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Abstract 
Due to global warming, the sea water temperature will probably increase, which may affect cold-

water species like Atlantic salmon. It is therefore of great importance to see how elevated 

temperature will affect the growth and energy metabolism of Atlantic salmon, and investigate if 

starvation at elevated temperature can have positive effects on fish performance. Adult immature 

Atlantic salmon (700 g), were used. The fish was divided into three experimental groups, one fed ad 

libitum at 13°C , one fed ad libitum at 19°C , and one starved at 19°C . The trial period lasted for 60 

days, prior to a 49 day long recovery period where all fish were fed ad libitum at 13°C. During the 

trial period feed intake was significantly higher at 19°C fed fish, compared to 13°C fed fish. However 

there was a lower level of IGFBP1b in plasma and down regulated igfbp1a in muscle, as well as higher 

plasma glucose concentrations in 19°C fed fish. Fish fed at 19°C also had a higher feed conversion 

ratio (FCR), lower nutrient retention and lower growth and mean body weight. Condition factor (CF), 

stored nutrient composition and organ somatic indexes did not change due to temperature. After 

recovery fish that were previously fed at 19°C had a lower feed intake than 13°C fed fish, and plasma 

IGFBP1b was still lower. There were still tendencies to higher FCR, and significant lower nutrient 

retention in fish previously fed at19°C. Weight and growth was therefore lower in fish fed at 19°C 

also during recovery. CF, stored nutrient composition and somatic indexes were normal during 

recovery. To investigate if starvation at elevated temperature can provide positive effects on growth 

regulation, 19°C starved fish was compared to 19°C fed fish. In 19°C starved fish during the trial 

period plasma GH levels and muscle ghr1 and ghr2 increased, and plasma IGF1 as well as muscle igf1 

and igfbp1a decreased. Igf2 expression in muscle did not change in starved fish. Weight and growth 

decreased, while there were still seen a minor length growth. CF, stored lipid and energy, as well as 

HSI and VSI decreased. Stored protein concentration and CSI did not change due to starvation. During 

recovery fish previous starved at 19°C, showed higher feed intake (%BM), compared to 19°C fed fish. 

Growth regulating Hormones hormonal parameters showed normal concentrations and expression 

levels. There were seen tendencies to lower FCR, as well as significantly higher nutrient retention in 

fish previously starved. However, weight and growth did not completely recover. Also CF as well as 

stored energy and lipid were lower in fish previous starved, while somatic indexes were at normal 

levels. 

In summary, these results indicate that 19°C is to high temperature for optimal growth for Atlantic 

salmon. The low nutrient retention at 19°C indicates higher energy expenditure. However there was 

not seen mobilization of endogenous energy sources due to elevated temperature, and thereby no 

significant increase in catabolic activity. 49 days recovery period was not long enough for fish 

previously fed at 19°C to fully recover. Starvation at 19°C led to weight losses and increased catabolic 

activity, showed both by high levels of GH, low levels of IGF1 and use of endogenous lipid stores. 

Unchanged protein stores indicated that the starvation was not severe enough to deplete the lipid 

stores. Neither starved fish experienced full compensation growth during recovery, however there 

were seen compensatory tendencies in feed intake and nutrient retention. 
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1.0 Introduction 

1.1 Climate change 
It is likely that there will be an increase in mean temperature at the earth’s surface due to climate 

change in the next decades. According to (IPCC, 2013) the average sea surface temperature may 

increase with more than 2°C by the end of this century. The arctic regions will warm more rapidly 

than the global average (IPCC, 2013, Pinet, 2009). Also the temperature in the Atlantic ocean will 

increase more than the Pacific- and Indian ocean (Levitus et al., 2005). Also the average sea 

temperature increase around the Norwegian cost may be 2°C in the next 50-100 years. There will be 

a greater increase in fjords and costal area then in the open ocean (Øivind Bergh, 2007). Today the 

mean summer temperatures in southern Norway (Kristiansand), is around 17°C (July-august). At the 

western coast the summer temperature can reach 16°C (seatemperature.org, 2014), figure 1.1. 

Therefore, the forecast temperature predictions suggests that there will be seen longer periods with 

water temperatures above the growth optimum for Atlantic Salmon (> 17°C), at the western- and 

Southern cost of Norway in the future. However due to lower mean summer temperature in 

Northern Norway today (figure 1.1), it is likely that there will be a better climate for salmon 

production year round in Northern Norway. 

 

1.2 Temperature 
Temperature is one of the most pervasive environmental factors affecting picilothermic animals, by 

that they are not able to maintain body temperatures by physiological means, and body temperature 

therefore fluctuate according to environmental temperature. Fish exchanges heat through the body, 

mostly through the body wall. When water temperature changes, there has to occur thermal 

equilibrium between fishes and the water, however there is some time lag before equilibrium is 

reached, which increases with fish size. Therefore large fish are not so much affected by short 

fluctuations in water temperature (Elliott and Elliott, 2010). However neither large nor small fish 

does necessary tolerate higher mean temperature year round, as will be the case with global 

warming. Fish can tolerate temperatures within the borders of the upper and lower lethal 

temperatures (Jobling, 1994d). The incipiental lethal temperature (ILT), is what 50 % of the fish 

sample can tolerate for a longer period (usually 7 days), but not survive indefinitely. The ultimate 

Figure 1.1: 10 years mean of summer temperature at the surface layers (10 meter), of Sognesjøen at the 
western coasts of Norway, and Skrova, in Northern Norway from 1940 to 2010 (IMR, 2012). 
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lethal temperature (ULT), is the temperature which the fish cannot tolerate even for a short time, 

and is often called the critical thermal maximum/minimum (Elliott and Elliott, 2010). The different 

temperature zones for juvenile Atlantic salmon is shown in figure 1.2. The lethal temperature within 

a fish species will vary from individual to individual, according to their previous thermal history. Fish 

previously acclimatized to high temperatures, will have a higher tolerance for high temperatures 

compared to individuals acclimatized to lower temperatures. Both abiotic factors such as season, 

photoperiod and salinity as well as biotic factors such as nutritional status, growth, life cycle and 

disease, will interact with the temperature tolerance, and therefore ULT is not necessary a fixed 

temperature under all conditions. When a fish is moved from low temperature to higher 

temperature, it will gradually lose the tolerance 

for low temperature, and improve tolerance for 

high temperatures, and thereby gradually get 

acclimatized to the new environment. Generally 

fish will acclimate/compensate more rapidly to 

the new conditions when there is an increase in 

temperature, compared to when the fish has to 

acclimatize to lower temperatures, mostly due to 

that the metabolic rate is faster at higher 

temperatures. Even though the fish may tolerate 

a wide range of temperature; they will if 

possible, choose to spend most of the time 

within a certain temperature, called the final 

temperature preferendum (FTP). This 

temperature is not dependent on previous 

thermal history, but is close to the optimal 

temperature for growth. The FTP is not a single 

fixed temperature but a temperature zone. Like 

thermal tolerance FTP is also affected by many abiotic and biotic factors, among that age and size 

affects FTP, with juvenile fish often prefer higher temperatures than adult fish (Jobling, 1994d).  

 

The optimal temperature for growth of Atlantic salmon smolt (40-60 g) is 13 -14°C in seawater 

(Handeland et al., 2003), and 14°C for 150-300 g smolt (Handeland et al., 2008). However they grow 

in temperatures up to 19-20°C, with high growth rate at 18°C, even though mortality is higher at 18°C 

compared to lower temperatures (≤14°C) in post smolt (Handeland et al., 2003, Handeland et al., 

2008). Also reproductive growth and development are restricted to lower temperatures (Jobling, 

1997). Many physiological processes and endocrine signals affecting food intake and growth are 

affected by acclimation to 18°C, indicating that this temperature is too high for long-term growth in 

post-smolt (Kullgren et al., 2013). The optimal feed conversion rate (FCR), is found to be at 

approximately 3°C lower than the optimal growth temperature, and thereby around 10°C for post-

smolt (Handeland et al., 2003, Handeland et al., 2008). According to (Hevrøy et al., 2012), adult 

Atlantic salmon (1.6 kg) prefer temperatures below 17°C, with optimum growth ≤ 13°C (Hevrøy et al., 

2013). Temperature above 22°C can be lethal for Atlantic salmon (Monahan, 1993, Elliott and Elliott, 

2010). 

Figure 1.2 Thermal tolerance polygon for 
juvenile Atlantic salmon. (McCarthy and 
Houlihan, 1997) 
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1.3 Growth  

1.3.1 Growth and bioenergetics at high temperature 

Somatic growth is a very complex regulated process, and is dependent on many different behavioral 

and physiological factors. It takes place when the difference between anabolic and catabolic 

processes is positive (anabolic). What makes growth even more complex is that the growth is not 

constant. Periods of length growth and fast 

growth alternates with weight gain and low 

growth rate (Mommsen and Moon, 2001). 

Growth is related to weight gain, which is 

considered synonymous to an increase in 

stored energy. How much of the ingested 

energy that is available for growth can be 

calculated by the energy balance equation used 

in bioenergetics, which is simplified written as: 

E(G) = E(In)-E(Out) 
 
Where E (G) is energy available for growth, E 

(In) is ingested energy and E (Out) is energy loss 

due to metabolism and faecal losses. An abiotic 

factor which affects either metabolism or food 

consumption will therefore have a profound 

impact on fish growth. Temperature is such a 

factor and influences both ingestion and 

metabolism, and thereby growth rate. When 

there is sufficient food supply, an increase in 

temperature will increase ingestion rate until 

the temperature reaches the upper thermal 

tolerance for the species, where there is a 

decline in ingestion rate (figure 1.3 a). The 

reason for decreased ingestion rates around 

the upper thermal tolerance may be due to 

limitations in the capacity of the circulating and 

respiratory systems to deliver oxygen to the 

tissues under conditions of high oxygen 

demands and little solubility of oxygen at high temperatures (Jobling, 1997). The metabolic rate 

(amount energy used pr unit of time), also increases with increasing temperature, (increase with 

1.65-2.7 fold for every 10°C (Jobling, 1994c). However metabolic rate does not show the same 

decline as ingestion rate when temperature is approaching the upper thermal limit (figure 1.3 a) 

(Jobling, 1994b). Since metabolic rate is increasing and ingestion rate declining near the upper 

thermal limit, energy available for growth and other non-basal activities will approach zero as 

temperature approaches the upper thermal limit. Figure 1.3 b, shows that growth increases with 

increasing temperature, peaks and then declines with increasing temperature. The temperature 

where resources available for growth are at maximum is the optimum temperature for growth 

(which is close to FTP). This temperature is a few degrees lower than the temperature where 

Figure 1.3: a) The effects of temperature on 
ingestion and metabolism rates. Dashed line shows 
metabolism rate, and solid line shows food intake. 
b) Shows the resources available for growth after 
metabolism is deducted from ingestion rate in 
figure a. Optimal temperature for growth is seen 
where there is most energy available for growth 
(Jobling, 1994b) 
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ingestion rate is highest (figure 1.3) (Jobling, 1994b). When food supply decreases, the best growth 

rate is seen at lower temperatures. This is because at lower temperature less energy is needed to 

maintain basal metabolism (which increase with temperature), and thereby more energy will be 

available for growth (Jobling, 1994b).  When the fish is fed ad libitum, 25-50% of the energy will be 

available for growth and other non-basal activities (Jobling, 2001). When temperature is approaching 

the thermal maximum the energy requirements to the fish exceeds the aerobic capacity. Therefore 

anaerobic metabolism has to contribute increasingly to meet the energy requirements of the fish. 

Therefore beyond thermal maximum fish cannot survive for a long time since anaerobic metabolism 

is energetically expensive and leads to the production of potentially damaging metabolic byproducts 

like lactic acid (DFO, 2012) 

1.3.2 Compensatory growth 

Teleost fishes may exhibit 

extraordinary fast growth rates 

after periods of food shortages and 

starvation. By doing so they may 

achieve the same size and weight as 

fish that has been reared at 

optimum conditions (control fish), 

after a recovery period. 

Compensatory growth is thereby 

significantly higher than the growth 

rate of fish that has not experienced 

growth depression. Eventually this 

accelerated growth declines to 

growth rates similar to control fish. 

There are different levels of 

compensation (see figure 1.4). In 

full compensation, the starved fish 

may eventually achieve the same 

size as the control fish. Partial 

compensation means that the starved fish fails to achieve the same size at the same age as control 

fish, however they show a relatively fast growth rate. Over compensation is when the starved fish 

achieves a bigger size at the same age than non-starved fishes, due to extremely strong 

compensation growth. However over compensation is seldom happening. In fish compensatory 

growth normally describes increase in growth rate in whole body length or weight. However 

compensatory growth shows a diversity of forms. It may sometimes only restore lost energy 

reserves, or only length/weight growth, or a combination of restored energy reserves, length growth 

and weight growth. Sometimes full compensation of energy storages independent of length or mass 

growth may occur. There are many factors contributing to the compensatory growth. Especially 

hyperphagia is of great importance. Hyperphagia is when the rate of food consumption is higher than 

normal, (higher than fish that has been reared at normal/optimum conditions). By managing to have 

a higher feed intake, and thereby higher energy intake, the starved fish can manage to reach the size 

of the non-starved fish. (Ali et al., 2003).  

Figure 1.4: Different levels of compensatory growth in 
teleost fishes, (Ali et al., 2003) 
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1.3.3 Energy storages  

Most of the energy fish needs come from the three main nutrients glucose, lipids and proteins. 

Glucose  

Glucose from feed is transported to the liver where it can be used as energy, stored as glycogen, 

transformed to storage lipids or used in synthesis of other substances like amino acids or pentoses. 

The gills are the tissue with highest glucose turnover, followed by heart, red muscle and liver, with 

lowest turnover in white muscle. In gonadal tissues, eyes, red blood cells and nerve cells, glucose is 

essential as energy substrate. Therefore during periods with no carbohydrate intake and starvation, 

glycogenic amino acids, intermediates from the Krebs cycle or glycerol (from stored lipids), is used as 

substrate for making glucose. This process is called gluconeogenesis. Gluconeogenesis is a very active 

process in fish, and the most common substrate is the amino acid alanine. The glycogenic amino 

acids can be transformed to glucose through pyruvate or through the Krebs cycle. The highest 

gluconeogenesis activity is found in the liver and kidney. The process of making energy from glucose 

is called glycolysis. In this process glucose is transformed into pyruvate, and under aerobic condition 

further transformed to acetyl-coenzyme A (acetyl-CoA) and used in the Krebs- and respiratory cycles. 

