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Abstract 

  

Lifestyle diseases like obesity and type 2 diabetes are highly prevalent worldwide, and represent 

a major public health concern. A potential link between lifestyle diseases and methylmercury 

exposure have been proposed in several studies. Methylmercury is an ubiquitous environmental 

contaminant emerging from both natural and anthropogenic sources. Methylmercury 

accumulates in the marine food chain and therefore represent a potential health risk for 

consumers. We aimed to investigate the potential role of methylmercury on obesity 

development and diabetes, evaluating dose response effects of methylmercury, and the effects 

on glucose tolerance and insulin sensitivity. In addition, we aimed to explore the accumulation 

of mercury in different tissues of the body. Obesity-prone C57BL/6 mice were exposed to an 

obesogenic high fat/high sucrose diet. Progressive concentrations of methylmercury-cysteine 

complex were added to the diets at 0.3 mg/kg, 1mg/kg, 3 mg/kg and 10 mg/kg. Our results 

demonstrated that chronic exposures to methylmercury did not induce obesity development: 

however, it attenuated obesity development and reduced basal insulin secretion due to the 

highest exposure (10 mg/kg). Further, we found a dose-dependent accumulation of mercury in 

several organs, with the highest levels accumulated in liver and pancreas.  
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1 Introduction 

1.1 Non-communicable diseases (NCD’s) 

The global burden of lifestyle diseases is alarming. According to the World Health Organization 

(WHO), non-communicable diseases (NCD’s), including cardiovascular disease, cancer, 

osteoporosis, chronic respiratory diseases, obesity and diabetes are currently the cause of 60% 

of all deaths (WHO, 2011). NCD’s are largely preventable through the reduction of behavioral 

risk factors like physical inactivity and unhealthy diets, subsequently affecting development 

and progression of obesity and type 2 diabetes. 

The increase in NCD’s has been largely attributed energy imbalance, however, emerging 

evidence claim a more holistic view on this endemic (Chen et al., 2009; Grandjean et al., 2011). 

Findings from methylmercury (MeHg) exposed populations have given indications of an 

association with type 2 diabetes (Eto, 1997). However, studies in humans are limited and often 

contradictory and many questions remains unanswered (He et al., 2013; Mozaffarian et al., 

2013). Still, both in-vitro studies and in-vivo studies using mouse models have linked MeHg to 

the development of type 2 diabetes (Chen et al., 2006b; Chen et al., 2006c). Given the 

tremendous burden of obesity and type 2 diabetes, clarifying the potential effects of MeHg 

would be a significant contribution to public health. 

1.1.1 Overweight and obesity 

Overweight and obesity are conditions of excessive fat accumulation that may have adverse 

effects on health (WHO, 2000). Overweight and obesity are commonly assessed using body 

mass index (BMI, kg/m2), due to its strong correlation to body fat content. BMI measures should 

be in the range of 18.5 to 24.9 kg/m2 for individuals to achieve optimal health. Obesity triggers 

adverse metabolic responses in blood pressure, triglycerides cholesterol, and insulin resistance 

thereby increasing the risk of coronary heart disease, ischemic stroke, type 2 diabetes mellitus 

etc. (WHO, 2011). Obesity is a complex disease that involves physiological, metabolic, social, 

cultural, educational, behavioral and genetic factors. Fundamentally, the development of 

overweight and obesity is caused by an imbalance between energy intake and expenditure 

(Bray, 2004). Modern society promotes an increase in energy consumption through a constant 

supply of cheap energy dense foods and persuasive food marketing (Lancet, 2011). 

Concomitantly, there is a reduction in physical activity due to a more sedentary environment, 
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ultimately leading to an excess of energy, which is stored as fat. This storage, through 

hyperplasia and/or hypertrophy of fat cells is essential in the pathology of obesity (Bray, 2004).  

White adipose tissue functions both as an energy storage and as an endocrine organ, and plays 

a pivotal role in the regulation of immune and inflammatory processes (Federico et al., 2010). 

The condition of obesity is characterized by low-grade systemic inflammation, caused by 

enlarged fat cells and the recruitment of macrophages. The secretion of adipokines, chemokines 

and cytokines (leptin, adiponectin, resistin, tumor necrosis factor alfa, interleukin etc.) from 

adipose tissue, have led to the discovery of several pathways linking adipose tissue metabolism 

and the immune system. Activation of the innate immune system, can in turn lead to impaired 

glucose tolerance, insulin resistance and type 2 diabetes. 

 

1.1.2 Diabetes 

The global obesity epidemic is accompanied by an increasing prevalence of type 2 diabetes 

(Kahn et al., 2014). Type 2 diabetes is characterized by elevated blood glucose and insulin 

resistance. Initially, insulin secretion increases but as the disease progresses, β-cell dysfunction 

and/or apoptosis occurs.  

Glucose homeostasis is orchestrated by a number of factors, insulin being key due to its anabolic 

qualities distributing glucose throughout insulin sensitive tissues of the body. Insulin is 

synthesized, packaged and secreted from pancreatic β-cells. In the endocrine islets of 

Langerhans, insulin secretory β-cells are surrounded by α-cells, secreting glucagon. Insulin and 

glucagon counteract in keeping blood sugar within a fairly narrow range.  

The regulation of blood glucose 

Food intake leads to an increase of glucose and amino acids in the circulation. Elevated glucose 

levels increase glucose uptake through glucose transporters (GLUT2) into β-cells of the 

pancreas (Layden et al., 2010). Glycolysis transforms glucose to pyruvate, and the majority is 

transported to the mitochondria.  The ATP/ADP ratio increase in line with glucose utilization 

through glycolysis, TCA cycle and oxidative phosphorylation (Rolo and Palmeira, 2006). This, 

in turn, stimulates ATP sensitive potassium (K+) channels to close, causing depolarization of 

the β-cells through voltage-sensitive calcium (Ca2+) channels (Layden et al., 2010). As the cells 

depolarize, membrane bound Ca2+ channels facilitate influx of Ca2+. This intracellular calcium 

accumulation triggers the exocytosis of insulin vesicles and thereby β-cell insulin secretion. 
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Changes in ATP/ADP caused by mitochondrial dysfunction influences glucose stimulated 

insulin secretion (Lowell and Shulman, 2005). 

The regulation of Ca2+ in pancreatic β-cells is mainly determined by the interplay between Ca2+ 

cell-entry, deposition of Ca2+ into intracellular compartments and elimination via microsomal 

Ca2+ pumps (Zhou et al., 1998). Inhibition of microsomal Ca2+ pumps causes depletion of 

intracellular calcium stores, which could increase intracellular free Ca2+. Inhibitory actions on 

the complexes of the mitochondrial respiratory chain have been found to inhibit insulin output 

from pancreatic β-cells. Although insulin secretion is regulated by a number of factors separate 

from this pathway, it is evident that oxidative phosphorylation is essential in glucose stimulated 

insulin secretion (MacDonald and Fahien, 1990). 

Insulin action 

Once into the bloodstream, insulin exerts its biologic effects on various insulin-sensitive tissues 

as illustrated in fig.1-1 (Saltiel and Kahn, 2001). Activation of multiple signaling pathways 

influences a number of key regulatory transcription factors involved in metabolic processes. 

Skeletal muscle and liver are pivotal insulin-responsive organs responsible for the balance of 

glucose metabolism (Lowell and Shulman, 2005). Transition towards an insulin-resistant state 

in these organs are accountable for most of the perturbations of glucose homeostasis, seen in 

type 2 diabetes. In muscle, insulin promotes glucose uptake and storage of glycogen. 

Approximately 90% of insulin stimulated glucose uptake occurs in skeletal muscle (Leto and 

Saltiel, 2012). Although the insulin stimulated uptake in adipose tissue is markedly lower than 

muscle (10%) it is essential in regulating energy homeostasis. Adipose tissue responds to insulin 

by increasing glucose uptake and lipogenesis, successively storing energy as triglycerides. 

Under obese conditions, adipose tissue releases free fatty acids into the circulation in an 

uncontrolled manner. The increase in circulatory fatty acids potentially inhibits glucose uptake, 

glycogen synthesis and glucose oxidation, and increase hepatic glucose secretion. In addition, 

circulating cytokines secreted by adipose tissue might modulate insulin-responsiveness of 

skeletal muscle and liver, in which fatty acids and intracellular fatty acid metabolites are 

suggested to play a major role.  
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Figure 1-1. Energy homeostasis is dependent upon the crosstalk of multiple organs and tissues. Collectively, these 

organs respond to energy demand and availability through the release of hormones and metabolites. Defects in 

the response and miscommunication result in metabolic diseases, such as diabetes (Leto and Saltiel, 2012). 

In the liver, insulin stimulates glycogen synthesis, lipogenesis and inhibits gluconeogenesis. 

Insulin inhibits several genes involved in gluconeogenesis, including Foxo1, Pck1, and G6pc 

(Saltiel and Kahn, 2001). In the presence of insulin, Forkhead box protein-1 (Foxo-1) indirectly 

hinders gluconeogenesis through inhibitory actions on the transcription of glucose-6-

phophatase (G6pc) and through the rate-limiting step, phosphoenolpyruvate carboxykinase 

(Pck1)(Quinn and Yeagley, 2005). Additionally, insulin influences the expression of 

transcription factors like sterol regulatory element-binding transcription factor (Srebp1), which 

stimulate gluconeogenesis and lipogenic genes such as Acetyl-CoA carboxylase (Acc1) and 

fatty acid synthase (Fas) (Saltiel and Kahn, 2001).  

In response to circulating insulin, glut 4 relocates to the cell membrane of fat and muscle to 

facilitate glucose entry into the cells (Leto and Saltiel, 2012). Insulin binds to its receptor 

(tyrosine kinase) at the cell surface, inducing phosphorylation of various insulin receptor 

substrates (IRS) (Leto and Saltiel, 2012). This family of adaptor proteins initiates the activation 

of other protein kinases and phosphatases, ultimately leading to insulin action. Metabolic 

processes are regulated through pathways that coordinate enzyme, activation/inactivation, 

protein synthesis, vesicle trafficking and gene expression. 

In summary, insulin excise its profound anabolic abilities by stimulating the metabolic 

processes of energy storage and simultaneously inhibiting the processes that release energy into 

the bloodstream. 
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Counter regulatory mechanisms 

Circulating glucose below a certain threshold stimulates counter regulatory mechanisms, 

mainly glucagon secretion from α-cells of the pancreas (Layden et al., 2010). Glucagon acts to 

increase hepatic glucose production, through induction of glycogen breakdown and/or de novo 

synthesis of glucose. The liver responds to glucose fluctuations, and regulates glucose release 

into the bloodstream.  Additionally, circulating catecholamines, amino acids and hormones 

influence the insulin/glucagon ratio. The feedback loop regulating the glucose homeostasis is 

dependent on the continuous crosstalk between endocrine cells of the pancreas and insulin 

sensitive tissues (Kahn et al., 2014). 

Metabolic disturbances 

In the case of insulin resistance, β-cells sustain normal glucose tolerance by increasing the 

insulin output to compensate for the tissue insensitivity to the hormone (Ferrannini et al., 2005; 

Kahn et al., 2014). If β-cells fail to increase insulin secretion, an increase in plasma 

concentration of glucose follows.  

Type 2 diabetics have exhibited both quantitative and qualitative perturbations of insulin levels 

(Rahier et al., 2008). Deterioration of β-cell function and reduction in β-cell mass inhibit the 

insulin capability of the pancreas (Kahn et al., 2014). A reduction in β-cell number is partly 

explained by glucolipotoxicity and amyloid deposition, triggering apoptosis through oxidative 

and endoplasmic reticulum stress (Jurgens et al., 2011). Amylin is normally co-secreted with 

insulin, when aggregated the formation of islet amyloid occurs. Glucolipotoxicity refers to the 

deleterious effects of increased levels of glucose and fatty acids on β-cells, increasing cellular 

lipids and eventually leading to apoptosis (Poitout et al., 2010). The combination of excessive 

levels of fatty acids and glucose, therefore leads to decreased insulin secretion, impaired insulin 

gene expression, and β-cell death by apoptosis. 

