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Abstract

The history of MCMC, theories of Bayesian thinking and model choice, the Accept-
Reject-algorithm, Markov chains, the Metropolis-Hastings-algorithm and the reversible
jump MCMC are explained. Then the reversible jump MCMC as change-point analysis
is applied to the coal mine disaster example, familiar from [Green, 1995], and to the
examples of counting terrorism attacks (worldwide, in Iraq and in Afghanistan). The
novel part is estimating the change points of the hazard rate of terrorism attacks in
Afghanistan during the last 35 years.
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Chapter 1

Historical Review

Statistical sampling had been known for centuries, but it was really the advent of com-
puters that made this approach feasible for attacking many problems of physics. The
Monte Carlo method was part of the picture from the very beginning, thanks to Nicholas
Metropolis, who was the leader of the team that designed and built one of the very first
electric computing machines ENIAC and MANIAC in the Manhattan project in Los
Alamos. Metropolis was also involved in improving the method by introducing a tech-
nique, which is today known by the name “importance sampling”.

The Monte Carlo method applies the laws of probability by calculating samples from
the modeled outcomes of real physical phenomena. For example approximating the real
diffusion rate in neutron diffusion or estimating other physical quantities such as energy
or density [Anderson, 1986] becomes possible.

The goal of the Markov Chain Monte Carlo (MCMC) is the opposite from analyzing the
stationary distribution of the chain. One begins with the stationary distribution and
constructs a reversible Markov chain (under some relatively mild regularity conditions)
possessing this distribution as the stationary distribution. Simply sampling from the
chain produces correlated data from the desired distribution.

However, in spite of the early dawn of the method right after the World War II, it still
took decades until it revolutionized the statistical calculations. There were two main
obstacles: even if the exceptional group of physicist working in Los Alamos computed
on the fastest computers in the world of the time, the computing power of today is on a
quite different level than is was at 1950’s or even 1970’s. Also, the Bayesian paradigm
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Chapter 1. Historical Review 2

of thinking about statistical problems, which is most often used in simulations, was yet
to become fully developed.

Nicolas Metropolis had come to Los Alamos in 1943 and was leading a team of physicists
who were working hard on designing the hydrogen (H) bomb. Espesially Teller was
obsessed with the bomb and with the better computing capacity offered by the second
computer ever in existence called MANIAC the project was finally successful in the
early 1950’s The results of energy levels of a N -particle system were published in 1953
in Journal of Chemical Physics [P.Robert and Casella, 2011].

In the 1970’s, the Metropolis method [N.Metropolis et al., 1953] was generalized by
[Hastings, 1970] and his student [P.H.Peskun, 1973] in order to overcome the curse of
dimensionality met by regular Monte Carlo methods. This difficulty had already been
acknowledged by Metropolis’ team.

Gibbs sampling was brought into the arena of statistical application by Geman and
Geman [Geman and Geman, 1984] around mid-eighties. However, the real explosion
in the use of the MCMC could only begin after the 1990’s , as Gelfand and Smith
published an influential paper [E.Gelfand and F.M.Smith, 1990] establishing a ”genuine
starting point for an intensive use of MCMC methods by the mainstream statistical
community“[P.Robert and Casella, 2011].

In 1995 Peter Green generalized the MCMC method [Green, 1995] from a model param-
eter estimator into a model choice tool by making jumps between models of different
dimensionality possible. The reversible jumping (RJ) still essentially applies the algo-
rithm of Metropolis and Hastings. The moves needed for jumping between the different
submodels are implemented in a more sophisticated fashion involving the use of the
Jacobian determinant of the transformation between the submodel spaces.

In the following chapter 2 we discuss the Bayesian Paradigm and the relationship to the
Choice of Model. In chapter 3 we present the Accept-Reject- sampling algorithm. Chap-
ter 4 is an introduction to the cornerstones of the Markov Chain Monte Carlo-algorithm:
the Markov Chain and the Metropolis-Hastings algorithm. Chapter 5 discusses the re-
versible jump MCMC and two change-point analysis applications: coal mining disasters
in the UK and counting terrorism attacks worldwide, in Iraq and in Afghanistan. Fi-
nally, in chapter 6 we discuss applications, pros and cons and the future trends of the
(RJ)MCMC.



Chapter 2

The Bayesian Paradigm and the

Choice of a Model

"Essentially, all models are wrong, but some are useful."
– George E. P. Box

The advent of more powerful computing capacity during the last few decades has made
simulation increasingly important as a method of performing statistical inference for
systems of virtually unlimited complexity.

A modelM has the purpose to capture and formalize the unknown dependency between
some unknown y and some known quantities x, and to describe a phenomenon or a
system. The model consists of structural assumptions S and the model parameters
θ. Usually most if not all of the inferential attention is given to the analysis of the
parameters, even though the model structure chosen also carries a profound importance.
The usual procedure is to pick the ”best” model structure S∗ for S by examining the
data, and after identifying S∗ to proceed as if S∗ is acknowledged to give the correct
inferences and predictions [Draper, 1995].

In the Bayesian approach, the parameters θ are not considered as being fixed to having
certain values, but are also allowed to behave as stochastic variables having densities.
Hence there is not much difference on the conceptual level on measured data and the
model parameters. The likelihood function of parameters given the data x is identical
to the density function of the variable(s) conditional on θ, only the point of view is
reversed:

l(θ) = l(θ|x) = f(x|θ). (2.1)
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Also the philosophy becomes reversed: the function will no longer be considered as the
density of variables which are sampled from a distribution with certain parameter value,
but the probability of obtaining a value of the parameter θ given the data x.

The experience and beliefs of the researcher on the phenomena at hand are incorporated
into the model by introducing a prior distribution π(θ) for the parameter. This happens
before measuring any data.

After the measurement of N points of data, XN , is performed, the Bayes’ theorem gives
the a posterior distribution,

π(θ|XN) =
f(XN |θ)π(θ)

f(XN)
∝ l(θ|XN)π(θ) (2.2)

updating the beliefs of the parameter. Here the normalization constant

f(XN) =

∫
f(XN |θ)π(θ) dθ (2.3)

is usually unknown in practice, but as will be seen it won’t be needed in the simulation.
Calculating it is often as hard a problem as sampling from the original distribution.
After all, if the distribution was fully known there would not be much need for using
the Markov chain for sampling from it in the first place.

The prior and posterior are relative concepts: if still more data is collected, then the
same principle can be re-applied as the current posterior replaces the prior in the new
calculations.

As all distributions from the exponential family1 have conjugate priors, some compu-
tational benefit and algebraic convenience can be acquired by using an appropriate
conjugate prior distribution. This means that for a certain type of a prior distribution
π(θ) the posterior calculated from

π(θ|x) ∝ l(θ|x)π(θ) (2.4)

will have the same functional form as the prior, but with different, updated, parameter
values. Well-known examples of this within the discrete distributions are prior-posterior
pairs beta-binomial, gamma-Poisson and Dirichlet-multinomial. In the context of single-
variable continuous distributions, for example, normal-normal make a conjugate pair.

1A distribution in the exponential family, can (canonically) be expressed as f(x, θ) = exp(xb(θ) +
c(x) + d(θ)).
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In the multivariate setting, if the covariance matrix Σ is known, the multivariate normal
distribution is a conjugate of itselfs. However, such an approach always has a trade-off
between eliminating any structural model uncertainty by once and for all fixing the
shape of the model function and really modeling the data well.

The Bayesian approach to hypothesis testing also leads to an alternative for choosing
a model between two or more possible candidates by using the so called Bayes factors
[E.Kass and E.Raftery, 1995]. If D is the data and M1 and M2 are two alternative
models (or hypotheses) such that P (M2) = 1− P (M1), then a direct application of the
Bayes’ theorem gives

P (Mj|D) =
P (D|Mj)P (Mj)

P (D|M1)P (M1) + P (D|M2)P (M2)
(j = 1, 2), (2.5)

and hence
P (M1|D)

P (M2|D)
=
P (D|M1)

P (D|M2)
· P (M1)

P (M2)
. (2.6)

Here it could also be observed, that in the case of equiprobable models, P (M1) =

P (M2) = 0.5, the Bayes factor equals the posterior odds in favour of model M1. The
formula resulting from this case,

P (M1|D)

P (M2|D)
=
P (D|M1)

P (D|M2)
, (2.7)

is conceptually important turning point in the history of statistics for the first time
inverting conditional probabilities [P.Robert, 2007].

As can be seen from (2.6), the Bayes factor,

B12 =
P (D|M1)

P (D|M2)
, (2.8)

is the ratio of posterior odds and prior odds of the models. It can also be interpreted as
the transformation factor from the prior opinion to the posterior opinion representing
the evidence provided by the data. If the models contain no parameters, the Bayes
factor is simply the likelihood ratio of the two models, and with parameters the ratio
still looks like the likelihood ratio, but in contrast to maximizing the likelihoods, the
conditional densities

P (D|Mj) =

∫
P (D|θj,Mj)π(θj|Mj)dθj (2.9)
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need to be integrated. Here θj is a parameter (vector) of model Mj and π(θj|Mj) is its
prior density.

Bayesian posteori distributions

π(θ|x) =
f(x|θ)p(θ)∫
f(x|θ)p(θ) dθ

∝ l(θ|x)p(θ) (2.10)

can be simulated from in order to produce a sample θ1, θ2, . . . , θm. This sample can
then be used to approximate the moments of the posterior distribution or any other
quantities characterizing the posterior needed.

There are several methods for measuring the complexity of a model, both in its own
right and as a tool for the model choice. To mention few such so called information
criteria, there are AIC [Akaike, 1974], BIC [Schwarz, 1978], TIC [Takeuchi, 1976] and
NIC [N.Murata et al., 1978] which all trade off model fit against the effective number
of model parameters. In these criteria, the fit of a model is guaranteed by maximizing
the likelihood and overfitting is avoided by penalizing by the number of parameters.

In [J.Spiegelhalter et al., 2002] the authors develop a Bayesian approach, the deviance
information criteria (DIC) which is directly computable from the MCMC posteori sam-
ples.



Chapter 3

The Accept-Reject

Algorithm/Sampling

“Accept-Reject- sampling is much harder than you think!”
–Geir Drage Berentsen

The Accept-Reject algorithm for stochastic sampling was originally an idea of John von
Neumann’s. He received a letter in 1946 from Stanislaw Ulam who was interested in
estimating the passing rate in the game of Canfield solitaire, which he had been playing
while being sick. Von Neumann was also eager to expand the “games” to some other
calculations of neutron fission energies and wanted to implement those on the very first
calculating machine ENIAC [Eckhardt, 1987].

The Metropolis-Hastings algorithm always contains an Accept-Reject- step, while a
componentwise variant called Gibbs sampling does accept every proposal move with
probability one.

The goal is to sample from π(x), which can be approximated by an instrumental density
g(x) such that π(x) ≤ Mg(x) and Supp(π) ⊂ Supp(g). The constant M ≥ 1 is not
necessarily known. This is achieved by first generating a stochastic variable Y ∼ g and
another uniformly distributed variable U ∼ Unif[0, 1]. The variable Y is then accepted
as X if U ≤ π(Y )/Mg(Y ).

Algorithmically speaking,

1. Generate Y ∼ g and U ∼ Unif[0, 1];

7
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2. Accept X = Y , if U ≤ π(Y )/Mg(Y );

3. If not, return to the 1. step.

Indeed, the distribution becomes π :

P (X ≤ x) = P (Y ≤ x | Y was accepted) = P (Y ≤ x | U ≤ π(Y )

Mg(Y )
) =

P (Y ≤ x& U ≤ π(Y )
Mg(Y )

)

P (U ≤ π(Y )
Mg(Y )

)
=

∫ x
−∞

∫ π(y)
Mg(y)

0 du g(y) dy∫∞
−∞

∫ π(y)
Mg(y)

0 du g(y) dy

=

∫ x
−∞

π(y)
M

dy
1
M

∫∞
−∞ π(y) dy

=

∫ x

−∞
π(y) dy.