However under anaerobic conditions, pyruvate is transformed to lactic acid, which not enters the 

Krebs cycle, and gives less energy. Most fish have limited ability to use glucose as a substrate for 

energy production, among other due to low activity of glucokinase, which is the first regulatory 

enzyme in glucose turnover. The activity of glucokinase is positive affected by insulin, and inhibited 

by glucagon. Excess glucose can be stored as lipids by de novo fatty acid synthesis through acetyl-

CoA. Most of the excess glucose is stored as glycogen in liver and muscle. The glycogen storages in 

muscle are used locally during escape and stressful conditions. In many teleosts the glycogen 

storages in the liver is transformed to glucose during periods of food shortage, and transferred to the 

blood as glucose for use in other tissues when necessary (Hemre, 2001, Hemre et al., 2002). 

Glucose is in free form in the plasma, and plays a vital role to maintain the osmotic pressure in the 

blood. If glucose concentrations not are withheld within the normal levels (3-6 mM), it can lead to 

problems with the water balance. Too high glucose levels in the blood, leads to extraction of water 

from surrounding tissues, which dry out the tissues. The blood glucose levels are regulated by 

hormones, among those insulin. The β-cells in the pancreatic tissue respond to increased amounts of 

blood glucose by increasing the excretion of insulin into the blood stream. However this response is 

very weak in Atlantic salmon. Insulin is an anabolic hormone binding to receptors on the target cells 

surface, leading to uptake of glucose into the cells. This receptor binding is necessary for glucose 

uptake in all tissues except the liver. When blood glucose is decreasing, the α-cells in pancreas 

excrete glucagon, which is a catabolic hormone, and stimulates breakdown of glycogen storages and 

release of glucose into the blood. Stress hormones like adrenaline and cortisol will also affect the 

turnover of glucose, by increasing muscle- and liver glycolysis, and from the liver glucose is released 

to the blood stream for use in other organs (Hemre, 2001). Therefore increased plasma glucose 

levels are used as indicator for the secondary stress response (Fox et al., 2006).  

Lipid 

Some fatty acids are being synthesized de novo in the fish, and are called endogenic fatty acids, while 

others has to come from the food, and are called exogenic fatty acids, and are essential fatty acids. 

Prolonged periods with lack of essential fatty acids, will lead to decreased growth and feed 

utilization. From the intestine, lipids are transported towards the liver as chylomicrones, and on the 
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way, some lipids are directly taken up by surrounding tissue. The rest of the chylomicrones are 

transported to the liver for storages, metabolism and modification. Lipids are excreted from the liver 

as VLDL (very low density lipoproteins), and in the blood the enzyme lipoprotein lipase will break 

down the lipoprotein-triglycerides into free fatty acids, which is taken up by the tissues. It is believed 

that the fatty acid metabolism is mainly done in the liver, but some is also done in red and white 

muscle. De novo synthesis in fish is believed to be similar as mammalian de novo synthesis. During de 

novo synthesis fatty acids are made from non-fatty acid molecules (amino acids or glucose). This 

synthesis and following storage as triglyceride is called lipogenesis. The process is hormonally 

controlled, and insulin is the main stimulator. The mobilization and break down of lipids into glycerol 

and free fatty acids are called lipolysis. The main degeneration way of fatty acids in fish is through β-

oxidation. The β-oxidation does occur in the cells mitochondria and peroxisomes. Some organs like 

liver, heart and kidney has higher mitochondria density compared to white muscle, and has therefore 

a higher oxidation rate. Surplus energy is normally stored as triglycerides in fish. The lipid storages 

can be in the liver, viscera or muscle tissue. Storage of energy as lipids is more effective than 

glycogen or proteins, due to that lipids do not bind up water (Torstensen et al., 2001). 

Protein  

Together with lipid and carbohydrates, proteins constitute the main energy source in fish, and gives 

energy when oxidized. Proteins also contribute as building blocks in the tissues. The proteins from 

food are broken down to mono- de- and tri peptides in the intestine, and transported by the blood 

stream to the liver. From the liver the amino acids are sent through the blood stream to tissues 

needing amino acids.  Protein synthesis occurs at the same time as there is protein degradation. 

Together these two process are called protein turnover (Espe et al., 2001). The highest protein 

synthesis is seen near the optimal temperature for growth (McCarthy and Houlihan, 1997). Protein 

synthesis is increasing with increased protein intake, and due to the size of the muscle (60-65% of 

body weight), 1/3 of the total protein synthesis is occurring in the muscle. 50-70% of synthesized 

protein is also placed in the white muscle. The process where proteins are synthesized is called 

translation or ribosome cycle. The rate of protein synthesis in eukaryotic cells can be regulated by 

the number of ribosomes present in the cell, which will determine the maximum rate of protein 

synthesis possible, or by the supply of free amino acids which is used as substrate during the 

translation. Ribosomes increase in number when water temperature is decreasing, and the quantity 

and specificity of elongation factors may also be affected by temperature, as a compensatory 

response. Protein degradation starts with that proteins are degraded down to amino acids by 

proteases. Thereafter most of the amino acids are deaminated into ammonium and α-keto acid. The 

deamination is done by glutamate dehydrogenase (GDH). This enzyme is inhibited by high energy 

levels (ATP and GTP), and is stimulated by low levels of energy (ADP and GDP). Other deamination 

processes like the purine nucleotide cycle are also degrading proteins, and producing substrates that 

can be used in the Krebs cycle (Espe et al., 2001). 

1.4 Endocrinology 
There are many hormones that affect growth and development in fish. The GH/insulin like growth 

factor system is one of the main regulators of somatic growth and energy metabolism in fish 

(Peterson and Waldbieser, 2009), and includes Growth hormone (GH), GH receptors, Insulin-like 

growth factor 1 and 2, (IGF1 and 2), IGF receptors and IGF binding proteins (IGFBP). 
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1.4.1 Growth hormone 

Growth hormone is produced and released in the somatotropic cells in anterior pituitary, and is an 

essential regulator of growth and metabolic functions. There is found two types of GH hormones in 

Atlantic salmon (GH-I and GH-II). One should therefore be aware that there can be differences 

between these two genes. However analyses shows that coding regions of GH-I and GH-II is 95 % 

equal, and so far no significant functional differences has been revealed between them (Björnsson, 

1997, Schalburg et al., 2008). GH has a growth promoting effect in salmonids (both length and weight 

growth), and is the principal regulator of somatic growth. As for mammals this is probably mostly 

done through the “dual-effector” mechanism, where GH stimulates secretion of IGF1 and increase 

tissue sensitivity to IGF1. In fact GH has so strong stimulatory effect on skeletal (length), growth, that 

it induces length growth also during starvation. When feed is available GH increase weight growth by 

increasing appetite and feed conversion (Björnsson, 1997). GH also plays a major role in the energy 

metabolism in fish, and there are at least two major metabolic effects of GH in salmonoids. This is 

the stimulating of lipid mobilization and protein accretion. The catabolic lipolytic effect of GH is seen 

through release of fatty acids and glycerol from the liver. The lipolytic effect of GH is mediated 

through increased triglycerol lipase activity (Björnsson, 1997). By decreasing the lipid stores, protein 

accretition and carbohydrate sparing are possible. It is not sure whether all GH dependent lipolytic 

effects in muscle tissue are mediated direct through GH, or indirect by locally produced IGF1. 

However, indications in mammals are that GH can regulate adipose metabolism directly and not 

through IGF1. (Mommsen and Moon, 2001). The GH mediated increase in whole body protein 

accretion is due to an increase in protein synthesis in some organs like heart, liver, gills, and stomach. 

GH does not decrease protein degradation but increase the rate of protein synthesis (Björnsson, 

1997). Most tissues, in particular muscle, needs amino acids as building blocks, and GH accelerate 

amino acid uptake from the gut and plasma into the muscle tissue, and thereby growth promotion in 

muscle (Mommsen and Moon, 2001). GH excretion is regulated by many environmental factors, with 

photoperiod as the most important factor (Gabillard et al., 2005). Regulation of GH is under 

hypothalamic control. The major regulator of GH secretion from pituitary is somatostatin (SRIF), 

which is found in the hypothalamus and pituitary. It inhibits GH release in vitro and lowers circulating 

GH levels in vivo. Circulating insulin-like growth factor 1 (IGF1), and circulating GH are also shown to 

inhibit GH secretion. This is done through a negative feed-back control on GH secretion. GH releasing 

factors (GHRH) and dopamine (DA) stimulate secretion of GH in pituitary cells, and DA may also 

reverse the inhibitory effects of SRIF. Also ghrelin may stimulate GH release. In mammals when GH is 

released into the blood stream, nearly 60% of the circulating GH is bound to high affinity GH binding 

proteins (GHBPs), which modify the GH activity in two ways; by protecting GH from degradation and 

thereby increasing their biological half-life, as well as competing with GH receptors (GHR) for GH 

binding (Björnsson et al., 2002). In the target tissues there is found GHRs with high affinity and low 

capacity. There is believed that the biological actions of GH is mediated through these receptors, 

similar to mammals (Björnsson, 1997). 

1.4.2 Growth hormone receptor 

Growth hormone receptor (GHR) is a transmembrane receptor belonging to the cytokine receptor 

super family, and found in at least nine teleosts species, including Atlantic salmon. In Coho salmon 

two isoforms have been found (GHR1 and GHR2), (Björnsson et al., 2002). The physiological actions 

of GH are mediated through GHRs, which are located at the cell surface of the target tissues. In fish 

GHR is expressed in almost all tissues, with the highest expression in liver in tilapia (Oreochromis 
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mossambicus) (Fox et al., 2006), indicating that the liver is the major target for GH. However due to 

the size of muscle tissue, also the muscle is of great importance (Björnsson et al., 2002).  In mammals 

both high levels of insulin and IGF1 can work as negative feedback on expression and function of 

GHR, and thereby inhibit GHR expression (Ji et al., 1999).  

1.4.3 Insulin-like growth factor 1  

Insulin like growth factor 1 (IGF1), belongs to the insulin super family and is a peptide. IGF1 is similar 

to IGF2 and insulin in amino acid sequence, receptor binding and biological functions. IGF are one of 

the main players in muscle growth and development in teleost fish. It works as a powerful stimulator 

for many anabolic processes in muscle tissue, including increased DNA and protein synthesis, amino 

acid uptake, cell proliferation and activation of mitogenesis  as well as decreasing protein 

degradation rate (Mommsen and Moon, 2001). Even though the metabolic actions of IGF1 and GH is 

quite similar, there are some differences on their effects on carbohydrate metabolism, which makes 

IGF1 slightly more anabolic than GH (Norbeck et al., 2007). IGF1 physiological actions are largely 

mediated through specific IGF1 receptors. Plasma concentrations of IGF1 fluctuate according to the 

nutritional state of the fish, and are very dependent on the concentration of other hormones. 

Normally plasma concentrations are around 25 ng/ml in fish, but only 0.1% of this is in a biological 

active form (free IGF1), and not bound to binding proteins. (Mommsen and Moon, 2001). Both IGF1 

and IGF2 plasma levels are correlated to liver mRNA levels, showing that liver is the main source for 

circulating IGF (Gabillard et al., 2003a). Especially IGF1 transcription in liver and gills shows high 

response to activation of GH. Liver produce IGF1 for systemic functions, while other organs like 

muscle produce IGF1 for autocrine and paracrine actions, and may not be regulated by GH in the 

same degree. This is because Igf1 expression in muscle is controlled by a lot of hormonal factors, 

among those insulin and IGF1, leading to an autocrine feed-forward activation of igf1 gene 

expression. Also other factors like environment and nutritional status directly regulates IGF1 in 

muscle (Hevrøy et al., 2013, Kullgren et al., 2013).  

1.4.4 Insulin-like growth factor 2 

Also insulin-like growth factor 2 (IGF2), is a peptide belonging to the insulin super family, and has 

many of the same functions as IGF1 in fish. Not only IGF1, but also IGF2 is related to local 

paracrine/autocrine regulation of at least muscle growth in adult teleosts (Hevrøy et al., 2007, 

Hevrøy et al., 2011, Mommsen and Moon, 2001). Unlike in mammals IGF2 also play a vital role in 

growth and development of adult fish, and not only during embryogenesis (Vong et al., 2003). It is 

discussed if the expression of igf2 is controlled by GH or not. Like for IGF1 the expression is highest in 

liver, but also other organs express igf2. There is often a higher expression of igf2 than igf1 in non-

hepatic tissues. Like IGF1, its bioavailability is controlled by IGF binding proteins, and its actions are 

largely mediated through specific receptors. In mammals IGF2 is shown to bind to a broader range of 

receptors (different types of insulin, IGF1 and IGF2 receptors), than IGF1, and may therefore have a 

broader range of biological functions than IGF1 (Chao and D’Amore, 2008).  

1.4.5 IGF1 binding proteins 

There are documented six IGF-binding proteins with isoforms in teleosts (Kevin et al., 2006, Shimizu 

et al., 2011) . In Atlantic salmon, these are 23- 28 and 43 kDA IGFBP. 43 kDA is called igfbp2 and 23 

kDA is called igfbp1. (Hevrøy et al., 2011). IGFBP1 has probably a major role to regulate the metabolic 

actions of IGF1 in teleosts. Fish IGFBP1 is very similar to mammalian IGFBP1 (Hevrøy et al., 2013, 

Kajimura and Duan, 2007), but also has some similarities with mammalian IGFBP4 (Kajimura and 



  1.0 Introduction 

 

 
 9 

Duan, 2007). The circulating IGFBP limits the access of IGF to specific tissues and receptors. The 

IGFBP increase the half-life of IGF with many hours, by avoiding attack from proteolytic enzymes. 

