price, dependant
on the rate of change in marginal cost. In the Type 2 case MC;; > 0V s, such that a
distortion from benchmark level is expected. If the algorithms are compliant with this, the
results should reflect this downward bias compared to benchmark.

2 A value of 0 can be the outcome, although the probability of this event is zero
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In both Figure 5.3 and Figure 5.8 a negative distortion is evident since the long term
capacity which is installed in the business is below the benchmark level. According to
Table 5.3 the average production is 18.19, which yields an average price of 86.2. By which
it is shown that Algorithm 1 produce results compliant to Aiginger’s proposition.

Since the proxy demand curve does not include any form of uncertainty directly, the rate
of change in both marginal costs and marginal revenue is by definition unaffected by
uncertainty when Algorithm 2 is applied. Both short term production and long term level
of capacity found by the algorithm should therefore reflect this. Eventually the adaptive
learning of price and slope will uncover the surrounding market conditions, such that the
long term capacity thus should converge towards a level closer to the expected level of
production in this experiment. The application of Algorithm 2 in the Type 2 case results
in a long term level of capacity which is equal to the expected level of production for an

average price of 89, and hence compliant with Aiginger’s proposition.

Thus it is shown that both algorithms produce results which is in line with the earlier
referred results since both production and price is reduced compared to benchmark.
The lower price compensates the agent for the uncertainty in the higher regions of the
demand curve and counteracts some of the risk as perceived by the agent if demand
turns out to become low. The conclusion is that the method provides the agent with the
needed knowledge such that he finds the best choice of long term capacity and short term

production, both at levels in line with expectations for the random demand Type 2 case.

Similar to the Type 1 uncertainty, Type 3 uncertainty also creates a symmetric outcome
space around the deterministic demand curve, though with reduced volatility in prices
for an increasing production, as shown in Figure 3.2. For random demand Type 3, defined
by eq. (3.12) the expected price equals the deterministic price when E(s) = 1.

EIP(q.) = [ la~ b saf(s)ds = Plq) i E(s) = 1

Since the rate of change in marginal revenue for a change in uncertainty for Type 3 case
is zero, no difference from benchmark production is expected in order to keep expected
marginal revenue in line with the marginal cost for this type of uncertainty. Inasmuch
as the average production in Table 5.3 is equal to the benchmark level, we find that
the algorithms produce results which harmonize well with theory and performs in line
with expectation®. However, the long term capacity which is obtained by implementing
Algorithm 1 is (slightly) higher than benchmark capacity, while it is equal when Algorithm
2 is applied.

3 Compare 1 Zf;l gi in rows T3Alg.1 and T3AIg.2 to the rows DETAIg.1 and DETAIg.1
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By a similar approach as for the Type 2 case, the inverse relations can be applied to show
why this positive difference results from using Algorithm 1. By doing so, one finds that
since marginal cost is concave in uncertainty (M Cy, < 0) the expected marginal cost is
decreasing in uncertainty such that the rate of change in profit for a change in uncertainty

is positive (Il 55 > 0).

According to Aiginger’s proposition quoted in eq. (6.1) the production under uncertainty
will be higher than under certainty if the price remains unchanged. However, from Table
5.3 one finds a small increase in price compared to benchmark, for on average the same
production level. The influence on the long term decision, is an increase in capacity since a
positive expected rate of change in profit for a change in uncertainty implies an increased
dual value for an increased uncertainty. In turn, this will increase the installed level of
capacity via the iterative steps of the algorithm where the long term criteria in eq. (4.16)
is implemented. This is natural since an increased long term capacity will not impose a
higher risk to the agent in the Type 3 case. On the contrary, the lower the capacity, the
higher is the observed volatility in prices, and the higher the risk as perceived by the agent.
Thus, by increasing the long term capacity, the risk as perceived by the agent is reduced
since there are no discrepancy between produced and sold quantity in these experiments.

When Algorithm 2 is applied for the Type 3 demand case, a similar effect as was seen in
the Type 2 case occurs, since the rate of change in both marginal revenue and marginal
cost by definition is not influenced by uncertainty. In Figure 5.9 it is clear that there are
no difference between the benchmark level and the long term level of capacity found
by using Algorithm 2. This shows that both the developed algorithms contribute to a
learning process such that the agent acquires sufficient knowledge in order to choose both

production and capacity in line theory also for the random demand Type 3 case.

For the random inflow availability case, the expectation is not as readily available, how-
ever note that expected input is £(R) = 15 according to the data applied in the experi-

ments. In the long run, the expected constraint on the production is given by
¢ < E[min(K, R)] = min(K, 15)

such that the production most probably is close to E(R) = 15 on average. This is con-
firmed by Table 5.3 since the average production is 14.61 and 14.84 for Algorithm 1 and
2 respectively. Still, the main interest is whether the agent learns the best choice of long

term capacity by applying the algorithms, when faced with random inflow.

The agent chooses to install a long term capacity of 24.54 or 26.54 units on average when
he uses Algorithm 1 or Algorithm 2 respectively. Despite the fact that the agent has high
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capacity costs at these levels, the potential additional profit is higher than the expected
over-capacity cost, as shown in Section 5.3.3 and Section 5.4.3. These long term levels
of capacity enables the agent to utilize approximately 82% or 88% of any inflow, and
since potential income is high if inflow is above the expected level, the costs incurred
are accepted. However, the price also increases significantly compared to benchmark
level in the random inflow case. Since the random inflow is a uniform random value, the
probability of observing all levels of inflow is equal, thus approximately 50% of the inflow
is below expected level. The high prices should therefore be interpreted as an insurance to

reduce the risk of low profit when the random inflow turns out to be below expectations.

By utilizing the definition of the long term criteria and the numeric dual values returned
from the experiments, we can show that these levels of capacity are (approximately)
efficient, by showing convergence in probability. Recall from Chapter 4 that the dual
values can be regarded as stochastic variables in the stochastic cases, because they are
dependant on a specific outcome of stochastic inflow. By the law of large numbers, a
sequence of random values \; will, under suitable conditions, converge towards the
expected value of the random value, E()). For a large enough sample this implies that the
average of the observed dual values in the random inflow case should converge towards

the expected marginal costs of capacity in probability (Hogg and Tanis, 2005, p. 258).
S N=2=EM) = lim P(A-BQ) <e) =1 (6.2)

when ¢ is an arbitrary small value. It is assumed by the long term criteria in eq. (4.16) that
the marginal change in profit for a change in capacity is equal to the difference between
the dual value and the marginal cost of capacity, that is AA—I’Q =Ag —MC (K ). Hence, if the
average dual value of capacity from the experiments are close to constant marginal cost of
capacity, i.e. if A — MC(K) then the expected long term criteria also converges towards
zero in probability. That is:

nli_)ngoP(’X—E()\)) <d)=1= 7}@(}13(‘19(22)‘ <e> =1

Table B.5 and Table C.5 give only an excerpt of the full numerical results, however by using
the complete data we find the average dual values to be A\ = 4.06 using Algorithm 1, and
A = 4.52 when applying Algorithm 2. Both of these values are close to actual marginal cost
of capacity equal to M C(K) = 4 by the data in Table 5.2. This implies that convergence in

probability is obtained by the method, at least for the data used in these experiments.

Tests show that a change in step-size or in the stop-if criteria does not alter the long

term capacity significantly. By repeating the Ex1-experiment for a step-size of ¢; = %th



6.2 Proxy Demand and Differing Results 57

and with a Stop-if-criteria set to 0.0002, the long term capacity acquired by Algorithm 1
is 24.55 and by Algorithm 2 is 26.51. The change in parameters increase the number of
iterations required to obtain convergence more than ten times for a change of 0.3% and
—0.12% compared to the previous Ezl-experiments shown in Figure 5.5 and Figure 5.10.
Repeated tests using different values for step-size and stop-if criteria display the same
consistent results, such that it is fair to conclude that the algorithms provides the agent

the knowledge to choose an approximately efficient long term level of capacity.

Summing up the above discussion shows, that by applying functional analysis we find
that both of the developed algorithms provide results which harmonize well with theory,
represented by Aiginger’s proposition in eq. (6.1). Thus, both algorithms performs in line
with expectation in all of the random demand cases. The reduced price in the Type 2 case
compensates for the uncertainty in the higher regions of demand, and counteracts some
of the risk as perceived by the agent, if demand turns out to be low. It was also shown
by using probability approximation that the resulting choice of long term capacity in the
random inflow case is at a level which implies convergence in probability towards the
expected level. The price level in the random inflow case is also in line with Aiginger’s
proposition, since price is increased significantly by both algorithms. It serves as an
insurance against the high risk of low profit if inflow turns out below expectation. Note
that ex-post flexibility implies a possibility of divergence between demand and production,
while this thesis has implicitly assumed equilibrium between demand and production.

Hence, the effect of ex-post flexibility has not been addressed in this thesis.

By way of conclusion it is thereby fair to claim that the algorithms provide the agent with
the necessary knowledge about the various stochastic market conditions such that he
becomes able to make an efficient choice of long term capacity by learning. The algorithms
thereby meets the learning requirement as requested by the main objective in Chapter 1.

6.2 Proxy Demand and Differing Results

In some of the stochastic cases, a divergence occurs between the long term decisions when
the agent implements Algorithm 2 compared to Algorithm 1, as seen in Chapter 5. This is
caused by the application of the proxy demand in eq. (5.3) since the perceived nature of
demand differs from the true nature of it. A proxy demand leads to a choice of production,
and thus price, which is different from what would be the choices if the true demand
was applied, since the costs are the same in both algorithms. As a consequence the dual
values of capacity differs between the algorithms, since they reflect marginal profit under

current market conditions. Thus, when the proxy demand is used, the effect of uncertainty
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only comes as a secondary effect of learning, and not as a direct consequence of market
interactions. Consequently, the rate of change in perceived marginal revenue is unaffected
by uncertainty since demand, as perceived by the agent, is independent of uncertainty.
The anticipated rate of change in marginal costs are accordingly also independent of
uncertainty. For that reason, dependant on type of uncertainty, the choice of long term
capacity can be influenced by the differences between the algorithms.

MR(q) MR(a)
160 160

=279 O k* =224 (Aig.1)
in both Alg.1 and Alg. 2 140

A K =175 (Alg2)

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
quantity (q) quantity(q)
— EMR[eq. (3.10)] — MR[eq. (5.3)] — EMR[eq. (3.11)] — MR[eq. (5.3)]

(a) Random Demand Type 1 - eq. (3.10) (b) Random Demand Type 2 - eq. (3.11)

MR(q) MR(q)
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(c) Random Demand Type 3 - eq. (3.12) (d) Random Inflow - eq. (3.8)

Figure 6.1: The figures show expected marginal revenue for actual demand versus
marginal revenue for proxy demand in eq. (5.3) for price (p) and slope (dp) derived by
Algorithm 2, see Table 5.3. Average long term capacity indicated by O for Algorithm 1,
A for Algorithm 2, or by < if long term capacity is equal in the two algorithms.

Figure 6.1 compare the marginal revenue curves for actual and proxy demand in the
stochastic cases. Marginal revenue of the proxy in eq. (5.3) is graphed for perceived price
and slope after convergence is obtained in each case. Expected actual marginal revenue is
graphed for a random factor equal to it’s expected value. Average long term capacity found
by each of the algorithms are indicated by markers on the quantity axis. By examining
Figure 6.1 we see that average production when Algorithm 2 is applied (indicated by the
dotted vertical line), is consistent with the point where the expected marginal revenue
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intersects with the perceived marginal revenue. This is intuitively natural since the agent
uses the same short term maximizing strategy, and has the same cost structure as when
Algorithm 1 is applied. Thus, the agent’s efficient choice of production occurs at the level

where the perceived marginal revenue equates the actual marginal costs.