Setting M = supy
π(y)
g(y)

<∞ gives the acceptance probability as

P (Y accepted) = P (U ≤
π(y)
g(y)

supy
π(y)
g(y)

) =

∫ ∞
−∞

∫ π(y)
Mg(y)

0

du g(y) dy =
1

M
,

which means that the waiting time of acceptance is geom(1/M)− distributed and ex-
pected number of trials for accepting a variable is M.

For a different point of view [Mikusheva, 2007], denote by ρ the probability that a single
draw was not accepted:

ρ = P [a single draw was rejected]. (3.1)

We want to simulate from X ∼ π(x) = f(x)
k

where the constant k is unknown. We have
a candidate pdf g(x) to simulate from and a known constant M such that

f(x) ≤Mg(x). (3.2)

Use of the iterated expectations EX = EY [EX|Y (X|Y )] and observing that

M(1− ρ) = k,
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give

P (X ≤ x) = P (y ≤ x & U ≤ y

Mg(y)
)(1 + ρ+ ρ2 + . . .) =

1

1− ρ
P (y ≤ x & U ≤ y

Mg(y)
) =

1

1− ρ
Ey[P (U ≤ y

Mg(y)
|y) 1{y≤x}] =

1

1− ρ

∫ x

−∞

f(y)

Mg(y)
g(y) dy =

∫ x

−∞

f(y)

M(1− ρ)
dy =∫ x

−∞
π(y) dy.

The waiting time is geometric, as the probability of acceptance becomes 1/M .

In the Accept-Reject method only an instrumental density g(x) such that the target
distribution is approximated π(x) ≤Mg(x) with some constant M > 0 is needed.



Chapter 4

Markov Chain Monte Carlo

4.1 Markov Chain

To give the discussions some substance, we first collect some essential definitions and
theorems on Markov Chains in this section mainly from [Feller, 1968].

Let us consider a probability space (S,Fn, P ), where S ⊂ <d is a subset of an Euclidian
space (for a simpler setting), Fn is a filtration and P is a probability measure. The
filtration is the σ−algebra generated by the sample points X, Fn = σ(X0, X1, . . . , Xn).

Definition 4.1. A Markov transition kernel/matrix, K(x,A), is defined by a
transition probability function K : S ×B → < satisfying

• ∀x ∈ S : A→ K(x,A) is a probability measure on (S,B).

• ∀A ∈ B : x→ K(x,A) is a measurable function.

Here x ∈ <d, A ∈ B, where B is the Borel σ−algebra on <d. If the space of possible
states is finite, the kernel becomes simply a matrix of transition probabilities. In a more
abstract setting an integral operator is needed.

Hence the probability of the chain moving from sample point Xn into the Borel set B
can be expressed as

P (Xn+1 ∈ B | Fn) = K(Xn, B). (4.1)

10
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Definition 4.2. A discrete-time homogeneous Markov chain with a countable
state-space S = {Xk}k=0,1,... is a stochastic process Xn with the property that the next
state only depends on the current state of the system but not on history preceding it.
That is, the probability of moving from one state to another is

P [Xn+1 = j|Fn] = P [Xn+1 = j|X0 = x0, X1 = x1, . . . , Xn = i] = (4.2)

P [Xn+1 = j|Xn = i] = pij. (4.3)

Thus each step on the chain depends only on the previous one. Of course,
∑

j pij = 1.

Denote the probability of reaching from state i to state j in n steps p(n)
ij and that this

happens first time in n steps f (n)
ij and ever fij =

∑∞
n=1 f

(n)
ij .

Definition 4.3. A state j in a Markov Chain is accessible from state i, if p(n)
ij > 0

for some integer n. Two states i and j are said to communicate (i ↔ j) if they are
accessible from each other.

This creates an equivalence relation which can be used to partition all states into equiv-
alence classes.

Definition 4.4. The Markov chain is irreducible if it cannot be decomposed into
distinct subsets of communicating states. A criterion for irreducibility is: Every state
can be accessed from every other state.

Definition 4.5. A state i is transient if fii < 1. If fii = 1, the state is positive

recurrent.

Definition 4.6. TheMarkov chain is positive recurrent or (persistent) if fii = 1∀i.

Definition 4.7. The Markov chain has period k > 1, if p(n)
jj = 0, unless n = νk is a

multiple of k, and k is the largest integer with this property. If this is not the case, the
Markov chain is called aperiodic.

Definition 4.8. A probability measure µ representing a possible equilibrium for the
chain is called a stationary or (invariant) distribution if

∑
x

µ(x)K(x, y) = µ(y).
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Theorem 4.9. A positive recurrent aperiodic equivalence subclass C of a Markov chain
has an invariant stationary distribution π, uniquely determined by equations

∑
i∈C

πipij = πj,

∞∑
i=0

πi = 1, πi ≥ 0 ∀j ∈ C. (4.4)

In a more general setting, such as [Tierney, 1994] and [S.P.Meyn and R.L.Tweedie, 2005],
we define a posterior target distribution µ, which has a density (also denoted by µ) with
respect to a σ−finite measure ν,

µ(dx) = µ(x)ν(dx). (4.5)

Definition 4.10. A time-homogeneous Markov chain with invariant distribu-

tion µ is a sequence of random variables {Xn}n=0,1,... such that the transition kernel

K(Xn, B) = P [Xn+1 ∈ B|Fn], (4.6)

where Fn is the filtration1 induced by the chain, satisfies

µ(B) =

∫
µ(dx)K(x,B) (4.7)

for all measurable sets B.

4.1.1 Monte Carlo Integration

If π is a probability density, from which sampling is possible, it is easy to estimate the
integral

Eπ(h(X)) =

∫
X

h(x)π(x) dx (4.8)

with

h̄n =
1

n

n∑
i=1

h(Xi), (4.9)

where Xi ∼ π(x). The estimate converges almost surely to Eπ(h(X)) by the Strong Law
of Large Numbers. Also, if ∫

X

|h(x)|2π(x) dx <∞, (4.10)

1A filtration is a sequence of σ−algebras {Ft}t≥0, such that t1 ≤ t2 ⇒ Ft1 ⊆ Ft2 and Ft ⊆ F ∀t, where
(Ω, F ) is a given measurable space. The concept of a filtration can be interpreted as the information
of the system available at time t.
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then assessing the convergence speed can be done by estimating

V ar(h̄m) =
1

m

∫
X

(h(x)− Eπ(h(X)))2 π(x) dx (4.11)

with

vm =
1

m2

m∑
j=1

[h(Xj)− h̄m]2. (4.12)

The expression
h̄m − Eπ(h(X))

√
vm

=
√
m

h̄m − Eπ(h(X))√
1
m

∑m
j=1[h(Xj)− h̄m]2

(4.13)

will by the Central Limit Theorem be asymptotically standard normalN(0, 1)−distributed
and the probability (1− α)−confidence bounds can hence be constructed as

[h̄m − zα
2
m−

1
2
√
mvm, h̄m + zα

2
m−

1
2
√
mvm], (4.14)

where zα
2
is the α

2
−quantile of the standard Gaussian distribution. This technique is

well-known as the classical Monte Carlo- integration.

Remark 4.11. It should be noted that in lower dimensions, for smooth integrand func-
tions, the Gauss quadrature totally outperforms Monte Carlo as a numerical integration
method. The convergence of Monte Carlo integration is slow. In practice, the rate

1√
m

implies that an extra digit requires approximately 100 as many replications, but a
remarkable fact is that the factor 1√

m
remains the same, no matter how high the di-

mension of the underlying space X is [Cappé et al., 2005]. This is the reason Monte
Carlo methods become attractive for simulating and doing inference in high-dimensional
practical settings.

4.2 Metropolis-Hastings Algorithm

While one of the main concerns of the theory of Markov Chains is to confirm the
existence and uniqueness of a stationary distribution for iterations of a given transition
kernel, the algorithm of Metropolis [N.Metropolis et al., 1953] and Hastings [Hastings,
1970] employs the opposite strategy.

The purpose of the Metropolis-Hastings algorithm (MH) is drawing samples from a
target probability distribution π(x) by generating a Markov Chain whose stationary
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distribution is π(x). Only a function proportional to the density (such as in the Bayesian
setting) needs to be calculable.

The generated Markov Chain needs to be irreducible, positive recurrent, aperiodic and
reversible. These relatively mild conditions guarantee the existence of the invariant
stationary distribution.

There are many excellent accounts on the MH-algorithm, see for example
[N.Metropolis et al., 1953], [Hastings, 1970], [Tierney, 1994],
[Chib and Greenberg, 1995], [S.Liu, 2001], [Nummelin, 2002],
[Gamerman and Lopes, 2006], [P.Robert and Casella, 2004] or
[P.Robert and Casella, 2010].

4.2.1 Implementing the Metropolis-Hastings Algorithm

We are following [Tierney, 1994], [Nummelin, 2002], and [Chib and Greenberg, 1995].

The state space of the Markov chain X0, X1, . . . can be finite, countable, a subset of
an Euclidian space: E ⊂ Rk or even a more general measure space. The more general
the space, the more abstract shape will the operator for the transition kernel that is
governing the movement of the chain take.

We assume the Markov property on the chain entering a set A ⊂ E (in an Euclidian
space),

P (Xn+1 ∈ A|X0 = x0, . . . , Xn = xn) = P (Xn+1 ∈ A|Xn = xn), (4.15)

and that the chain is time-homogeneous.

Hence the next step of the chain depends only on the present state and the probability
law, not on the history of reaching the present state. Time-homogeneity means that the
stochastic transition mechanism does not change with the time index n and if Xn has a
density λ(x), it will be independent of time and

P (Xn ∈ A) =

∫
A

λ(x) dx. (4.16)

Once the Markov chain has reached a point x, in the next step it either stays put in x
or moves according to the probabilistic rule of the chain.
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Let 0 ≤ r(x) < 1 be the probability of preserving the current state x,

r(x) = P (Xn+1 = x|Xn = x),

and p(x, y) a (sub)probability density2 for the chain moving from a state x to a new
state y.

That means, that the probability of the chain entering (or staying in) a set A ⊂ E from
a point x can be written

P (x,A) = P (Xn+1 ∈ A|Xn = x) =

∫
A

p(x, y)dy + r(x)δx(A), (4.17)

where δx(A) =

1, if x ∈ A,

0 otherwise.

The probability that Xn+1 ∈ A is given by

P (Xn+1 ∈ A) =

∫
E

λ(x)P (x,A)dx =

∫
E

λ(x)[

∫
A

p(x, y)dy + r(x)δx(A)]dx =

∫
A

[

∫
E

λ(x)p(x, y)dx+ λ(y)r(y)]dy, (4.18)

which also defines a Markov operator P , mapping the probability density function λ 7→
λP. It can easily be iterated for n = 2, 3, . . . by defining λP n = (λP n−1)P and λP 0 ≡ λ.

Definition 4.12. If πP = π, the probability density π is called the stationary
(invariant) probability density π of the Markov chain.

It is such a chain we wish to construct from a given distribution π and draw random
samples from.

Define the support of the invariant probability density function π as

E+ = {x ∈ E : π(x) > 0},

and assume that it is closed in the sense of P (x,E+) = 1 ∀x ∈ E+ and that π(x) is not
a unit mass concentrated on a single point. In practice most often E+ = E, but even if

2A subprobability density is a function g(z) ≥ 0, such that
∫
g(z)dz ≤ 1.
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there would exist points z outside of E+, so that z /∈ E+, in view of∫
E

π(x)P (x,E+)dx =

∫
E+

π(x)dx = 1 (4.19)

set of such points would have measure zero as P (x,E+) = 1 for almost every initial
state X0 = x ∈ E+.

A reversed Markov chain is obtained by letting the time run backwards and studying
the chain in reversed time order. Assume a homogeneous Markov chain has transition
probability p(x, y) and a stationary distribution π.

Then it can be shown, that

P (Xn = xn|Xn+1 = xn+1, Xn+2 = xn+2, . . .) = P (Xn = xn|Xn+1 = xn+1) (4.20)

and hence the time reversed chain also defines a Markov chain.

Its transition probabilities at step n are

p←n (x, y) = P (Xn = y|Xn+1 = x) =

P (Xn+1 = x|Xn = y)P (Xn = y)

P (Xn+1 = x)
=
p(y, x)π(n)(y)

π(n+1)(x)
.

