
UNIVERSITY OF BERGEN

Improving Parallel Sparse Matrix-vector
Multiplication

by

Torbjørn Tessem

Thesis for the degree Master of Science

December 2013

in the
Faculty of Mathematics and Natural Sciences

Department of Informatics

http://www.uib.no
tte064@student.uib.no
http://www.uib.no/matnat
http://www.uib.no/ii

Acknowledgements

• I will thank my supervisor Fredrik Manne for discussions and support while writing
this thesis.

• I would also like to thank my fellow students, especially Alexander Sørnes, for
relevant and irrelevant discussions, making long days at the university enjoyable.

• Last but not least, I will thank my parents and family for their support throughout
my studies.

iii

Contents

Acknowledgements iii

List of Figures ix

List of Tables xi

1 Introduction 1

2 Fundamentals 5
2.1 Parallel programming . 6

2.1.1 Speed-up and scalability . 7
2.1.2 OpenMP . 8

2.2 Matrix representations and Sparse Matrix-vector Multiplication 9
2.2.1 Coordinate representation (COO) 10
2.2.2 Compressed row (CRS) and Compressed column (CCS) 11

2.3 Parallel SMvM . 13

3 Challenges in Parallel Sparse Matrix-vector multiplication 15
3.1 Conflicts . 16

3.1.1 False sharing . 16
3.1.2 Write conflicts . 16

3.2 Even work load . 20
3.2.1 OpenMP scheduling techniques . 20
3.2.2 Distribute on number of non-zero elements 21

3.3 Cache efficiency . 21
3.4 Unfortunate structured matrices . 22

4 Previous Work 23
4.1 Efficient cache use . 24

4.1.1 Enlarge dense blocks . 24
4.1.2 Restructuring and Reordering to reduce cache miss 24

4.2 Avoiding write conflicts with CCS-algorithms 26
4.2.1 Basic solutions . 26
4.2.2 CCS with colouring . 26

4.3 Colouring algorithms . 29
4.3.1 Greedy Graph Colouring . 30
4.3.2 Greedy distance-2 colouring . 30

v

Contents vi

5 Even Work Load 33
5.1 Improved distribution in CRS-algorithms 34

5.1.1 Approximation to min-makespan 34
5.1.2 Allocating consecutive data to threads 34

5.2 Arrowhead matrices - Can COO-representation be the fastest? 35
5.2.1 Distribution of elements . 36

6 Efficient Cache Use 39
6.1 A hybrid between CRS and CCS representations 39
6.2 COO-representation with CRS-CSS-hybrid iteration 40

7 Improving CCS with colouring 43
7.1 Reducing False Sharing . 43

7.1.1 Increased distance . 44
7.2 Efficient parallel sections . 44

7.2.1 When is the greedy colouring bad? 45
7.2.1.1 Identifying inefficient parallel steps and heavy tails 46

7.2.2 How to handle an inefficient step. 46
7.2.2.1 Basic CCS-algorithms . 47

7.2.3 Perfect parallel steps . 47
7.2.3.1 Random colouring . 47

8 Experiments 49
8.1 Chp. 5 - Even work load . 50

8.1.1 Improved distribution on CRS-algorithms 50
8.1.2 Arrowhead Matrices . 52

8.2 Chp. 6 - Efficient cache use . 53
8.3 Chp. 7 - Improving CCS with colouring 55

8.3.1 Replicating results . 55
8.3.1.1 AP12 - Algorithms . 55

8.3.2 Reducing false sharing . 56
8.3.3 Efficient parallel sections . 57
8.3.4 Decreased efficiency on the tail . 57

8.3.4.1 Alternative handling of the tail 58
8.3.4.2 Random colouring algorithms 61

9 Conclusions 63
9.1 Even work load matters . 63
9.2 The hybrid algorithm is only better on certain matrices 64
9.3 Increasing distance to reduce false sharing is not a good idea 64
9.4 It is hard to handle inefficient parallel steps 65
9.5 Future Work . 65

9.5.1 Approximation algorithms on min-makespan 65
9.5.2 A hybrid algorithm using less storage 66
9.5.3 Faster and better colouring algorithms 66

Contents vii

Bibliography 67

List of Figures

2.1 Illustration of a parallel program . 5
2.2 Matrix M , of size 4 · 6, with 8 non zero elements. 9
2.3 COO representation of M (Figure 2.2) . 10
2.4 CCS representation of M (Figure 2.2) . 12
2.5 CRS representation of M (Figure 2.2) . 12

3.1 Two threads reading from same cache-line, leading to false sharing. 15
3.2 Illustration of a write conflict . 17
3.3 Arrowhead matrix of size 7× 7 . 22

4.1 Illustration of SBD matrix . 25
4.2 Distance-2 colouring on a bipartite graph. 29

5.1 Matrix, nlpkkt 240 . 33
5.2 An arrowhead matrix, delaunay n24 . 36

6.1 Illustration of the parallel hybrid SMvM algorithm 40

7.1 Use of colours by COL1 on matrix HV15R 45

8.1 Scaling of the hybrid algorithm on different matrices. 54
8.2 Scaling on the good part and on the tail, with CCS with colouring, for

HV15R . 58
8.3 Scaling on the tail, with CCS with colouring, when using different barriers

on HV15R . 59
8.4 Run times on different solutions on the tail of HV15R 60
8.5 Results on Hook1498 with greedy and random colouring 62
8.6 Results on HV15R with greedy and random colouring 62

ix

List of Tables

4.1 Matrices used in AP12 . 28

5.1 Difference in number of elements between lightest and heaviest thread on
nlpkkt 240 . 35

5.2 Difference in number of elements between lightest and heaviest thread on
delaunay 24 . 37

7.1 Table that shows % of columns in the tail for different barriers. 46

8.1 Overview of the matrices used in the experiments. 50
8.2 Selected results on the CRS-algorithm with different distribution schemes. 51
8.3 Results on arrowhead matrices . 52
8.4 Selected results with the hybrid algorithm 53
8.5 Replicated results from AP12 . 56
8.6 Selected results from CCS-col with increased distance. 57
8.7 Selected results showing speed-up on different part of the matrices 58
8.8 Selected results for alternative handling of the tail and for random colouring. 60
8.9 n

numColour for the six matrices coloured with a random colouring 62

xi

Chapter 1

Introduction

When solving a problem, a computer program will do a number of specified operations.
Some of these have to be done in a strict order, i.e. the result of one is needed in the
next. However, in many cases operations can be done independently. This introduces
the idea of parallel programming.

In parallel programming [1] the problem is divided to several interconnected proces-
sors or threads who collaborate in solving the problem. This exploits that operations
that are independent of each other, can be done at the same time. The intention is
obviously to solve the problem faster. This is the main argument for using parallel pro-
gramming. With faster programs we can solve computationally intensive problems in a
reasonable time. Using more processors also gives access to more memory, thus allowing
for larger data sets.

Sparse Matrix-vector Multiplication (SMvM) is a mathematical technique encountered
in many programs and computations and is often heavily used. Examples included it-
erative methods [13], used to solve systems of linear equations, and computer graphics
[15], where it is used to manipulate information on objects in space. In SMvM, values
from an input vector is multiplied with values from a matrix and added into an output
vector. Many of these operations can be done independently, pointing to the possibility
of doing this in parallel. SMvM is a special case of general Matrix-vector Multiplication,
where the matrix is sparse. A sparse matrix is defined as a matrix where the majority of
the elements are equal to zero or or the structure of the matrix allows us to otherwise
take advantage of the zero − elements [9]. SMvM on large matrices is used in many
real world applications [9], thus a substantial amount of work has been done to improve
parallel SMvM algorithms.

1

Chapter 1. Introduction 2

Several strategies have been tried to improve parallel SMvM. Representing the matrix in
a way that takes advantage of the sparse structure is often the first step. This is typically
done by only storing the non-zero elements, thus reducing the space needed to store the
matrix. We still maintain information about the position of the elements by storing their
coordinates (COO) or arranging them into compressed rows (CRS), columns (CCS) or
blocks [12]. Standard parallel SMvM algorithms are typically designed using one of these
representations, each with different positive and negative properties. This is discussed
further in Chapter 2.

Further improvements include work to access the data more efficiently. The data is
accessed through cache lines that each hold several elements. Loading a cache-line from
main memory through the cache hierarchy has a cost, so using cache efficiently will most
likely give faster programs. How to improve the efficiency of cache use is discussed in
amongst others Pinar and Heath [5], Vuduc and Moon [6] and Yzelman and Bisseling [4].
Typically this is done by reordering the iterations or restructuring the matrix. Yzelman
discusses this further in his thesis [3].

Other approaches to improve parallel SMvM have also been investigated. Bell and Gar-
land [16], utilized the computational resources of the Graphic Processing Units (GPU).
In Azad and Pothen [7], graph colouring is used on the matrices to avoid write conflicts
when using CCS representation. These occur when two (or more) threads try to write to
the same memory slot at the same time. Azad and Pothen try to reach results similar to
an algorithm using CRS representation, but their research does not quite achieve this.
Previous work is discussed further in Chapter 4.

The aim of the work conducted in this thesis is to develop new ideas and algorithms
to speed-up parallel SMvM on a shared memory computer. In chapters 5-7 we present
our main ideas. These are partly based on some of the previous done work by others
and also on specific problems concerning parallel SMvM. Our first suggestion is to give
a better distribution of data to the threads. To do this we use a method inspired by the
min-makespan problem [1, 2]. Further we investigate distributing elements more evenly,
using the COO-representation, without regard to other problems that might occur. Our
test results shows some improvements compared to the standard algorithms.

We also suggest an improvement to obtain more efficient cache use by altering the itera-
tion of the standard algorithms. This is inspired by an algorithm presented in Yzelman
and Bisseling and observations on the difference in cache use of the standard parallel
SMvM algorithms using CRS- and CCS-representations. The results show improvements
on matrices with a structure requiring the standard algorithms to often load new cache

Chapter 1. Introduction 3

lines. These results are similar to those presented in Yzelman and Biesseling.

In Chapter 7 we suggest possible improvements to the algorithms presented in Azad
and Pothen. Their results shows CCS representation to be inferior to CRS represen-
tation. However this may not always hold. Dimensions and structure of matrices may
favour CCS representation. Our suggestions for improvements include alterations to re-
duce false sharing. Furthermore, we tried to step away from using the colouring where we
found it to create inefficient parallel steps. We also introduced using a random colouring
algorithm to remove the inefficient parallel steps. The observed results to the possible
improvements on the work presented in Azad and Pothen varied. The alteration of the
colouring algorithm to reduce false sharing gave negative results. However, the work to
handle inefficient steps alternatively gave some improvements.

In this thesis we address the research questions:

• How will a more even distribution of data affect parallel SMvM? Both with regard
to improving distribution for known algorithms, as well as creating new algorithms.
Furthermore, will these improvements work for general matrices or only for specific
ones.

• Can we, by changing the order the elements are accessed, improve the efficiency
of cache use? Even though we have to use more memory to store the matrix?

• Colouring of the columns to avoid write conflicts has already been investigated
in Azad and Pothen [7]. We consider which colouring algorithms yields the best
colourings for this problem. Furthermore, is using the colouring always best, and
how can we identify when it is?

The remaining thesis consists of eight chapters (cp.2 - cp.9) and can be divided into four
parts.

1. Chapter 2 introduces some fundamental concepts in regards to parallel program-
ming, representing sparse matrices, and parallel Sparse Matrix-vector Multiplica-
tion. Chapter 3 presents some of the most important problems concerning im-
plementation of parallel SMvM. Furthermore, some ideas on how to handle these
problems are discussed.

2. Chapter 4 gives an overview of some of the previous work done to improve SMvM
algorithms. We present results and conclusions from a selected set of papers that
use different techniques to improve SMvM algorithms. One of these techniques is
graph colouring and we therefore present some graph colouring algorithms.

Chapter 1. Introduction 4

3. Chapters 5, 6, and 7 presents some ideas on possible improvements on parallel
SMvM algorithms. Theses ideas are based on both the problems presented in Part
1 as well as the work presented in Part 2. Each chapter revolves around one specific
theme that addresses different issues concerning parallel SMvM.

4. Chapter 8 presents test results and compares them to what we could expect from
the ideas presented in chapters 5-7. Chapter 9 gives some conclusions based on the
observed results and other previous work. Furthermore, we present some topics
that may be studied further.

Chapter 2

Fundamentals

This chapter presents some fundamental aspects of the thesis. It introduces parallel pro-
gramming in general and especially shared memory parallel programming. OpenMP, an
API for Shared Memory Parallel Programming is discussed, with focus on the elements
used in the thesis.

It also presents different ways of representing sparse matrices. For the different matrix-
representations, basic matrix-vector multiplication algorithms are shown. It is also
briefly discussed how to implement these algorithms in parallel.

1

2 3 4

5

A parallel program can work in the following way:

1. Sequential part.

2. Divide work, and create new threads.

3. Parallel part (with four threads).

4. Collect results and terminate extra threads.

5. Sequential part.

Figure 2.1: Illustration of a parallel program

5

Chapter 2. Fundamentals 6

2.1 Parallel programming

Solving computational problems using multiple tightly connected processors is known
as parallel computing [1]. The positive effects of parallel computing are obvious. Us-
ing several processors allows problems to be divided on several threads and thus solved
faster. In some instances parallel computing also gives access to more memory, giving
the possibility to solve larger problems. The variable p usually represent the number of
processors. An illustration of a parallel program, with p = 4, is shown in Figure 2.1.

However, parallel computing also offer some challenges. In addition to solving the prob-
lem at hand, the extra tasks of dividing and collecting the work are added. Furthermore,
there can be an extra cost in creating new threads. This means that if the total work
load is small, a parallel step might not be justifiable. The different processors also need
to communicate, so that they are synchronized and the problems are solved correctly.
In addition to this, the execution of a parallel program can be non-deterministic, thus
making them hard to debug.