Although insulin resistance and β-cell dysfunction is key in understanding the pathogenesis of 

type 2 diabetes, the combination of environmental and genetic factors also contribute to the 

disease. Genetic variation might predispose some individuals for the development of disorders 

related to the environment; diet and physical activity (McCarthy, 2010). 
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1.2 Methylmercury 

Methylmercury (MeHg) is a highly toxic contaminant, arising from both natural and 

anthropogenic sources (ATSDR, 1999). Considerable emissions of mercury arise from natural 

sources, such as crust degassing, volcanoes, oceanic sediments and forest-fires and is further 

accompanied by man-made contributions like combustion of fossil fuels, chloralkali-

manufacturing and coal mines (Morel et al., 1998). 

Mercury exists in three basic forms: elemental (liquid), organic (mercury and carbon) and 

inorganic mercury (combined with chloride, sulfur, oxygen, also called salts)(ATSDR, 1999). 

Organic mercury compounds exist in a variety of formations; however, the most common 

organic mercury compound is MeHg. Once in the environment, inter-conversion between these 

compounds readily occurs. MeHg is of particular interest due to its ability to bio accumulate 

and bio magnify in the aquatic food chain. 

The global cycle of Mercury 

The chemical properties of mercury are of great importance when trying to understand the 

movement and deposition of the contaminant (Schaefer et al., 2011). Elemental mercury is a 

volatile compound (Hg0), and the mercuric compound is highly reactive. The global cycle of 

mercury largely unfolds through reduction-oxidation reactions in the atmosphere and surface 

waters. Elemental mercury degasses from soil and surface waters, travels in the atmosphere and 

deposits onto land and surface waters (ATSDR, 1999). Further, the compound is absorbed into 

soil or particles in the sediment, and re-volatilization occurs. This process of emission- 

deposition and re-volatilization represents the challenge of trying to track the movement of Hg 

to its sources.  

Methylation of elemental mercury 

Methylation of mercury is a process where elemental mercury receives a methyl group from an 

organic compound (Morel et al., 1998). The first step in the methylation pathway is the 

conversion of elemental mercury (Hg0), oxidizing to reactive species (Hg2). The oxidation 

process occurs in air or aquatic environments (Mason et al., 1995). Whereas the oxidation 

occurs only to a small extent in fresh water systems, there is a substantial degree of oxidation 

in deep waters. Sulfate-reducing bacteria are responsible for the majority of mercury 

methylation in natural waters and sediments (Morel et al., 1998). Once methylated, the MeHg 

compounds may re-enter the atmosphere or bio- accumulate in the aquatic and terrestrial food 
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chain (ATSDR, 1999). The ability of MeHg to bio magnify in the marine food chain, creates a 

source for human consumption.  

Human exposure to methylmercury  

Humans are exposed to MeHg primarily through consumption of seafood (WHO, 2008). MeHg 

has a strong affinity for Thiols (Rooney, 2007), and is mostly bound to albumin, glutathione 

(GSH) or L-cysteine (Allen et al., 2001; Hirayama et al., 1991; Yasutake et al., 1997) . These 

complexes might predict body distribution of mercury, and possibly enhance mercury 

absorption and tissue accumulation (Hirayama, 1985). The MeHg-cysteine complex is 

structurally analogous to methionine, and thereby gains entry into the cells via amino acid 

carriers (Clarkson and Magos, 2006). MeHg from dietary sources are absorbed in the 

gastrointestinal tract and distributed throughout the body (Clarkson, 1972). Once arrived into 

the bloodstream, MeHg enters the red blood cells, extensively bound to hemoglobin (90%) 

(Kershaw et al., 1980). MeHg appears stable when consumed compared to other mercury 

species, and de-methylation towards less damaging inorganic mercury is slow. The major route 

of MeHg excretion occurs through bile and feces. Approximately 1% of the body burden is 

eliminated daily (Clarkson, 1988). MeHg slowly leaves the body, mostly as inorganic mercury 

in feces.  

Upper Limits in Seafood 

The concentrations of MeHg are minor in most fish species, but accumulation in the marine 

food chain contributes to higher levels in predatory fish, increasing with age and size (VKM, 

2006). The upper limit of all mercury species in fish is set at 0.5 mg/kg (wet weight) (EFSA, 

2012). In the case of some predatory fish (tuna, eel, halibut) the upper limit is set at 1.0 mg/kg. 

Despite potentially higher contents of mercury in these species, they represent a smaller 

proportion of the total fish intake. According to a report from the Norwegian Scientific 

Committee for Food Safety, lean fish contains approximately 0.05-0.08 Hg mg/kg, fatty fish 

contains approximately 0.01-0.1 mg/kg Hg and freshwater fish (pike, trout, perch) contains 

approximately 0.3-0.6 mg/kg (VKM, 2006). A report from Hardangerfjorden showed that the 

average mercury content of some deep-water species (Greenland halibut, tusk) was above 0.5 

mg Hg/kg wet weight (Måge et al., 2011). 
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Tolerable weekly intake 

Tolerably weekly intake of MeHg (expressed as mercury) is 1.3 µg/kg bodyweight/week 

(EFSA, 2012). This is equal to 0.09 mg/week for a person of average body weight (70 kg). The 

average seafood consumption among the adult population in Norway is 70 gram/day (VKM, 

2006). Average intake of mercury from fish and seafood was 0.4 µg/kg body weight/week, 

among participants in the Fish and Game study. In 2006 the PTWI values for MeHg was slightly 

higher (1.6 µg/kg) and only 0.6% of the participants in the Fish and Game study exceeded this 

PTWI.  

MeHg toxicity  

Marine pollution by organomercurials first came to the worlds attention after a major accident 

in Japan in 1953. In a historical perspective, there has been several outbreaks of MeHg 

poisoning through fish-consumption (Eto, 1997; Tsubaki, 1967). The unfortunate outbreaks in 

Minamata bay (1953-1956) and Niigata city (1964-1965) was a consequence of industrial 

release. In 1973 a severe outbreak of MeHg poisoning occurred after consumption of MeHg 

treated grain (Bakir et al., 1973). MeHg poisoning display an array of adverse effects 

(neurological disturbances, impairment of speech, hearing, vision, sensory disturbances, 

tremor, mental disorders) (Ceccatelli et al., 2010) and in severe cases death has been the 

outcome. This comprehensive clinical picture was named Minamata disease. 

The main toxicological organ for MeHg is the brain, and its detrimental effects as a 

neurotoxicant are well established (Ceccatelli, Dare et al. 2010). The evolving brain is the most 

susceptible to damage, and extreme fetal abnormalities were seen after the Minamata accident. 

MeHg readily cross the placental barrier and is excreted in breast milk subsequently reaching 

the fetus at its most fragile states. 

Mechanism of methylmercury toxicity 

A range of mechanisms have been proposed to underpin MeHg toxicity. Essential is the high 

affinity of MeHg for sulfhydryl and thiol groups (Clarkson, 1972). The formation of these 

complexes enables mercury to produce cell injury and apoptosis (Ceccatelli et al., 2010). 

Toxicity may be induced by oxidative stress via increased production of reactive oxygen species 

(ROS), or by a decrease in oxidative defense systems (Sarafian and Verity, 1991). Mercury has 

also been shown to induce mitochondrial dysfunction, which can cause disruption of Ca2+ 

homeostasis through an increase of intracellular Ca2+ or uncontrolled release of Ca2+ from the 

mitochondria due to oxidative stress (Atchison and Hare, 1994; Graff et al., 1997). Additionally, 
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it has been suggested that MeHg is capable of suppressing enzyme activity, interrupt 

microtubule formation, interfere in DNA and protein synthesis and trigger autoimmune 

responses (Ceccatelli et al., 2010).  
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1.3 Introduction to the experiment 

There is great knowledge about the effects of methylmercury on neurological development and 

disorders (Ceccatelli et al., 2010), however, far less is known about the effects on type 2 

diabetes. To our knowledge, the effects of MeHg on obesity development have not been studied. 

In the present investigation, obesity prone C57BL/6 mice were given a chronic dietary exposure 

to mehtylmercury-cysteine complex, implemented in obesogenic diets, during a 13 week 

feeding trial. The contamination pressures in the diets were: 

 Non-supplemented low fat diet (LF) 

 Non-supplemented high fat/high sucrose diet (HF/HS) 

 HF/HS 0.3 mg/kg MeHg 

 HF/HS 1 mg/kg MeHg 

 HF/HS 3 mg/kg MeHg  

 HF/HS 10 mg/kg MeHg 
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1.4 Aims 

The current project aimed to explore the dose-response effects of methylmercury (MeHg) on 

diet induced obesity in mice, evaluating: 

 The effects of MeHg on glucose tolerance and insulin sensitivity, including evaluation 

of glucose stimulated insulin secretion. 

 The distribution and accumulation of MeHg in different organs. 
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2 Materials and Methods 

2.1 Ethical aspect 

This animal experiment is approved by the Norwegian animal research authority and the 

following procedures were performed in compliance with the current guidelines for the care 

and use of laboratory animals (National Research Counsil, 2011). 

2.2 Experimental design 

55 male C57BL/6JBomTac mice purchased from Taconic (Denmark), arrived at the animal 

facility at NIFES (Norwegian institute of nutrition and seafood research) at 7-8 weeks of age. 

Obesity prone C57BL/6J mice is appropriate due to its ability to develop obesity and type 2 

diabetes (Surwit et al., 1995) Initially the animals were acclimatized, during this 5-day period, 

they were fed a chow diet and were given ad libitum access to water.  

After acclimatization, the mice were weighed using a Mettler Toledo weight and scanned using 

a magnetic resonance instrument (Bruker Minispec LF50mq7.5) which provides a measurement 

of lean tissue, fat and fluid.  The weights of the animals were ranging between 24.52±2.15 g, 

and they were divided into 6 groups (n=8) based on these recordings to achieve an equal 

baseline mean weight in each group.  

A specific amount of food was weighed, registered, and fed to the animals three times a week 

(Monday, Wednesday, Friday) for 13 weeks. The remains were collected before feeding, and 

subsequently weighed and registered. Access to water was unlimited at all times. The animals 

were weighed once a week throughout the experiment. On the basis of these weekly recordings, 

development of the animals was tracked. 

Housing 

The mice were housed in individual plastic cages in a controlled environment (temperature 

22±2 C° and humidity 50±5 %) with a 12-hour light/dark cycle. The cages were enriched with 

wooden chip bedding, a plastic house and nesting material.  The animals were given clean cages 

and new bedding once every second week.  
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Preparation of diets 

Experimental diets were prepared at NIFES based on a standard low fat (LF) and high fat/high 

sucrose (HF/HS) setup. Appendix I: Table A.1 and A.2 display dietary ingredients of the 

different diets as well as the suppliers. The different components were weighed in using a 

laboratory weight (Mettler Toledo PG42002-S/PH), and mixed in a blender (Crypto Peerless 

EF20 blender).  

A stock solution of MeHgCl was made by dissolving 1 g MeHgCl (Sigma Aldrich) in 50 ml 

ethanol. L-cysteine was prepared by dissolving 7.5 g of L-cysteine in 1 litre of distilled water. 

