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ABSTRACT 

Obesity is considered as a chronic low-grade inflammatory condition, which can be 

characterized by increased levels of the proinflammatory cytokines such as TNF-α and IL-6, 

and macrophage infiltration in adipose tissue. Previous studies have reported that fish oil 

enriched in the polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA; 20:5n-3) 

and docosahexaenoic acid (DHA; 22:6n-3) can protect against inflammation in rodents and 

humans. The aim of this study was to find out whether the type of dietary fat can modulate 

inflammation. In addition, investigate if the carbohydrate to protein ratio could influence the 

development of obesity and the inflammatory response.  

 

Thirty five male C57BL/6J mice were divided into 5 different groups (n=6) and fed 5 

different diets ad libitum. The diets given were; low energy, fish oil + protein, fish oil + 

sucrose, corn oil + protein, and corn oil + sucrose. Body weight was recorded weekly and 

feed intake was recorded 3 times a week. The mice were terminated after 10 weeks of 

feeding, and adipose tissues and blood samples were collected. Gene expression analysis was 

performed with quantitative real-time PCR (qPCR). Moreover, paraffin-embedded sections 

of adipose tissue were stained with H&E and examined with a microscope. In addition, 

plasma parameters were analyzed along with the determination of fatty acid compositions in 

RBC, liver and adipose tissue. The different methods were performed in order to assess the 

development of obesity and inflammation, in adipose tissue from mice fed the different 

diets.  

 

The results showed that the anti-inflammatory effect of fish oil was abolished in 

combination with sucrose in the diet. The fish oil + sucrose group showed significantly 

higher expression levels of the inflammatory cytokines TNF-α and IL-6, including the 

macrophage markers F4/80 and CD68 compared to the other treatment groups. Increased 

adipose tissue mass and hypertrophied adipocytes are presumed to be due to the high-

sucrose enrichment in the diets. Sucrose is also considered to be the adipogenic factor, 

because of its ability to direct fat on to adipose tissue, and attenuate the known positive 

effects of fish oil. 
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1 INTRODUCTION  

1.1 HUMAN OBESITY  

Obesity is a condition where excess body fat has accumulated, which can lead to multiple 

organ-specific pathological consequences (Haslam, Sattar et al., 2006). The condition is 

commonly defined by body mass index (BMI), where the weight in kilograms is divided by 

the square of the height in metres (kg/m2). The World Health Organization (WHO) 

classifies a BMI of 25.0 kg/m2 or higher as abnormal, and a BMI of 30 kg/m2 or higher as 

obese in adults. The normal range of BMI is set between 18.50-24.99 kg/m2 (WHO, 2000). 

A better measure of metabolic risk than BMI is waist circumference. This measure is more 

directly proportional to total body fat and the amount of metabolically active visceral fat 

(Haslam, Sattar et al., 2006; Haslam and James, 2005).  

 

1.1.1 The prevalence of obesity 

Excess body fat is now considered to be the sixth most critical risk factor contributing to the 

increased risk of many diseases worldwide (Haslam and James, 2005). Approximately 9.8 % 

(9.6-10.0 %) of the world’s adult population were obese in 2005, with the estimated total 

numbers of 396 million (388-405 million) people (Kelly, Yang et al., 2008). Figure 1.1 shows 

the average regional prevalence of obesity for both men and women with different ages in 

the world. The estimates are based on measured BMI in appropriate population samples 

(Haslam and James, 2005). The prevalence of obesity in developed countries is rapidly 

increasing, but the US is still in the leading position with 32.2 % of adult being obese in 

2003-2004 (Flegal, Carroll et al., 2002; Ogden, Carroll et al., 2006).  

 

The prevalence of obesity for adults in Norway in 2000-2003 was around 19.5 % for men 

and 20 % for women. The Norwegian citizens in Finnmark county had the highest 

prevalence of obesity, whereas the lowest were reported in the capital, Oslo (Ulset, Undheim 

et al., 2007). Norwegian studies also report that children should be focused on as a target 

group in order to combat adulthood obesity (Dvergsnes and Skeie, 2009; Handeland and 

Hjelmesaeth, 2009).  
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         Figure 1.1: Prevalence of obesity worldwide, from Haslam et al. (2006), BMJ 333, 640-2. 

 

1.1.2 Obesity – causative factors  

The rapid increase of the prevalence of obesity in the world is most likely caused by an 

energy imbalance. More calories are consumed than expended. Which factors might be the 

cause of this energy imbalance? The changing lifestyle of modern people, where the caloric 

consumption and portion size has increased along with daily intake of sugar-sweetened 

beverages, will contribute to such imbalance. Secondly, fast food and other meals outside the 

home, packed with unhealthy fat and refined carbohydrates will also contribute to the energy 

imbalance. The media works as a powerful source with constant advertising and promoting 

the overconsumption of such foods, especially among children (Wiecha, Peterson et al., 

2006). Another factor that promotes reduced energy expenditure is the more sedentary 

lifestyle, such as increased television and computer use. The environment at home, school or 

work might require less walking, or less physical education and overall activity. Vehicles, 

internet connections and remote controls also contribute to the reduced activity. The 

physical activity requirements in a daily life have been strongly reduced for most citizens in 

the western countries during the last decades (Malterud and Tonstad, 2009).  
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The changing lifestyle with increased energy intake rather than energy expenditure is 

considered as main causative factors of obesity. However, genetic factors can also affect the 

prevalence of obesity on many levels, such as; portioning of energy metabolism, control of 

food intake and culminating in a state of energy imbalance (Cecil, Watt et al., 2006). A study 

by De Castro (1999) observed twins in their natural environment, where strong influences of 

heredity were found on the total amounts of food energy, macronutrients and fluid intake. 

The amount of energy ingested were not only influenced by anatomy and physiology of the 

individual, but other mechanisms such as the psychology and sociology of the individual 

were of significance (de Castro, 1999). Family studies along with twin familial aggregation 

have brought evidence of heritable connection between human obesity and genes (Cecil, 

Watt et al., 2006).  

 

Furthermore, the result of an unhealthy lifestyle with nutrient overload causing energy 

imbalance and obesity is among other factors the storage of excess energy in adipocytes (de 

Ferranti and Mozaffarian, 2008). Obesity can also lead to an array of associated metabolic 

disorders including increased risk of insulin resistance, fatty liver disease, atherosclerosis, 

type 2 diabetes, cardiovascular disease, airway disease and some types of cancers. This cluster 

of pathologies now constitutes the largest global health threat (Heilbronn and Campbell, 

2008; Hotamisligil, 2006; Wellen, Fucho et al., 2007).  

 

1.1.3 Obesity – low-grade inflammatory condition 

Obesity was first considered as a chronic low-grade inflammatory condition when 

Hotamisligil et.al. (1993) described an increased level of the proinflammatory molecule tumor 

necrosis factor –alpha (TNF-α), after diet induced obesity in rodents and demonstrated its 

effect on insulin sensitivity (Hotamisligil, Shargill et al., 1993). Since then, several studies have 

confirmed the association between an increase in adipose tissue mass and increased levels of 

other inflammatory molecules in addition to TNF-α. These circulating proinflammatory 

molecules are; plasminogen activated inhibitor (PAI-1), interleukin (IL)-6, IL-8 and 

monocyte chemoattractant protein-1 (MCP-1) (Clement, Viguerie et al., 2004; Lumeng, 

Deyoung et al., 2007). More information about these proinflammatory molecules will be 

presented in section 1.2.2.  
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1.1.4 Insulin resistance  

Insulin resistance (IR) is a key factor linking obesity to type 2 diabetes (Hotamisligil, Arner et 

al., 1995; Qatanani, Szwergold et al., 2009). The insulin’s inability to act normally in 

regulating nutrient metabolism in peripheral tissues leads to insulin resistance (Xu, Barnes et 

al., 2003). IR is also part of the metabolic syndrome and believed to play a central role in 

other pathological conditions associated with obesity such as; dyslipidemias, atherosclerosis, 

hypertension and cardiovascular diseases (Hotamisligil, Arner et al., 1995). Insulin is a 

hormone with multiple functions, but its main function is to stimulate glucose uptake into 

insulin-sensitive tissues after a meal and regulate energy homeostasis (Melancon, Bachelard et 

al., 2006). The insulin-sensitive tissues include the muscle, liver and adipose tissue 

(Hotamisligil, 1999). Insulin inhibits lipolysis and stimulates de novo fatty acid synthesis in 

adipocytes (Laviola, Perrini et al., 2006). Increased level of free fatty acids (FFA) due to 

lipolysis are observed in obesity and type 2 diabetes (Kahn, Hull et al., 2006). Furthermore, 

an impaired glucose transport in skeletal muscle cells leads to an overall decreased glucose 

uptake in these cells. While IR in the liver leads to an increased hepatic glucose production, 

as a result of insulin failing to suppress the gluconeogenesis (de Luca and Olefsky, 2006; de 

Luca and Olefsky, 2008).  

 

Obesity as a result of overnutrition can lead to adipocyte hypertrophy, due to the 

accumulation of lipids in adipose tissue. The inflammatory process continues with 

accumulation of macrophages in the adipose tissue. Further initiation of the inflammatory 

process comes from the increased production and secretion of proinflammatory cytokines 

and chemokines from the adipocytes (Shoelson, Herrero et al., 2007). These secreted 

molecules can act in a paracrine or autocrine manner to augment the proinflammatory state 

and cause localized insulin resistance. The stress and inflammatory signals along with the 

factors derived from adipose tissue, can also lead to local insulin resistance in both liver and 

muscle (figure 1.2). (de Luca and Olefsky, 2006).  
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Figure 1.2: The link between obesity-induced inflammation and systemic insulin resistance. From de Luca 
and Olefsky, (2006). 

 

1.1.5 Metabolism 

The objective with this section is not to give an overview of the metabolism in obesity, but 

to present two genes that play a central role in the lipid metabolism, that again can be linked 

to obesity development. 

