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Abstract 

 

The consumer of the 21
st
 century have developed an awareness  of the quality of food 

products in their diet and the impact of these products on their health which in turn has led to 

an escalating consumer demand for ω-3 fatty acids rich oils, functional food, dietary 

supplements and pharmaceuticals. The analysis of ω-3 rich oils for detecting the presence of 

adulterants is generally carried out by using complex, time-consuming techniques and 

expensive and sophisticated instruments. It is therefore essential to establish simple and 

reliable analytical methods in order to carry out quality assessment and authentication of 

nutritional ω-3 fatty acids rich products. 

 

The most critical factors clearly affecting the analysis of lipids in a wide variety of samples 

are the extraction and isolation steps due to the presence of various lipid classes, which in 

turn demand the pre-separation of the sample prior to fatty acid methyl ester (FAME) 

compositional analysis by gas chromatography (GC) or liquid chromatography electrospray 

ionization tandem mass spectrometry (LC-ESI-MS
2
). 

 

In this work, a simple, rapid, and cost effective novel liquid-liquid extraction (LLE) method 

is developed to separate triacylglycerol (TAG) and phospholipids (PL) from marine oils. Krill 

oil was selected as analytical sample due to its content of TAG and phospholipids.The 

method consists basically of sequentially adding methanol and hexane to the oil sample, 

separating and washing the phases with solvents of opposite polarities. The result revealed 

that it is possible to separate the major TAG and PL constituents from krill oil samples. The 

high performance thin layer chromatography (HPTLC) chromatograms revealed that TAG 

and PL were absent from the PL and TAG rich fraction respectively. 

 

The thesis also studies the capability of stereospecific positioning for discriminating marine 

oils based on their number of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) at sn-2 

position of TAG structures. The fatty acid distribution on TAG molecules was determined by 

using LC-ESI-MS
2
 and a previously developed algorithm. The results were arranged in 

increasing number of equivalent carbon number (ECN) and the ω-3 PUFAs at sn-2 positions 

were counted and presented in a histogram. The results revealed that discrimination studies 

based on the sn-2 position are reasonable alternatives for discriminating genuine from 

processed marine oils. 
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The final aspect studied in the present thesis is the implementation of a new strategy for 

discriminating marine oils by using the position of ω-3 PUFAs at sn-1, sn-2 and sn-3 

combined with principal component analysis (PCA). The novel strategy demonstrated to be a 

reliable approach to discriminate not only genuine but also processed and intentionally 

adulterated oils. 
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1. Introduction 

1.1 Background 

1.1.1 Lipids 

 

Lipids play a variety of roles in biological systems. They are essential molecules for cells, the 

basic unit of all life forms. All cells are spatially defined by their plasma membranes and the 

lipids are basically the building blocks of plasma membranes. This membrane provides 

structure for cells and organelles and maintains physiochemical properties, creating an 

environment inside a cell that is necessary for proteins to function and interact. They also 

serve as a source of energy as triglycerides in mammalian cells [1]. 

 

There is no widely accepted definition of lipids (Greek lipos = fat). A broad definition is that 

it is a group of naturally occurring compounds, which have a general solubility in organic 

solvents as hydrocarbons, chloroform, benzene, ethers, and alcohols. They include fatty acids 

and their derivatives, carotenoids, terpenes, steroids and bile acids. This type of definition can 

mislead, since many of the substances that are now widely regarded as lipids may be almost 

as soluble in water as in organic solvents. Nowadays it is accepted that lipids can be defined 

as fatty acids and their derivatives, and substances related biosynthetically or functionally to 

these compounds [1,2]. 

 

Lipids are broadly classified into simple, complex and derived, which are further subdivided 

into different groups. Simple lipids are compounds that upon hydrolysis yield no more than 

two types of primary products per mole, also referred to as neutral or non-polar lipids. Simple 

lipids comprise cholesterol and cholesteryl esters, free fatty acids, glycerides and waxes 

(esters of fatty acids, usually long chain, with alcohols other than glycerol). Polar or complex 

lipids are compounds that upon hydrolysis yield three or more primary products per mole. 

Complex lipids comprise phospholipids, glycolipids, and sphingolipids. Derived and 

precursor lipids include fatty acids, glycerol, steroids, other alcohols, fatty aldehydes, 

hydrocarbons, lipid-soluble vitamins and hormones, which are the building block of simple 

and complex lipids [2,3]. 
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The study of the lipid classes in their natural environment is termed lipidomics. This is new 

field of study that focuses on pathways and networks of cellular lipids in biological systems 

and involves the identification and quantification of the thousands of cellular lipid molecular 

species and their interactions with other lipids, proteins, and other metabolites [3]. 

 

1.1.2 Fatty Acids 

 

A fatty acid is a carboxylic acid consisting of a hydrocarbon chain and a terminal carboxyl 

group, which can appear as free and part of complex lipids. They play a vital role in storage 

and transportation of energy, and are essential components of all membranes.  

 

Fatty acids can be classified as essential or nonessential. Essential fatty acids are those that 

our bodies cannot synthesize and must be obtained through nutritional sources. Examples of 

essential fatty acids are linoleic acid (18:2n-6), alpha-linolenic acid (18:3n-3) and arachidonic 

acid (20:4n-6). Conversely, nonessential fatty acids are those that can be synthesized by our 

bodies. Depending on the number of double bonds they may also classified as saturated and 

unsaturated fatty acids (Fig 1). 

 

 

 

Figure 1 Saturated (top) and unsaturated (bottom) fatty acids 

 

A saturated fatty acid is one in which all the carbons atoms are saturated with hydrogen (Fig 

1). Saturated fatty acids have no double bonds and they are generally found in high 

concentrations in foods such as palm kernel oil, butter oil and coconut oil. The most abundant 

saturated fatty acid in nature is palmitic acid (16:0). Even carbon numbered fatty acids from 2 
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- 30 have been found in nature such as arachidic acid (20:0), stearic acid (18:0) and palmitic 

acid (16:0). Chain length of fatty acids depends on the number of carbons. Saturated fatty 

acids can be divided into four subclasses base on their chain length: short-chain saturated 

fatty acids (2-6 carbons), medium-chain saturated fatty acids (8-12 carbons), long-chain 

saturated fatty acids (14-20 carbons) and very- long-chain saturated fatty acids (21 or more 

carbons) [4]. 

 

The introduction of double bonds in the hydrocarbon chain results in the formation of the 

unsaturated fatty acids (Fig 1). Unsaturated fatty acids can be categorized into 

monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs). MUFAs and 

PUFAs can be classified into three sub groups based on chain length. Short-chain unsaturated 

fatty acids are those with a number of carbon atoms lower than 19 (C<19). Long-chain 

unsaturated fatty acids are characterized for a number of carbon atoms ranging from 20 to 24 

and very-long unsaturated chain fatty acids are basically characterized for containing a 

number of carbon atoms over 25 (C≥25) [4]. 

 

The most common MUFA have chain length s between 16 and 22 and only a double bond in 

cis configuration. The most abundant monoenoic fatty acid in nature is oleic acid (18:1n-9). 

High concentrations of oleic acid are found in olive oil, canola oil, peanut oil, sunflower oil, 

safflower oil, and chicken fat. 

 

PUFA are fatty acids with two or more carbon – carbon double bonds. They are found 

primarily in vegetable oils, nut oils and fish oils. The chemical structure of a long chain 

PUFA such as eicosapentaenoic acid (EPA, 20:5n-3 or 20:5ω-3) is shown in Fig 2. Two 

numbers separated by a colon (e.g. 20:5) give the chain length (number of carbon) and 

number of double bonds respectively. The double-bond position relative to the methyl end is 

generally indicated by using the notation n-x or ω -x, where x represents the position of the 

first double bond relative to the methyl end of the carbon chain.  For example, the number 20 

(in the abbreviated formula of EPA, 20:5n-3) denotes the number of carbon atoms. The 

second number after the colon (number 5) denotes the number of double bonds with respect 

to the methyl end, which is numbered as 1. In this way for EPA the first double bond should 

be found in the carbon number 3 [3,4]. 
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           Figure 2 Chemical structure of Eicosapentaenoic acid (EPA, 20:5n-3) 

 

1.1.2.1 Common fatty acids of plant and animal origin 

 

Straight chain fatty acids containing between 16 and 18 carbon atoms and with a number of 

double bonds ranging from zero to three are common in plant tissue. This type of fatty acids 

with up to six double bonds are generally separated by methylene groups [1,4]. Systematic 

names for fatty acids are too long for general use. For example the systematic name 

5,8,11,14-eicosatetraenoic acid generally avoided and the shorter alternative arachidonic acid 

is used instead. Table 1 shows common fatty acids of animal and plant origin with their 

systematic, trivial and short hand designations. 

 

Table 1 Common fatty acids of animal and plant origin [1] 

Systematic Name No. of 

Carbon 

Trivial 

Name 

Shorthand designation 

Symbol         Symbol 

I  II 

Saturated Fatty Acids     

Ethanoic 2 Acetic 2:0 C2:0 

Butanoic 4 Butyric 4:0 C4:0 

Hexanoic 6 Caproic 6:0 C6:0 

Octanoic 8 Caprylic 8:0 C8:0 

Decanoic 10 Capric 10:0 C10:0 

Dodecanoic 12 Lauric 12:0 C12:0 

Tetradecanoic 14 Myristic       14:0 C14:0 

Hexadecanoic 16 Palmitic 16:0 C16:0 

Octadecanoic 18 Stearic 18:0 C18:0 

Eicosanoic 20 Arachidic 20:0 C20:0 

Docosanoic 22 Behenic 22:0 C22:0 
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Table 1 continued     

Systematic Name No. of 

Carbon 

Trivial 

Name 

Shorthand designation 

Symbol         Symbol 

       I                    II 

Monoenoic Fatty Acids     

cis-9-hexadecenoic 16 Palmitoleic 16:1n-7 C16:1 n-7 

cis-6-octadecenoic 18 Petroselinic 18:1n-12 C18:1 n-12 

cis-9-octadecenoic 18 Oleic 18:1n-9 C18:1 n-9 

cis-11-octadecenoic 18 cis-vaccenic 18:1n-7 C18:1 n-7 

cis-13-docosenoic 22 Crucic 22:1n-9 C22:1 n-9 

cis-15-tetracosenoic 24 Nervonic 24:1n-9 C24:1 n-9 

Polyunsaturated Fatty Acids     

9,12-octadecadienoic 18 Linoleic 18:2n-6 C18:2 n-6 

6,9,12-octadecatrienoic 18 γ- linolenic 18:3n-6 C18:3 n-6 

9,12,15-octadecatrienoic 18 α- linolenic 18:3n-3 C18:3 n-3 

5,8,11,14-eicosatetraenoic 20 Arachidonic 20:4n-6 C20:4 n-6 

5,8,11,14,17-eicosapentaenoic 20 EPA 20:5n-3 C20:5 n-3 

4,7,10,13,16,19-docosahexaenoic 22 DHA 22:6n-3 C22:6 n-3 

     

 

1.1.2.2 Polyunsaturated fatty acids 

 

Polyunsaturated fatty acids (PUFA) are considered good fatty acids (especially those from the 

ω-3 series) due to their numerous health benefits and their role in biochemical processes of 

animals, including fish and humans. They are crucial for the syntheses of prostaglandins, 

regulation of inflammatory functions of the body, vasoconstriction and vasodilatation, brain 

signalling to prevent overeating or weight loss, transport and oxidation of cholesterol, etc. In 

addition, PUFAs  participate in cell membrane formation and can be found in seafood like 

salmon, seal,  halibut, phytoplankton and certain plant oils such as sunflower-seed, corn, 

sesame and soy oil. 
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PUFAs can be classified into two major types: omega-6 (ω-6 or n-6) and omega-3 (ω-3 or n-

3) fatty acids. The ω-3 and ω-6 PUFAs have received a lot of attention in the scientific 

community in the last 30 years and are characterized for exhibiting their first double bond 

three and six carbons away from the methyl end respectively [5]. 