This solution was prepared fresh prior to every batch of feed. An equimolar mixture was made 

by combining these solutions, and the mixture was added to the diets. For the control diets an 

1:1 solution of ethanol and water was added. Aliquots of the methylmercury-cysteine (MeHg-

Cys) solution was added to the feed mixture in combination with 30 percent water, according 

to Appendix I: Table A.3. The supplementation of MeHg-cysteine was performed by trained 

personnel. Color was added to ensure separation of the different doses, throughout the 

experiment. Finally, the feed mixture was sculptured in a pellet-mold, frozen and subsequently 

dehydrated using a vacuum freeze-dryer (Christ, Lyo chamber guard). The lipophilization 

process occurs through, a direct conversion from ice to vapor. Feed was contained at -20 C° to 

maintain quality of the diets. 

Each group received different diets; HF/HS diet supplemented with increasing concentrations 

of MeHg (0.3 mg/kg, 1 mg/kg, 3 mg/kg, 10 mg/kg). A non-supplemented low fat diet and high 

fat/high sucrose diet were used as references (Betty L. Black, 1998; Petro et al., 2004). The 

macronutrient composition of the background diets are shown in fig. 2.1. To verify dietary 

contents, a random selection of feed was analyzed. The mercury content was on average 0.54, 

0.83, 2.4, 8.29 mg/kg. The total contents of the diets are provided in Appendix I: Table A.1. 
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Figure 2-1. Distribution of fat, sugar, starch and protein in the experimental diets. A: Low fat control diet. B: 

Non-supplemented HF/HS was the control diet and the background diet for MeHg supplementation. 

Food-Intake and Weight Development 

The mice participated in a 13-week feeding-trial. They were fed three times a week (Monday, 

Wednesday, and Friday) for 13 weeks. At feeding, the amount of pellets and residues were 

registered by weighing.  Based on total body weight gain and food intake, feed efficiency (the 

amount of calories necessary to produce 1 gram of weight gain) was calculated, using the 

formula below; 

𝐹𝑒𝑒𝑑 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = (Body weight gain (g))/(Food intake (Kcal)) 

Body scan 

Mice were subjected to a non-invasive examination; magnetic resonance scan to reveal body 

composition (body weight, fat mass, lean mass and water content). Scanning was performed at 

baseline and after 6 and 9 weeks of feeding.  

Collection of feces 

Feces was collected after 3 and 9 weeks of feeding. The mice were transferred to clean cages 

with paper bedding for a 7 days period, food intake and weights were recorded, and feces was 

collected at the end of the period. Samples were weighed, stored in small containers at -20°C 

awaiting further analysis. Subsequently, the total fat content of feces was measured and 

apparent fat digestibility (AFD) was calculated using the formula below: 

𝐴𝐹𝐷 = ([Fat consumption] − [Fecal excretion])/([Fat consumption]) ×  100 
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Insulin Tolerance test 

At the end of the exposure period (11 weeks) an insulin tolerance test (ITT) was performed.  

The animals were moved to small cages. Baseline blood glucose was measured in fed state and 

an intraperitoneal injection of insulin was administered at a dose of 1U/kg lean bodyweight. 

Blood glucose levels were measured at 15, 30, 45 and 60 minutes. Further, the homeostasis 

model assessment was used to evaluate insulin resistance (HOMA-IR). Fasting insulin and 

glucose levels were used in order to calculate HOMA-IR by the following formula: 

HOMA − IR = [Fasting glucose (mmol/L)]   ×  [Fasting insulin (mU/L)]  /22.5 

 

Oral Glucose Tolerance test 

An Oral Glucose tolerance test (OGTT) was performed after 10 weeks of feeding 

(Andrikopoulos et al., 2008).  The individual glucose load was determined based on the lean 

mass of each animal. Initially, the mice were weighed and placed into small cages, with ad-

libitum access to water. After 6 hours of fasting they were weighed again, baseline was 

established and they were given an oral dose of 3 mg/g lean bodyweight glucose solution (200 

mg/ml glucose injection fluid) using an oral gavage syringe. Blood glucose was measured at 

15, 30, 60 and 120 minutes using a glucometer (Contour next blood glucose meter). Blood 

samples were collected in EDTA containing tubes, centrifuged at 2500g at 4°C for 10 minutes. 

Plasma was transferred to new tubes and stored at -80 C°. Subsequently, insulin levels in plasma 

were quantified using enzyme-linked immunosorbent assay (ELISA) kit for mouse (DRG 

Instruments, GmbH, Germany). Analysis was performed according to manufacturers manual 

(DRG Instruments, GmbH, Germany) and the ELISA kit reagents are listed in Appendix II: 

Table A4. 

2.3  Sampling 

After 13 weeks of feeding the experiment was terminated. Before euthanization, the mice were 

randomly fed, given ad libitum access to water and weighed. The termination process was 

performed by trained personnel. The animals were anaesthetized with Isoflurane (Isoba-vet, 

Schering Plough, Denmark) using an anesthesia unit (Univentor 400 Anesthesia Unit 

(Univentor Limited, Sweden) and blood collected by cardiac puncture. The sternum was opened 

using a scalp and a syringe was placed gently into the heart to collect blood samples. The 

samples were immediately collected in EDTA anticoagulant tubes, centrifuged at 2500g in 4 
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C° for 5 minutes, separating red blood cells and plasma. One mice from the non-supplemented 

HF/HS control group, unexpectedly deceased during the experiment.  

Tissue collection and storage 

Liver, kidneys, spleen, brain, heart, tibialis muscle and pancreas were collected. Additionally 

four fat depots were excised; visceral white adipose tissue depots; epididymal (eWAT) and 

retroperitoneal (rWAT), the subcutaneous white adipose tissue depot; inguinal (iWAT) and the 

brown adipose tissue depot; intrascapular (iBAT). Organs were dissected out, weighed and 

flash-frozen in liquid nitrogen. Samples were kept on dry ice during the sampling process and 

stored at -80 C° for further analysis. 
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2.4 Quantitative Real Time Polymerase Chain Reaction 

Quantitative real time polymerase chain reaction (qPCR) was performed to quantify the relative 

gene expression level in mouse liver. The expression was normalized to a housekeeping-gene 

(TATA binding protein) known to transcribe at a relatively constant level. 

Tissue homogenization and RNA extraction 

Principle: The tissues were homogenized in Trizol. Trizol contains phenol and guanidine salts 

that takes part in solving biological material and denaturing protein. Chloroform separates RNA 

from the proteins and deoxyribonucleic acid (DNA). RNA is precipitated from the water phase 

by adding Isopropanol. The RNA is solved in ddH2O. 

Procedure: Before starting the procedure all surfaces and equipment were cleaned with RNase 

Zap and tissue samples transferred to 1.5 ml RNAse free tubes after thawing on ice. 3 Zirconium 

beeds and 1 ml Trizol was added into the tubes, followed by homogenization at 6000 rpm, 3x15 

sec. The tissue samples were centrifuged for 10 minutes at 12 000g 4 °C, and the homogenate 

transferred to a second tube and incubated for 5 minutes at room temperature. The homogenate 

was centrifuged for 10 min at 12 00g. 200µl chloroform was added, and the tubes were manually 

shaken for 15 sec. The samples were incubated at room temperature for 2 minutes and 

centrifuged for 15 min at 12 000g 4 °C. The aqueous phase was transferred to a clean tube, 500 

µl Isopropanol was added and the tubes were gently mixed. The samples were incubated for 10 

min at room temperature and 10 min at 4 °C, followed by 30 min of centrifuge at 12 000*g. 

The supernatant was removed with vacuum suction, 1 ml cold 75%ETOH was added and the 

tubes were whirled and centrifuged for 5 minutes at 10 000*g. This step was repeated one time. 

Then absolute EtoH was added, whirled and centrifuged at 13000*g for 5 minutes. The 

supernatant was removed to allow the RNA pellet to dry. The pellets were dissolved in 50-200 

µl of ddH2O, depending on the size of the pellets. RNA concentrations were measured with a 

Nano Drop. A260/A280 ratio between ≥1.8-2.1 is preferable. <1.80 might indicate Phenol, DNA 

or protein remnants in the sample. Chemicals and reagents used during this procedure are listed 

in Appendix III: Table A5.  

RNA Precipitation 

Principle: Precipitation is a process used to improve the quality of the sample by altering the 

A260/A230 ratio, which is an indicator of the purity of the sample. Remaining residues of salt (or 

other inhibiting factors) might lower the ratio that preferably locates at >1.8. 
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Procedure: The samples were thawed on ice. 0.1 volume 3 Molar NaAc pH 5.2 and 2.5 volume 

of absolute EtOH was added. The samples were incubated for 1 hour at -80°C. After incubation 

the samples were centrifuged at 12 000g for 15 minutes at 4°C. The supernatant was carefully 

removed with vacuum suction, 1 ml 75% EtOH was added and the samples whirled. 

Centrifuged at 12000g for 5 minutes at 4°C, remaining liquid was removed again, and 30-200µl 

DEPC H20 was added, depending on the size of the pellets. Chemicals and reagents are listed 

in Appendix III: Table A6. 

RNA Quality  

Principle: RNA 6000 Nano is a miniature edition of the RNA electrophoresis method. The 

RNA is separated by size in the channel system of the chip. The migration of RNA is detected, 

by which RNA integrity number (RIN) can be calculated.  

Procedure: 12 representative samples were thawed on ice. The RNA6000 Nano kit was 

brought to room temperature. The light sensitive RNA Nano Dye was kept in a dark container. 

550 µl of gel matrix was filtered and centrifuged at 1500g for 10 minutes, and a 32µl aliquot 

was prepared. The Gel Dye mix was whirled and spinned down. 0.5 µl RNA Nano dye was 

added to the filtered gel matrix. The samples were whirled and centrifuged at 13 000g for 10 

minutes. The RNA concentration was adjusted to 100-500µg/µl. The bio analyzer was prepared 

by decontaminating the electrodes using a wash-chip filled with water and RNaseZap. Before 

loading the samples, the Nano chip was placed in a priming station. The microchip contains 16 

wells were sample and reagents are loaded in a specific order. 9µl gel dye-mixture was added 

into three of the wells, the priming station closed, incubated and then opened before the 

complete loading was performed. Further, 5 µl of marker was added to all the wells (except 

those containing gel). 1µl ladder was added into one single well. The RNA samples incubated 

for 2 minutes at 70°C and 1µl RNA sample was added into 12 wells. The chip was whirled for 

1 minute at 2400rpm (IKA vortex mixer), and analyzed on the Bio analyzer within 5 minutes. 

See Appendix III: Table. A7 for a detailed list of chemicals and reagents and figure. A.1 for the 

RIN numbers obtained from the bio analyzer. 

Reverse transcriptase reaction 

Principle: RNA is transcribed to complementary DNA (cDNA) by the enzyme reverse 

transcriptase. cDNA is a more stable compound and can be interpreted by the qPCR. 
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Procedure: The samples were thawed on ice, and kept on ice for the entire procedure. The 

concentration of RNA in the samples were adjusted on the nano drop until they had a 

concentration of 50ng/µl ±5%. 3 µl of RNA from all the samples was added into single tubes. 

An aliquot of 90µl was made, and adjusted to 100ng/µl±5% on the nano drop. Based on the 

RNA mixture the standard curve was set up with concentrations from 100- 50- 25- 12,5- 6,25- 

3,125 ng/µl. 

Reverse transcriptase reagents were thawed on ice, and enzymes kept on a freezing block in a 

clean room. A 96 well RT plate was prepared as described in Appendix III: Table A8. 40 µl 

reverse transcriptase mix was added into all the wells. 10 µl RNA/well was added to the RT 

plate (Standard curve triplicates and sample duplicates). As well as two negative controls; Non-

amplification control (nac), containing no enzyme and Non-template control (ntc) containing 

no RNA. The cDNA plate was centrifuged for 1 minute at 50g and placed in the PCR machine. 