When the IGF is released from IGFBP it is biological active, living the circulation and entering target 

tissues (Le Roith, 1997). By making IGF1 biological active or inactive, IGFBP can tune IGF actions 

during many catabolic and stressful conditions. Under normal environmental conditions, the 

inhibitory effect that IGFBP1 has on IGF, is turned off, and thereby favoring fast growth and 

development. When the conditions not are favorable, IGFBP1 is “turned on” to restrict IGF signaling 

by binding up free IGF. The binding of IGF to IGFBP has higher affinity than binding to IGF receptors, 

and thereby IGFBP prevents IGF from binding to IGF receptors. In plasma 95% of IGF1 is bound to 

IGFBPs. IGF is released from IGFBP by proteolysis of IGFBP, which decreases the binding affinity and 

releases IGF to IGF receptors (Kajimura and Duan, 2007). Like for IGF, IGFBPs are mostly produced in 

the liver, but also other organs produces these molecules for autocrine/paracrine use (Le Roith, 

1997). IGFBP1 is induced by many different catabolic conditions, like starvation, malnutrition, protein 

restriction and hypoxia. In mammals circulating IGFBP1 is also affected by insulin level, showing its 

involvement in glucose metabolism (Kajimura and Duan, 2007). Insulin inhibits transcription of 

igfbp1, and is the primary determinant of igfbp1 expression. Also IGF1 and IGF2 have an inhibitory 

effect upon expression of igfbp1.  Somatotropin release inhibitory factor (SRIF), which inhibits 

release and synthesis of GH, up regulates the expression of IGFBP, and therefore lowers the 

bioavailability of IGF1 (Mommsen and Moon, 2001).  

1.4.6 IGF1 receptor: 

IGF1 receptor is a transmembrane tyrosine kinase receptor, and activated by IGF or insulin (Blakesley 

et al., 1999). In fish IGF1 receptor is found in many tissues, among those liver, gill and muscle 

(Mommsen and Moon, 2001). The physiological actions of IGF1 and IGF2 are mediated mostly 

through IGF1 receptors, located at the cell surface of the target tissues. In mammals they bind IGF1 

with high affinity and IGF2 and insulin with slightly lower affinity. IGF1 receptors are involved in cell 

proliferation and growth, by mediating the biological action of the IGFs into the cells (Planas et al., 

2000). IGF1 receptor seems to be very similar to mammalian IGF1 receptor, both structurally and 

functionally (Moriyama et al., 2000).  

1.4.7 Glucose transporter 4: 

Carnivorous fish have a poor biochemical competence to use glucose as fuel, and often shows insulin 

resistance-like metabolic behavior. The reason is probably poor peripheral utilization of glucose, 

which is related to the ability for glucose to transfer across plasma membranes, and the cells to 

metabolize it. In mammals two protein families are used to transport glucose across membranes. The 

Na+ dependent glucose co-transporters (SGLT), and the facultative Na+ independent glucose 

transporters (GLUT). Some of these GLUTs have also been identified in fishes. GLUT4 transporter in 

fish shows similarities with mammalian GLUT1 and GLUT4 (Mommsen and Moon, 2001). In fish the 

lower ability to clear glucose from the blood, can be due to low of levels of GLUT (Capilla et al., 

2002), or GLUTs with lower affinity compared to mammals (Capilla et al., 2002, Capilla et al., 2004). 

In mammalian the stimuli of glucose uptake by insulin is mediated mostly by GLUT4. When 

stimulated by insulin GLUT4 will rapidly move from intracellular storages unto the plasma membrane 

(Capilla et al., 2002, Capilla et al., 2004). There is still some uncertainty of how GLUT4 is functions in 

fish. But it is mainly expressed in insulin sensitive tissues, like white muscle, adipose tissue, (Menoyo 

et al., 2006), kidney, gills and heart (Capilla et al., 2004). In fish it looks like insulin regulation of glut4 
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mRNA expression is tissue specific, and red muscle is affected by plasma glucose levels, while white 

muscle is not (Capilla et al., 2002).  

1.4.8 GH/IGF regulation by temperature  

Not only photoperiod affects the plasma levels of GH. Also temperature regulates plasma levels of 

GH and IGF1, high temperatures increases plasma levels. However temperature does not increase GH 

mRNA in pituitary, only secretion into plasma (Gabillard et al., 2003b). The temperature mediated 

plasma GH increase will enhance IGF1 expression in liver and plasma. However autocrine/paracrine 

expressions of IGF1 or IGF2, nor plasma IGF2, are not up regulated due to temperature. The growth 

promoting effects of temperature is therefore mediated through increased plasma IGF1 levels. 

However there is only seen increase in plasma IGF1 due to temperature mediated increase of plasma 

GH when there is optimal nutritional conditions. The reason why GH does not increase plasma IGF2 

levels is likely due to that IGF2 is not affected by temperature itself but by nutritional status of the 

fish (Gabillard et al., 2005).  

1.5 Starvation 
Fish can survive for a long time without food, and fasting periods are part of the natural life cycle of 

many fish species. For salmon winter months and spawning migration are examples of such periods. 

Many fish species can therefore starve for many months and thereafter fully recover after re-feeding. 

Such fish species are well adapted to mobilize their metabolic reserves to survive during starvation 

periods. The effects of starvation on metabolism is dependent on many factors, among those fish 

species and which tissue has metabolic storages (Navarro and Gutiérrez, 1995). Normally adult 

Atlantic salmon lose most weight the first weeks of starvation, thereafter minor changes are seen. 

This is probably due to a combination of emptying of intestinal track as well as the energy 

requirement during starvation decrease, leading to lower metabolic rate (Christiansen, 1996). In fact 

in some species the metabolic rate is decreased by 30-40% after a few days starvation (Ali et al., 

2003). Even though fish lose weight during starvation, they often continue to have length and 

skeletal growth (Christiansen, 1996). This is done by using the body reserves to relocate energy into 

skeletal growth, which is initiated by growth hormone (Kullgren et al., 2013). Fish with high condition 

factor before starvation often increase in length faster than fish that have low condition factor. Due 

to the length growth during starvation, compensation growth will easily increase weight when feed is 

available (Christiansen, 1996). 

1.5.1 Phases during starvation 

It is possible to divide starvation in fish into three different phases: Phase 1; Hormonal and 

physiological changes, Phase 2; Mobilization of lipids and Phase 3; Mobilizing of proteins (Bar and 

Volkoff, 2012, Einen et al., 1998).  

Phase 1: Hormonal and physiological changes: At start of the starvation period many different 

hormones changes in concentration. Leading to that energy is diverted away from weight growth, to 

sustain essential metabolic processes. This growth retardation is associated with increased plasma 

GH as well as reduced GH sensitivity in some tissues, among those the liver. This leads to lower 

synthesis rate of IGF1 in those tissues, and thereby less IGF1 in plasma (from liver). However in the 

viscera, there is seen a higher sensitivity for GH during starvation, leading to increased lipid depletion 

here. The increased sensitivity in adipose tissues enhances the lipolytic actions of GH (Norbeck et al., 

2007). Also during starvation increased GH will likely stimulate the mobilization of energy reserves 
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like glycerol and fatty acids from other tissues (Björnsson, 1997). There is often seen a reduced GHR 

expression during starvation, and the GH resistance during starvation has been linked to GHR 

damages; however it may also be damages in the igf1 synthesis process. Anyway the reduced GHR 

expression can be a mechanism to reduce circulating IGF1 and growth during starvation (Fox et al., 

2006). Like for GH, also IGF1 sensitivity is altered in some growth sensitive organs like the gills during 

starvation. This is seen as reduced expression of IGF1 receptors in those tissues. However in some 

organs there is not seen a reduced IGF1 sensitivity, showing that important protein stores are spared 

during starvation. This is especially true for vital organs like the heart (Norbeck et al., 2007). Also 

plasma IGF1 concentrations are depressed during starvation (Mommsen and Moon, 2001). Therefore 

low levels of plasma IGF1 is generally associated with starvation or malnutrition, even thou there are 

no differences in circulating GH levels (Fox et al., 2006). Like for igf1 expression, also igf2 expression 

is decreasing during starvation in Atlantic salmon. Expression of igfbp1b increases during starvation, 

due to higher catabolic activity in starved fish. Therefore igfbp1 is a good molecular marker for 

catabolic activity in fish (Hevrøy et al., 2011). 

The physiological changes at this stage include increased catabolism, mostly by the use of glycogen, 

but also of protein and lipids (Bar and Volkoff, 2012, Einen et al., 1998). Muscle glycogen is used for 

muscular activities; therefore the variations in muscle glycogen during starvation are probably more 

related to changes in muscle activity than starvation (Hemre et al., 2002, Navarro and Gutiérrez, 

1995). However while muscle glycogen not is so affected by starvation, liver glycogen is more 

affected. And there is normally a significant decrease in liver glycogen during starvation in teleosts, 

but the overall contribution to the total energy expenditure is relatively small when looking on the 

limited weight of liver, HSI normally lower than 3% (Hemre et al., 2002),(Navarro and Gutiérrez, 

1995).  Plasma glucose level is normally maintained at a more or less steady state during long periods 

of starvation, and comes largely from the liver glycogen, at least during the initial stages of fasting 

(Navarro and Gutiérrez, 1995) 

Phase 2 Mobilization of lipids: During this phase hormonal concentrations stays similar to phase 1, 

or continue to increase. When glycogen stores are getting depleted, lipid stores are mobilized. In this 

phase the mobilization of proteins are declining, and lipids are the main source for energy (Bar and 

Volkoff, 2012). This phase lasts often for long periods, until lipid stores reach a critical threshold. 

There is also seen a reduction in mobilization of proteins as energy source in this period (Einen et al., 

1998), this probably due to high levels of circulating growth hormone. For most teleost fish, the main 

lipid store is the intestinal/viscera lipids, and for many species, this is the first place where lipids are 

mobilized from. (Navarro and Gutiérrez, 1995).  In Atlantic salmon intestinal mass decreases with 20-

50% during the first days of starvation, but thereafter there are little decrease in intestinal mass 

(Einen et al., 1998). This can be due to that in the beginning of starvation, viscera lipids are more 

important than muscle lipids (Christiansen, 1996), while later muscle lipids is contributing more. 

However in adult Atlantic salmon (2-5 kg), studies indicate that there is no preferential use of visceral 

lipids compared to muscle lipids, (Einen et al., 1998). Generally fish that store a lot of lipid in the 

muscle tissue, mobilize this lipids as soon the starvation starts, and almost 60% of the lipid storages is 

found in muscle tissue in Atlantic salmon (Christiansen, 1996). Lipid levels in liver decrease faster 

than lipid in muscle and viscera. However the lipid loss from liver is quantitatively much lower than 

for muscle and viscera. (Einen et al., 1998).  
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Phase 3, Mobilizing of proteins: When lipid stores are getting depleted (less than 2 % of body mass 

in Atlantic salmon), protein tissue start to degrade more rapidly (Bar and Volkoff, 2012) (Einen et al., 

1998). This phase is recognized by a markedly increase in ammonia products in the blood, due to 

increased protein mobilization (Bar and Volkoff, 2012).One of the main reason for that fish can 

withstand long periods of starvation is because the muscle has a lot of proteolytic enzymes that can 

mobilize the tissue proteins for fuel when required (Christiansen, 1996). Increase in proteolytic 

activity therefore increase with starvation period. In fact during prolonged starvation, muscle protein 

is the main energy source in fish. (Navarro and Gutiérrez, 1995). White muscle is normally the tissue 

that is most sensitive to starvation, and responds to starvation by reducing the rate of protein 

synthesis. Protein synthesis of other tissues like liver and gills are little affected by starvation, 

showing their importance for the function of these organs. Like white muscle also viscera lose a lot of 

protein during starvation in adult Atlantic salmon (Christiansen, 1996, Einen et al., 1998).  
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1.6 Aim and hypothesis for this study 
Studies indicates that water temperatures around 19°C, is above the optimal temperature for growth 

in Atlantic salmon (Handeland et al., 2003, Handeland et al., 2008, Hevrøy et al., 2012, Hevrøy et al., 

2013, Kullgren et al., 2013), and too high to sustain long time growth (Kullgren et al., 2013). However, 

little research has been focusing on possible positive effects of starvation during periods with high 

temperature.  

The overall aim of this master thesis was to examine the endocrine growth regulation, feed 

utilization and energy metabolism in Atlantic salmon during a period of high sea temperature and 

starvation, as well as possible compensatory responses to re-feeding at optimal water temperature. 

It is hypothesized that elevated sea temperatures affect growth, energy metabolism and feed 

utilization in Atlantic salmon.  

To answer this aim it will be:  

 Investigated if seawater temperatures above the optimum for growth reduce growth and 

feed intake. 

 Examined if high temperature will increase energy consumption and favoring catabolic 

actions. 

 Investigated how the endocrine regulation of muscle growth during starvation and elevated 

temperature works. 

 Determined possible positive effects of starvation during re-feeding after periods of elevated 

temperature  
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2.0 Materials and methods 

2.1 Experimental design and sampling 

2.1.1 Experimental design 

The experiment was conducted at Matre Aquaculture Research Station, Institute of Marine Research, 

Matredal, Norway (N61°). 13 April 2011, 600 large immature Atlantic salmon (0+, NLA strain), ~700g, 

where transferred from sea cages to 9, 3m x 3m indoor tanks, with 50 individually pit tagged fish in 

each tank (figure 2.1). Thereafter, two weeks of adaption to the indoor tank system followed. The 

fish were fed three times a day (08:15-10.00, 11:30-12:30 and 14:00-15:00), using a automatic 

feeding system and waste feed collectors which collected feed 15 min after feeding ceased. Both out 

feeding in g/day and feed collecting g/day was measured. Feed intake in g/day, as well as feed intake 

% BM was calculated. The feed used was an experimental feed recipe produced by Skretting AS, 

Stavanger, Norway. The feed nutrient composition was analyzed and contained 30% lipid, 45% 

protein, 5.1% ash and 5% moisture, with energy content of 25.1 MJ/kg. The inlet water was 

oxygenated to keep 90% saturation in all tanks during the whole experiment. A 18:6 light regime was 

used. After two weeks acclimatization (29 April), the trial period started. The 9 tanks were divided 

into three different treatments with triplicate tanks for each treatment.  

Treatment 1: The fish was kept at 13°C and fed ad libitum during the trial period (60 days). 

Treatment 2: The fish was kept at 19°C with no feeding during the trial period 

Treatment 3: The fish was kept at 19°C and fed ad libitum during the trial period 

After the trial period (60 days), all groups were fed in a recovery period for 49 days at 13°C with 

feeding according to their appetite (ad libitum).  