 

1.1.3 Omega-3 and omega-6 fatty acids 

 

Certain unsaturated fats are very beneficial and should be purposefully consumed due to their 

content of ω-3 and ω-6 long-chain (LC) PUFAs. These two typed of PUFAs (ω-3 and ω-6) 

are essential for health because they cannot be produced by the body and must come from 

food. ω-3 PUFAs are needed for brain and eye development of the growing fetus during 

pregnancy, improve blood circulation, reduce the progression of heart diseases and for 

retaining health throughout life. In addition, ω-3 PUFAs have been shown to play vital roles 

in inhibiting inflammation and even cancer. 

 

A total of eight ω-3 fatty acids are involved in human nutrition through natural fatty acid 

biochemistry, cell and tissue structure and function. The fatty acids include alpha-linolenic 

acid (ALA), stearidonic acid (SDA), eicosatrienoic acid (ETrA), eicosatetraenoic acid (ETA), 

eicosapentaenoic acid (EPA), heneicosapentaenoic acid (HPA),docosapentaenoic acid (DPA) 

and docosahexaenoic acid (DHA). Among them the most commons are eicosapentaenoic 

(EPA), docosahexaenoic (DHA), and alpha- linolenic (ALA) acids, see Fig 3a [6-9]. 

 

The ω-6 fatty acids, such as linoleic and arachidonic acid, are playing an important role in 

brain and heart function  and mainly found in most of the vegetable oils (e.g. corn, sunflower, 

safflower, and soy), salad dressing, nuts, whole wheat bread and chicken. The most common 

form is linoleic acid (LA) accounts for 85 -90% of dietary ω-6 fatty acids see Fig 3b [6-9]. 
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Figure 3 Chemical structure of representative polyunsaturated fatty acids (cis configuration) (a) alpha 

linoleic acid, ω-3 (18:3n-3 also 18:3ω-3) and (b) gamma linoleic acid, ω-6 (18:3n-6 also 18:3ω-6). 

 

The minimum recommended intakes of ω-3 PUFA is 0.4-0.6 g/day whereas ω-6 PUFAs is 

2.4-7.2 g/day. It should be stressed that this is the minimum intake to avoid clinical 

symptoms of deficiency. It has been suggested that the ratio between ω -3 and ω -6 fatty acids 

should be 1:4 as compared to 1:20-25 in modern dietary habits. Today we consume 20-25 

times more ω-6 fatty acids than ω-3 fatty acids. This imbalance may expose for inflammation 

and disease such as diabetes, hypercholesterolemia, autoimmune disorders and cancer. 

Because ω-3 fatty acids are necessary for normal growth, development and metabolism 

throughout life, they should be abundant in the diets of all humans [6]. 

 

1.1.4 Desaturation and elongation 

 

As mentioned above the human body cannot synthesize essential fatty acids (EFAs), however 

they are important to human health; for this reason, EFAs must be obtained from food. There 

are two EFAs in human nutrition: α -linolenic acid (ω-3 PUFA) and linoleic acid (ω-6 

PUFA), which serve as precursors of other important compounds. For instance, ALA is a 

precursor for the ω-3 pathway and is metabolized into EPA and DHA. Likewise, LA is the 

parent fatty acid in the ω-6 pathway and is metabolized into arachidonic acids (AA). 

 

The ω-3 and ω-6 fatty acids are two different groups but they used the same enzymes in some 

steps through their biosynthesis process. The detailed process involves metabolization by 

desaturation (extraction of hydrogen) and elongation (addition of carbon atoms) to longer and 

more unsaturated fatty acids with specific properties as shown in Fig 4 [10]. 

 

(a) 

(b) 
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For example, α-Linolenic acid undergoes desaturation to form stearidonic acid (SDA, 18:4n-

3), which by the action of Δ6-desaturase is elongated to eicosatetraenoic acid (ETA, 20:4n-3), 

which is further desaturated by Δ5-desaturase to eicosapentaenoic acid (EPA, 20:5n-3). 

Docosahexaenoic acid (DHA, 22:6n-3) is synthesized through the addition of double bond by 

the Δ4-desaturase to docosapentaenoic acid (DPA, 22:5n-3), which is in turn synthesized 

from EPA by elongation.  The excess of LA can interfere with the metabolism of ALA; this is 

due to competition between the substrates and due to product inhibition, [11]. Once ω-3 fatty 

acids have been eaten, the body metabolizes ALA into EPA, DPA and DHA, even though at 

low efficiency. Approximately 5% of ALA is converted to DHA by the human body [12]. 

 

Figure 4 Elongation and desaturation of long chain polyunsaturated fatty acids 
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1.1.5 Source and composition of marine oils 

 

Lipids from marine sources have gained significance due to the recognition of the rational 

and health related benefits of PUFAs in prevention or possible curing of human diseases. In 

most marine organisms lipids are the second largest constituent after protein. Fish like 

salmon, herring, mackerel and blue whiting contain significant amounts of stored fat in their 

skeletal muscles and skin while other fish such as cod, halibut and shark have lipids stored 

mainly in their liver. Marine mammals such as seal, whale and walrus are superbly rich in 

lipids. 

 

The amount and composition of stored lipids in fish and marine mammals reflect their diet, 

physiological conditions (like age) and living environment (such as geographical location 

etc). Triacylglycerols (TAG) are the main components of marine oils while phospholipids 

(PL) have low contribution to the total amount. Some kind of fish contain (in addition to 

TAG and PL) wax esters, carotenoids and sterols [13]. 

 

1.1.6 Triacylglycerols 

 

One of the main functions of lipids is to serve as a source and storage of energy in 

mammalian cells as TAGs. Important fats and oils of animal and plant origin contain more 

than 98% of TAGs, which are classified as simple lipids. This includes all the vegetable oils, 

such as olive, palm, maize and sunflower oil, and animal fats, such as tallow, lard and butter. 

The more abundant animal TAGs are milk fats and, their main function is to store energy. 

Similarly, seed oils serve as a source of energy and structural fatty acids for the developing 

embryo. TAGs are neutral fats prepared by the combination of glycerol (1,2,3-

trihydroxypropane) and 3 fatty acids to form a triester. An example is given in Fig 5 [14]. 
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Figure 5 Schematic diagram of triacylglycerol formation 

 

The glycerol molecule itself has a plane of symmetry. However, when the two primary 

hydroxyl groups become esterified with different acids the resulting glyceride will be 

asymmetric and become optically active. Simple optically active glycerides can be described 

without ambiguity by conventional D/L (dextrorotatory/levorotatory) systems but problems 

arise in application to the complex mixtures of TAGs found in nature. An alternative system 

of nomenclature, now used by many biochemists dealing with glycerides and its derivatives is 

described as the "stereospecific numbering" (sn-system) and it is recommended by IUPAC-

IUB commission [15]. In this system glycerol is stereospecifically numbered (sn-glycerol) 

from top to bottom in the L-form of its Fischer projection (Fig 6) and this numbering is 

always retained. The two primary hydroxyl groups are positioned at sn-1 and sn-3 while the 

secondary hydroxide labeled as position sn-2 as shown in Fig 6. 

 

                               

        Figure 6 Schematic diagram of triacyglycerol molecule 

 

The three fatty acids at positions sn-1, sn-2 and sn-3 may vary and generate a large diversity 

of TAGs. The complete hydrolysis of TAGs yields three fatty acids and a glycerol molecule. 

For example, Fig 7 shows a TAG molecule consisting of three different fatty acids namely 

palmitic acid, oleic acid and linoleic acid. 
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Figure 7 Example of a triacylglycerol molecule 

 

The physical and chemical properties of fats are related to fatty acid composition and 

distribution in the TAGs. Because of the presence of several different patterns of distribution 

on the glyceride molecule for a given fatty acid composition, they may produce fats with 

entirely different properties. The number of possible TAGs increases with increasing the 

number of fatty acid constituents, for example with three different  fatty acid constituents, A, 

B and C, the number of possible TAGs rises to ten (excluding isomers):A3, B3, C3, A2B , 

AB2, A2C, AC2, B2C, BC2, ABC; or eighteen if isomers are included [15]. 

 

1.1.6.1 Digestion, absorption and metabolism of TAG 

 

An adult consumes approximately 85 g of fat daily, most of it as TAG. The digestion of fats 

takes place both in the stomach and the intestine, however the major digestion result from 

pancreatic lipase in the intestine. 

 

The process of fat digestion starts in the stomach by acid-stable gastric or lingual lipases, 

which is a partial enzymatic hydrolysis into diacylglycerols (DAGs) and free fatty acids 

(FFAs). Both lipases preferentially hydrolyze the sn-3 ester bond resulting in formation of sn-

1,2-DAG and the extent is depending on species [17-19]. As most TAG cannot be absorbed 

into cell walls, transport requires further metabolism of the TAG in the intestine. The 

degraded product from the stomach enters into intestine (duodenum) stimulates synthesis of 

the hormone cholecystokinin and causes the gall bladder to release bile acids, which may be 

released from gall bladder or directly from the liver and act to emulsify the hydrophobic 

TAGs [19]. In turn, cholecystokinin stimulates the release of the hydrolytic enzyme 
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pancreatic lipase. The process of hydrolysis is regiospecific so that the pancreatic lipase 

complex preferentially hydrolyses fatty acid in the sn-1 and sn-3 position of TAG leaving a 

2-monoacylglycerol (2-MAG) that, due to its polar (glycerol) and nonpolar (fatty acid) 

moieties, functions as an excellent emulsifying agent [20]. On the other hand, pancreatic 

lipase is relatively inefficient in digesting marine oils and arachidonic acid-containing TAG 

[21]. 

 

The regiospecific structure of dietary TAGs has an effect on the uptake of particular fatty 

acids and may influence further the lipid metabolism in humans. In humans because of the 

very low rate of hydrolysis at the sn-2 position of glyceride, fatty acids in the sn-2 position 

remain intact as sn-2-MAG during digestion and absorption [20]. The lipolysis products 

including fatty acid, MAGs and DAGs are solubilized together with phospholipids and 

cholesterol by lysophospholipids and bile salts into micelles and thus absorbed [19-20]. 