The PCR machine was set on a specific temperature program (10 minutes for 25C°, 60 minutes 

for 48C°, 5 minutes for 95C°) and the cDNA plate was stored at -20 C° until Real time qPCR 

analysis. 

Real Time PCR 

Principle: The Real time PCR method is based on the amplification of small DNA sequences 

coding for the gene of interest. The amplification of DNA is an exponential process detectable 

by fluorescence.  

Procedure: The cDNA plate was thawed on ice and diluted by adding 50 µl ddH20. 

Centrifuged at 1000g for 1 minute and whirled at 1300 rpm for 3 minutes. Reagents were 

thawed on ice at the RNA-free lab. The real time reaction mix was made by mixing the reagents 

in Appendix III: Table. A8. 

Using a robot (Biome 3000 Laboratory Automation 31 Workstation, Beckman Coulter, USA).  

8µl of reaction mix and 2µl cDNA was added to a 384 well real-time PCR plate.  An optical 

adhesive cover was placed on top of the plate and it was centrifuged at 1500g for 2 minutes 

Finally, the cDNA plate was placed in a Light cycler 480 and analyzed by a real-time PCR 

program according to manufacturers manual. Primers are shown in Appendix III: Table A9. 
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2.5 DMA80 – Direct Mercury Analyzer 

Principle: The sample is dried through several steps of combustion, chemically decomposing  

the analyte from the sample trough thermolysis. A constant oxygen flow carries the thermolytic 

products through a catalyst bed, trapping interferences. Remaining mercury species are reduced 

to elemental Hg and trapped in a gold amalgamator. The amalgamator is reheated, releasing 

mercury vapor into a single beam of light at a specific wavelength. The amount of mercury in 

the sample is proportional to the absorbance at 254 nm, read by atomic absorbance 

spectrophotometry.  

Procedure: Total Hg concentrations were measured in organs and feces from each individual 

mouse using atomic absorption spectrophotometry (Direct mercury analyzer, DMA80). The 

samples were weighed into a nickel boat and positioned in the auto sampler. Sample 

preparations were not required, and results were obtained directly from a software.  

Certified Reference Material (CRM) for trace metals were included in duplicates, twice at every 

run to assess the accuracy/quality of the analysis. Oyster tissue (37.1 ng/g ±7.40) and TORT-3 

Shellfish tissue (292±58μg/kg) were used, due to correspondent concentration levels compared 

to the respective samples. The mean values obtained from certified reference material were 

ranging within 2 standard deviations. Despite one DMA80 run, were one of the certified 

reference materials were within 3 standard deviations. Blanks were regularly distributed 

throughout every run, to clean the instrument and to exlude memory effect from one sample to 

another.  
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2.6 Histology 

In order to investigate the morphology of the insulin secreting organ, pancreatic tissue was zinc-

formalin fixed, paraffin embedded pancreas specimens were cut into 5 um sections and stained. 

A random selection of tissue from each group was stained with hematoxilin/eosin, and Hoechst 

33258. The islet mass and cell nuclei were assessed, respectively. Reagents and solutions are 

listed in Appendix IV: Table. A10. 

Fixation with zinc formalin fixative 

The fixation medium preserves the structure and morphology of the tissue, by inhibiting 

enzymatic autolysis and degradation due to bacteria. A small section of pancreatic tissue was 

placed in a (histology) cassette and immediately fixated in zinc formalin fixative, diluted in 0.1 

M Phosphate buffer (PB). The next morning the cassettes were washed once in PB and 

contained in PB until dehydration. 

Dehydration and paraffin embedding 

After preservation, the tissues were dehydrated in a progressive series of ethanol dilutions, 

gradually removing fixation medium and water. The time schedule is shown in Appendix IV: 

Table. A11. When dehydrated, tissue was transferred to xylene, and further infiltrated in liquid 

paraffin. Finally, tissues were embedded in paraffin to form blocks, using a paraffin embedding 

center (Microtom international, Germany). 

Sectioning with microtome and staining 

The paraffin blocks with tissue were positioned on the microtome (Leica RM 2165) and cut in 

sections of 5 µm. Sections were transferred to heated water (33-35°C) (Slide warmer SW 85). 

A small amount of Methanol was added to the water to help stretch the tissue. Tissues were 

collected with a microscope slide and left to dry over the weekend. Further, the tissue was 

stained in order to visualize the cell structures in a microscope. Prior to staining the slides were 

heated at 57°C for 60 minutes in a heating cabinet. Twenty random sections of pancreas from 

HF/HS control and all treatment groups were rehydrated, stained and dehydrated following the 

procedure in Appendix IV: Table A12. Hematoxilin and eosin was applied to stain the nucleus 

and the cytoplasm of the cell, respectively. After staining the slides were mounted with xylene 

based glue, a cover glass and left to dry. Additionally, twenty random sections of pancreas from 

HF/HS control and 10 mg/kg was rehydrated and stained following the procedure in Appendix 
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IV: Table A13. Sections were stained with a fluorescent dye (Hoechst 33258) to identify nuclei. 

Tissue slides were mounted with fluorescent mounting medium, a cover glass and left to dry. 

Microscopy and image analysis 

The pancreas sections from the control group (HF/HS) and the 10 mg/kg MeHg-group were 

compared using a binocular microscope (Olympus BX 51 binocular microscope). Twenty 

sections stained with hematoxilin/eosin were assessed in the microscope. Four representative 

sections of HF/HS and 3 sections of 10 mg/kg group was used to measure the volume of 

Langerhans islets of the pancreatic section.  Image J, measurement tool was used to outline the 

islets, and total area in order to calculate the islet mass of the sections. Finally, twenty sections 

stained with Hoechst 33258 were assessed in the microscope to identify nuclei.  

2.7 Statistical analysis 

Statistical methods were used in the search for statistically significant differences between the 

different groups in the experiment. All data was continuously entered into excel to be able to 

follow development in the experiment. Statistics were performed using Graphpad Prism 5.0. 

D’Agostino Pearson omnibus test was used to assess normality of distributions of each 

treatment. Outliers were detected using Grubb’s test for outliers, and significant outliers were 

removed. Data was analyzed by One way analysis of variance (ANOVA) followed by Dunnet’s 

multiple comparison test (Unless otherwise stated). All treatment groups were compared to high 

fat/high sucrose control. Low fat-control was included as a reference. Differences between 

groups were considered significant when p<0.05. Data were presented as mean ±SEM. 

STATISTICA: Repeated measurements ANOVA was performed on data from the curves of body 

weight development, ITT, OGTT and GSIS. All data were tested for normality of distributions 

(PP plot) and homogeneity of variance (Levenes test).  
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3 Results 

3.1 Body weight development and feed intake 

To investigate the effect of methylmercury (MeHg) on the development of obesity and diabetes, 

a 13 week feeding experiment was performed. Obesity-prone C57BL/6 mice were fed a high 

fat/high sucrose diet, spiked with increasing amounts of methyl mercury. A non-supplemented 

low fat diet and a high fat/high sucrose diet was included as reference. The development in 

body weight and feed intake are presented in fig. 3-1. 
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Figure 3-1. Body weight gain and feed intake in the different experimental groups (n=8). A: Weekly body weight 

(g) recording in all treatment groups during 13 weeks of feeding. Repeated measurements ANOVA not significant. 

B: Total weight gain (g). C: Total energy intake (Kcal) during feeding trial. D: Feed efficiency. All values 

expressed as mean ± SEM. * Refer to significant differences from non-supplemented high fat/high sucrose group 

according to posthoc, Dunnet’s test (*P<0.05, **P<0.005, ***P<0.0005*).  
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MeHg did not significantly increase body weight development or weight gain (Fig. 3-1 A). As 

expected, mice fed the low fat reference diet, gained less weight than all HF/HS groups. In fact, 

the non-supplemented HF/HS group gained the most weight, considering all groups. 

Consequently making the MeHg exposed groups, randomly distributed between the LF and the 

HF/HS diets. Conversely, the total weight gain was significantly lower in 1 mg/kg and 10 mg/kg 

MeHg fed mice compared to HF/HS group (Fig. 3-1 B).  

To exclude the possibility that the modest weight gain in 1 mg/kg and 10 mg/kg groups were 

explained by a reduction in total energy intake, total caloric intake was measured and feed 

efficiency and was calculated (Fig. 3-1 C and D). All groups displayed a similar total energy 

intake, despite contamination pressure (Fig. 3-1 B). Thus implying an increase in MeHg had no 

effect on the energy intake. The amount of calories necessary to produce 1 gram of weight gain 

was calculated, to evaluate if MeHg concentrations had an impact on energy efficiency. The 

feed efficiency was significantly lower in the 10 mg/kg MeHg fed mice compared with the non-

supplemented HF/HS group (Fig. 3-1 D) and thereby had twice the energy cost to establish the 

same weight gain as opposed to the HF/HS group.
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3.2 Whole body analysis 

To gain further insight on whether the restricted weight gain in mice at different exposure 

regimens was due to changes in fat mass or lean mass, an MRI-scan was performed. Data from 

the scan are shown in fig. 3-2. 
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Figure 3-2. Body composition, distinguished between fat and lean mass (g) at baseline, 6 and 9 weeks of feeding. 

A: Lean mass (g) B: Fat mass (g) One-way Anova was performed to assess differences within each group. Baseline 

of HF/HS was compared to baseline of all treatment groups, and likewise for 6 and 9 weeks. All values expressed 

as mean ± SEM. * Refer to significant differences from non-supplemented high fat/high sucrose group according 

to posthoc. Dunnet’s test (*P<0.05, **P<0.005). 

MeHg exposure did not significantly alter the lean mass of the animals, according to the MRI-

scan (Fig. 3-2 A). Comparison within each individual group displayed no significant differences 

in the lean mass of the animals (Fig. 3-2 A). Moreover, no differences emerged when comparing 

any of the groups exposed to MeHg, compared to HF/HS control. Indicating that changes in 

body weight probably occurred due to a variation of fat mass. 

Comparison within each individual group showed no significant differences in the fat mass of 

the animals. Concurrent with the limited weight gain in mice exposed to 10 mg/kg, they 

exhibited a significant reduction in fat mass after 9 weeks of feeding (Fig. 3-2 B).  
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3.3 Fat depot masses 

To explore the effects of the experimental diets on the adipose tissues of the mice, four different 

fat depots were dissected out and weighed. The weight of white adipose tissue depots; visceral, 

subcutaneous and abdominal, as well as the intrascapular brown adipose tissue, are shown in 

fig. 3-3, respectively.  
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Figure 3-3. The weight of four different adipose tissue depots (g). A: Epididymal adipose tissue B: Inguinal white 

adipose tissue C: Retroperitoneal adipose tissue D: Intrascapular brown adipose tissue. All values expressed as 

mean ± SEM. * Refer to significant differences from non-supplemented high fat/high sucrose group according to 

posthoc. Dunnet’s test (*P<0.05). P for trend (P=0.05-0.1). 

Mice fed the 10 mg/kg MeHg diet, exhibited a significant decrease in visceral fat, compared to 

the HF/HS control diet (Fig. 3-3 A). Equally, the subcutaneous fat pad was significantly 

decreased in 10 mg/kg, compared to that of HF/HS control (Fig. 3-3 B). Further, the 10 mg/kg 

MeHg group displayed a trend towards reduced abdominal fat depots (Fig 3-3 C), whereas no 

significant alterations of fat mass was evident in brown adipose tissue (Fig 3-3 C-D). Besides 

mice fed the highest exposure regimen, no significant changes were seen in fat depot masses. 
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3.4 Apparent fat digestibility 

Further, feed digestibility was calculated, to investigate whether the observed differences in 

energy efficiency originated from differences in energy absorption. Feed intake and fecal 

excretion of mice were recorded for one week. Subsequently, the total fat content was measured 

in feces and apparent fat digestibility (AFD) was calculated. Apparent digestibility is presented 

in fig. 3-4. 
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Figure 3-4. Apparant fat digestibilty. A: AFD (%) after 3 weeks and 9 weeks of MeHg exposure. All values 

expressed as mean ± SEM.  