The observed discrepancy in production between the algorithms is small. According to
Table 5.3 it is less than +0.3 for all of the cases, except for the random demand Type 2
case where the difference is —0.74. As shown by the distance between the markers (A - D)
on the g-axis in the graphs shown in Figure 6.1, the difference in the long term capacity
decisions between the algorithms are relatively small, except for the Type 2 case.

From Figure 6.1b we see that the Type 2 uncertainty causes a significant divergence in
the long term capacity decisions between the two algorithms, from 22.4 by Algorithm 1
to 17.5 by Algorithm 2. As discussed in Section 6.1, part of the downward bias caused by
a positive expectation of random demand, is countered by a positive, but diminishing
rate of change in profit for a change in uncertainty when random demand defined by
eq. (3.11) is applied in Algorithm 1. In Algorithm 2 the price and slope which is applied
by the agent, is a result of adaptive learning from observed values. Thus, uncertainty is
only a secondary effect from the learning scheme, such that perceived rate of change in
profit for a change in uncertainty in this situation is zero. Hence, no of the downward bias
will be countered when Algorithm 2 is applied, such that both production and long term
capacity ends up at a level consistent with expected price when s = 1.5. A decrease in
both capacity and production compared to benchmark levels results, and despite a small

increase in unit prices, the average profit decreases significantly.

In the Type 3 case, the reason for the difference is naturally similar to the reason in the
Type 2 case, since the rate of change in profit for a change in uncertainty is zero also for
this case when Algorithm 2 is used. Hence, both production and long term capacity results
at a level consistent with the solution of the first order criteria when s = 1. Thus, the long
term level of capacity and average production is equal to the benchmark levels in the Type
3 case when Algorithm 2 is implemented.

6.3 Simplicity and Assumptions

The main goal was to develop a simple method which enabled learning from real world
observations, and doing so by using a limited number of assumptions. From the previous
sections, with all the mathematics and statistics which have been applied, the impression

is perhaps that specific skills are required in order to obtain efficient results by this method,
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skills which an average agent might not have. Section 6.1 showed that the learning

requirement was achieved, thus, one question remains to be addressed:
Is the developed method a simple way of learning stochastic market conditions?

Figure 6.2 show a schematic set-up of the learning process applied in the developed
method. Mathematics and statistics aside, all which is required of the agent in order
to apply the method is (1) to choose some arbitrary values for the learning objects in
order to initialize the process, and (2) observe the phenomenon of interest. Based on the
observations, he (3) then chooses a level of production to maximize his profit, and (4)
update his knowledge according to the new information. Then all he needs to do, is to
repeat the process by using the new information to initialize the next sequence.

(1) Initialize
/Repeat

(2) Observe (4) Update
/Draw Knowledge

(3) Solve
Objective

Figure 6.2: A schematic view of the learning process. Four steps are required: (1)
initialize the algorithm, (2) observe phenomenon of interest, (3) select production
by maximizing objective (4) update knowledge by using the dual value, and repeat.

The learning process presented in Figure 6.2 is pretty straight forward, and easy to
implement in a real decision process. There are however two pivotal considerations
which affects the simplicity, and possibly also the applicability of the method. The first
pivotal point is the determination of initial values for the learning objects. Based on the
results reported in Chapter 5 it is evident that the selected initial values does not have any
significant impact at which level of long term capacity convergence is obtained. Thus, the

choice of initial values may be random, without affecting the efficiency of the method.

The second pivotal consideration which mostly affects the applicability of the method, is
whether or not the agent can evaluate, or determine a suitable approximation for, the dual

value since this value in most cases is unavailable if the agent’s skills is limited. However,
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from Section 4.1 we know that the developed algorithms are based on the gradient method.
Common for iterative methods are that they are applicable for a finite difference instead
of the derivative of the function of interest. Thus, if the dual values are unavailable, a
suitable proxy for the gradient in eq. (4.16) is a finite difference as defined by eq. (6.3).

All;  TI(K; + h) — TI(Ky)
AK, Y (6.3)

For a sufficiently small change in capacity, i.e. for a sufficiently small value of h, the
finite difference defined by eq. (6.3) essentially equals the definition of the derivative of a
function (Sydseeter et al., 2002, Def. 3.11, p. 20). That is:

OT(Ky) _ . TI(K, +h) ~ TI(K))
(9Kt h—0 h

Thus, when using eq. (6.3) as a proxy for the gradient, the discussion of compliance
to theory is still valid, since the functional analysis which is used in Section 6.1 also is
applicable in a discrete context. Consequently, the gradient can be replaced by eq. (6.3) and
still provide efficient results which is compliant to economic intuition and others findings.
Though, the accuracy might change somewhat since a finite difference necessarily is a

rougher estimate than a shadow price calculated by linear programming.

Number of Necessary Assumptions

The number of necessary assumptions required for the method to obtain the results as
discussed above is fairly limited and non-restrictive. The cost curve must be assumed
to be a known continuous function, convex in own decision. Expected profit need to
be assumed concave in own decision. The existence of some isolated maximal points at
which the functions are defined is also a necessary assumption. This assumption is not as
restrictive as it may seems, as it only requires the profit curve to exist in the point at which
the maximal value is achieved . Thus, a discrete model may also be implemented in the
method if the profit function is defined, and continuous, over a arbitrary small interval

around the maximal point.

In order for the algorithms to produce results in line with theory, the short term decision
made by the agent must be in line with the usual first order condition. This implies that
the agent’s choice of short term production is such that marginal costs equates expected
marginal revenue. Last necessary assumption is that the observed random factors are
independent identically distributed variables.

When the proxy demand curve defined in eq. (5.3) is used in a learning heuristic given by

eq. (4.2), some additional assumptions are required to assure convergence of price and
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slope towards the expected values. The required properties and assumptions are discussed
by Fldm and Sandmark (2000, p 5-7), and will thus not be repeated here. To show that
the proxy demand function applied in this thesis have the required properties, we may
apply Theorem 1 in Flam and Sandmark (2000, p 5). It states that “convergence in beliefs
that are confirmed in the mean” occurs if the asymptotic limit of the composite average
function of price and slope, defined as f(p,dp) = EF(P,0) := [EP(q,0), %EP(q, )] is
bounded on it’s domain. Without going in to all the details of the proof for asymptotic
convergence, note only that the proof uses Bendixon’s criteria. It states that a periodic
solution is precluded if div f(p, dp) # 0 (Feckan, 2001, p. 3395) and thus the composite
average function is then bounded. Since divf(p,dp) < 0, the sequence of p; and dp;
defined by eq. (4.2) almost surely convergence to a fixed point in expectation, and thus

the required limiting properties are established for our case®.

6.4 Critique

Some of the most significant limitations to the model were discussed in Section 1.2, and
will therefore not be repeated here. Still, the model and the experiments have some
obvious weaknesses which requires a brief comment. We will here point to some of the
most prominent properties of the model and parameters which potentially corrupts the

possibility to draw general conclusions based on the experiments conducted in this thesis.

1. The model is simple, known and all of the components are known and well defined.
2. The width of the support in the random inflow case.
3. The definitions of the random demand cases.

4. The upper and lower boundary applied in the development of the capacity.

To start at the top of the list above, it is important to emphasise that the model which has
been applied is simple in terms of the included functional relations. All of the curves are
continuous with well known, well defined properties for all the components included.
This is contrary to what is usual in reality, where at least parts of the model would be the
result of estimations or approximations for most (if not all) of the parameters. However,
the simplicity of the model provides the opportunity for compliance control, which was
deemed important in order to document that the method produced results in line with

expectations.

* See Appendix D for the derival of the divergence div f(p, dp).
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The second and third points on the above list are somewhat interconnected, since they
both point to uncertainty has been modelled in this thesis. Uncertainty in real life business
decisions has most often unknown, possibly asymmetric distributions, which in some
(or most) cases also are dependent on unobservable parameters. This is contrary to the
uncertainty which have been applied in this thesis. It has been modelled as a symmetric
uncertainty, where all possible outcomes have the same probability of occurrence, a feature

which might seem far from real life.

The width of the support for the random inflows is such that it affects the results derived,
since it is defined such that the level of production at which the profit is maximized is
included in the possible outcomes. This implies that the maximal level of production is
achievable in our experiments, since § < K* < 0. If the support for the inflow was defined
such that the maximal level of production was unachievable, the results obtained would
be different from the results reported in Chapter 5 for this case. We have no reason to
claim that it is more or less realistic to observe random values which includes or precludes

inflows at levels which makes the maximal level of production achievable.

The random demand cases and specifically the way the uncertainty is introduced in those
cases, is defined such that they mimic different random demand situations. There is no
reason to prefer either one of the types of uncertain demand applied in this thesis, since
neither one of them is more realistic than the others (Aiginger, 1985, p. 61). Uncertainty in
demand is usually not a choice, but merely an outcome served to the agent by the market.

Both upper and lower boundaries were applied when developing capacity. It is somewhat
unreasonable to assume that the maximal level of production will be achievable within
some predefined boundaries, especially if the knowledge about either the market or the
profit curve is limited. The application of boundaries for the capacity may however be
justified by available data, as discussed in Section 3.2, or by budgets which restrains the

amount of capital which is available to build the capacity.

Despite the flaws and shortcomings as discussed above, our claim is that the method pro-
vides the agent with enough knowledge such that he acquires the competence required to
make an good long term decision. The results indicate that even if the parameters were to
be replaced with estimated values, the long term capacity would reflect an approximately

efficient choice, though the results would be influenced by a somewhat higher uncertainty.
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Chapter 7
Summary and Future Work

The key question underlying the work of this thesis was: How can the optimal long term
level of capacity be determined, if only short term conditions are known, and the agent’s

skills to uncover the long term characteristics are limited?

The primary aim was therefore to develop a simple and unified solution algorithm for
complex stochastic long term decision problems. The algorithm should enable learning
of best choice of long term capacity under uncertainty, based on discrete observations of
some selected learning objects. This thesis secondary purpose was to apply the developed
algorithm in numerical experiments to examine the effect of uncertainty on the level of
long term capacity. Various types of uncertainty were applied, in order to examine the
compliance between the performance of the algorithms compared to others findings and
expectations derived analytically.

7.1 Summary and Contributions

To form a basis on which to perform the desired experiments, some background literature
was presented in Chapter 2. To enable comparison between theoretical expectations and
numerical findings, a simple economic model for a business was set up in Chapter 3. Then,
in response to the primary aim, two algorithms were developed in Chapter 4, one for a
single learning object (capacity) and one for multiple learning objects (capacity, price and
the slope of the demand curve). Both algorithms were based on the gradient method,
and implemented a unified long term criterion, derived by applying the Kuhn-Tucker
conditions to the agent’s objectives. It was shown that the long term criterion was valid for
all types of applied uncertainty, despite the differences in both objectives and constraints

for the various cases considered in the conducted experiments.
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To investigate the effect of uncertainty on the long term choice of capacity, numerical values
were assigned to the parameters in the applied model. Subsequently, the experiments were
conducted by using non-linear mathematical programming implemented in AMPL. Four
types of uncertainty (random inflow, additive demand and two types of multiplicative
demand) were applied in the experiments, and both algorithms were tested for a wide
range of initial values for the selected learning objects.

The results presented in Chapter 5 showed that convergence was achieved in all cases and
by both algorithms. Whatever the initial guess the agent had for the learning objects at the
start of the learning process, he uncovered a good approximation of long term capacity in
each case. Though, both the development process of capacity and the selected long term
capacity levels varied, as expected, dependant on the type of uncertainty.