Enzymes involved in the TAG digestion are specific for both stereospecific positions sn-1 

and sn-3, resulting in the formation of a wide variety of MAG, and DAG intermediates. The 

nature of these intermediates is determined by the positional distribution of the fatty acids in 

the original TAG molecules. 

 

However, most of these products have specific melting points above body temperature, which 

may influence subsequent digestion, absorption, and metabolism. FFAs have variable 

incorporation into mixed micelles, while MAG can readily form mixed micelles and are 

subsequently absorbed. Unsaturated fatty acids and medium chain fatty acids (MCFAs) are 

more efficiently absorbed than long-chain saturated fatty acids. The former require lower 

concentrations of bile salts to achieve emulsification into micellar form, while MCFA can be 

absorbed in the stomach, after hydrolysis of medium-chain triacylglycerol (MCT) by gastric 

lipase and can also be solubilized in the aqueous phase of the intestinal contents, where they 

are absorbed and transported to the liver [19]. However, decreased absorption of long chain 

saturated fatty acids  in the free state may also be due to their high individual melting points 

above body temperature, which does not tolerate satisfactory incorporation in the liquid phase 

and the possibility of unesterified fatty acids to form hydrated acid-calcium soaps that are 

insoluble in aqueous media at the pH of the intestine.[20,22-23]. 
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The FFAs and sn-2-MAGs are rapidly taken up by the intestinal cells, via specific carrier 

molecules but possibly also by passive diffusion, and they are resynthesized into TAGs. The 

resynthesized TAGs for assembly of chylomicrons (CM) occurs in two pathways, sn-2-MAG 

and phosphatidic acid pathways. The resynthesize of TAGs predominantly through the sn-2-

MAG pathway, which accounts 80% of the TAG synthesis in fed state while the phosphatidic 

acid pathway for 20%. The synthesis is stereospecific-favoring reacylation of the sn1-position 

[20]. Chylomicrons are secreted into the lymph and then exported into the plasma in the form 

of very-low-density lipoproteins. These particles are transported to the peripheral tissues, 

where they are hydrolysed, releasing FFAs, most of which are absorbed into the adjacent 

adipocytes and re-utilized for TAG synthesis within the cell [17]. Eventually, the CM 

remnants are returned to the liver, where the remaining lipids are hydrolysed and absorbed. 

 

1.1.7 Adulteration of dietary oils 

 

The fatty acid composition of the diet affects various aspects of human health.  Dietary lipids 

are essential components of living cells and are incorporated into the lipid structures of cell 

membranes.  They are also important sources for energy and are precursors for numerous 

biologically active compounds. Dietary oil authenticity is important for a number of reasons 

including legal compliance, economic reasons, constant quality and health. Authentication is 

the process of proving that something is true, genuine or valid [24] and in general, food 

authentication is the process by which food products are demonstrated as complying with 

their label descriptions. Authenticity may cover adulteration, discrimination characterization, 

mislabelling, classification and tracing origin. 

 

Deliberate adulteration of pure dietary oils by lower quality oils is an economically profitable 

practice. These adulterated oils are peril to product authenticity and some time they can be 

also having a severe consumer health issue. For example, food companies that exploit dietary 

oils are taking a considerable financial problem if they cannot positively authenticate the 

purity of oils that they are using in the manufacturing of food products as a result they need a 

fast, simple, economical and rugged methods that can be used in their laboratory around 

production area. 
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1.1.7.1 Authentication of marine oils 

 

Interest on marine oils is increasing due to the health benefits of long-chain ω-3 PUFAs such 

as docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3). 

However, differences in price between oils of different origins and qualities, may lead to 

mislabelling and adulteration [25]. 

 

The authenticity of marine oils can be studied by their relative proportion and composition of 

fatty acids, which is the net result of a wide range of factors, including; diet, season, age, 

stage of sexual maturity, lipid metabolism and environmental factors [26,27]. 

 

A literature review shown that the majority of methods used for authenticity of marine oils 

are mainly based on stereospecific positioning and fatty acid composition, Table 2. 

 

Fatty acids composition of dietary oils is widely used in the food industry as a marker of 

purity and adulteration by using gas liquid chromatography (GLC) and comparison of the 

obtained values with purity criteria [28]. In addition, the fatty acid composition of TAG 

molecule along with the stereospecific structure of TAGs vary among fish species [29,30] 

and may therefore be used for authentication of marine oils, since the fatty acid profile of 

TAGs reflects the diet, species and history of processing [25]. As a consequence of that, TAG 

patterns and positional distribution of fatty acids usually provide a larger amount of 

information than a simple fatty acids profiling. 

 

1.1.7.2 Stereospecific authentication of marine oil 

 

Fish oils mainly contain TAG molecules with fatty acids esterified to three stereospecific 

positions on the glycerol backbone. The positions of these fatty acids are numbered relative 

to their stereospecific numbering (sn) as sn-1, sn-2 and sn-3. The stereospecific distribution 

of fatty acids in the backbone of TAG is characteristic for different oils and could be used for 

authentication.The positional analysis of TAGs has traditionally been performed usually 

based on laborious and time-consuming chromatographic with enzymatic methods [31]. In 

recent times, various spectroscopic techniques such as matrix-assisted laser desorption-

ionization time-of-flight mass spectrometry (MALDI-TOF MS) [32], reversed phase high 
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performance liquid chromatography mass spectrometry (RP-HPLC-MS-MS) [33],carbon 13 

nuclear magnetic resonance (
13

C NMR) [34-38], electrospray ionization mass spectrometry 

(ESI MS) [39] and atmospheric pressure chemical ionization mass spectrometry (APCI-MS) 

[40] methods have been developed as alternatives to cumbersome and time consuming 

enzymatic treatments. Nuclear magnetic resonance (NMR) is the most frequently employed 

technique for authentication of marine oils based on stereospecific positioning as shown in 

the Table 2, indicating that stereospecific positioning could be used as an alternative 

approach for authenticity of marine oils in addition to fatty acid profiling. 
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Table 2 Literature overview of the different analytical techniques used in the authentication of oils derived from fish and marine mammals.  The numbers 

under every technique-column indicate how many times a technique has been implemented for particular oil 

 

 

Oil 

Chromatography Infrared Nuclear Magnetic Resonance Mass 

Spectrometry 

 

            Gas                 Liquid   
 

  References 

GC GCMS HPLC 

APCI-MS 

Ag-HPLC 

APCI-MS 

NIR 
1
H 

13
C

 31
P ESI  

Tuna 1      1   35,36 

Salmon 3  1    5   35,37,38-41,42, 48 

Cod liver oil 3 1 1  1 1 4 1 1 35,38 -,40 ,43 -45 

Cuttlefish  1       1 39,44  

Fish 2  1  1  1   37,39,44 ,45  

Mackerel 1 1     1  1 39,44 ,45  

Turbot 1         47 

Herring   1    1   42,48 

Saury  1       1 39,44  

Seal 1  1    3   35,38 -41,48  
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Table 2 Continued           

Shark liver oil  1       1 39,44  

Whale 2 1       1 35,39,40,44  

Crappies 1         49 

See bass       1   50 

Sardine  1  1     1 39,44 ,50  

Anchovy oil 1   1   1   35,37 ,50  

Total 16 7 5 2 2 1 18 1 7  

            GCMS = Gas chromatography-mass spectrometry; HPLC = high performance liquid chromatography; APCI-MS = atmospheric pressure chemical ionization-      

            MS; Ag-HPLC= silver-HPLC; NIR= near infrared spectroscopy; ESI = electrospray ionization; APPI= atmospheric pressure photospray ionization; 
13

C NMR=  

            carbon 13 nuclear magnetic resonance; 
31

P= Phosphorus 31. 

          References in bold font are those related to authentication studies by using the stereospecific numbering position of TAGs. 
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1.1.8 Multivariate analysis and principal component analysis  

 

Multivariate analysis consists of a collection of methods that can be used when several 

measurements (variables) are made on each individual or object in one or more samples. One 

aim of multivariate analysis is to decompose mixed data structure into its components. It is 

applied for a number of different purposes, which are divided into three main groups, i.e., 

description (explorative data structure modelling), discrimination and classification, and 

regression and prediction. The commonly employed multivariate statistical techniques include 

principal component analysis (PCA), partial least squares (PLS) and soft independent 

modeling of class analogy (SIMCA) [52]. 

 

The goal of PCA is to decompose a data table with correlated measurements into a new set of 

uncorrelated (i.e., orthogonal) variables. It creates new dimensions of data and evaluate a 

reduced number of independent principal components (PCs) describing the information 

included in a system of characteristics but partly dependent variables. PC only with certain 

eigenvalues should be preferably considered and the ranking of the factors is characterised by 

the amount of variance which they explain [53]. The first PC is the major axis of the points in 

the p-dimensional space that accounts for maximum amount of variance in the data. The 

second PC is perpendicular to the first PC and it defines the next largest amount of variation 

accounts, and so on. Once obtained, the PCs can be graphically plotted in order to search for 

meaningful distribution patterns that in turn can assist in distinguishing and classifying 

different set of samples. 
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2. A simple approach for separating triacylglycerols and  phospholipids         

from marine oil samples 

2.1 Background 

 

The study of lipids has gained considerable attention in recent years due to their involvement 

in many vital biological processes in plants, animals and microorganisms. It is evident that 

lipid serves as source of energy, carrier of fat soluble vitamins and responsible for 

maintaining the structural integrity of cells as the principal components of the membranes. 

Also, lipids are ingredients of all foods and their composition is obviously vital for a good and 

healthy nutrition. 

 

The major classes of lipids are simple and complex compounds. The former comprises neutral 

or non-polar substances such as TAGs and the latter comprises polar lipids which are 

phospholipids, glycolipids, and sphingolipids. 

  

Qualitative and quantitative methods for major classes of lipids are of great importance in 

research, clinical and quality control applications. One of the most critical factors clearly 

affecting the analysis of lipids in a wide variety of samples are the extraction and isolation 

steps. Methods for separating and isolating neutral and polar lipids have been developed in 

recent years and most of them are based on preparative thin-layer chromatography (TLC) [54-

56], solid-phase extraction (SPE) [57-59] and column chromatography [60]. 

 

Regardless of its simplicity, preparative TLC is sensitive to sample load, difficult to collect 

the lipids from the plate quantitatively, generate silica dusts, add trace contaminants such as 

silica and fluorescent dyes and can be quite expensive in both time and materials and also 

oxidation of PUFAs often occurs during the process [57]. The popular SPE usually requires 

considerable amounts of solvent for extraction and clean-up of both neutral and polar lipids   

[57].Total crude extract of lipids  subjected to SPE by using a silica gel stationary phase has 

been performed with sequential elution of 5 ml of hexane/diethyl-ether (4:1, v/v), 5 ml 

hexane/diethyl ether (1:1, v/v), 5 ml of methanol and 5ml of chloroform/ methanol/water 

(3:5:2, v/v/v). The fractions of hexane and diethyl ether, containing neutral lipids, were 

combined, dried and used for fatty acid analysis after trans methylation. The fractions of 

methanol and chloroform/methanol/water, containing polar lipids, such as glycolipids and 
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phospholipids, were combined, dried and used for HPLC/MS and fatty acid methyl ester 

analysis of the polar fraction. In addition, the fraction of lipid isolated by SPE is very small 

for quantitative analysis [60,61]. Column chromatography isolation of lipids requires 

expensive equipment, copious amounts of solvent, and can be time-consuming [60-62]. 