 

STEROL REGULATORY ELEMENT-BINDING PROTEIN   

The three sterol regulatory element-binding protein (SREBPs) isoforms; SREBP-1a, SREBP-

1c and SREBP-2 are recognized to play a central role in the regulation of cholesterol and 

fatty acid homeostasis. SREBPs are part of the basic-helix-loop-helixleucine zipper (bHLH-

Zip) family of transcription factors (Horton, 2002). SREBP-1c, mainly found in the liver is 

the major regulator of de novo lipogenesis and synthesis of triglycerides (Qin, Dalen et al., 

2009). An upregulation of the SREBP-1c gene in the liver of animal models of obesity and 

type 2 diabetes increases the rate of fatty acid synthesis. The result is further aggravation of 

insulin resistance in these fatty liver diseases (Yang, Craddock et al., 2009). SREBP-1c may 

also play a role in the regulation of synthesis of polyunsaturated fatty acids (PUFA). The 
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enzymes ∆-5- desaturase and ∆-6-desaturase that perform the desaturation reactions are 

genes transcriptionally activated by SREBP-1 isoforms (Matsuzaka, Shimano et al., 2002).  

 

A study by Liang et al. showed that SREBP-1c knockout mice fed a chow diet had normal 

body weights and liver weights compared to wild-type mice. However, further comparisons 

showed significantly increased levels of liver cholesterol, along with significantly reduced 

plasma cholesterol- and plasma triglycerides levels in the SREBP-1c knockout mice (Liang, 

Yang et al., 2002).  

 

STEAROYL-COENZYME A DESATURASE 1 

The stearoyl- Coenzyme A desaturase (SCD) is a gene that converts saturated fatty acids into 

monounsaturated fatty acids (MUFA), mainly oleate (18:1) and palmitoleate (16:1) (Flowers 

and Ntambi, 2008; Ntambi, Miyazaki et al., 2002). The converted MUFA are central 

components of triglycerides, cholesterol esters, and phospholipids (Jiang, Li et al., 2005; 

Ntambi, Miyazaki et al., 2002). One of the SCD isoforms found in mouse is SCD1, which is 

highly expressed in the liver, WAT and BAT (Jiang, Li et al., 2005). An increased activity of 

SCD1 in cells has been suggested to influence the separation of fatty acids by promoting the 

fatty acid synthesis and decreasing the oxidation. Both dietary and hormonal factors such as 

glucose, fructose, saturated fatty acids and insulin can contribute to the elevation of SCD1 

levels. Leptin and polyunsaturated fatty acids can on the other hand inhibit the elevation. 

Thus high levels of SCD1 may contribute to the development of obesity along with other 

chronic diseases (Flowers and Ntambi, 2009).  

 

Previous studies report that SCD1 deficient mice are leaner than their wild-type counterparts 

and resistant to both diet-induced and genetically induced obesity (Jiang, Li et al., 2005; 

Ntambi, Miyazaki et al., 2002). The SCD1 deficient mice are also protected from cellular lipid 

accumulation and insulin resistance, due to reduced MUFA synthesis and increased lipid 

oxidation (Flowers and Ntambi, 2008; Flowers and Ntambi, 2009).  
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1.2 INFLAMMATION 

Inflammation is the body’s immediate response to infection or injury. The response is vital 

to initiate immunologic processes. This includes the elimination of invading pathogens and 

toxins, as well as repairing damaged tissue (Calder, 2006). As mentioned before, obesity may 

be considered as a chronic low-grade inflammatory state, as activated inflammatory pathways 

characterize adipose tissue in obese animals and humans (de Luca and Olefsky, 2008; 

Hotamisligil, 2006).  

 

TOLL-LIKE RECEPTOR 4 

The concept that obesity represents an inflammatory state introduces an aspect in terms of 

healthy and unhealthy adipose tissue. Dietary factors, fatty acids in particular, could 

potentially represent direct modulators of the inflammatory state as they are able to activate 

the Toll-like receptor 4 (TLR4) in adipose tissue (Shi, Kokoeva et al., 2006). TLR4 is a part of 

the Toll-like receptor family whose function is to recognize bacterial and viral components 

and guard against microorganismal infections as part of the innate immune system (de Luca 

and Olefsky, 2008). TLR4 and its co-receptor CD14 (cluster of differentiation 14) binds to 

bacterial lipopolysaccharide (LPS) of gram-negative bacterial walls and mediates the 

inflammatory response (Medzhitov, 2001; Shi, Kokoeva et al., 2006). LPS is able to activate 

both monocytes and macrophages, and stimulating them to produce proinflammatory 

cytokines such as TNF-α and IL-6 (Calder, 2002). Additionally, activation of the TLR4 

complex results in a stimulation of the c-Jun amino terminal kinase (JNK) and the IΚB 

kinase-β (IKKβ)/ nuclear factor-ΚB (NF- κB) pathways, by the mentioned proinflammatory 

cytokines; TNF-α and IL-6.  The transcription factor, NF- κB is considered a primary factor 

in the inflammatory response, where IKK-β is required for its activation (Shoelson, Lee et al., 

2003; Solt and May, 2008). Activation of these pathways results in upregulation of potential 

inflammatory mediators and subsequent insulin resistance (Cuschieri, Bulger et al., 2008; 

Kahn, Hull et al., 2006). 

 

TLR4 negative mice are more obese than their wild-type littermates, but still have reduced 

inflammation and improved insulin resistance (Shi, Kokoeva et al., 2006). Conversely, mice 

lacking six-transmembrane protein of prostate 2 (STAMP2), develop adipose tissue 

inflammation and spontaneous metabolic disease on a regular diet prior to becoming obese.  
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STAMP2 is designated as a metalloreductase which has the ability to coordinate 

inflammatory responses with metabolic function in adipocytes. The protein also play central 

role in the maintenance of systemic metabolic homeostasis (Wellen, Fucho et al., 2007). The 

reports from these studies raise the suggestion that the size of adipose tissue and the degree 

of inflammation may not always be causally linked. 

 

1.2.1 Macrophages 

Macrophages are mononuclear phagocytes that play a central role in immunological and 

inflammatory processes. The function of macrophages in addition to providing an 

immediate defense against foreign organisms, is to eliminate dying cells (Heilbronn and 

Campbell, 2008; Lin, Faunce et al., 2005). In a chronic inflammatory process locally secreted 

chemokines attract pro-inflammatory macrophages into the adipose tissue, where the 

formation of “crown-like” structures (CLS) takes place around enlarged dead or dying 

adipocytes (de Luca and Olefsky, 2008). The adipose tissue macrophages (ATMs) functions 

as a main source of proinflammatory cytokines; TNF-α and PAI-1 (Lumeng, Deyoung et al., 

2007). ATMs exacerbates the inflammation and insulin resistance by secreting these 

cytokines, which further activate the inflammatory process in adipocytes nearby (de Luca 

and Olefsky, 2008). Invasion of macrophages along with the secretion of proinflammatory 

immune mediators such as adipokines, cytokines, chemokines are associated with the 

increase of adipose tissue mass (Kempf, Rose et al., 2006). Thus, it is also suggested that 

these macrophages are somewhat responsible for the development of type 2 diabetes in 

obese subjects (Lumeng, Deyoung et al., 2007).  

 

Several studies carried out report that macrophage infiltration in adipose tissue is 

characteristic for both obese rodents and humans (Cancello, Henegar et al., 2005; Weisberg, 

McCann et al., 2003; Xu, Barnes et al., 2003). The infiltration of macrophages can either be 

recruited as a response to death of hypertrophied adipocytes (Cinti, Mitchell et al., 2005), or 

by an increased monocyte chemoattractant protein-1 (MCP-1) expression in obesity induced 

mice adipose tissue (Kanda, Tateya et al., 2006). More information about MCP-1 is presented 

in section 1.2.2. 
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MACROPHAGE MARKERS- CLUSTER OF DIFFERENTIATION 68 and F4/80 

Cluster of differentiation 68 (CD68) is a glycosylated transmembrane protein, where high 

expression is especially found in macrophages and macrophage-related cells (Xu, Barnes et 

al., 2003). By using a CD68 antibody which recognizes the antigen in immunohistochemical 

analysis, the macrophages are able to be detected in the tissue (Weisberg, McCann et al., 

2003).  

 

The F4/80 monoclonal antibody is another macrophage marker frequently used in mouse 

tissue (van den Berg and Kraal, 2005). The antigen (Ag) glycoprotein F4/80 is considered to 

be one of the most specific cell-surface markers for murine macrophages (Lin, Faunce et al., 

2005). F4/80 is a member of the epidermal growth factor (EGF)-transmembrane 7 (TM7) 

family, but the function of F4/80 Ag is not completely understood (McKnight, Macfarlane 

et al., 1996). 

 

1.2.2 Cytokines and chemokines 

Along with the increased levels of macrophage markers, can also elevated levels of cytokines 

be observed in adipose tissue inflammation. Cytokines are characterized as small proteins 

produced by a number of different cell types. They can act on almost every tissue and organs 

systems (Blok, Katan et al., 1996). The cytokines designated as proinflammatory produced 

by monocytes and macrophages including adipose tissue are; IL-1αβ, IL-1β, TNF-α and IL-6 

(Simopoulos, 2002b). The most studied cytokines in association with obesity are TNF-α and 

IL-6, where elevated levels are shown in adipose tissue in obese subjects (Bastard, Maachi et 

al., 2002; Cottam, Mattar et al., 2004). These cytokines mediate the host’s response to 

inflammation stimuli (Blok, Katan et al., 1996). 

 

TUMOR NECROSIS FACTOR-ALPHA 

Tumor necrosis factor alpha (TNF- α) is a proinflammatory cytokine with many biological 

effects on lipid metabolism, coagulation and endothelial function. Stimulation of the NF- κB 

IKKβ is a result of activated TNF receptor (de Luca and Olefsky, 2008). As mentioned 

before, Hotamisligil et al. were the first one to show an increased level of TNF- α in obese 

rodents, and subsequently linking the TNF- α levels, obesity and insulin resistance in humans 
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(Hotamisligil, Arner et al., 1995; Hotamisligil, Shargill et al., 1993). Mice that are genetically 

deficient in TNF or the TNF receptor 1 gene (TNFR1) do not develop insulin resistance 

when fed a high-fat diet (Uysal, Wiesbrock et al., 1997).  

 

INTERLEUKIN- 6 

Interleukins (IL) are proteins that mainly mediate the interactions between immune and 

inflammatory cells. ILs are able to promote cell growth along with differentiation and 

functional activation (Simopoulos, 2002b). IL-6 is a cytokine with multiple functions, where 

the ability to regulate the hepatic production of CRP is important (Bastard, Maachi et al., 

2006; Yudkin, Kumari et al., 2000). Studies have reported that IL-6 may be involved in 

insulin resistance along with its complications (Bastard, Jardel et al., 2000; Bastard, Maachi et 

al., 2002). The ultimate stimulus for induction of IL-6 production from macrophages and 

adipocytes due to an obese state is poorly understood (Fantuzzi, 2005).  