Chapter 6 discussed the compliance between the theory and numerical findings. It was
shown that the selected levels of long term capacity were consistent with the theoretical
expectations in each of the random demand cases. For the random inflow case, the
discussion also showed that the long term capacity was selected such that the long term
criterion converged towards zero in probability, which implied that marginal cost of
capacity also converged towards marginal profit of capacity in probability. Thereby it
was shown that all the selected long term capacities were in line with both economic
intuition and theoretical expectations. In Chapter 6, the applicability of a proxy demand
function were also discussed, and it were showed that a proxy demand could be applied
if demand was unknown. When price and slope were a learning object, differences i long
term capacity occurred in some of the cases, without this leading to significant changes in

terms of the correspondence between results and expectations.

7.2 Conclusion

The conclusion based on our experiments is that adaptive learning provides insight into
long term market conditions using fairly simple methods. A short answer to the key
question is therefore that a good approximation for the optimal long term level of capacity
can be determined by using an adaptive learning algorithm. The slightly longer answer is
that an adaptive algorithm contributes to uncovering the long term market conditions.
This is due to fact that the knowledge based on current observations accumulates in the
agent’s expectations in the long term. Thereby, the unknown long term market conditions
are gradually demystified, and eventually confirmed in expectation when convergence
is obtained for the learning objects. The learning objects studied in this paper included
capacity, price and the slope of the demand curve.
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Neither special skills, nor statistics, are required to determine an (approximately) efficient
long term capacity. In terms of capacity development all that is required of the agent
is to select an arbitrary initial value to initiate the process, observe the current market
conditions, select production such that profit is maximized under current conditions, and
adjust the capacity at the end of each period according to the newly acquired knowledge.
As long as the adjustments are based on the perceived marginal change in profit for a
change in capacity, the long term capacity will eventually end up at an (close to) efficient
level. The perceived marginal change in profit for a change in capacity can also be replaced

by a finite difference, without this affecting the long term efficiency of the method.

Even when the actual demand curve is unfamiliar, and a proxy is applied, adaptive
learning of the price and slope will provide the agent with the needed knowledge to
select a long term capacity in line with the market conditions. Over time, the agent’s
prevailing belief about price and the slope of the demand curve will reflect the actual
market conditions, inasmuch as his knowledge of the learning objects are updated as
a moving average of current beliefs and actual observations. Due to the properties of
the adaptive algorithm, the long term perceptions of price and slope will approach an
empirical average when the number of periods increases. The agent’s choice of capacity
will thereby reflect his best possible choice under current market conditions - Both within
each period, and most importantly for efficient long term choices, in the long run.

7.3 Future Work

For the simple uncertainty model applied in this thesis, we find a consistent compliance
between the numerical results and (mostly all) the theoretical expectations. The results
indicates that the algorithms might also be applicable for more advanced economic
business models. This inspires to further development and testing of adaptive learning

algorithms, and their applicability in more complex stochastic problems.

Some avenues for further research on adaptive learning under uncertainty could be to:

e Introduce an irreversible capacity decision, and allow for disequilibrium between
production and demand. This would resemble the numerical experiments conducted
by Driver et al. (1996). It would be interesting to see whether or not an adaptive
algorithm would give similar results as found by Driver et al.

e Examine the effect of random factors with assymmetric probability distributions on
long term decisions. An interesting case would be to apply a random factor with
a fat-tailed distribution, as they imply high risk in the region of the fat tail, and

otherwise a small risk. (For example a scaled Beta distribution, for a # f3)
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¢ Include inter-temporal relations in a utility maximizing model, such that future
capital availability become influenced by the short term choices. A division between
short term choices versus long term decisions would make it possible to examine
how uncertainty affects both the short and long term decisions, and the interrelation
between them.

e Increase the numbers of market participants, for example by modelling an oligopoly.
Flam and Sandmark (2000, p.7-9) showed, using a similar approach as applied in
Algorithm 2, that a Cournot equilibrium in production was achieved for the market’s
participants. It would be interesting to examine the effect of uncertainty on each
of the producer’s long term decisions in an oligopoly, in similar experiments as
conducted in this thesis.

The suggested avenues for further research given above, are by no means exhaustive.
Since the number of necessary assumptions is limited, and non-restrictive, the algorithm
will most probably be applicable for mostly all cases where optimal choices are to be
approximated in expectation. The suggestions spans a wide range of interesting areas to
investigate numerically, although some of the suggestions possibly violate the method’s
strength, namely the simplicity in both implementation and applicability.
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Appendix A

Programming in AMPL

To model, and solve, the different experiments in this thesis a student-version of AMPL (A
modeling language for mathematical programming) have been used. AMPL is chosen due
to an intuitive syntax, flexible data input and the possibillity of interactive dialog with pre-
defined solvers to perform optimization. The program is available from www.ampl.com
(AMPL). A comprehensive guide to AMPL is written by Fourer, Gay, and Kernighan
(2003). The programs consists of the following seperate files:

1. Model-file (*.mod): Defines the abstract mathematical model.
2. Data-file (*.dat): Define numeric values for the definitions in the model.

3. Run-file (*.run): Commands used to solve, and resolve, a defined problem.

The complete model-, data- and run-files are given in seperate appendixes to assure
reproducible results for each case considered. Tables of excerpts of the numerical results
are given at the end of each appendix. All of the results are summarized in Table 5.3 at the
end of Chapter 5.

e AMPL programs for Algorithm 1 separately for each case: Appendix B
e AMPL programs for Algorithm 2 separately for each case: Appendix C

The command environment are provided by the SW window (Technologies, 2000). Lines
of text in a AMPL program which starts with # are not interpreted by the solver since they
are treated as comments only. Text given in typewriter font in Appendix B and C are
commands which is sent to the selected solver. All of the commands used in the AMPL

language must be ended by a semicolon ;


http://www.ampl.com/
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Keywords

A program in AMPL have the following setup of keywords, in the given order, with a
predefined interpretation within AMPL:
e set: defines a set. May be numeric (set T 1..5;)oralphabetic(set T a,b,c;).
A set can be empty when initiated (set T default;) then values can be added to
the set at any later stage (let T := T union b;).

e param: defines a parameter, either as a single value by param H; or indexed over
aset: param H {t in T} default 0; The latter give a vector with norm T, all
set to 0 by default.

e var: defines the control variable. A non-negative variable is coded by var Q >= 0;

Functions can be also defined by the var command: var P = a - b x Q;

e maximize: Tells AMPL to maximize the objective function, similarly minimize

will minimize the objective function.

e subject to: defines the constraints of the objective function. The keyword
subject to canbe omitted as AMPL assume any logic conditions as constraints if
they appear without any of the other keywords.

The order of appearance of the keywords does matter in the AMPL language as a value can
not be used before it is defined. Also note that AMPL is case sensitive so the commands:

set H; and set h; are interpreted as two different sets.

Programming of DetModel.mod

The sets are usually defined first and named by capital letters. By defining a parameter
(H) first it is easy to manipulate the length of the time-frame for the iterative process by

changing only one value in the data-file:

e param H > 0;

e set T default 1..H;
Based on the definition of capacity in eq. (3.5) the bounds of K are defined as two positive
parameters:

e param K_under >= 0;

e param K_over >= 0;
Similarly all the parameters for demand, production- and capacity-cost must be defined.
As the complete model is given in Appendix B and C not all definitions are repeated here.
Though it is not needed for the applied algorithm, construction of a parameter indexed

over the set T give a vector which store results from the iterations. Vectors are given for
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optimal production, step-size, profit, capacity, dual value and gradient in each iteration.
Below the construction for the capacity K and optimal production Q ve are given:

e param K{t in T} default O;
e param Q _ve{t in T} default O;

When all parameters are given, the control variable is defined by:
e var g >= 0;

To facilitate iterative recalculations of price and cost for each new value of the control

variable they are defined as variables:
e var Cost = A*xg + Bxgx*Qg;
e param Q _ve{t in T} default O;

The objective function and the constraint, both given in (3.17) are defined in AMPL by the
following lines of code:

e maximize profit: Pricexq - Cost - (r+d+f)«*K[n];
e subject to CONST: g <= K[n];

By assigning the problem a name, repeated solving in a loop is simplified:
e problem DET: ¢g, profit, CONST;

The complete deterministic model file is given in Section B.1.

Programming of DetData.dat

The DetData.dat-file in Section B.1 consist of a list of numerical values, all consistent with

the parameters given in the model. The syntax for a single numeric parameter is:

e param a := 200;

Programming of DetRun.run

By typing: include DETrun.run; in the SW-window the run-file is executed!. To
read model and data from a local folder named foldername, apply the change directory
command (cd; ) and change directory again after the files are loaded to select and load

the preferred solver.
e cd ""C:\Users \...\foldername’’;
e model DetModel.mod;

e data DetData.dat;

! Assuming the run file is saved under the current working directory (Fourer et al., 2003, p. 489-490)
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e cd ''C:\ Program Files \ amplcml’’;
e option solver cplex; option cplex options ’'sensitivity’;

The commands for, if-then-else, and break-continue are used to update the
iterative step and to control the stop criteria at the end of each period. A for-loop has the
following syntax:

e for {t in T} {...};

where the statements contained in the body {. . .} are executed for each t in the set T. Inside
the body of the for-loop a series of assignments are given. First a counting parameter t
and step-size \; in eq. (4.6) are updated. Then, the problem is solved subject to current
market conditions by the command solve DET; and all results are saved in vectors by

the let-command. Only selected examples are given below:
e let n := t;
e let deltaln] =1/ (1 + n);
e solve DET;
e let Q ve[n] := g;
e let Profit ve[n] := profit;
Single learning algorithm include the iterative step:
e let K[nt+l] := K[n] + delta[n]xgradient[n];

When the update of capacity is done, the bounds are checked. If the new values are outside
the allowed range, they are projected back to the allowed range by:

e if K[n+l] < K_under then let K[n+l1l] := K_under;
e if K[n+l] > K_over then let K[n+l] := K_over;

To control the repeated calculations and make sure that the loop will terminate at some

point, a logical condition in a break-continue command is applied. For example:
e if n >= PreStep
e then if abs (K[ntl]-K[n]) <= stopIF then break;
e else continue

The above states that for the iteration number defined by parameter PreStep, or higher, the
absolute difference between new and old beliefs is checked to see if it is small enough, i.e.
smaller than the stoplF criteria. If so, the for loop will be terminated and the calculations
stopped. For a more thorough discussion of conditional calculations and termination of
loops see Fourer et al. (2003, p. 258).

To display the results in the SW window, type:

e display K, Q _ve, Profit_ve, gradient;
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Programming of the stochastic cases

In the stochastic cases there are additional parameters compared to the above deterministic
codes. The construction of the uncertainty, as described in Section 3.1 is done by using
the option randseed (X); and the predefined keyword Uniform. Below the Type 1
uncertainty is used as example. For the other cases, the codes are similar, while the data
will change. In TypelModel.mod-file four lines of code are added to define the bounds
of the uncertain demand parameter. As before, a vector is included to facilitate display,

though it is not needed:
e param s under;
e param s over;
e param s_ve{t in T} default O;
e param s_nr default Uniform(s under, s over);
In the TypelData.dat-file the numerical values of the bounds are added:
e param s under := -0.5;
e param s over := 0.5;

In the stochastic cases the command param X default Uniform(a, b); generate
pseudo-random values only, as discussed in Section 1.2. To control how these are gener-
ated, and to assure reproducible results, the command option randseed (X) ;isused
to set the seed given to the computer equal to X. This is done by first defining a numeric

value 1 := 1 and then assign it to X.
e let randseed[l] := X;
e option randseed (X);

AMPL, as other programming languages, will assign the same value to s_nr unless the
data for s_nr is reset in each iteration inside the for-loop. This will, together with the
above option randseed (X); make sure that we get the T different psedo random
values for s_nr in each trial, and that these values will be the same each time 1:=1.

e reset data s_nr;

e let s_ve[n] := s_nr;

Solver Selection and Applied Option

There exists a wide range of solvers applicable for the AMPL system, and both CPLEX 11.2
(Technologies, 2010) and MINOS 5.5 (Murtagh and Saunders, 2003) have been used during
the trial-and-error process of the thesis. The results resported are calculated by CPLEX

11.2, which both handles linear and non-linear constraints, and also provide suffixes for
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analysis as a part of the solver code (p.19-20). Note: CPLEX does not solve all types

of non-linear problems, but can be applied on continuous quadratic objective functions
(p.33).