Moreover, due to the complexity of lipid extract it is rarely possible to claim that all the lipid 

classes can be isolated in a single operation. So it is worthwhile to search for methods capable 

of isolating phospholipid and TAGs. 

 

The most frequently reported analytical method to determine lipids is gas chromatography 

coupled with flame ionisation detection (FID) [62]. Using GC analysis, lipids are often 

derivatised to alkyl derivatives in order to increase volatility, improve separation and 

sensitivity. Moreover, prior to fatty acid profiling by GC it is important to isolate lipid classes, 

otherwise correlating fatty acid identification with their lipid class becomes difficult [63]. On 

the other hand, to increase the sensitivity of ultra violet (UV), fluorescent and 

chemiluminescent detectors a pre- and post-column derivatisation of lipids is usually 

recommended [64-66]. 

 

HPLC analysis of lipids has been suggested as a reliable alternative to GC for accurate 

quantitative routine analysis [35,40,44,45]. Liquid chromatography mass spectrometry (LC-

MS) methods are also very attractive alternatives that could result in a considerable 

simplification of sample preparation and increasing of sample throughput [66-68]. 

 

In particular, LC–MS has been successfully applied to lipid analysis using soft ionisation 

techniques, such as electrospray ionisation (ESI), atmospheric pressure chemical ionisation 

(APCI) and  matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF)  

coupled to single or tandem mass spectrometers [32,39,40,69-72]. However, in LC-MS 

analysis by using soft ionization, ion suppression is well known and has been demonstrated 

among lipid classes. For example, the presence of phospholipids can suppress detection of 

TAG in positive ion electrospray mode (+ESI) but this problem can be eliminated by 

separation of mixture component of lipids [73,74]. 
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2.2 Objective 

 

One objective of this thesis is to develop a simple and rapid approach to separate 

triacylglycerol and phospholipids from krill oil samples prior to compositional fatty acid 

methyl ester (FAME) analysis by GC or positional analysis by LC-MS. 

2.3 Experimental 

2.3.1 Reagents and standards 

 

Chloroform, diethyl ether, methyl acetate, potassium chloride, copper(I) acetate, ortho-

phosphoric acid, isohexane, butylated hydroxytoluene (BHT), acetic acid and hexane used for 

liquid-liquid extraction (LLE) and high performance thin layer chromatography (HPTLC) 

were LC grade, from Merck (Darmstadt, Germany). Methanol (HPLC grade, ≥99.9%) for 

LLE and HPTLC was from Merck (Darmstadt, Germany). Isopropanol used for HPTLC was 

from Kemetyl (Norway). 

 

The various standards used for HPLTC analysis including PLs (lysoPC, SM, PC, PI, PE), 

linolenic acid as FFA, trilinolenin, cholesterol, linolenate cholesteryl, methyl linolenate, 

monolinoleninglyceroland 1,3-dilinoleinglycerol were obtained from Sigma-Aldrich (St. 

Louis, MO, USA). PS, PA, cardiolipin standards for HPTLC were from Avanti Polar Lipids 

(Alabaster, Alabama, US). Linoleyl behenate for HPTLC was from Larodan Fine Chemicals 

(Malmö, Sweden). 

 

Krill oil capsule were obtained from Aker Biomarine (Oslo, Norway). De-ionized water was 

used throughout the experiment and purified in a Milli-Q system (Millipore, Milford, USA). 

 

2.3.2 Published versus novel Liquid-liquid extraction method 

2.3.2.1 Samples treatment using an extraction protocol proposed in the literature 

 

A lipid extraction method based on the use of a single solvent, namely methanol [75] has 

recently been published. A brief description of this method (MeOH method) is as follows: 0.1 

g of krill oil were added into 10 mL of MeOH. After vortex and incubation on ice for 10 min, 
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the mixture was centrifuged at 10,000 rpm for 5 minutes at room temperature. An aliquot of 

supernatant was directly submitted to high performance thin layer chromatography (HPTLC) 

analysis. 

 

2.3.2.2 Optimization of a novel liquid-liquid extraction (LLE) strategy 

 

The novel LLE strategy proposed in the present thesis (Fig 2.1) consists basically of adding 

sequentially methanol and hexane to the oil sample, separating and washing the phases with 

solvents of opposite polarities. For example, the methanol phase (rich in PL) is washed with 

hexane to remove any remaining TAG and the hexane phase (rich in TAG) is washed with 

methanol to remove any remaining PL. Charcoal is added to the final phases to remove the 

red color (due to the presence of astaxanthin in the krill oil capsules) and the clean and bright 

fractions are submitted to HPTLC analysis. 

 

 

Figure 2.1 Liquid – liquid extraction strategy 
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To find the best extraction procedure the proposed strategy was optimized, by varying the 

washing volume of hexane and methanol and the number of washing steps and keeping 

constant the amount of sample (0.1 g), the initial sample dissolution volume (2 mL hexane 

and 2 mL methanol) and time of vortex 30 sec. as shown in the Table 2.1. 

 

          Table 2.1 Optimization strategy of LLE 

 

Experiment Washing 

volume 

ratio 

Washing volume 

Hexane:Methanol 

(mL) 

No. of 

washing steps 

1 0.5 1:2 2 

2 0.5 1:2 3 

3 1 1:1 2 

4 1 1:1 3 

5 1 2:2 2 

6 1 2:2 3 

7 2 2:1 2 

8 2 2:1 3 

 

2.3.3 High performance thin layer chromatography 

 

The HPTLC protocol is part of the methods developed by NIFES and archived as method 

number MET.NÆR.01-25. 25. Briefly, pure krill oil from a capsule was dissolved in 

chloroform at 5 mg/mL and sent to HPTLC analysis.The LLE fractions from the hexane and 

methanol phases were dried under a stream of nitrogen, weighed and redissolved in 

chloroform at 5 mg/mL and submitted for HPTLC analysis. The various standards used for 

HPTLC were individually diluted to 0.1 mg/mL by adding chloroform (0.01% BHT). The 

HPTLC plates 20×10 cm, silica 60 were from Merck (Darmstadt, Germany). The plate was 

pre-cleaned by eluting the polar solution ( KCl: methanol: chloroform: isopropanol: methyl 

acetate, 9:10:25:25:25, v/v) way up to the top of the plate in a 20×10 cm glass tank. The plate 

was dried and activated in an oven at 110 ° C for 30 min. Standards(1 µL) and samples (1µL) 

were applied to the plate with a digital microdispenser (ATS4, Camag, Switzerland). Lipids 

were first eluted with a polar solution in an automatic development chamber (AMD2, Camag, 
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Switzerland) until the elution goes up to 48 mm. After 30 min, the plate was wiped and 

neutral lipids were further eluted with a neutral solution (isohexane:diethyl ether:acetic acid, 

80:20:1.5, v/v) up to 88 mm. The plate was dried for 20 min. After removing the plate from 

the development chamber, it dipped into a glass tank with developing solution (3% copper (I) 

acetate and 8% ortho-phosphoric acid) and developed for about 10 seconds. The liquid was 

drained and dried in an oven at 160 °C for 15 min. The Plate was cooled at room temperature 

and scanned by a D2 lamp (Scanner3, Camag, Switzerland) at 350nm. The lipid classes in the 

sample were identified by comparing with the standard band. 

 

2.4 Results and discussion 

2.4.1 Optimal LLE strategy 

 

After performing the optimization procedure described in Table 2.1 and represented in Fig 

2.1, the best results were those obtained by using experiment number 5 in Table 2.1. The 

optimal extraction strategy (Fig 2.2) could be summarized in three operational steps as 

follows:  

I. Krill oil (0.1 g) was weighed in a 10 ml pyrex test tube and dissolved in 4 ml of 

methanol: hexane (1:1, v/v) in the first step. The solution was vortex-mixed for 30 s, 

centrifuged at 3000 rpm for 1 min and the methanol (MeOH) and hexane (Hx) layers 

collected separately and labeled as PL rich fraction and TAG rich fraction 

respectively. 

II. An aliquot of 2 mL of hexane is added into the collected PL rich fraction and an 

aliquoit of 2 mL of methanol is added into the TAG rich fraction. . The solutions were 

vortex mixed and centrifuged as described previously. After phase separation, the 

added hexane and methanol solutions were discarded and the initially collected PL and 

TAG fractions submitted to the second step one more time and the final PL and TAG 

washed fraction submitted to the third step. 

III. Approximately 40 and 15 mg of reactive charcoal were added to the final PL and TAG 

fractions respectively to remove the red color (due to the presence of astaxanthin in 

the krill oil capsules).  The final fractions were vortex-mixed for 20 s, centrifuged at 

3000 rpm for 2 min and the clean and bright supernatants collected, dried under a 

stream of nitrogen, redissolved in chloroform and submitted to HPTLC analysis. 
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Figure 2.2 Optimal liquid – liquid extraction protocol.  Hx= hexane; MeOH= methanol;     

               TAG= triacylglycerol; PL= phospholipids 
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2.4.2 Comparison of published and novel LLE protocol 

 

Many different lipid extraction methods have been developed in the past decades and most of 

them are based on the original method developed by Blight and Dyer [76] where three 

solvents (MeOH, chloroform, water) are used in connection with a 3-step solvent extraction:  

i) methanol plus chloroform, ii) chloroform plus water are added to the sample and after phase 

separation lipids are determined in iii) the chloroform phase. 

 

The novel LLE strategy was compared with an already published extraction protocol [75] by 

using krill oil commercial capsules. The krill oil was selected as an ideal sample because it 

contains both classes of lipids (TAG and PL) as shown in Fig 2.3. 

 

 

Figure 2.3 HPTLC chromatogram of pure krill oil 

 

2.4.2.1 Published protocol 

 

The PL and TAG content in krill oil were initially separated by using a published method. The 

selection of this particular method was based on its simplicity. It consists of three simple 

steps: addition of methanol, centrifugation and collection. The results show in Fig 2.4 

revealed that the separation of PL from TAG was not achieved by using this very simple 
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approach. The HPTLC chromatogram revealed the presence of 8 major components, 

specifically: lysophosphatidylcholine (LPC), phosphatidylcholine (PC), phosphatidyl ethanol 

amine (PE), phosphatidylserine (PS), diacyleglycerol (DAG), cholesterol, FFA and TAG. 