For both water temperature increases and decreases, the temperature was changed by 1°C/day until 

reaching desired temperature. 

2.1.2 Experimental fish 

At start of experiment the fish had a condition factor on 1.14 ± 0.008 (SE). The whole body 

composition of the fish at start was as follow: 870 ± 23 KJ/100 g ww energy, 11.3 g ±0.7g/100g ww 

lipid and 18.9 ± 0.2 g/100 g ww protein. The somatic indexes of the fish were as follow: HSI (1 ±0.05), 

VSI (6.82 ± 0.14) and CSI (0.10 ± 0.003). 
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2.1.3 Sampling regimes 

There were three samplings; 

 Sampling 1: Start sampling (28. April 2011) 

 Sampling 2: Sampling after trial period (27. June 2011) 

 Sampling 3: Sampling after recovery period (15. august 2011). 

All sampling were taken four hours after feeding to ensure comparable post-prandial levels of free 

amino acids and hormones (Hevrøy et al., 2007). All fish where sedated using ISO-eugenol in the 

tanks, and then anaesthetized with Tricaine Methanesulfonate, and killed with a blow to the head. 

Thereafter length and weight was registered, and tissues and organs sampled. Three Fish where 

randomly sampled from each tank. From sampling 1, nine fish were sampled for organ analyses, and 

nine fish sampled for whole fish analysis. From sampling 2, totally nine fish was sampled from each 

treatment (three from each tank), for whole fish analysis (totally 27 fish). Similarly, 27 fish were 

sampled for organ analysis. The sampling of fish at sampling 3, was equal to sampling 2. Under all 

samplings the fork length was measured to the nearest 0.5 cm, whole fish weight to the nearest 

gram. Heart, liver and viscera were measured to the nearest 0.01 g. White muscle, liver and blood 

were collected for further analysis. The blood was collected from the caudal veins by using a syringe, 

and put into heparinized tubes. Plasma was collected after centrifugation at 1250 g for 10 minutes. 

Organ samples were frozen in liquid nitrogen (- 80°C), during sampling and kept at -80°C until 

analysis. The whole fish were frozen at -20°C until further processing.  
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Figure 2.1: Experimental design. All fishes were initially kept at 13°C for 14 days acclimatization. 
After sampling 1, the temperature was increased to 19°C for two groups (19 starved and 19 fed) 
during a 60 days trial period. During trial period 13°C fed and 19°C fed was fed ad libitum. After 
sampling 2 a 49 days long recovery period followed, where all groups were hold at 13  13°C and fed 
ad libitum. After 49 days of recovery sampling 3 was conducted.  

2.2 Analytical methods 

2.2.1 Gene expression 

RNA isolation 

RNA was isolated according to NIFES protocol: “Met.MOL.01-57, 281-RNA rensing og RNA kvalitet”. 

The RNA was isolated from white muscle in Atlantic salmon.  

Before starting the procedure, the bench and equipment was cleaned by using Sigma RNase ZapTM . 

The samples were taken directly from -80°C freezer and kept on dry ice until cutting. Six sample 

tubes were prepared in each round, by using the BioRobotEZ1 DSP (Qiagen N.V., Hilden,  Germany). 

First sample was cut and weighted to 0.150 g, and the other samples were cut into similar size by 

visual estimate to avoid thawing. The 0.150 g pieces were homogenized in QIASOL using zirconium 

beads (4 mm), in Precellys 24 homogenizer (Bertin Technologies, Aix En Provence, France). After 

incubating for 5 min chloroform was added to separate RNA from protein and DNA.  To achieve 

phase separation the samples were centrifuged for 15 min at 12000g and 4°C in an Eppendorf 

centrifuge 5415R (Eppendorf, Hamburg, Germany).  

 

Sampling 1: 
Organ fish (n=9, total=9) 

Whole fish (n=9, total=9) 

Sampling 2: 
Organ fish (n=9, total=27) 

Whole fish (n=9, total=27) 

Sampling 3: 
Organ fish (n=9, total=27) 

Whole fish (n=9, total=27) 

14 days 

60 days 

49 days 

Acclimatization 

Trial period 

Recovery period 

19 °C 
starved 

19 °C 
fed 

13 °C 
fed 

19 °C 
starved 

19 °C 
fed 

13 °C 
fed 

19 °C 
starved 

19 °C 
fed 

13 °C 
fed 
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When centrifugation was finished, >350 µl of the upper blank supernatant was transferred from each 

tube into 2 ml sample tubes, which was loaded into the EZ1 robot (Qiagen N.V., Hilden,  Germany)  . 

The following program was used at EZ1 (table 2.1): 

Table 2.1: The program used on the EZ1 robot 

EZ1 Program 

Gene expression: Total RNA 

Mini- or Universal tissue Universal tissue 

Including DNase Yes 

Elution volume 50 µl 

Total volume 300 µl 

RNA concentration and purity 

The RNA concentration and purity was measured using NanoDrop ND-1000 UV-Vis 

Spectrophotometer (NanoDrop Technologies, USA). The measurement was done according to 

standard procedure at NIFES (MET.MOL.01-57, NanoDrop ND-1000). 

The tubes were kept on ice during the testing. The spectrophotometer probe was washed with 

ddH2O before use, and wiped clean with a clean towel between each measurement. 2 µl of each 

sample was loaded to the probe to measure concentration and purity. Just before loading unto the 

probe, the sample tubes were vortexed for a few seconds to ensure accurate measurements. To 

ensure that no magnetic beads were brought unto the spectrophotometer, a magnet holder 

(Invitrogen DYNAL bead separation, Carlsbad CA, USA), was used to hold the sample tubes after 

vortexing. 

The 260/280 and 260/230 absorbance ratio was used as indicators for sample purity. 

RNA quality 

The quality was tested by using a RNA Integrity Number algorithm (RIN algorithm), on the Agilent 

2100 Bioanalyser (Agilent technologies, USA) together with RNA 6000 Nano and RNA 6000 Pico 

LabChip kit (Agilent Technologies, Santa Clara, CA, USA).  12 random samples, including samples from 

each isolation round, were tested. The measurements were done according to the manufacturers 

guidelines. Before adding RNA samples to the wells, the RNA samples were diluted with ddH2O to a 

final concentration of 100-500 ng/µl. 2 µl of this dilution was then added to the wells. The RNA 

fragments were analyzed by capillary electrophoresis. 
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Reverse transcription-PCR 

The procedure was done as described in NIFES standard procedure “MET.MOL.01-55, 279 - RT 

REAKSJON”.  

The cleaned RNA was diluted with ddH2O in new tubes to a concentration of 50 ng/μl ± 5%.  

Nanodrop ND-1000 (Saveen Werner, Malmö, Sweden) was used to get right concentration. 

The standard curve was made by mixing together 5 µl from each sample and measure at the 

spectrophotometer. Then six serial dilutions (100 – 3.13 ±5% ng/µl) was made from this pool. The 

standard dilutions were made in triplicates on the 96 well plate, except dilutions 6.3 and 3.1 ng/µl, 

which were duplicates. The RT reaction mix was made using TaqMan reverse transcription reagent kit 

(Applied Biosystems, Foster City, CA, USA). The final concentration of RT mix was: TaqMan RT (1X), 

magnesium chloride (5.5 mM), 1deoxyNTPs Mixture (500 µM per dNTP), RNase inhibitor (0.4 u/µl), 

Oligo d(T)16 (2.5 µM), Multiscribe reverse transcriptase (1.67 u/µl). In each well 20 µl of the RT 

reaction mix was added, plus 10 µl of RNA from the respective samples tubes. All samples were made 

in duplicates. Also two negative control wells were made. One non-amplification control (nac), 

containing RNA from the RNA pool used for making standards and RT reaction mix without the 

enzymes. The other control was a non-template control (ntc), containing RT reaction mix and 10 µl 

RNase free water instead of RNA. 30 µl RT-PCR where preformed by using the program shown in 

table 2.2, using the PCR system GeneAmp PCR 9700 (Applied Biosystems, Foster City, CA, USA). 

Table 2.2: Showing the program used during RT-PCR of cDNA 

Step Incubating RT Reverse 

Transcriptase 

inactivation 

End 

HOLD HOLD HOLD HOLD 

Temp (°C) 25 48 95 4 

Time (min) 10 60 5 ∞  

Volume (µl) 30 

 

  



  2.0 Materials and methods 

 

 
 19 

Primers 

The primers used in this experiment were provided by Dr. Ernst Morten Hevrøy. The primers for 

ghr1, igf1, igf2, igf1ra and the housekeeping genes ef1ab and actβ, where previously presented in 

(Hevrøy et al., 2013). Glut4 were presented in (Menoyo et al., 2006), were it is named glut-i2. 

Igfbp1a are presented in (Hevrøy et al., 2014), (table 2.3). 

Table 2.3: Showing the different primers used for qPCR. EF1ab, RPL13 and actb are the housekeeping 
genes. 

Target gene Primer sequence Amplicon size (bp) Accession no. 

Ef1ab For 5’ -CCCCTCCAGGACGTTTACAAA 57 AF321836 

Rev 5’ -CACACGGCCCACAGGTACA   

actb For 5’ -CCAAAGCCAACAGGGAGAA 102 BG933897 

Rev 5’ -AGGGACAACACTGCCTGGAT   

Rpl13 For 5’ - CCAATGTACAGCGCCTGAAA 110 NM_001141291 

Rev 5’ - CGTGGCCATCTTGAGTTCCT   

Ghr1 For 5’ -TGGACACCCAGTGCTTGATG 70 AF403539 

Rev 5’ -TCCCTGAAGCCAATGGTGAT   

Ghr2 For 5’ - TCGGAACATTCCAGAACCTC 164 NM_001123594.1 

Rev 5’ -GGTCATCCAGACCTTCGTGT   

Glut4 II For 5’ -CGCTTCCTCTACATCATCCGTTC 268 AY566722.1 

Rev 5’ - AGCATATCCCCCACTTCCTGT   

Igfbp1a For 5’ - GGTCCCTGTCATGTGGAGTT 184 KC 122927 

Rev 5’ - TTCCAGAAGGACACACACCA   

Igf1 For 5’ -TGACTTCGGCGGCAACA 119 M81904 

Rev 5’ -GCCATAGCCCGTTGGTTTACT   

Igf2 For 5’ -TGCCAAACCTGCCAAGTCA 66 AY049955 

Rev 5’ -GGCACCATGGGAATGATCTG   

Igf1ra For 5’ -TGCACAACTCCATCTTCACC 132 EU861008 

Rev 5’ -GGGGCTCTCCTTCTGTCCTA   

 

Quantitative PCR (qPCR) 

The cDNA plates made for RT-PCR where thawed on ice and 30 µl RNase free water was added into 

each well, and spun down for 1 min at 700 rpm (Eppendorf centrifuge  5810R, Hamburg, Germany), 

before shaken for 5 min at 1500 rpm (Eppendorf Mixmate PCR 96, Hamburg, Germany). The 

procedure used was the NIFES standard MET.MOL.01-56, 280- RealTime PCR. 

A SYBRgreen mastermix (Roche Applied Sciences, Basel, Switzerland), containing the specific primers 

(table 2.4), where prepared at a RNA/DNA free room (table 2.4). By using a pipetting robot (Biomek® 
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3000, BeckmanCoulter, Brea, Ca, USA), 8 µl of SYBRgreen mastermiks and 2 µl of RNA was 

transferred to each well on a 384 well plate. The plate was spun down at 1500 rpm for 2 minutes 

(Eppendorf sentrifuge  5810R, Hamburg, Germany). Thereafter it was inserted into the Light Cycler 

480 Real-Time PCR system (Roche Applied Sciences, Basel, Switzerland). In addition to the normal 

qPCR, a melting curve analysis was preformed to ensure only one gene sequence was produced 

during each PCR analysis. Table 2.5 is showing the program settings used during qPCR. 

Table 2.4: Reagents in the SYBRgreen master mix 

Reagents Volume (µl) Final concentration 

ddH2O 2.8  

Forward primer (50 µM) 0.1 0.625 µM 

Reverse primer (50 µM) 0.1 0.625 µM 

TaqMan universal PCR 
Master Mix (2X) 

5  

 

Table 2.5: The program used during qPCR 

Step Pre-
incubating 

Amplifying Melt curve analysis Cooling 

Temp 
(°C) 

95 95 60 72 95 65 97 40 

Time 5 min 10 sec 10 sec 10 sec 5 sec 1 min  10 sec 

Cycles 1 45 1 

 

The software Lightcycler® 480 software, version 1.5.0.39 (Roche Applied Sciences, Basel, 

Switzerland), was used to determine cyclic time where fluorescent reached a threshold level (Ct 

value), calculating standard curves, sample error and efficiency of the reactions. The error should be 

below 0.04 and the efficiency between 1.8 and 2.2. 
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2.2.2 DELFIA® time-resolved fluorescence assay 

DELFIA technology (Dissociation-Enhanced Lanthanide Fluorescent Immunoassay), from PerkinElmer 

Life Sciences (Waltham, MA, USA), is a high-performance and robust immunoassay, which has many 

benefits compared to traditional ELISA Immunoassays. Among other it is more sensitive than ELISA 

and therefore better to use when there is little sample available (PerkinElmer, 2013).  

In current experiment sample molecule (in this case plasma GH), competed with a labeled 

biomolecule (in this experiment, biotin labeled GH, containing europium) for the binding sites in the 

wells of the immunoassay plate (figure 2.2). The lower concentration with sample GH, the more 

biotin GH will bind to the antibodies in the well, giving a stronger count (illumination), compared 

when most antibodies are occupied by sample GH, which will not illuminate. However, the labeled 

GH is also almost non-fluorescent. Therefore after the binding reactions, DELFIA Enhancement 

Solution (Waltham, MA, USA,) is added. The low pH of the enhancement solution will dissociate the 

Europium from the labeled GH. The free Eu3+ then rapidly forms a new highly fluorescent chelate, 

which is protected by a micelle formed by the components of the enhancement solution. In this way 

the enhancement solution will increase the 

fluorescence of the lanthanide chelates. The 

fluorescence lifetime of the lanthanides is 

several orders of magnitude longer than the 

non-specific background. This makes it 

possible to measure the label after the 

background has decayed, which will minimize 

the noise ratio. (PerkinElmerTM). 