The suffix-option provide an easy access to the numerical value of the dual value,
or approximated shadow price, for a specific constraint after maximizing the objective
function subject to the constraint at each iteration. For a constraint named ConName
the numerical values of the shadow price is returned by simple adding a suffix to the
name of the constraint such as ConName . dual when when using the option option

cplex_options ’'sensitivity’;

For completeness note the solution method of CPLEX: namely the simplex algorithm. For
quadratic problems, as the current objective function, CPLEX use either the dual simplex
or the primal simplex algorithm. To fully explain these algorithms are beyond the scope of
this thesis. Put in short the simplex algorithm search for a optimal solution along the edges
of a polygon? defined by the constraints in the problem. First the problem is transformed
to one of standard form by introducing artificial slack variables in the objective and the
constraints®. After solving the problem CPLEX “translates” the findings back in to our

notation.

% Polygon: Two dimensional region bounded by straight lines.(Adams, 2003, p. 309)
3 Standard form: A optimization problem with equality in the constraints.
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Appendix B

AMPL Programs for Algorithm 1

B.1 Deterministic Case - Algorithm 1

Model

# TIMEFRAME & SIZE OF SETS:
param H > 0;

set T default 0..H;

param n;

param PreStep;

set I default 1..H;

param delta{t in T} default O0;
param stoplF default O0;

# SIZE OF CAPACITY:

param K_under >= 0;

param K_over > 0;

param K{t in T} default O0;
# COST OF PRODUCTION (parameters):
param A > 0;

param B > 0;

# COST OF CAPACITY (parameters):
param r >= 0;

param d >= 0;

param f >= 0;

# DEMAND (parameters):

param a > 0;

param b > 0;
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# VECTOR TO STORE VALUES:

param Profit_ve{t in T} default 0;
param Q_ve{t in T} default O0;
param gradient{t in T} default O0;
# VARIABLE (short term choice):

var g>= 0;

# DEMAND (function):

var Price = a - bxqg;

# COST (function):

var Cost = Axg + Bxgxqg;

# DUAL VALUE (from AMPL):

param KCon_dual{t in T} default O0;
# OBJECTIVE:

maximize profit: Pricexqg - Cost - (r+d+f)«*K[n];

# CONSTRAINTS:

subject to CONST: g <= K[n];

# LABEL FOR PROBLEM (used in solve-command):
problem OBJ: g, profit, CONST;

Data

# MAXIMAL NUMBER OF ITERATIONS
param H := 100;

# CONVERGENCE REQUIREMENT:
param stoplIF := 0.0002;

# SIZE OF CAPACITY:

param K_under := 0;

param K_over := 30;

# COST OF PRODUCTION (parameters):
param A := 6;

param B := 0.5;

# COST OF CAPACITY (parameters):
param r := 0.15;

param d := 0.10;

param £ := 3.75;

# DEMAND (parameters):

param a := 150;

param b = 2;

# INITIAL CAPACITY

let K[0] := 0;
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Run file

# RESET OF SYSTEM AND DATA:

reset data; reset options; reset;

# SETTINGS FOR LOG FILE AND OUTPUT DIRECTORY:

option log_file "C:\...\DETNL_LOG.tmp";

option outdir "C:\...\DET\";

cd "C:\...\DET\";

# READ IN MODEL AND DATA FROM FILES:

model DetNL.mod;

data DetNL.dat;

# SOLVER SELECTION AND SETTING OF OPTIONS:

cd "C:\Program Files\amplcml";

option solver cplex;

option cplex_options ’sensitivity’;

option solver_msg O;

suffix up OUT; suffix down OUT; suffix current OUT;

# FOR LOOP FOR REPEATED ITERATIONS:

for {t in T} { # Startof for-loop. # For each t in T until convergence, do:
let n := t;

let deltaln] := 1/ (5 + n);

solve OBJ;

let Q_veln] := g;

let Profit_ve[n] := profit;

let KCon_dual[n] := KCONST.dual;

let gradient[n] := KCon_dual[n]-(r+d+f);

let K[n+1l] := K[n] + deltal[n]+*gradient[n];

if K[n+l] < K_under then let K[n+l] := K_under;
if K[n+l1l] > K_over then let K[n+l] := K_over;

if n >= PreStep
then if abs(K[n+l]-K[n]) <= stopIF then break;
else continue

} # End of for-loop.
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B.2 Random Demand Cases - Algorithm 1 (all types)

The AMPL program in this section is valid for the random demand case, that is for the
case using the notation ¢ := s in eq. (3.4). The constraint in this case is given by eq. (3.6),
denoted as constraint (1) in the stochastic objective summarized in eq. (3.21). Tree different

types of demand uncertainty is modeled:

e Type 1 given by eq. (3.10) assuming E(s) = 0, thatis s ~ U (—0.5,0.5).

e Type 2 given by eq. (3.11) assuming E(s) = 1.5, thatis s ~ U (0, 3).

e Type 3 given by eq. (3.12) assuming E(s) = 1, thatis s ~ U (0.5, 1.5).
The AMPL code for the random demand cases is given below. The difference between
the cases (in terms of the coding) is the definition of the demand function which is given
as tree alternative formulations for var Price :=...in the file “RandDemMod.mod”.

Also the range for the random factor varies, and is obtained by changing the values for

param s_under :=...& param s_under :=...in the file “RandDemData.dat”.

Model

# TIMEFRAME & SIZE OF SETS:
param H > 0;

set T default 0..H;

param n;

param PreStep;

set I default 1..H;

param delta{t in T} default O0;
param stopIF default O0;

# SIZE OF CAPACITY:

param K_under >= 0;

param K_over > 0;

param K{t in T} default O0;

# COST OF PRODUCTION (parameters):
param A > 0;

param B > 0;

# COST OF CAPACITY (parameters):
param r >= 0;

param d >= 0;

param £ >= 0;
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# DEMAND (parameters):

param a > 0;

param b > 0;

#SET SEED FOR RANDOM NUMBERS:

param loop > 0;

param X integer >= 0;

set LOOP = 1l..loop;

param randseed{l in LOOP} default O;

# RANDOM VALUE (parameters, vector and generation):
param s_under;

param s_over;

param s{t in T} default O0;

param s_nr default Uniform(s_under, s_over);
# VECTOR TO STORE VALUES:

param Profit_ve{t in T} default O0;

param Q _ve{t in T} default O0;

param gradient{t in T} default O0;

# VARIABLE (short term choice):

var g>= 0;

# DEMAND FUNCTION:

# Use ONE of the var Price :=definitions according to type.
# For TYPE 1 uncertainty given by eq. (3.10) use:

var Price = a - bxg + s_nr;

# For TYPE 2 uncertainty given by eq. (3.11) use:

var Price = a - (b+s_nr) xqg;

# For TYPE 3 uncertainty given by eq. (3.12) use.

var Price = (a - bx*qg)*s_nr;

# COST (function):

var Cost = Axg + Bxgxg;

# DUAL VALUE (from AMPL):

param KCon_dual{t in T} default O0;

# OBJECTIVE:

maximize profit: Pricexqg — Cost - (r+d+f)«*K[n];
# CONSTRAINTS:

subject to KCONST: g <= K[n];

# LABEL FOR PROBLEM (used in solve-command):
problem OBJ: g, profit, KCONST;
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Data

# MAXIMAL NUMBER OF ITERATIONS

param H := 5000;

# NUMBER OF RANDOM SEEDS:

param loop := 5;

# NUMBER OF STEPS PRIOR TO FIRST CHECK:
param PreStep := 10;

# CONVERGENCE REQUIREMENT:

param stopIF := 0.002;

# SIZE OF CAPACITY:

param K_under := 0;

param K_over := 30;

# COST OF PRODUCTION (parameters):

param A := 6;

param B := 0.5;

# COST OF CAPACITY (parameters):

param r := 0.15;

param d := 0.10;

param £ := 3.75;

# DEMAND (parameters):

param a := 150;

param b = 2;

# RANDOM DEMAND PARAMETERS:

# Define ONE PAIR of param s_under :=&param s_under :=according to type.
# For TYPE 1, eq. (3.10) assuming s ~ U (—1, 1) use:

param s_under := -1;

param s_over := 1;

# For TYPE 2, eq. (3.11) assuming s ~ U (0, 3) use:
param s_under := 0;

param s_over := 3;

# For TYPE 3, eq. (3.12) assuming s ~ U (0.5, 1.5) use:
param s_under := 0.5;

param s_over := 1.5;

# INITIAL CAPACITY

let K[0] := 0;
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Run-file

# RESET OF SYSTEM AND DATA:

reset data; reset options; reset;

# SETTINGS FOR LOG FILE AND OUTPUT DIRECTORY:

option log_file "C:\...\TINL_LOG.tmp";

option outdir "C:\...\TYPEI\";

cd "C:\...\TYPEI\";

# READ IN MODEL AND DATA FROM FILES:

model RandDemMod.mod;

data RandDemData.dat;

# SOLVER SELECTION AND SETTING OF OPTIONS:

cd "C:\Program Files\amplcml";

option solver cplex; option cplex_options ’sensitivity’;
option solver_msg O;

suffix up OUT; suffix down OUT; suffix current OUT;
#SET SEED FOR RANDOM NUMBERS:

param 1 := 2;
let X := 1;
let randseed[l] := X;

option randseed (X);

# FOR LOOP FOR REPEATED ITERATIONS:
for {t in T} {

# For each tin T until convergence, do:

let n := t;

reset data s_nr;

let s[n] := s_nr;

let deltaln] := 1/ (5 + n);

solve OBJ;

let Q_veln] := g;

let Profit_ve[n] := profit;

let KCon_dual[n] := KCONST.dual;

let gradient[n] := KCon_dual[n]-(r+d+f);

let K[n+1l] := K[n] + deltaln]+*gradient[n];

if K[n+l] < K_under then let K[n+l] := K_under;
if K[n+l1l] > K_over then let K[n+l] := K_over;

if n >= PreStep
then if abs(K[n+l1l]-K[n]) <= stopIF then break;
else continue

} # End of for-loop.
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B.3 Random Inflow Case - Algorithm 1

The AMPL program in this section is valid for the random inflow case, that is for the cases
using the notation 6 := R in eq. (3.4). The constraint in this case is given by eq. (3.7),
denoted as constraint (2) in the stochastic objective summarized in eq. (3.21).