MeHg exposure did not significantly alter the fat digestion in any of the groups (Fig. 3-4 A). 

Fat digestion from the third week of the experiment, was comparable to the digestion after nine 

weeks, an indication that excretion remained stable throughout the experiment. 
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3.5 Effects of methylmercury on glucose tolerance in mice 

In order to explore the effect of MeHg on glucose tolerance, an oral glucose tolerance test was 

performed. Mice were fasted for six hours and given an oral dose of glucose based on their 

body weights. Blood glucose was measured, followed by glucose measurements as 15, 30, 60 

and 120 minutes. Blood glucose responses during the test are shown in fig. 3-5. 
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Figure 3-5. OGTT performed after 10 weeks of methyl mercury exposure. A: Levels of blood glucose at baseline, 

15 min, 30 min, 60 min, 120 min after glucose administration, in all groups. Repeated measurements ANOVA not 

significant. B: Area under the curve. C: Baseline levels of blood glucose. D: Glucose levels 15 minutes after 

glucose administration. E: Delta blood glucose; (15-0 min). All values expressed as mean ± SEM. * Refer to 

significant differences from non-supplemented high fat/high sucrose group according to posthoc Dunnet’s test 

(*P<0.05). P refer to a trend (P=0.05-0.1). 

Results from the oral glucose tolerance test showed that MeHg was associated with a reduction 

in glucose tolerance in the 0.3 mg/kg MeHg group, indicated by significantly elevated glucose 

area under the curve, compared to the control group (Fig 3-5 B). When assessing the OGTT 



Results 

 

29 
 

curve, mice fed 0.3 mg/kg MeHg had a sustained peak in blood glucose and a reduced glucose 

disposal from the blood, although not significant. All groups exhibited a normal response, with 

a peak in blood glucose 15 minutes after glucose administration followed by normalization of 

glucose levels after two hours, but no significant differences were observed (Fig 3-5 A).  

Fasted plasma levels of glucose were similar between the experimental groups (Fig. 3-5 C). 15 

minutes after glucose administration, all groups displayed a similar response with elevated 

levels of glucose, as expected (Fig. 3-5 D). Further, when assessing the pancreatic response to 

a glucose load (15-0 min), no significant alterations were observed between exposure regimens 

(Fig. 3-5 E). Yet, a trend towards higher glucose levels were seen in mice exposed to 3 mg/kg 

MeHg (P=0.0766). Repeated measurements ANOVA detected no significant differences 

between diets on the glucose tolerance of the mice (Fig 3-5 A). 
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3.6 Effects of methylmercury on glucose stimulated insulin secretion in mice 

To explore the potential effects of MeHg on glucose stimulated insulin secretion (GSIS), blood 

samples were collected during the OGTT at baseline and after 15 and 30 minutes. Plasma from 

these samples were analyzed using a mouse ELISA kit as previously described. The Insulin 

levels during the OGTT are presented in fig. 3-6. 
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Figure 3-6. Glucose stimulated insulin secretion (GSIS). Repeated measurements ANOVA not significant A: 

Levels of insulin in all experimental groups at baseline, 15 and 30 minutes after glucose administration. B: Area 

under the curve C: Basal insulin concentrations D. Plasma insulin concentration 15 minutes after glucose 

administration. E: Delta insulin (15-0 minutes). All values expressed as mean ± SEM. * Refer to significant 

differences from non-supplemented high fat/high sucrose group according to posthoc. Dunnet’s test (*P<0.05, 

**P<0.005). P refer to a trend (P=0.05-0.1). 

Methyl mercury significantly decreased basal insulin levels of mice fed 10 mg/kg MeHg, 

compared to HF/HS control (Fig. 3-6 C). Although not significant, 10 mg/kg had the lowest 

glucose stimulated insulin secretion at all times, while 1 mg/kg MeHg and 3 mg/kg MeHg had 

the most elevated glucose stimulated insulin levels.  
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AUC of the GSIS curves tended to be higher in 1 mg/kg and 3 mg/kg, but not significantly 

elevated (3-6 B). 15 minutes after glucose administration, insulin levels were highest in mice 

exposed to 1 mg/kg and 3 mg/kg and lowest in the 10 mg/kg MeHg group, but no significant 

differences were observed (Fig. 3-6 D). Also when assessing delta insulin, 1 mg/kg and 3 Mg/kg 

MeHg mice displayed a tendency towards elevated insulin levels compared to HF/HS. When 

comparing all MeHg diets by repeated measurements ANOVA, we observed no significant 

differences on glucose stimulated isnulin secretion (3-6 A). 
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3.7 Effects of Methylmercury on insulin tolerance in mice 

To explore the potential effect of MeHg on the development of insulin resistance, an insulin 

tolerance test (ITT) was performed. An intraperitonal insulin injection was given to the mice in 

fed state and the ability of insulin to remove glucose from the blood was measured. To assess 

insulin resistance, HOMA-IR was calculated. The effects of methyl mercury on insulin 

tolerance are shown in fig. 3-7. 
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Figure 3-7.  ITT performed after 10 weeks of methyl mercury exposure. A: HOMA-IR. B: The alteration of blood 

glucose after insulin administration. Repeated measurements ANOVA not significant.  C: Area under the curve. 

All values expressed as mean ± SEM. * Refer to significant differences from non-supplemented high fat/high 

sucrose group according to posthoc. Dunnet’s test (*P<0.05, **P<0.005). 

MeHg did not significantly impair insulin resistance in mice at any of the exposure regimens 

according to repeated measurements ANOVA (Fig. 3-7 B). On that note, baseline glucose levels 

were approximately 8-10 mMol/L across the groups followed by a rather synchronous decline 

towards thirty minutes, and a slight elevation after thirty minutes. (Fig. 3-7 B). One hour after 

the glucose administration, HF/HS control had the highest blood glucose levels and 10 mg/kg 

fed mice had the lowest, although not significant. Thereby, displaying the same pattern as seen 

in body weight development. AUC under the ITT curves were not significantly different in the 

MeHg exposed groups, compared to HF/HS control (Fig 3-7 B). 

When assessing HOMA-IR, mice fed the highest exposure regimen (10 mg/kg MeHg) 

displayed significantly higher insulin sensitivity, compared to HF/HS (Fig. 3-7 A). Again, 

suggesting that insulin sensitivity might be inversely associated with body weight. 
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3.8 Relative gene expression in mouse liver 

The liver plays a major role in metabolic regulation and detoxification of pollutants, thus 

representing a central organ in the metabolism of nutrients like lipids and glucose in addition 

to degradation of toxic chemicals. HF/HS diets are known to cause obesity and metabolic 

disorders, such as the onset of hepatosteatosis and changes in expression of genes involved in 

lipid, glucose metabolism and inflammation. The livers from randomly fed mice were used to 

purify RNA and measure relative gene expression, to explore the impact of MeHg exposure on 

gene expression (Fig. 3-8). 
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Figure 3-8. Effect of MeHg on expression of genes involved in metabolic regulation, relative to that of TATA 

binding protein (TBP) (housekeeping gene). A: Acc1. B: Fas. C:Ppar γ. D: G6pc. E: Pck1 F: Foxo1. All values 

expressed as mean ± SEM. * Refer to significant differences from non-supplemented high fat/high sucrose group 

according to posthoc. Dunnet’s test (*P<0.05). 

 

Unexpectedly, high fat/high sucrose feeding, did not significantly alter the gene expression of 

key genes involved in hepatosteatosis nor lipogenesis, regardless of contamination pressure 

(Fig. 3-8 A-C). Similarly, expression of genes involved in fatty acid oxidation and 

gluconeogenesis did not differ significantly in response to progressive MeHg exposures (Fig. 

3-8 D-F). Additional genes were assessed, yet no significant differences were detected 

(Appendix V: Figure A2 and A3). 
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3.9 The fecal excretion of mercury 

To explore the elimination of MeHg at different exposures, feces was collected and 

subsequently analyzed using direct mercury analysis (DMA80). Fecal Hg concentrations after 

three and nine weeks are presented in Figure 3-9. 
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Figure 3-9. After 3 and 9 weeks of feeding on MeHg-containing diets, total mercury content was quantified in 

feces (mg/kg Hg). A: Fecal Hg after 3 weeks. B: Fecal Hg after 9 weeks.  All values expressed as mean ± SEM. * 

Refer to significant differences from non-supplemented high fat/high sucrose group according to posthoc. 

Dunnet’s test (*P<0.05, **P<0.005, ***P<0.0005, ****P<0.0005). 

The fecal secretion of mercury (Hg) increased concomitantly with MeHg concentrations in the 

diets (Fig 3-9). After 3 weeks of exposure, the amount of MeHg in feces was significantly 

higher in the 3mg/kg and 10 mg/kg group compared to the non-supplemented HF/HS control 

(Fig. 3-9 A). 6 weeks later, MeHg secretion occurred in the same pattern, and was still 

significantly elevated with progressive MeHg exposures (Fig 3-9 B). Indicating that the 

elimination of mercury was relatively stable throughout the experiment. 
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3.10 Organ masses and tissue accumulation in methylmercury exposed mice 

To examine if dietary exposures influenced on the organ mass of the mice, organs were 

dissected out and weighed. To gain further insight on the distribution of mercury in the body, 

the cumulative effects of MeHg were assessed in several organs. Hg accumulation was 

investigated by direct mercury analysis (DMA80) The mass (g) and Hg accumulation of liver, 

pancreas, muscle and eWAT are presented in fig. 3-10. 

 



Results 

 

37 
 

O rg a n  m a s s  a n d  H g  a c c u m u la t io n

0 .0

0 .5

1 .0

1 .5

2 .0

L iv e r

M
a

s
s

 (
g

)

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

M e H g

0 .0

0 .1

0 .2

0 .3

P a n c r e a s

M
a

s
s

 (
g

)

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

M e H g

0 .0 0

0 .0 5

0 .1 0

0 .1 5

M u s c le

M
a

s
s

 (
g

)

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

M e H g

A .

B .

C .

F .

E .

D .

0

5

1 0

1 5

2 0

2 5

[H g ] liv e r

m
g

/k
g

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

* * * *

* * * *

* *

M e H g

0

5

1 0

1 5

[H g ] m u s c le

m
g

/k
g

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

* *

* * * *

* * * *

M e H g

0 .0

0 .5

1 .0

1 .5

[H g ] e W A T

m
g

/k
g

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

* *

* * * *

M e H g

0

5

1 0

1 5

2 0

2 5

[H g ] p a n c re a s

m
g

/k
g

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

* * * *

* * * *

M e H g

0 .0

0 .5

1 .0

1 .5

2 .0

e W A T

M
a

s
s

 (
g

) *

L F H F /H S
0 ,3

m g /k g

1

m g /k g

3

m g /k g

1 0

m g /k g

M e H g

G .

H .