  

Figure 2.2 Illustration example of competitive 
immunoassay (PerkinElmerTM) 
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Plasma-GH TRF Immunoassay 

Part of the master thesis was to participating in developing this analysis at NIFES. The main protocol 

used was developed by Professor Munetaka Shimizu (Hokkaido University), and Dr Ernst Morten 

Hevrøy (Ewos AS), with MsC Nobuto Kaneko (Hokkaido University), taking part in developing the 

practical implementation of the method. In this experiment the analysis was conducted as described 

by Nobuto Kaneko, (TR-FIA for GH, 18.03.2013). 

Finding suitable concentrations of antibody, label and GH-standard 

Before doing immunoassay analysis on plasma GH from sample fish, the most suited concentrations 

of antibody (Anti-Salmon Growth Hormon, Rabbit 5 µl lyophilized, Lot: AJI-PAN1, Gro Pep, Adeilade 

SA, Australia), Biotin labeled GH and GH standard (Lot: DAB-GHB1, Salmon/Trout growth hormone, 

20 µg, Gro Pep, Adeilade SA, Australia) had to be found. First the antibody-label combination was 

found, using only antibody and biotin-labeled GH. Afterwards the most suitable antibody-label-

standard GH combination was found, using the protocol (TR-FIA for GH, 18.03.2013).  

Following antibody-label-standard combinations where tested: 

a) Ab 1:8000, Label 50 ng/ml, standard 0.8-100 ng/well  

b) Ab 1:8000, Label 70 ng/ml, standard 0.006-1.6 ng/well  

c) Ab 1:8000, Label 50 ng/ml, standard 0.05-6.4 ng/well  

There were concluded with that combination b) was the most suited one. This both because it 

showed a very smooth standard curve, with an R2 value of 0.97. And also due to previous studies 

(Pottinger et al., 2003, Shimizu et al., 2009), it was believed that the plasma GH concentration would 

be within the range of standard curve b), which would be (0.3 – 80 ng/ml). 

Measuring sample plasma GH 

The immunoassay with sample plasma could now be run, using the protocol written by Kaneko. The 

calculations and amounts of the different substances used can be seen in appendix 2.1. All samples 

were made in duplicates.  

 

The DELFIA Anti-Rabbit IgG coated 96 well Microtitration plate, was put on ice and washed with 200 

µl DELFIA wash buffer (1x) (Turku, Finland). The DELFIA wash buffer where made by diluting 25X 

DELFIA wash buffer with ddH2O. The plate was tamped upside down on paper towels to get rid of 

wash buffer. Thereafter 100 µl DELFIA Assay buffer (Turku, Finland) to all wells except BG. Nine serial 

dilution was made of the standard GH (0.006 – 1.6 ng/well), in duplicates. Thereafter 20 µl control 

plasma was added to control well in duplicate. There after 20 µl sample plasma was added to 

appropriate sample wells, in duplicates. Two empty wells were also used as background wells (BG), 

to control back ground count. BG was kept empty until day 3, when enhancement solution was 

added. Thereafter 1:8000 antibody was added to all wells except BG and the plate was stored at 4°C 

600 rpm (MS 1 Minishaker, IKA – Werke GmbH & Co, Staufen im Breisgau, Germany), in dark 

overnight. Next day, after centrifugation at 4°C 1 min at 3000 rpm (Eppendorf sentrifuge  5810R, 

Hamburg, Germany), biotin-labeled GH was added. Thereafter the plate re-covered and shaken 

overnight (dark). The following day after centrifugation and plate wash, DELFIA Avidin-EU (Turku, 

Finland) was added and plate shaken at room temperature for 3 hours. After final washing, room 

temperate enhancement solution was added to all wells. The plate was read in VICTOR™ X5 2030 
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Multilabel Plate Reader (PerkinElmer, Waltham, MA, USA), using the software PerkinElmer 2030 

Workstation, Europium protocol. 

2.2.3 Proximate analysis 

These analyses where done by technical staff at NIFES, except Immunoassay of IGF1 and IGFBP1b and 

plasma measuring of glucose. Immunoassay of IGF1 and measuring plasma glucose was done At the 

Univeristy of Arakansas by Prof. Christian Tipsmark. Plasma IGFBP1b was done at Hokkaido University 

by MSc-student Miki Pukada under supervision of Prof. Munetaka Shimizu. 

Plasma IGF1 radioimmunoassay 

The immunoassay of plasma IGF1 was conducted at the University of Arkansas, USA by Professor 

Christian K. Tipsmark. The measurement of plasma Igf1 was conducted by using salmon Igf1 as 

standard and tracer. Anti-barramundi Igf1 was used as primary antibody (GroPep Bioreagents Pty 

Ltd, Adelaide SA, Australia). Iodination of the hormone as well as the procedure for the 

radioimmonoassay followed the described protocol (Tipsmark et al., 2006). The total Igf1 from each 

plasma sample was acid ethanol extracted followed by neutralization. Thereafter the extracts were 

incubated with iodinated tracer and primary antibody overnight at 4°C. Next day the bound antigen 

were precipitated with secondary goat antirabbit IgG antibody and polyethylene glycol for 2 h (20°C), 

followed by centrifugation at 3.000 g for 60 min (4°C). 

Time-resolved fluorescence immunoassay of plasma IGFBP1b  

The method for this analysis has not yet been published. However the analysis was conducted at 

Hokkaido University, Sapporo Hokkaido, Japan by Msc Miki Pukada and Professor Munetaka Shimizu. 

Plasma glucose  

Plasma glucose was measured at the University of Arkansas, USA by Ass. Professor Christian K. 

Tippsmark. The plasma glucose concentration was measured using a glucometer (Clarity Plus, 

Diagnostic Test Group, Boca Raton, FL, USA). 

Stored energy 

Energy concentration was determined by following the NIFES procedure ”MET.NÆR.01-10, 096 – 

Energibestemmelse ved bombekalorimeter”. Energy content in whole fish and feed was measured 

using a bomb calorimeter (Parr calorimeter 6300 with a water circulating system 6520A, Parr 

Instrument Company, IL, USA).  

Stored lipid  

Whole fish total lipid: This analysis followed the Norwegian standard 9402 ”Atlantic Salmon – 

Measurement of Color and Fat”, first edition, 1994. This method is developed at NIFES, and at NIFES 

described as “MET.GRU. 01-02, 091 – Fett bestemmelse, etylacetat metode”. This method was used 

to measure total lipid content in whole fish. Since primarily only non-polar lipids are soluble in ethyl 

acetate. It is  likely that not all polar lipids were detected.  

Feed: For this analysis an acid hydrolysis method was used. The analysis was done according to the 

NIFES method “MET.GRU. 01-01, 083 – Fettbestemmelse ved syrehydrolyse”. This description is 

closely related to the Official Journal of the European Union, L15/28, 18.1.84, method B.  
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Stored protein  

Crude-protein in whole fish and feed was analyzed by the Dumas method as described in the NIFES 

protocol “MET.GRU. 01-05, 171 – Råproteinbestemmelse ved hjelp av nitrogenanalysator”. The 

nitrogen content was measured using a Vario Macro Cube instrument (Elementar, Hanau, Germany). 

By multiplying the nitrogen content with 6.25, crude protein content was found. 

2.3 Calculations  

Mean normalized expression (MNE) 

The Ct values were exported to Microsoft excel 2007, where they were used to calculate mean 

normalized expression (MNE), using the program Microsoft Excel geNorm version 3.2. GeNorm uses 

an algorithm to find the most stable reference genes, and from this the MNE for the different genes 

can be calculated (Jo Vandesompele, 2002).  

Calculating GH concentration from immunoassay 

Microsoft excel 2007 where used to do the calculation of standard curves. In exel the plate counts 

was transformed into logarithmic values, to get a linear standard curve. A standard curve was made 

by taking the average of all standard counts from all plates containing sample GH. The equation from 

this curve was used to calculate the GH concentration (ng/ml), in the samples.  

Productive values 

Retention of lipid, protein and energy were calculated as protein productive value (PPV), lipid 

productive value (LPV) and energy productive value (EPV). The productive values are calculated on 

tank level, not individual level. Formula 2.1 shows the calculation off PPV (LPV and EPV are 

equivalent).  

2.1)       
       

 
 

Where:  

B1 = Protein content in the whole fish at start 

B2 = Protein content in the whole fish at the end 

I = Eaten protein 

Organ indexes 

Organ indexes of heart (cardio somatic index (CSI), liver (hepato somatic index (HSI) and viscera 

(visceral somatic index (VSI)) were calculated as follow: 

       2.2)               
                   

                        
     % 

Condition factor 

Condition factor (K), was found as: 

      2.3)     
 

       

Where: 

w = whole fish weight (g) 

L = Fork length (cm)  
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Specific growth rate 

SGR was found by using formula 2.4: 

2.4)        
              

 
    Where: 

w1 = weight in period 1 (sampling 1) 

w2 = weight in period 2 (sampling 2) 

d = days between period 1 and 2 

In this experiment there were 60 days between sampling 1 and 2, and 49 days between sampling 2 

and 3. 

Nutritional loss during starvation 

Finding protein-, lipid- and energy loss during starvation in 19°C starved fish was done as described in 

formula 2.5: 

2.5)                   
     

     
 

Where: 

w1 = weight (g), in period 1 (sampling 1) 

w2 = weight (g), in period 2 (sampling 2) 

N1 = g nutrient (protein, lipid) pr fish in period 1 (sampling 1) 

N2 = g nutrient (protein, lipid) pr fish in period 2 (sampling 2) 

N1 and N2 for energy was in kJ, not gram  

Weight gain 

Weight gain was calculated according to formula 2.6 

2.6)  Weight gain = weight p2 – weight p1 

Where: 

Weight p2 = weight (g) in period 2 (i.e. trial period) 

Weight p1 = weight (g) in period 1 (i.e. start of experiment) 

Length gain 

Length gain was calculated according to formula 2.7 

2.7)  Length gain = length (p2) – length (p1) 

Where: 

Length (p2) = Fork length (cm), in period 2 (i.e. trial period) 
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Length (p1) = fork length (cm), in period 1 (i.e. start of experiment) 

Feed conversion rate (FCR) 

FCR was found by formula 2.8: 

2.8)       
           

           
 

Where: 

Feed intake = mean feed intake in g/period (i.e trial period) 

Weight gain = mean weight gain in g/period 

2.4 Statistical analysis 
The statistical analyses were carried out using the statistical software R 2.15.2. Graphs and plots 

where made in Microsoft Excel 2007/GraphPad Prism 6. All values are presented as mean ± standard 

error (SE). A 95% confidence interval was used for all tests. One-way ANOVA on the mean of tank 

level was used for all data on phenotypical parameters. For individual fish analyses (plasma 

hormones and muscle genes, a linear mixed effect model (lme), was used, with the tanks as random 

variables.  For all results, the treatment (13°C fed, 19°C starved and 19°C fed), was used as predictor 

variables. If there were found significant differences, a general linear hypothesis model (glht), Tukeys 

post-hoc test was used to analyze significant differences between the group means. To check if the 

data had homogeneity in variance a visual plot plotting variable vs. predictor was used. Since 

homogeneity in variance is more important than normal distribution and the underlying distribution 

in theory should be normal distributed, data were only transformed if it lead to more homogeneity in 

variance. If necessary the data was log transformed. Following datasets were transformed:    

 All gene expression in white muscle 

 IGFBP1b in plasma (trial) 

For correlations, GraphPad Prism 6 was used, using a non-parametric correlation (Spearman’s rank 

correlation), with a two tailed p-value. Individual correlation was used when possible, if not mean 

correlation on tank level was used. 
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3.0 Results 

3.1 Feed intake 
 

 

 

 

Table 3.1: Showing mean daily feed intake as % ± SE of body mass (BM) during trial (60 
days),- recovery (49 days),- and whole experimental period (109 days). n = 3. Significant 
differences are indicated with lower case letters. 

Period 13 fed 19 starved 19 fed 

Trial period 0.76 ± 0.02b 0 0.86 ± 0.02a 

Recovery 
period 

1.14 ± 0.02a 1.19 ± 0.08a 1.00 ± 0.03b 

Whole period 1.9 ± 0.02a 1.19 ± 0.07b 1.86 ± 0.02a 

 

In feed intake as % of body mass, no differences were seen between the fed groups during whole 

experimental period (figure 3.1 and table 3.1). Trial period showed a significant higher intake in 19°C 

fed fish compared to 13°C fed (p=0.024), (table 3.1). During recovery period 19°C fed had significant 

lower feed intake than all other groups (p<0.017) (table 3.1). 

Figure 3.1: Daily feed intake shown as % of bio mass (BM), shown on treatment level (not tank level).  
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Figure 3.2: Feed conversion ratio during trial period (A), recovery (B) and during whole experimental 
period (C). n = 3. Data is presented as mean with ± SE. Significant differences are indicated with lower 
case letters. 

The feed conversion ratio (FCR) during the trial period was significantly higher in 19°C fed compared 

to 13°C fed (p = 0.005) (figure 3.2 A). During recovery, 19°C fed had tendencies to higher ratio than 

13°C fed (p = 0.093) (figure 3.2 B). FCR during whole experiment had higher ratio in 19°C fed fish 

compared to 13°C fed fish (p<0.02) (figure 3.2 C).  
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3.2 Whole fish analyses 

3.2.1 Growth and development 

 

 

 

   

Figure 3.3: (A-B) Showing weight (g), after trial and recovery period. Weight gain during the 
trial (60 days) (C), during recovery (49 days) (D) and during whole experiment (109 days) (E). 
Length gain (cm), during trial (60 days) (F), recovery (49 days) (G), and during whole 
experimental period (109 days) (H). Mean specific growth rate (SGR) during trial (60 days) (I), 
recovery (49 days) (J), and during whole experimental period (109 days) (K). n = 3, and data is 
presented as mean with ± SE.  Significant differences are indicated with lower case letters. 
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During the trial period the mean body weight was significantly reduced in the 19°C starved fish 

compared to 13°C fed and 19°C fed fish (p<0.001). The 19°C fed fish had a lower body weight than 

fed fish reared at 13°C (p<0.025) (figure 3.3 A). After the recovery period the starved fish at 19°C was 

significant lighter than 13°C and 19°C fed fish (p<0.003), (figure 3.3 B).  