If the reversed chain also has the stationary distribution π(·), as n→ −∞,

p←n (x, y)→ p←(x, y) =
p(y, x)π(y)

π(x)
.

and the chain becomes time-homogeneous [Gamerman and Lopes, 2006].

If the transition probabilities of the reversed chain are the same as in the original chain
p←(x, y) = p(x, y), then

π(x)p(x, y) = π(y)p(y, x), (4.21)

i.e. the rate at which the chain moves from x to y in equilibrium is the same as vice
versa. As Besag puts it: “ . . . if a stationary Markov chain . . . , X−1, X0, X1, . . . satisfies
detailed balance (as in 4.21), then it is time reversible, which means that it is impossible
to tell whether a film of a sample path is being shown forwards or backwards.” [Besag,
2001].
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Definition 4.13. A reversible chain has a probability density λ, such that

λ(x)p(x, y) = λ(y)p(y, x). (4.22)

Remark 4.14. An alternative expression for the reversibility property is to say that the
chain satisfies the detailed balance.

Theorem 4.15. Reversibility of the chain is sufficient (not necessary) property to guar-
antee the existence of the stationary distribution.

Proof. If the reversibility prevails,∫
E

λ(x)P (x,A)dx =

∫
E

λ(x)[

∫
A

p(x, y)dy + r(x)δx(A)]dx = (4.23)∫
A

[

∫
E

λ(x)p(x, y)dx] dy +

∫
A

λ(x)r(x)dx = (4.24)∫
A

[

∫
E

λ(y)p(y, x)dx] dy +

∫
A

λ(x)r(x)dx = (4.25)∫
A

[λ(y)

∫
E

p(y, x)dx] dy +

∫
A

λ(x)r(x)dx = (4.26)∫
A

[λ(y)(1− r(y))] dy +

∫
A

λ(x)r(x)dx =

∫
A

λ(y)dy, (4.27)

then indeed, λ itself is a stationary distribution.

In the Metropolis-Hastings algorithm for simulating from a stationary density π, a
proposal (instrumental) density q(x, y) for moving the chain from one point x in the
state space to another y is needed.

If π and q(x, y) satisfy the detailed balance condition (4.22), fine, we have the stationary
distribution in π. If not, say

π(x)q(x, y) > π(y)q(y, x), (4.28)

which means that the chain traverses from x to y too often (relative to moving in the
opposite direction). Introduce α(x, y), the probability of a move from x to y getting
accepted, as an additional accept-reject step (in this context “rejecting” the proposed
value is regarded as keeping the previously obtained value of the chain also as the new
sampled value),

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x), (4.29)
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and require that the chain always moves from y to x by setting α(y, x) = 1.

Then, choosing

α(x, y) =

min{π(y)q(y,x)
π(x)q(x,y)

, 1}, if π(x) q(x, y) > 0,

1, if π(x) q(x, y) = 0,
if π(x) q(x, y) > 0,

creates a reversible chain with the stationary distribution π, as will be seen below. Note
that the normalizing constant of π(· ) cancels. Also, it is not needed (as e.g. in the
Bayesian setting) for calculating the acceptance probability α(x, y).

The above claimed result follows, as e.g. still assuming (4.28) and recalling

r(y) = 1−
∫
E

q(y, x)α(y, x)dx

would give,

∫
E

π(x)P (x,A)dx =

∫
E

π(x)[

∫
A

q(x, y)

= π(y)q(y,x)
π(x)q(x,y)︷ ︸︸ ︷
α(x, y) dy + r(x)δx(A)]dx =∫

A

[

∫
E

π(y)q(y, x)dx]dy +

∫
A

π(x)r(x)dx =

∫
A

π(y)[

∫
E

q(y, x)

= 1︷ ︸︸ ︷
α(y, x) dx]dy +

∫
A

π(x)r(x)dx =∫
A

π(y)[1− r(y)]dy +

∫
A

π(x)r(x)dx =∫
A

π(y)dy.

The transition kernel of the MH-chain, reversible by construction, can hence be ex-
pressed as

PMH(x, dy) = q(x, y)α(x, y)dy + (1−
∫
E

q(x, y)α(x, y)dy)δx(dy). (4.30)

At the time of the generalization of the Metropolis method [Hastings, 1970], there was
an alternative sampling scheme by [Barker, 1965].
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Namely, if s(x, y) = s(y, x) is any symmetric function, then setting

α(x, y) =
s(x, y)

1 + π(x)q(x,y)
π(y)q(y,x)

(4.31)

works in getting the reversibility condition (4.29) fulfilled. Barker advocated the choice
s(x, y) ≡ 1. It was only shown by Hastings’ student Peskun [P.H.Peskun, 1973], that
the choice (4.30) is optimal in terms of reducing the autocorrelation of the chain.

Algorithmically speaking, the Metropolis-Hastings algorithm consists of the steps

1. Generate stochastic variables Y ∼ q(Xn, y) = q(·|Xn) and U ∼ Unif[0, 1];

2. Accept Xn+1 = Y , if U ≤ α(Xn, Y );

3. Else, keep Xn+1 = Xn;

4. Return the (correlated) sample X0, X1, . . . , Xm.

The construction is analoguous to the Accept-Reject algorithm in chapter 3. In the
MCMC-context “rejecting” just means keeping the previously sampled point.

The MH-algorithm is usually used for parameter estimation. The posterior distribution
π(θ|x) contains all information there is about the parameter(s) θ, given the data x. As
mentioned after (2.10), the sample from the posterior can be considered as a sample
from the real distribution of the parameter. Therefore estimating the parameter, or any
statistics of it, can be performed using this sample.

Most of the estimates are typically integrals of the type (4.8). In the parameter estima-
tion context

E(h(θ)) =

∫
Θ

h(θ)π(θ|x)dθ, (4.32)

different functions h(·) give different estimates of θ, which could be hard or even im-
possible to obtain with other methods. For example, setting h(θ) = θ, gives the mean
estimate of theta.

In the next section we give an example of applying the Gibbs sampler to a problem of
parameter estimation.
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4.2.2 Gibbs sampling

An important special case of the MH-algorithm introduced by [Geman and Geman, 1984]
is called Gibbs sampling. On a Gibbs sampler the coordinates of the sample points in
the Markov Chain are sampled one at a time in turn. This requires all the densities of
the coordinates conditional on all the other coordinates to be derived in advance.

A special feature of Gibbs’ is that there is no accept-reject-step at all. Instead all
proposed points are automatically accepted. The Markov Chain traverses through the
state space with steps parallel to the coordinate axes.

In the seminal papers [E.Gelfand et al., 1990] and [E.Gelfand and F.M.Smith, 1990] the
power of Gibbs sampling was illustrated. It performed the numerical Bayesian inference
with ease on normal data problems with complications in awkward posterior distribu-
tions, distributional complexity introduced by order constraints on model parameters,
dimensionality problems, messy and intractable distribution arising from missing data,
general functions on model parameters and awkward predictive inference. If other so-
lution methods were available at all, they often required sophisticated numerical or
analytic expertise. In fact, these successful results led to Gibbs sampling becoming ex-
tremely popular since the 1990’s for posterior simulation in a wide class of important
problems.

For an example of Gibbs we look at a random effects model [E.Gelfand et al., 1990] where
calculation of the marginal posteriors of variance components had previously proven a
challenging technical problem,

Yij = θi + eij, i = 1, . . . , k, j = 1, . . . . , J. (4.33)

Assume independence thoroughout, and assume

(θi|µ, σ2
θ) ∼ N(µ, σ2

θ) (4.34)

(eij|σ2
e) ∼ N(0, σ2

e). (4.35)

Let θ = (θ1, θ2, . . . , θk), Y = (Y11, . . . , YkJ) and assune that the parameters have priors
µ ∼ N(µ0, σ

2
0)

σ2
θ ∼ IG(a1, b1)

σ2
e ∼ IG(a2, b2).

(4.36)
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where IG denotes the inverse gamma distribution and all hyperparameters µ0, σ0, a1, b1, a2

and b2 are assumed to be known.

Then, the conditional distributions
(µ|Y, θ, σ2

θ , σ
2
e) ∼ N(

σ2
θµ0+σ2

θ

∑
θi

σ2
θ+kσ2

θ
,

σ2
θσ

2
θ

σ2
θ+kσ2

θ
)

(σ2
θ |Y, µ, θ, σ2

e) ∼ IG(a1 + 1
2
k, b1 + 1

2

∑
i(θi − µ)2)

(σ2
e |Y, µ, θ, σ2

θ) ∼ IG(a2 + 1
2
kJ, b1 + 1

2

∑
i

∑
j(Yij − θi)2)

(θ|Y, µ, σ2
θ , σ

2
e) ∼ N(

Jσ2
θ

Jσ2
θ+σ2

e
Ȳ + σ2

e

Jσ2
θ+σ2

e
µ1̄,

σ2
θσ

2
e

Jσ2
θ+σ2

e
I),

(4.37)

where Ȳ = (Ȳ1, . . . , Ȳk), Ȳi =
∑

j Yij/J, 1̄ is a k × 1 comlumn vector of 1′s and I is a
k × k identity matrix, specify a Gibbs sampler for estimating the hyperparameters.

In (4.37) ai or bi can be set equal to 0 to represent improper3 priors.

While performing the Gibbs sampling, the calculated quantities will be exploited to the
maximum extent, which makes the updating scheme in this case look like

µ(i+1) = (µ|Y, θ(i), σ2
θ

(i)
, σ2

e
(i)

)

σ2
θ

(i+1)
= (σ2

θ |Y, µ(i+1), θ(i), σ2
e

(i)
)

σ2
e

(i+1)
= (σ2

e |Y, µ(i+1), θ(i), σ2
θ

(i+1)
)

θ(i+1) = (θ|Y, µ(i+1), σ2
θ

(i+1)
, σ2

e
(i+1)

).

(4.38)

While the original tailored analyses of this problem had suffered from “badly behaving”
data with extreme posteriori skewness and standard ANOVA-methods resulting in a
negative variance estimate of σ2

θ , rendering inference of it difficult, the Gibbs sampling
was easy to implement and solved the problem with ease. Also, when shifting the
inferential interest e.g. from σ2

θ and σ2
e to σ2

θ

σ2
e
or σ2

θ

σ2
θ+σ2

e
some of the other methods

required substantial effort or even beginning the analysis anew while the sample-based
Gibbs accomplished the shift of focus with essentially no further computational effort.
See [E.Gelfand et al., 1990] for the details.

Large part of the popularity of Gibbs’ sampling lends itself to the fact that in such
hierarchical models it is often possible to express the conditional densities with well-
known distributions, leading to efficient random variable generation. If this is not the
case, other MCMC-methods, such as the MH-algorithm may be more appropriate for
use.

3in many cases the sum or integral of an prior distribution need not even be finite, yet it can give
sensible posteriori probabilities. This is called an improper prior.
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There is a Windows-software called WinBUGS free of charge,
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml, for the task of Gibbs
sampling.

A good introduction on Gibbs can be found in [Casella and I.George, 1992]. We will in
the sequel only focus on the MH-sampling.

4.2.3 Convergence Diagnostics

While the convergence of the MCMC-chain usually is expected, verifying it in practice
could be easier said than done.

An important result from Tierney says:

Theorem 4.16. [Tierney, 1994] An irreducible Markov chain P with stationary distri-
bution π, such that

πP = π

is positive recurrent and the unique stationary distribution of P is π. If P is also
aperiodic, then the convergence result

δ(P n(x0, ·), π)
def
= sup

B∈F
|P n(x0, B)− π(B)| → 0, (4.39)

for the total variation distance δ holds. Here B is any Borel set in filtration F of the
probability space for π−almost all x0. If P is Harris recurrent4, then the convergence
holds for all starting points x0.

The sample obtained from a MH-simulation is usually not independent, but the succes-
sively accepted sample points from the Markov-chain are autocorrelated. The effect of
this can be reduced by thinning i.e. subsampling from the chain. Theoretical consider-
ations such as the strong law of large numbers and central limit theorem guarantee the
ergodicity and convergence when sampled to infinity, but an annoying practical problem
is to decide how large a finite sample of points is large enough for a reasonably reliable
estimation of the desired quantities. The same goes for deciding the length of the initial
burn-in period: how many iterations are needed before the chain can be considered
having stabilized itself well enough in order to commence sampling “for real”?