When a thread needs to access a memory slot, most systems lets the thread load a
whole cache line into its local memory. A cache line is a part of memory consisting of
several (depending on the system) memory slots. This is done to make the programs
more efficient, as consecutive elements needed often are stored in memory slots close
to each other. However, this can create problems for some parallel programs, as two
threads might need different elements on the same cache line. Thus trying to load and
update the same cache line. This is called false sharing.

In Shared memory parallel programming (SMPP) the memory is visible to all processors.
This allows for both thread-private and shared variables. Communication between the
threads can be done through the shared memory. The shared memory also allows the
threads to work on a common, shared, solution, thus a separate collecting step may not
be needed. However, if data is shared unintentionally, race conditions may occur. An
example of this is write conflicts, where threads write to the same memory slot at the
same time, possibly overwriting each each other.

Parallel programming can also be done with distributed memory (DMPP). In this case,
each thread holds its own private storage. Thus, each thread can work without having
to take regard to the other threads, and deal with issues like write conflicts and false
sharing. However, to communicate, threads have to send and receive data chunks to and
from each other, giving an extra cost. A DMPP program is usually made of alternating

Chapter 2. Fundamentals 7

computation and communication steps, giving total time use ttot = tcomp + tcomm. To
achieve good results it is important to keep tcomm lower than tcomp. A good example
where DMPP is used efficiently is matrix-multiplication with Cannon’s Algorithm [1, 18].

Both SMPP and DMPP have their advantages, and are useful for different problems. In
this thesis we will work with parallel SMvM, where SMPP is the preferred choice.

2.1.1 Speed-up and scalability

To justify a parallel program, it must show speed-up compared to the corresponding
sequential program [1]. The speed-up factor, S(p), is defined as how the time used by a
parallel program tp, compares to the time from (the best) sequential one, ts, giving the
formula: S(p) = ts

tp
.

The maximum possible speed-up is usually bounded to p. This is called linear speed-
up and means that ts

p = tp. It might happen that S(p) > p. We call this Superlinear
speed-up. Superlinear speed-up can happen hen the architecture or algorithm favours a
parallel program, for instance if cache is handled more efficiently in parallel. However,
it can also occur when comparing to a non-optimal sequential program.

The speed-up is also restricted by overhead in the parallel program. This can for instance
be communication costs or a distribution of work that leaves threads idle. Parallel pro-
grams usually also have a sequential part. Obviously the sequential part has no speed-up,
thus the speed-up is restricted to the fraction of the program that can be executed in
parallel, denoted by f . Even with an infinite number of threads the speed-up cannot be
higher than limp→∞S(p) = 1

f . This was used as an argument for sequential computation
by Amdahl in 1967 [14], and is known as Amdahl’s law. The efficiency of a parallel pro-
gram is measured as ts

tp×p , i.e. how much resources the parallel program uses compared
to its corresponding sequential program.

Scalability is defined in how a program handles different system and data sizes. Gener-
ally a larger system, i.e. using more processors, is better than a smaller one. However,
more processors also requires, amongst other things, more communication, making the
program less efficient. Measuring how a program reacts when applying more threads on
the same problem size is called strong scaling. This is opposed to weak scaling, where
one investigated how the program reacts when using both the work and the number of
threads grows proportionally. Thus keeping the amount of work per processor constant.

Chapter 2. Fundamentals 8

2.1.2 OpenMP

OpenMP [10] [11] is an API used for SMPP, that works with C/C++ and Fortran. The
functions of OpenMP are created by constructs. Most constructs are compiler directives,
and usually apply to a structured block of code. In C/C++ constructs are written on
the form #pragma omp < construct > [< clause >].

Programs using OpenMP operate in a fork-join structure, where a master thread spawns
new threads to create parallel sections, and joins them once the parallel section is over.
To create a parallel section the parallel construct is used. The number of threads it
creates is either decided by a runtime function or a clause. A parallel section in OpenMP
usually works with any amount of threads. Thus a programs using OpenMP can function
both sequentially and in parallel.

OpenMP also has a parallel for-loop construct that can be used either within parallel
sections or to create a new parallel section. A parallel loop divides the iteration of the
loop among the different threads. When executing a loop in parallel, it is important that
the iterations of the loop can be executed independently of each other. This is because a
parallel loop may execute the iterations in a non deterministically order. A clause on the
parallel loop construct decides the parallel scheduling of the iterations. This can have a
huge influence on the performance of the program. The types of scheduling options for
the parallel for loop are:

• Static, This is the default setting. It allocates an (almost) equal sized, consecutive,
chunk of the iterations from loop to each thread.

• Dynamic, The loop is divided into equally sized chunks and which are put into a
queue. Each thread will take a chunk of iterations from the queue and execute
When it is finished with this it goes back to the queue and gets the next available
chunk. This continues until all the work is done.

• Guided, This partitions the iterations of the loop into chunks of decreasing size.
These are then put into a queue, but with the largest chunks first. The distribution
of chunks to threads is done in the same way as for the dynamic scheduling.

In nested loops, deciding which loop to parallelize is also important. By doing the outer
one in parallel, only one parallel section is created. Thus each thread runs the inner
loop individually, in parallel. In such an instance it is important that the inner loop can
be executed simultaneously by multiple threads without causing unwanted side effects.
If one parallelizes the inner loop, a new parallel step is created for each iteration. Thus,
each instance of the inner loop, is done as a normal parallel iteration.

Chapter 2. Fundamentals 9

1 0 2 0 3 0
0 4 0 0 5 0
0 0 6 0 0 7
0 0 0 8 0 0

Figure 2.2: Matrix M , of size 4 · 6, with 8 non zero elements.

The threads can communicate with each other through the shared variables. there
are several constructs for synchronization. The critical construct makes sure that the
following block is only executed by one thread at a time. The atomic construct is similar,
but it only applies to the update of the memory slot accessed in the next line of code.
The barrier construct forces all the threads to wait until the last one has reached it.

2.2 Matrix representations and Sparse Matrix-vector Mul-
tiplication

The main focus of this thesis is on parallel Sparse Matrix-Vector Multiplication (SMvM).
SMvM is a variant of matrix-vector multiplication where the matrix is sparse. A sparse
matrix is defined as a matrix, of size n × m, that has nnz non-zero elements, where
n×m� nnz. This fact can be used to store the matrix more efficiently.

The standard method of representing a matrix is using a two dimensional array, where
each position i, j in the array holds a value vi,j . This representation is intuitive and easy
to work with. Matrix-vector multiplication, shown in ALG 1, is given a matrix M and
an input vector, the result is stored in an output vector. Matrix-vector multiplication
is done by iterating over the matrix, for every element in the matrix the value vi,j is
multiplied with the value on index i from the input vector and added onto the value on
index j on the output vector.

Standard matrix representation uses space to represent every value, so for a matrix
of size n×m, it will use O(n×m) space, regardless if many elements are equal or unin-
teresting with respect to the problem at hand. For sparse matrices a large majority of
the elements are zero and for many problems, including Matrix-Vector Multiplication,
the zero elements in a matrix are uninteresting, so to store them is a waste of memory.
Figure 2.2 shows an example matrix M using the standard representation.

Chapter 2. Fundamentals 10

Algorithm 1: Matrix-vector multiplication
Data: M a matrix of size m× n, v an input vector of length n
Result: w, an output vector of length m

set all indices in w to 0
for i← 1 to n do

for j ← 1 to m do
w[j]← w[j] + M [i, j]× v[i]

end for
end for

1, 2, 3, 4, 5, 6, 7, 8
0, 0, 0, 1, 1, 2, 2, 3
0, 2, 4, 1, 4, 2, 5, 3

Figure 2.3: COO representation of M (Figure 2.2)

The 1st row represent non-zero elements, the 2nd and 3rd rows represent coordinates.

2.2.1 Coordinate representation (COO)

A more efficient way to represent sparse matrices is the Coordinate Representation
(COO) or triplet scheme [3, 17]. This representation only stores the non-zero elements.
The original matrix is represented by a 3× nnz matrix (nnz is the number of non-zero
elements), where one row holds the value of the elements and the two others hold the
corresponding coordinates. An example using the COO-representation is shown in Fig-
ure 2.3, where the second row holds row coordinates and the third holds the column
coordinates. The space used here is only dependent on nnz, giving a total space use of
O(nnz), which for sparse matrices is (by definition) much smaller than n×m.

The COO-representation does not give the easy look-up of the standard matrix, but
for some problems this is not important. Algorithms with COO-representation can it-
erate over the nnz elements, and for each element it can do the needed work. Since the
element stores its coordinates independently, the elements are easy to sort, restructure
and allocate to a thread.

Sparse Matrix-vector multiplication (SMvM) using the COO-representation (ALG 2) is
done by iterating over the nnz non-zero elements. The value found on position M [i, 0]
is multiplied with the value from the input vector at the position given by M [i, 2] and
added onto the output vector on the position given by M [i, 1].

Chapter 2. Fundamentals 11

Algorithm 2: SMvM algorithm using COO-representation
Data: M a sparse matrix size m× n stored in COO format, v an input vector of

length n
Result: w, an output vector of length m

set all indecies in w to 0
for i← 1 to nnz do

w[M [i, 1]]← w[M [i, 1]] + M [i, 0]× v[M [i, 2]]
end for

2.2.2 Compressed row (CRS) and Compressed column (CCS)

Two even less space demanding representations of a sparse matrix are Compressed Row
Storage (CRS) and Compressed Column Storage (CCS) [3, 12]. Similar to COO, only
the non-zero elements are stored, still using O(nnz) space. However CCS and CRS
reduces the space used to store the coordinates. By sorting the elements in the COO-
representation on either row (CRS) or column indices (CCS), one of the coordinate
vectors can be reduced to size n or m, respectively. This gives a total space usage of
2× nnz + m (or n).

In the CCS representation, the numerical values are stored in an array A, sorted on
which columns the elements belong to. An array, JA, that holds the corresponding row
for each element. These are both of length nnz. The third array IA, is only of size
m + 1. It contains information specifying at what positions in A and JA each column is
located. Elements belonging to column i starts at position IA[i] and ends at the position
before IA[i+1]. Because all elements must belong to a column, we know that IA[0] = 0
and IA[m] = nnz. An example using CCS representation is shown in Figure 2.4. For
CRS, the numbers are sorted by rows, A still holds the elements, JA the corresponding
column, and IA holds the indices where each row starts and stops. An example using
CCS representation is shown in Figure 2.5.

For most instances CRS and CCS representations will use less space than the COO
representation. In fact, the size of n or m can be so small compared to nnz that a ma-
trix using CCS or CRS representation may only use about 2/3 of the space it would have
used with a COO representation. The CRS and CCS representations are also usually
more efficient in terms of execution speed since more data movements will also affect
the amount of time used [3].

The SMvM algorithms (ALG 3, ALG 4) using CRS or CCS-representations iterates over
either the rows or the columns. For each row or column, the algorithms iterates over
the elements of that row or column and multiplies it with the corresponding value from

Chapter 2. Fundamentals 12

A:
(
1, 4, 2, 6, 8, 3, 5, 7

)
JA :

(
0, 1, 0, 2, 3, 0, 1, 2

)
IA :

(
0, 1, 2, 4, 5, 7, 9

)
Figure 2.4: CCS representation of M (Figure 2.2)

A:
(
1, 2, 3, 4, 5, 6, 7, 8

)
JA :

(
0, 2, 4, 1, 4, 2, 5, 3

)
IA :

(
0, 3, 5, 7, 8

)
Figure 2.5: CRS representation of M (Figure 2.2)

the input vector and adds the result into its correct place in the output vector.

Algorithm 3: SMvM algorithm using CRS-representation
Data: M a sparse matrix of size m× n stored in CRS format, v an input vector of

length n

Result: w the result vector of length m

set all indices in w to 0
for i← 1 to m do

for j ← IA[i] to IA[i + 1] do
w[i]← w[i] + A[j]× v[JA[j]]

end for
end for

Algorithm 4: SMvM algorithm using CCS-representation
Data: M a sparse matrix of size m× n stored in CCS format, v an input vector of

length n

Result: w the result vector of length m

set all indices in w to 0
for i← 1 to n do

for j ← IA[i] to IA[i + 1] do
w[JA[j]]← w[JA[j]] + A[j]× v[i]

end for
end for

Chapter 2. Fundamentals 13

2.3 Parallel SMvM

Parallel SMvM algorithms, using SMPP, have to divide the work between the threads.
For most implementations this is done with a parallel loop. When using CRS–representation,
a parallel algorithm can be constructed by simply doing the iteration over the rows in
parallel, as shown in ALG 5. Since the result for each row is stored into a unique position
of the output vector there will be no write conflicts.

For CCS- and COO representations however, parallelization is not so easy. Simply
iterating over the columns (CCS) or over the elements (COO) in parallel can lead to
problems. Since several threads might want to write into the same location, write con-
flicts may occur. How to handle write conflicts and other challenges for parallel SMvM
algorithms are covered in the next chapter.

Algorithm 5: Parallel SMvM using CRS-representation
Data: M a sparse matrix of size m× n stored in CRS format, v an input vector of

length n

Result: w the result vector of length m

set all indices in w to 0
for i← 1 to m do in parallel

t← 0 //local temporary variable t

for j ← IA[i] to IA[i + 1] do
t← t + A[j]× v[JA[i]]

end for
w[i]← t

end for

Chapter 3

Challenges in Parallel Sparse
Matrix-vector multiplication

There are a number of challenges that must be solved when designing efficient parallel
SMvM algorithms. Not doing so may lead to inefficient computations or even errors.
Some of these are specific to parallel algorithms, while others are also relevant to sequen-
tial SMvM. In this chapter, some of the most important challenges for parallel SMvM
are presented. Furthermore, we discuss different solutions and some of the consequences
of using these.

 Cache line

Thread 1 Thread 2

Figure 3.1: Two threads reading from same cache-line, leading to false sharing.