Model

# TIMEFRAME & SIZE OF SETS:

param H > 0;

set T default 0..H;

param n;

param PreStep;

set I default 1..H;

param delta{t in T} default O0;
param stoplF default 0;

# SIZE OF CAPACITY:

param K_under >= 0;

param K_over > 0;

param K{t in T} default 0;

# COST OF PRODUCTION (parameters):
param A > 0;

param B > 0;

# COST OF CAPACITY (parameters):
param r >= 0;

param d >= 0;

param f >= 0;

# DEMAND (parameters):

param a > 0;

param b > 0;

# SET SEED FOR RANDOM NUMBERS:
param loop > O0;

param X integer >= 0;

set LOOP = 1..loop;

param randseed{l in LOOP} default O0;
# RANDOM VALUE (parameters, vector and generation):
param R_under;

param R_over;
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param R{t in T} default O0;

param R_nr default Uniform(R_under, R_over);
# VECTOR TO STORE VALUES:

param Profit_ve{t in T} default 0;

param Q_ve{t in T} default O0;

param gradient{t in T} default O0;

param ACdp{t in T} default O0;

param minst{t in T} := min(R[t],KI[t]);

# VARIABLE (short term choice):

var g>= 0;

# DEMAND (function):
var Price = a - bxqg;
# COST (function):

var Cost = Axg + Bx*xgxg;

# DUAL VALUES (from AMPL):

param RCon_dual{t in T} default O0;

param KCon_dual{t in T} default O0;

# OBJECTIVE:

maximize profit: Price*xqg — Cost - (r+d+f)*K[n];
# CONSTRAINTS:

subject to KCONST: g <= K[n];

subject to RCONST: g <= R[n];

# LABEL FOR PROBLEM (used in solve-command):
problem TYPEl: g, profit, RCONST, KCONST;

Data

# MAXIMAL NUMBER OF ITERATIONS

param H := 5000;

# NUMBER OF RANDOM SEEDS:

param loop := 5;

# NUMBER OF STEPS PRIOR TO FIRST CHECK:
param PreStep := 10;

# CONVERGENCE REQUIREMENT:

param stoplIF := 0.002;

# SIZE OF CAPACITY:

param K_under := 0;

param K_over := 30;
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# RANDOM INFLOW PARAMETERS:

param R_under := 0;

param R_over := 30;

# COST OF PRODUCTION (parameters):
param A := 6;

param B := 0.5;

# COST OF CAPACITY (parameters):
param r := 0.15;

param d := 0.10;

param £ := 3.75;

# DEMAND (parameters):

param a := 150;

param b = 2;

# INITIAL CAPACITY

let K[O] := 0;

Run-file

# RESET OF SYSTEM AND DATA:

reset data; reset options; reset;

# SETTINGS FOR LOG FILE AND OUTPUT DIRECTORY:

option log_file "C:\...\RDNL_LOG.tmp";

option outdir "C:\...\RDinput\";

cd "C:\...\RDinput\";

# READ IN MODEL AND DATA FROM FILES:

model RDinputMod.mod;

data RDinputDat.dat;

# SOLVER SELECTION AND SETTING OF OPTIONS:

cd "C:\Program Files\amplcml";

option solver cplex; option cplex_options ’sensitivity’;
option solver_msg O;

suffix up OUT; suffix down OUT; suffix current OUT;
# SET SEED FOR RANDOM NUMBERS:

param 1 := 2;
let X := 1;
let randseed[l] := X;

option randseed (X);
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# FOR LOOP FOR REPEATED ITERATIONS:
for {t in T} { # Start of for-loop.
# For each tin T until convergence, do:

let n = t;

reset data R_nr;

let R[n] := R_nr;

let delta[n] :=1 / (5 + n);
solve OBJ;

let Q_veln] := g;

let Profit_ve[n]
let RCon_dual[n] RCONST.dual;

let KCon_dual[n] KCONST.dual;

let gradient[n] := KCon_dual[n]-(r+d+£f);

let K[n+l] := K[n] + deltal[n]=*gradient[n];

if K[n+1l] < K_under then let K[n+l] := K_under;

profit;

if K[n+l] > K_over then let K[n+l] := K_over;
if n >= PreStep
then if abs (K[ntl]-K[n]) <= stopIF then break;
else continue
} # End of for-loop.
display K, Q_ve, R, Profit_ve, delta> (Soutdir&"RDNL"&X&".out");
display KCon_dual, RCon_dual, gradient> (Soutdir&"RDNL"&X&".out");
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B.4 Tables of Results - Algorithm 1

Deterministic Result - Algorithm 1

Table B.1 results from the AMPL program in Section B.1 using data from Table 5.1 for the

Exl-experiment described in Table 5.1, (K = 0) for the deterministic case.

Deterministic Results: Ky =0, §; =

1
10+t

t Ky Qi Ao m(q K) Ag(;;)
0 0.0000 0.0000 144.0000 0.0000 140.0000
1 14.0000 14.0000 74.0000 1470.0000  70.0000
2 20.3636 20.3636 42,1818 1814.2149 38.1818
3 235455 23.5455 26.2727 1910.3926  22.2727
4 25.2587 25.2587 17.7063 1941.2137 13.7063
5 26.2378 26.2378 12.8112 1952.2363 8.8112
6 26.8252 26.8252 9.8741 1956.5495 5.8741
7 271923 27.1923 8.0385 1958.3691 4.0385
8 27.4299 27.4299 6.8507 1959.1874 2.8507
9 275882 27.5882 6.0588 1959.5761 2.0588
10 27.6966 27.6966 55170 1959.7699 1.5170
11 27.7724 27.7724 5.1378 1959.8705 1.1378
12 27.8266 27.8266 4.8669 1959.9249 0.8669
13 27.8660 27.8660 4.6699 1959.9551 0.6699
29 27.9930 27.9930 4.0351 1959.9999 0.0351
30 27.9939 27.9939 4.0306 1959.9999 0.0306
31 27.9946 27.9946 4.0268 1959.9999 0.0268
32 279953 27.9953 4.0235 1959.9999 0.0235
33 27.9959 27.9959 4.0207 1960.0000 0.0207
34 279963 27.9963 4.0183 1960.0000 0.0183
35 27.9968 27.9968 4.0162 1960.0000 0.0162
36 279971 27.9971 4.0144 1960.0000 0.0144
37 279974 27.9974 4.0129 1960.0000 0.0129
38 279977 27.9977 4.0115 1960.0000 0.0115
39 27.9979 27.9979 4.0103 1960.0000 0.0103
40 27.9982 27.9982 4.0093 1960.0000 0.0093
41 27.9983

Table B.1: Algorithm 1 - Deterministic Numerical Results



86 B AMPL Programs for Algorithm 1

Random Demand Type 1 Result - Algorithm 1

Table B.2 results from the AMPL program in Section B.2 using data from Table 5.1 for the
Exl-experiment described in Table 5.1, for the Type 1 uncertainty.

Type 1 Results: Ky =0, §; = ﬁ and seed:=1

5 An(K
K Gt At St 72(1( )

0.0000 0.0000 144.2180 0.2184 140.2180
14.0218 14.0218 73.2705 -0.6203  69.2705
20.3192 20.3192  43.2480 0.8438  39.2480
23.5898 23.5898 269652 09143  22.9652
253564 253564 16.4296 -0.7885  12.4296
26.2442 26.2442  13.2072  0.4282 9.2072
26.8580 26.8580 9.8130  0.1031 5.8130
272213 27.2213 74196 -0.4737 3.4196
27.4225 27.4225 6.5868 -0.3008 2.5868
9 275662 27.5662 59835 -0.1855 1.9835
10 27.6706 27.6706 59775 0.3304 1.9775
11 27.7695 27.7695 5.3043 0.1516 1.3043
12 27.8316 27.8316 57262  0.8840 1.7262
13 27.9100 27.9100 41769 -0.2730 0.1769
14 279177 279177 34176 -0.9938  -0.5825

-+

OG- WD - O

45 279849 27.9849 4.0949 0.0195 0.0949
46 27.9866 27.9866 3.5965 -0.4703  -0.4035
47 279794 279794 4.6754 0.5726 0.6754
48 27.9913 27.9913 43948 0.3512 0.3948
49 27.9981 27.9981 3.5291 -0.4805  -0.4709
50 27.9901 27.9901 4.2877  0.2383 0.2877
51 27.9949 27.9949 3.8659 -0.1596  -0.1341
52 279927 27.9927 3.2092 -0.8273  -0.7908
53 27.9800 27.9800 47695 0.6692 0.7695
54 279922 27.9922 4.5336  0.4945 0.5336
55 28.0005 28.0005 4.6892 0.6917 0.6892
56 28.0111 28.0111 3.7459 -0.1986  -0.2541
57 28.0073 28.0073 4.0130  0.0493 0.0130

58 28.0075

Table B.2: Algorithm 1 - Random Demand Type 1 Numerical Results
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Random Demand Type 2 Result - Algorithm 1

Table B.3 results from the AMPL program in Section B.2 using data from Table 5.1 for the
Exl-experiment described in Table 5.1, for the Type 2 uncertainty defined by eq. (3.11)
for s ~ U (0, 3).

Type 2 Results: Ky =0, §; = 5%15 and seed:= 1

t Ky qt At St AZ(I{({)
0 0.0000 0.0000 144.0000 1.8276 140.0000
1 28.0000 23.4557 0.0000 0.5696 -4.0000
2 27.3333 13.6735 0.0000 2.7657 -4.0000
3 26.7619 13.4042 0.0000 2.8715 -4.0000
4 26.2619 25.5575 0.0000 0.3172 -4.0000
5 25.8175 15.5095 0.0000 2.1423 -4.0000
6 254175 17.3302 0.0000 1.6546 -4.0000
7 25.0538 21.8885 0.0000 0.7894 -4.0000
8 24.7205 20.2885 0.0000 1.0488 -4.0000
9 244128 19.3458 0.0000 1.2217 -4.0000
10 24.1271 16.0155 0.0000 1.9956 -4.0000
11 23.8604 17.0317 0.0000 1.7274 -4.0000
12 23.6104 13.5184 0.0000 2.8261 -4.0000
13 23.3751 20.0525 0.0000 1.0906 -4.0000
14 23.1529 23.1529 27.8064 0.0093 23.8064

666 22.2670 15.5880 0.0000 2.1190  -4.0000
667 222611 19.2242 0.0000 1.2453  -4.0000
668 22.2551 15.2941 0.0000 2.2077  -4.0000
669 22.2492 14.4254 0.0000 2.4912  -4.0000
670 22.2432 20.7275 0.0000 0.9736  -4.0000
671 22.2373 222373 6.9722 0.5810 29722
672 22.2417 15.9228 0.0000 2.0218  -4.0000
673 22.2358 17.2709 0.0000 1.6689  -4.0000
674 22.2299 22.1654 0.0000 0.7483  -4.0000
675 22.2240 15.3677 0.0000 2.1851  -4.0000
676 22.2181 18.7671 0.0000 1.3365  -4.0000
677 22.2122 16.2381 0.0000 1.9340  -4.0000
678 22.2064 22.2064 4.0890 0.6502 0.0890

679 22.2065

Table B.3: Algorithm 1 - Random Demand Type 2 Numerical Results
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Random Demand Type 3 Result - Algorithm 1

Table B.4 results from the AMPL program in Section B.2 using data from Table 5.1 for the
Exl-experiment described in Table 5.1, for the Type 3 uncertainty defined by eq. (3.12)
for s ~ U (0.5,1.5).