 

MONOCYTE CHEMOATTRACTANT PROTEIN-1 

Monocyte chemoattractant protein-1 (MCP-1) also known as Chemokine (C-C motif) ligand 

2 (CCL2) belongs to the CC chemokine family and function as a central ligand of chemokine 

receptor-2 CCR2 (Chen, Mumick et al., 2005). MCP-1 is as mentioned before reported to 

play a key role in the recruitment of macrophages into the adipose tissue (Gustafson, 

Hammarstedt et al., 2007). The result of the recruitment is an altered metabolic and 

endocrine activity of adipocyte cells, including insulin resistance (Dahlman, Kaaman et al., 

2005). On the other hand, a protection against insulin resistance has been observed in   

MCP-1 knockout mice fed a high-fat diet (Kanda, Tateya et al., 2006).  

1.3 ADIPOSE TISSUE 

Which factors causing the inflammation process in obesity are still not completely 

understood, but the adipose tissue seems to play a central role in the relationship between 

obesity and chronic inflammation (Bluher, 2008). The adipose tissue is mainly divided into 

two types: white adipose tissue (WAT) and brown adipose tissue (BAT). In mammals, the 

adipose tissue consists of both WAT and BAT, but the WAT makes up the biggest majority 

of adipose tissue in the organism and functions as the storage of energy in the form of 
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triglycerides (Fantuzzi, 2005; Villena, Choi et al., 2008). BAT on the other hand plays and 

important role in heat production through nonshivering thermogenesis (Yan, Burman et al., 

2006). 

1.3.1 White adipose tissue (WAT) 

WAT is a heterogeneous tissue consisting of mature adipocytes and cell types of various 

lineages in the stromal vascular fraction (SVF). This fraction is composed of pre-adipocytes, 

endothelial cells, fibroblasts, histiocytes, and macrophages (Heilbronn and Campbell, 2008). 

The WAT’s function is not only storage of energy as fat, but it is also recognized to be an 

active endocrine organ, which has a high capacity to produce and secrete different 

adipokines, cytokines and chemokines (Clement, Viguerie et al., 2004; Heilbronn and 

Campbell, 2008). Some of the biologically active molecules secreted includes: leptin, 

adiponectin, resistin, TNF-α, IL-6, MCP-1, PAI-1, angiotensinogen, visfatin, retinol-binding 

protein-4, serum amyloid A (SAA) and others. WAT is a complex and active secretory organ 

which has the ability to both send and receive signals that modulate; energy expenditure, 

appetite, insulin sensitivity, inflammation and immunity (Shoelson, Herrero et al., 2007).  

 

The phenomenon of older mice secreting more cytokines from the adipose tissue was shown 

in a study by Wu et al. (2007). Data from mRNA expression levels of the proinflammatory 

cytokines among others; IL-6, TNF-α were significantly higher for the old mice compared to 

younger ones. The outcome for these data might be due to the role of macrophages and 

adipocytes in aged adipose tissue (Wu, Ren et al., 2007). 

 

1.3.2 Brown adipose tissue (BAT) 

The BAT consists mainly of brown adipocytes, endothelial cells, interstitial cells, and 

preadipocytes which has the ability to both divide and differentiate new brown adipocytes. 

The BAT is in contrast to WAT packed with mitochondria, which makes it appear brown in 

colour. Uncoupling protein-1 (UCP-1) is a BAT-specific protein which carries proton or 

protons equivalents across the mitochondria without producing ATP. The result of this 

process is part of the energy stored in the proton gradient dissipates as heat (Gustafson, 

Hammarstedt et al., 2007; Yan, Burman et al., 2006).  
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1.3.3 Adipocyte differentiation 

Adipogenesis is a process where undifferentiated precursor cells (preadipocytes) are 

differentiated into mature adipocytes (Gustafson, Hammarstedt et al., 2007). Some of the 

genes involved in the adipocyte differentiation will be presented next. 

 

PEROXISOME PROLIFERATOR- ACTIVATED RECEPTOR GAMMA 

The peroxisome proliferators-activated receptor (PPAR) family consisting of the three 

isotypes: PPAR-α, PPAR-β/-δ and PPAR-γ play an important role in the regulation of 

energy balance (Tsai and Maeda, 2005). There are two different isoforms of the ligand-

activated transcription factor PPAR-γ; PPAR-γ1 expressed in non-adipose tissues, and 

PPAR-γ2 which is mainly expressed in adipose tissue (Rangwala and Lazar, 2004; Stienstra, 

Duval et al., 2007). In this thesis, the isoform PPAR-γ2 will from now on be referred to as 

PPAR-γ. PPAR-γ plays a key role in the adipocyte differentiation, lipid metabolism and 

insulin sensitivity. Activation of PPAR-γ is carried out by dietary polyunsaturated fatty acids 

and fatty acid-derived molecules (Cecil, Watt et al., 2006; Stienstra, Duval et al., 2008).  

 

Previous studies report that PPAR-γ deficient mice fed a high-fat diet are protected against 

adipocyte hypertrohphy, obesity and insulin resistance (Jones, Barrick et al., 2005; Kadowaki, 

Hara et al., 2002). PPAR-γ ligands are able to reduce circulating levels of FFAs, and thus 

reverse insulin resistance (Rangwala and Lazar, 2004). It has also been reported that PPAR-γ 

has anti-inflammatory properties, by reversing macrophage infiltration and hence 

contributing to reduction of the pro-inflammatory gene expressions (Xu, Barnes et al., 2003).  

 

PREADIPOCYTE FACTOR-1 

The adipocyte differentiation can also be regulated by the transmembrane protein 

preadipocyte factor-1 (Pref-1) (Lee, Villena et al., 2003). Pref-1 belongs to the epidermal 

growth factor (EGF)-like super family, and is commonly found in preadipocytes (Barbu, 

Hedlund et al., 2009; Sul, Smas et al., 2000). One of the most important functions of Pref-1 is 

to inhibit the adipocyte differentiation (Barbu, Hedlund et al., 2009; Villena, Choi et al., 

2008).  
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The important role of Pref-1 in adipocyte differentiation has been shown in mice lacking this 

gene, where the results were growth retardation along with skeletal abnormalities and 

obesity, when fed a high-fat diet (Moon, Smas et al., 2002). On the other hand, an impaired 

adipocyte differentiation due to the inhibition of Pref-1 overexpression in transgenic mice, 

showed a remarkable reduction in adipose tissue mass. The expression of other adipocyte 

markers such as adiponectin was also found to be decreased when the expression of Pref-1 

was high in the transgenic mice (Lee, Villena et al., 2003). A recent study by Villena et al. 

(2008) showed that mice overexpressing Pref-1 are insulin resistant, even though they are 

protected from diet induced obesity (Villena, Choi et al., 2008).  

 

ADIPONECTIN 

Adiponectin is another important gene regulating the adipocyte differentiation. Adiponectin 

appears to be mainly produced by adipocytes, and thus are characterized as an adipokine 

(Fantuzzi, 2005). Low circulating levels of adiponectin have been associated with obesity, 

insulin resistance, type 2 diabetes, and cardiovascular disease (Fu, Luo et al., 2005). 

Adiponectin is exclusively expressed by mature adipocytes, and has both autocrine and 

paracrine effects in adipose tissue. The paracrine effect is illustrated by its role in adipocyte 

differentiation. Experiments have shown that adipocytes overexpressing adiponectin has a 

consistent accelerated adipocyte differentiation. Both increased lipid accumulation and 

insulin-responsive glucose transport activity in matured adipocytes are results from an 

accelerated adipocyte differentiation (Fu, Luo et al., 2005; Lara-Castro, Fu et al., 2007). Thus, 

adiponectin has a central role in the regulation of insulin sensitivity (Beltowski, 2003; Diez 

and Iglesias, 2003; Kahn, Hull et al., 2006).  

 

PLASMINOGEN ACTIVATOR INHIBTOR -1  

Plasminogen activator inhibitor-1 (PAI-1) is part of the serine-protease inhibitors family and 

functions as an important inhibitor of fibrinolytic activity. Fibrinolysis is described as an 

enzymatic cascade reaction, where the result is degraded fibrin (Skurk and Hauner, 2004). 

Studies during the past years shows impaired fibrinolysis and increased levels of plasma  

PAI-1 in patients suffering from overweight or obesity (Giltay, Elbers et al., 1998; McGill, 

Schneider et al., 1994).  
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The role of PAI-1 in adipocytes is reported to promote the adipocyte differentiation in   

PAI-1 deficient mice. Some of the effects from PAI-1 deficiency are protection against a 

dedifferentiation by TNF-α and insulin resistance (Liang, Kanjanabuch et al., 2006).  

1.4 MACRONUTRIENTS LINKED TO OBESITY AND INFLAMMATION 

Nutrients and metabolic excess are considered to be the triggering factors of inflammatory 

response in obesity (Bluher, 2008). It is believed that diet induced obesity in humans mainly 

is due to the amount of fat in the diet. However, the dietary fat intake in USA has decreased 

from 40 % of energy intake in the 1960s to around 33 % in 1995, while the dietary 

carbohydrate has increased from 45 % to 52 % of energy intake during the same period 

(Connor and Connor, 1997).  

1.4.1 Dietary fat, n-6/n-3 

Our ancestors consumed a larger amount of rich fruits, vegetables, lean meat and fish. The 

diet was less dense in calories but higher in fibers. As a result of this food intake, the diet 

was lower in total fat and saturated fat, but more important it contained an equal amount of  

both omega-6 (n-6) and omega-3 (n-3) (Simopoulos, 2000). N-6 and n-3 are designated 

essential fatty acids which the body can not synthesize itself, and must therefore be 

supplemented through the diet. The present study will mainly be focused on the dietary 

omega-6 (n-6) and omega-3 (n-3). In this thesis the omega nomenclature will be used, where 

n- signifies the position of the first double bond from the methyl end (figure 1.3).  