15

Chapter 3. Challenges in Parallel Sparse Matrix-vector multiplication 16

3.1 Conflicts

In shared memory parallel programs, different threads will from time to time try to
access the same memory simultaneously. This can lead to conflicts between the threads.
For most matrix representations, a parallel SMvM algorithm divides the elements of the
matrix strictly between the threads, giving no (apparent) conflicts on the matrix itself.
However, depending on the representation, threads will access the same memory slots
on either the input vector, output vector, or both.

3.1.1 False sharing

When a processor requests access to a memory slot, it will, on most systems, load the
whole cache line specified memory slot is on. This is justified by the fact that the next
memory slot needed is most likely nearby the current one and therefore the number of
load operations can be reduced. In a sequential program this gives few, or no problems,
and will most likely make the program more efficient. In a parallel program, however,
false sharing occurs.

False sharing happens when two (or more) threads asks to access different memory
slots that are on the same cache line, as shown in Figure 3.1. When thread 1 updates
one memory slot, the cache line stored in local cache of thread 2 will have to be updated
or invalidated. Even though thread 2 may never access the memory slot changed by
thread 1. The same effect can happen when thread 2 updates a memory slot, in which
case the cache line loaded by thread 1 must be updated or invalidated. This can go back
and forth and may have huge negative effects on performance [1].

In SMvM, false sharing occurs when threads are writing to the output vector. How
frequently this happens is dependent on the structure of the matrix, the matrix repre-
sentation, and the distribution of work. Since the amount of false sharing is dependent
on so many factors, it is hard to eliminate. However, we can use techniques that tries
to keep the threads from accessing memory close by each other, thus reducing it.

3.1.2 Write conflicts

For algorithms using the CCS and COO representations false sharing is not the only type
of conflict we have to deal with. These algorithms also have to handle write conflicts.
These are a much more severe problem as they can lead to non-deterministic execution
and incorrect solutions.

Chapter 3. Challenges in Parallel Sparse Matrix-vector multiplication 17

Thread 1

Thread 2

Input vector

output5

6
2

13

4

Write conflicts can occur when threads behave in the following way:

1. Thread 1 reads the original value, org, from output vector.

2. Thread 2 reads the original value, org, from output vector.

3. Thread 1 adds its value to the original value, creating a new output value, out1.

4. Thread 2 adds its value to the original value, creating a new output value, out2.

5. Thread 1 overwrites the original value in output vector with out1.

6. Thread 2 overwrites out1 in output vector with out2.

Figure 3.2: Illustration of a write conflict

A write conflict occurs when two (or more) threads try to write to the same mem-
ory slot at the same time. When a thread shall write new information into a memory
slot, as in the output vector in SMvM, this usually happens in three steps. It copies the
value from memory, next it manipulates the copy, and finally writes the manipulated
copy back into the memory slot, thus overwriting the original value. If two threads tries
to do this simultaneously, the new value created by one of the threads can be overwritten
by the other, as shown in Figure 3.2. This means that write conflicts can lead to errors
in the computation and furthermore may lead to incorrect and non-deterministic results
overall.

With CCS-representation a parallel SMvM algorithm will distribute the matrix to the
threads by giving them unique columns. This also gives the threads unique parts of the
input vector to work on, however they have to share the output vector. This can lead
to write conflicts.

Chapter 3. Challenges in Parallel Sparse Matrix-vector multiplication 18

There are a couple of ways to handle write conflicts, all with disadvantages that must
be taken into account.

• One way is to have one lock on each of the elements of the output vector. A lock
will only allow one thread to work on a slot at a time. Only when a thread has
released the lock, can other threads write to the memory slot. The use of locks
makes threads wait their turn to access specific memory slots, thus potentially
creating bottlenecks. It also takes time to create, acquire, and release locks. In
OpenMP locks can be implemented with an atomic operation. ALG 7 and ALG 6
are CCS- and COO-algorithms using locks on the output vector.

• Another technique is to let each thread write its partial solution into a private
storage. When all the threads are finished, the partial solutions are merged to-
gether to form a final solution. This eliminates the locks and the bottlenecks they
may create. However, an extra step is used to merge together the partial solu-
tions. This requires more space, proportional to the number of threads, possibly
reverting the speed-up. The use of this technique is shown in ALG 8.

• A third way of avoiding write conflicts is to schedule the threads such that they
never write into the same position at the same time. This avoids using locks and
does not need an extra step for merging solutions. However, it has other potential
problems. To achieve such a scheduling, a preprocessing step is needed. The
preprocessing of data is potentially a heavy and time consuming step, depending
on the algorithms used and the structure of the matrix. The original structure of
the matrix may also be altered, possibly affecting the efficiency of the algorithm.

Algorithm 6: Parallel SMvM algorithm using COO-representation
Data: M a sparse matrix of size m× n stored in COO format, v an input vector of

length n
Result: w, an output vector of length m

set all indices in w to 0
for i← 1 to nnz do in parallel

w[M [i, 1]]← w[M [i, 1]] + M [i, 0]× v[M [i, 2]] //Atomic Operation
end for

Chapter 3. Challenges in Parallel Sparse Matrix-vector multiplication 19

Algorithm 7: Parallel SMvM using CCS-representation with locks on the write oper-
ation.
Data: M a sparse matrix of size m× n stored in CCS format, v an input vector of

length n

Result: w the result vector of length m

for i← 1to n do in parallel
t← v[i] // store value in temporary variable
for j ← IA[i] to IA[i + 1] do

w[JA[j]]← w[JA[j]] + A[j]× t //Atomic Operation
end for

end for

Algorithm 8: Parallel SMvM using CCS-representation writing into private out vectors.
Data: M a sparse matrix of size m× n stored in CCS format, v an input vector of

length n, wt a two dimensional vector where each thread stores its partial
solution

Result: w the result vector of length m

numThreads← total number of threads
for i← 1 to n do in parallel

ID ← id of thread
t← v[i]
for j ← IA[i] to IA[i + 1]− 1 do

wt[ID][i]← wt[ID][i] + A[j]× t

end for
end for
for i← 1 to n do in parallel

t← 0
for j ← 0tonumThreads do

t← t + wt[j][i]
end for
w ← tv

end for

Chapter 3. Challenges in Parallel Sparse Matrix-vector multiplication 20

3.2 Even work load

To have even work load is an important aspect in parallel programming [1]. At the end
of a parallel step or at a point where the threads must synchronize, all threads have to
wait until the last one has finished. With an even work load, threads should finish at
about the same time, reducing the time they are waiting.

For SMvM-algorithms, the distribution of work is done in one of two ways. Either
as a distribution of rows or columns (depending on if CRS or CCS representation is
used) or as a distribution of non-zero elements.

3.2.1 OpenMP scheduling techniques

The basic parallel SMvM algorithms using CRS or CCS representations divides the work
to the threads in their parallel for-loops. The division of work is done by allocating rows
or columns to the threads, and then the threads do their allocated work. The technique
used in the parallel loop controls in what way the scheduling is done. In OpenMP there
are three main scheduling techniques, static, dynamic, and guided [10][11].

static For the basic algorithms using CRS or CCS representations, this means that
each thread gets (almost) the same number of rows or columns to work on. This
division gives a potential problem if we want an even work load. It takes no regard
to the density of the rows or columns. In other words, the structure of the matrix
is very important for how good this division is.

dynamic Given that the number of rows or columns (n or m) is much greater than the
number of threads (p), the structure of the matrix should not be as important for
this scheduling. Threads with heavy work load will not be allocated more work
until they are finished, and thus we can expect the threads to get a more even
work load. The on-the-go allocating of work however may be costly.

guided As with the dynamic scheduling, we can expect a more even work load than
with static scheduling. Also, like dynamic scheduling, we can expect a certain
cost due to the on-the-go allocation, but it may not be as high as with dynamic
scheduling, since there are fewer chunks to be allocated.

Chapter 3. Challenges in Parallel Sparse Matrix-vector multiplication 21

3.2.2 Distribute on number of non-zero elements

Except for the COO-algorithm, which iterates over a list of the non-zero elements, the
OpenMP scheduling techniques gives no guarantee of an even work load. Dynamic
scheduling, which we might suspect to give an even work load, will probably be slowed
down by non-consecutive data and on-the-go allocation.

Preprocessing the data might give a better distribution. Ideally each thread should
be allocated nnz

p elements, but this might be very hard if some rows or columns are
denser than others. So the preprocessing must look for another good distribution. This
can for instance be made by a scheme similar to min-makespan [2].

The min-makespan problem is given n jobs, j1, j2, . . . , jn of varying sizes that are to
be scheduled on m identical machines. The goal is to distribute the jobs such that the
machine with the heaviest work load gets as little work as possible. This problem is
almost identical to what we are aiming for. Unfortunately the min-makespan problem
is NP-hard [2]. However, there are several approximation algorithms for this problem,
that can be efficiently used for the distribution of rows or columns to threads. This is
discussed further in Chapter 5.

3.3 Cache efficiency

In most systems, when a processor needs to access an memory slot, it loads in the
whole cache line into memory [1]. The load operation has a certain cost, so it is impor-
tant to utilize the cache line as much as possible is important to get an effective program.

In SMvM algorithms there are three memory slots a processor needs at the same time,
one from the input vector, one from the matrix and one from the output vector. This
means that we can expect that three cache lines are loaded into local memory. These
should be handled efficiently. The CRS-, CCS-, and COO-representations all access el-
ements in the matrix consecutively, thus giving optimal cache efficiency. However, the
structure of the matrix dictates how efficiently the cache lines from the input and output
vectors are used. If the matrix has an unfortunate structure, the algorithms will “jump”
back and forth in the input or output vector. This will force the algorithm to load new
cache lines after only using one or a few elements.

A much used solution to make SMvM algorithms more cache efficient, is to restruc-
ture the matrix so that the cache lines are utilized more efficiently [3]. The main idea

Chapter 3. Challenges in Parallel Sparse Matrix-vector multiplication 22

1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1

Figure 3.3: Arrowhead matrix of size 7× 7

is to make some sections of the matrix denser, while others are sparser or empty. This
makes the use of cache lines loaded for the dense parts more efficient, while fewer or non
cache lines are loaded for the rest of the matrix.

Another way to improve cache efficiency is to change the way the matrix is iterated.
One example of this is the CRS zig-zag algorithm, presented in Yzelman & Bisseling
[4]. Different techniques to increase cache efficiency presented and further discussed in
Chapters 4 and 6.

3.4 Unfortunate structured matrices

All the other mentioned challenges for parallel SMvM are in some degree dependent on
the structure of the matrix being worked on. A matrix with an unfortunate structure is
a matrix that in a large degree creates one or more of the problems.

One example of a possible unfortunate matrix is a random matrix. Although a ran-
dom matrix is easy to distribute evenly, it creates conflicts and is inefficient with regard
to cache use. The conflicts comes from the fact that there is no structure that ensures
the threads to work on memory slots with a certain distance. They are also inefficient
with regard to cache use, as the probability of consecutive elements needing data from
the same cache line is 1

O(n) . Random matrices may be handled or restructured to reduce
these problems. In Chapter 6. an algorithm that increases cache efficiency, especially
on random matrices, is presented.

An other example is an arrowhead matrix. An arrowhead matrix, shown in Figure
3.3, has non-zero elements on the diagonal and on one row and one column. This cre-
ates problems for both CRS and CCS representations, as distributing work by rows
or columns will give uneven work load. How different SMvM algorithms behave on
arrowhead matrices are discussed in Chapter 5.

Chapter 4

Previous Work

Sparse matrix vector multiplication is a well studied field and much work has been done
to improve the performance of SMvM-algorithms. This chapter introduces some of the
previous work done in this field, mostly focusing on research on efficient cache use and
how to avoid write conflicts. It also presents some work done on graph colouring algo-
rithms, as this is used to improve CCS-algorithms.

Matrix representations using less space than the standard is an improvement to SMvM-
algorithms. These include the COO, CRS and COO representations presented in Chap-
ter 2. Blocked CRS (BCRS) is also much used. BCRS stores the matrix in small boxes,
where each box is treated like a dense matrix [12]. This representation is, amongst
others, used in Vuduc and Moon [6], where the matrix is divided into several matrices
with different block sizes. Other representations include Compressed Diagonal Storage,
Jagged Diagonal Storage and Skyline Storage [12, 17].

Most of the work done to improve parallel SMvM includes some sort of preprocess-
ing step. This involves processing the matrix such that it is handled more efficiently
by the SMvM algorithm. To justify the extra cost of a preprocessing step, it is often
pointed out that SMvM is often applied iteratively using the same matrix in many com-
putations. One example is its use in iterative methods for solving linear equations [13].
Here a number of SMvM are preformed, building an increasingly better approximate
solution.

23

Chapter 4. Previous Work 24

4.1 Efficient cache use

CRS representation is much used for parallel SMvM algorithms. Unlike the CCS rep-
resentation it does not create write conflicts, thus the focus on improvements has been
elsewhere. There has especially been preformed quite a lot work on efficient cache use.

4.1.1 Enlarge dense blocks

To use of a cache line efficiently, the work load on it should be significantly higher than
the time used to load it into memory. For SMvM algorithms this means that dense
sections of the matrix are more cache efficient than the sparse ones. Pinar and Heath,
[5],propose a modification to the basic CRS algorithm. By adding a fourth vector, which
holds the start index of contiguous sections, the algorithm knows when it should load a
new block. This may reduce the number of load operations, but it adds another loop to
the algorithm.

Pinar and Heath also discus the idea of reordering the matrix to increase the con-
tiguous sections and point to previous work done on the field. As reordering the matrix
optimality is known to be NP-hard, heuristics must be used for practical solutions. They
observe that the problem can be seen as closely related to the Travelling Salesman Prob-
lem. Since this is a heavily studied problem, many heuristics are available, and similar
ones can be used.

Their experiments confirm increased efficiency of exploiting the dense, contiguous blocs.
The results gives improvements of up to 33% and an average of 21% improvement. These
results are also shown to be better than previous work in the field.

4.1.2 Restructuring and Reordering to reduce cache miss

For sparse matrices the efficiency of the cache use is very dependent on the structure
of the matrix. Therefore it is not surprising that a lot of the work done to increase the
efficiency of cache use consists of partitioning or reordering the matrices.