Figure 3-10. Effects of progressive MeHg exposures on organ masses and tissue accumulation. A: Liver mass (g) 

B: Muscle mass (g) C: eWAT mass (g). D: Pancreas mass (g) E: [Hg] Liver (mg/kg) F: [Hg] Muscle (mg/kg). G: 

[Hg] eWAT (mg/kg) H: [Hg] Pancreas (mg/kg). All values expressed as mean ± SEM. * Refer to significant 

differences from non-supplemented high fat/high sucrose group according to posthoc. Dunnet’s test (*P<0.05, 

**P<0.005, ***P<0.0005) ****P<0.0005). 
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MeHg proclaimed no effects on liver-, pancreas- and muscle mass in mice, regardless of 

contamination pressure (Fig. 3-10 A, B and D). However, 10 mg/kg MeHg fed mice exhibited 

a significant decrease in eWAT (Fig. 3-10 C). Furthermore, MeHg did not alter organ masses 

of kidney, spleen and heart, at any exposure (Appendix V: Figure A4). 

Tissue accumulation of mercury (Hg) corresponded to the dietary exposure. Direct mercury 

analysis revealed that the majority of MeHg fed mice had significantly increased [Hg] levels in 

organs, when compared with levels found in the control group. Mercury content found in liver 

tissue was higher than that found in other organs, and 21.03±1.068 mg/kg had accumulated in 

the liver of mice fed the highest dose (Fig.3-10 E) Representing a 40-fold increase compared to 

the lowest dose. Rather similar amounts were found in the pancreatic tissue of mice fed the 

highest dose, 17.74±1.320 mg/kg MeHg (Fig. 3-10 H). Furthermore, 11.06±0.5707 mg/kg and 

0.89±0.1155 mg/kg MeHg was found to accumulate in muscle and eWAT, respectively (Fig 3-

10 F/G). 
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3.11 Pancreas histology 

Effects of MeHg on apoptosis in pancreatic tissue 

A reduction of basal insulin levels in the 10 mg/kg MeHg group, and a substantial accumulation 

of Hg in pancreas led to the evaluation of the pancreatic cells. To investigate if MeHg exposure 

had an effect on pancreatic cells, mouse tissue from the HF/HS group and 10 mg/kg group, 

were stained with a fluorescent dye (Hoechst 33258) and viewed in a microscope. Images were 

assessed in order to detect apoptosis visualized as very bright nuclei (Condensed chromatin) or 

fragmented nuclei (DNA degradation), signs that the cells were preparing for programmed cell-

death. Figure 3-11 show two representative pictures from the group with the highest exposure 

to MeHg compared to the HF/HS control group. 
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Figure 3-11. Effects of MeHg on pancreatic cell nuclear morphology, stained with Hoechst 33258 and visualized 

using fluorescence microscopy. A: Images from non-supplemented HF/HS control group. B: Images from 10 

mg/kg MeHg group. Magnification of 40x and 60x is presented from both groups. 
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Initially, twenty random tissue sections from mice exposed to 10 mg/kg MeHg and HF/HS 

control was compared, and a selection of these are shown in Appendix VI: Figure A5. The 

tissue sections were thoroughly assessed and compared, but no apparent differences were 

observed in the nuclei of the pancreatic cells of mice exposed to 10 mg/kg versus. HF/HS 

control (Figure 3.11 A-B).  
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Effects of methylmercury on pancreatic islet masses 

To evaluate the potential effects of MeHg on pancreas islet mass, pancreatic tissue was stained 

with eosin/hematoxilin. Islet masses were quantified in the 10 mg/kg MeHg group versus the 

HF/HS control, by measuring the total tissue area and the total area of the islets, using Image J. 

Mice from each group were randomly selected. Langerhans islets of the pancreas in two 

representative sections are presented in fig. 3-12. 
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Figure 3-12. Pathological examination of Langerhans islets in the pancreas of one representative mice from the 

HF/HS control group and the 10 mg/kg group, visualized by staining. One 20x (scale bar = 50µm) and 40x (scale 

bar = 10 µm) magnification from each group. A: HF/HS group (n=4) B: 10 mg/kg (n=3). C: Islet mass 

quantification in the non-supplemented HF/HS versus 10 mg/kg MeHg exposure. 
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When assessing pancreatic tissue sections, no prominent differences were observed between 

the 10 mg/kg MeHg exposed group and non-supplemented HF/HS control (Fig. 3-12 A/B). 

Further assessment was facilitated by quantification of the islet masses of each section. No 

significant differences in the islet masses were observed, when comparing 10 mg/kg exposed 

mice, to HF/HS control (Fig. 3-12 C). Still, there was a slight decrease in islet mass in mice fed 

10 mg/kg, and variation was greater in mice exposed to 10 mg/kg (non-significantly). 

Moreover, a visual examination of the entire sample collection might have indicated lower cells 

density in the pancreatic tissue of mice exposed to a contamination pressure of 10 mg/kg versus 

non-supplemented control. A minor selection of additional images are shown in Appendix VI: 

Figure A6. 
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4 Discussion 

The purpose of this study was to investigate the potential effects of methylmercury (MeHg) on 

development of obesity and type 2 diabetes, as well as mercury accumulation in several tissues 

of the body.  Obesity have reached epidemic proportions and is closely accompanied by type 2 

diabetes and recent findings elucidate the role of environmental contaminants as metabolic and 

endocrine disruptors, potentially leading to hypoinsulinemia and type 2 diabetes (Grandjean et 

al., 2011; Sharp, 2012) Moreover, it has been reported that both organic mercury (Chen et al., 

2006a) and inorganic mercury (Chen et al., 2006c) induce pancreatic β-cell dysfunction, 

through several mechanisms impinging on insulin secretion.  

In fish and seafood, mercury mainly exists as MeHg; therefore, an obesogenic high fat/high 

sucrose (HF/HS) diet was augmented with increasing amounts of MeHg-cysteine complex. 

MeHg contents in the feed were ranging from 0.3 mg/kg -10 mg/kg. These high contamination 

pressures were used to advocate an effect in mice during a limited period. Apparent toxicity 

was not observed in any of the exposure regimens throughout the feeding trial. 

In this study, our results showed that 10 mg/kg MeHg attenuated diet-induced obesity and 

reduced basal insulin levels in mice, with no concomitant reduction in glucose tolerance, insulin 

sensitivity or glucose stimulated insulin secretion. Furthermore, we found a dose-dependent 

accumulation of mercury in organs, with the highest levels found in liver and pancreas. 

4.1 The influence of methylmercury on body weight development 

Contradictory to our assumptions that MeHg would exaggerate obesity when added to an 

obesogenic HF/HS diet, the present study shows no dose-dependent increase in obesity. In fact, 

our results indicate that MeHg has a suppressive effect on weight gain in the intermediate (1 

mg/kg) and the highest experimental dose (10mg/kg), despite being fed obesogenic HF/HS 

diets. The non-supplemented HF/HS control group gained the most weight, considering all 

groups. These differences in body weight could not be explained by alterations in total feed 

intake, because the feed intake was similar between the groups. It appears that the 10 mg/kg 

MeHg group had significantly lower feed efficiency, gaining less weight on the same amount 

of feed when compared to HF/HS control. Simultaneously, rejecting the suspicion that lower 



Discussion 

 

44 
 

weight gain was caused by depressed appetite attributable to MeHg toxicity. Reduced body 

masses were associated with lower adipose tissue mass. When assessing whole-body 

composition: the 10 mg/kg MeHg group had a significant decline in fat mass compared to 

HF/HS control. The lean mass of the animals did not decrease, confirming that the low weight 

gain was not due to food deprivation. In agreement with the modest weight gain at the highest 

exposure (10 mg/kg), the weight of visceral and subcutaneous fat depots were lower and the 

abdominal fat tended to decrease, compared to non-supplemented control. Because mice 

exhibited dissimilar feed efficiency at the different mercury exposures, we speculated whether 

this energy was eliminated through feces. The exposures that revealed a decrease in feed 

efficiency did not differ, when assessing fat absorption. Thus, indicating that energy was not 

excreted. Reduced feed efficiency in mice fed 1 mg/kg MeHg and 10 mg/kg MeHg compared 

to HF/HS, could possibly suggest an increase in metabolic activity due to MeHg exposure. 

To gain further insight, we measured the gene expression of energy demanding processes 

involved in gluconeogenesis and lipolysis. Gene expression levels did not differ among the 

groups of MeHg exposure, therefore it is not likely that energy expenditure was increased due 

to theses energy consuming processes. Considering the lack of knowledge about energy 

expenditure in this experiment, this is simply speculative. 

One can only speculate on the potential mechanisms capable of attenuating diet-induced obesity 

in diets spiked with MeHg. Kawakami et al. suggested that a reduction in adipocyte size due to 

in vivo exposures to inorganic mercury generates functional abnormalities in adipose size, 

proposing that the toxic effects of MeHg may contribute in the reduction of white adipose tissue 

depots (Kawakami et al., 2012). Other proposed mechanisms of obesity development due to 

MeHg exposure is based on the effects of MeHg on insulin. (Chen et al., 2006b). Insulin has 

three sulfur binding sites, which easily binds to mercury and might interfere in the regulation 

of blood glucose. In the present investigation, we found a decrease in basal insulin levels at the 

highest exposure, which may have prevented the obesogenic actions of the HF/HS diets. It has 

recently been suggested that high insulin levels are essential in HF-diet-induced obesity (Hao 

et al., 2012). Moreover, the fact that insulin-receptor knockout mice are protected from diet- 

induced obesity, indicate that insulin signaling in adipocytes is essential for obesity 

development (Bluher et al., 2002). MeHg potentially mediates its effects on energy metabolism 

by altering intracellular calcium concentrations in pancreatic β-cells (Zhou et al., 1998). 

Numerous mechanisms have been suggested in trying to explain the possible association 
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between obesity and contaminants; mainly through interruption of energy homeostasis, glucose 

and lipid metabolism and regulation of adipogenesis. (Kelishadi et al., 2013; Newbold, 2010). 

Nevertheless, exact target tissues are unknown; adipose tissues and endocrine cells 

communicates with endocrine signals from many organs which may involve brain, liver, gut 

and pancreas. Nonetheless, these reviews have not targeted MeHg in particular, but might give 

an indication of potential explanations for how MeHg might impinge on weight development 

and metabolism. 

4.2 The effects of methylmercury on metabolic processes 

In the present study, MeHg was not associated with obesity. I order to investigate the exerted 

effects on metabolic regulation, a glucose tolerance test and insulin tolerance test was 

performed, and some genes affecting these processes were explored.  

Our results displayed a decrease in glucose tolerance among mice fed the lowest exposure dose 

(0.3 mg/kg MeHg). Fasted glucose levels were rather similar across groups, indicating no state 

of hyperglycemia, found in type 2 diabetes. In addition, 0.3 mg/kg MeHg fed mice remained 

insulin sensitive, probably coincident with the moderate weight gain. In fact, all groups 

remained insulin sensitive, regardless of contamination pressures, suggesting no negative 

association between MeHg and insulin secretion. 

MeHg significantly reduced basal insulin levels in mice fed 10 mg/kg, compared to non-

supplemented HF/HS. However, no significant alterations were detected in glucose stimulated 

insulin secretion among the groups. Unexpectedly, basal blood glucose was not elevated due to 

reduced basal insulin levels in the 10 mg/kg MeHg group. The latter did not develop insulin 

resistance and according to HOMA-IR calculations, 10 mg/kg methyl mercury fed mice were 

highly insulin sensitive. This is in line with the fact that 10 mg/kg exposed mice remained lean. 

Regardless of the complexity of these interactions, it is not to be dismissed that a decline in 

basal glucose levels, might indicate a reduced ability of the β-cells to produce insulin. 