 

OMEGA-3 (n-3) 

Alpha-linolenic acid (ALA; 18:3n-3) is the major n-3 fatty acid. In the body, ALA is 

metabolized to the marine polyunsaturated fatty acids (PUFAs); eicosapentaenoic acid (EPA; 

20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). (Simopoulos, 2000). Seafood and oily 

fish including fish oil capsules are good sources of these fatty acids (Calder and Yaqoob, 

2009). The daily intake of n-3 fatty acids is estimated to about 0.06 mg-2g in most Western 

countries (Zhou and Nilsson, 2001). The lower intake of n-3 PUFAs is partially due to the 

decrease of fish consumption along with industrial production of meat rich in n-6 fatty acids 

(Simopoulos, 2000). 
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OMEGA-6 (n-6) 

Linoleic acid (LA; 18:2n-6) is the major n-6 fatty acid, and also the predominant PUFA in 

the Western diets (Simopoulos, 2000; Simopoulos, 2002b). The daily intake of LA is about 

10-20g, which constitutes 85 % of total PUFA intake (Zhou and Nilsson, 2001). LA is 

metabolized to one of the eicosanoid precursors arachidonic acid (AA; 20:4n-6) in the body 

(Simopoulos, 2000). The increased consumption of n-6 during in the last 100 years is due to 

the development of technology and growing agribusiness and food processing. The mass 

production of vegetable oils after World War I became more efficient and not least more 

economical (Simopoulos, 2003). Some vegetable oils rich in n-6 fatty acids and very low in  

n-3 fatty acids are; corn-, safflower-, sunflower- and cottonseed oil. Corn oil and safflower 

oil have a n-6/n-3 ratio of 60:1 and 77:1 respectively (Simopoulos, 2001).          

 

                                            n-3 polyunsaturated fatty acids 

 

 

n-6 polyunsaturated fatty acids 

 

 

Figure 1.3: Overview of PUFA in the n-3 series and n-6 series. The omega nomenclature is used to signify 

the position of the first double bond from the methyl end.  

From http://www.eufic.org/article/en/nutrition/fats/artid/The-importance-of-omega-3-and-omega-6-fatty-acids/ 
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The imbalance of n-6- and n-3 fatty acids intake is reflected by the n-6/n-3 ratio, whereas a 

more physiological ratio is about 4:1, but the current ratio is about 20-30:1 in the Western 

diet (Sierra, Lara-Villoslada et al., 2006). The increased n-6/n-3 ratio in the diet may 

contribute to increased incidences of inflammatory disorders including cardiovascular 

disease. We know today that n-3 fatty acids play an important role in both growth and 

development. It is might also be a key factor in the prevention and treatment of 

inflammatory diseases and autoimmune disorders including cancer. (Simopoulos, 2002b) 

 

1.4.2 Eicosanoids 

Eicosanoids (from the Greek word eikoisi for ‘twenty’) are signal molecules and part of the 

oxygenated metabolites family. Eicosanoids are involved in autoimmunity, allergic diseases 

and inflammation. The main classes of eicosanoids includes; prostaglandins (PG), 

thromboxanes (TX) and leukotrienes (LT) (Harizi, Corcuff et al., 2008). The 20-carbon 

PUFAs AA (20:4n-6) and EPA (20:5n-3) are the parent fatty acids for the production of 

eicosanoids (Simopoulos, 2003; Zhou and Nilsson, 2001). Whereas AA is the precursor of 

the common eicosanoids that act as mediators of inflammation, EPA, the n-3 counterpart to 

AA, is converted to eicosanoids that although structurally related, have different properties 

(Simopoulos, 2002a). 

 

There is a partially replacement of n-6 fatty acids in the membrane in almost all cells when  

n-3 fatty acids are supplemented in the diet. AA and EPA compete for the same set of 

enzymes (blue text figure 1.4). The goal of EPA is prostaglandin and leukotriene synthesis of 

less inflammatory and chemotactic derivatives at the cyclooxygenase (COX) and 

lipoxygenase (LOX) level (Simopoulos, 2002b). AA results in an activation of pro-

inflammatory mediators like PGE2, LTB4 and other related metabolites that can act as potent 

inflammatory mediators and producing cytokines (Bagga, Wang et al., 2003). Conversely, the 

mediators produced by n-3 PUFAs; PGE3 and LTB5 have anti-inflammatory properties 

((Calder, 2002; Gil, 2002) .  
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In terms of healthy and unhealthy adipose tissue, the type of dietary fat may be of particular 

importance. Obesity along with other chronic disorders such as cardiovascular disease, 

diabetes, rheumatoid arthritis are all associated with an increased production of the 

inflammatory components; TXA2, LTB44, IL-1β, IL-6, TNF-α, and C-reactive protein (CRP) 

(Simopoulos, 2003). All these factors increase by the increase in n-6 PUFAs intake, where   

n-3 PUFAs are reported to reduce the inflammatory response by displacing arachidonic acid 

in membrane phospolipids. Feeding rodents a diet high in n-3 PUFAs is reported to reduce 

plasma levels of cytokines such as TNF-α, IL-6 and IL-1β (Bhattacharya, Rahman et al., 

2007; Venkatraman and Chu, 1999), and adipose tissue inflammation induced by high-fat 

diet in db/db mice is prevented by fish oil (Todoric, Loffler et al., 2006). The ingestion of 

fish oils in human can also lead to a decreased production of PGE2 metabolites, followed by 

a decrease in TXA2 and LTB4 (Simopoulos, 2002b). 

 

Thus, the n-6/n-3 ratio may be of importance and the increased consumption of n-6 PUFAs 

at the expense of n-3 PUFAs may aggravate the metabolic consequences of obesity. In this 

context it should also be noted that the increased consumption of farmed fish, which due to 

insufficient supplies of n-3 PUFAs contain a less favorable ratio of n-3 to n-6 PUFAs.  

 

        n-6 fatty acids                                                                        n-3 fatty acids 

Linoleic acid (LA; 18:2n-6)             Alpha-linolenic acid (ALA; 18:3n-3) 

                               ∆-6 -desaturase 

Gamma-linolenic acid (GLA; 18:3n-6)                              Stearidonic acid (SA; 18:4n-3)    

                                                           Elongase  

Dihomo-gamma-linolenic acid (DGLA; 20:3n-6)                      Eicosatetraenoic acid (ETA; 20:4n-3) 

                                                                   ∆-5 -desaturase 

Arachidonic acid (AA; 20:4n-6)                 Eicosapentaenoic acid (EPA; 20:5n-3) 

                                                       Cyclooxygenase (COX)          

                                                                 Lipoxygenase (LOX) 

  

                                                  

 

Figure 1.4: Synthesis of eicosanoids: prostaglandins (PG), leukotrienes (LT) and thromboxanes (TX) from 

n-3 and n-6 fatty acids. Modified from Ailhaud et al. (2006) and Wolters (2005).  

Pro-inflammatory: 

PGE2, PGI2, TXA2, LTB4 

Anti-inflammatory: 

PGE3, PGI3, TXA3, LTB5 
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1.4.3 Dietary carbohydrate 

Carbohydrates can exist as monosaccharides, disaccharides or longer polymers of glucose. 

The dietary monosaccharides: glucose, fructose, and galactose are easily absorbed in the 

small intestine by enterocytes, and subsequent rapidly transported into the portal circulation. 

Disaccharides such as sucrose and lactose need to be cleaved into monosaccharides by the 

brush-border glucosidases in order to be absorbed (Flowers and Ntambi, 2009). Sucrose 

consists of one molecule of glucose and one molecule of fructose. Sucrose can be found in 

sugar cane, sugar beets, honey and corn syrup (Schaefer, Gleason et al., 2009). It has been 

suggested that increased intake of sucrose in the diet that enters the bloodstream rapidly 

after ingestion, contribute to the increased prevalence of obesity and metabolic syndrome 

(Flowers and Ntambi, 2009).  

 

There is a special connection between the macronutrients fat and carbohydrates because of 

the reflection in blood lipid concentrations. An increased level of sugar consumption gives a 

higher blood lipid concentration. (Chong, Fielding et al., 2007). As mentioned earlier the 

carbohydrate intake has increased from 45 % to 52 % of energy intake during the years 

1960s-1995 (Connor and Connor, 1997). It has been reported that a low-fat, high-

carbohydrate diet is able to stimulate de novo lipogenesis in human. The concentration of 

plasma triglycerides was also shown to be proportionate increased in these subjects 

(Hudgins, 2000).  

 

1.4.4 Dietary protein 

Dietary proteins are broken down to peptides and amino acids in the digestive system. 20 

amino acids functions as building blocks for protein synthesis, where each amino acids has a 

basic structure of two carbon atoms and one nitrogen atom. In addition, a variable R-group 

gives each amino acid their unique character (Skålhegg, 2007).  

 

The intake of dietary protein is recommended to be approximately 10-15 % of energy intake, 

when the individuals are in energy balance and has a stable weight (WHO, 2000). The 

average protein intake in the US was approximately 13.4% in children (4-8 years) to 16.0% in 

men (51–70 years) between 2003-2004 (Fulgoni, 2008). Protein has a high satiating effect, 
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which makes it central in the achievement of body weight loss and body weight maintenance 

(Astrup, Meinert Larsen et al., 2004). A high protein intake also leads to an increased energy 

expenditure, which might be due to the gluconeogenesis and urea synthesis (Westerterp-

Plantenga, Nieuwenhuizen et al., 2009).  

 

A decrease in energy intake has been reported in rodents fed a high-protein, low-

carbohydrate diet. The results were also a lower body weight among these animals due to a 

reduced adipose tissue mass and less development of enlarged adipocytes (Blouet, Mariotti et 

al., 2006). There has been suggested that a high-protein diet ingested over time could protect 

against metabolic syndrome (Lacroix, Gaudichon et al., 2004). However, the mechanism 

which link dietary protein and obesity development is poorly understood. 

1.5 AIM OF THE STUDY 

The theory presented in this introduction chapter has been aimed to give an overview of 

how obesity can be linked to insulin resistance and inflammation. Our basic hypothesis is 

that dietary-induced inflammation in adipose tissue can be modulated by the type of dietary 

fatty acids, the n-3/n-6 ratio in particular. We assume that increasing the ratio of n-3 fat in 

the diet attenuates inflammation. Earlier studies in this laboratory have demonstrated that 

the obesigenic effect of corn oil is determined by the carbohydrate to protein ratio in the diet 

(Madsen, Pedersen et al., 2008). Thus, we predict that the carbohydrate to protein ratio also 

may influence the inflammatory response.  