 

 

 Figure 2.4 HPTLC of krill by using a published protocol (only methanol is used) [75] 

 

2.4.2.2 Novel LLE strategy 

 

The proposed approach, which consists of adding methanol and hexane to isolate PL from 

TAG and subsequent washing with hexane and methanol to remove any remaining TAG or 

PL respectively from the initial fractions, revealed that it is possible to separate the major PL 

and TAG constituents from krill oil samples (Fig.2.5a-b). The HPTLC chromatograms 

revealed that TAG and PL were basically absent from the PL and TAG rich fraction 

respectively. Consequently, both fractions could be submitted confidently for FAME analysis 

and also for determining the positional distribution of fatty acids on PL and TAG structures. 
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Figure 2.5a HPTLC of final triacylglycerol fraction using the optimal LLE protocol 

 

Figure 2.5b HPTLC of final phospholipid fraction using the optimal LLE protocol 
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It should be highlighted that the methylation method used at NIFES is applicable to PL and 

TAG and for that reason it is important to separate them in advance to determine the exact 

contribution of both lipid classes by GC-FAME profiles [77]. The methylation of FFAs is 

achieved by different procedures to those used currently at NIFES for TAG and PL and 

consequently it is not expected that they could have an impact in the final GC-FAME profiles 

of PL or TAG [78]. 

 

One important feature of the novel LLE strategy is that it does not require the additions of 

acid or alkali substances. In addition, the solvents used by the novel strategy are compatible 

with ESI-MS analysis. Thus, the PL fraction isolated in methanol could be directly used for 

positional analysis by LC-MS/MS. 

 

It is advisable to dry the TAG fraction in hexane and redissolve it in another solvent (e.g  

chloroform) prior to any LC-MS/MS. It has been reported that in no circumstances should 

hexane be employed as the injection solvent. It is so similar in its properties to the stationary 

phase that it competes with this for the solute molecules, causing peak broadening and it can 

even cause single components to emerge as double peaks. Unfortunately, hexane is used in so 

many other chromatographic systems as the injection solvent that novices to HPLC tend to 

use it in reversed-phase analyses without thinking [79]. 

 

Table 2.2 Relative area percentage of lipid classes in hexane and methanol phase 

 

Final washed 

fraction (%) 

LPC PC PS PE Unknown DAG CHOL FFA TAG 

Hexane 0 0 0 0 0 3 8 18 71 

Methanol 16 18 3 4 3 3 7 46 0 

 

The relative area percentages of different PL and TAG shown in the Table 2.2 indicated that 

in the final hexane phase, TAG accounts 71% and FFA 18% of the total recorded area. While 

in final methanol phase, PL represents 41% in which PC and LPC accounts 34% of the total 

area. By considering the relative area percentage of PL and TAG in the final fractions and 

wastes; it can be therefore, concluded that the extraction yields were approximately 86% of 

PL and 96% of TAG. 

\ 
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In some samples, the PL content is relatively low compared to the neutral lipids for such case, 

prior isolation of PL fraction is needed in order to increase sensitivity of the instrumental 

technique, such as HPLC analysis. In addition, the presence of phospholipids can suppress 

detection of TAG species in positive ion electrospray mode (+ESI). Therefore the application 

of the new developed sequential LLE method could help to alleviate all these problems. 

 

2.5 Conclusions 

 

This new approach is simple, rapid and cost effective for the extraction of major classes of 

lipids from marine oils with high efficiency and without requiring special equipment. It can be 

easily applied in different laboratories like research institutes and universities. The most 

attractive feature of the new LLE protocol in addition to its simplicity is that it helps saving 

energy, reduces gas emission and creates healthier lab environment and lessen its impact on 

the environment as a whole when compared with traditional and sophisticated preparative 

liquid chromatography instrument 

. 
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3. Discrimination of seal oil and cod liver oil based on the sn-2 stereo 

specific position of omega-3 polyunsaturated fatty acids on the backbone 

of triacylglycerol molecules 

 

3.1 Background 

 

Omega-3 polyunsaturated fatty acids (ω-3  PUFAs) are necessary for human health and can 

be found in fish (e.g salmon, tuna, cod fish, halibut), other seafood including algae and krill, 

some plants and nut oils. The ω-3  PUFAs are considered essential fatty acids and for those 

people unable or reluctant to boost dietary fatty fish intake, marine oil ω-3 dietary 

supplements are available like seal oil and cod liver supplement. For example, seal oil 

supplements primarily from harp seal blubber are manufactured in Canada and contain high 

levels of DPA and balanced levels of DHA and EPA and it offers privileged properties, such 

as easier digestibility and better assimilation than other ω-3 sources [80-82]. 

 

Interest in seal oil as a source of long chain ω-3 fatty acid began some forty years ago, when it 

was reported, in the mid-70
th

, that Greenland Eskimos exhibited low risk of heart disease and 

cancer in comparison to Western populations. The observed difference in the two populations 

was immediately attributed to the Eskimo diet which consists mostly of fats of marine 

mammalian origin like seal oil and whale [83, 84]. 

 

The ω-3 fatty acids in seal oil are mainly located in sn-1 and sn-3 position of triacylglycerols 

(TAGs), while in fish oil the ω-3 fatty acids are basically located in the sn-2 position of 

TAGs. The difference in the positioning of the ω-3 fatty acids on TAGs might influence the 

uptake and bioavailability of ω-3 fatty acids due to the stereospecificity of the pancreatic 

lipase in the gastrointestinal tract for breaking positions sn-1 and sn-3 leaving position sn-2 

intact, which is the main reason for the superior effect of seal oil compared to fish oil in 

disease prevention and potential health benefits [85]. 

 

Authentication of dietary marine oil supplements can be accomplished through compositional 

analyses of the lipids present in such oils [86]. It is known that natural marine oils harvested 

from fish and seals are typically composed of TAG in which three fatty acids are esterified to 
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glycerol. Recently, the use of RP-HPLC/APCI-MS with statistical models for the analysis of 

seal oil and forensic identification was explored [48]. 

 

The potential adulterants of seal oil are cod liver and seed oils [87]. Due to the plausible 

advantage of seal over fish oil as ω-3 supplement, which include enhanced resistance to 

oxidation and favorable ω-3 composition and position, which resultant in health benefit [88]. 

Finding methods to check adulteration or distinguishing marine oil harvested from fish and 

seal is vital in terms of marketing and health benefit. 

 

The analysis of ω-3 rich oils for detecting the presence of adulterants is generally carry out by 

using  complex, time-consuming and tedious chemical/enzymatic hydrolysis methods such as 

Grignard reagent or lipases analyses [89-91]. Lately, the use of sophisticated high resolution 

nuclear magnetic resonance spectrometry methods (
13

C-NMR or 
1
H-NMR) have been 

introduced for the stereospecific analysis of TAG molecules in ω-3 rich oils [34-38]. 

 

If low amounts of ω-3 PUFAs located at position sn-2 of TAG molecules are expected in a 

regiospecific analysis of seal oil, and high amount of ω-3 PUFAs are expected in the same 

regiospecific position for fish oil in general, then it is possible to postulate that this particular 

stereospecific position (sn-2) is the most relevant to discriminate between these particular 

nutritional oils (seal oil and cod liver oil).  The positional distribution of ω-3 PUFAs located 

at position sn-2 of TAGs can be carried out by using an already published LC-ESI-MS
2
 

strategy and an automated TAG prediction algorithm, which enables identifying the relative 

arrangement of the acyl groups on the glycerol backbone of dietary oils [92]. 

 

3.2 Objectives 

 

- To discriminate different kinds of nutritional oils by using their FAME GC profiles 

- To discriminate seal oil and cod liver oil based on the stereospecific positioning of 

particular ω-3  PUFAs on TAG structures, specifically EPA, DHA, 18:4n-3 and 16:4n-

3 at sn-2 position using LC-ESI-MS
2
. 
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3. 3 Experimental 

3.3.1 Reagents and samples 

 

Methanol (HPLC grade, ≥99.9 %), acetonitrile (LC grade, ≥99.8 %), ammonium acetate 

(mass spectrometry grade, 99%) and acetone were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Hexane, LC grade was from Merck (Darmstadt, Germany). Isopropanol used for 

HPLC was from Kemetyl (Norway). NaOH, BF3 in methanol (20 % w/v) and chloroform 

were purchased from Merck (Darmstadt, Germany). Butylated hydroxytoluene (BHT) and 

BF3 in methanol (14 %) were purchased from Sigma-Aldrich Co. USA. FAME standards 

were purchased from Nu-Chek Prep (Elysian, MN), the nonadecanoic acid methyl ester 

(C19:0) internal standard was from Fluka (Buchs, Switzerland). De-ionized water was used 

throughout the experiment and purified in a Milli-Q system (Millipore, Milford, USA). Cod 

liver oils were from Peter Möller, Lysaker and Axellus AS,Oslo, Norway. The salmon oil was 

from Havnegater, Sortland, Norway. Two different batches of harp seal oil (Phagophilus 

groenlandicus) were from Rieber Skinn A/S, Bergen, Norway and the other seal oil was from 

JFM Sunile A/S, Os, Norway. The commercial ω-3 supplements obtained from a local 

pharmacy were Natur-Omega Naturhuset AS, Vøyenenga, Norway. Krill oil capsule was 

obtained from Aker Biomarine Oslo, Norway. The fish and fish plus evening primrose oil 

(Omega Woman) were from Nordic Natural AS, CA,USA. The herring, blue whiting and sand 

eel were kindly donated by Veronika Sele from NIFES. 

 

3.3.2 Gas chromatography 

3.3.2.1 Fatty Acid Methyl Esters (FAME) protocol 

 

A 50 µl (50 mg) of sample are mixed with 2 ml BF3/CH3OH and 5 mg (1 mg/10 mg) of C19:0 

internal standard. The mixture is heated at 100 °C for 1 h and cooled down to room 

temperature. Aliquots of 1 ml of hexane and 2 ml of H2O are added, vortex-mixed for 15 

seconds, placed in a centrifuge at 3000 rpm for 2 min and the methyl esters are then extracted 

from the upper hexane phase. Sample were concentrated depend on the fat content under 

nitrogen and subjected to GC analysis. This preparation protocol has been published 

elsewhere [77]. 
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3.3.2.2 GC instrumentation 

 

Analysis of the FAME was performed on a Perkin-Elmer AutoSystem XL gas chromatograph 

(Perkin-Elmer, Norwalk, Connecticut) equipped with a liquid autosampler and a flame 

ionisation detector. The FAME samples were analysed on a CP-Sil 88 capillary column (50 m 

× 0.32 mm I.D. 0.2 μm film thickness, Varian, Courtaboeuf, France). Data collection was 

performed by the Perkin-Elmer TotalChrom Data System software version 6.3. The 

temperature program was as follows: the oven temperature was held at 60 °C for 1 min, 

ramped to 160 °C at 25 °C /min, held at 160 °C for 28 min, ramped to 190 °C at 25 °C /min, 

held at 190 °C for 17 min, ramped to 220 °C at 25 °C /min and finally held at 220 °C for 10 

min. Direct on-column injection was used. The injector port temperature was ramped 

instantaneously from 50 to 250 °C and the detector temperature was 250 °C. The carrier gas 

was ultra-pure helium at a pressure of 82 KPa. The analysis time was 60 min. The FAME 

peaks were identified by comparison of their retention times with the retention times of highly 

purified FAME standards. 

 

3.3.3 Liquid chromatography 

3.3.3.1 Sample preparation 

 

An aliquot of 2 ml of each oil was taken and submitted to the optimized LLE method as 

described in Chapter 2. The final hexane fraction was dried under stream of nitrogen at room 

temperature. The dried residues of samples were dissolved into 0.5 ml of acetonitrile: acetone 

(2:1, v/v) and vortex-mixed for 30s. Every sample was prepared in duplicate and the final 

products were then individually sent to LC-ESI-MS
2
 analysis. 