The weight gain was significantly higher in fed fish compared to starved fish during the trial period 

(p<0.001). Also 13°C fed fish showed tendencies to higher weight gain than 19°C fed fish (p=0.069) 

(figure 3.3 C). During recovery the 13°C fed fish had significantly higher weight gain than 19°C fed fish 

(p<0.005) (figure 3.3 D). Weight gain during the whole experiment was significantly higher in 13°C 

fish than 19°C fish (p<0.005). Also 19°C fed is higher than 19°C starved (p=0.001) (figure 3.3 E). 

Length gain during the trial period was lower in 19°C fish compared to 13°C fish (p<0.001). Also 19°C 

fed had higher length gain than 19°C starved (p<0.001) (figure 3.3 F). Recovery showed higher length 

gain in 13 fed°C fed fish compared to 19°C fish (p<0.006). 19°C fed fish showed tendencies to higher 

gain than starved fish (p=0.055) (figure 3.3 G). Length gain during the whole period had lowest gain in 

19°C starved fish (p<0.001), and 19°C fed fish lower than fish at 13°C (p<0.001) (figure 3.3 H).  

Specific growth rate (SGR) in fish starved at 19°C was lower compared to the other during trial period 

(60 days) (p<0.01). Also, 19°C fed was significantly lower than fish at 13°C (p<0.035) (figure 3.3 I). 

During the recovery period (49 days), SGR was higher in fish at 13°C compared to 19°C (p<0.004). 

Also 19°C starved was lower than 19°C fed (p=0.001) (figure 3.3 J). During the whole experiment 

there were the same pattern, 13°C fish was significant higher than 19°C fish (p<0.004), and 19°C fed 

fish was higher than 19°C starved fish (p<0.001) (figure 3.3 K). 
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3.2.2 Metabolic state 

 

 

 

  

Figure 3.4 A-B Condition factor 
after trial period (A) and after 
recovery (B). Data is presented 
as mean with ± SE (n=3). 
Significant differences are 
indicated with lower case 
letters. 

Figure 3.5: Stored energy and 
nutrient composition in whole 
fish. Energy stored in the fish 
after respectively trial (A), and 
recovery (B). Stored lipid after 
trial and recovery period (C and 
D). E (trial) and F (recovery) 
shows stored protein in whole 
fish. n = 3, and data is 
presented as mean with ± SE. 
Significant differences are 
indicated with lower case 
letters. Only whole fish analyses 
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Table 3.2: Showing stored energy and nutrients during trial and recovery period 

NUTRIENT CONTENT 

 13 fed 19 starved 19 fed 

energy kJ/ 100g ww 

(trial) 

1011 ± 19a 861 ± 2b 983 ± 34a 

energy kJ/ 100g ww 

(recovery) 

1011 ± 10a 871 ± 17b 970 ± 3a 

Lipid g/ 100g ww (trial) 14.03 ± 0.44a 6.07 ± 0.35b 13.10 ± 0.50a 

Lipid g/ 100g ww 

(recovery) 

15.17 ± 0.16a 12.40 ± 0.39b 14.30 ± 0.63ab 

Protein g/ 100g ww 

(trial) 

18.43 ± 0.09 19.03 ± 0.09 18.80 ± 0.30 

Protein g/ 100g ww 

(recovery) 

18.43 ± 0.26 17.73 ± 0.03 18.13 ± 0.24 

 

After the trial period (figure 3.4 A), the condition factor in 19°C starved fish was significantly lower 

than the other groups (p<0.001). During the recovery period the condition factor increased in all 

groups, but still there was a significantly lower condition factor in 19°C starved fish compared to the 

other groups (p>0.001). The condition factor in the 13°C fed and 19°C fed fish was similar (figure 3.4 

B). 

Total stored energy concentration was significantly lower in fish starved at 19°C compared to the 

other groups after trial and recovery period (figure 3.5 A-B, table 3.2).  

It was significant less stored lipid after trial period in fish starved at 19°C compared to the other 

groups (p<0.01). There was 8 g (100g ww (57%), more lipids in fish fed at 13°C than 19°C starved fish 

after trial (figure 3.5 C). After recovery period the 19°C starved fish was only significant lower than 

13°C fed fish (p=0.044) (figure 3.5 D) (table 3.2).  

Stored protein was not different between group neither after trial- or recovery period (figure 3.5 E-F) 

(table 3.2).  

The hepato somatic index (HSI) was significantly lower in starved fish compared to fish fed normal 

(13°C and 19°C fed), p<0.04, during trial period (figure 3.6 A). After recovery, there were no 

differences between groups (figure 3.6 B).  

Viscera somatic index (VSI), was significant lower in 19°C starved fish compared to other groups after 

trial period (p<0.004) (figure 3.6 C). After recovery, no differences were seen (figure 3.6 D).  

Cardio-somatic index showed no significant differences between the treatment groups neither after 

trial or recovery period (figure 3.6 E-F).  
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Figure 3.6: Hepato-somatic index (HSI) is seen after trial period (A), and 
after recovery period (B). Figure C and D shows viscera-somatic index 
(VSI) after respectively trial and recovery. Cardio somatic index (CSI), is 
presented for trial and recovery in figure E and F. n = 3, and data is 
presented as mean with ± SE. Significant differences are indicated with 
lower case letters. 
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3.2.3 Nutritional productivity and loss: 

 

 

Figure 3.7 A-C: Protein productive values (PPV), during whole experiment, trial and recovery periods. D-F: 
Lipid productive values (LPV) during whole experiment, trial and recovery periods. G-I: Energy productive 
values (EPV), during whole experiment, trial and recovery period. n = 3.  Significant differences are indicated 
with lower case letters. 
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Figure 3.8: Showing energy loss (kJ/g weight loss) (A). Protein loss (g/g weight loss) (B) and lipid loss 
(g/g weight loss) (C) in 19°C starved fish during trial period. n= 3. 

Protein productive values (PPV), during whole experiment, was significant higher in 13°C fish 

compared to 19°C  fed fish (p<0.001). Also starved fish was significant lower than 13°C fish (p<0.001), 

and 19°C fed fish (p=0.013) (figure 3.7 A). PPV during trial period, was significant lower in 19°C  fed 

fish compared to 13°C  fed fish (p=0.003) (figure 3.7 B). In recovery period it was a significant higher 

productivity in 13°C fed fish compared to 19°C  fed (p<0.001) and 19°C  starved (p=0.039). Also 19°C 

starved was significant higher than 19°C fed fish (p=0.007) (figure 3.7 C). 

Lipid productive values (LPV) during whole experiment, was a significant higher in 13°C fed fish than 

all other groups (p<0.002). 19°C fed fish was significant higher than 19°C starved fish (p=0.003) 

(figure 3.7 D). During trial period there were a significant higher productivity in fish at 13°C compared 

to 19°C fed fish (p<0.001) (figure 3.7 E).Recovery period was a significant higher in 19°C starved fish 

compared to other groups (p<0.005). Also 13°C fed fish was significant higher than 19°C fed fish 

(p=0.002) (figure 3.7 F). 

Energy productivity (EPV) during whole experiment was a significantly higher in fish at 13°C 

compared to 19°C (p<0.001). 19°C fed fish had significant higher productivity than 19°C starved fish 

(p=0.001) (figure 3.7 G). During trial period there were a significant higher productivity in fish at 13°C 

compared to 19°C fed fish (p<0.001) (figure 3.7 H). There were a significant lower productivity in 19°C 

fed compared to other groups (p<0.005) during recovery (figure 3.7 I). 

The energy loss during trial period in 19°C starved fish was on average 9.38 kJ for every weight gram 

the fish lost (3.8 A). Protein loss in the same period was on average 0.19 g for every gram fish loss, 

(figure 3.8 B). The lipid loss was on average of 0.44 g for every gram of fish loss, (figure 3.8 C) 
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3.3 Plasma 

3.3.1 Hormones in plasma 

 

 

 

 

 

Figure 3.9: Showing hormones in plasma. Concentration of IGFBP1 is seen in 
figure A (trial), and B (recovery). C-D shows concentration of IGF1 after trial- and 
recovery. Figure E-F shows GH concentration after trial and recovery. Data is 
presented as range with mean (n=3). Significant differences are indicated with 
lower case letters 
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Insulin-like growth factor binding protein 1b (IGFBP1b), concentration in plasma after trial period, 

was significantly higher in 13°C fed fish compared to 19°C fed fish (p=0.0124), (figure 3.9 A). after 

recovery the IGFBP1b concentration 13°C  fed fish is significant higher than 19°C  fed fish (p=0.046) 

(figure 3.9 B). 

Insulin-like growth factor 1 (IGF1), after trial period had a significant lower value in 19°C starved fish, 

compared to all other groups (p<0.001) (figure 3.9 C ). After recovery there were no significant 

differences (figure 3.9 D) 

Growth hormone (GH) in plasma after trial had a significant higher value in. 19°C starved fish 

compared to fed fish (p≤0.02) (figure 3.9 E).  After recovery there were no differences between the 

groups (figure 3.9 F). 

3.3.2 Glucose in plasma 

 

Figure 3.10: Showing plasma glucose levels after trial (A) and recovery (B) in plasma. Data is 
presented as range with mean (n=3). Significant differences are indicated with lower case letters. 

Plasma glucose concentrations after the trial period was significantly higher in 19°C fed fish 

compared to all other groups (p<0.001) (figure 3.10 A). After recovery no significant differences were 

seen between groups (figure 3.10 B). 
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3.4 White muscle  

 

 

 

Figure 3.11 A-N: Expression of genes in 
white muscle after trial- and recovery 
period. Data is presented as range with 
mean (n=3). Significant differences are 
indicated with lower case letters. 
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3.4.1 Gene expression 

Growth hormone receptor 1 was significantly higher expressed in 19°C starved fish compared to the 

two other groups during trial period (p<0.001). There was also tendency to higher expression in 13°C 

fed compared to 19°C fed (p=0.076) (figure 3.11 A). After the recovery period, there were no 

differences between groups (figure 3.11 B). 

Growth hormone receptor 2c  was significantly higher expressed in 19°C starved fish compared to all 

other groups (p<0.001) (figure 3.11 C). Recovery had significant higher expression in 13°C fed fish 

compared to 19°C fed fish (p=0.043) (figure 3.11 D) 

 

After the trial period insulin-like growth factor1 (igf1), was significantly higher expressed in13°C fed 

compared to 19°C fish (p<0.002). 19°C starved fish was significant lower than 19°C during trial 

(p<0.001) (figure 3.11 E). After recovery there were no differences between groups (figure 3.11 F). 

 

Insulin-like growth factor 2 (Igf2), expressed no significant differences between groups neither after 

trial (figure 3.11 G), nor recovery (figure 3.11 H). 

 

After trial period Igf1 receptor A (igf1ra), was significant higher expressed in 19°C starved fish 

compared to 13°C fed fish (p=0.003) (figure 3.11 I). Recovery showed no differences between groups 

(figure 3.11 J). 

 

Igf binding protein 1 a (igfbp1a), had significant higher expression in 13°C fed fish compared to all 

other groups during trial (p<0.009). 19°C starved fish had significant lower expression than 19°C fed 

fish (p<0.02) (figure 3.11 K). There were no differences were seen between groups after recovery 

(figure 3.11 L). 

 

Glut4 expression were not significant different between groups neither after trial (figure 3.11 M), nor 

after recovery (figure 3.11 N). 
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4.0 Discussion 

4.1 Summary of results 
Fish fed at 19°C had a higher feed intake than 13°C fed fish during trial period, however there were 

higher FCR and lower energy- and nutrient retention. The hormones had lower IGFBP1b levels, and 

plasma glucose was elevated. Muscle genes had down regulated igf1 and igfbp1a expression. Weight 

and growth showed tendencies to reduction. However CF, stored energy, nutrients as well as somatic 

indexes remained normal during trial period. During recovery feed intake was lowered in fish 

previous fed at 19°C compared to 13°C fed fish. There were tendencies to higher FCR as well as lower 

energy and nutrient retention. IGFBP1b in plasma was still down regulated, but most of the 

hormones and genes had normal levels. However weight and growth rate remained low during 

recovery. CF, stored energy, nutrient and somatic indexes remained normal.  

During trial period 19°C starved fish compared to 19°C fed fish, had up regulated plasma 

concentrations of GH, also ghr1 and ghr2 expression in muscle were up regulated. There were down 

regulated concentrations of plasma IGF1, as well as igf1 expression in muscle. Also weight decreased, 

and there were mostly seen a negative growth rate. CF, stored energy, stored lipid, HSI and VSI were 

lowered, while stored protein did not change. During recovery there were a significant higher feed 

intake in previous starved fish compared to fish previous fed at 19°C, also there were tendencies to 

lower FCR and higher retention of energy and nutrients. The hormonal and genetic parameters did 

not significant differ from 19°C fed fish. However weight was still lower as well as SGR, but weight 

and length gain did not differ. CF, stored energy did neither fully recover. However stored lipid and 

protein as well as somatic indexes were normal. 

4.2 Temperature  

4.2.1 Feed intake 

The total feed intake was higher in fish fed at 19°C compared to 13°C during the trial period. 

However, it appeared to decrease at the end of trial period. This pattern corresponds to previous 

studies which finds that feed intake increases the first weeks at elevated temperature in Atlantic 

salmon (18-19°C), but subsequently decreases (Handeland et al., 2008, Hevrøy et al., 2013, Kullgren 

et al., 2013). Kullgren et al., (2013), suggests that the decrease in appetite may be due to higher 

levels of leptin (has anorexigenic functions) at elevated temperatures. However (Hevrøy et al., 2013) 

suggests that since digestion itself consumes a lot of energy, it may be a survival strategy to reduce 

feed intake at elevated temperature. This is a likely explanation, as energy required for basal 

metabolism increase with temperature, and by decreasing energy used for digestion, one can save 

energy for non-metabolic functions like swimming and growth. In a natural environment there would 

have been lower amounts dissolved oxygen, and by decreasing feed intake, less oxygen is needed for 

digestion. This is especially important when temperature approach the upper thermal limits. Also 

Hevrøy et al., (2012), suggests that reduction of circulating ghrelin may be a method to reduce 

voluntary food intake under unfavorable conditions, to increase the aerobic scope. However, this 

does not explain the high feed intake during the first weeks of feeding at 19°C. Literature explains 

that during acclimatization to higher temperatures, two different phases are seen. First there is seen 

a over/undershoot in physiological possesses, thereafter a gradually stabilization. This is due to 
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adaptive changes in cellular enzymes (Parvatheswararao, 1968). Kullgren et al., (2013), found that 

many physiological and endocrine signals that affect food intake and growth are affected when post-

smolt is acclimatized to 18°C. In the present study, the FCR was higher in the fish reared at 19°C. 