 

The primary aim for this study is: 

To find out whether the type of dietary fat can modulate inflammation 

 

Furthermore, we wanted to base the study on these following questions: 

- What are the effects of the different diets on body weight- and obesity development? 

- What are the effects of the different diets on adipose tissue inflammation? 

- What are the effects of the different diets on metabolism? 
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2 MATERIALS AND METHODS 

2.1 ANIMAL MODELS 

Thirty five male C57BL/6J mice, approximately 11 weeks of age were obtained from 

Taconic Europe, (Ejby, Denmark). The animals’ weight ranged from 23.35 to 33.44g, with a 

mean weight of 27.66 ± 2.59g at time of receipt. All animal protocols used in the experiment 

were approved by the Norwegian State board of biological experiments.  

 

                      

 Figure 2.1: C57BL/6J mouse. From http://www.taconic.com/user-assets/Images/Producs-Services/em_mod_black.jpg 

(Taconic Farms Inc, 2006-2009). 

2.2 EXPERIMENTAL SET-UP 

During the acclimatisation period, the mice were fed a low energy diet (chow) and tap water 

ad libitum. After one week of acclimatisation, the mice were divided into 5 groups (A, B, C, D 

and E) with 6 animals in each group. The extra 5 mice were housed together in a separate 

cage. The division of the groups were based on random selection of the mice, where the 

mouse’s start weight was registered. Small adjustments were made within the groups to 

achieve approximately the same mean weight in each group. The mice were housed in 

individual cages, and kept in a 12h light/dark cycle at 22-23 °C and approximately 50 % 

humidity, during the entire 10 weeks feeding experiment. The cages with wooden chip 

bedding (Scanbur Bedding Aspen, Norway) were cleaned and changed every second week. 

Also during the experiment the mice had free access to food and tap water. The amount of 

food given was weighed and registered on Monday, Wednesday and Friday mornings (10 

a.m.). The remaining food in each cage were also weighed and registered twice a week. The 

mice’s body weights were recorded every Monday morning (10 a.m.). 
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2.3 DIETS 

The diets were obtained from Ssniff (Spezialdiäten GmbH, Soest, Germany), and stored at   

-20 ºC in small buckets with lids.  

 

The diets given were; low energy to the control group A , high-fish oil, high-protein (fish oil 

+ protein) to group B, high-fish oil, high-sucrose (fish oil + sucrose) to group C, high-corn 

oil, high-protein (corn oil + protein) to group D, and high-corn oil, high-sucrose (corn oil + 

sucrose) to group E. The amount of ingredients added in the different diets including their 

respective treatment groups are listed in table 2.1.  

 

To verify the enrichment of n-3 and n-6 PUFA in the fish oil and corn oil enriched diets, 

respectively, fatty acid composition was measured (see appendix I).  

 

 

Table 2.1: Amount of ingredients in the different diets given in g/kg diet. 

 (g/kg diet) 

Group                                              A                   B                       C                      D                    E 

Ingredient 

 
Low 

energy/ 
Control  
Diets # 
110750 

High-fish  
oil- 

high protein 

                        
 

High-fish  
oil- 

high sucrose 

High-corn  
oil- 

high protein 

High-corn  
oil- 

high sucrose 

Casein 200 540 200 540 200 
L-Cystine 3 3 3 3 3 
Starch (normal) 529,486 9,486 9,486 9,486 9,486 
Sucrose 90 90 430 90 430 
Cellulose 50 50 50 50 50 
Corn oil 70 70 70 250 250 
Fish oil - 180 180 - - 
t-Butylhydroquinone 0,014 0,014 0,014 0,014 0,014 
Salt mix (Dyets #210025) 35 35 35 35 35 
Vit mix (Dyets #310025) 10 10 10 10 10 
Choline, Bitartrate 2,5 2,5 2,5 2,5 2,5 
Supplement (Diets # 410750) 10 10 10 10 10 

Total 1000 1000 1000 1000 1000 
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2.4 BODY WEIGHT AND FEED INTAKE RECORDING 

The mice’s bodyweight and feed intake pattern can be used as a good indicator for the 

mice’s contentment and development. The weights were recorded every Monday morning 

until the day they were sacrificed, 21 weeks old. The feed intake was calculated from 

weighing the amount of food given 3 times (Monday, Wednesday and Friday) a week and the 

remaining food in the cage.  

2.5 DATA COLLECTION 

After 10 weeks of feeding, the mice were terminatinated. They were also fed the day before, 

because of lipogenic activity measurements later in the experiment.  

 

The mice were weighed before being anaesthetized with Isofluran (Isoba-vet., Schering-

Plough, Denmark), using the apparatus Univentor 400 Anaesthesia Unit (Univentor Limited, 

Sweden), and killed by cardiac puncture.  

 

2.5.1 Blood samples 

The sternum was cut open, and a syringe was placed carefully in the heart to collect the 

blood sample in small tubes containing EDTA as anticoagulant. The samples were 

immediately centrifuged at 2500 x g and 4 °C for 5 minutes, to separate plasma and red 

blood cells (RBC). The samples were then stored at -80 °C until subsequent analysis.   

 

2.5.2 Adipose-, liver- and muscle tissue  

Fat deposits: Two visceral white adipose tissue depots; epididymal (eWAT) and 

retroperitoneal (rWAT), one subcutaneous white adipose tissue depot; inguinal (iWAT) 

(figure 2.2), and one brown adipose tissue depot; intrascapular (iBAT) (figure 2.3) were 

excised and weighed. The tibiales anterior muscle and the liver tissue were also removed 

from the animal and weighed. The tissues were quickly frozen in liquid nitrogen, and stored 

at -80 °C until analyzed. Additionally, photographs of one representative mouse within each 

group were also taken during the dissection. (Presented in section 3.1.2, figure 3.7.) 
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Figure 2.2: Posterior subcutaneous adipose tissue in C57BL mice. The inguinal white adipose tissue 

(iWAT) is circled out. 

 

 

Figure 2.3: Interscapular brown adipose tissue (iBAT) in lean (left) and obese (right) C57BL mice. 

 

2.5.3 Histology  

Tissue samples of eWAT, rWAT, iWAT, iBAT liver and muscle (t. anterior) from two mice 

that were best representative from each group, based on body weight development, from 

each group were fixed in 4 % formaldehyde. Only eWAT and iWAT were further assessed in 

histology methods in the present study. 

2.6 CHEMICALS AND REAGENTS  

All chemicals and reagents were obtained from commercial sources. See appendix II, III, IV, 

V, VI and VII for details. 
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2.7 ANALYTICAL METHODS 

Total RNA was isolated with Trizol from the eWAT, iWAT, rWAT, iBAT, liver tissue and 

tibiales anterior from individual mice. In order to assess the purity and quantity of isolated 

RNA, the samples were measured using the Nanodrop (Saveen Werner, Sweden).  

Measurements of integrity on the Bioanalyzer (Agilent Technologies, USA) were made to 

make sure that the isolated RNA was intact. The isolated RNA could then be transcribed to 

cDNA in the RT–reaction, and then finally quantitative real-time PCR could be performed, 

for the assessments of gene expression levels.  

 

More detailed information about chemical and reagents is listed in appendix (II, III, IV and 

V). All analytical methods were performed at laboratory for molecular biology (NIFES). 

2.7.1 RNA extraction with Trizol 

Principle  

Tissue is homogenized in Trizol, which contains among other things, phenol and 

guanidinium salts. RNA is separated from proteins and deoxyribonucleic acid (DNA), when 

adding the chloroform. RNA is present in the water phase, while proteins are in the organic- 

and interphase, and DNA is in the interphase. RNA is then extracted from the water phase 

by adding isopropanol. The DNA free kit, containing the enzyme DNase is used to eliminate 

any remaining DNA (NIFES, 2005b). 

 

Procedure 

1 ml of Trizol reagent was added to each tube with tissue samples and homogenized with a 

homogenizing instrument (Precellys 24 lysis & homogenization instrument, Bertin 

Technologies), using zirconium beads. The samples were centrifuged at 12000 x g for 10 

minutes at 4 °C (Eppendorf Centrifuge 5415 R), and incubated for 5 minutes in room 

temperature. 200µl chloroform was added to each sample and shaken well for 15 seconds. 

The samples were then again incubated for 2-3 minutes in room temperature. After 

incubation the samples were centrifuged at 12000 x g for 15 minutes at 4 °C. The 

centrifugation separated the samples into a phenol-chlorofom phase, an interphase and a 

colorless upper aqueous phase. The top layer – aqueous phase from all samples was 

transferred to new sets of eppendorf tubes. 500 µl of isopropanol was added to each tube 
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and mixed well. The tubes were then incubated for 10 minutes at room temperature 

followed by 10 minutes in the refrigerator (4 °C). After incubation the samples were 

centrifuged at 12000 x g for 10 minutes at 4 °C. The supernatant was discarded with a 

vacuum apparatus (IBS Integra Biosciences, Vacuboy, Switzerland). The RNA pellet in each 

tube was washed with 1000µl 75% ethanol, and vortexed. The samples were centrifuged 

again at 75000 x g for 5 minutes at 4 °C. The supernatant was discarded again as previous 

and incubated for 2-3 minutes on ice. 50-300 µl of MilliQ water was added to the tubes to 

dissolve the pellet. The RNA samples were further purified using the DNA free kit, 

according to the vendor’s description to eliminate any remaining DNA.   

 

2.7.2 RNA quality and quantity on the Nanodrop ND-1000 

Principle  

The Nanodrop ND-1000 spectrophotometer (Saveen Werner, Sweden) enables highly 

accurate analyses of small samples. Surface tension is used to hold a column of liquid sample 

in place while a measurement is made, see figure 2.4c). Measurements at 260 nm and 280 nm 

give an indication of the quality or purity of the sample. At 280nm of DNA, protein and 

phenol are measured (NIFES, 2005b).  

 

Purity 

It is preferable to have a A260/A280 ratio ≥ 1.7 -2.1. A ratio lower than 1.6 might indicate 

that RNA has not completely dissolved in the water or protein remnants. The protein 

remnants will possibly degrade RNA under storage. A ratio higher than 2.2, might indicate 

phenol remnants in the sample (NIFES, 2005b). Measurements at 280 nm do not provide 

information about possible residual organic contaminations considered at 230 nm. Thus, it is 

preferable to have a A260/A230 ratio >1.8 (Imbeaud, Graudens et al., 2005). 