4A chain is Harris recurrent, if for each Borel set B with π(B) > 0 :
P (Xn ∈ B i.o.) = 1 ∀x0, where Xn = Pn(x0, B). Harris recurrency essentially eliminates any
measure-theoretic pathologies.

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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Assuring convergence requires performing some statistical analysis. When analyzing a
sampler, there are two aspects to consider [Castelloe and Zimmerman, 2002]:

• Are the sample points generated coming from the correct distribution?

• Has the entire parameter space been traversed?

A generally accepted strategy has been to run several chains from overdispersed starting
values. If at some point the samples seem to have been generated approximately from the
same distribution, then this distribution would be accepted as the presumably correct
one. This assumption is of course justified for a properly designed Markov chain. If the
starting values have been properly overdispersed, then it is also likely that the parameter
space has become thoroughly traversed as well.

A review of the practical implementation of 13 convergence analysis methods is given
in [Cowles and Carlin, 1996]. The mathematics of such methods is studied in [Brooks
and Roberts, 1998]. A key thing to remember, as with all statistical procedures, is that
any method cannot give a guarantee for successfully having diagnosed convergence. If
in particular the chain mixes slowly the diagnostics are very likely to be unreliable since
all convergence conclusions would be based on only a small region of the state space
having been examined. Therefore it is always strongly recommendable to try to confirm
oneself of the convergence by using additional methods for different diagnostics.

Multiple simulated sequences starting from an overdispersed estimate of the target dis-
tribution are used in [Gelman and Rubin, 1992] and the analysis resembles the regular
ANOVA. At convergence the chain should originate from the same distribution. Conver-
gence is assessed by using a conservative Student t− distribution with a scale parameter
containing both the between-chain (B) and within-chain (W ) variances and then ob-
serving the factor by which the scale parameter shrinks [Cowles and Carlin, 1996],√

(
n− 1

n
+
m+ 1

mn

B

W
)

df

df − 2
, (4.40)

if sampling would be continued infinitely. Here m is number of parallel chains, n is
number of iterations (of last 2n) and df is the degrees of freedom of the t-distribution.
Slowly mixing samples will initially have much larger B than W since the starting
points are overdispersed relative to the target density. Gelman and Rubin base their
convergence criteria on monitoring when the shrink factor has come close to 1.
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Another method based on spectral analysis is the one of Geweke’s [Geweke, 1991]. If
the mean of some function g of parameter θ is estimated after each Gibbs iteration (as
usual) with

E[g(θ)] = ḡn =
1

n

n∑
i=1

g(θ(i))

and the spectral density Sg(ω) exists with no discontinuities at zero, then the asymptotic
variance is 1

n
Sg(0). Geweke monitors ḡ(θ(i))An based on the first nA and ḡ(θ(i))Bn based

on the last nB iterations and if for example nA
n

= 0.1 and nB
n

= 0.5, then

(ḡAn − ḡBn )/(
1

nA
Sg(0)A +

1

nB
Sg(0)B)

should follow the standard normal distribution according to the central limit theorem.

For still 11 more alternatives of convergence diagnostics the interested reader is referred
to [Cowles and Carlin, 1996] and the references therein.

4.2.4 Mixing and Adapting Proposals

Another potential problem related to convergence speed for a successful MCMC simu-
lation might be caused by a lack of the chain to mix well. Mixing of the chain means
the ability for it to explore the actual state space rapidly enough to produce meaningful
results. If the posterior density function has a lot of multimodality, lack of effective
mixing may become a real problem (see figure (4.2)) especially in a higher dimensional
space. The chain must be able to jump efficiently out from areas close to local maxima
of probability mass [O.Talton et al., 2011].

Adapting the proposal distribution to produce well-mixing proposal points relative to
the target distribution is an art in itself. In [S.P. Brooks and Roberts, 2003] the au-
thors study finding good proposals in the even more challenging reversible jump setting,
where the connection between the different submodel spaces may lack obvious geometric
intuitive relation such as Euclidian structure.

A robust method for creating a MCMC-sampler is the random walk MH. The new pro-
posed steps can be drawn e.g. from a normal distribution and the acceptance procedure
performed according to (5.11). For achieving a good mixing it is essential that the pro-
posal step length agrees well with the shape and dimensionality of the target distribution
(see figures 4.1 and 4.2 for what can go wrong even in the simplest setting and with
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multimodality). The random walk MCMC usually works and is easy to implement, but
the convergence can be very slow with increasing complexity of the target distribution.

There are many variants where information on target derivatives is taken into account
with harder-to-implement sampler and much faster convergence. [S.P. Brooks and
Roberts, 2003] provides an analysis of Taylor-expanding the acceptance probabilities
around certain canonical jumps, which turns out to have close connections to Langevin
algorithms. Langevin algorithms use gradient information about the target distribution
in proposing candidate moves which are more likely to be accepted. Such a more so-
phisticated approach allowing more ambitious moves to be proposed and accepted can
improve the efficiency of the algorithm drastically.

4.2.5 Historical Background and Simulated Annealing

One heuristics to try and obtain better mixing is related to simulated annealing and
called simulated tempering [E.Marinari and G.Parisi, 1992]. The idea is to use the
temperature as a dynamic variable and flatten (“melt“) the high peaks of probability
mass in the density by first “warming up” the system and then carefully annealing until
the system “freezes”, while always keeping it in an energy equilibrium. Since the gross
features of the eventual state of the system appear in higher temperatures and fine details
develop in lower temperatures, the result will be kind of an adaptive divide-and-conquer
algorithm.

The original implementation in [N.Metropolis et al., 1953] was in a setting of statistical
physics and involved simulating N particles on a square of R2 in a periodic structure
by calculating energy integrals such as

I =

∫
F (θ) exp(−E(θ)

kT
) dθ�

∫
exp(−E(θ)

kT
) dθ, (4.41)

where θ represents the state of the particles, T is the temperature, k is the Boltzmann
constant,

E =
1

2

N∑
i=1

N∑
j=1
j 6=i

V (dij) (4.42)

is the potential energy for a potential function V and the weighting distribution exp(−E(θ)
kT

)

is the Boltzmann distribution. The numerical difficulty caused by exp(−E(θ)
kT

) being very
small for most particle configurations was solved by a random walk modification of the
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earlier Monte Carlo- method. The particle coordinates were uniformly perturbed, en-
ergy difference ∆E between old and new configuration calculated and the new state was
accepted, if it was on a higher level of energy. If it was on a lower level, then it would
get accepted only with probability exp(−∆E

kT
).

The given temperature parameter T can be modified to let the system anneal to the
desired distribution. By “heating” the system up, the local maxima in probability density
flatten out and the chain may proceed easier from one part of the space (energy well)
to another. Then one can let the effective temperature carefully to “cool down“, while
preserving the ”thermal energy equilibrium“.

Since there is a strong analogy to the crystallization of annealing material, this variation
of the MH-algorithm is called the simulated annealing. Using a cost function in place
of energy and defining configurations by the set of parameters it is straightforward to
apply the MH-procedure to combinatorial optimization problems [S.Kirkpatrick and
M.P.Vecchi, 1983].

In more concrete terms, if an objective function f(θ) is to be minimized over a parameter
vector θ ∈ Θ, the corresponding Bolzmann distribution admits a density

bT ∝ exp(−f(θ)/T ). (4.43)

Then the usual MH-procedure can be run for an initial temperature T0 until an equilib-
rium state has been reached. After that one can lower the temperature and repeat the
MH, until some stopping criteria has been met. The final configuration will approximate
the minimum of f(θ) [S.P. Brooks and R.King, 2003].
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Figure 4.1: Three MCMC-chains for simulating the standard normal N(0, 1)− dis-
tribution from initial value X = 5.0 with the plain random walk MCMC. The proposal
distributions centered at the present sample point are also normal, but with variances
σ2

1 = 0.01, σ2
2 = 0.25 and σ2

3 = 600. Hence the first chain X1 takes too small steps
and practically every step gets accepted. The last chain X3 attempts to jump too far
away and consequently extremely few steps become accepted whence convergence is
being very slow. The chain in the middle X2 with appropriate proposal step lengths

relative to the target distribution is mixing well.
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Figure 4.2: Additional problems in tuning the chain are caused by possible multi-
modality. In these pictures the target distribution is the normal mixture 0.3N(1, 0.5)+
0.7N(5, 0.3) and we are still simulating from initial value X = 5.0 with the plain ran-
dom walk MCMC. The proposal distributions centered at the present sample point
are normal, with variances σ2

1 = 0.01, σ2
2 = 0.95 and σ2

3 = 1100. The first chain X1
takes too small steps and has not yet found its way to the other mode at all in 50000
simulations. The last chain X3 attempts steps much too far away and the convergence
is being very slow. The chain in the middle X2 with appropriate proposal step lengths

is mixing relatively well.



Chapter 5

The Reversible Jump MCMC

“The number of things you don’t know is one of the things you don’t know.”
–Peter J. Green

5.1 General Reversible Jump Theory

The celebrated paper [Green, 1995] of Peter Green’s extends the MH-algorithm from
model parameter fitting into a model choosing methodology. The setup of the Reversible
Jump Markov Chain Monte Carlo (RJMCMC) is ideally suited for comparing different
dimensional parametric models for the data.

In the reversible jump implementation the dimension of the parameter space is allowed to
vary. Jumps between different models from one subspace to another are made possible
as MH-moves. Hence the number of parameters in the model becomes a subject of
inference itself. The posteori probabilities of the concurring submodels can be simply
estimated by running the RJMCMC-simulation and checking what proportion of time
the chain spends in each different submodel.

While the other model selection methodologies, such as the many different information
criteria [Akaike, 1974, Schwarz, 1978, Takeuchi, 1976, N.Murata et al., 1978, J.Spiegelhalter
et al., 2002], only choose the most appropriate submodel usually in view of maximized
likelihood and minimized number of model parameters, the RJMCMC is able to output
directly the a posteriori probabilities of the submodels and the a posteriori distributions
of the parameters in the submodels.

29
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The main technical difficulty of jumping between the models is finding a bijective diffeo-
morphism1 and attaining the detailed balance between model spaces of possibly different
dimensions. To accomplish this, either the spaces can be augmented into a larger-
dimensional space, or continuous random variable vectors can be generated to fill in the
missing dimensions.

Let us index the model space M =
⋃
Mk with k. In practice it may often be hard

to find “natural” proposal moves between two different subspaces. Let us denote the
nk−dimensional (k = 1, 2) model parameter vectors with θ(k) and continuous
mk−dimensional stochastic variable vectors with u(k). A bijection is needed between the
two vectors M1 : (θ(1), u(1)) and M2 : (θ(2), u(2)).

Obviously, the dimension matching requirement

n1 +m1 = n2 +m2 (5.1)

needs to get fulfilled.

In practical implementations (assuming for the moment n1 < n2) the simplification
m2 = 0 can often be employed. If the chain happens to be in state (1, θ(1)), in order to
jump from M1 to M2 we need to generate a stochastic vector u(1) of dimension m1 and
establish a function g : Rn1 × Rm1 → Rn2 such that θ(2) = g(θ(1), u(1)). For the inverse
jump back from M2 to M1 we only need to find the deterministic inverse move function
h(·) = g−1(·) for solving θ(1) = h(θ(2)).

From now on we denote the submodel Mk or the corresponding state of the Markov
chain with (k, θ(k)).

Example In spite of the notation getting slightly awkward, we use the letter η for more
concrete parameter values. Let us say for simplicity that there are only two submodels
of dimensions one and two: M1 : (1, θ(1)) = (1, η) and M2 : (2, θ(2)) = (2, (η1, η2)). To
make the jump M1 →M2 we could for example draw a stochastic variable u and setη1 = η − u

η2 = η + u.
(5.2)

1A diffeomorphism is a bijective differentiable mapping from a manifold to another such that the
inverse mapping is differentiable as well. Of course, this requires that the two manifolds are of co-
inciding dimensions.
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In order to make the jump back M2 →M1 there is no need for randomness, just solve

η =
1

2
(η1 + η2). (5.3)

Thus the missing dimensions were filled in with random elements as the reversible jump
mapping was applied when going into the higher dimension and a plain deterministic
function worked fine as the inverse move when returning back to the lower dimension. A
thing to remember in designing the jump-reverse jump- pair to be consistent, is that the
proposal probability must have a density with respect to a singular measure in <× <2

placing all probability mass on {(η, η1, η2) : η = 1
2
(η1 + η2)} instead of a Lebesgue

measure on <3.