In Yzelman and Bisseling [4], introduces a method to reduce cache misses and increase
work on cache lines. This is done by permuting the matrix into a Separated Block Di-
agonal (SBD) form, which can give an upper bound on the number of cache misses.

To efficiently work on matrices on SBD form, Yzelman and Bisseling give a new, more

Chapter 4. Previous Work 25

The red section is Nc after the first partitioning, the blue and green lines are Nc after
the second partitioning and the yellow sections are the created blocks.

Figure from [4].

Figure 4.1: Illustration of SBD matrix

cache efficient variant of the CRS-algorithm, called CRS-zig-zag. Instead of reading each
row from left to right, CRS-zig-zag alternates, reading the first line from left to right
and the next from right to left. This means that the cache line from the input vector
that is already in memory at the end of a row can be used at the beginning of the next.
They argue that this reduces the number of cache misses on a dense row from O(n), to
O(n− L), where n is the length of the row and L is the number of cache lines.

Permuting the matrix to SBD form is done recursively. The matrix A is modelled
as a hyper-graph H = (V, N), where V is the set of columns in A and N is the set of
hyper-edges, each corresponding to a row in A. A partitioning of V into V1 and V2 is
made and N is divided into three parts. The division of N is according to it having ver-
tices in V 1 (N+), V 2(N−) or both(Nc). This is applied recursively on V1 and V2. Figure
4.1 show a matrix on SBD form after two recursive steps. Optimally p = n

wL , where
w is the length of a cache line and p is the number of parts created by the recursion.
Yzelman and Bisseling argue that by setting p→∞ the same bound will be reached.

In the experiments p is limited to at most 400, as p→∞ or even p = n would make the
permutation extremely expensive. The results shows considerable speed-up for some ma-
trices during SMvM. However, for matrices that already have a cache-friendly structure,
the results show little speed-up or even slow-down.

Chapter 4. Previous Work 26

4.2 Avoiding write conflicts with CCS-algorithms

Write conflicts is the most severe problem for CCS-algorithms and sets them at a dis-
advantage compared to CRS-algorithms. In the paper “Parallel sparse matrix vector
multiplication” by Azad and Pothen[7], it is discussed whether it is possible to eliminate
this problem by preprocessing the data.

They introduce different techniques for handling write conflicts for CCS–algorithms,
compares different solutions to the run times achieved by a basic CRS-algorithm, which
does not encounter write conflicts, and discusses the results and how they compare to
the CRS–algorithm.

4.2.1 Basic solutions

Azad and Pothen give two basic algorithms that use the CCS-representation and one that
uses CRS-representation. These algorithms are similar to CCS with locks (CCS-locking,
ALG 7), CCS with private storage (CCS-private, ALG 8), and the CRS-algorithm (ALG
5). The two CCS-algorithms use different schemes to avoid write conflicts CCS-locking
uses locks or atomic operations when writing into the output vector, thus only letting
one thread write to a memory slot at any given time. CCS-private avoids using locks by
letting each thread write into a private output vector and then adds the output vectors
together in a second parallel step.

4.2.2 CCS with colouring

To let CCS-algorithms avoid handling write conflicts, Azad and Pothen introduce the
idea of colouring the columns in a preprocessing step. The colouring is applied to the
columns such that two columns have different colour if they have a non-zero element in
the same row. All columns with the same colour can update the output vector simulta-
neously without causing any write conflicts. This is because the union of the columns
with the same colour has at most has one element in each row, and thus at most one
element for each position of the output vector.

They gives four scheme to handle the coloured columns, gradually working towards one
that can compete with the running times achieved by the basic parallel CRS algorithm.

• The first algorithm iterates over the colours, and it enters a parallel section for
each colour. It then iterates over all the columns in a parallel loop using an

Chapter 4. Previous Work 27

if statement to test whether or not each column has the current colour. This
algorithm is inefficient as all the columns are iterated over for each colour.

• To increase efficiency, the second algorithm eliminates the full iterations for each
colour. This is done by using two extra vectors, colorColumn storing the indices
of the columns, sorted on the colours, and colorColumnPtr storing the starting
index for each colour in colorColumn. The algorithm iterates over colorColum-
nPtr, entering a new parallel step for each colour. In each parallel step it iterates
over the columns with the current colour. This means that each column is only
accessed once. This algorithm is more efficient, but there is still a problem that
the algorithm accesses the columns non-consecutively.

• The third algorithm uses colorColumn and permutes the matrix such that coloumns
with the same colour are stored together in the matrix. The iteration over color-
ColumnPtr now lets us access the columns that are stored consecutively, increasing
the efficiency.

• For the last algorithm (ALG 9) the input vector is permuted in the same way
as the columns, increasing the efficiency further. This algorithm is referred to as
CCS-col.

Algorithm 9: CCS + Colouring 4 (CCS-col)
Data: M a sparse matrix of size m× n stored in CCS format, v an input vector of

length n, color a vector of length n storing the colours of each column
Result: w the result vector of length m

numColour ← the number of distinct colours
M ′ ← Column permutation of M such that columns with the same colour stay
together. (M ′ is made of A′, IA′ and JA′, permuted versions of A, IA and JA.)
v′ ← permutation of v such that indices with the same colour are ordered
consecutively.
colorColumnPtr ← a vector of size (numColour + 1) where the ith entry stores the
starting index of columns with colour i
for col← 1 to numColour do

for j ← colourColumnPtr[col] to (colourColumnPtr[col + 1]− 1) do in parallel
t← v′[j]
for i ← IA’[j] to IA’[j+1] do

w[JA′[j]]← w[JA′[j]] + A[j]× t

end for
end for

end for

Chapter 4. Previous Work 28

Matrix Dimention # Non Zero Elements
af shell10 1.5M 52.7M
boneS10 0.9M 55.5M
cage14 1.5M 27.1M
cage15 5M 100M
random 5M 100M
Hamrle3 1.4M 5.5M
HV15R 2M 283M
nlpkkt 240 28M 775M

Table 4.1: Matrices used in AP12

Azad and Pothen give timings using the eight sparse matrices, shown in Table 4.1.
The results show that CCS-col is faster than CCS-locking, even though CCS-locking
sometimes scales better. The results obtained by CCS-private are closer to CCS-col
when using few threads and sometimes even faster. However, when the number of
threads increases above 8 or 16, CCS-private stops giving speed-up and the run times
increases, giving CCS-col an advantage. The results also show that CCS-col is still not as
fast as the CRS-algorithm, but the difference in performance is smaller when the matrices
are denser. They argue that this is due to more potential write conflicts for the basic
CCS-algorithms compared to the CRS-algorithm and CCS-col. The general performance
difference between the two algorithms is explained with the fact that a restructuring of
the matrix will destroy its structure and subsequently the use of consecutive information
is reduced.

Chapter 4. Previous Work 29

 Rows Columns

The graph represents matrix M , shown in Figure 2.2, colouring applied by either of
ALG 10 or ALG 11.

Figure 4.2: Distance-2 colouring on a bipartite graph.

4.3 Colouring algorithms

Azad and Pothen introduces colouring of the columns to avoid write conflicts for SMvM
with CCS-representation. However, the efficiency of CCS-col is dependent on which
colouring algorithm it uses. A good colouring algorithm for parallel SMvM will use
few colours, thus reducing the number of parallel steps. Moreover, with few colours we
can expect there to be enough work in each colour class to justify a parallel step. The
colouring of columns in a matrix can be seen as the same problem as a graph colouring.
One can view the columns as vertices where there is an edge between two columns if they
have an element on the same position. A colouring is legal iff two neighbouring vertices
have different colour. In Azad and Pothen, the colouring is viewed as a distance-2
colouring on a bipartite graph. The columns are on one side and the rows on the other.
If a column i has a non-zero element in position j, there is an edge between column
vertex i and row vertex j. An example is shown in Figure 4.2.

To achieve a colouring using few colours, we can look at the min-colouring problem. This
problem takes as input a graph and gives a colouring of the vertices, using the minimum
possible amount of colours. However, min-colouring on general graphs is NP-hard [2].
So computing an optimal solution to either problem will take a very long time when the
datasets are large. Thus a faster, but non-optimal algorithm must be used. Azad and
Pothen does not mention what colouring algorithm is used, but we can assume that this
is some approximation algorithm or a non-optimal heuristic.

Chapter 4. Previous Work 30

4.3.1 Greedy Graph Colouring

One fast graph colouring algorithm is the greedy algorithm, shown in ALG 10. It
starts with the first colour, iterates over all the vertices, and applies the colour to every
uncoloured vertex that does not have a neighbouring vertex with this colour. The
algorithm repeats the iteration, with a new colour every time, until all the vertices have
been coloured.

Algorithm 10: A greedy graph colouring algorithm
Data: G(V,E), a graph G with vertices V and edges E
Result: colour, a vector that hold the colours of the vertices

currColour ← 1
all indices in colour are set to −1
while ∃v ∈ V where colour(v) = −1 do

for all v ∈ V where colour(v) = −1 do
if ∀w ∈ N(v) has colour(w) 6= currColour then

colour(v)← currColour

end if
end for
currColour ← currColour + 1

end while

4.3.2 Greedy distance-2 colouring

Another possible algorithm is to use a greedy distance-2 colouring algorithm for bipartite
graphs. Such an algorithm is shown in ALG 11, and is based on a general greedy distance-
2 colouring [8]. It iterates over the column vertices, and for each column vertex v, it
iterates over the neighbouring row vertices. Each of the row vertices then iterates over
their already coloured neighbouring column vertices, and set the colours of these to be
unavailable for v. After deciding which colours are unavailable, v is coloured with the

Chapter 4. Previous Work 31

lowest available colour.

Algorithm 11: A greedy distance-2 colouring algorithm
Data: G(V1, V2, E), a bipartite graph with vertices V1 and V2 and edges E,

forbiddenColours, a vector of size n

Result: colour, a vector that holds the colouring of V1

Initialize forbiddenColours with some value a /∈ V1 ∪ V2

for all v ∈ V1 do
for all w ∈ N(v) do

for each coloured vertex x ∈ N(w) do
forbiddenColors[colour[x]]← v

end for
end for
colour[v]← min { c > 0 : forbiddenColors[c] 6= v }

end for

Chapter 5

Even Work Load

In this chapter the importance for parallel SMvM algorithms to have an even work
load is discussed. A preprocessing technique that improves the distribution of work
on the CRS-algorithm, compared to the scheduling schemes in OpenMP is introduced.
Moreover, how to achieve an even work load on matrices with an unfortunate structure
is discussed. From this, an argument that the COO-algorithm may be the best choice
is made, even though it uses more memory.

n = 28M nnz = 775M

Figure 5.1: Matrix, nlpkkt 240

33

Chapter 5. Even Work Load 34

5.1 Improved distribution in CRS-algorithms

In Chapter 3, it is argued that the different scheduling techniques in OpenMP all have
negative issues when distributing rows or columns in a parallel SMvM algorithm. Non
of the techniques give a guarantee of an even work load. Furthermore, dynamic and
guided scheduling will possibly also suffer from tthe on-the-go allocation. It is argued
that a preprocessing step which allocates the rows or columns evenly could give a more
even distribution.

The min-makespan problem is introduced as a similar problem to the distribution of
rows or columns in parallel SMvM. However, since min-makespan is NP-hard, an ap-
proximation algorithm or heuristic must be used.

5.1.1 Approximation to min-makespan

In the min-makespan problem, we are given a set of m machines, M1, M2, . . . , Mm and
a set of n jobs, j1, j2, . . . , jn. Each job has a processing time tj . The task is to distribute
the jobs to the machines such that the machine with highest total processing time is as
low as possible.

The greedy approximation to min-makespan iterates over the jobs, and allocates each
job to the machine with the current lowest work load. This is a 2-approximation [2],
i.e. the approximation is proven to give a solution at most twice as large as the optimal
solution. By saying that the p threads are machines M1, . . . , Mp, the rows or columns
are jobs and tj is defined by the number of non-zero elements on a row or column, it is
possible to apply the greedy approximation directly. Thus we can guarantee that the
heaviest thread has c ≤ 2OPT non-zero elements, a guarantee that non of the OpenMP
techniques could give. However, using the greedy approximation algorithm will probably
give each thread non-consecutive rows or columns. Thus we are still facing one of the
problems of dynamic scheduling.

5.1.2 Allocating consecutive data to threads

What we want is an approximation algorithm or heuristic that gives a good distribu-
tion, but also gives each thread consecutive rows or columns. We know that the optimal
solution to min-makespan, OPT , is bounded by nnz

p ≤ OPT ≤ nnz. This bound also
holds for distribution of consecutive rows or columns. We define c highest number of
non-zero elements we can allocate to a thread. Then we can do a search for a c as low as

Chapter 5. Even Work Load 35

p CRS static CRS dynamic CRS guided CRS binary search basic COO
8 3.9M 1M 17M 100 0

16 2.7M 2.4M 9M 100 0
32 2M 1.4M 9M 200 0

Table 5.1: Difference in number of elements between lightest and heaviest thread on
nlpkkt 240

possible. A good way to do this is using binary search; we guess c, and greedily try to
allocate consecutive rows or columns into p sets, such that each set has at most a total
of c non zero elements. If it works, we reduce c, if not we increase c, and try again. We
do this until we find the smallest possible c that gives a feasible solution.

The distribution given by the binary search for c is probably better than, or at least as
good as, the distributions made by the OpenMP scheduling techniques. Furthermore,
since the rows or columns are allocated consecutively and the structure remains the
same, run times on SMvM algorithms may be better. Table 5.1 shows the difference in
number of non-zero elements allocated to threads with different scheduling techniques
on the matrix nlpkkt 240, from Figure 5.1. We see that the distribution created by
the binary search is almost completely even (on nlpkkt 240), and much better than the
distributions given by the OpenMP scheduling techniques.