 

Concentration 

It is preferable to have a RNA concentration between 100-3000 ng/µl. The RNA 

concentration is important when performing quantitative real-time PCR. (Dilution are made 

down to 25ng/µl, thus samples must contain enough RNA to run qPCR.) 

 



MATERIALS AND METHODS 

 

 

36

Procedure 

The quality of RNA was assessed by measuring the absorbance A260 and A280 with the 

Nanodrop ND-1000 spectrophotometer (Saveen Werner, Sweden). This was performed by 

placing only 2 µl of sample directly on to one measurement pedestal, see figure 2.4 b). The 

absorbance ratio and concentration was shown on the screen, after approximately 10 

seconds (Ayubi, 2007b). When the measurements were complete, the sample was wiped 

form both the sample arm and sample pedestal using a soft tissue, see figure 2.4 d). 

 

Samples with a lower A260/230 ratio than 1.7 were precipitated with 3M NaAc pH 5.2 and 

EtOH and incubated at -80 °C over night. The samples were then centrifuged (Eppendorf 

Centrifuge 5415 R) at 12000 x g for10 minutes. The supernatant was discarded with vacuum 

apparatus (IBS Integra Biosciences, Switzerland) before measurements on nanodrop again 

the following day.  

 

                                  a)               b) 

 

 

 

 

 

 

                                 c)                                    d) 

 

 

 

 

 

 

 

Figure 2.4: Nanodrop ND-1000 Spectrophotometer. a) An open sample apparatus. b) A droplet of sample 

is pipetted on to the measurement pedestal. c) Surface tension holds the sample in place. d) After 

measurements, the sample is wiped from the measurement pedestals with a soft tissue. Figure adapted and 

modified from Ayubi (2007). 
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2.7.3 RNA integrity on the Bioanalyzer (RNA 6000 Nano) 

Principle 

The RNA LabChip consists of micro-channels and an interconnected network of fluid 

reservoirs. The chips are fabricated from glass and contain 16 wells: 12 for nucleic samples, 3 

for loading the gel-dye mixture, and 1 for a molecular size ladder (Panaro, Yuen et al., 2000). 

The chip becomes an integrated electrical circuit once the wells and channels are filled. Small 

amounts of RNA samples are separated in the channels of the LabChip according to their 

molecular weight. Charged RNA is driven by a voltage gradient. Because of a constant mass-

to-charge ratio and the effect of a sieving polymer matrix, the molecules are separated by 

size (Ayubi, 2007a). The results are displayed as a gel-like image and peaks on an 

electropherogram that provides a detailed visual assessment of the RNA quality (see figure 

A.1 in appendix IX) (Mueller, Lightfoot et al., 2004). The RNA 6000 ladder is used as both a 

sizing and quantification standard (Sodowich, Fadl et al., 2007).  

 

RIN (RNA Integrity Number) 

The RNA 6000 Nano LabChip Kit was used to evaluate the RNA integrity. The RNA 

integrity number (RIN) was defined for the classification of total RNA, based on a 

numbering system from 1 to 10, with 1 being totally degraded RNA and 10 being fully intact 

RNA (Schroeder, Mueller et al., 2006). Figure 2.5 shows electropherograms of samples with 

varying levels of intactness and respectively RINs. A RIN software algorithm was used to 

classify the samples (Mueller, Lightfoot et al., 2004).  
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Figure 2.5: Electropherograms of 3 different samples of varying intactness, from the top: high- quality 

intact RNA with two distinct ribosomal peaks which corresponds to either 18S or 28S for eukaryotic 

samples and RIN 10.The electropherogram in the middle shows a partially degraded sample, with RIN 5. 

On the bottom is a strongly degraded RNA sample with RIN 3. Modified from Mueller, Lightfoot et al. 

(2004). 

 

Procedure 

A selection of RNA samples were analysed on the Bioanalyzer. A more detailed description 

of the procedure is to be found in vendor’s protocol (Agilent Technologies, 2003). (See 

appendix III for more detailed information about reagents) 

 

The RNA 6000 gel matrix was centrifuged at 1500 x g for 10 minutes (Eppendorf Centrifuge 

5415 R). 32.5 µl filtered gel was aliquoted into 0.5 ml RNase free tubes. The RNA 6000 

Nano dye concentrate was then vortexed for 10 seconds, and spun down. 0.5 µl of dye was 

added to the tube with 32.5 µl filtered gel. The solution was vortexed well and centrifuged at 

13000 x g for 10 minutes. 9 µl of gel-dye was added to RNA chip on the Chip Priming 

Station. 5 µl of RNA 6000 Nano marker was added to the well marked with a ladder symbol. 

1 µl of RNA 6000 ladder was pipetted into the well marked with the ladder symbol. 1 µl of 

RNA sample was pipetted in each of the 12 sample wells. The chip was run on Agilent 2100 

Bioanalyzer (Agilent technologies, USA) within 5 minutes. 
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2.7.4 RT-reaction (Reverse Transcription) 

Principle 

In the RT-reaction, RNA is reverse transcribed to complementary DNA (cDNA) by using 

the enzyme reverse transcriptase. Generated cDNA can be used to determine the changes in 

gene expression levels in the quantitative real-time PCR (Valasek and Repa, 2005). 

 

Procedure 

cDNA was synthesized from total RNA of each sample from 5 tissues (eWAT, iWAT, 

rWAT, iBAT and liver), by using Multiscribe reverse transcriptase(50 U/µl) with oligo d(T)16  

primer(50 µM) in a 30 µl reaction. The RNA concentration was measured with nanodrop as 

previous (RNA quality on Nanodrop ND-1000). RNA or ddH2O was added to achieve the   

desired concentration of 30 ± 1 ng/µl. The final concentration and volume of the different 

reagents in the RT- reaction mix is listed in table 2.2. The volume of each reagent was 

multiplied by 100 (96 wells + dead volume). 

 

Table 2.2: RT -reaction mix for a 30 µl reaction 

Reagent Volume (µl) Final concentration 

RNase free ddH2O 1.3  

TaqMan RT buffer 10X 3.0 1 X 

25 mM Magnesium chlorid 6.6 5.5 mM 

10 mM deoxyNTPs 6.0 500 µM per dNTP 

50 µM Oligo d(T)16 primer 1.5 2.5 µM 

RNase inhibitor (20 U/µl) 0.6 0.4 U/µl 

Multiscribe reverse 

transcriptase (50 U/µl) 

1.0 1.67 U/µl 

 

The RT-reactions were run on 96-well reactions plates (AB gene PCR plate, Thermo 

Scientific) in duplicate. 20 µl of reaction mix and 10 µl RNA were pipetted in each well on 

the 96-well RT plate. Two negative controls: non amplication control (nac) and non template 

control (ntc) were also run for quality assessment. The nac is lacking the multiscribe 

transcriptase enzyme, and the ntc control has no RNA template. A 96- well full plate cover 
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was put on the RT plate as a lid before centrifugation at 50 x g for 1 minute (Eppendorf 

Centrifuge 5810 R). The 96-well RT plate was the run on Gene Amp PCR System 9700 PCR 

machine (Applied Biosystems). The thermal cycling parameters for RT reactions are shown 

below in table 2.3. 

 

Table 2.3: Reverse Transcriptase reaction conditions, taken from ”279-RT Reaction” method description 

with modifications (NIFES, 2005a) 

Step Incubation RT Reverse 
Transcriptase 
Inactivation 

End 

HOLD  HOLD HOLD HOLD 
Temperature (°C) 25 48 95 4 
Time (minutes) 10 60 5 ∞ 

 

The synthesized cDNA was diluted 2 X with MilliQ water into a 60 µl solution. The RT -

plates were then stored at -20 °C until use. 

 

2.7.5 Determination of gene expression levels by Quantitative Real-Time PCR 

Quantitative real-time polymerase chain reaction (qPCR) was applied to measure the gene 

expression levels from the eWAT, iWAT, rWAT, iBAT and liver. β-actin, TATA box 

binding protein (TBP) and calnexin were used as housekeeping genes based on their high 

stability (Ajuwon and Spurlock, 2005b; Tatsumi, Ohashi et al., 2008; van Schothorst, Keijer et 

al., 2006). The list of housekeeping genes and target genes, with their sequences used in 

qPCR is shown in appendix V, table A.6. 

 

Principle 

qPCR is a method based on amplification of short DNA base sequences within a longer 

double stranded DNA molecule. In this case, the target DNA sequences are synthesized 

cDNA from RT-reaction. By using sequence-specific primers and a DNA-binding dye in the 

PCR reaction, it is possible to monitor fluorescent signal proportional to the amount of 

product formed during an amplification cycle (Valasek and Repa, 2005). SYBR GREEN is a 

fluorogenic- and double stranded DNA (dsDNA) binding dye, which binds to all dsDNA in 

a PCR reaction. SYBR GREEN exhibits little fluorescence in unbound state, but upon 
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excitation emits a strong fluorescent signal (figure 2.6) (Ma, Shieh et al., 2006; Smith and 

Osborn, 2009). Thus, the greater the amount of dsDNA present, the greater the amount of 

fluorescent signal from SYBR GREEN (Valasek and Repa, 2005).  

 

There are three major steps in a PCR reaction:  

1. Denaturation at 95 ºC: High temperature denatures the DNA strands and melts 

dsDNA into single strands (Valasek and Repa, 2005). 

2. Annealing at 60 ºC: The temperature is lowered and primer binds to their specific 

sites (Ma, Shieh et al., 2006).  

3. Extension at 72 ºC: Extension of a complementary strand from each annealed 

primer (Smith and Osborn, 2009).  

 

                               

Figure 2.6: SYBR GREEN has the ability to bind to all double-stranded DNA qPCR products, and emit a 

fluorescent signal. Modified from Smith and Osborn (2009).  
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Procedure 

Reaction mix was made with 500 µl SYBR GREEN Master reagent, 5 µl of primer pair 

forward and reverse (100 µM each primer) and 290 µl MilliQ water (see appendix for details 

in table A.5). The volume of the reagents listed in table 2.4 was multiplied by 100 (number of 

Real time reactions (96) + dead volume) when making the reaction mix. 18 µl of reaction 

mix and 2 µl of cDNA (30 ng/µl) from the RT-reaction were then transferred to a 384-well 

reaction plate, using Biomek 3000 Laboratory Automation Workstation (Beckman Coulter, 

USA). qPCR was performed on Light Cycler 480 Real- Time PCR System (Roche, Norway), 

with SYBR GREEN Master reagent in a 20 µl reaction. 