However, since a probability transformation is being made while jumping, the usual
Jacobian factor, e.g.

J =

∣∣∣∣∂(θ(2), u(2))

∂(θ(1), u(1))

∣∣∣∣ m2=0
=

∣∣∣∣ ∂(θ(2))

∂(θ(1), u(1))

∣∣∣∣ (5.4)

becomes necessary as a factor in the expression for the MH-move acceptance probability.

Letting the chain jump between the different submodels improves the mixing properties
of it.

At each state, all kind of moves are not necessarily available and available moves are
assumed to exist in such invertible pairs where the detailed balance conditions are
accomplished. For example, if a “birth“- move creates a new object in the state space
that sends the chain into a higher dimensional space, there needs to exist an opposite,
corresponding ”death”- move to balance it out.

A RJMCMC-chain can evolve in two different ways: either the chain undergoes a normal
MCMC-move in the present submodel space or it can make a jump move into another
subspace with a differing dimension. Thus the reversible jumping can be seen as a
natural extension of the MH-algorithm but the jump moves are really still MH-moves.
As discussed, jumping requires two things. The Jacobian factor J of the probability
transformation in the expression for move acceptance probability needs to be taken into
account. Also, the jump moves must appear in appropriate pairs in order to preserve
the detailed balance.

We index the set of all available moves (including the move which preserves the present
submodel) with m. Let qm(x, dx′) be a sub-probability measure for a move of type
m to take the chain from a current state x to dx′. Also,

∑
m qm(x,M) ≤ 1 and 1 −
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∑
m qm(x,M) is the probability that no change to the present state is proposed. The

probability of acceptance for this move is denoted αm(x, x′).

The transition kernel describing the probability for the chain to move from point x into
a Borel set B is

P (x,B) =
∑
m

∫
B

qm(x, dx′)αm(x, x′) + s(x)I(x ∈ B), (5.5)

where I(·) is the indicator function and

s(x) =
∑
m

∫
M

qm(x, dx′)[1− αm(x, x′)] + 1−
∑
m

qm(x,M) (5.6)

is the probability of not moving from x, either due to a proposed move not being accepted
or due to no move being proposed in the first place. This generalizes (4.17) by including
the effect of jump moves.

Then the detailed balance equation for a move between two Borel sets A ∈ M and
B ∈M ∑

m

∫
A

π(dx)

∫
B

qm(x, dx′)αm(x, x′) +

∫
A∩B

π(dx)s(x) = (5.7)

∑
m

∫
B

π(dx′)

∫
A

qm(x′, dx)αm(x′, x) +

∫
B∩A

π(dx′)s(x′). (5.8)

Since the “no move”- integrals cancel, the condition∫
A

π(dx)

∫
B

qm(x, dx′)αm(x, x′) =

∫
B

π(dx′)

∫
A

qm(x′, dx)αm(x′, x) ∀m,A,B, (5.9)

sufficiently guarantees the detailed balance.

If π(dx)qm(x, dx′) has a finite density fm(x, x′) with respect to a symmetric measure ξ
on M ×M, then∫

A

π(dx)

∫
B

qm(x, dx′)αm(x, x′) =

∫
A

∫
B

ξ(dx, dx′)fm(x, x′)αm(x, x′) =∫
B

∫
A

ξ(dx′, dx)fm(x′, x)αm(x′, x) =

∫
B

π(dx′)

∫
A

qm(x′, dx)αm(x′, x)

holds provided that

αm(x, x′)fm(x, x′) = αm(x′, x)fm(x′, x). (5.10)
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Making the acceptance probability as large as possible (in the very same manner as
within the plain MH-chain (4.30)), while still retaining the detailed balance

αm(x, x′) = min{1, f(x′, x)

f(x, x′)
} := min{1, A}, (5.11)

reduces the autocorrelation of the realized chain as the results of [P.H.Peskun, 1973]
show.

Remark 5.1. If the acceptance probability for a certain jump move is

α(x, x′) = min{1, A},

then the acceptance probability for the opposing move retaining the detailed balance
will be

α(x′, x) = min{1, 1

A
}. (5.12)

For a concrete formula of the acceptance probability between to different models consider
just two subspaces C1 = {1} × < and C2 = {2} × <2 of the whole space C = C1 ∪ C2

and a move of type qm that always shifts the subspace.

If A ⊂ C1 and B ⊂ C2, set

ξ(A×B) = ξ(B × A) = (5.13)

λ{(θ(1), u1) : θ(1) ∈ A, θ(2)(θ(1), u1) = g(θ(1), u1) ∈ B} (5.14)

where λ is (n1 +m1)−dimensional Lebesgue measure. To obtain the required symmetric
measure for any Borel sets A,B ⊂ C, put

ξ(A×B) = ξ{(A× C1)× (B × C2)}+ ξ{(A× C2)× (B × C1)}. (5.15)

The context may suggest that a move from model two, M2 : (2, (θ1, θ2)) into model
one, M1 : (1, θ) with θ = 1

2
(θ1 + θ2) might be a good idea. Then the equilibrium joint

proposal probability ∫
B

π(dx)

∫
A

qm(x, dx′)

must have a density with respect to a singular probability measure with all its probability
mass concentrated on the set {(η, η1, η2) : η = 1

2
(η1 + η2)}.
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Assume that the parameters θ(1) = η and θ(2) = (η1, η2) have proper densities p(1, θ(1))

in <n1 = < and p(2, θ(2)) in <n2 = <2. The probability of choosing a move to the other
subspace is denoted by j(·) and the densities of random vectors u by q(·).

For points x = (1, θ(1)) ∈ C1, x′ = (2, θ(2)) ∈ C2 and data y set

f(x, x′) = p(1, θ(1)|y)j(1, θ(1))q1(u(1)) (5.16)

and
f(x′, x) = p(2, θ(2)|y)j(2, θ(2))q2(u(2))

∣∣∣∣∂(θ(2), u(2))

∂(θ(1), u(1))

∣∣∣∣ . (5.17)

Then f(x, x′) is the density with respect to ξ of the equilibrium joint proposal distribu-
tion π(dx)q(x, dx′).

The acceptance probability (5.11) for a move from x = (1, θ(1)) to
x = (2, θ(2)) is given by

αm = min{1, p(2, θ
(2)|y)j(2, θ(2))q2(u(2))

p(1, θ(1)|y)j(1, θ(1))q1(u(1))

∣∣∣∣∂(θ(2), u(2))

∂(θ(1), u(1))

∣∣∣∣} (5.18)

and if we set m2 = 0,

αm = min{1, p(2, θ(2)|y)j(2, θ(2))

p(1, θ(1)|y)j(1, θ(1))q1(u(1))

∣∣∣∣ ∂(θ(2))

∂(θ(1), u(1))

∣∣∣∣}. (5.19)

5.1.1 Convergence Diagnostics in RJ

While diagnosing the convergence of a fixed-dimensional Markov chain is a hard problem,
as discussed in chapter 4, only more complications are to be expected when one begins
jumping between submodels.

Reversible jumping, that involves changing the dimension of the parameter space from
one dimension to another, does certainly not make diagnosing the accomplished conver-
gence to the stationary distribution any easier. However, Peter Green says: “The degree
of confidence that convergence has been achieved provided by ’passing’ a diagnostic con-
vergence test declines very rapidly as the dimension of the state space increases. In a
more than, say, a dozen dimensions, it is difficult to believe that a few, even well-chosen,
scalar statistics give an adequate picture of convergence of the multivariate distribution.
It is high, rather than variable, dimensions that are the problem” [Green, 2001].
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Few diagnostics methods for reversible jumping are available. Castelloe and Zimmer-
mann
[Castelloe and Zimmerman, 2002] provide a method by extending the method of [Gel-
man and Rubin, 1992] into the reversible jumping (to encompass all model/ parameter
spaces) and multivariate setup (to monitor several parameters simultaneously) for doing
this. Their method detects

1. variation between chains (like in the Gelman Rubin diagnostic: non-homogeneous
variation across the chains)

2. interaction between models and chains (between-model variation different from
chain to chain)

3. significant differences in the frequencies of changing model (jumping)

The somewhat technical details are left out to be found in the original paper.

Also in [S.A.Sisson and Y.Fan, 2007] the convergence of a trans-dimensional (reversible
jump) chain is examined by a distance-based method.

5.2 Coal Mining Disasters

A Poisson counting process data is well suited material to be modeled with the RJMCMC-
algorithm. In the following example we model the arrival rate of coal mine accidents
with a piecewise constant step function, where the number of change points is a priori
unknown.

The number of days between 191 explosive coal mine accidents in Great Britain resulting
in 10 or more casualties recorded during 112 years (15 March 1851 -22 March 1962) are
given in the data corrected from the original [B.A.Maguire and A.H.A.Wynn, 1952] by
[R.G.Jarrett, 1979]. Later it was noticed that the early year of 1851 and rest of 1962
were free from accidents
[A.E.Raftery and V.E.Akman, 1986] and two points were added to the data set. The
data set “coal“ is available free of charge (in a slightly different format: accident times
are given as decimal numbers representing years) in library “boot“ on software R [version
3.0.1 (2013-05-16) [Core Team, 2013]].
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Following [Green, 1995] and also trying to fill in some more details, we model the rate
of accidents as a Poisson process with a piecewise constant intensity function. In other
words, the accident rate is assumed to be a step function with k change points and k+1

Poisson intensity values in time interval t ∈ [0, L = 40907] (days). The dimensional
parameter k is a priori unknown, hence also subject to inference. In Green’s words:
“The number of the things you don’t know is one of the things you don’t know.”

In (figure 5.1) the occurrence of accidents has been presented in different ways: as a
jitter plot, by count and by rate.

The rate points have been estimated from averages of 14 successive data points for the
visual presentation only, not out of the necessity from the RJMCMC-sampler.

Definition 5.2. The counting process N(t) with intensity λ(t) > 0, (t > 0) is called a
non-homogeneous Poisson process if

• N(0) = 0

• {N(t)}t≥0 has independent increments

• P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h)

• P (N(t+ h)−N(t) > 1) = o(h).

Define the cumulative event rate of the process in interval [t, t+ s) as

Λ(t, s) =

∫ t+s

t

λ(u) du.

Then

P (N(t+ s)−N(t) = k) = exp(−Λ(t, s))
Λ(t, s)k

k!
, k = 0, 1, 2, . . . (5.20)

If an event happens at time t and τt is the waiting time for the next event, then the
cumulative distribution function for τt is

Ft(x) = P (τt ≤ x) = 1− P (τt > x) = (5.21)

1− P (N(t+ x)−N(t) = 0) = (5.22)

1− exp(−
∫ t+x

t

λ(u) du) = 1− exp(−Λ(t, t+ x)). (5.23)
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Figure 5.1: Fatal coal mine accidents in the UK during years 1851-1962.
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The density function for the waiting time will be

ft(x) =
dFt(x)

dx
= λ(t+ x) exp(−

∫ t+x

t

λ(u) du). (5.24)

Considering the joint density for observing data D = {y1, y2, . . . , yn} in the interval
[0, L],

f(y1, . . . , yn) = f0(y1)fy1(y2 − y1) · . . . · fyn−1(yn − yn−1)[1− Fyn(L− yn)] (5.25)

gives the likelihood for observing times y1, . . . , yn with intensity λ(·) as

L(y1, . . . , yn|λ(·)) =
n∏
k=1

λ(yk) exp(−
∫ L

0

λ(ξ) dξ). (5.26)

Hence the log-likelihood (in a constant dimension k) will become

n∑
i=1

log(λ(yi))−
∫ L

0

λ(ξ)dξ. (5.27)

By (5.20)

P (N(L) = n) =
Λ(0, L)n

n!
exp(−Λ(0, L)). (5.28)

If the joint density is conditioned on N(L) = n, the conditioned density is

fn(y1, . . . , yn) = f(y1, . . . , yn|N(L) = n) = (5.29)
f(y1, . . . , yn)

P (N(T ) = n)
=

n!