5.2 Arrowhead matrices - Can COO-representation be the
fastest?

For parallel SMvM algorithms using CRS or CCS representation, how the elements are
distributed to the threads is almost always dependent on the structure of the matrix.
For matrices with a unfortunate structure, for instance an arrowhead matrix like de-
launay n24, (Figure 5.2), this can lead to large differences in the work load between
the threads. To have an even distribution one may need to split a row (for CRS) or
a columns (for CCS) between two or more threads. This is a problem for CRS and
CCS representations, which only stores the start index of the rows or columns to reduce
memory used.

For the COO-representation, however, there is no structural problem with splitting a
row or a column between threads. In fact, the parallel COO-algorithm (ALG 6), most
likely, will do this. This algorithm, like the basic CRS and CCS-algorithms, divides the
work using the OpenMP scheduling techniques. But unlike the CRS- or CCS-algorithm,
it iterates over the elements. This leads it to ignore the rows or columns and their
possible difference in density will not affect the distribution.

Chapter 5. Even Work Load 36

n = 16.8M nnz = 100M

Figure 5.2: An arrowhead matrix, delaunay n24

Even though the parallel COO-algorithm fives an even distribution of elements, it will
still run into other problems. Write conflicts will most likely occur, and the COO-
representation will use up to 50% more space than CRS or CCS- representations. How-
ever, for matrices with a unfortunate structure, these problems may be small compared
to dividing the work evenly.

5.2.1 Distribution of elements

The parallel COO-algorithm always distributes the elements evenly. But for matrices
with an easy to handle structure, like nlpkkt 240 (Figure 5.1), the distribution of ele-
ments can be quite good for other scheduling techniques as well (Table 5.1). Even though
CRS with guided scheduling gives a difference of 17M elements between heaviest and
lightest thread, this is only a little more than 2% of the total number of elements. For
CRS with binary search, there is almost no difference in the work assigned to the threads.

For arrowhead matrices however, like delaunay n24 (Figure 5.2), the distribution of
the OpenMP techniques and the binary search. Table 5.2 shows the difference between
the heaviest and the lightest loaded thread for different scheduling techniques for this
matrix. It shows that static scheduling gives a difference of over 30M for all p ≥ 2. This
represents over 30% of the total number of elements. Furthermore, for p = 32 (at least)
one thread has approximately 10× as many elements than it would have with a perfect

Chapter 5. Even Work Load 37

p CRS static CRS dynamic CRS guided CRS binary search basic COO
1 0 0 0 0 0
2 34M 8M 4M 38 0
4 34M 20M 17M 11M 1
8 33M 20M 17M 16.7M* 1

16 33M 17M 17M 16.7M* 1
32 33M 17M 17M 16.7M* 1

*All elements allocated to six threads.
Table 5.2: Difference in number of elements between lightest and heaviest thread on

delaunay 24

distribution. The other scheduling techniques are not much better. CRS with binary
search, distributes all elements to the six first threads. This gives no justification of
higher degrees of parallelism. The basic COO-algorithm, however, still distributes the
work load perfectly, and we may expect it to be the best algorithm.

Chapter 6

Efficient Cache Use

Much work to improve parallel SMvM with CRS-representation is done with regard to
cache efficiency. Both Pinar and Heath [5] and Yzelman and Bisseling [4] introduces
preprocessing techniques that restructure the matrix in order to reduce the number of
cache lines loaded and do more work on them when loaded. Moreover, in Yzelman and
Bisseling, the CRS-zig-zag algorithm is introduced, an algorithm that increases cache
efficiency by altering the iteration over the elements in the matrix. In this chapter a new
idea to increase cache efficiency is introduced. By combining the iteration and structure
used by the different parallel SMvM algorithms, we discuss a possibly more cache effi-
cient algorithm.

The basic parallel CRS-algorithm (ALG 5) iterates over the rows in parallel. For each
row, it stores into one specific location on the output vector, but it might read elements
from the whole input vector. This gives a potential O(n

w) cache lines to load for each
row, where w is the length of the cache line. In total the program might load cache lines
from the input vector O(n

w×m) times. The CRS-zig-zag reduces this somewhat, but the
number of cache lines read from the input vector is still high [4].

6.1 A hybrid between CRS and CCS representations

The basic parallel CCS-algorithm (ALG 7) works much like the CRS-algorithm, except
it iterates over columns instead of rows. Thus there is inefficient cache use on the out-
put vector, instead of the input vector. This may also cause write conflicts. However, a
hybrid representation using both elements from the CRS and the CCS-representations
may remove the write conflicts and give the parallel SMvM better cache efficiency.

39

Chapter 6. Efficient Cache Use 40

Input vector

O
u
t
p
u
t

v
e
c
t
o
r

p1

p2

p3

p4

p5

p6

Each thread, p1 . . . p6, is allocated a number of rows. Then each thread sorts its
allocated elements by column index, and locally does a CCS-algorithm.

Figure 6.1: Illustration of the parallel hybrid SMvM algorithm

By distributing the rows like in a CRS-algorithm and letting each thread run the CCS-
algorithm locally, each thread only needs to load each cache line from the input vector
once. Moreover, there are no write conflicts, as each thread writes into a unique part of
the output vector. The hybrid algorithm may still have to load a new cache line from
the output vector for each element. However, each thread will only write into a unique
consecutive part of the output vector, of approximate size n

p . Thus, the probability that
two consecutive elements needs the same cache line from the output vector is higher
than with the CCS-algorithm. This is especially true for random matrices, where the
probability that two consecutive operations writes to the same cache line on the output
vector increases from 1

O(n) (with CCS) to 1
O(n

p
) (with hybrid). An illustration of the

hybrid algorithm is shown in Figure 6.1.

Chapter 5 presented a CRS-algorithm where each thread is allocated a set of consec-
utive rows in a preprocessing step. Using this preprocessing it is possible to continue
to sort the non-zero elements allocated to each thread by the columns. However, this
preprocessing requires an alteration to the matrix representation, as the elements are
now sorted on row indices globally and column indices locally.

6.2 COO-representation with CRS-CSS-hybrid iteration

The CCO-representation holds both the column and row coordinate for every non-
zero element. Thus it is easy to sort and restructure. This means that using COO-
representation will let us easily implement the hybrid algorithm.

Chapter 6. Efficient Cache Use 41

The regular parallel SMvM algorithms using COO-representation may run into prob-
lems. However, most of these should not occur here. Since the hybrid algorithm has
control over which rows that are allocated to each thread, it will mostly have to han-
dle the same problems as the CRS-algorithm. The only problem that remains is the
increased use of storage, which may be as much as 50% more.

The increased use of storage may in some cases prove the hybrid algorithm to be worse
than the CRS-algorithm, since there is a higher amount of data movement [3]. However,
for the efficiency on the cache lines, the hybrid algorithm will probably be better, and
possibly so much that the extra storage is worth the cost. Thus, how the hybrid- and
CRS-algorithms compare will depend on the structure of the matrix.

Chapter 7

Improving CCS with colouring

In Azad and Pothen [7], colouring of the columns is presented as a way to avoid write
conflicts for parallel SMvM algorithms using the CCS-representation. Even though using
CCS with colouring (ALG 9) yields better results than the other two CCS-algorithms
(ALG 7 and ALG 8), it is still shown to be slower than the CRS-algorithm. However,
as we briefly mentioned in Chapter 1, the dimension and structure of certain matrices
may favour the CCS representation.

In this chapter we introduce and discuss some possible improvements to CCS algorithms
with colouring. Two potential problems are addressed, false sharing and inefficient par-
allel steps. To handle false sharing an alteration to the colouring algorithm is presented.
Furthermore its possible positive and negative effects are discussed. To handle the in-
efficient steps, two techniques are discussed. The first is to identify and handle them
using alternative algorithms. The second uses a new colouring algorithm that (almost)
guarantees efficient parallel steps.

7.1 Reducing False Sharing

When restructuring the matrix in a preprocessing step, the structure of the matrix is
altered and the threads may have to access the output vector in a non consecutive way.
This may lead to an increase in cache misses and an overall slow-down of the program.
When a reordered matrix is used in a parallel SMvM algorithm all the threads are
accessing the output vector in an unstructured way. This may increase false sharing, i.e.
threads writes to the same cache line.

43

Chapter 7. Improving CCS with colouring 44

7.1.1 Increased distance

Propose a stricter colouring algorithm that will probably reduce false sharing. We de-
fine the distance between two columns to be the lowest difference of index of non zero
elements. i.e. two columns with an element on the same index have distance = 0. The
normal colouring algorithms requires a distance ≥ 1 to give two columns the same colour.

By altering the colouring algorithm, so that the distance between columns must be
larger in order for them to get the same colour, we may reduce the amount of false shar-
ing. If the distance between the columns of the same colour increase, the probability
of two threads writing to the same cache line is reduced. Furthermore, if the distance
required to get the same colour is larger than the number of elements on a cache line,
we can guarantee that false sharing will not occur. However, there are possible negative
effects.

With increased distance, less work can be done on each loaded cache line, yielding a
less cache efficient algorithm. This can be reduced by utilizing the fact that each thread
can hold columns of different colours since each thread works sequentially on its allocated
columns. However, this will require more preprocessing and/or more synchronization
between threads. Another possible problem is that the colouring algorithm requiring
increased distance will use more colours than the original colouring algorithm. More
colours will increase the number of parallel steps, thus decreasing the amount of work
in each each parallel step. This may make parallelization less efficient.

7.2 Efficient parallel sections

One of the fundamental ideas of parallel programming is that the total work load have
to be big enough to justify a parallel step. For the basic parallel SMvM algorithms this
is usually not a problem. They only have one parallel step and the total work load is
often very large. For CCS with colouring, however, the work is done in many parallel
steps, one for each colour.

For CCS with colouring, the work load given to each thread in each parallel step is
dependent on the number of colours used. As discussed in Chapter 4, computing an
optimal colouring algorithm can take a very long time, so a greedy, more time efficient
approach must be used. A non-optimal colouring algorithm will use a higher amount
of colours. The basic greedy colouring algorithm, COL1 (ALG 10), will for most sparse
graphs be relatively efficient and give a colouring with a reasonable low number of

Chapter 7. Improving CCS with colouring 45

0

2000

4000

6000

8000

10000

12000

14000

Colours

N
u

m
b

e
r

o
f c

o
lu

m
n

s

Figure 7.1: Use of colours by COL1 on matrix HV15R

colours. However COL1 will not use the colours evenly. It will most likely give a dis-
tribution where the first colours are heavily used and subsequent colours are used less.
Furthermore, this can possibly result in a distribution where several colours are used
only on a few columns.

7.2.1 When is the greedy colouring bad?

Figure 7.1 shows the distribution of colours on the matrix HV15R. This is a typical
distribution of colours given by COL1. The distribution of colours is uneven and the
overall tendency is that each new colour is used less than the previous. At the end
there is a tail, where each colour is used on only very few columns. (The part of the
matrix that is not in the tail is referred to as the good part.) The tail can give CCS
with colouring a problem, as it starts a new parallel step for each colour, even if it is
only used on a couple of columns, giving possibly inefficient parallel steps.

The use of the colours on HV15R is certainly not optimal with regard to efficient parallel
steps. For instance, the last 100 colours are only used on less than 100 columns each.
The work load for the last 100 colours is too small to justify separate parallel steps, and
should maybe be handled alternatively. However, the last 100 colours holds less than
0.5 % of the total columns. So an alternative solution will, in this case, most likely give
little or no positive effect, except maybe reduced overhead. But if the tail contains a
significant percentage of the columns, an alternative solution might pay off.

Chapter 7. Improving CCS with colouring 46

Graph / Barrier ≤ 6400 ≤ 3200 ≤ 1600
boneS10 15.8 % 3.1 % < 1%
cage14 5.7 % 2.6 % 1.4 %
HV15R 20 % 8.6 % 2.9 %
Hook1498 3.2 % 1.1 % < 1%
Flan 1565 4.2 % 1.5 % 1%
Serena 3.9 % 2 % 1.1 %
More information on the matrices is shown in Table 8.1.

Table 7.1: Table that shows % of columns in the tail for different barriers.

7.2.1.1 Identifying inefficient parallel steps and heavy tails

To identify when an alternative approach could be used, we first have to identify when
a parallel step is inefficient. For the SMvM algorithms using colouring, the threads
are for each colour, given a number of columns to work on. The work-load given to
each thread in a parallel step is dependent on many factors, such as which algorithm
is used and the input data. But if we assume that the density of non-zero elements on
the columns is fairly equal, we can in general it is decided by the number of columns
divided by the number of threads. If the number of columns is too small, we can as-
sume that the parallel step does not scale well or even that parallelization is unnecessary.

“Too small” is a relative term, but if we know at what number of columns the par-
allelization becomes inefficient, it is possible to identify how many columns are in the
tail. We can expect the efficiency of parallel steps to decrease gradually as the work load
decreases. Therefore it is hard to find an exact barrier on where the tail starts. But
by estimating a minimum amount of work needed for an efficient parallel computation,
we can determine which matrices have a substantial tail. Table 7.1 shows for a set of
matrices how large percentage of the columns that have colours that are used less than
defined barriers.

7.2.2 How to handle an inefficient step.

An easy alternative solution is not to use extra resources on the tail and handle it
sequentially. This will remove any speed-up from parallelization on the tail. Because of
the restructuring of the matrix after the colouring, we know that the tail is in the last
part of the matrix, thus a sequential solution for the tail is trivial to add.

Chapter 7. Improving CCS with colouring 47

7.2.2.1 Basic CCS-algorithms

The idea of removing the parallel steps for each colour in the tail and reducing it to
one step can also be applied with the basic parallel CCS-algorithms. As discussed in
Chapter 4, AP12 shows that CCS with locking (CCS1: ALG 7) gives substantial speed
up for almost all degrees of parallelism and often scales better than CCS + colouring
(ALG 9). CCS with private out-vectors (CCS2: ALG 8) also gives good speed up, but
only up to 8 or 16 threads. The question is whether they give better speed-up on the
tail than CCS with colouring.