 

Table 2.4: SYBR GREEN reaction mixture of 20 µl reaction. 

Reagent Volume (µl) per sample 

ddH2O  2.9 

Primer forward (100 µM) 0.05 

Primer reverse (100 µM) 0.05 

SYBR GREEN Master 5 

 

Thermal cycling conditions for the qPCR reactions consist of an initial denaturation step at 

95 ºC for 5 minutes, followed by 45 cycles of 10 seconds denaturation at 95 ºC, 20 seconds 

annealing at 60 ºC, and 30 seconds extension at 72 ºC. All samples were run in duplicate, 

while the standard was run in triplicate. The software programme graphs the amplification 

curves with cycle threshold (CT) values shown on the screen. The CT value is inversely 

proportional to the amount of specific nucleic acid in the sample, and shows when the 

fluorescence reaches a threshold level (Valasek and Repa, 2005). The software also calculates 

the sample’s efficiency and error. An efficiency value between 1.8 -2.2 and an error value less 

than 0.04 were considered as acceptable in this study.  

 

2.7.6 Fatty acid composition by GLC 

The method for determination of fatty acid composition by Gas Liquid Chromatography 

(GLC) of adipose tissue (eWAT, iWAT rWAT, iBAT), liver tissue, and red blood cells (RBC) 

were performed by Else Leirnes at the nutrient laboratory (NIFES).  
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Principle 

- Extraction of fat from sample: Total lipid content from the samples was extracted 

using chloroform-methanol 2:1.  

- Filtration: The extract was filtrated to remove tissue and protein remnants 

- Evaporation: Chloroform-metanol was evaporated. 

- Saponification and methylation 

- Analytical GLC 

- Determination with flame ionisation detector 

- Calculation of % distribution and amount (mg/g) of the different fatty acids 

(NIFES, 2009) 

2.8 HISTOLOGICAL METHODS 

In order to evaluate the obesity development and inflammation state in the different mice 

adipose tissues with microscopy, slides with sections were made after fixation, dehydration 

and embedding of the tissues. The sections were then subjected to standard hematoxylin and 

eosin staining (H&E). Cell size of eWAT and iWAT from the different groups was 

compared by using the microscope.  

 

For a more detailed description of chemicals and reagents see appendix VI. All histology 

methods were performed at laboratory for microbiology (NIFES). 

 

2.8.1 Fixation and dehydration 

Fixation is used to preserve the tissues’ microscopic structure and morphology and to 

prevent tissue digestion by enzymes or bacteria. Fixation can also enhance tissue staining 

(Cormack, 2001; Uchôa Junqueira and Carneiro, 2005).   

 

The tissues were fixed in 4% formaldehyde after tissue collection (see appendix table A.7 for 

chemicals and reagents). A 0.1 M phosphate buffer (PB) with pH 7.4 was made by mixing 

NaH2PO4 x H2O (0.027 mol) and Na2HPO4 x 2H2O (0,077 mol) and solved with ddH2O 

using a magnet stir. The PB was diluted with 1000 ml ddH2O and pH adjusted. The tissues 

in formaldehyde were washed with PB twice using small plastic pipettes. 
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Manuel dehydration was carried out in order to eliminate the fixative and water from the 

tissue, and replace it with dehydration solution. The PB was replaced with 50% EtOH and 

put on a mixing machine (HS 501 D, JANKE & KUNKEL, IKA ® Labortechnik, 

Germany) for 1 hour. The 50 % EtOH was replaced with new solution of 50 % EtOH and 

mixed on the machine for 1 hour. This was repeated 4 times. Finally 50% EtOH was 

replaced with 70% EtOH and placed in the refrigerator at 4 ºC until further treatment.  

 

2.8.2 Dehydration on STP 120 and clearing with xylene 

Before embedding the tissues with paraffin, further dehydration of water from the tissues 

were performed since paraffin is not soluble in water. Microflow II cassettes (McCormick 

Scientific, USA) with tissue from eWAT and iWAT were placed in a basket and dehydrated 

on the Spin Tissue Processor, (STP 120, Microm International GmbH, Germany). The 

tissues were placed in different baths starting from 70% to 100% ethanol. The program 

chosen is listed below in table 2.5. As a step in the dehydration process, ethanol is replaced 

with xylene for clearing of the tissues. Xylene is a paraffin solvent miscible with alcohol 

(Cormack, 2001). 

 

Table 2.5: Dehydration program on STP 120 

Dehydration program of adipose tissue from mice 

Bath  Reagent Time 
1 70 % EtOH 1 hour 
2 80 % EtOH 1 hour 
3 96 % EtOH 1 hour 
4 96 % EtOH 1 hour 
5 100 % EtOH 1 hour 
6 100 % EtOH 1 hour 
7 Xylene 10 minutes 
8 Xylene 10 minutes 
9 Paraffin 3 hours 
10 Paraffin 2 hours 
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2.8.3  Paraffin embedding and sectioning 

Embedding of the tissues was performed to firm them and make it possible to obtain thin 

sections. The tissues were embedded in paraffin (Histowax, Histolab products AB, Sweden) 

using EC 350 Paraffin embedding center (Microm International GmbH, Germany). The 

cassettes with tissues were put in liquid paraffin (59 ºC), and subsequently placed on a metal 

shapes with paraffin and the cassette (without lid) on top. The embedded metal shapes with 

tissues were then transferred to the cooling plate, and taken out of the shapes after 

approximately 10 minutes.  

 

A microtome (Leica RM2165, Germany) was used to cut 8µm thin sections of the embedded 

tissues. A bowl with water and a couple of drops 50 % methanol was put on a slide warmer 

(Slide warmer SW85) at approximately 60 °C (water temperature at 45 °C). The thin sections 

were carefully removed from the microtome and placed upon the water surface with a small 

brush. The methanol in the water bath was added to help the sections stretch better. The 

sections were transferred to glass slides marked with a pencil, and left dry over night in room 

temperature before staining.  

 

2.8.4 Hematoxylin and eosin (H&E) staining and mounting 

In order to examine the slides with a microscope, the sections must be stained. Hemtatoxylin 

and eosin (H&E) is the most commonly used combination of dyes. Hematoxylin stains the 

cell nucleus blue, while eosin stains the cytoplasm pink (Uchôa Junqueira and Carneiro, 

2005). 

 

All sections were stained with hematoxylin and eosin as followed by the procedure listed in 

table 2.6. The sections were then mounted with xylene based mounting medium 

(Microscopy Entellan, Merck, Germany).  
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Table 2.6: Hematoxylin and eosin dying procedure. 

Staining paraffin embedded sections with hematoxylin and eosin 

Reagent Time 
Xylene 5 minutes 
Xylene 5 minutes 
100 % EtOH 5 minutes 
90 % EtOH 5 minutes 
80 % EtOH 5 minutes 
70 % EtOH 5 minutes 
50 % EtOH 5 minutes 
dd H2O 5 minutes 
Hematoxylin 3 minutes 
H2O (warm tap water 40-45 °C) 5 minutes 
dd H2O Rinse 
Eosin 30 seconds 
90 % EtOH Wash  
90 % EtOH 5 minutes 
100 % EtOH 5 minutes 
Xylene  5 minutes 
Xylene  5 minutes 

 

2.8.5 Microscopy pictures 

The slides with sections of iWAT and eWAT of one mouse from each treatment group (A, 

B, C, D and E) were visually examined by using an Olympus BX 51 binocular microscope 

(System microscope, Japan), fitted with an Olympus DP50 3.0 camera. The slides were 

viewed at 400X magnification, scale bar 50 µm. After the overall assessment of the section, a 

representative field from iWAT and eWAT of each treatment group was photographed using 

the software program Cell^B V. 2.6. 
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2.9 PLASMA ANALYSIS  

2.9.1 Determination of plasma parameters on the MAXMATTM PL 

80 µl plasma from each sample (n=28) was used to analyse the following parameters listed in 

table 2.7 on an autoanalyzer (MAXMAT SA, France) by Leikny Fjeldstad.  

 

The MAXMATTM PL work as a fully automated multi-purpose analyzer where micro plates 

are used for its reaction support (MAXMAT PL, 2003).  

 

Table 2.7: Plasma parameters measured on MAXMAT PL. 

Plasma analysis on MAXMAT PL 

Glucose (glc) 
Triacylglycerol (TAG) 
D3-hydroxybutyrate (8-OH-but) 
Non-esterified fatty acids (NEFA-C) 
Alanine aminotransferase (ALT) 
Lactate dehydrogenase (LDH) 
Glycerol 

 

2.9.2 Determination of insulin in plasma by ELISA 

Insulin Mouse Ultrasensitive ELISA kit (DRG Instruments gmbH, Germany) was used for 

quantitative determination of insulin in plasma according to the vendor’s instructions. For 

reagents see appendix VII, table A.8.  

 

Principle 

The method is based on a direct sandwich technique where two monoclonal antibodies are 

directed against separate antigenic determinants on the insulin molecule. Incubation of the 

sample enables insulin to react with peroxidase-conjugated anti-insulin antibodies and anti-

insulin antibodies which are bound to the microtitration well. The washing step removes 

unbound enzyme labeled antibody, and the bound conjugate is detected by reaction with 

3,3’,5,5’- tetramethylbenzidine. Acid is added to stop the reaction and the colorimetric 

endpoint is read spectrophotometrically (DRG Diagnostics, 2007).  
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Procedure 

Each determination was performed in duplicate for standards and samples. The reagents and 

samples were brought to room temperature before use. 25 µl of standard 0 was added to 

each well on the 96-well plate before addition of samples and standards. 5 µl of standards 0, 

3-7 were added to each standard well, and a subsequent adding of 5 µl sample in each sample 

well. 50 µl of enzyme conjugate was added to both wells with standards and samples. The 

plate was incubated on a shaker (700-900 rpm) for 2 hours at room temperature. After 

incubation the plate was washed 6 times with an automatic plate washer (Skan Washer 300 

Version B, Skatron Instruments, USA) and tapped firmly against absorbent paper.  200 µl of 

TMB solution was added to each well, followed by incubation for 30 minutes. 50 µl of stop 

solution was then added to each well. To ensure well mixing of substrate solution and stop 

solution, the plate was shaken before absorbance measurements at 450 nm and 620 with a 

spectrophotometric plate reader (iEMS Reader MF, Labsystems, Helsinki).  
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2.10 STATISTICAL ANALYSIS  

2.10.1 Microsoft Excel  

Microsoft ® Excel 2002 SP3 was used to calculate the mean and standard error of the mean 

(SEM) of the data.  All the results are presented as means ± SEM.  