Λ(0, L)n

n∏
i=1

λ(yi), (5.30)

which is the same expression as one gets for the order statistics of n event points with
intensity λ(·) distributed in the interval [0, L].

If there is no accident in a short interval [yj−1, yj), there is practically no penalty in the
RJMCMC-algorithm for adding change points in the step function model of λ(·) in the
interval. This does not really reflect the behaviour of data and, to avoid this unrealistic
behaviour, we set a penalty for entering into a higher dimension by dividing with factor
n! in the likelihood expression (5.26). Consequently, the log-likelihood to be used in the
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R-program [Core Team, 2013] implementation will look like

n∑
i=1

log(λ(yi))−
∫ L

0

λ(ξ)dξ −
n∑
j=1

j. (5.31)

This should be reasonable since the likelihoods in differing dimensions cannot be directly
comparable to each other. Also, the idea of giving penalty for higher number of model
parameters is in full agreement with different information criteria (such as Akaike’s AIC
[Akaike, 1974]).

Green only gives the log-likelihood (5.27), and does not comment on comparing likeli-
hoods between different dimensions k. However, the last term in (5.31) was essential in
making the R-program run smoothly also while reversible jumping.

In calculating the a priori likelihood it is assumed that the number of steps in the
step function describing λ(t) is Poisson distributed with µ = 3.0. Step function heights
are gamma distributed with parameters α = 1 and β = 200. Hence the prior density
function for the step height becomes

f(h) =
βα

Γ(α)
hα−1 exp(−βh). (5.32)

The step positions could be assumed to be uniformly distributed, a priori. However, in
order to avoid too short intervals possibly containing no accident data and hence not
really supporting the model a posteori, the k actual points are chosen as the ones with
an even index from the order statistics of (2k + 1) uniformly distributed points in the
interval [0, L]. As Green points out, this has the effect of probabilistically spacing out
the step positions.

The likelihood for step point positions thus becomes

(1 + 2k)!

L1+2k

k+1∏
j=1

(sj − sj−1)1{0=s0<s1<s2<...<sk<sk+1=L}, (5.33)

here 1 is the indicator function taking care of the change point ordering.
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5.2.1 Implementation

In the sampling there are four different types of proposed moves available (figure 5.2).
The step function can be altered in four different ways. First the height in one interval
can be adjusted (H). Secondly the position of a change point can be shifted along the
time axis (P). These moves do not influence the number of change points - the dimension
of the model. The simplest approach is to restrict oneself to H- and P-moves only in a
fixed dimension k. The result of this will be a regular MCMC-sampler without reversible
jumping.

The two other types of moves, the birth- and death-moves, to be denoted by the present
number of change points, change the number of change points into the adjacent di-
mension: a birth-move introduces a new change point and the dimension increases by
one while a death move has the opposite effect by removing a change point and the
dimension gets reduced by one.

The countable set {H,P, 0, 1, 2, . . .} denotes change of height or position move or a
birth-death move pair between dimensions m ↔ (m + 1). At each step from state k
with k change points, one of the (at most) four available moves (H,P, k, k − 1) repre-
senting height or position change, birth or death move is attempted with corresponding
probability ηk, πk, bk, dk. Of course, bkmax = 0 if an upper limit kmax to the number of
steps is to be preassigned, d0 = π0 = 0 and also ηk + πk + bk + dk = 1. If k 6= 0, then set
ηk = πk.

The probabilities of birth and death are chosen from

bk = cmin[1,
p(k + 1)

p(k)
] and dk+1 = cmin[1,

p(k)

p(k + 1)
] (5.34)

with c as large as possible, subject to bk + dk 6 0.9 for k = 0, . . . , kmax.

Since the a priori model dimension is assumed to be Poisson distributed,

p(k) = exp(−µ)
µk

k!
, (5.35)

the ratios in birth and death probabilities bk, dk simplify to

p(k + 1)

p(k)
=

µ

k + 1
and

p(k − 1)

p(k)
=
k

µ
. (5.36)
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These conditions for the probabilities should guarantee quite good an interdimensional
mixing. Recall that even though the condition bk + dk 6 0.9 causes a lot of attempts
for a dimension change (Table 5.1), quite few of them will actually succeed in view of
getting rejected in the subsequent MH-step.

Table 5.1: Height, position, birth and death move probabilities.

k 0 1 2 3 4 5 6 7 8 9 10

ηk 0.486 0.157 0.0714 0.05 0.0886 0.114 0.133 0.146 0.157 0.166 0.173
πk 0 0.157 0.0714 0.05 0.0886 0.114 0.133 0.146 0.157 0.166 0.173
bk 0.514 0.514 0.514 0.386 0.309 0.257 0.220 0.193 0.171 0.154 0.140
dk 0 0.171 0.343 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.514

bk + dk 0.514 0.686 0.857 0.9 0.823 0.771 0.735 0.707 0.686 0.669 0.655

5.2.1.1 Height Step

First an interval of the existing k+ 1 heights is chosen at random. Then the new height
h
′
j is chosen so that log(

h
′
j

hj
) = u ∼ Unif (−1

2
, 1

2
), or

h
′

j = hj exp(u) ≈ hj × [0.61; 1.65], (5.37)

the bracket notation representing the interval of the random number exp(u). The ac-
ceptance probability for a height move becomes

αheight = min[1,
p(y1, y2, . . . , yk|λ

′
)

p(y1, y2, . . . , yk|λ)

h
′
j

hj
exp(−β(h

′

j − hj)], (5.38)

where the first factor within the expression is the likelihood ratio of the data for the
models with proposed new (λ

′
(·)) and current (λ(·)) values of all parameters. The rest

of the expression is the ratio of gamma-priors (5.32). The first factor is also the Bayes
factor for one model relative to the other.

5.2.1.2 Position Step

A position move changes the location of a change point uniformly between the two
neighbouring change points:

s? = u ∼ Unif(sj−1, sj+1), (j = 1, . . . , k). (5.39)
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This influences both terms in the posteori log-likelihood (5.27). The number of accidents
and the area in the integral need to be adjusted corresponding to the possible new
location of the change point.

The acceptance probability for a position move due to the change of posteori likelihood
becomes

αposition = min[1,
p(y1, y2, . . . , yk|λ

′
)

p(y1, y2, . . . , yk|λ)

(sj+1 − s?)(s? − sj−1)

(sj+1 − sj)(sj − sj−1)
]. (5.40)

The first factor is the likelihood ratio with proposed and old models, the rest comes
from the prior ratio (5.33).

5.2.1.3 Birth Step

The joint distribution of (k, λ(k), y) can be factorized naturally into the product of model
probability, prior and likelihood:

p(k, λ(k), y) = p(k)p(λ(k)|k)p(y|k, λ(k)). (5.41)

Since the prior model dimension is Poisson distributed,

p(k) =
µk

k!
exp (−µ), (5.42)

the prior likelihood for a particular step function becomes

µk

k!
exp (−µ)

(1 + 2k)!

L1+2k

k+1∏
j=1

(sj − sj−1)
βα

Γ(α)
hα−1 exp(−βh). (5.43)

The likelihood (5.43) consists of dimensional, positional and height likelihood factors
corresponding to the model probability and prior in (5.41).

Here, using Bayesian calculus,

p(λ|y1, y2, . . . , yk) =
p(y1, y2, . . . , yk|λ)p(λ)

p(y1, y2, . . . , yk)
(5.44)

and consequently

p(λ′|y1, y2, . . . , yk)

p(λ|y1, y2, . . . , yk)
=
p(y1, y2, . . . , yk|λ′)
p(y1, y2, . . . , yk|λ)

p(λ′)

p(λ)
, (5.45)
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it is helpful to re-write the birth move acceptance probability (5.19) as

αbirth = min {1, (likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian)}.
(5.46)

If a birth step gets chosen, and a new step change point s? ∈ (sj, sj+1) is generated from
s? = u1 ∈ Unif(sj, sj+1), with new heights h′j and h

′
j+1 not completely discarding the

old height hj such that the weighted geometric average

(h
′

j)
s?−sj(h

′

j+1)sj+1−s? = hj
sj+1−sj (5.47)

is preserved within the perturbation

h
′
j+1

h
′
j

=
1− u2

u2

, (where u2 ∈ Unif(0, 1)), (5.48)

then the prior likelihood ratio of the new and old model becomes

p(λ′)

p(λ)
=
p(k + 1)

p(k)

(2k + 2)(2k + 3)

L2

(sj+1 − s?)(s? − sj)
sj+1 − sj

f(h
′
j)f(h

′
j+1)

f(hj)
=

2µ(2k + 3)

L2

(sj+1 − s?)(s? − sj)
sj+1 − sj

βα

Γ(α)
(
h
′
jh
′
j+1

hj
)α−1 exp(−β(h

′

j + h
′

j+1 − hj)). (5.49)

A model with k change points needs k+ 1 step function heigths. If a birth move occurs,
it modifies an existing height into two new ones and a new change point (see figure
(5.2)) is created.

The fact that the dimension increases by 2 in a birth move, from 2k + 1 to 2k + 3, is
accounted for by the two random variables drawn from the uniform distributions.

Since the uniformly distributed stochastic variable u1 can be thought to be drawn from
the whole interval [0, L] with a constant density 1

L
and since a death move corresponding

to dk+1 just removes one of the the existing k + 1 change points with probability 1
k+1

,

the proposal ratio from (5.19) can be written

j(2, θ(2))

j(1, θ(1))q1(u(1))
=

dk+1L

bk(k + 1)
. (5.50)



Chapter 5. The Reversible Jump MCMC 45

Since a transformation, 
s? = u1

h
′
j = (1−u2

u2
)
−w+

w++w− hj

h
′
j+1 = (1−u2

u2
)

w−
w++w− hj

(5.51)

(with notation w+ := sj+1 − s? and w− := s? − sj) is being made while performing a
birth step, a Jacobian determinant is required as a factor in the acceptance probability
αbirth. In order to check the correctfulness of Green’s Jacobian, we calculate

J =

∣∣∣∣∣∂(h
′
j, h

′
j+1, s

?)

∂(hj, u1, u2)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
∂h
′
j

∂hj
0

∂h
′
j

∂u2
∂h
′
j+1

∂hj
0

∂h
′
j+1

∂u2

0 1 0

∣∣∣∣∣∣∣∣∣ =

= −

∣∣∣∣∣∣ (1−u2
u2

)
−w+

w++w− hj
−w+

w++w−
(1−u2

u2
)
−w+

w++w−
−1

(−1
u22

)

(1−u2
u2

)
w−

w++w− hj
w−

w++w−
(1−u2

u2
)

w−
w++w−

−1
(−1
u22

)

∣∣∣∣∣∣ =

=
hj
u2

2

[
w−

w+ + w−
(
1− u2

u2

)
w−−w+
w++w−

−1
+

w+

w+ + w−
(
1− u2

u2

)
w−−w+
w++w−

−1
] =

=
hj
u2

2

(
1− u2

u2

)
−2w+
w++w− = hj(

h
′
j + h

′
j+1

h
′
j

)2(
h
′
j+1

h
′
j

)
−2w+
w++w− =

= hj(h
′

j + h
′

j+1)2
(h
′
j+1)

−2w+
w++w−

(h
′
j)

2− 2w+
w++w−

= hj(h
′

j + h
′

j+1)2
(h
′
j+1)

−2w+
w++w−

(h
′
j)

2w−
w++w−

=

= hj(h
′

j + h
′

j+1)2(
1

h
′
j
w−h

′
j+1

w+
)

2
w++w− =

(h
′
j + h

′
j+1)2

hj
. (5.52)

Surely there was never doubt of Green being correct.