 

3.3.3.2 LC ion-trap mass spectrometry instrumentation 

 

The TAG analysis were carried out by using an Agilent 1100 series LC/MSD trap, SL model 

with an electrospray interface, a quaternary pump, degasser, autosampler, thermostatted 

column compartment, variable-wavelength UV detector and 10 µl injection volume. The 

Zorbax Eclipse-C8 RP 150 × 4.6 mm, 5 μm (Agilent Technologies, Palo Alto, CA) was kept 
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in the column compartment at 40 °C and the solvent system in gradient mode consisted of 

acetonitrile (A), acetone (B) and 10 mM isopropanol:ammonium acetate 90:10 v/v (C) at a 

flow rate of 0.2 ml/min and UV detection at 254 nm. The following gradient programs was 

used: at initial 5 min condition 90 % C and 10 % B that was ramped in 5 min to 65 % C,5 % 

B plus 30% of A and returned to the initial condition in 15 min and subsequently ramped in 5 

min to 65 % C,5 % B plus 30% of A and returned to the initial condition in 30 min where it 

was held for 30 min. Nitrogen was used as nebulizing (50 psi) and drying gas (8 L/min) at 350 

°C. The ESI source was operated in positive ion mode and the ion optics responsible for 

getting the ions in the ion-trap such as capillary exit, skimmer, lens and octapoles voltages 

were controlled by using the Smart View option. Data acquisition and processing were 

controlled by MSD trap control version 5.2 from Agilent. 

 

3.4 Principal Component Analysis 

 

Principal component analysis (PCA) is used to reduce the dimensionality of multivariate data. 

It is an appropriate way to reduce data sets containing high numbers of variables.  By 

reducing the number of original variables to a smaller number of independent variables, this 

approach highlights fundamental differences between groups of objects and variables. Some 

of the articles reported in Table 2 used multivariate data analysis, which has been used in 

marine oil discrimination. Two-dimensional PCA score plots were created on the normalized 

data in order to reduce the number of variables. The PCA score plot of the FAME profiles 

from the various oils was computed with the software package Statistica version 12 (Statsoft. 

Inc.1984-2014). 
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3.5 Results and discussion 

3.5.1 GC analysis 

 

All oils were analyzed in triplicate and lipid profiles of the various injected oil samples, 

expressed as mg-FAME/g-sample were arranged in a data matrix consisting of 27 rows, 

representing the triplicates of various analyzed oils and 34 columns representing the 

individual FAME detected by GC. 

 

The 27 × 34 matrix was submitted to PCA for data exploration and a total of five PCs grouped 

in decreasing order of variance extracted. The total FAME profiles were used to discriminate 

the different oils, with especial emphasis on seal oil and cod liver oil, which are essential for 

the second objective of the present study. 

 

 

Figure 3.1 PC1 and PC4 score plot for the different kind of oils obtained by using the full   

                  FAME profiles 
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A plot of the scores of PC1 and PC4 explaining 38.43 % demonstrated that it is possible to 

differentiate five main regions designated as R1 to R5 in Fig 3.1. The regions in questions 

differentiate seal (R1), fish (R2), krill (R3), supplements (R4) and fish+vegetable (R5).  PC1 

discriminates between animal, supplements and mixture of animal+vegetable. It must be said 

that the capability of GC and PCA to discriminate different kind of animal, plant and 

supplement oil has been demonstrated previously [40]. 

 

3.5.2 LC-ESI- MS
2
 Analysis data 

 

After confirming the discrimination by GC, the LC-MS
2
 data was used to determine the 

discrimination capability based on the positional distribution of ω-3 fatty acids on the sn-2 

position of TAGs. The TIC+MS
2
 data was exported to netCDF file by Data Analysis for 

LC/MSD Trap Version 3.3 (Bruker Daltonik GmbH Inc., Billerica, MA, USA). The netCDF 

file was then exported to a Matlab file and submitted to the developed automated TAG 

prediction algorithm for identification of TAG species in oil samples. The results were 

arranged in increasing number of effective carbon number (ECN) and all ω-3 PUFAs at sn-2 

positions were counted and the average of replicate measurements was used to generate the 

corresponding histograms. 

 

3.5.2.1 Discrimination of seal and cod liver based on sn-2 position 

 

To inspect the distribution pattern of PUFAs in the sn-2 position for seal and cod liver oils, 

the number of PUFAs were plotted against their ECN as shown in Figs 3.2 and 3.3. The 

histogram of seal oil (Fig 3.2) indicates as expected that seal oil contain low levels of  ω-3  

PUFAs in sn-2 position, whereas cod liver (Fig 3.3) exhibited a higher number of ω-3  PUFAs 

at the same stereospecific position (sn-2), which was approximately three times that of seal 

oil. This observation agreed with the reports on regiospecific location of ω-3 PUFAs on TAG 

backbone [85]. 
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Figure 3.2 Number of ω-3 PUFAs at sn-2 position versus equivalent carbon number (ECN)        

for seal oil 

 

The number of ω-3 PUFAs in cod liver were distributed in a wider ECN and observed even 

distribution in the range of 36-48 ECN, while in seal oil absence of PUFAs at ECN 34 and 36 

were noted. In contrast, cod liver at ECN 34 contains a maximum number of PUFAs, which 

could be one of the discriminating points in addition to ECN 44-48. Moreover, ECN 32 in 

seal oil contains three ω-3 PUFAs, which was not seen in other ECN within seal oil, whilst in 

cod liver oil as noted in Fig 3.3 ECN 32 is completely absent which, could be a source of 

differentiation between seal and cod liver. 
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Figure 3.3 Number of ω-3 PUFAs at sn-2 position versus equivalent carbon number (ECN)        

for cod liver oil 

 

3.5.2.2 Discrimination of mammalian and fish oils by LC-MS
2
 

 

A total of nine samples consisting of three seal oil samples (A, B and C) and six fish samples 

(2 cod liver , 1 herring, 1 salmon, 1 sand eel and 1 blue whiting) were used for discrimination 

purposes based on their ω-3 PUFAs content at sn-2 position. 

 

The data from the predicting algorithm were arranged in ascending order based on ECN and 

the number of PUFAs in sn-2 position were counted, tabulated and presented as histogram as 

shown in Fig 3.4. Unfortunately, the sn-2 approach does not give a clear separation for the 

analyzed mammalian and fish oils. 

 

The number of EPA in blue whiting, cod liver, salmon and sand eel were higher when 

compared to the number DHA in the sn-2 position (Fig 3.4). The opposite trend was observed 

in seal oil (DHA > EPA in the sn-2). The observed difference could be important for 

customers who want to use marine oils for therapeutic purpose since, there is a markedly 

difference between EPA and DHA in their therapeutic action in the body. EPA is generally 
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used for its anti-inflammatory properties while DHA is mainly used for its neuroprotective 

and cardioprotective actions in the body [93]. 

 

Cod liver, herring and blue whiting exhibited a low number of PUFAs at the sn-2 position,  

even in herring the number of PUFAs was lower than that of seal oil, which contradicts earlier 

research reports where it is established that the number of PUFAs at sn-2 are higher in fish 

oils when compare to mammal oils [85]. It was puzzling that the stereospecific positioning of 

PUFAs in seal oil and cod liver oil presented in Figs 3.2 and 3.3 respectively are in 

accordance with published reports. However, the results of the present section (Fig 3.4) are in 

frank contradiction with the published reports. Based on the experimental results, it is possible 

to conclude that the seal and cod liver oils used in GC and Section 3.5.2.1 were genuine oils 

kindly donated by the oil providers while those used in this section were  commercially 

available and purchased in the pharmacy. 
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Figure 3.4 Histogram of different marine oils. 
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In general, Fig 3.4 revealed that there are few numbers of ω-3 PUFAs at sn-2 position in fish 

oils, which contradict the general literature. Based on these unexpected results, an important 

questions arise: Is it possible that the natural position of PUFAs on TAG molecules is affected 

by some lurking factors? 

 

A literature review revealed that factors such as species, production method (wild or farmed), 

geographical origin and process history (natural fish oil or concentrated) can have an impact 

on the positioning of PUFAs [43, 94]. The few numbers of ω-3 at sn-2 positions in this 

section could be ascribed to the production history (see Section 3.5.2.3). 

 

3.5.2.3 Genuine and processed fish oil 

 

It is common knowledge that fish oil contains ω-3 PUFAs located at the sn-2 position of TAG 

molecules. However, some contradictory results were found in the previous sections. For 

example, the results in Section 3.5.2.1 indicated that the analyzed cod liver oil was genuine oil 

exhibiting a high number ω-3 PUFAs at position sn-2, which is approximately four times 

more than seal oil. Conversely, the results in Section 3.5.2.2 indicated that the analyzed cod 

liver oil was a processed oil due to its low content of ω-3 PUFAs at position sn-2, which is 

only approximately twice of seal oil. 

 

The results (Figs 3.5 and 3.6) have clearly shown the difference between the numbers of 

selected ω-3 PUFA at sn-2 position of the genuine and processed oils. The genuine cod liver 

oil contains 70% EPA and 73% DHA at position sn-2, while in processed cod liver contains 

only 18.4% of EPA and 16% DHA at position sn-2. The observed difference between the two 

oils seems to indicate that the processing method applied to concentrate PUFAs in the oils 

may result in migration of fatty acids (e.g. PUFA) from sn-2 to the terminal position (sn-1 and 

sn-3) in TAG molecules [93]. 
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Figure 3.5: Histogram of processed cod liver oil a) at sn-1/ sn-3 and b) sn-2 positions of TAG 

structures 

 

Figure 3.6 Histogram of genuine cod liver oil a) at sn-1/sn -3 and b) sn-2 positions of TAG 

structures 
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3.6 Conclusions 

 

The primary goal of this section was to discriminate oils based on the number of ω-3 PUFAs 

at sn-2 position of TAG structures. The results revealed that any discrimination based on the 

sn-2 position could be a reasonable alternative for discriminating genuine from processed fish 

oils and also for distinguishing genuine fish and marine mammalian oils. It is important to 

emphasize that the bioavailability and absorption of PUFAs in the intestine could be altered 

by the position of individual fatty acids on the TAG backbone [20]. Consequently, any 

research aiming at testing the beneficial properties of marine oils should take into account 

whether or not their ω-3 PUFAs are located in the middle or terminal positions of TAG 

structures. The knowledge about the specific position of different ω-3 PUFAs on the 

backbone of TAGs could prevent misleading product labeling. 
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4.  A new approach to discriminate marine oils by using the sn-1, sn-2 and 

sn-3 stereo specific positions of omega-3 polyunsaturated fatty acids on 

the backbone of triacylglycerol molecules. 

 

4.1 Background 

 

Dietary oils contribute a good share to the human diet and knowledge of their quality is of 

importance to prevent any health hazard. The consumer of the 21
st
 century have developed an 

awareness  of the quality of food products in their diet and the impact of these products on 

their health which in turn has led to an escalating consumer demand for ω-3 fatty acids rich 

oils, functional food, dietary supplements and pharmaceuticals. 