Type 3 Results: Ky =0, §; = ﬁ and seed:=1

t Ky qt At St AZ(I{({)
0 0.0000 0.0000 160.3810 1.1092 156.3810
1 30.0000 25.9293 0.0000 0.6899 -4.0000
2 29.3333 29.3333 11.1151 1.4219 7.1151
3 30.0000 30.0000 7.7147 1.4572 3.7147
4 30.0000 24.7915 0.0000 0.6057 -4.0000
5 29.5556 29.5556 3.0260 1.2141 -0.9740
6 29.4582 29.1445 0.0000 1.0515 -4.0000
7 29.0945 26.7660 0.0000 0.7631 -4.0000
8 287612 27.6101 0.0000 0.8496 -4.0000
9 284535 28.1027 0.0000 0.9072 -4.0000
10 28.1678 28.1678 9.3283 1.1652 5.3283
11  28.5230 28.5230 41071 1.0758 0.1071
12 28.5297 285297 17.2118 1.4420 13.2118
13 29.3069 27.7337 0.0000 0.8635 -4.0000
14 29.0846 23.0595 0.0000 0.5031 -4.0000

274 28.8816 28.4431 0.0000 0.9507  -4.0000
275 28.8672 28.8672 0.8232 1.0336  -3.1768
276 28.8559 26.4722 0.0000 0.7361  -4.0000
277 28.8416 26.5732 0.0000 0.7453  -4.0000
278 28.8275 24.0471 0.0000 0.5584  -4.0000
279 28.8133 28.8133 25135 1.0743  -1.4865
280 28.8081 23.8511 0.0000 0.5468  -4.0000
281 28.7941 28.7941 8.6701 1.2481 4.6701
282 28.8104 24.2925 0.0000 0.5734  -4.0000
283 28.7965 24.8603 0.0000 0.6104  -4.0000
284 28.7826 23.1953 0.0000 0.5102  -4.0000
285 28.7687 28.7687 14.6010 1.4136 10.6010
286 28.8053 28.8053 3.9553 1.1145  -0.0447

287 28.8051

Table B.4: Algorithm 1 - Random Demand Type 3 Numerical Results
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Random Inflow Result - Algorithm 1

Table B.5 results from the AMPL program in Section B.3 using data from Table 5.1 for the
Ezl-experiment described in Table 5.1, for demand in eq. (3.8) for R ~ U/ (0,30) and for
the constraint in eq. (3.7).

Random Inflow results: Ky = 0, 6; = ﬁ & seed:=1

t K; qt At Ry %

0 0.0000 0.0000 144.0000 18.2763 140.0000

1 14.0000 5.6962 0.0000  5.6962 -4.0000

2 13.6364 13.6364 75.8182 27.6568 71.8182

3 19.6212 19.6212 45.8939 28.7147 41.8939

4 228438 3.1718 0.0000 3.1718 -4.0000

5 225581 21.4232 0.0000 21.4232 -4.0000

6 222914 16.5460 0.0000 16.5460 -4.0000

7 22.0414 7.8941 0.0000 7.8941 -4.0000

8 21.8061 10.4881 0.0000 10.4881 -4.0000

9 21.5839 12.2174 0.0000 12.2174 -4.0000

10 21.3734 19.9564 0.0000 19.9564 -4.0000
11 21.1734 17.2742 0.0000 17.2742 -4.0000
12 20.9829 209829  39.0854 28.2606 35.0854
13 22.5777 10.9057 0.0000 10.9057 -4.0000
14 22.4038 0.0927 0.0000  0.0927 -4.0000
1978 24.4990 10.6175 0.0000 10.6175 -4.0000
1979 244970 6.4970 0.0000 6.4970 -4.0000
1980 24.4950 24.4950 21.5252 25.3370 17.5252
1981 24.5038 18.4450 0.0000 18.4450 -4.0000
1982 245018 11.7213 0.0000 11.7213 -4.0000
1983 24.4998 3.2222 0.0000 3.2222 -4.0000
1984 24.4977 20.2267 0.0000 20.2267 -4.0000
1985 24.4957 12.6624 0.0000 12.6624 -4.0000
1986 24.4937 23.5631 0.0000 23.5631 -4.0000
1987 24.4917 19.7862 0.0000 19.7862 -4.0000
1988 24.4897 14.2602 0.0000 14.2602 -4.0000
1989 24.4877 11.2491 0.0000 11.2491 -4.0000
1990 24.4857 17.1967 0.0000 17.1967 -4.0000

1991 24.4837

Table B.5: Algorithm 1 - Random Inflow Numerical Results
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Appendix C

AMPL Programs for Algorithm 2

C.1 Model-file Changes - Algorithm 2 (all cases)

Parameters to separate between expectation and observation of both price and slope must be
added to the original models given in Appendix B. (Section B.1, B.2 and B.3 respectively.)
Also the demand function should be changed according to the agent’s beliefs about the
price he believe he obtain.

# ADD ADDITIONAL PARAMETERS FOR EXPECTATION.
# Define p, the expected price

param phat{t in T}>= 0;

# Define dp;, expected change in price.

param dphat{t in T}>=0;

# ADD ADDITIONAL PARAMETERS FOR ACTUAL OBSERVATIONS.
# Define p;, actual observed price i period t:

param ACp{t in T} default O;

# Define dp,, actual observed change in price within period ¢:

param ACdp{t in T} default O0;

# CHANGE THE DEMAND FUNCTION TO REFLECT AGENT’S BELIEVED PRICE:
# CHANGE var Price in the original models of Section B.1, B.2 and B.3 to:
var Price = phat[n]-0.5«dphat([n]x*xqg;
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C.2 Data-file Changes - Algorithm 2 (all cases)

In addition to the data given in Appendix B initial values for the added parameters
accounting for the agent’s expectations must be given. The following parameter values is
therefore added to the data-files in Section B.1, Section B.2 and Section B.3.

# ADDED: ADDITIONAL PARAMETERS FOR INITIAL EXPECTATION.
# Initial expectation about price: pg

let phat[0] := 150;
# Initial expectation about slope: dpy
let dphat[0] := 12;

Several combinations of initial values for price, slope and capacity have been tested during
the experiments. The random seed also varies over the experiments where random values
are included. The combinations of initial values and seeds for the pseudo random numbers

are listed in Table 5.1 given in Section 5.1 of Chapter 5.

For example, the experiment Ez3 given by the red dotted line in Figure 5.7 is simulated
by running the model, data and run-file consistent with a Type 1 uncertainty for initial
capacity Ko := 20, with the initial believe about price and slope set to py := 150 and
dpo := 12 respectively. The random demand generated in this particular experiment

results from pseudo random numbers from the set seed command param 1:=3.

In each of the experiments, the values for the added parameters defined above is set
according to Table 5.1 in the AMPL program. This give rise to four different experiments
in each case for each of the two algorithms, and hence a total of 40 experiments have been
conducted. The results from all of the 40 experiments are summarized in Table 5.3 at the
end of Chapter 5.

Tables of the numerical results for the following Algorithm 2-experiments (for Ex1) is also

included:

Deterministic Case: Table C.1
Random Demand Type 1: Table C.2
Random Demand Type 2: Table C.3
Random Demand Type 3: Table C.4
Random Inflow: Table C.5
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C.3 Run-file Changes - Algorithm 2

To accommodate for the agent to learn both price and slope of price additional iterative
components must be added inside the for-loops. The original run-files are given in
Section B.1, Section B.2 or Section B.3 respectively. Note: Only the for-loop change, and
hence all other components of the original run-files should be as in the original files.

Deterministic Run-file Changes

In Section B.1 the original run-file for the deterministic case is given. The modified for-loop
is given below. Only the part between the dots (...) is changed.

# FOR LOOP FOR REPEATED ITERATIONS:
for {t in T} { # Startof for-loop.

let n := t;

let deltaln] := 1/ (5 + n);
solve OBJ;

let Q_veln] := g;

let Profit_ve[n] := profit;

# ADDED: UPDATE ACTUAL PRICE & SLOPE.

let ACp[n] := a-bxQ_vel[n];
let ACdp[n] := b;
# ADDED: UPDATE AGENT’S BELIEFS.
let phat[ntl] := (l-deltaln])*phat[n] + delta[n]*ACpl[n];
let dphat[n+l] := (l-deltal[n])xdphat[n] + delta[n]+*ACdp[n];
let KCon_dual[n] := KCONST.dual;
let gradient[n] := KCon_dual[n]- (r+d+f);
let K[n+1l] := K[n] + deltal[n]*gradient[n];
if K[n+l] < K_under then let K[n+l] := K_under;
if K[n+l] > K_over then let K[n+l] := K_over;

if n >= PreStep

then if abs (K[n+l]-K[n]) <= stopIlF

and abs (phat [n+1]-phat[n]) <= stopIF
and abs (dphat [n+1]-dphat[n]) <= stoplF
then break; else continue

} # End of for-loop.
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Random demand Run-file Changes

In Section B.2 the original run-file for the random demand cases is given. The modified
for-loop is given below. Only the part between the dots (...) is changed.

# FOR LOOP FOR REPEATED ITERATIONS:
for {t in T} { # Startof for-loop
let n := t;
reset data s_nr;
let s[n] := s_nr;
let deltaln] := 1/ (5 + n);
solve OBJ;
let Q_veln] := g;
let Profit_ve[n] := profit;

# ADDED: UPDATE ACTUAL PRICE ACCORDING TO TYPE. (Use one of the below)

let ACp[n] := a-bxQ_ve[n]+s_nr; #ForTypel
let ACp[n] := a-(bt+s_nr)=xQ_ve[n]; # For Type 2
let ACp[n] := (a-b*Q_ve[n])=xs_nr); #For Type 3
# ADDED: UPDATE ACTUAL SLOPE ACCORDING TO TYPE. (Use one of the below)
let ACdp[n] := b; #ForTypel
let ACdp[n] := b+s_nr; # For Type 2
let ACdp[n] := bxs_nr; # For Type 3
# ADDED: UPDATE AGENT’S BELIEFS (all Types).
let phat[ntl] := (l-deltaln])*phat[n] + delta[n]*ACpl[n];
let dphat[n+l] := (l1-deltal[n])xdphat[n] + delta[n]+*ACdp[n];
let KCon_dual[n] := KCONST.dual;
let gradient[n] := KCon_dual[n]-(r+d+f);
let K[n+1l] := K[n] + deltal[n]+*gradient[n];
if K[n+l] < K_under then let K[n+l] := K_under;
if K[n+l] > K_over then let K[n+l] := K_over;

if n >= PreStep

then if abs (K[n+l]-K[n]) <= stopIlF

and abs (phat [n+1]-phat[n]) <= stopIF
and abs (dphat [n+1]-dphat[n]) <= stoplIF
then break; else continue

} # End of for-loop.
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Random inflow Run-file Changes

In Section B.3 the original run-file for the random inflow cases is given. The new for-loop
for learning price and slope is given below. The part between the markers ...is changed,

the rest of the code should be as it is given in the original file.

# FOR LOOP FOR REPEATED ITERATIONS:
for {t in T} { # Start of for-loop.
let n = t;
reset data R_nr;
let R[n] := R_nr;
let deltaln] :=1 / (5 + n);
solve OBJ;
let Q_veln] := g;
let Profit_ve[n] := profit;

# ADDED: UPDATE ACTUAL PRICE & SLOPE.

let ACpl[n] := a-bxQ_vel[n];
let ACdp[n] := b;

# ADDED: UPDATE AGENT’S BELIEFS.
let phat[n+l] := (l-deltaln])*phat[n] + delta[n]*ACp[n];
let dphat[n+l] := (l-delta[n])*dphat[n] + delta[n]*ACdpl[n];
let RCon_dual[n] := RCONST.dual;

let KCon_dual[n] KCONST.dual;

let gradient[n] := KCon_dual[n]-(r+d+f);

let K[n+l] := K[n] + deltaln]+*gradient[n];

if K[n+l] < K_under then let K[n+l] := K_under;
if K[n+l1l] > K_over then let K[n+l] := K_over;
if n >= PreStep

then if abs (K[n+l]-K[n]) <= stopIlF

and abs (phat [n+1]-phat[n]) <= stoplF

and abs (dphat [n+1]-dphat[n]) <= stoplF
then break; else continue

} # End of for-loop.
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C.4 Tables of Results - Algorithm 2

Deterministic Result - Algorithm 2

Table C.1 results from the run-file in Section B.1 modified with the changes described in
Section C.3 using data from Section B.1 and C.2, for Ez1 in Table 5.1.