Pathological alterations in pancreas capable of inducing endocrine disturbances was already 

described in 1977, when Takeuchi et al. found perturbations in the epithelium of pancreatic islet 

cells in autopsy cases of Minamata disease (Takeuchi T and Eto K, 1977). Although not 

significant, our results displayed a rather consistent pattern in glucose stimulated insulin 

secretion across the groups, in which insulin levels increased from 0.3 mg/kg to 3 mg/kg 
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followed by a decline at the highest exposure regimens. The intermediate-exposures (1 mg/kg 

and 3 mg/kg) tended to increase glucose stimulated insulin secretion. It has been suggested that 

some contaminants exert a low dose stimulation, high dose inhibition displaying an inverted u-

shaped dose response. (Calabrese and Baldwin, 2003). Thus, acting to improve physiological 

parameters at low doses, followed by an deterioration at higher exposures. In addition to the 

possibility that MeHg could act stimulatory at low doses, and inhibitory at high doses, some 

toxicological studies have demonstrated non-monotonic dose responses (Welshons et al., 2003). 

Recently, Chang et al. found  that dioxin exposure was associated with a slight monotonic 

increase in insulin resistance in Taiwanese living in a highly polluted area (Chang et al., 2011). 

It might not be possible to predict responses in low dose exposures, based on exposures in a 

high range, underlining the fact that dose responses are ambiguous (Newbold, 2010). Further, 

our finding that mice receiving the lowest dose (0.3 mg/kg) exhibited glucose intolerance might 

indicate that the effects of MeHg differ in the low region exposures, compared to higher. 

Subsequently raising the question whether even lower doses could trigger more adverse effects 

on different metabolic markers. For instance, Chen et al. found that low doses of MeHg was 

capable of modifying glucose tolerance and insulin secretion after 4 weeks in vitro. (Chen et 

al., 2006c).  

In the current experiment, MeHg was not associated with insulin resistance. Insulin resistance 

is closely related to obesity, therefore the modest weight gain in all groups might partly explain 

why the mice remained insulin sensitive (Xu et al., 2003). However, we  measured whole body 

non-specific insulin sensitivity, and thus, indications about the insulin sensitivity of individual 

organs are restricted. Further, we do not know if a pro-longed exposure, at the same or other 

doses, would have triggered insulin resistance, and glucose intolerance. An increase in adipose 

tissue, would possibly have lead to increased levels of free fatty acids which in turn might lead 

to resistance to insulin signaling in liver and muscle (Yu et al., 2002). Recently, Yamamoto et 

al. found that body fat gain in mice with type 2 diabetes mellitus increased the toxicity of MeHg 

compared to lean non-diabetic C57BL/6 mice (Yamamoto et al., 2013). We can only speculate 

if we had seen more adverse effects of MeHg if the mice were fat before the implementation of 

MeHg.  

Liver is one of the target organs of MeHg and at the same time has major impact on metabolic 

processes, therefore very relevant when assessing obesity and diabetes. The liver masses did 

not differ between the treatment groups, displaying no immediate pathological alterations in 
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response to MeHg supplemented HF/HS diets. Further, it was evident that liver had 

accumulated the highest amounts of MeHg, among the organs that were analysed. MeHg is 

known to accumulate extensively in the liver, and among other organs like the brain and kidneys 

(Bridges and Zalups, 2010; Rodrigues et al., 2010). Interestingly, Roos et al. found that 

exposures to MeHg-cys complex substantially increased accumulation in liver, when compared 

to MeHg alone (Roos et al., 2010). Due to the high accumulation in liver, hepatic gene 

expression was explored. Assessments of a selection of genes, did not display a transparent 

relationship between contamination pressure and gene expression in liver. There were no 

differences in genes involved in anabolic processes nor energy expending processes in the liver. 

This might be an indication that accumulation  is not predicative of the metabolic functions of 

the liver. Based on these results, it is not likely that the reduction in basal insulin levels was due 

to alterations of gene expression in liver.  

4.3 Methylmercury accumulation and pancreatic function 

In the current investigation, MeHg was associated with a reduction in basal insulin secretion in 

response to a contamination pressure of 10 mg/kg. Based on this finding we speculate if MeHg 

could have negative effects on the ability of pancreas to secrete insulin.  

Pancreas masses did not differ among the treatment groups, displaying no obvious pathological 

change in the organ mass due to MeHg exposure. In line with others that have investigated 

accumulation in liver, our results show that the hepatic burdens are highest when exposed to 

MeHg-cysteine complex, as opposed to MeHg alone (Roos et al., 2010). It has been suggested 

that the high accumulation might be related to the protein metabolic properties of the liver, 

receiving amino acids from the gastrointestinal tract and other organs (Adachi, 2006). When 

comparing the accumulation of MeHg in the different organs, it was evident that pancreas 

accumulated nearly as much as liver, whereas muscle displayed only half of the burden found 

in liver and pancreas. Only small amounts accumulated in eWAT, similar to what has been 

found in other studies (Nielsen, 1992; Yamamoto et al., 2013). Overall, the investigated organs 

displayed an increase in MeHg in which the highest exposure yielded the highest burden.  

Surprisingly, we found that pancreas accumulated high concentrations of MeHg. To our 

knowledge, investigations on the cumulative properties of MeHg in mice pancreas is restricted. 

However, Yamamoto et al. recently explored the total mercury concentrations in pancreas of 

C57BL/6 mice and diabetic KK-AY mice after MeHg administration through oral gavage 
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(Yamamoto et al., 2013). In their study, kidneys accumulate the most MeHg, followed by 

pancreas and liver. Additionally, the obese diabetic KK-AY mice had much greater 

accumulation in pancreas and liver than the lean non-diabetic C57BL/6 control mice, 

suggesting that body weight gain might be a predictor for MeHg susceptibility and individual 

differences in response to contamination. Whereas the current experiment added MeHg-cys to 

feed, Yamamoto et al. administered MeHg without a food matrix. Given that the route of 

exposure differs from the present investigation, we speculate if uptake and distribution may 

differ. There are many factors conflicting the basis for comparison between studies; 

emphasizing the importance of mimicking the normal human exposure route and relevant 

mercury species, to obtain a more realistic view on accumulation in target organs.  

The accumulation of MeHg in target organs could possibly reflect the burdens observed, but is 

not predicative of a pathological outcome. Considering that pancreas is the organ responsible 

for insulin secretion, it is also a representative target organ for diabetes. Therefore, we explored 

the pancreatic tissue of mice at the highest exposure level (10 mg/kg), through histological 

methods. We found no signs of apoptosis when comparing the non-supplemented HF/HS 

control group and 10 mg/kg MeHg exposed mice. We cannot exclude the possibility that 

apoptosis occurred in the pancreatic tissues based on these observations alone. Although we 

made no observations on condensed nuclei, apoptosis may have occurred in the cells of 

pancreas. If we had used early apoptotic markers to detect apoptosis, this could have provided 

knowledge in regards of the regulation of apoptotic proteins. Thus highlighting that the current 

observations are by no means conclusive in regards of MeHg effect on cells of the pancreas. 

Previous studies have demonstrated the ability of MeHg to induce β-cell dysfunction and cell 

apoptosis through an oxidative stress pathway in mice. The same group of scientists reported 

that activation of the PI3K- pathway caused β-cell dysfunction through an AKT signaling 

pathway and thereby decreasing insulin secretion, suggesting that exposure to mercury may be 

a risk factor for diabetes (Chen et al., 2006b; Chen et al., 2006c; Chen et al., 2010). An 

experiment in rats have reported that a single injection of MeHg was capable of damaging 

pancreatic islets, and that repeated injections triggered high glucose levels (Shigenaga, 1976). 

To gain further insight on the potential interferences of MeHg in pancreatic tissues, we 

investigated the islets of pancreas. We observed no apparent morphological alterations in the 

islets, and the different sections displayed no obvious difference in islet mass, comparing 1 

mg/kg, 10 mg/kg and the HF/HS control group. Further we quantified the islet mass in randomly 
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selected tissues within the HF/HS control group and 10 mg/kg.  Although non-significant, islet 

mass was slightly lower in the 10 mg/kg group and the variation within the this group was 

slightly higher, compared to HF/HS control. This might be an indication that some mice 

responded to the exposures, whereas others did not. Further examinations of all sections 

indicated that there might be a slight decrease in cell density in islets of the pancreas at the 

highest exposure regimen, compared to non-supplemented HF/HS control.  

In human studies, the potential role of MeHg in development of diabetes have been elucidated 

and findings are contradictory. A cross sectional study from the Faroese population reported 

that exposures to contaminants, impaired insulin secretion in 70 year olds, which is an important 

part of type 2 diabetes pathogenesis (a population with high consumption of pilot whale) 

(Grandjean et al., 2011). Findings from the Coronary Artery Risk Development in Young 

Adults (CARDIA) study, recently reported an association between high methylmercury 

exposures in young adulthood and higher risk of diabetes later in life (He et al., 2013). In 1995 

a retrospective study suggested that an increase in incidence diabetes seen in Minamata disease 

might be explained by high methylmercury exposures (Uchino et al., 1995). However, 

conflicting evidence was recently reported from two separate large prospective cohorts, 

reporting no adverse effects of MeHg on development of diabetes. (Mozaffarian et al., 2013) 

Equally, an epidemiological study in a population living in a MeHg polluted area showed no 

increase in diabetes mellitus (Futatsuka et al., 1996). Regardless, more research is required to 

elucidate the role of MeHg on type 2 diabetes.  

4.4 Human relevance 

Fish and seafood is an important part of a healthy diet because it contains many beneficial 

nutrients (Strain et al., 2008; VKM, 2006). Some nutrients in seafood may have ameliorating 

effects on MeHg toxicity, among them selenium and Omega 3 (Folven et al., 2009; Nostbakken 

et al., 2012). In the present investigation the beneficial nutrients in fish and seafood was not 

accounted for, and a holistic risk-benefit evaluation is required to assess the effects of MeHg 

through seafood consumption. The exposures in the present experiment is not comparable to 

human consumption because the mice were chronically exposed to MeHg through every meal, 

whereas humans eat a variety of foods. Although, the lowest dose (0.3 mg/kg) is similar to that 

found in some freshwater fish (pike, trout, perch) and 1-3 mg/kg might be found in some 

predatory fish (Greenland halibut, tuna) and deep water fish species (tusk) in particular areas. 
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However, the consumption of these species are considered low, although not excluding the fact 

that some groups in the population might consume these species at a regular basis. 

4.5 The animal model 

The mice model is frequently used in scientific research because of their similarity to humans 

in terms of genetics, anatomy and physiology. Moreover, the given opportunity to control an 

experiment is of great value in achieving scientifically valid research. However, caution must 

be taken in translating the outcome to humans. Whereas features of the inbred strain is desirable 

when controlling the experiment, inbreeding gives less genetic variation somewhat 

compromising human resemblance. Thus, underlining the importance of restriction when 

generalizing findings.  

The mouse model is valuable in providing insights into aspects of toxicity otherwise impossible 

to investigate. C57BL/6 is an appropriate model when assessing obesity and diabetes, however, 

there are several mouse models that might be more appropriate when assessing contaminants 

like MeHg. In the current investigation, C57BL/6 mice demonstrated profound endurance 

against the high dose exposures. Other mice-strains might be more susceptible to MeHg and 

might exhibit toxic responses much earlier. BALBc is commonly used in toxicology studies, 

and a recent study using KK-AY mice demonstrated high susceptibility to MeHg 

exposure(Yamamoto et al., 2013).  