 

The quality of marine oils may vary significantly according to the origins and the manufacture 

of the raw materials, and it is therefore essential to establish reliable analytical methods in 

order to carry out the quality assessment and authentication work on these kinds of products. 

The importance of developing techniques aiming at detecting adulteration of marine oils has 

been emphasised more than 100 years ago [44]. However, it has been much neglected 

compared to the discrimination of plant oils. Nowadays, dietary oils authenticity has become a 

focal point for the food industry, the policy makers, the international trade, research institutes 

and the consumers.The need for quality assessment of marine oils is mainly attributed to their 

content of ω-3 PUFAs and their beneficial effects on the heart, brain, joints, skin and even 

pregnancy. Several studies have evaluated the multiple ways that ω-3 PUFAs promote 

cardiovascular health, in addition to the healthy functioning of many other biological 

activities [6-9]. 

 

Marine oils are rich in TAGs (> 98 %), which comprises of fatty acids esterified to three 

stereospecific positions on the glycerol backbone. The positions of these fatty acids are 

numbered relative to their stereospecific positioning patterns as described in Section 1.1.6. By 

using proper analytical instrumentation for TAG analysis such as LC-MS and NMR, the 

positioning patterns of TAG derived from the intact TAG can be determined. The TAG 

patterns provide information not only on fatty acids composition but also on the 

stereospecificity of fatty acids on TAG molecules. Compared to the composition analysis of 
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simple fatty acids, TAG patterns usually carry more information and could be used for 

determining the quality and authentication purposes. 

 

A literature review (Table 2) has revealed that the development of different instrumental 

methods for marine oil authenticity is mainly based on composition and stereospecific 

positioning of fatty acids. Traditionally, the positional analysis of TAGs is performed by 

means of laborious and time-consuming chromatographic and enzymatic methods [31, 89-91]. 

Recently, various spectroscopic techniques such as 
13

C NMR [34-38], ESI MS [39], and 

APCI-MS [40] methods have been implemented.  NMR is the most frequently employed 

technique for authentication of marine oils based on stereospecific positioning as indicated in 

the Table 2. Authentication based on the steriospecific positioning sn-2 of ω-3 PUFAs as 

demonstrated in the previous chapter was acceptable for distinguishing between genuine and 

processed fish oils. In the present section a new strategy is explored and proposed to 

distinguish different marine oils. The new strategy is also implemented in the authentication 

of intentionally adulterated oils. 

 

4.2 Objectives 

 

- To establish a new normalization strategy (NNS) based on ECN and the ratio of 

outer/inner ω-3 PUFAs on TAG structures from marine oils. 

- To assess the NNS on intentionally adulterated oils of nutritional importance. 

 

4.3 Experimental 

4.3.1 Reagents and samples 

 

Methanol (HPLC grade, ≥99.9%), acetonitrile (LC grade, ≥99.8%), ammonium acetate (mass 

spectrometry grade, 99%) and acetone were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Hexane, LC grade was from Merck (Darmstadt, Germany). Isopropanol used for 

HPLC was from Kemetyl (Norway). De-ionized water was used throughout the experiment 

and purified in a Milli-Q system (Millipore, Milford, USA). Cod liver oils were from Peter 

Möller, Lysaker and Axellus AS,Oslo, Norway. The salmon oil was from Havnegater, 

Sortland, Norway. Two different batch harp seal oil (Phagophilus groenlandicus) were from 
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Rieber Skinn A/S, Bergen, Norway and the other seal oil was from JFM Sunile A/S, Os, 

Norway. The herring, blue whiting and sand eel were kindly donated by Veronika Sele from 

NIFES. 

 

4.3.2 Sample preparation 

 

An aliquote of 2 mL of each oil was taken and submitted to the optimized LLE method as 

described in Chapter 2. The final hexane fraction was dried under stream of nitrogen at room 

temperature. The dried residues of samples were dissolved into 0.5 mL of acetonitrile: acetone 

(2:1, v/v) and vortex-mixed for 30s. Every sample was prepared in duplicate and the final 

products were then individually sent to LC-ESI-MS
2
 analysis. 

 

4.3.3 LC ion-trap mass spectrometry instrumentation 

 

The TAG analysis were carried out by using an Agilent 1100 series LC/MSD trap, SL model 

with an electrospray interface, a quaternary pump, degasser, autosampler, thermostatted 

column compartment, variable-wavelength UV detector and 10 µl injection volume. The 

Zorbax Eclipse-C8 RP 150 × 4.6 mm, 5 μm (Agilent Technologies, Palo Alto, CA) was kept 

in the column compartment at 40 °C and the solvent system in gradient mode consisted of 

acetonitrile (A), acetone (B) and 10 mM isopropanol:ammonium acetate 90:10 v/v (C) at a 

flow rate of 0.2 ml/min and UV detection at 254 nm. The following gradient programs was 

used: at initial 5 min condition 90 % C and 10 % B that was ramped in 5 min to 65 % C,5 % 

B Plus 30% of A and returned to the initial condition in 15 min and subsequently ramped in 5 

min to 65 % C,5 % B Plus 30% of A and returned to the initial condition in 30 min where it 

was held for 30 min. Nitrogen was used as nebulizing (50 psi) and drying gas (8 L/min) at 350 

°C. The ESI source was operated in positive ion mode and the ion optics responsible for 

getting the ions in the ion-trap such as capillary exit, skimmer, lens and octapoles voltages 

were controlled by using the Smart View option. Data acquisition and processing were 

controlled by MSD trap control version 5.2 from Agilent. 

 

4.3.4 LC-ESI- MS
2
 Analysis data 

 

All the TIC+MS
2
 data was exported to netCDF file by Data Analysis for LC/MSD Trap 

Version 3.3 (Bruker Daltonik GmbH Inc., Billerica, MA, USA). The netCDF file was then 
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exported to a Matlab file and submitted to the developed automated triacylglycerol prediction 

algorithm for identification of TAG species in oil samples. The resulting data was transferred 

to and saved in Excel format. 

 

4.3.5 New Normalization Strategy 

 

It was demonstrated in previous section that the discrimination analysis of fish and marine 

mammal oils based on the number of ω-3 PUFAs at position sn-2 is a reliable approach for 

genuine oils where the position of ω-3 PUFAs is preserved. However, for oils that have been 

subjected to chemical, thermal, enzymatic and deodorizing processes; the discrimination 

analysis based on sn-2 position is no longer valid due to the migration of the ω-3 PUFAs  

from the inner to the outer position of TAG structures (Fig 4.1). 

 

 

 

Figure 4.1 Schematic representation of the migration of ω-3 PUFA from inner to outer TAG 

position after processing of pure fish oil   

 

The present section aims at proposing a new normalization strategy (NNS) that allows 

discriminating oils regardless of their purity or migration of ω-3 PUFAs from inner to outer 

positions of TAG structures. The proposed NNS which consists of four steps is explained by 

using a hypothetical oil named HyO: 
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I. The identified TAG species in HyO by using LC-MS
2 

and the TAG prediction 

algorithm (described in Chapter 3, subsection 3.5.2) are arranged in increasing number 

of ECN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. The total number of ω-3 PUFAs at the terminal positions (sn-1 and sn-3 added 

together) and at sn-2 are counted for each ECN.  For example, the total number of ω-3 

PUFAs at ECN 30 and position sn-2 are 2 (16:4n-3 + EPA = 2) in the above table  

while for the same ECN the summation of ω-3 PUFAs  at positions sn-1+sn-3 is 3 

(18:4n-3 + EPA + EPA = 3) 

 

 

 

ECN sn-1 sn-2 sn-3 

30 16:1n 16:4n-3 EPA 

30 18:4n-3 EPA EPA 

34 EPA 18:4n-3 EPA 

34 16:1n 16:4n-3 16:1n 

34 18:4n-3 14:00 18:4n-3 

36 18:4n-3 16:1n 18:4n-3 

36 EPA DHA EPA 

38 16:1n 16:1n 18:4n-3 

38 16:1n 18:4n-3 16:1n 

40 16:4n-3 16.00 18:4n-3 

40 EPA DHA EPA 

42 16.00 EPA 16.00 

42 16.00 18:1n 18:4n-3 

42 18:1n 16.00 EPA 

44 18:1n DHA 18:1n 

44 EPA 18:4n-3 EPA 

46 20:1n 20:1n DHA 

46 18:1n EPA 22:1n 

48 EPA 20:1n 22:1n 

48 18:1n DHA 18:1n 
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ECN sn-1 + sn-3 sn-2 

30 3 2 

34 4 2 

36 4 1 

38 1 1 

40 4 1 

42 2 1 

44 2 2 

46 1 1 

48 1 1 

 

III. At every ECN, the total counted ω-3 PUFAs at terminal positions (sn-1 + sn-3) are 

divided by the corresponding total counted ω-3 PUFAs at sn-2 position and the ratio 

outer/inner determined as indicated in the below table 

 

 

ECN (sn-1 + sn-3)/ sn-2 Ratio outer/inner 

(O/I) 

30 3/2 1.5 

34 4/2 2 

36 4/1 4 

38 1/1 1 

40 4/1 4 

42 2/1 2 

44 2/2 1 

46 1/1 1 

48 1/1 1 

 

IV. The highest ratio outer/inner is used to normalized the previous ratios. For example, 

the maximum ratio 4 corresponds to  ECNs 36 and 40 and it is subsequently used for  

normalizing the rest of the outer/inner ratios as follows: 
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The four steps procedure (I-IV) is applied to every analyzed oil. The normalized values (NV) 

for the various samples are arranged as NV rows and ECN columns (NV×ECN). 

 

4.3.6 Discrimination analysis 

 

To examine the discrimination between mammalian and fish oils, six different pure oils (seal, 

salmon, cod liver, sand eel, blue whiting, herring) and a mixture of oils (containing blue 

whiting, herring, sand eel and Norway pout fish oil) were used. For discriminate genuine and 

adulterated marine oils, two different kinds of oils (cod liver and blue whiting) were used to 

adulterate pure seal oil. The adulterants were evaluated at three different concentration levels 

(25, 50 and 75 %). Duplicates samples were prepared for pure seal, cod liver and all level of 

seal adulterated cod liver oils. The discrimination of the various samples was performed by 

means of principal component analysis (PCA) using their total ion current (TIC) 

chromatograms. 

 

All the TIC+MS
2
 data was exported to netCDF file by Data Analysis for LC/MSD Trap 

Version 3.3 (Bruker Daltonik GmbH Inc., Billerica, MA, USA). The netCDF file was then 

exported to a Matlab file and submitted to the developed automated triacylglycerol prediction 

algorithm for identification of TAG species in oil samples. The results were arranged in 

increasing number of ECN and all ω-3  PUFAs at sn-2 positions were counted, tabulated and 

treated by the above normalized strategy (Section 4.3.5).The matrix of normalized values and 

ECN Ratio outer/inner 

(O/I) 

(O/I)/4 Normalized 

values (NV) 

30 1.5 1.5/4 0.4 

34 2 2/4 0.5 

36 4 4/4 1.0 

38 1 1/4 0.3 

40 4 4/4 1.0 

42 2 2/4 0.5 

44 1 1/4 0.3 

46 1 1/4 0.3 

48 1 1/3 0.3 
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ECN (NV x ECN) is subjected to PCA and two-dimensional PCA score plots were used to 

visualize discrimination between various marine oils. The PCA score plot of the normalized 

value profiles from the various oils was computed with the software package Statistica 

version 12 (Statsoft. Inc.1984-2014). 