Deterministic Result (Alg.2): Ko =0, 6; = 5%%

t Ky qt At AZ(;(() Dt dpy

0 0.00000 0.00000 44.00000 40.00000 50.0000 1.0000

1 8.00000 8.00000 46.40000 42.40000 70.0000 1.2000

2 15.06667 15.06667 39.51111 35.51111 80.6667 1.3333

3 20.13968 20.13968 31.35601 27.35601 86.2667 1.4286

4 2355918 23.55918 24.30045 20.30045 89.1984 1.5000

5 25.81479 25.81479 18.74764 14.74764 90.7188 1.5556

6 27.28955 27.28955 14.53110 10.53110 91.4839 1.6000

7 28.24693 28.24693 11.37267 7.37267 91.8418 1.6364

8 28.86132 28.86132 9.01703  5.01703 91.9805 1.6667

9 2924724 29.24724  7.26080  3.26080 92.0034 1.6923
10 29.48015 29.48015 595024 195024 91.9678 1.7143
11 29.61017 29.61017 4.97147  0.97147 91.9059 1.7333
12 29.67089 29.67089  4.24060 0.24060 91.8355 1.7500
13 29.68504 29.68504  3.69588 -0.30412 91.7663 1.7647
14 29.66814 29.66814 3.29164 -0.70836 91.7032 1.7778
746 2799822 2799822  4.00340 0.00340 93.8487 1.9947
747 27.99822 27.99822  4.00339  0.00339 93.8489 1.9947
748 27.99823 27.99823  4.00338 0.00338 93.8491 1.9947
749 2799823 27.99823  4.00338  0.00338 93.8493 1.9947
750 27.99824 27.99824  4.00337 0.00337 93.8495 1.9947
751 27.99824 27.99824  4.00337 0.00337 93.8498 1.9947
752 27.99825 27.99825  4.00336  0.00336 93.8500 1.9947
753 27.99825 27.99825 4.00335 0.00335 93.8502 1.9947
754 27.99825 27.99825  4.00335 0.00335 93.8504 1.9947
755 27.99826 27.99826  4.00334 0.00334 93.8506 1.9947
756 27.99826 27.99826  4.00334 0.00334 93.8508 1.9947
757 27.99827 27.99827  4.00333 0.00333 93.8510 1.9947
758 27.99827 27.99827  4.00332  0.00332 93.8512 1.9948
759  27.99828 93.8514 1.9948

Table C.1: Algorithm 2 - Deterministic Numerical Results
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Random Demand Type 1 Result - Algorithm 2

Table C.2 results from the run-file in Section B.2 modified with the changes described in
Section C.3 using data from Section B.2 and C.2,for Type 1 uncertainty. Initial values is
given by Ex1 in Table 5.1.

1

5 seed:=1, pg = 50, dpy = 1

Type 1 results: Ko =0, §; =

o An(K
t K qt At ﬁ Pt dp;

0 0.00000  0.00000 44.00000 40.00000 50.0000 1.0000
1 8.00000  8.00000 49.32680 45.32680 73.2763 1.2437
2 1555450 15.55450 35.21870 31.21870 76.4707 1.2664
3 20.01430 20.01430 33.82670 29.82670 89.6964 1.4917
4 2374260 23.74260 29.13330 25.13330 98.5150 1.6695
5
6
7
8

26.53520 26.53520 18.98240 14.98240 94.4684 1.6186
28.03340 28.03340 15.11100 11.11100 96.7899 1.6996
29.04350 29.04350 11.49920  7.49921 96.9702 1.7363
29.66850 29.66850  8.07274  4.07274 94.7345 1.7188

9 2998180 29.98180 590403 1.90403 93.3725 1.7173
10 30.00000 30.00000  4.81133  0.81133 92.5377 1.7242
11 30.00000 30.00000 4.42100 0.42100 93.3598 1.7646
12 30.00000 30.00000 3.91183 -0.08817 93.5762 1.7888
13 2999480 29.99480 4.12361  0.12361 95.7059 1.8532
14 30.00000 30.00000 3.32025 -0.67975 94.7071 1.8462
516 27.93420 27.93420 4.04968  0.04968 93.4502 1.9856
517 27.93430 27.93430 4.07308  0.07308 93.5085 1.9869
518 27.93440 27.93440 4.06587  0.06587 93.4918 1.9865
519 27.93450 27.93450 4.04492 0.04492 93.4411 1.9854
520 27.93460 27.93460 4.06584 0.06584 93.4932 1.9865
521 27.93470 27.93470 4.04686  0.04686 93.4475 1.9856
522 2793480 27.93480  4.04032  0.04032 93.4320 1.9852
523 27.93490 2793490 4.01832 0.01832 93.3784 1.9841
524 2793490 27.93490 4.03436  0.03436 93.4181 1.9849
525 27.93500 27.93500 4.01695 0.01695 93.3758 1.9840
526 2793500 27.93500 4.03185  0.03185 93.4127 1.9848
527 2793510 2793510 4.02020 0.02020 93.3844 1.9842
528 2793510 27.93510 3.99741 -0.00259 93.3286 1.9830

529 27.93510 . . . 93.3285 1.9830

Table C.2: Algorithm 2 - Random Demand Type 1 Numerical Results
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Random Demand Type 2 Result - Algorithm 2

Table C.3 results from the run-file in Section B.2 modified with the changes described in

Section C.3 using data from Section B.2 and C.2, for Type 2 uncertainty. Initial values is

given by Ex1 in Table 5.1.

Type 2 results: Ky =0, §; =

L
5+t

seed:=1, pg = 50, dpy = 1

Ar(K)

t K, qt At AL Dt dpy

0 0.00000 0.00000 44.00000 40.00000 50.0000 1.0000

1 8.00000 8.00000 43.47580 39.47580 70.0000 1.5655

2 1457930 14.57930 34.06380 30.06380 79.9072 1.7329

3 18.87410 18.87410 14.23670 10.23670 79.9947 2.1661

4 20.15370 20.15370 0.62763 -3.37237 77.2523 2.5043

5 19.77900 19.77900 5.24617 1.24617 80.1465 2.4835

6 19.90360 19.90360 0.30269 -3.69731 78.9387 2.6494

7 19.56750 19.45750  0.00000 -4.00000 78.7862 2.7408

8 19.23420 19.23420 2.16915 -1.83085 80.1977 2.7448

9 19.09330 19.09330 3.10861 -0.89140 81.0563 2.7682
10 19.02970 19.02970 3.26277 -0.73723 81.5870 2.8006
11 18.98050 18.98050 1.42924 -2.57076 81.0788 2.8803
12 18.81980 18.81980 0.94204 -3.05796 80.9646 2.9332
13 18.64000 18.21770  0.00000 -4.00000 79.6828 3.0446
14 18.41770 18.39860 0.00000 -4.00000 80.4614 3.0471
828 17.55170 17.55170 3.76428 -0.23572 88.4752 3.4845
829 17.55140 17.55140 3.78045 -0.21955 88.4828 3.4841
830 17.55110 17.55110 3.80768 -0.19232 88.4961 3.4834
831 17.55090 17.55090 3.77246 -0.22754 88.4782 3.4844
832 17.55060 17.55060 3.77850 -0.22150 88.4808 3.4843
833 17.55040 17.55040 3.83716 -0.16284 88.5098 3.4827
834 17.55020 17.55020 3.88483 -0.11517 88.5334 3.4814
835 17.55000 17.55000 3.94673 -0.05327 88.5642 3.4796
836 17.55000 17.55000 3.94268 -0.05732 88.5623 3.4798
837 17.54990 17.54990 4.00380 0.00380 88.5929 3.4780
838 17.54990 17.54990 3.96201 -0.03799 88.5722 3.4792
839 17.54990 17.54990 3.93239 -0.06761 88.5576 3.4801
840 17.54980 17.54980 3.93565 -0.06435 88.5592 3.4800
841 17.54970 88.5593 3.4801

Table C.3: Algorithm 2 - Random Demand Type 2 Numerical Results
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Random Demand Type 3 Result - Algorithm 2

Table C.4 results from the run-file in Section B.2 modified with the changes described in
Section C.3 using data from Section B.2 and C.2, for Type 3 uncertainty. Initial values is
given by Ex1 in Table 5.1.

1

5 seed:=1, pg = 50, dpy = 1

Type 3 results: Ky =0, §; =

o An(K
t K qt At ﬁ Pt dp;

0 0.00000  0.00000 44.00000 40.00000 50.0000 1.0000
1 8.00000  8.00000 49.32680 45.32680 73.2763 1.2437
2 1555450 15.55450 35.21870 31.21870 76.4707 1.2664
3 20.01430 20.01430 33.82670 29.82670 89.6964 1.4917
4 2374260 23.74260 29.13330 25.13330 98.5150 1.6695
5
6
7
8

26.53520 26.53520 18.98240 14.98240 94.4684 1.6186
28.03340 28.03340 15.11100 11.11100 96.7899 1.6996
29.04350 29.04350 11.49920  7.49921 96.9702 1.7363
29.66850 29.66850  8.07274  4.07274 94.7345 1.7188

9 2998180 29.98180 590403 1.90403 93.3725 1.7173
10 30.00000 30.00000  4.81133  0.81133 92.5377 1.7242
11 30.00000 30.00000 4.42100 0.42100 93.3598 1.7646
12 30.00000 30.00000 3.91183 -0.08817 93.5762 1.7888
13 2999480 29.99480 4.12361  0.12361 95.7059 1.8532
14 30.00000 30.00000 3.32025 -0.67975 94.7071 1.8462
516 27.93420 27.93420 4.04968  0.04968 93.4502 1.9856
517 27.93430 27.93430 4.07308  0.07308 93.5085 1.9869
518 27.93440 27.93440 4.06587  0.06587 93.4918 1.9865
519 27.93450 27.93450 4.04492 0.04492 93.4411 1.9854
520 27.93460 27.93460 4.06584 0.06584 93.4932 1.9865
521 27.93470 27.93470 4.04686  0.04686 93.4475 1.9856
522 2793480 27.93480  4.04032  0.04032 93.4320 1.9852
523 27.93490 2793490 4.01832 0.01832 93.3784 1.9841
524 2793490 27.93490 4.03436  0.03436 93.4181 1.9849
525 27.93500 27.93500 4.01695 0.01695 93.3758 1.9840
526 2793500 27.93500 4.03185  0.03185 93.4127 1.9848
527 2793510 2793510 4.02020 0.02020 93.3844 1.9842
528 2793510 27.93510 3.99741 -0.00259 93.3286 1.9830

529 27.93510 . . . 93.3285 1.9830

Table C.4: Algorithm 2 - Random Demand Type 3 Numerical Results
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Random Inflow - Algorithm 2

Table C.5 results from the run-file in Section B.3 modified with the changes described in
Section C.3 using data from Section B.3 and C.2, for random inflow. Initial values is given
by Ex1 in Table 5.1.