Showing a lower feed utilization at high temperature. This should not be surprising since at elevated 

temperatures the metabolic costs will increase, and less ingested energy will be used for growth. 

 

During the first weeks of the recovery period, the feed intake was lower the in 19°C fed fish 

compared to fish at 13°C. This has likely to do with over/undershooting of physiological processes 

when acclimatizing to lower temperature, as also was the case when temperature increased during 

trial period. The fish was also under stress due to previous exposure to high temperature, and 

following sampling. All this stress may have lead to lower feed intake during first part of recovery 

period. There were also seen tendencies to higher FCR in fish previous fed at 19°C. 

4.2.2 Growth and hormones 

Temperature seemingly did not have any major effect on the endocrinological growth regulatory 

system. This is indicated by normal plasma GH and IGF1, and normal muscle expression of igf2 and 

igf1ra in muscle. There were also seen lower levels of plasma IGFBP1b. The normal GH and IGF1 

plasma levels in 19°C fed fish in this experiment was probably due to the high feed intake. This is 

supported by (Beckman, 2011) who found that plasma IGF1 levels are changing proportionally with 

feed intake. In the current study the normal endocrinological expressions should indicate normal 

growth pattern during trial period. However, when looking at phenotypical parameters there were 

seen minor decrease in weight and growth rate at 19°C. This is mainly believed to be due to that fish 

fed at 19°C had down regulated igf1 expression in muscle. (Hevrøy et al., 2012, Hevrøy et al., 2013), 

found reduced expression of igf1 in muscle, while normal igf1 expression in liver and plasma at high 

temperature. This indicates that the energy metabolism in muscle tissue is reacting different than the 

liver at elevated temperatures. Due to the tendencies of decreased feed intake at the end of trial 

period as well as higher FCR, there may be tendencies to insufficient energy available for growth. And 

since the metabolic rate is increasing with increasing temperature, as explained by (Jobling, 1994c), 

which will require more energy, less of the ingested energy will be available for growth. There were 

therefore a endocrinological change as a respond to this lower available energy, which were seen by 

lower expression of igf1 in fish muscle, indicating that during periods of less feed, growth of vital 

organs like the heart is favored before muscle growth indicated by unchanged CSI, which also 

documented by (Hevrøy et al., 2013). This indicates that locally produced IGF1 is more important 

than plasma IGF1 in regulating muscle growth. Therefore it is no surprise that the phenotypical 

growth parameters like SGR and weight gain, which are strongly related to muscle growth, showed 

minor decreases at 19°C compared to 13°C. In conclusion, there was a higher feed intake in 19°C 

during trial period, however the metabolic costs at 19°C were so high, that less energy was available 

for growth. This was seen by lower weight and length growth at 19°C, showing that 19°C is above the 

optimal temperature for growth in Atlantic salmon, which corresponds to the findings of (Handeland 

et al., 2003, Hevrøy et al., 2012, Hevrøy et al., 2013, Kullgren et al., 2013, Øivind Bergh, 2007). A 

summary of the endocrinological regulation at high temperature is given in figure 4.1. 

During recovery, plasma GH and IGF1, as well as muscle igf1, igf2 and igfbp1a had normal levels. 

There were also decreased plasma levels of IGFBP1b. Interestingly, there were seen a down 

regulation of ghr2 during recovery in fish previous fed at 19°C. This indicates that there were some 

functional differences between GHR1 and GHR2 receptors, which also is confirmed by (Fuentes et al., 
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2013). In fact Gabillard et al., (2006), found that GHR1 and GHR2 are differently regulated at high 

temperatures in rainbow trout, and GHR1 plays a more important role in the growth promoting 

effects of temperature, since increasing at increased temperature in muscle. In the current study, the 

results indicate that neither of the receptors was directly affected by temperature. However, GHR2 

was more affected by the repercussions of high temperature, when the fish was trying to recover. All 

in all the genetic regulation indicated normal growth during recovery in fish previously fed at 19°C. 

However, in our experiment 49 days recovery period was not long enough time for the fish fed at 

19°C, to fully gain the same length and weight as fish at 13°C. The difference between endocrine 

growth regulation and phenotypical growth parameters seen during recovery, is likely due to that 

endocrine measurements were only conducted on 9 random fishes from each treatment, which not 

reflected the exact growth pattern of the total sample pool, see appendix 7.1   The reason for lack of 

phenotypical growth compensation were probably due to that there never were seen any major 

growth retardation in 19°C fed fish compared to 13°C fed fish during trial period, and thereby the 

compensatory growth mechanisms were not activated during recovery. The reason for lower growth 

rate in fish previously fed at 19°C compared to fish fed at 13°C, is suggested to be a combination of 

lower feed intake during recovery, acclimatization to lower temperature and recovery of the stressful 

conditions experienced during exposure to 19°C. In conclusion, the endocrine regulation indicated 

strong growth during recovery period. However, there were seen lower growth rate when looking at 

the phenotypical parameters, this mainly due to lower feed intake in fish previous fed at 19°C. Little 

compensation growth was experienced mainly due to little growth retardation during trial period. 

4.2.3 Energy flow and hormones 

Normal levels of plasma GH, IGF1, lower levels of plasma IGFBP1b, normal muscle expression of igf2, 

ghr1, ghr2, igfbp1a and igf1ra strongly indicated anabolic conditions, and little change in energy flow 

between fish fed at 19°C and 13°C. This was also supported by normal levels of stored energy, lipid 

and protein as well as HSI, VSI and CSI and CF. All these endocrinological and phenotypical 

parameters indicates that 19°C did not lead to mobilization of stored energy, and thereby not 

increased catabolic conditions. The normal CF found in our study at elevated temperature 

contradicts largely literature which finds decreasing condition factor at high temperatures (18°C), in 

Atlantic salmon Hevrøy et al., (2013), and Kullgren et al., (2013), found lower condition factor at 19°C 

after 45 days. Also Hevrøy et al., (2012) and Hevrøy et al., (2013), found less stored lipid at 19°C , and 

therefore conclude with use of endogenous lipids during prolonged periods at elevated temperature. 

The reason for more catabolic conditions found in their studies is likely due to that fish at 19°C had a 

lower feed intake during long periods compared to fish at lower temperatures. Therefore the reason 

for not increased catabolic conditions in our study is due to the high feed intake during trial period. 

However, at the end of trial period, tendencies to decreased feed intake were seen. It is likely 

therefore that if the trial period had lasted longer, there would have been seen a increase in 

mobilization of body reserves due to reduction in feed intake, as found in (Hevrøy et al., 2013, 

Kullgren et al., 2013). In fact in our study there were down regulated expression of igf1 in muscle in 

19°C fed fish, indicating a slightly less anabolic state in fish muscle at elevated temperature. This 

together with higher FCR, lower retention of nutrients as well as elevated levels of plasma glucose 

indicates that the fish at 19°C, needed a lot of energy at any time to sustain basal metabolism and 

thereby less of the ingested energy was available for growth. This finding is supported by Hevrøy et 

al., (2012) and Hevrøy et al., (2013), who also found decreasing retention with increasing 

temperature. Abnormal high levels of plasma glucose are often related to stress (secondary stress 



  4.0 Discussion 

 

 
 43 

response), due to the stress hormones adrenaline and cortisol, which increase glycolysis in liver 

(Hemre, 2001, Fox et al., 2006). However in current study HSI did not change due to temperature, 

indicating that there were not seen a major increase in glycolysis in the liver. Due to the lower PPV 

seen in fish fed at 19°C, it may be that much of the amino acids from feed intake were transformed 

into glucose, showing the high energy demand at 19°C. Other explanations for this high level of 

glucose in plasma may be that at elevated temperatures, already weak glucose uptake mechanisms 

into the cells were getting weaker, and there were even weaker response to insulin by the cells. 

However studies done on catfish (Ictalurus melas and Ictalurus punctatus), found higher glucose 

levels in fish at high temperature, but no change in insulin production, and suggests that elevated 

temperatures may somehow impair the glucose metabolism in plasma (Ottolenghi et al., 1995). This 

is in fact a likely explanation, since in current study, there were not seen any change in muscle glut4 

expression, which could be due to impairment of glucose metabolism. However the insulin regulation 

of glut4 is tissue specific, and may not be strongly regulated by plasma glucose in white muscle, as 

suggested by (Capilla et al., 2002). In conclusion, there were generally seen a highly anabolic state in 

the fish at elevated temperature. However, there were tendencies to lower feed intake at the end of 

trial period, indicating that the fish may have been close to lose its capability of high feed intake. It is 

therefore believed that there would have been a more catabolic state if the trial period had lasted 

longer. Already there were tendencies to less anabolism in fish muscle due to down regulated igf1 

expression.   

 

During the recovery period plasma GH and IGF1 had normal levels, but the IGFBP1b level was down 

regulated. Plasma glucose did fully recover to normal levels in fish previous fed at 19°C. Also gene 

expression in muscle was normal, except down regulated expression of ghr2. This indicates normal 

metabolism, shifted towards anabolism. This was supported by stored energy and nutrients, VSI and 

CSI, which had normal levels. There were therefore no significant increase in catabolism and 

mobilization of stored energy compared to 13°C fed fish during recovery. However the lower feed 

intake, lower nutrient retention and tendencies to higher FCR, indicated that the fish previously 

exposed to feeding at 19°C, still had not managed to fully recover, and was using much of ingested 

energy to sustain non-growth processes and recover from the stressful conditions previously 

experienced. In conclusion, our results indicate that the fish fed at elevated temperature got enough 

food to sustain metabolism and growth, and thereby did not need to mobilize its own reserves. This 

is supported by the high feed intake, nutrient composition and somatic indexes and normal GH levels 

in 19°C; none of these indicates catabolic conditions. 
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Figure 4.1: Showing the endocrine growth regulation during feeding at 13°C (top), and feeding 
at 19°C (bottom). Red arrows show negative feedback mechanisms, and green arrows show 
positive feedback. At 19°C, there was a higher feed intake, however due to the high 
temperature, less feed was available for growth. It is therefore believed that there was limited 
positive feedback from plasma amino acids on igf1 expression in muscle, leading to less 
expression of igf1 in muscle. Therefore there is seen lower expression of igfbp1a in muscle. The 
lower available energy for growth and lower expression of igf1 in muscle at 19°C, leads to 
slightly lower growth compared to at 13°C. 
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4.3 Starvation 

4.3.1 Feed intake 

During trial period there was no feed intake in 19°C starved fish, thus quite different from 19°C fed 

fish, which had a very high feed intake during trial period. 

During recovery period the starved fish showed quite impressing feed intake, and had significant 

higher feed intake as % BM than 19°C fed fish. However, like the 19°C fed fish, it took some weeks 

before the feed intake as % of BM, was really increasing. There is believed to be many reasons for 

this. Both acclimation to lower temperature (13°C), as well as exhaustion during exposure to high 

temperature, starvation and sampling. Also the digestion system had been partly degradated during 

starvation, and therefore during the first part of recovery the digestion system had to be rebuilt, 

before more food could be digested. Also the metabolism had been down regulated during 

starvation, and since there were some delay in down and up-regulation of metabolic rate after 

starvation, as explained by (Ali et al., 2003), it lead to lower feed intake in the beginning of re-

feeding. After 23 days, the previously starved fish managed to get higher feed intake (%BM) than the 

fed group at 19°C. This is believed to be due to compensatory responses. The feed intake continued 

to increase during the rest of the recovery period. Also the starved fish tended to have lower FCR 

than the previous fed fish at 19°C.  

4.3.2 Growth and hormones 

During trial period the food deprivation in starved fish led to a higher excretion of GH into the 

plasma. This increased excretion started probably mainly due to increased ghrelin excretion into the 

blood from the stomach, which promoted excretion of GH from pituitary as explained by (Bar and 

Volkoff, 2012, Goldstein et al., 2012, Muller et al., 2002). There were lower levels of circulating 

plasma IGF1 as well as igf1 expression in muscle during starvation. This may be due to that during 

starvation there can be a reduced GH sensitivity in some tissues, leading to lower expression of igf1 

in those tissues, as explained by (Beauloye et al., 2002, Norbeck et al., 2007). The GH mediated igf1 

expression is mediated through JAK-STAT signaling (Beauloye et al., 2002). The reduced expression of 

igf1 during starvation was therefore likely due to impairment in the JAK-STAT signaling pathways 

when GH binding to GHR. The reduced JAK-STAT signaling may be due to that starvation will induce 

expression of the fibroblast growth factor 21  (FGF21), in liver, which will inhibit the STAT5 signaling, 

as shown in mice (Inagaki et al., 2008). IGF1 will give negative feedback on GH excretion, therefore 

less circulating IGF1 reduced the inhibition, and more GH was released into the plasma, leading to 

high levels of GH in starved fish. This theory is supported by (Björnsson, 1997, Fox et al., 2006). 

However there is reasons to believe that both circulating amino acids as well as IGF1 has a positive 

feedback on expression of igf1 in muscle, and that GH may not be the main regulator of muscle igf1 

expression, especially when considering the high amount of truncated GHR1 compared to full length 

GHR1 in fish muscle (Bower and Johnston, 2010, Fuentes et al., 2013). Interestingly igf2 expression in 

muscle was not down regulated during starvation, however Picha et al., (2008), suggests that muscle 

igf2 expression may not be related to growth. And thereby normal igf2 expression does not mean 

that there still was occurring muscle growth during starvation. Most of these hormonal and genetic 

regulations have also been observed in other studies during starvation (Fox et al., 2006, Inagaki et al., 

2008). The reduced expression and lower circulating levels of IGF1 strongly indicated lower growth in 

starved fish.  This was also found in the phenotypical parameters. SGR, weight and weight gain 

decreased during starvation, but there were still occurring length growth. This is in accordance with 
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Christiansen (1996) and Kullgren et al., (2013), which found that during periods of unfavorable 

conditions, with little feed available, length growth is preferred rather than weight growth. This 

length growth is mediated by relocating body reserves into length growth by the help of GH as 

described by (Kullgren et al., 2013). Therefore extraordinary high levels of GH may be a signal for the 

fish to prioritize length growth. In conclusion, there were seen increased plasma levels of GH, and 

severely decreased IGF1 levels and expression, leading to decreased growth rate in starved fish.  