 

4.4 Results and discussion 

4.4.1 Discrimination study of different kinds of marine oils based on NNS 

 

The marine oils were analyzed in duplicate, submitted to the automated algorithm and 

normalized as stated in Section 4.3.5. The normalized values were arranged in matrix 

consisting of 20 rows representing the NV of the different analyzed oils along with their 

replicates and 10 columns representing the equivalent carbon number (ECN).  

 

PCA was applied to check whether or not the proposed NNS can assist in discriminating 

different kind of marine oils regardless of their production process. PCA is frequently 

employed for the purpose of generating a reduced set of variables that account for the most of 

the variability in the original data, and the first principal component score (PC1) contains the 

most representative information in the data set. 
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              Figure 4.2 PC1 score plot for the different marine oils analyzed 

 

As shown in Fig 4.2, PC1 explains 34.83 % of the total variation and also discriminate the oils 

according to their nature. The mammalian and fish oils are clearly separated (Fig 4.2) in 

which seal oils clustered themselves in one end of PC1. In addition, PC1 discriminate 

between seal oils samples from different manufacturer (i.e. the closest two seal oils from the 

same manufacturer). At the middle of the PC1 axis the two cod liver oils are grouped together 

with herring and sand eel oils, this may be attributed to their similarity in feeding behavior 

and location under water [95,96], which in turn affect the  TAG composition of the fish.[43]. 
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               Figure 4.3 PC1 and PC3score plot for the different analyzed marine oils 

 

The PC1 and PC3 score plot explains 51.51 % of the total variance of which 34.83 % and 

16.68 % of the variation is accounted by the former and latter PC respectively (Fig 4.3). The 

PCA plot (Fig 4.3) shows the similarities and differences of the samples, wherein similar 

samples tend to form clusters and dissimilar samples are separated away. It is clear from Fig 

4.3 that the oil samples are classified into three distinct clusters, which are seal oil (three seal 

oil samples), two cod liver and sand eel oils, and the other fish oils (salmon, blue whiting and 

herring oil samples). PC1 shows clear separation of seal (mammalian) oils from fish oils. 

While seal oils are located on the positive side of PC1, the salmon, blue whiting and herring 

were on the negative side of PC1. It also observed that the two different batches of seal oils 

from the same manufacturer and the two cod livers were discriminated by PC3, which 

indicate some differences within them. Sand eel oil grouped with the two cod liver oils, this 
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could be the result of sharing the same habitat and also it could reflect the dietary habits of 

cod fish which in its adulthood start hunting sand eel [43, 95]. On the other hand the mixed 

sample, which contains blue whiting, herring, sand eel and Norway pout, is located in 

between of its original component oils. It is clear from Fig 4.3 that the mixture is between 

blue whiting and herring oils but far from sand eel, possibly due to the effect of the Norway 

pout oil, which was not analyzed in this study. 

 

         Figure 4.4 PC1 and PC3 loading plot and its relation with the score depicted in Fig 4.3 

 

The loading plot of PC1 and PC3 representing the relationship between various equivalent 

carbon numbers is showed in Fig 4.4. The superimposition of the two (fish and mammalian) 

clusters from score plot (Fig 4.3) on the loading plot (Fig 4.4) demonstrates that in general 

there is an opposite correlation between ECN 30 and 32 and the rest of the ECN (the ECN are 

denoted by the letter E in Fig 4.4). The loading values of E30 and E32 are negative while the 
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rest E36-E48 exhibit positive loading values. The clustering of loadings in positive and 

negative sides of PC1 is responsible for the discrimination between seal oil and fish oils. The 

above observation is in accordance with the results of Chapter 3 where it was demonstrated 

(Figs 3.2-3.6) that seal contains ω-3 in ECN 32 whereas it is absent in the other fish oils 

except sand eel and blue whiting. Similarly, ω-3 is present in ECN 34 of fish oils but absent 

on seal oil. The loading plot (Fig 4.4) seems to indicate that ECN 32 and ECN 34 could be a 

good indicator for discriminating between seal and fish oils. However, more research in this 

respect would be advisable. 

 

4.4.2 Discrimination study of adulterated marine oils based on NNS 

 

The converted data of the TIC chromatograms were studied by PCA to evaluate if the number 

of ω-3 PUFAs identified on the backbone of TAG enables the discrimination of pure from 

adulterated oils. The adulterants were evaluated in duplicate by adding to pure seal oil 

different levels of cod liver oil adulterant (0, 25, 50, 75 and 100 %). The normalized values 

were arranged in matrix consisting of 10 rows representing the different analyzed oils (pure 

and adulterated) with their replicates and 10 columns represent the individual ECN and 

submitted to PCA. The first principal component score plot (Fig 4.5) explains 60.99 % of the 

total variation and the information retained by this component provides a clear differentiation 

between genuine and adulterated oils. 
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           Figure 4.5 PC1 score plot for pure seal (or cod liver) oil and four level of adulterant  

 

The score of the pure cod liver oil samples were clustered together and located in one end of 

the PC1 axis while pure seal oil in turn clustered together and located at the opposite end of 

the axis. On the other hand the three level adulterated oils (seal or cod liver oil) in this study 

(25, 50 and 75 %), were located at the middle of the axis. The pure seal oil clearly separated 

from adulterated with cod liver at the three levels of impurities and the relative position of 

adulterated oils are based on the percentage of adulterant. For instance the sample, which 

contain 25 % of seal and 75 % of cod liver oil by volume (denoted by 75% cod - 25% seal)  

were found closer to pure cod liver oil compared to other adulterated samples, hence it 

contain three times more cod liver  than seal oil and the same is applicable to the opposite 

ratio of adulteration. Pure cod liver were relatively far from the rest of the oils this may be 

attributed to the presence of high number of ω-3 PUFAs in sn-2 position and significant 

amount on sn-1 and 3 position in cod liver compared to seal, conversely seal contain very few 

ω-3 in sn-2 and very high on sn-1 and 3 positions, which is responsible for the high 

normalized value of seal oil. The adulterated oils are close to each other and pure seal oil, 

these could be the addition of cod liver oil which increases the ω-3 in the terminal position 

than in sn-2 position. The detection of cod liver oil as adulterant of seal oil may be difficult 

due to their strong resemblance [87,97-98]. However, this problem can be solved by 
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comparing pure and adulterated cod liver sample, since high number of ω-3 PUFAs are 

located at the sn-2 position in pure cod liver oil, while for adulterated (25, 50 or 75 %) a 

significant number of ω-3 PUFAs not only at the sn-1 and 3 positions but also at the sn-2 

positions which could indicated the presence of cod liver oil.  

 

 

 Figure 4.6 PC1 and PC3 score plot for pure seal (or cod liver) oil and four level of adulterant  

 

PC1 (60.99%) and PC3 (13.04%) explained 74.03 %, of the variability of the samples, 

indicating that the extracted principal components could reflect excellently the majority of 

information of the original data. Pure cod liver and adulterated samples with high percentage 

of cod liver are located on the positive side of PC1 (Fig 4.6) while pure seal and adulterated 

sample with low percentage of cod liver are negatively located on PC1. The upper part of the 

score, which is in the positive side of PC3 contain the pure samples and adulterated with equal 

volume of the two marine oils, while the bottom part of the score in the negative side of PC3 
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are the two adulterated oils with uneven percentage of the oils. This means PC3 could also 

provide some information about the degree of adulteration. 

 

Furthermore, to verify the discrimination capability of the proposed LLE method and the 

NNS approach in oils of national commercial importance, pure seal and pure salmon were 

tainted with blue whiting oil (0, 50 and 100 %). The score plot of the first principal 

components (Fig 4.7) explained 48.72% of the total variation and discriminated pure and 

adulterated oils. The PC1 clearly shows the adulterated oils are located in between the two 

pure oils, for instance, the sample seal: blue whiting (1:1) is located between pure seal 

(negative PC1) and pure blue whiting (positive PC1). The same behavior is observed for 

salmon: blue whiting (1:1). 

 

 

 

                    Figure 4.7 PC1 score plot of pure seal and pure salmon oils tainted with 0, 50 

and 100 % blue whiting oil 
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4.5 Conclusions 

 

It would be interesting to include a larger number of mammalian and fish oils to determine 

whether or not the ECN (E32 and E34) could be a good parameter for discriminating between 

mammalian and fish oils. 

 

The new strategies proposed in the present research such as the LLE method and the NNS 

have demonstrated to be extremely valuable tools for testing the purity of nutritional marine 

oils, such as seal, cod liver and salmon. Consequently, they could have a positive impact 

nationally and internationally in the frame of the food industry and trade.  
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5. Concluding remarks 

 

This thesis developed a simple approach for extracting lipids from nutritional marine oils and 

proposed two new strategies for discriminating different kinds of marine oils. In addition, the 

thesis shows for the first time that it is possible to extract quantitative data from the TAG 

prediction algorithm (developed by a former EMQAL student) for discrimination and 

authenticity purposes.   

 

The developed LLE allows separating TAG and PL from krill oil samples by using two 

solvents (methanol and hexane) without the need of HPLC or HPTLC separations. For his 

reason, the proposed approach could be regarded as an important alternative especially for 

laboratories where the lack of chromatographic equipments is a limitation for performing 

analytical or preparative separations.  

 

The first strategy to discriminate marine oils and based on the number of ω-3  PUFAs located 

at the  sn-2 position of TAG molecules  is a powerful tool for discriminating not only fish 

from marine mammalian oils, but also to determine whether or not the sn-2 position of ω-3  

PUFAs in fish oil has been altered during the refining process.  

 

The second approach to discriminate nutritional marine oils is based on the ratio of 

outer/inner ω-3 PUFAs on TAG structures by using a new normalization strategy (NNS) 

which has demonstrated a great potential for authenticating nutritional oils.  

 

The most important feature of the present thesis is that the various developed aspects 

(extraction and discrimination) can be implemented in laboratories where the lack of 

instrumental equipments and specialized software can represent a serious constraint for the 

intended analysis. For example, nowadays, NIFES can isolate TAG (without the need of 

HPLC or HPTLC), determine the fatty acid positioning (using LCMS and the TAG prediction 

algorithm) and perform a PCA analysis (without the need of CODA for preprocessing the full 

LCMS profiles) with data from the TAG prediction algorithm and the NNS approach. 
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Future studies on discrimination and authentication of nutritional oils should consider: 

 The inclusion of a higher number of genuine and processed fish oil samples to validate 

the strategy based on the number of ω-3 PUFAs at the sn-2 position. 

 

 The inclusion of a higher number of marine mammals for discrimination studies based 

on the outer/inner ω-3 PUFAs position and the NNS methodologies 
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