4.6 Methodology 
 

Feed production  

Obesity development was evaluated on the basis of a 13 week feeding trial. Production of feed 

was part of the laboratory training. Due to the fact that the feed production consisted into the 

feeding trial and consisted of several batches, the consistency of the feed was varying in the 

first weeks of feeding. This might have resulted in a weight gain advantage for the mice 

receiving a consistent diet, and a stressor for the counterpart. Diets were analyzed for MeHg, 

fat, protein, displaying similar contents. For future experiments, it would be beneficial to 

prepare and analyze the diets prior to the feeding trial, to ensure a homogenous feed 

accessibility for the animals at all times. Since feed intake was comparable among the groups, 

it is not likely that this had an impact on the outcome of our experiment. Based on experience 

from parallel experiments, the ability to induce obesity might also be dependent on the physical 
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form of the diet; Pellet vs. powdered feed. Findings from a recent study in C57BL/6 mice 

showed a greater increase in body weight when fed a powdered diet, than mice fed the pelleted 

diets (Yan et al., 2011).  
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5 Conclusions 

In vivo, chronic exposures to progressive (0.3 mg/kg, 1 mg/kg, 3 mg/kg and 10 mg/kg) 

methylmercury-cysteine concentrations, supplemented to an obesogenic high fat/high sucrose 

diet, did not induce obesity development in C57BL/6 mice, however: 

 The highest MeHg exposure (10 mg/kg) attenuated diet-induced obesity and reduced 

basal insulin secretion. 

 Mercury accumulated dose-dependently in several organs, with the highest levels 

accumulated in liver and pancreas. 

 MeHg induced a modest decline in glucose tolerance at the lowest exposure regimen 

(0.3 MeHg) but was not associated with reduced insulin sensitivity or reduced glucose 

stimulated insulin secretion. 
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5.1 Future perspectives 

Due to the accumulation of mercury in pancreas and reduced basal insulin secretion at the 

highest exposure, it would be interesting to: 

 Locate the sites for accumulation, through mercury specific staining in pancreatic tissue 

and investigate if there is a selective accumulation in pancreatic β-cells. 

 Isolate primary islets and expose to methylmercury to investigate the effect on glucose 

stimulated insulin secretion 

 Investigate the effects of methylmercury in other background diets, with pro-longed 

exposure, and explore the effects of lower methylmercury doses. 

 Further, investigate if methylmercury induces apoptosis in pancreatic cells. For instance 

by investigating early apoptotic markers.
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I. APPENDIX – DIET COMPOSITION  

Table A1. Feed preparation recipe and reported values from the laboratory at NIFES. Units of measurements are 

presented individually, displaying ingredients (g/kg), contaminant pressure (mg/kg), the energy content (kcal/g) 

and macronutrient composition (%). 

 

 

Table A2. List of suppliers for dietary components 

Ingredients Supplier 

Vitamin mix Special Diets Services 

Mineral mix Special Diets Services 

Cellulose Apotekproduksjon A/S 

Choline Hydrogentartrate Merck 

L-cystine Sigma Life Science 

T-butylhydrochinon Aldrich 

Sucrose (powdered sugar) Eldorado 

Dextrin Hoff 

Casein Sigma Life Science 

Corn oil Eldorado 

MeHg-cystein   

L-cystein hydrochloride monohydrate MW (175,6 g/mol) Sigma Life Science 

Rectified alcohol Arcus kjemi, Norway 

Methylmercury solution Sigma Life Science 

RNase free ddH2O MiliQ Millipore, USA 

 

 

Low fat High fat/ High sugar HF/HS 0.3 mg/kg HF/HS 1 mg/kg HF/HS 3 mg/kg HF/HS 10 mg/kg

(g/kg) (g/kg) (g/kg) (g/kg) (g/kg) (g/kg)

Vitamin mix 10 10 10 10 10 10

Mineral mix 35 35 35 35 35 35

Cellulose 50 50 50 50 50 50

Choline Hydrogentartrate 2,5 2,5 2,5 2,5 2,5 2,5

L-cystine 3 3 3 3 3 3

T-butylhydrochinon 0,014 0,014 0,014 0,014 0,014 0,014

Sucrose (powdered sugar) 90 438 438 438 438 438

Dextrin 540 12 12 12 12 12

Casein 200 200 200 200 200 200

Corn oil 70 250 250 250 250 250

1000,5 1000,5 1000,5 1000,5 1000,5 1000,5

- - 0,3* 1* 3* 10*

Kcal/g 3,95 4,85 4,85 4,85 4,85 4,85

*Carohydrates (%) 630 450 450 450 450 450

Reported value* Protein (%) 190 180 175 180 175 180

Fat (%) 63 240 240 240 240 240

MeHg-Cys (mg/kg) - - 0,54 0,83 2,4 8,29

Kcal/g 4,45 4,50 5,30 5,30 5,25 5,20

Contaminant MeHg-cys (mg/kg)*

Diet composition

Ingredients

Basemix

Individual-Diet

Total amount (kg)
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Table A3. Methylmercury concentrations (ml) and ethanol/water solutions (ml) for each experimental diet. 

Diet 50:50 Ethanol/Water solution 
(ml) 

MeHg-Cys solution (ml) 

0 mg/kg (ˣ2) 60   

0,3 mg/kg 58,3 1,68 

1 mg/kg 54 6 

3 mg/kg 43,2 16,8 

10 mg/kg 4,2 55,8 

 

 

II. APPENDIX - ELISA 

 

Table A4. Insulin Mouse ELISA kit. 

Product 
Supplier 

Insulin Mouse Ultrasensitive ELISA Kit DRG Instruments GmbH, Germany 

Coated plate DRG Instruments GmbH, Germany 

Calibrator 0 (1 vial) DRG Instruments GmbH, Germany 

Calibrator 1,2,3,4,5 (5 vials) DRG Instruments GmbH, Germany 

Enzyme Conjugate 11X (1 vial) DRG Instruments GmbH, Germany 

Enzyme Conjugate buffer (1 vial) DRG Instruments GmbH, Germany 

Wash buffer (1 bottle) DRG Instruments GmbH, Germany 

Substrate TMB (1 bottle) DRG Instruments GmbH, Germany 

Stop solution (1 vial) DRG Instruments GmbH, Germany 
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III. APPENDIX – QUANTITATIVE POLYMERASE CHAIN REACTION 

 

Table A5. Reagents and chemicals used during homogenization and RNA extraction 

Product 
Supplier 

Rnase ZAP Sigma, USA 

Trizol Invitrogen, Norge 

Chloroform VWR international, USA 

Isopropanol Arcus kjemi, Norway 

Ethanol Arcus kjemi, Norway 

DEPC Sigma, USA 

RNase free ddH2O MiliQ Biocel apparatus, Nifes 

  

 

Table A6. Reagents and chemicals used during RNA precipitation. 

Reagent 

Supplier 

3 M NaAc pH 5.2  

0.1% DEPC H20 Sigma Life Science 

Ethanol Arcus kjemi, Norway 

ddH20 MilliQ Biocel, USA 

 

  

Table A7. Reagents and chemicals used when assessing RNA quality (Agilent 2100 Bio analyzer) 

Product Supplier 

Rnase zap Sigma, USA 

Rnase free ddH2O MilliQ Biocel Apparatus, USA 

RNA 6000 Nano LabChip Kit Agilent Technologies, USA 

RNA 6000 Nano Ladder Ambion, USA 
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Figure A1. RIN-numbers of 12 random samples obtained from bioanalyser. 

 

 

 

 



Appendix 

 

65 
 

Table A8. Reagents and chemicals used during reverse transcriptase reaction. 

Reagents Volume per sample (µl) Supplier 

ddH20 2,8 MiliQ Biocel, USA 

Forward primer (50µM) 0,1 Invitrogen, UK 

Backward primer (50µM) 0,1 Invitrogen, UK 

SYBR GREEN mastermix 5 Roche, Norway 

  

 

Table A9. List of primers used in Real-time PCR. 

Gene Forward primer (5' primer) Reverse primer (3' 

Tbp ACCCTTCACCAATGACTCCTATG ATGATGACTGCAGCAAATCGC 

Cd68 CTTCCCACAGGCAGCACAG AATGATGAGAGGCAGCAAGAGG 

F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG 

Fas CTTCGCCAACTCTACCATGG TTCCACACCCATGAGCGAGT 

Ccl1 GTGTTGGCTCAGCCAGATGC GCTTGGTGACAAAAACTA 

Pck1 CCACACCATTGCAATTATGC CATATTTCTTCAGCTTGCGG 

Ppargc1a CATTTGATGCACTGACAGATGGA CCGTCAGGCATGGAGGAA 

Ppara CGTTTGTGGCTGGTCAAGTT AGAGAGGACAGATGGGGCTC 

Pparg ACAGCAAATCTCTGTTTTATGC TGCTGGAGAAATCAACTGTGG 

Srebf1 GGA GCC ATG GAT TGC ACA TT GCT TCC AGA GAG GAG CCC AG 

Tnf α CCCTCACACTCAGATCATCTT GCTACGACGTGGGCTACAG 

Pai AGCGGGACCTAGAGCTGGTC CCAGTAAGTCACTGATCATACCTTTGGT 

Scd 1 GATGTTCCAGAGGAGGTACTACAAGC ATGAAGCACATCAGCAGGAGG  

Acc1 TGCTGCCCCATCCCCGGG TCGAACTCTCACTGACACG 

Foxo1 TTTCTAAGTGGCCTGCGAGTC CCCATCTCCCAGGTCATCC 

Gl6 CTT CAA GTG GAT TCT GTT TGG AGA TGA CGT TCA AAC ACC GG 
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IV. APPENDIX - HISTOLOGY 

 

Table A10. Reagents used during the process of staining 

Product  

Supplier 

4 % formaldehyd  Merck, Germany 

NaH2PO4 x H2O   Merck, Germany 

Na2HPO4 x H2O   Merck, Germany 

Zinc Formalin Fixative Sigma, USA 

Ethanol  Arcus, Norway 

Rectified Alcohol  Arcus, Norway 

Xylene  VWR International, USA 

Paraffin  Histovax, OneMed 

Hematoxylin  EMS 

Eosin  Sigma, USA 

Hoecsht 33258 Merck, Germany 
Entellan mounting medium (Xylene-
based) Merck, Germany 

Fluorescent mounting medium Sigma, USA 

 

 

Table A11. Tissue dehydration schedule. 

Reagent 
Time 

75 % Alcohol 45 min 

95 % Alcohol 2 x 45min 

100 % Alcohol 3 x 45 min 

Xylene 2 x 45 min 

Paraffin overnight 

Paraffin 2 x 15 min 
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Table A12. Time schedule used in hematoxilin/eosin staining of pancreatic tissue. 

Reagent Time  

Xylene 2 x 10 min 

100 % EtOH 2 x 10 min  

95 % EtOH 2 x 5 min 

75 % EtOH 5 min 

50 % EtOH 5 min 

ddH2O 5 min 

Hematoxylin 30 sec 

H2O 4 min 

Eosin  5 sec 

H2O 4 min 

ddH2O 1 min 

50 % EtOH 2 min 

75 % EtOH 2 min 

95 % EtOH 2 x 2 min 

100 % EtOH 2 x 5 min 

Xylene 2 x 5 min 

 

 

Table A13. Time schedule used in Hoechst 33258 staining of pancreatic tissue. 

Reagent 
Time  

Xylene 2 x 10 min 

100 % EtOH 2 x 10 min  

95 % EtOH 2 x 5 min 

80 % EtOH 5 min 

70% EtOH 5 min 

50 % EtOH 5 min 

ddH2O 5 min 

Hoechst 33258 10 min 

H2O 10 min 
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V. APPENDIX – HEPATIC GENE EXPRESSION 
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Figure A2. The effect of methylmercury on expression of genes involved in metabolic regulation. 
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Figure A3. The effect of methylmercury on expression of inflammation and macrophage infiltration markers. 
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VI.  APPENDIX – ORGAN MASS 
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Figure A4. Organ masses (g). 
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VII.  APPENDIX – HISTOLOGICAL IMAGES 
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Figure A5. Histopathology examinations of pancreatic sections. 
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Figure A6. Histopathological assessments of pancreatic mouse tissue. 

 