CCS1 uses locking which in itself may prevent speed-up and on the tail this might
be even more severe. The tail consists of the colours that are used on few columns and
it often contains a significant number of the total colours. With many colour classes, we
can expect a high number of non-zero elements in the same positions for these columns.
This may in turn lead to write conflicts and use of the locks, potentially reducing effi-
ciency and speed-up.

The threads in CCS2 write into private output vectors. The negative factors of this
algorithm is more memory use and an extra step for adding together the private output
vectors. In AP12, CCS2 gave no speed-up when applying more than 8 or 16 threads,
and we can expect similar results here.

7.2.3 Perfect parallel steps

The tail may give severe problems and reduce overall performance, even when an alter-
native approach is used. Reducing or removing it may let us handle the whole matrix
efficiently, and getting timings even closer to the CRS-algorithm. This can for instance
be done by changing the colouring algorithm.

7.2.3.1 Random colouring

If each column gets a randomly chosen colour from a predetermined set of colours we
can expect that each colour will be used more evenly. Each colour will be used about

n
numColour times. Depending on the barrier for the tail is higher or lower than n

numColour ,
either all the data is in the tail or none of it is.

An algorithm choosing colours at random may give an even use of the colours, but we
also have to guarantee that neighbouring vertices are given different colours. If not,write

Chapter 7. Improving CCS with colouring 48

conflicts may occur. But if we instead choose a random colour from the colours that
are not used on the neighbours, we may still expect a fairly even colour distribution. A
random colouring algorithm could be based on the greedy distance-2 colouring (ALG
11), but instead of choosing the smallest possible colour, a random one is chosen. This
is shown in ALG 12.

The random colouring should remove the problems encountered in the tail. Thus we
can expect better timings and speed-ups than with the greedy colouring. numColour

can be chosen as the lowest possible number that yields a plausible solution. This can
be decided by a binary search. However, if numColour is too large, we may run into
problems. The iteration over the colours will be longer and may in itself prove more
costly. And more seriously, using many colours will make the work load for each colour
smaller, and this may reduce the efficiency of parallelism. In the worst case, the whole
computation might consist of inefficient parallel steps.

Algorithm 12: A random distance-2 colouring algorithm
Data: G(V1, V2, E), a bipartite graph with vertices V1 and V2 and edges E, numColour

an integer giving the number of colours, forbiddenColours, a vector of size
numColour

Result: colour, a vector that holds the colouring of V1 or an error message telling that
numColour is too small

Algorithm:
Initialize forbiddenColours with some value a /∈ V

for all v ∈ V1 do
for all w ∈ N(v) do

for each coloured vertex x ∈ N(w) do
forbiddenColors[colour[x]]← v

end for
end for
colour[v]← random { c < numColour : forbiddenColors[c] 6= v }
if no such c exist, return error message

end for

Chapter 8

Experiments

In this chapter we present and discuss the experiments based on the ideas introduced
in chapters 5 - 7. Furthermore we discuss what results we expected from the previous
chapters, and how they compare to the results from the actual experiments.

The experiments are done on a multi-core computer, brake.ii.uib.no, with the follow-
ing specifications:

• There are 4 sockets, each with an Intel 2.0GHz E7-4850 CPU multi-core processors.

• Each processor has 32 GB memory and can run 10 threads.

• The threads can be hyper-threaded. I.e. there is hardware support for each phys-
ical thread to switch between two logical threads.

If we allow hyper-threading, this allows for a total of 80 threads. However, high memory
use may restrict efficient results to at most 40 threads.

The algorithms are implemented using C/C++ with the OpenMP [11] API for par-
allelism. They are compiled using the g++ compiler, with the optimization flag -O3.
The test matrices are, mostly, taken from the University of Florida Sparse Matrix Col-
lection [9]. Some of the matrices used in the tests are selected since they are used in
previous work, thus we can easily compare test results. Other matrices are selected for
having a structure that is interesting with regard to our research. We have also used
random matrices we created our self. We created the random matrices by giving nnz el-
ements random coordinates within the decided dimension of the matrix. The dimension
and nnz were decided so that they had similar size and density to the other matrices.
The random placement was decided by the srand() and rand() functions in C++ [19].

49

Chapter 8. Experiments 50

Information on the matrices used is shown in Table 8.1.

To improve the reliability of the results, all tests are done 10 times. From these we
chose the results with the best times. One could argue of using the average time, but
the best time is shown to often be more representative [20].

For some of the algorithms, only a selection of the test results are shown. In these
cases the selected results represent the overall tendencies for all the test results. When
the average improvement or speed-up is mentioned, this is the average for all the test
results.

Matrix n nnz Matrix n nnz

af shell10 1.5M 52.7M boneS10 0.9M 55.5M
cage14 1.5M 27.1M cage15 5M 100M
Hamrle3 1.4M 5.5M HV15R 2M 283M
nlpkkt 240 28M 775M delaunay 23 0.9M 50M
delaunay 24 1.7M 100M Serena 1.4M 64M
hook1498 1.5M 59M Flan 1565 1.6M 114M
road usa 24M 58M random5 100* 5M 100M
random1 50* 1M 50M

All matrices are of size n× n and holds nnz non-zero elements, the sizes are
approximate. All matrices, except for those marked*, are from the University of

Florida Sparse Matrix Collection [9]. The matrices marked* are random matrices we
created.

Table 8.1: Overview of the matrices used in the experiments.

8.1 Chp. 5 - Even work load

In Chapter 5. we discussed the distribution of work to the threads. We introduced a
technique inspired by the min-makespan problem that should give a fairly even work
load to the threads. Furthermore, we discussed whether the even distribution made
by the basic COO-algorithm would yield the best results on unfortunate matrices, like
arrowhead matrices.

8.1.1 Improved distribution on CRS-algorithms

In Chapter 5. we showed that distributing rows or columns by an algorithm using bi-
nary search could give a much more even distribution of the non-zero elements. This

Chapter 8. Experiments 51

Matrix Distribution p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

af shell10

static 0.248 0.142 0.071 0.036 0.020 0.015 0.022
dynamic 0.271 0.448 0.550 0.475 0.471 0.449 0.382
guided 0.250 0.134 0.069 0.035 0.022 0.018 0.025
bin.search 0.250 0.138 0.071 0.036 0.019 0.015 0.017

HV15R

static 1.337 0.683 0.364 0.190 0.111 0.096 0.105
dynamic 1.363 1.111 0.740 0.541 0.602 0.621 0.486
guided 1.337 0.706 0.364 0.185 0.108 0.105 0.122
bin.search 1.341 0.636 0.305 0.173 0.101 0.087 0.111

nlpkkt 240

static 3.696 1.886 0.988 0.590 0.382 0.282 0.369
dynamic 4.113 7.185 9.625 9.099 8.692 8.266 6.934
guided 3.711 1.893 0.977 0.547 0.332 0.307 0.398
bin.search 3.796 1.908 1.028 0.577 0.221 0.198 0.370

random5 100

static 1.729 0.797 0.394 0.206 0.124 0.111 0.121
dynamic 2.392 1.971 1.361 1.225 1.221 1.224 0.782
guided 1.741 0.907 0.391 0.205 0.121 0.101 0.133
bin.search 1.733 0.810 0.407 0.210 0.126 0.112 0.119

road usa

static 0.710 0.524 0.307 0.203 0.154 0.133 0.119
dynamic 1.456 3.988 4.752 5.274 8.769 11.452 7.395
guided 0.766 0.443 0.260 0.152 0.099 0.091 0.084
bin.search 0.721 0.470 0.347 0.213 0.212 0.207 0.209

static and guided are OpenMP scheduling schemes. All times are measured in seconds.

Table 8.2: Selected results on the CRS-algorithm with different distribution schemes.

will make the threads finish their work at about the same time. Thus we may expect
better results on algorithms with this scheduling than on algorithms using the schedul-
ing techniques in OpenMP. At least when an even work load is important for the final
run-time. The dynamic and especially the guided scheduling might give an uneven dis-
tribution of non-zero elements. However, they allocate new work once each thread is
finished, thus reducing the time threads are idle. If the on-the-go allocation is not too
expensive, algorithms with dynamic and guided scheduling might also give good results.

Table 8.2 shows selected results for the CRS-algorithm with different scheduling tech-
niques. It shows that the CRS-algorithm using binary search inspired by min-makespan
to distribute elements indeed do get better results on some matrices. Improvements can
especially be seen when using 16 or more threads. On nlpkkt 240 it shows an approx-
imate 30% improvement in time compared to static scheduling when using 32 threads.
However, the results are often more similar, and for road usa, they are worse. If we
disregard road usa, CRS with binary search was in average 8 % faster with p = 16 and
11 % faster with p = 32, compared to CRS with guided.

The CRS-algorithm with dynamic scheduling gave very bad results. For all the matrices

Chapter 8. Experiments 52

Matrix Algorithm p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

delaunay n23

CRS (static) 0.362 0.238 0.139 0.092 0.075 0.079
CRS (dynamic) 0.540 1.506 1.746 1.858 3.106 3.571
CRS (guided) 0.378 0.266 0.147 0.094 0.074 0.064
CRS (binary search) 0.366 0.218 0.126 0.084 0.084 0.084
COO 0.479 0.268 0.150 0.087 0.062 0.060

delaunay n24

CRS (static) 0.728 0.422 0.351 0.265 0.241 0.235
CRS (dynamic) 1.132 2.777 3.511 3.716 6.147 7.171
CRS (guided) 0.742 0.439 0.249 0.197 0.148 0.122
CRS (binary search) 0.733 0.463 0.299 0.203 0.201 0.203
COO 0.738 0.475 0.295 0.190 0.131 0.107

Table 8.3: Results on arrowhead matrices

the times registered are much higher than for the other scheduling schemes. Further-
more, in some cases it actually gave worse results when going in parallel. The reason
for this is probably the heavy on-the-go allocation and false sharing.

8.1.2 Arrowhead Matrices

In Chapter 5 we discussed the distribution given by different scheduling techniques on ar-
rowhead matrices. The results in Table 8.3, shows that the COO-algorithm gives better
execution times than the CRS-algorithms when applying 8 and more threads. Further-
more, adding more threads almost always gives speed-up, but the efficiency decreases
when the number of threads increase. In Chapter 5 we saw that the only algorithm that
consequently gave an even distribution was the basic COO-algorithm (Table 5.2), so the
better execution times are not surprising. The decreasing efficiency when more threads
are used is probably related to the negative issues with the COO-algorithm.

Another observation is that CRS with guided scheduling also improves results when
using 16 or 32 threads. In fact, CRS with guided scheduling achieved running times
only slightly worse than the COO-algorithm. They differed the most on delaunlay n24
with p = 32, where the running time of the COO-algorithm was 12 % faster.

Chapter 8. Experiments 53

Matrix Algorithm p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

af shell10 CRS 0.250 0.138 0.071 0.036 0.019 0.015 0.017
hybrid 0.383 0.199 0.108 0.060 0.032 0.020 0.026

HV15R CRS 1.340 0.676 0.335 0.183 0.105 0.091 0.121
hybrid 2.058 1.051 0.525 0.270 0.150 0.108 0.130

nlpkkt 240 CRS 3.796 1.908 1.028 0.577 0.397 0.306 0.370
hybrid 5.627 2.959 1.367 0.747 0.472 0.301 0.454

random5 100 CRS 1.733 0.810 0.407 0.210 0.126 0.112 0.119
hybrid 2.342 0.986 0.399 0.201 0.122 0.073 0.076

random1 50 CRS 0.468 0.242 0.126 0.079 0.045 0.029 0.032
hybrid 0.711 0.317 0.145 0.071 0.042 0.025 0.026

road usa CRS 0.721 0.470 0.347 0.213 0.212 0.207 0.209
hybrid 0.706 0.427 0.271 0.164 0.167 0.143 0.156

All times are measured in seconds.
Table 8.4: Selected results with the hybrid algorithm

8.2 Chp. 6 - Efficient cache use

In Chapter 6 we argued that a hybrid algorithm using the COO-representation could
be more cache efficient than algorithms using CRS- or CCS-representations. However,
we also argued that the difference between the algorithms would be dependent on the
structure of the matrix. In the tests, we compared the hybrid algorithm with the CRS-
algorithm. Both the hybrid and the CRS-algorithm used the binary search introduced
in Chapter 5 to distribute the rows.

Table 8.4 shows some results for the hybrid algorithm compared to the CRS-algorithm.
Which algorithm that performs best varies between the matrices. For af shell10, HV15R
and nlpkkt 240 the CRS-algorithm preforms better. However, the hybrid algorithm
scales better. Thus the difference is smaller when the number of threads is higher. The
smaller difference with higher amount of threads is probably because the hybrid algo-
rithm has fewer cache misses on the output vector. When the section each thread writes
into gets smaller, the chance of consecutive write operations on the same cache line
increases.

On the random matrices, the hybrid algorithm performs better than the CRS-algorithm
on 8 and more threads. On random5 100 the hybrid algorithm is about 35 % faster on
32 threads. Furthermore, the hybrid algorithm in some cases shows superlinear speed-
up, shown in Figure 8.1. Since the matrix is random, we can expect a high number of
cache misses, which the hybrid algorithm reduces. Combined with the lower chance of
cache misses when the number of threads increases, superlinear speed-up may not be
surprising.

Chapter 8. Experiments 54

1 2 4 8 16 32 64
0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

Random5_10

HV15R

nlpkkt_240

Number of threads

S
p

e
e

d
-u

p

The hybrid algorithm shows superlinear speed-up on random5 100.

Figure 8.1: Scaling of the hybrid algorithm on different matrices.

The hybrid algorithm also preforms better on the road usa matrix. In addition to the
improved cache efficiency, road usa is a much sparser matrix than the others, which may
make the COO-representation more efficient. With n =28M and nnz =54M = 2×n, the
COO-representation uses approximately 6×n space to represent the matrix, as compared
to the CRS-representation, which uses approximately. 5×n.