Hence we get the A in (5.11) for a birth move as

A =
p(y|λ′)
p(y|λ)

2µ(2k + 3)

L2

(sj+1 − s?)(s? − sj)
sj+1 − sj

βα

Γ(α)
(
h
′
jh
′
j+1

hj
)α−1 ×

exp(−β(h
′

j + h
′

j+1 − hj))
dk+1L

bk(k + 1)

(h
′
j + h

′
j+1)2

hj
. (5.53)

5.2.1.4 Death Step

In a death step one randomly chosen step position s† = sj+1 ∈ (sj, sj+2) will become
removed and hence the dimension drops by two from 2k + 1 to 2k − 1. Two successive
heights hj and hj+1 are joined into a single one h′j, however preserving the weighted
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geometric average, so that

(sj+2 − s†) log(hj+1) + (s† − sj) log(hj) = (sj+2 − sj) log(h
′

j). (5.54)

This move needs to be in detailed balance with the corresponding birth move. The
dimension matching will also hold by reversing the calculations from the previously
defined birth move. If the probability for accepting a birth move is αbirth = min(1, A),

then the acceptance probability for the corresponding death move becomes

αdeath = min(1,
1

A
). (5.55)

We obtain (with an appropriate re-labeling) the expression 1
A

within the acceptance
probability as

1

A
=
p(y|λ′)
p(y|λ)

p(k − 1)

p(k)

L2

2k(2k + 1)

sj+2 − sj
(sj+1 − s†)(s† − sj)

f(h
′
j)

f(hj)f(hj+1)

j(1, θ(1))q1(u(1))

j(2, θ(2))

1

J
=

p(y|λ′)
p(y|λ)

L2

2µ(2k + 1)

sj+2 − sj
(sj+1 − s†)(s† − sj)

Γ(α)

βα
(

h
′
j

hjhj+1

)α−1 × exp(β(hj + hj+1 − h
′

j))
bk−1k

dkL

h
′
j

(hj + hj+1)2
.

(5.56)

5.2.1.5 The Simulation Results

We have run both a regular MCMC-program in dimensions k = 3 and k = 4 (one
million iterations) and a RJMCMC-program (half million iterations). The results of the
simulation runs are reassuringly in general in very good agreement with the results read
out of the figures Green reports.

In accordance with Green we find (table 5.2, figure 5.5) the most likely number of change
points to equal three.

We find clear change point at times 14400, 28700 and 35600 days. For the last change
point a 95 % confidence interval was calculated to [35062, 36130] days (figure 5.4). As-
suming three change points, the accident rates are approximated to 0.0084, 0.0025, 0.003

and 0.0009 accs./day. in the corresponding intervals. As can be seen with bare eye in
(figures 5.3 and 5.4), the standard deviation for all of the height result would be about
0.001 accs./day.
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Table 5.2: Results for a posteriori probabilities in a long RJ-simulation of 500 000
iterations. The most likely submodel is the one with three change points (k = 3).

k 0 1 2 3 4 5 6 7 8 9

frequency 0 53299 91097 160805 116559 52946 20769 3809 716 0
a posteori 0 10.7 18.2 32.2 23.3 10.6 4.1 0.8 0.1 0

probability [%]

All simulations performed give a hint of an alternative change point to the last one at
around 33500 days, but so does indeed Fig. 1 of Green’s also. However, tha data is
quite sparse in this area. Perhaps the sparsity of data leads to sharper contrasts and a
clearer result, as the figures show.

The reversible jump- routine indicates potential change points around 700 and 5700 days,
which Green does not report at all. However, this is actually quite well in accordance
with the manually calculated hazard rate points in figures 5.1 and 5.2.



Chapter 5. The Reversible Jump MCMC 48

0 10000 20000 30000 40000

0.
00

00
0.

00
06

0.
00

12

Change points, k=3.

N = 1000000   Bandwidth = 62.38

D
en

si
ty

0.000 0.002 0.004 0.006 0.008 0.010

0
20

0
60

0

Step heights, k=3.

N = 1000000   Bandwidth = 4.821e−05

D
en

si
ty

Figure 5.3: Location of the change points and step heights assuming constant k = 3.
The change points and heights match very well with Green’s figures. The second
change point (the green curve) seems to have lost some probability mass for the first
one. This is related to the labeling problem as reported in [S.Richardson and P.J.Green,
1997]. It is not always easy to identify which result has been found. The bandwith is

a technical parameter from the density estimates of R.
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Figure 5.4: Heights and location of change points assuming constant k = 4. The
green density function in the upper panel seems to fail in finding another change
point. The posterior probabilities suggest (see table 5.2) that the most likely model
has k = 3. There appears to be two strong candidates for the latest change point.
The dotted lines indicate how to manually isolate a relevant area for error estimation.
This example resulted in an estimate of 35600 (days) and a 95 % confidence interval

of [35062, 36130](days) for the last change point.
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Figure 5.5: The upmost panels present location of change points conditioned on
k = 3 and k = 4. The middle panels show the development of the model dimension
while reversible jumping. The lowest two panels show some heights and the posterior

model probabilities with reversible jumping.
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5.3 Terrorism Attacks

The Bayesian approach and MCMC methods have become more popular also within the
framework of political science. We focus on count data of terrorism attacks in different
areas in the world.

In [Charlinda Santifort and Brandt, 2013] the RJMCMC is used for investigating the evo-
lution of diversity in target choice and attack modes among domestic and transnational
terrorists over the past 40 years. The changepoints are driven by changes in homeland
security practice and changes in the dominant terrorist influence at the global level
affecting the marginal benefits of target-attack combinations.

The study based on the Global Terror Database (to be discussed in detail in section
5.3.2) focuses on four target types (private parties, official, business and military) and
four attack modes (bombings, hostage events, assassinations, armed attacks) and makes
a RJMCMC run of each combination. The conclusion is that the hardest-to-defend
target-attack pairing, the bombing of the private parties, has experienced the largest
increase in violence both domestically and transnationally. This can be seen as a natural
tendency since taking certain counter-terrorism measures may make some target-attack
combinations more costly. This can change the utility function of the terrorists and
shift the terrorist activity to different combinations less protected by these security
enhancements. For example, implementing metal detectors in airports at the start of
1973 the terrorists’ marginal costs for skyjackings increased and number of other hostage
events (e.g. kidnappings) increased for all target types.

5.3.1 The Iraq Conflict

The Unites States and allied forces attacked Iraq with aerial bombardments followed by
a land invasion on March 20, 2003. By mid-April Baghdad and Tikrit were under allied
control practically ending the war. In [Spirling, 2007] the civilian casualty count data
is analyzed from the official cessation of hostilities, May 2003, until May 2007 with the
RJMCMC. The author finds evidence of four change points approximately coinciding
with important events such as

• the capture of Saddam Hussein (late 2003 to spring 2004)
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• the installation of Iraqi Interim Government and subsequent handover of power
to the Iraqi Transitional government (summer 2004 to early 2005)

• the legistlative elections for, and negotiations to form the first full term Iraqi
government (early 2006)

• the assumption of security and some military responsibilities by the Iraqi govern-
ment (Aug.-Sep. 2006)

In each case the frequency of terror incidents has increased. At 2007 there had been
approximately 60000 casualties, http://www.iraqbodycount.org/, of which some 3000
coalition force members and 57000 civilian fatalities (other studies report more than 10
times higher number). The data records civilian deaths caused by coalition military
action and by military or paramilitary responses to the coalition presence. If there is
conflict on figures, [Spirling, 2007] uses the minimum and defines a "casualty incident"
as involving five deaths or more. The study focuses on how often there were incidents
(the count of which is 1682) rather than how many casualties (assuming ≥ 5).

5.3.2 Terrorism in Afghanistan

The data in this section comes from the Global Terrorism Database (GTD),
http://www.start.umd.edu/gtd/. We are investigating the possible increase of the
rate of terrorism attacks in Afghanistan during the period of approximately last 35
years.

The Global Terrorism Database [Database, 2013] contains systematic information on
terrorist events around the world from 1970 through 2012 (and annual updates are
planned). It is currently the most comprehensive database on terrorist events with over
113 000 events, more than 52000 bombings, 14400 assassinations and 5600 kidnappings.
There are at least 45 variables on all recorded events and more than 120 variables on
more recent incidents.

The task of classifying a terrorist act is far from trivial, since the incidence could become
extended in time, space or both. For an example case, say a group of hijackers divert
a plane to Senegal and while at the Senegalese airport shoot two Senegalese policemen.
This would still count as one incident since the hijacking was still in progress at the
time of shooting and hence the two events occurred at the same time in the same
place. Also, often there occur multiple attacks at the same time e.g. a suicide bombing

http://www.iraqbodycount.org/
http://www.start.umd.edu/gtd/
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simultaneously in five different parts of a major city. This needs bookkeeping of five
incidents in the GTD.

A Terrorism act is defined by the GTD as the threatened or actual use of illegal force
and violence by a non-state actor to attain a political, economic, religious or social goal
through fear, coercion or intimidation.

In practice GTD requires that the three following criteria are met in order to be con-
sidered as an incident for inclusion in the database.

1. The incident must be intentional - the result of a conscious calculation on
the part of a perpetrator.

2. The incident must entail some level of violence or threat of violence -
including property violence, as well as violence against people.

3. The perpetrators of the incidents must be sub-national actors. The
database does not include acts of state terrorism.

In addition, at least two of the following three criteria are to be present for an inclusion
into the database.

1. The act must be aimed at attaining a political, economic, religious, or social goal.

2. There must be evidence of an intention to coerce, intimidate, or convey some other
message to a larger audience (or audiences) than the immediate victims.

3. The action must be outside the context of legitimate warfare activities.

The incidents are classified in 9 classes: assassination, hijacking, kidnapping, barricade
incident, bombing/explosion, unknown, armed assault, unarmed assault, facility/infras-
tructure attack.

Of course, the data also contains exact geographichal coordinates of the incident loca-
tion. We chose to study Afghanistan, one of the most dangerous countries in the world,
and found 4511 events (also including 315 unsuccessful attacks) in Afghanistan in the
GTD on 2082 unique dates. The “successfulness” (of the most serious attack type) de-
pends on the type of the attack. The essential question is whether or not this attack
type took place.
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Table 5.3: Results for a posteriori probabilities in a long RJ-simulation of 500 000
iterations. The most likely submodel is the one with eight change points (k = 8), but
in this particular run the model with one less change points (k = 7) comes practically

as good. The other submodels have negligibly small probabilities.

k 5 6 7 8 9 10

frequency 9406 66031 194397 195511 31278 1688
a posteori 1.8 13.2 38.9 39.1 6.3 0.3

probability [%]

The Taliban, an islamic fundamentalist political movement captured the capital Kabul
in September 1996, spread throughout Afghanistan and ruled the Islamic Emirate of
Afhganistan (diplomatically recognized only by Pakistan, Saudi Arabia and United Arab
Emirates) until December 2001.

Since the 9/11-attacks, the following US invasion, the hunt of Osama bin Laden and
war in Afghanistan the country has been in a mess and it is hard to draw conclusions
on political turnpoints only based on the change of the hazard rate of terrorism. Yet
we give it a try.

The RJMCMC-program identifies eight change points (table 5.3, figure 5.6) with poste-
rior probability of 39.1 % in the rate of terrorism incidents in Afghanistan. The posterior
probability for a model with seven change points is only slightly lower 38.9 % and with
six change points 13.2 %.

Another run of 1/2 million iterations gave posterior probabilities 33.2, 41.3 and 12.9
% for submodels k = 7, k = 8 and k = 9. Hence it can be seen that the inference on
the choice of a model can depend for example on the initial conditions and still more
simulation runs could be conducted. Yet it seems well justified to claim that the best
number of change points in this model is eight.

Reassuringly, the very same times of eight changepoints could also be calculated (fig-
ure (5.7)) with an another program, which has been used to produce the results in
[Charlinda Santifort and Brandt, 2013].

This program completely outperformed the one of the author’s and was approximately
400-500 times faster taking only about 20 seconds for the whole run.

While comparing the simulation results to the timeline of Afghan history2, we find some
interesting coincidences with the turning points of politics.