 

During recovery period the levels of both plasma hormones and muscle gene expression was 

normalized compared to 19°C fed fish. Indicating that the previously starved fish had normal growth 

and development at this stage. This normal gene expression was also accompanied by normal, 

weight and length gain. However, the SGR and weight had not yet completely recovered. Even 

though there were tendencies to compensation responses in feed intake and lower FCR (which may 

be a compensatory response), there were little compensation responses in growth, shown both at 

the genetic and phenotypical levels. Previous findings indicates that there has to be a combination of 

low HSI as well as weight loss to manage to get full compensation during recovery (Picha et al., 2008). 

Therefore the suggestions for that there were not seen full compensation in this experiment, was 

due to that HSI did not decline enough during starvation to manage to cause full growth 

compensation. It should be mentioned thou, that there may have been seen compensation growth 

during the early stages of recovery, however, no measures was conducted at that time. In conclusion 

there were seen normal hormonal and genetic expression after recovery, however tendencies to 

weaker growth compared to 19°C fed fish, and no full compensation growth were seen due to high 

HSI during starvation. 

4.3.3 Energy flow and hormones 

The high levels of circulating GH and low levels of circulating IGF1, indicates that much of the 

anabolic actions of GH not was functioning. Low circulating plasma levels of IGF1 is associated with 

starvation, even if GH levels are high (Fox et al., 2006). During starvation low plasma concentration of 

IGF1 was necessary as IGF1 is a strong anabolic hormone, enhancing growth (especially muscle 

growth). Also cronical high levels of GH has anti-insulin-like effects (Herrington and Carter-Su, 2001). 

However the high levels of circulating GH may probably also have a protein sparing effect as 

explained by (Nørrelund et al., 2001). They indicates that the protein sparing effect partly may be 

mediated through IGF1, which may explain the tendencies to higher expression of igf1ra in muscle, 

showing that there was not a reduced sensitivity for IGF1 in muscle tissue during starvation. This 

indicates that the starvation was not severe enough to degrade the muscle proteins, which also was 

the case, due to the unchanged stored protein content in starved fish. However other studies done 

on mammals, does not find any significant protein sparing effects of GH (Sakharova et al., 2008). In 

current study igf2 expression did not decrease during starvation. Picha et al., (2008), suggests that 

muscle igf2 expression may not be related to growth. And thereby our normal igf2 expression does 

not mean that there is still occurring muscle growth during starvation. In fact there is some 

uncertainty of all the biological reactions mediated by IGF2 (Chao and D’Amore, 2008). One reason 

for the normal expression of igf2 can be that IGF2 may have more important role in metabolism and 

less important role in growth enhancement compared to IGF1 during starvation. Increased levels of 

circulating IGFBP1b, normally indicates increased catabolic activity, it is therefore quite surprising 

that there was not found any increase in circulating IGFBP1b in starved fish. Hevrøy et al., (2011), 

found increased levels of circulating IGFBP1b in plasma of fish starved for 14 days. However the 
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normal levels of IGFBP1b in current study may be due to decreased expression and circulation of 

IGF1 in muscle and plasma in starved fish, and thereby no change in IGFBP1 was needed. It is likely 

that high levels of IGFBP1 is a preferable way of regulating the bioavability of IGF1 during short 

periods of food shortages, while during longer periods down regulation of igf1 is more preferable 

(personal communication by Dr. Ernst Morten Hevrøy, Ewos AS) . In fact Hevrøy et al., (2011), did not 

find down regulation of igf1 neither in liver nor muscle during 14 days starvation. In current study 

starvation also increased expression of ghr1 and ghr2 in muscle. This contradicts much of recent 

studies, among those of Fox et al., (2006), which studies tilapia during starvation, and found no 

change in liver ghr expression, Fukada et al., (2004), also found lower level of GHR during starvation. 

Hevrøy et al., (2011), found no change in ghr1 expression in muscle tissue during 14 days starvation 

of Atlantic salmon. Since during starvation GH has a lipolytic effect, and diverts energy away from 

growth to sustain essential metabolic processes, the increase in ghr expression in current study may 

be due to that GHR play a major role in the lipolytic effects of GH in the muscle during starvation, as 

suggested by (Hevrøy et al., 2013). Also Mommsen and Moon (2001), suggests that GH may regulate 

lipid mobilization in at least visceral tissues directly. The up regulation of ghr may therefore be part 

of a “catabolic circle”, which starts with that starvation is increasing ghrelin excretion, which again 

increases GH excretion into plasma, while there is a inhibition in synthesis of IGF, which again 

stimulate more circulating GH and higher expression of ghr, and thereby high lipolytic activity in the 

cells. This is supported by Picha et al., (2008), which foud elevated expression of ghr2 in hybrid 

striped bass, and suggests that high levels of GH and GHR2, may facilitate mobilization of energy 

stores, or protein sparing. Since the GH sensitivity normally is increased in visceral tissues, as 

described by Norbeck et al., (2007), the high levels of GH support the theory of that most of the 

mobilized lipids during starvation came from the viscera, as indicated by the reduction in VSI and 

lipid content. There was a significant lower glucose concentration in plasma compared to fish fed at 

19°C. However this due to unusual high levels of glucose in fish fed at 19°C, and not due to unusual 

low levels in starved fish. This is supported by that plasma glucose in starved fish did not change 

compared to 13°C fed fish. It also showed normal levels according to (Hemre, 2001). The normal 

levels of glucose in plasma in starved fish correlates well with the findings of Hevrøy et al., (2011), 

which not found significant higher levels in starved fish after 14 days starvation.  Some studies 

suggests that GH is the main promoter of keeping blood glucose levels at a steady state also during 

starvation, as explained by Goldstein et al., (2012), but other studies does not suggests that high 

levels of GH is needed to sustain normal plasma glucose levels during starvation (Gahete et al., 2013). 

However in total the hormonal and genetic regulation clearly indicated catabolic conditions.  

Also the phenotypical parameters during trial period showed catabolic conditions. This was among 

other seen by reduced CF in 19°C starved fish, indicating that the fish had to mobilize its own 

reserves to sustain metabolic activity. According to literature Einen et al., (1998), Navarro and 

Gutiérrez (1995), the mobilized energy was likely taken from glycogen reserves during the first days 

of starvation. Some of the mobilized glycogen could have been taken from liver. This may partly 

explain the decreased HSI during trial period in starved fish, supported by Ali et al., (2003), who 

studied carp. As soon as the glycogen storages were depleted in starved fish, most of the energy was 

taken from stored lipids, and therefore reduced amount of stored lipids in whole fish (g/100 g ww) 

The mobilized lipids were replaced with water, as described by (Navarro and Gutiérrez, 1995). The 

viscera accumulates most of the surplus lipids ingested by the food, and generally in teleosts this is 

the place where lipids are mobilized from during starvation Jezierska et al., (1982), Navarro and 

Gutiérrez (1995), which is seen in this experiment by the tremendous decrease in VSI during 
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starvation. Even thou viscera looks to be the most important lipid mobilization tissue during 

starvation, some mobilized lipid were also coming from the muscle and liver, as described by 

(Christiansen, 1996, Einen et al., 1998, Navarro and Gutiérrez, 1995). Therefore some of the 

reduction in HSI during starvation may have been due to mobilization of lipids. The starved fish, did 

not show any significant change in stored protein (g/100 g ww), indicating that the protein stores 

were spared during starvation, which indicates that high levels of GH may have  protein protecting 

effects, and that the starvation did not last long enough to deplete the lipid storages, as described by 

(Navarro and Gutiérrez, 1995). Even thou there were not seen any significant decrease in stored 

protein, 19% of the lost body weight came from protein loss, however 44% of the weight loss came 

from lipids. In conclusion, both the hormonal, genetic and phenotypical parameters clearly showed 

that the metabolism was shifted strongly towards catabolism, also in vital organs like the liver. 

However at the same time there was seen protein sparing during starvation at high temperatures.   

 

During recovery all the hormonal and genetic factors recovered to normal levels compared to fish fed 

at 19°C. This should indicate shifting of the metabolic processes back to normal metabolism. 

However the tendencies to compensation feed intake (%BM) and tendencies to lower FCR in starved 

fish, indicates that more energy should be available, which could indicate an even more anabolic 

condition than the fed group, when defining anabolism as a organ building process. This is also 

supported by the higher retention values of nutrients where LPV was much higher than in fed fish, 

also EPV and PPV was higher in fish previously starved. The high LPV shows that most of the ingested 

energy were retained as lipids. Even thou there were seen a very high energy intake, as well as full 

compensation of lipid storages, there were not seen full compensation in stored energy, SGR nor 

weight, indicating that the fish had not yet fully recovered from the stressful conditions previous 

experienced. Looking at the feed intake hormonal and genetic regulation it may be suggested that if 

the recovery period had lasted longer, there would have been seen an even smaller difference 

between starved and fed fish. In conclusion there were not seen any major change in the energy flow 

after recovery between fed and starved fish and the previous starved. In fact there were seen a 

tendencies to more anabolic metabolism in fish previous starved, but no full compensation in weight 

or growth. 
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Figure 4.2: Showing genetic growth regulation during starvation at 19°C. Compared to 19°C fed, 
following is seen: Due to no feed intake, ghrelin is excretion from stomach is increased and 
transported to the brain and pituitary which stimulates more release of GH. However, the GH 
mediated synthesis of igf1 is very limited during starvation, leading to that very little IGF1 is 
excreted into the plasma. Also normal levels of IGFBP1b in plasma leads to very little bioavalible 
IGF1 in plasma. The low level of circulating IGF1 and amino acids leads to now positive feedback on 
muscle expression of igf1. Low levels of IGF1 in plasma also decrease the negative feedback IGF1 has 
on GH, leading to even higher excretion of GH into plasma. There is also seen higher expression of 
ghr in muscle, but very low expression of igf1. The low expression of igf1 in muscle is due to both 
inhibition of GH mediated igf1 synthesis, as well as lack of positive feedback from circulating IGF1 
and amino acids. However, GH mediates lipolysis through GHR. Due to low levels of IGF1, there is 
seen no, or little growth during starvation. 
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4.4 Hormonal and genetic markers for growth 
Our results indicate that GH is not positive growth regulating hormone when feed intake is varying. 

However, both plasma IGF1 and igf1 expression in muscle is much more related to growth during 

varying environmental and nutritional conditions. There are also seen stronger correlations between 

IGF1 and growth compared to GH and growth, as seen in figure 4.3. Our findings of strong 

relationship between growth and IGF1, corresponds well with other studies (Mommsen and Moon, 

2001, Fox et al., 2006). Our results also indicate that plasma IGF1 and muscle igf1 expression may be 

used as a endocrine growth marker also at temperatures above optimal temperature for growth. In 

all this indicates that IGF1 is a major regulator of growth, regardless of environmental conditions. 

 

Figure 4.3: Showing individual correlation during trial period between weight and plasma GH (K = -
0.41, p = 0.035), weight vs. plasma IGF1 (K = 0.74, p < 0.001) and weight vs. igf1 expression in muscle 
(K = 0.79, p < 0.001). SGR vs. plasma GH (K = -0.51, p = 0.008), SGR vs. plasma IGF1 (K = 0.79, p < 
0.001) and SGR vs. igf1 expression in muscle (K = 0.82, p < 0.001). n = 9.  
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5.0 Conclusion 
 In current experiment the feed intake was higher in Atlantic salmon reared at 19°C compared 

to salmon reared at 13°C. However the growth rate was significant lower at 19°C, suggesting 

that less nutrients was available for growth. This corresponds to the previous findings that 

19°C is above the optimal temperature for growth in Atlantic salmon. At the end of the trial 

period feed intake decreased, indicating that Atlantic salmon may manage to maintain high 

feed intake when exposed to short periods of high temperatures, but not over long periods 
 

 The energy consumption was higher in 19°C than in 13°C. However there were no indications 

of increased catabolism in fish fed at 19°C compared to fish fed at 13°C.  

 When fish was fed at 19°C, the endocrine GH/IGF regulation of muscle growth was not 

severely affected by exposure to 19°C. There were down regulation of igf1 expression in 

muscle, but in total the endocrine growth regulatory system showed normal anabolic growth 

regulation. Temperature in itself did therefore apparently not have any major effect on the 

genetic growth regulation   

 Starvation at 19°C did have a more significant effect on the endocrine GH/IGF growth 

regulatory system. Elevated plasma GH, and low levels IGF1 indicated catabolic state with 

increased GH mediated lipolysis in muscle. 

 In total there were little positive effects of starving fish at 19°C compared to ad libitum 

feeding the fish at 19°C. However starved fish had better feed intake and nutrient retention 

during recovery. Further research should therefore be done to investigate the possible 

positive effects of doing restricted feeding at high temperatures.  
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7.0 Appendix 

7.1 Performance of individually sampled fish 
 

Figure 7.1: Showing CF, weight and mean 
specific growth rate (SGR), of only the 
individual organ fish. Figure (A-B) shows CF 
after trial and after recovery. Figure (C-D), 
shows weight after trial and after recovery. 
Figure (E-G), shows SGR from start-trial (trial), 
trial-recovery (recovery), and start-recovery 
(whole). Figure (H-J), shows weight gain start-
trial (trial), trial-recovery (recovery), and start-
recovery (whole). Figure (K-M), shows length 
gain start-trial (trial), trial-recovery (recovery), 
and start-recovery (whole). n = 3, and data is 
presented as mean ± SE. Significant differences 
are indicated with lower case letters.  
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Figure 7.2: Showing somatic indexes (SI), of only the individual organ 
fish. Figure (A-B) shows hepato-somatic index (HSI) after trial and after 
recovery. Figure (C-D), shows visceral somatic index (VSI), after trial 
and after recovery. Figure (E-F), shows cardio somatic index (CSI), after 
trial and after recovery. n = 3, and data is presented as mean ± SE. 
Significant differences are indicated with lower case letters. 