Chapter 8. Experiments 55

8.3 Chp. 7 - Improving CCS with colouring

In Chapter 7, possible improvements to the CCS-algorithm using colouring, presented
in Azad and Pothen [7], were discussed. It was mainly concerned with identifying the
possible problems CCS with colouring would meet, and how to handle them. Specifically
it discussed reduction of false sharing, alternative handling of ineffective parts, and
alternative colouring algorithms.

8.3.1 Replicating results

To get an idea how the new algorithms presented in this thesis actually compares to the
ones presented in Azad and Pothen, we first tried to replicate their results. We did this
by implementing the algorithms and running them on similar test data. Furthermore,
we ran the tests on the same machine used in Azad and Pothen.

8.3.1.1 AP12 - Algorithms

Tests were done with the replicated versions of CRS (ALG 5), CCS with locking (ALG
7), CCS with private out vectors (ALG 8) and CCS with colouring (ALG 9). On CCS
with colouring the greedy colouring algorithm (ALG 10) was used. For all but two of
the matrices the colouring algorithm gave the same amount of colours, but for cage15
and the random algorithm the number of colours differed. On the random matrix this
is not strange, as the random matrix used in AP12 is most likely different from the one
used in our test. On cage15 however, the different colouring can point towards the use
of another colouring algorithm.

The replicated results are shown in Table 8.5. They show similar results as in Azad
and Pothen on the CRS-algorithm, CCS with locking and CCS with colouring, both in
timing and scaling. CCS with private out vectors gave better results when using high
degrees of parallelism on compared to Azad and Pothen. But like in Azad and Pothen
the results gets worse when applying more than 16 threads. The generally similarity
between our results and those shown in Azad and Pothen is important. It gives us a
better possibility to argue for possible better results on alternative algorithms represent
actual improvements.

Chapter 8. Experiments 56

Matrix Algorithm p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

af shell10

CRS 0.250 0.138 0.070 0.037 0.020 0.016 0.021
CCS-locking 0.646 0.322 0.162 0.085 0.045 0.031 0.033
CCS-private 0.272 0.162 0.083 0.047 0.032 0.053 0.105
CCS-colour (50) 0.297 0.136 0.070 0.036 0.022 0.023 0.029

boneS10

CRS 0.262 0.132 0.072 0.037 0.021 0.017 0.023
CCS-locking 0.674 0.345 0.174 0.091 0.049 0.031 0.037
CCS-private 0.279 0.159 0.086 0.045 0.033 0.028 0.060
CCS-colour (129) 0.287 0.149 0.079 0.046 0.036 0.040 0.045

cage14

CRS 0.138 0.087 0.047 0.024 0.015 0.010 0.008
CCS-locking 0.343 0.197 0.193 0.105 0.062 0.033 0.024
CCS-private 0.156 0.097 0.059 0.034 0.038 0.038 0.096
CCS-colour (136) 0.198 0.118 0.065 0.043 0.031 0.034 0.036

cage15

CRS 0.521 0.339 0.183 0.098 0.056 0.045 0.055
CCS-locking 1.282 0.842 0.545 0.426 0.225 0.119 0.085
CCS-private 0.586 0.404 0.220 0.135 0.121 0.129 0.311
CCS-colour (165) 1.272 0.715 0.306 0.162 0.106 0.086 0.100

Hamrle3

CRS 0.038 0.019 0.010 0.006 0.004 0.003 0.004
CCS-locking 0.117 0.081 0.044 0.022 0.011 0.006 0.004
CCS-private 0.047 0.037 0.021 0.014 0.013 0.021 0.087
CCS-colour (8) 0.035 0.019 0.009 0.005 0.004 0.003 0.004

HV15R

CRS 1.337 0.673 0.353 0.185 0.105 0.090 0.105
CCS-locking 3.447 1.999 1.177 0.472 0.228 0.136 0.136
CCS-private 1.388 0.699 0.389 0.219 0.148 0.145 0.242
CCS-colour (508) 2.286 0.954 0.561 0.332 0.231 0.192 0.211

nlpkkt 240

CRS 3.699 1.895 0.985 0.545 0.316 0.286 0.370
CCS-locking 9.469 5.108 2.672 1.631 0.895 0.485 0.471
CCS-private 4.089 2.280 1.230 0.839 0.730 0.925 1.345
CCS-colour (59) 5.203 2.649 1.310 0.775 0.586 0.671 0.608

random5 100

CRS 1.738 0.781 0.376 0.195 0.122 0.116 0.120
CCS-locking 4.593 1.956 0.844 0.431 0.285 0.173 0.152
CCS-private 1.831 0.934 0.482 0.353 0.318 0.375 0.612
CCS-colour (97) 1.858 0.900 0.466 0.249 0.160 0.178 0.194

Number of colours is shown in the parenthesis, all times are measured in seconds.

Table 8.5: Replicated results from AP12

8.3.2 Reducing false sharing

To reduce false sharing, we introduced the idea of having a stricter colouring algorithm.
This algorithm demanded that the row index distance between elements of same colour
should increase. It was argued that this would lead to reduced false sharing when writing
to the output vector. However, several disadvantages were also discussed. The stricter
colouring would probably lead to using more colours. Also there would be less consecu-
tive data, making the program less cache efficient.

The results in Table 8.6 show that when the distance increased, the number of colours

Chapter 8. Experiments 57

Matrix Distance #colours p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

cage14

dist = 1 136 0.198 0.118 0.065 0.043 0.031 0.034 0.036
dist = 2 264 0.217 0.147 0.089 0.051 0.037 0.042 0.046
dist = 3 382 0.228 0.153 0.089 0.052 0.038 0.047 0.049
dist = 5 581 0.240 0.158 0.090 0.053 0.039 0.048 0.050
dist = 10 953 0.255 0.168 0.094 0.056 0.038 0.050 0.055

HV15R

dist = 1 508 2.342 0.959 0.622 0.332 0.239 0.199 0.230
dist = 2 712 2.250 0.951 0.588 0.333 0.237 0.215 0.242
dist = 3 797 2.188 0.949 0.586 0.324 0.233 0.221 0.247
dist = 5 1120 2.012 0.942 0.573 0.319 0.235 0.232 0.273
dist = 10 1223 2.042 0.933 0.576 0.315 0.234 0.242 0.284

nlpkkt 240

dist = 1 59 5.403 2.799 1.441 0.926 0.636 0.702 0.788
dist = 2 77 5.689 2.926 1.569 1.007 0.999 1.184 1.195
dist = 3 103 6.571 3.325 1.725 1.103 1.090 1.286 1.277
dist = 5 147 7.829 4.181 2.102 1.351 1.296 1.499 1.489
dist = 10 239 8.895 5.045 2.564 1.607 1.565 1.819 1.733

All times are measured in seconds.
Table 8.6: Selected results from CCS-col with increased distance.

increased. However, the times achieved with increased distance generally got worse.
Only on the matrix HV15R, they stayed about the same. From these observations we
may argue that the effect from the reduction of false sharing is small compared to the
effects from decreased cache efficiency and an increased number of parallel steps.

8.3.3 Efficient parallel sections

To test whether the tail indeed does scale worse than the rest of the matrix we selected
matrices we believed to have heavy tails. From the measurements on tail size done with
different barriers we expected the matrices boneS10, cage14, and HV15R (Table 7.1)
from Azad and Pothen to be affected the most by the tail. The other matrices have
a tail that contains at most 1% of the total columns, so we would not expect much
improvement on thesefrom these. To get a bigger sample size, three other matrices were
also chosen, Serena, Flan 1565 and Hook1498.

8.3.4 Decreased efficiency on the tail

The experiments tested the time used on the tail, with different barriers, and the time
used on the rest of the matrix. It was then possible to see the difference in scaling on
the two parts, as well as the percentage of total time used. The results, shown in Table
8.7 and Figure 8.2, shows the speed-up on the tail compared to the rest of the matrix.
They show that the speed-up on the tail is substantially smaller than on the good part,
or on the matrix as a whole. The algorithm scaled worse on the tail than on the rest of

Chapter 8. Experiments 58

Matrix Part p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

HV15R
Total 1.00 2.30 3.53 6.73 9.50 11.61 10.02
Good 1.00 2.35 3.59 6.99 9.92 12.59 11.17
Tail 1.00 1.46 2.33 3.15 4.08 3.36 2.38

Flan 1565
Total 1.00 2.35 4.22 7.74 11.76 11.09 8.30
Good 1.00 2.36 4.25 7.80 11.97 11.44 8.53
Tail 1.00 1.96 3.12 4.76 5.06 3.42 2.75

barrier = 1600, shows speed-up on CCS with colouring on the different part of the
matrices.

Table 8.7: Selected results showing speed-up on different part of the matrices

1 2 4 8 16 32 64
0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Total

Good

Tail

barrier = 1600
Figure 8.2: Scaling on the good part and on the tail, with CCS with colouring, for

HV15R

the algorithm and especially so on many threads. These tendencies are stronger when
the barrier defining the tail is smaller. Figure 8.3, show that for smaller work loads, the
efficiency due to parallelism will also decrease.

8.3.4.1 Alternative handling of the tail

To handle the less efficient parallelism on the tail, we replaced the iteration over the
colours on the tail with alternative algorithms. Three techniques were tried:

• A sequential CCS-algorithm.

• CCS with locking (ALG 7).

• CCS with private out-vectors (ALG 8).

Chapter 8. Experiments 59

1 2 4 8 16 32 64
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

6400

3200

1600

800

Threads

S
p
e
e
d
-u

p

Barrier

Figure 8.3: Scaling on the tail, with CCS with colouring, when using different barriers
on HV15R

Selected results for the whole algorithms are shown in Table 8.8, while the results for
the tail of the HV15R matrix can be seen in Figure 8.4. As expected by the fact that
all algorithms handled the good part in the same way, no significant differences were
observed here. On the tail however, the alternative solutions gave different results and
we could make some observations.

• The sequential solution gave about the same results as CCS + colouring with one
thread.

• CCS with locking had worse running times than CCS + colouring when tested with
a few threads, but scaled much better. For 32 and 64 threads it mostly performed
better than the other algorithms, but only slightly better than CCS + colouring.
In the best cases it performed about 10 % better.

• CCS with private out vectors gave results close to CCS + colouring on less than
threads, but gave much worse results when the number of threads increased. This
is similar to the results observed in AP12, were CCS with private out vectors did
not improve beyond more than 8 or 16 threads.

Chapter 8. Experiments 60

1 2 4 8 16 32 64
0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

CCS+col

Seq.

CCS1

CCS2

Threads

T
im

e
 in

 S
e

c.

Algorithm

barrier = 1600
Figure 8.4: Run times on different solutions on the tail of HV15R

Matrix Algorithm p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

HV15R

Greedy col(508) 2.328 0.973 0.619 0.329 0.247 0.210 0.238
Greedy+Lock 2.349 1.021 0.657 0.361 0.253 0.199 0.226
Greedy+Private 2.256 1.068 0.707 0.370 0.242 0.220 0.256
Random(700) 2.222 1.032 0.621 0.334 0.240 0.258 0.320

Serena

Greedy col(249) 0.374 0.220 0.155 0.104 0.081 0.081 0.084
Greedy+Lock 0.386 0.249 0.166 0.106 0.086 0.075 0.074
Greedy+Private 0.382 0.278 0.167 0.118 0.101 0.102 0.138
Random col(300) 0.441 0.225 0.152 0.102 0.085 0.094 0.098

Cage14

Greedy col(136) 0.203 0.114 0.063 0.050 0.031 0.032 0.036
Greedy+Lock 0.202 0.141 0.083 0.048 0.036 0.031 0.035
Greedy+Private 0.208 0.170 0.089 0.054 0.050 0.054 0.109
Random col(200) 0.208 0.141 0.085 0.041 0.031 0.033 0.038

BoneS10

Greedy col(129) 0.292 0.153 0.079 0.052 0.036 0.041 0.045
Greedy+Lock 0.308 0.167 0.107 0.061 0.042 0.042 0.049
Greedy+Private 0.291 0.191 0.098 0.059 0.047 0.062 0.102
Random col(150) 0.276 0.141 0.088 0.050 0.040 0.051 0.066

Flan 1565

Greedy col(153) 0.761 0.320 0.178 0.104 0.066 0.068 0.097
Greedy+Lock 0.774 0.332 0.187 0.102 0.067 0.060 0.084
Greedy+Private 0.762 0.418 0.211 0.119 0.077 0.080 0.168
Random col(200) 0.760 0.318 0.187 0.106 0.068 0.070 0.104

Hook1498

Greedy col(108) 0.352 0.205 0.122 0.070 0.053 0.055 0.071
Greedy+Lock 0.355 0.210 0.113 0.073 0.054 0.055 0.067
Greedy+Private 0.365 0.252 0.132 0.083 0.069 0.075 0.132
Random col(140) 0.376 0.176 0.089 0.059 0.039 0.042 0.051

barrier = 1600, number of colours is shown in the parenthesis, all times are measured
in seconds.

Table 8.8: Selected results for alternative handling of the tail and for random colour-
ing.

Chapter 8. Experiments 61

8.3.4.2 Random colouring algorithms

We expected CCS with random colouring (colouring by ALG 12) to give better run times
than CCS with greedy colouring when using a low number of colours. For high number
of colours, the work load on each parallel step will be too small. Thus we expect CCS
with random colouring to be less efficient and possibly have worse times than CCS with
greedy colouring.

We implemented the random colouring algorithm by storing the matrix using both
CCS-representation and CRS-representation. This allowed us to get an easy look-up
of which columns had an element on the same row. However, the storage used was twice
as big. The extra storage was only used in the preprocessing step and should thus not
affect the measured run-times of the parallel SMvM. We used the srand() and rand()
functions from C++ [19] to randomly choose a possible colour.

In Chapter 7 we suggested using a binary search to find an optimal number of colours
for the random colouring. However, this proved infeasible. For all matrices the random
colouring used much more time than the greedy colouring. This was in the scale of hours
or days vs. seconds or minutes. These times discouraged running the colouring several
times, like we would have to in a binary search. Thus we chose the number of colours
more loosely. The number of colours used and how many columns that were coloured
by each colour class is shown in Table 8.9.