2http://en.wikipedia.org/wiki/Timeline_of_Afghan_history

http://en.wikipedia.org/wiki/Timeline_of_Afghan_history
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Figure 5.6: Densities for change points with three different models, k = 7, k = 8 and
k = 9, and a posteriori probabilities of the submodels. The two last pictures indicate
how the RJMCMC-sampler traverses in the model space. As it can be seen from the
fifth picture, there should be no special need for a burn-in period longer than 1000
iterations (which is practically negligible since we did 1/2 a million iterations in total).
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Figure 5.7: Location of change points and arrival rate of Terrorism Event in
Afghanistan in years 1973-2012. The grey areas represent 95 % confidence intervals.
Both here and in figure 5.6 the three first change point appear sharper probably due
to sparser data. Unfortunately the sharpest result in 1993 cannot really be trusted,

since the GTD reportedly has lost all data from that year.
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In year 2002 emergency loya jirga (grand council) was held in Kabul 11.-19. June. This
was called for by Bonn Agreement (December 2001)3 where solution was sought for
the government of Afghanistan after the US had ousted the Taliban regime. Since no
nationally-agreed-upon government had existed in Afghanistan since 1979, it was felt
necessary to have a transition period before establishing a permanent government. That
would require at least one loya jirga4 to be convened and immediate steps felt required.

Interestingly, the fifth change point given by the program matches the time of 2002 loya
jirga very well.

Hamid Karzai was elected President of the Islamic Republic of Afghanistan in 9th
October, 2004. In 2005 Taliban insurgency began after Pakistan decided to station
around 80000 soldiers next to the porous Durand Line border with Afghanistan. There
is also a change point and a clear increase in the rate of terrorism incidents in first half
of 2005.

Since 1949 there have occurred cross-border shellings along the poorly marked Durand
Line border between the unified Pakistan Armed forces and the Afghan National Secu-
rity Forces called the Afghanistan–Pakistan skirmishes.5 The latest hostility started in
mid-2003 in the Khost province in Afghanistan and continued until 2013 when a dozen
of missiles, reportedly were fired from Pakistan, killed an Afghan woman and wounded
several others in Kunan Province of Afghanistan.

Particularly intensive attacks are reported in 2011 and 2012 when many sources report
Pakistani missiles having hit civilian areas in Afghan provinces of Kunan, Nangarhar
and Nuristan. Most of these are related to the US driven drone (unmanned aerial
vehicle) attacks6 in Northwest Pakistan along the Afghan border since 2004, the Taliban
insurgency and the fact that border has never been clearly marked. The drone strikes
began during Georg W. Bush administration and have increased substantially under
president Barack Obama.

The last change point given by the RJMCMC program also dates around 2012 and
elevates the hazard rate of terrorism to yet higher level.

The government of Pakistan has publicly condemned the drone attacks. However it
also allegedly allowed the drones to operate from Shamsi Airfield in Pakistan until 21th

3http://en.wikipedia.org/wiki/Bonn_Agreement_(Afghanistan)
4http://en.wikipedia.org/wiki/2002_loya_jirga
5http://en.wikipedia.org/wiki/Afghanistan-Pakistan_Skirmishes
6http://en.wikipedia.org/wiki/Drone_attacks_in_Pakistan

http://en.wikipedia.org/wiki/Bonn_Agreement_(Afghanistan)
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April 2011. According to Wikileaks7, Pakistan’s army chief Ashfaq Parvez Kayani not
only tacitly agreed to continue with the drone flights but in 2008 requested an increase
of them. This matches very well with the time of the second last change point which is
just before the change of year 2008.

7 Allbritton, Chris (20 May 2011). "Pakistan army chief sought more drone coverage in ’08: Wik-
ileaks". Reuters. Retrieved 16 December 2011.
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Discussion

6.1 Application Areas

The applications of the Bayesian approach and hence the (RJ)MCMC-samplers are
many. Since the acceptance probability

α(x, y) = min{π(y)q(y, x)

π(x)q(x, y)
, 1} (6.1)

depends on the proportion of the target π(·) times the proposal distribution q(·, ·) in
two different points - the present sample point and the proposed one, one only needs to
be able to evaluate these distributions up to a multiplicative constant.

Most of the problems in particle physics have been simulated with the method, and
N-particle MCMC models are still being developed and run in Los Alamos1. There
simply exists few other ways of doing this. In Los Alamos there has also been developed
a software system YADAS2 written in java for performing MCMC-simulations.

Many other examples of statistical problems outside the field of statistical physics where
the number of elements could be unknown a priori can be listed. For example model
selection, variable selection in regression, cluster analysis, partitioning problems, iden-
tifying mixture distributions [S.Richardson and P.J.Green, 1997], image segmentation
analysis (two dimensional analogue of change-point problems), time-series models, clas-
sification problems object recognition, signal processing and Bayesian non-parametrics
are such problems.

1http://la-science.lanl.gov/cat_math.shtml#monte
2http://www.ccs.lanl.gov/ccs6/yadas/yadas.html
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The RJMCMC has also successfully been applied to population ecological models [Ruth King
and P.Brooks, 2010], procedural modeling generating complex geometric structures such
as trees, cities, buildings and Mondrian paintings [O.Talton et al., 2011] with formal
grammars such as Lindenmayer L-systems defining the structural building blocks of
such systems.

Given the grammar for enforcing location of houses in a suburbian residential area in a
shape of say a whale or a shoe, a RJMCMC-program could perform the task of calcu-
lating the placemants, shapes and heights of the houses. Of course, the house façades
could also be designed with the similar simulational approach. However, this raises the
philosophically interesting question whether this can be considered as architecture or
not? An architectural student [Palmer, 2013] from Bergen School of Architecture gives
the clearcut answer: “No, in my opinion, this is not architecture!”

6.2 Pros and Cons of (RJ)MCMC

The power of the MCMC-simulation is based on in its ability to approximate any inte-
gral representing an expected value of a function relatively effectively by a simple sum
consisting of points sampled from the Markov chain.

Eπ[h(x)] =

∫
M

h(x)π(x)dx ≈ 1

n

n∑
i=1

h(Xi). (6.2)

No matter how high-dimensional the state space M , the theory says that the approxi-
mating sum will converge at rate 1

n
and precision can be made arbitrarily high by using

arbitrarily high computing time. Thus the computing time for approximating a poste-
rior distribution may easily become quite long. Of course, the development of computing
speed also makes construction of more complicated models possible.

There is always the issue of monitoring the convergence as discussed in section (4.2.3).
Especially in higher-dimensional models it may be hard to decide whether the conver-
gence has yet occurred at all and one may need to rely on the results looking good.

The joint posterior

π(k, θk|Y ) =
p(k, θk)L(Y |k, θk)∑

k′∈K
∫
p(k′, θk′)L(Y |k′, θk′)dθk′

(6.3)
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can always be factorized as the product of posterior model probabilities and model-
specific parameter posteriors

π(k, θk|Y ) = π(k|Y )π(θk|k, Y ). (6.4)

The generality of this formulation embraces both genuine model-choice situations and
a single model with a variable-dimension parameter [P.J.Green and D.Hastie, 2009] .

The RJ-setup requires specifying all the regular diffusional within-model moves and the
interdimensional move proposals for changing the submodel and calculating the Jacobian
determinant (5.19) for the acceptance procedure (5.19). Hence any RJMCMC-sampler is
necessarily rather problem-specific and the task of setting one up is hard to automatize.
An attempt could be made for performing the differentiation with a symbol algebra
system such as Maple.

The rather complicated setup may have stopped people from adopting the RJ-method.
The possible complexity of the state space M = ∪Mk itself may also present challenges
in constructing proper across-model proposals as natural ideas of proximity and neig-
bourhood that help the design in within-model proposals may no longer be intuitive.

Inefficient proposal mechanisms lead to slow exploration of the state space, demon-
strate slow convergence to the stationary distribution π and have high autocorrelation
increasing the asymptotic variance of Monte Carlo estimators [P.J.Green and D.Hastie,
2009].

It can be argued that there is an inherently predetermined optimal dimension of the
problem that has been a priori fixed, and once the dimension is estimated, the reversible
jumping between dimensions does not bring anything new to the analyze. Yet, how to
estimate that dimension? The RJ gives almost directly a posteriori estimates for the
submodel probabilities.

The question whether it is good to jump seems to be little controversial [Green, 2001].
The most favourable situation for jumping is when the full posterior inference about
(k, θ(k)) is required. In other cases, it might be interesting to compare the RJMCMC to
a set of fixed-dimensional runs, and judge if the reversible jumping really gives a good
contribution to the analysis in relation to the extended effort it takes.

The whole process of MCMC can be seen as quite inefficient approach (and with RJ
even more so) as a lot of proposals need to be created and large part of them may need
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to be discarded. With the increasing computational power of today this is much less
of a problem, but the length of simulation runs could easily be measured in days, even
weeks. More efficient use of computing usually requires more effort on sophisticating
the numerical or analytical methods. Usually this means calculating gradients.

6.3 Future Trends

The random walk Metropolis-Hastings is quite robust a method for doing simulations
in a fixed dimension.

The search for improved proposal distributions, tuning the algorithm is often done man-
ually and adaptive MCMC is attractive to let the computer to “learn” better parameter
values while running the algorithm [Steve Brooks and Meng, 2011].

Creating a fully automated sampler in the RJ-setting has been an ideal of Green’s and his
students David Hastie’s [Hastie, 2005]. It would be a tremendous practical advantage
if the user could just specify the target in algebraic form and let the computer both
construct an algorithm and then run it to create a reliable sample [Green, 2001].

The closest one could come at the time was a random walk Metropolis sampler for
sampling from a fixed-dimensional density in the simplest form where all variables were
simultaneously updated.

However, as Green puts it, "random walk Metropolis is not a panacea“. It has the
drawbacks of not having geometric ergodicity3 guaranteed and requiring conditions on
the relative size of the tails of the target and proposal densities.

Reversible jump analogy of the random walk MH was proposed by Green in 2003 [Green,
2001]. The idea is to use estimates of the first- and second- order moments of θk denoted
by µk and BkB

T
k where µk is a k−vector and Bk is a k×k− matrix. The proposed move

3A positive Harris recurrent and aperiodic Markov chain is called ergodic. An ergodic Markov chain
with invariant distribution is geometrically ergodic if ∃ a nonnegative real-valued function M with
π|M | <∞ and a positive constant r < 1 such that |Pn(x, ·)− π| ≤M(x)rn for all x.
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from model (k, θk) to model Mk′ is

θ′k′ =



µk′ +Bk′ [Rk,k′(Bk)
−1(θk − µk)]nk′ , nk′ < nk

µk′ +Bk′Rk,k′(Bk)
−1(θk − µk) , nk′ = nk

µk′ +Bk′Rk,k′

 (Bk)
−1(θk − µk)

u

′ , nk′ > nk

(6.5)

where [·]m picks the m first components of a vector, Rk,k′ is an orthogonal matrix and
u ∼ qnk′−nk(u) is a (nk′ − nk)−dimensional stochastic vector, only needed when the
dimension is going up. If nk′ ≤ nk the proposal for θ′k′ is deterministic and calculating
the Jacobian trivial. If nk′ > nk, then (the orthogonal matrix Rk,k′ gives no contribution)∣∣∣∣ ∂(θk′)

∂(θk, u)

∣∣∣∣ =
|Bk′|
|Bk|

.

The acceptance probability is

α[(k, θk), (k
′, θk′)] =

π(k′, θ′k′ |x)

π(k, θk|x)

q(k′ → k)

q(k → k′)

|Bk′ |
|Bk|

×


qnk′−nk(u), nk′ < nk

1, nk′ = nk

1
qnk′−nk (u)

, nk′ > nk

(6.6)

where q(k → k′) is the probability for attempting the change of a submodel.

If the model specific densities π(k, θk|x) are unimodal and the first and second mo-
ments µk and BkB

T
k available, then high between-model acceptance probabilities may

be achieved.

The whole idea for proposing (6.5) was motivated by the fact that if the model-specific
targets π(k, θk|x) were normal distributions with means µK and variance BkB

T
k , if the

innovation variables were standard normal and if q(k→k′)
q(k′→k)

= p(k′|x)
p(k|x)

could be chosen, then
these proposals would already be in detailed balance and hence there would be no need
to compute the MH accept/reject decision.
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