1

Inflow results: Ky =0, 6; = =L,

seed:=1, pg = 50, dpy = 1

t Kt qt )\t Rt AZ(I{(() bt dpt

0 0.00000 0.00000 44.000 18.27630 40.000 50.000 150.000
1 4.00000 4.00000 45.600 5.69619 41.600 60.000 142.000
2 778182 7.78182 44476 27.65680 40.476 67.455 134.436
3 11.15480 11.15480 41.938 28.71470 37.938 73.036 127.690
4 14.07310 3.17177 0.000 3.17177 -4.000 77.241 143.656
5
6
7
8

13.78740 13.78740 43.486 21.42320 39.486 81.985 122.425
16.41980 16.41980 39.273 16.54600 35.273 84.681 117.160
18.62440  7.89405 0.000  7.89405 -4.000 86.711 134.212
18.38910 10.48810  0.000 10.48810 -4.000 89.505 129.024

9 18.16680 1221740 0.000 1221740 -4.000 91.700 125.565

10 1795630 17.95630 42.119 19.95640 38.119 93.483 114.087
11 19.86230 17.27420  0.000 17.27420 -4.000 94513 115.452
12 19.67180 19.67180 38.925 28.26060 34.925 95.510 110.656
13 21.25930 10.90570  0.000 10.90570 -4.000 96.198 128.189
14 21.08540 0.09266  0.000 0.09266 -4.000 97.589 149.815
1979 26.59200 6.49704 0.000 6.49704 -4.000 120.393 137.006
1980 26.59000 25.33700 0.000 25.33700 -4.000 120.401 99.326
1981 26.58800 18.44500 0.000 18.44500 -4.000 120.391 113.110
1982 26.58590 11.72130 0.000 11.72130 -4.000 120.387 126.557
1983 26.58390  3.22223  0.000  3.22223 -4.000 120.390 143.556
1984 26.58190 20.22670  0.000 20.22670 -4.000 120.402 109.547
1985 26.57990 12.66240 0.000 12.66240 -4.000 120.396 124.675
1986 26.57790 23.56310 0.000 23.56310 -4.000 120.398 102.874
1987 26.57590 19.78620  0.000 19.78620 -4.000 120.390 110.428
1988 26.57390 14.26020 0.000 14.26020 -4.000 120.385 121.480
1989 26.57190 11.24910 0.000 11.24910 -4.000 120.385 127.502
1990 26.56990 17.19670  0.000 17.19670 -4.000 120.389 115.607
1991 26.56790 14.03950 0.000 14.03950 -4.000 120.386 121.921

1992 26.56590 . . . . 120.387

Table C.5: Algorithm 2 - Random Inflow Numerical Results
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Appendix D

Calculus

Calculations - Random Demand Type 1

Random Demand Type 1 is given by P(q,s) = a — bg + s, and is defined by eq. (3.10).
Assume s ~ U (—0.5,0.5) such that E(s) = 0. The expected demand in this case is thus:

BP@) = [ 1Pl £(5)ds
= /:[a— bg + s] f(s)ds
:a—bq—i-/sgsf(s)ds
=a—bqg+ E(s)
= P(q)

for E(s) =0

Assume a, b > 0 and given numeric values, also assume ¢ and s is uncorrelated, and apply
definition 31.32 from Sydseeter et al. (2002, p. 182).

For any given level of production, quantity can be given as a function of price since the
functions are invertible. Let P denote the price corresponding to quantity §, and let s
denote uncertainty. Then the following apply:

P:a—bq+s<:>éj:g(a—P+s)

To find marginal change in quantity subject to a change in uncertainty, differentiate the

inverse expression for quantity with respect to uncertainty (s). Similarly, the marginal
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change in price subject to a change in uncertainty can also be derived from the above.

~ % ifs>0
__0q .
0s
—% ifs<0
op ifs>0
p —_— ——— 1 pr—
s 95 ifs=0
-1 ifs<0

Use the cost function as given in eq. (3.13) and let ¢ = ¢ from the inverse relation to find
the cost expressed in terms of uncertainty, and M C(q, s) and derive MCs.

C(g,s) = AG+ B¢?

MC(q,s) = &= — A+ 2B
(4:5) = 3, q
0 2B > .. >
MCSZ%MC(Q,S):TEOIfSEO
MCsszaMCSZO
Os

Revenueis = P(q,s)g = (a —bg+s)q. Letq =4 = % (a —P+ 3). Then marginal revenue
and change in marginal revenue subject to a change in uncertainty is given by M R(q, )
and M R, respectively:

9P (q,s)
dq 4

MR(q,s) = P(q,s) +

1 .
:a—2b{b<a—P+s)]—|—s
=2p—a—s
9 -1 ifs>0

MRS:%MR((],S): 0 ifs=0

1 ifs<0

Expected marginal revenue for demand in eq. (3.10), in Figure 6.1a denoted EMR[eq.(3.10)]
is:

MR[eq.(3.10)] = a — 2bg+ s = a — 2bq + 0

Marginal revenue for the proxy in eq. (5.3) is M R[eq.(5.3)] = p* — dp*q. In Figure 6.1a for
average price p* and slope dp* obtained by Algorithm 2 (Table 5.3, rows T1 Alg.2).
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Calculations - Random Demand Type 2

Random Demand Type 2 is given by P(q,s) = a — (b + s)g, and is defined by eq. (3.11).
Assume s ~ U (0, 3) such that E(s) > 0. The expected demand in this case is thus:

=a-— <b+ :sf(s)ds> q

=a—(b+E(9))q
< P(q) for E(s) >0
Assume a, b > 0 and given numeric values, also assume ¢ and s is uncorrelated, and apply
definition 31.32 from Sydseeter et al. (2002, p. 182).

Let P denote the price corresponding to quantity ¢, and let s denote uncertainty. Then the
following apply:

_ 2
P:a—(b+s)q<:>q=62+s

To find marginal change in quantity subject to a change in uncertainty, differentiate the

inverse expression for quantity with respect to uncertainty (s). Similarly, the marginal
change in price subject to a change in uncertainty can also be derived from the above.

. 0q 0 (a—P)Z_ a—P <OV >0

= 9s " 0s\ s+b (s+b)2 =
. 9P
Pi=—=—-G<0Vs,q=20
0s

Use the cost function in eq. (3.13) and let ¢ = ¢ from the inverse relation to derive marginal
cost MC(q,s) = éq, and derive the second and third derivatives M Cs and M Cjy

C(q,s) = AG+ B¢*

a—P
MC — A+2Bj=A+2B
(g,5) +2Bg + b+s]
0 a—P
MCy = 2 MC(q,s) = —2B |~ _
C s C(q,s) TEE <0Vs
Me = 2, =42~ S ovs

0s (s+0b)3
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Revenue is = P(q,s)g = (a— (b+s)q)q. Letq = ¢ = (a - P+ s). Then marginal
revenue and change in marginal revenue subject to a change in uncertainty is given by
MR(q, s) and M R; respectively:

0P(q, -
MR(q,s) = P(q,s) + gf} S)q =a—2(b+s)q
0 aq . a—P
oq a—P
MRSS—%MRS——4[W <0Vs
Similarly the invers relation § = C;):Lf is used to derive I, I, and IT:

H(Qv'S?K) = P(st)q - C(st) - \IJ(K)

oll(q, s, K 5 5

Hq:(qa;):(a—2[b+s]q)—(A+2Bq)
B 0 _8(} a4 a—P

Hqs %Hq Ds [—2Bq] =2 7([)—1—8)2 >0Vs

Expected marginal revenue for demand in eq. (3.11), in Figure 6.1b denoted EMR[eq.(3.11),s=1.5]
is:
MR[eq.(3.11)] =a—2(b+ s)g =a—2(b+ 1.5)q

Marginal revenue for the proxy in eq. (5.3) is M R[eq.(5.3)] = p* — dp*q. In Figure 6.1b for
average price p* and slope dp* obtained by Algorithm 2 (Table 5.3, rows T2 Alg.2).

Calculations - Random Demand Type 3

Random Demand Type 3 is given by P(q,s) = (a — bq)s, and is defined by eq. (3.12).
Assume s ~ U (0, 2) such that E(s) = 1. The expected demand in this case is thus:

BPG.9) = [ [Pla.5) 5(5)ds

5

la —bq] sqf(s)ds

e

= /:[as] f(s)ds — /:[bSQ] f(s)ds

=aF(s) — bE(s)q
= P(q)
for E(s) =1
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For any given level of production, quantity can be given as a function of price since the
functions are invertible. Let P denote the price corresponding to quantity ¢, and let s
denote uncertainty. Then the following apply:
N 1 ~1
P=(a—-0b4)s & ¢=—-|a—P-
(a —bg)s 7= (a 5)
To find marginal change in quantity subject to a change in uncertainty, differentiate the

inverse expression for quantity with respect to uncertainty (s). Similarly, the marginal

change in price subject to a change in uncertainty can also be derived from the above.

07 _1p1

jo= 4 =-P " >0Vs>0

s Os b s2 5

. 9P

Po=—=(a—b3) 20Y3>0
5 — (@ —bd) q

Use the cost function in eq. (3.13) and let ¢ = ¢ from the inverse relation to derive marginal
cost MC(q,s) = C’q, and derive the second and third derivatives M C and M Cjy

C(g,s) = AG+ B¢*

MC(q,s) = A+2Bj=A+2B {1 (a—]f’l)} _ g4 2o 2001
S

b b b s
d 2BP 1
M = — = —— —
Cs 8SMC’(q,s) D >0Vs
) 4BP 1
ss — A s — 7 Ta
MC 6SMO — 3 0V s

Revenue is = P(q,s)q = [(a — bg) q] s. Let ¢ = ¢ (a - ]5%) Then marginal revenue and
change in marginal revenue subject to a change in uncertainty is given by M R(q, s) and
M R respectively:

MR(q,s) = (a—2bG) s = <a—2b {1 <a—Pi)}>s:2p—as

b
0
MR, = %MR(q,s) =—a <0Vs
MRy = QMRS =0
0s

Expected marginal revenue for demand in eq. (3.12) is EMR[eq.(3.12)] (In Figure 6.1c¢):
EMR[eq.(3.12)] = (a — 2bq)s = (a — 2bq) - 1

Marginal revenue for the proxy in eq. (5.3) is M R[eq.(5.3)] = p* — dp*q. In Figure 6.1c for
average price p* and slope dp* obtained by Algorithm 2 (Table 5.3, rows T3 Alg.2).
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Necessary & Sufficient Conditions:

Definition 4 A function w(K) is continuous on a closed, finite interval [K, K| if it is continuous
at each point of the interval, and the function 7(K) is a continuous function if w(K) is continuous
at every point of its domain. (Adams, 2003, p. 80)

Definition 5 The first order condition for K* being a stationary point of the function 7(K) is
defined by: ©'(K*) = 0. (Sydsater et al., 2002, p. 87)

Definition 6 A function w(K) is concave if m (aK2 + (1 — ) K1) > am (K2) + (1 — a)7w (K1)

for Ky < Ky and o € (0, 1). (Sydseeter et al., 2002, p. 80)

Divergence of Proxy Demand

Proxy demand is given by eq. (5.3). The agent update his knowledge of both learning
subjects p; and dp; according to eq. (4.2). All repeated below for reference.

~ d
P(q) =p — %Qt Proxy Demand, eq. (5.3)
i1 < (1 — 04)pe + Oy Learning Price, eq. (4.2)
dpi+1 < (1 = 6;)dpy + 5tcfpt Learning Slope, eq. (4.2)

Let F(P,0) := [P(q), (%P(q)] be a function of the actual price and slope, and let the

expectation function of price and slope, by assumption unknown to the agent, be defined
by
0

Assume the expected change in price for a change in quantity is such that B%Eﬁ(q) <0
and a%pEJB(q) < 0. Then the divergence of the expectation function f(p, dp) is:

) 0 0
divf(p,dp) = %EP(q, 0) + a—dpEP(q, 0) <0
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