The results in Table 8.8 shows that CCS with random colouring gets the biggest im-
provement on the matrix Hook1498, where each colour was used approximately 10700
times. The times used by CCS with the greedy and random colouring on this matrix is
illustrated in Figure 8.5. For matrices Flan 1565, BoneS10 and Cage14 the results were
similar or marginally better compared to the results obtained from CCS with greedy
colouring. And for Serena and HV15R, where the average use of each colour was lower,
CCS with greedy colouring showed marginally better run times (Figure 8.6). How the
results for the greedy colouring and random colouring compare can be seen in direct
relation to the number of columns coloured with each colour class.

The running time of the random colouring algorithm can be analysed to O(n×avgDeg2)
where avgDeg is the average number of non-zero elements on a column or row. This
looks manageable, even if n and nnz are very large. However, there are some factors that
may create the high running time. There are hidden factors in the expression that still
might demand work. These are for instance choosing a possible colour and resetting the
array holding the forbidden colours. The random colouring also uses twice the amount

Chapter 8. Experiments 62

of storage compared to the greedy colouring algorithm, which might lead to a slower
computation [3].

Matrix n numColour n
numColour

boneS10 0.9M 150 6000
cage14 1.5M 200 7500

HV15R 2M 700 ≈ 2857
Serena 1.4M 300 ≈ 4666

Flan 1565 1.6M 200 7500
Hook1498 1.5M 140 ≈ 10714

Table 8.9: n
numColour for the six matrices coloured with a random colouring

1 2 4 8 16 32 64
0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

Greedy

Random

Figure 8.5: Results on Hook1498 with greedy and random colouring

1 2 4 8 16 32 64
0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

Greedy

Random

Figure 8.6: Results on HV15R with greedy and random colouring

Chapter 9

Conclusions

In Chapter 8 we presented and discussed the measured times and speed-ups of the ideas
presented in chapters 5 - 7. In this chapter, we discuss four main conclusions that can
be made from these observations. Furthermore, we discuss some ideas and issues that
could be expanded further.

9.1 Even work load matters

In Chapter 5 we discussed some ideas on how to achieve even work load, and how it
might affect the algorithms. We discussed a distribution decided by a binary search
based on the min-makespan problem. Furthermore, we discussed handling arrowhead
matrices using the basic COO-algorithm.

We observed that the CRS-algorithm with distribution inspired by min-makespan gave
better times than the static and guided scheduling on some matrices (Table 8.2). The
improvement was measured to be as large as 30 %. However, the running times ob-
served were also often similar and slower than the algorithms using OpenMP scheduling
techniques. Furthermore, we observed that the dynamic scheduling was inefficient, and
actually negative speed-up or slow-down, when applying more threads. We can conclude
from this that using a min-makespan inspired distribution on parallel SMvM can give
positive results.

Using the COO-algorithm on arrowhead matrices sometimes gave better results than
the OpenMP scheduling techniques (Table 8.3). However, the CRS algorithm with
guided scheduling gave similar results. From this we can conclude that a perfect distri-
bution of elements when working on arrowhead matrices can give large positive effects.

63

Chapter 9. Conclusions 64

At least larger than the possible negative effects of using up to 50 % more memory use
and handling of write conflicts.

9.2 The hybrid algorithm is only better on certain matri-
ces

In Chapter 6 we introduced a hybrid algorithm that could be more cache efficient than
the CRS or CCS algorithms, especially on random matrices. The test results showed
that the hybrid algorithm performed better than the CRS algorithm on random matri-
ces and on very sparse matrices (Table 8.4). In fact, on the random matrices it shows
superlinear speed-up. On the other matrices, however, the CRS-algorithm gave the best
running times.

From these observations we can draw the conclusions that the hybrid algorithm in-
deed is more cache efficient than the CRS-algorithm. However, the added cost of using
the COO-representation reduces the improvement. Thus which algorithm is superior de-
pends on the structure and sparsity of the matrix. This is not unlike the results achieved
in Yzelman and Bisseling [4], where the results were also dependent on the structure of
the matrix.

9.3 Increasing distance to reduce false sharing is not a
good idea

In Chapter 7 we discussed CCS-algorithms using colouring of the columns to avoid write
conflicts. To improve results by reducing false sharing, we discussed an alteration of the
colouring, requiring a bigger distance between columns that gets the same colour. The
observed results were not favourable. The tendency showed that with larger distance,
the algorithm used longer running time (Table 8.6).

We discussed the possible problems of decreased efficiency on both use of cache lines and
on the parallel steps. We can conclude that the negative effects from these problems are
larger than the positive effects from reduced false sharing.

Chapter 9. Conclusions 65

9.4 It is hard to handle inefficient parallel steps

Sections 7.2 of Chapter 7 discussed how to identify and improve inefficient parallel steps
created by the greedy colouring algorithm. The tests showed that the parallel steps on
little used colours are less efficient, and does not scale as well as the parallel steps on
much used colours. To improve the inefficient steps, we tried to use alternative CCS-
algorithms. We observed that replacing the inefficient steps with CCS with locking could
give slightly better results when using 32 or 64 threads. Otherwise, we saw no speed-up
(Table 8.8).

We also tried to remove the inefficient parallel steps by using a random colouring algo-
rithm. The random colouring algorithm used each colour on about the same amount of
columns, making each parallel step equally efficient. When the number of columns using
each colour were high (on Hook1498 about 10700) we saw speed-up with the random
colouring. On matrices with fewer columns per colour, the speed-ups were smaller and
on some matrices we even observed slow-down. In addition to this, the random colouring
algorithm would use a very long time (hours and days), possibly removing any practical
use.

From these results we can see that it is possible to improve CCS with colouring by
either handling the inefficient parallel steps alternatively or removing them. However,
the improvements are not necessarily very big, and may not be worth the extra cost,
especially with random colouring. The results may anyway lead us to believe that some
future work on improving CCS with colouring may give better results.

9.5 Future Work

The ideas and observed results and the conclusions we drew from them point towards
some possible future work.

9.5.1 Approximation algorithms on min-makespan

In Chapter 5 approximation algorithms to the min-makespan problem were discussed
as a way to distribute rows or columns to the threads. However, the approximation
algorithms were not used as they would not allocate consecutive rows or columns. In
future work it might be possible to use such algorithms to distribute rows or columns
and then restructure the matrix so that the rows or columns are stored consecutively. As

Chapter 9. Conclusions 66

there are known 3
2 -approximations to min-makespan [2], this might give good results.

Furthermore, there has been done much research on the min-makespan problem that
might prove useful for achieving an even work load.

9.5.2 A hybrid algorithm using less storage

In Chapter 6 we argued that a possible negative factor of the hybrid algorithm was
the increased use of storage from using COO-representation. This decreases the size
of the matrices we can work on, and might even slow the program down. It should be
possible to find a more space efficient representation that still allows us to run the hybrid
algorithm. One idea could be to use CCS-representation locally on the threads. This
would give a total storage of 2×nnz + n× p elements, as we need one IA-array for each
thread. Compared to the storage use of the COO-representation, 3× nnz, which of the
representations is largest depends on both the density of the matrix and the number of
threads used.

9.5.3 Faster and better colouring algorithms

When using the random colouring algorithm to improve CCS with colouring we met two
problems. The first was the execution speed of the algorithm. The matrices used in the
tests were very large with dimension between 900.000 and 28 million and nnz between
5.5 million and 775 million (Table 8.1). However, using hours and days to colour the
columns is not acceptable. If a faster algorithm that gives similar colourings can be
constructed, we may be able to justify using it for a preprocessing. This can be done by
either looking at other algorithms or improving the implementation (or both).

The other problem was that the random colouring algorithm used too many colours.
This gives less work in each parallel step, making them less efficient. By looking at
other algorithms, maybe heuristics or approximations to the min-colouring problem, we
might find an algorithm that uses less colours. Thus we can expect each parallel step to
be more efficient, and thus get better speed-up.

Bibliography

[1] Barry Wilkinson and Michael Allen,
Parallel Programming, techniques and applications using networked workstations and
parallel computers.
Pearson Education, 2nd Edition 2005.

[2] Jon Kleinberg and Éva Tardos,
Algorithm Design
Pearson Education 2006

[3] Albert-Jan N. Yzelman,
Fast sparse matrix-vector multiplication by partitioning and reordering.
2011.

[4] Albert-Jan N. Yzelman and Rob H. Bisseling,
Cache-oblivious sparse matrix-vector multiplication by using sparse matrix partition-
ing methods.
SIAM Journal on Scientific Computing 31 (2009), no. 4, 3128-3154.
Slides found on: http://people.cs.kuleuven.be/albert-jan.yzelman/slides/csc11.pdf

[5] Ali Pinar and Michael T. Heath,
Improving Performance of Sparse Matrix-Vector Multiplication
Supercomputing ’99 Proceedings of the 1999 ACM/IEEE conference on Supercom-
puting, Article No. 30

[6] Richard W Vuduc and Hyun-Jin Moon,
Fast sparse matrix-vector multiplication by exploiting variable block structure.
High Performance Computing and Communications. Springer Berlin Heidelberg,
2005. 807-816.

[7] Ariful Azad and Alex Pothen,
Parallel sparse matrix vector multiplication.
2012

67

Chapter 9. Conclusions 68

[8] Assefaw Gebremedhin, Alex Pothen and Fredrik Manne,
What Color is your Jacobian? Graph Coloring for Computing Derivatives
SIAM Review, Vol 47, No 4 (2005), 629-705

[9] Timothy Davis and Yifan Hu,
The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software (TOMS) 38.1 2011

[10] Tim Mattson, Mark Bull and Michael Wrinn,
A Hands-On Introduction to OpenMP
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf

[11] www.openmp.org

[12] Zhaojun Bai
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide.
SIAM, 2000.

[13] Gene H. Golub and Charles F. Van Loan
Matrix Computations
Johns Hopkins Studies in Mathematical Sciences 3rd Edition, 1996

[14] Gene M. Amdahl
Validity of the single processor approach to achieving large scale computing capabili-
ties
Proceedings of the April 18-20, 1967, spring joint computer conference
ACM, 1967

[15] Donald Hearn and M. Pauline Baker
Computer Graphics with OpenGL
Pearson Education 3rd Edition
2004

[16] Nathan Bell and Michael Garland.
Efficient sparse matrix-vector multiplication on CUDA
Vol. 20. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, 2008.

[17] Nathan Bell and Michael Garland
Implementing sparse matrix-vector multiplication on throughput-oriented processors
Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis.
ACM, 2009.

Bibliography 69

[18] Lynn E. Cannon
A Cellular Computer To Implement The Kalman Filter Algorithm.
No. 603-Tl-0769. MONTANA STATE UNIV BOZEMAN ENGINEERING RE-
SEARCH LABS
1969.

[19] www.cplusplus.com

[20] Magne Haveraaen and Hogne Hundvebakke,
Some Statistical Performance Estimation Techniques for Dynamic Machines
Norsk informatikkonferanse NIK’2001 176-185
Tromsø 2001

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Fundamentals
	2.1 Parallel programming
	2.1.1 Speed-up and scalability
	2.1.2 OpenMP

	2.2 Matrix representations and Sparse Matrix-vector Multiplication
	2.2.1 Coordinate representation (COO)
	2.2.2 Compressed row (CRS) and Compressed column (CCS)

	2.3 Parallel SMvM

	3 Challenges in Parallel Sparse Matrix-vector multiplication
	3.1 Conflicts
	3.1.1 False sharing
	3.1.2 Write conflicts

	3.2 Even work load
	3.2.1 OpenMP scheduling techniques
	3.2.2 Distribute on number of non-zero elements

	3.3 Cache efficiency
	3.4 Unfortunate structured matrices

	4 Previous Work
	4.1 Efficient cache use
	4.1.1 Enlarge dense blocks
	4.1.2 Restructuring and Reordering to reduce cache miss

	4.2 Avoiding write conflicts with CCS-algorithms
	4.2.1 Basic solutions
	4.2.2 CCS with colouring

	4.3 Colouring algorithms
	4.3.1 Greedy Graph Colouring
	4.3.2 Greedy distance-2 colouring

	5 Even Work Load
	5.1 Improved distribution in CRS-algorithms
	5.1.1 Approximation to min-makespan
	5.1.2 Allocating consecutive data to threads

	5.2 Arrowhead matrices - Can COO-representation be the fastest?
	5.2.1 Distribution of elements

	6 Efficient Cache Use
	6.1 A hybrid between CRS and CCS representations
	6.2 COO-representation with CRS-CSS-hybrid iteration

	7 Improving CCS with colouring
	7.1 Reducing False Sharing
	7.1.1 Increased distance

	7.2 Efficient parallel sections
	7.2.1 When is the greedy colouring bad?
	7.2.1.1 Identifying inefficient parallel steps and heavy tails

	7.2.2 How to handle an inefficient step.
	7.2.2.1 Basic CCS-algorithms

	7.2.3 Perfect parallel steps
	7.2.3.1 Random colouring

	8 Experiments
	8.1 Chp. 5 - Even work load
	8.1.1 Improved distribution on CRS-algorithms
	8.1.2 Arrowhead Matrices

	8.2 Chp. 6 - Efficient cache use
	8.3 Chp. 7 - Improving CCS with colouring
	8.3.1 Replicating results
	8.3.1.1 AP12 - Algorithms

	8.3.2 Reducing false sharing
	8.3.3 Efficient parallel sections
	8.3.4 Decreased efficiency on the tail
	8.3.4.1 Alternative handling of the tail
	8.3.4.2 Random colouring algorithms

	9 Conclusions
	9.1 Even work load matters
	9.2 The hybrid algorithm is only better on certain matrices
	9.3 Increasing distance to reduce false sharing is not a good idea
	9.4 It is hard to handle inefficient parallel steps
	9.5 Future Work
	9.5.1 Approximation algorithms on min-makespan
	9.5.2 A hybrid algorithm using less storage
	9.5.3 Faster and better colouring algorithms

	Bibliography