2.10.2 geNorm 

geNorm is a statistical algorithm which has been developed to evaluate the stability (M) and 

suitability of housekeeping genes. The genes with the lowest M values are considered to have 

the most stable expression across time. The geNorm program is based on the principle that 

the expression ratio of two ideal internal control genes is not changed under the 

experimental conditions (Tatsumi, Ohashi et al., 2008). 

 

β-actin, TBP and calnexin were used as housekeeping genes in the study, and the geNorm      

(v. 3.5) VBA applet for Microsoft Excel was used to determine the most stable gene 

(Vandesompele, De Preter et al., 2002). M< 1.5 was considered as stable, however the 

normalisation factor was used to normalise by in this study. Gene expression data was 

calculated from CT values obtained from qPCR, using the geNorm program. Quantity values 

were divided with normalisation factor to achieve the values of gene expression level.   

2.10.3 Statistica   

Data was statistical analysed using Statistica 8.0 (Statsoft Inc. USA, 2008). The treatment 

groups regarding body weight gain, feed intake, organ weights, fatty acid composition, gene 

expression- and plasma levels were statistical analysed as followed:  

• Levene’s test was used to test for homogeneity of variance.  

• Kruskal-Wallis, a nonparametric test was performed to compare the groups when the 

Levene’s test showed significant difference.   

• Shapiro Wilk’s W test was used to test for normality. 

• One-way analysis of variance (ANOVA) was used when there was no significant 

difference in variance and normality, followed by post-hoc Tukey’s HSD test to 

detect which groups were significant different from each other.  

• P values < 0.05 were considered as significant different. 
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3 RESULTS  

3.1 THE EFFECT OF THE DIFFERENT DIETS ON BODYWEIGHT- AND 

OBESITY DEVELOPMENT  

To test the study’s basic hypothesis that inflammation in adipose tissue can be modulated by 

the type of dietary fatty acids, the n-3/n-6 ratio in particular, mice were fed a high fat diet 

enriched in fish- or corn oil for 10 weeks. Since it was assumed that other dietary factors, 

such as the carbohydrate to protein ratio may influence the response, the high fat diets were 

enriched with either sucrose or protein. The control mice received a low energy diet. During 

the feeding experiment, one mouse from group B (fish oil + protein) and group C (fish oil + 

sucrose) were taken out, because of irregular weight gain and abnormal behaviour. The 

remaining 28 mice continued with the feeding experiment.  

 

3.1.1 Body weight development  

The body weight development and the organ weights of the different treatment groups were 

initially assessed to monitor the development of obesity. As expected, according to earlier 

studies (Madsen, Pedersen et al., 2008), the mice receiving the high corn oil diet gained more 

weight when fed corn oil in combination with sucrose than protein (figure 3.1). However, 

rather surprising, also fish oil appeared to be significantly obesigenic when given in 

combination with sucrose.  
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Figure 3.1: Body weight development of the C57BL/6J mice. The curves show the mean weight of the 

animals’ from each of the 5 treatment groups during the feeding experiment of 63 days. 
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3.1.2 Adipose tissue and liver weights 

One representative mouse from each treatment group was photographed during the 

dissection to determine the level of obesity. Adipose tissue and livers were dissected and 

weighed. Comparison of absolute organ weights indicate that the fat deposits from eWAT, 

iWAT, rWAT and iBAT has responded to the sucrose given in the diets.  

 

eWAT: The weight of eWAT from the corn oil + sucrose group was significantly higher 

than the low energy (control) group (P<0.004), the fish oil + protein group (P<0.0002) and 

the corn oil + protein group (P<0.0003) (figure 3.2). eWAT weights from the fish oil + 

sucrose group was also significantly higher than for the treatment groups receiving protein; 

fish oil + protein (P<0.002) and corn oil + protein (P<0.003), but not significantly different 

compared to the control group. 
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Figure 3.2: Weights (g) of eWAT from the 5 different treatment groups. The data are presented as mean ± 

SEM. Groups with different superscript letters are significantly different at P<0.05, according to the post-

hoc Tukey’s HSD test.  
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iWAT: The treatment groups receiving sucrose in the diet showed significantly higher iWAT 

weights than the rest of the groups receiving protein enriched- and low energy diet (figure 

3.3). The fish oil + sucrose group had significantly higher iWAT weight compared to the 

control group (P<0.003), the fish oil + protein group (P<0.0002), and the corn oil + protein 

group (P<0.0002). The weight of iWAT from the corn oil + sucrose group was also 

significantly higher than the control group (P<0.03), the fish oil + protein group (P<0.0006) 

and the corn oil + protein group (P<0.0006). 
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Figure 3.3: Weights (g) of iWAT from the 5 different treatment groups. The data are presented as mean ± 

SEM. Groups with different superscript letters are significantly different at P<0.05, according to the post-

hoc Tukey’s HSD test.  

 

 

rWAT: The weight of rWAT from the fish oil + sucrose group was significantly higher than 

the treatment groups receiving protein; fish oil + protein (P<0.02) and corn oil + protein 

(P<0.03) (figure 3.4). The control group and the corn oil + sucrose group did not reach any 

significant difference compared to the other treatment groups.  



RESULTS 

 

 

53

 
rWAT

a,b

a

b

a
a,b

0,0

0,2

0,4

0,6

0,8

1,0

Low energy Protei n Sucrose Prote in Suc rose

Fish o il + Corn o il +

Treatment groups

W
ei

g
h
t 

(g
)

 

Figure 3.4: Weights (g) of rWAT from the 5 different treatment groups. The data are presented as mean ± 

SEM. Groups with different superscript letters are significantly different at P<0.05, according to the non-

parametric test Kruskal-Wallis. 

 

iBAT: The weight of iBAT for the fish oil + sucrose group was significantly higher than the 

treatment groups receiving protein in the diet; fish oil + protein (P<0.003) and corn oil + 

protein (P<0.01), but no statistical significance was reached compared to the control group 

and the corn oil + sucrose group (figure 3.5). The corn oil + sucrose group had also 

significantly higher weight of iBAT compared to the fish oil + protein group (P<0.02) and 

the corn oil + protein group (P<0.04).  
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Figure 3.5: Weights (g) of iBAT from the 5 different treatment groups. The data are presented as mean ± 

SEM. Groups with different superscript letters are significantly different at P<0.05, according to the post-

hoc Tukey’s HSD test.  
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Liver: The weights of liver tissues were similarly increased for all the treatment groups, and 

no significant difference was reached (figure 3.6). 
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Figure 3.6: Weights (g) of livers from the 5 different treatment groups. The data are presented as mean ± 

SEM. Groups with different superscript letters are significantly different at P<0.05, according to the post-

hoc Tukey’s HSD test. 

 

The results obtained from adipose tissue weights showed that the mice fed fish oil enriched 

with sucrose had significant higher adipose tissue weights compared to both the treatment 

groups receiving protein in the diet; fish oil + protein and corn oil + protein in eWAT, 

iWAT, rWAT and iBAT.  

 

The mice’s whole body was also photographed to assess the body size in general including 

the fat deposits. Figure 3.7 C and E suggest that mice fed diets with high sucrose have 

developed more body fat than the mice fed high-protein diets, which is positively correlated 

with the statistical analysis obtained form adipose tissue weights. Both mice from fish oil + 

sucrose- and corn oil + sucrose group showed clearly enlarged fat deposits compared with 

the control group fed low energy. Mice fed diets with high protein (figure 3.7 B and D), do 

not differ much in both body- and adipose deposits size from the control group, which also 

correlates well with the statistical analyses from adipose tissue weights.  
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A. 

 
 
B.       C. 

  
 
D.                  E. 

   
 

Figure 3.7: Photographs of representative mice from each treatment group taken after 63 days on feeding 

trial. The mice fed sucrose in the diet (C and E) appeared to have more body fat (obesigenic) compared to 

the mouse from the control group (A) and the mice fed protein in the diet (B and D).  
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3.1.3 Gene expression analysis - adipocyte differentiation 

To investigate whether development of obesity had occurred as a result of hypertrophy or 

hyperplasia or both, the relative expression levels of some genes involved in adipocyte 

differentiation was measured (Figure 3.8, 3.9, 3.10). To ensure adequate RNA quality and 

integrity, the purified RNA from the tissues was analyzed using the Nanodrop ND-1000 and 

the Bioanalyzer (RNA 6000 Nano), respectively. The results obtained are shown in appendix 

VIII and IX. 

 

PPAR-γ: There was no significant difference in gene expression level of PPAR-γ between 

the different treatment groups in iWAT and iBAT (figure 3.8). The relative expression level 

of PPAR-γ was significantly higher for the corn oil + protein group compared to the fish oil 

+ protein group in eWAT (P<0.03). There were no significant differences of expression 

levels for any of the groups comparing with the control group in eWAT. The control group 

receiving low energy had significantly higher relative expression level of PPAR-γ than the 

fish oil + protein and fish oil + sucrose group (P<0.03, P<0.02 respectively) in rWAT. 
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Figure 3.8: Relative expression levels of PPAR-γ for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the post-hoc Tukey’s HSD test (for eWAT) and the non-parametric test Kruskal-Wallis (for 

rWAT).  
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Pref-1: No significant differences were reached in gene expression level of Pref-1 between 

the different treatment groups in eWAT, iWAT and rWAT (figure 3.9). The expression level 

of Pref-1 in iBAT from the corn oil + protein group was significantly higher compared to 

the control group (P< 0.05).  
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Figure 3.9: Relative expression levels of Pref-1 for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the non-parametric test Kruskal-Wallis.  
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Adiponectin: The relative expression levels of adiponectin showed no significant difference 

between the 5 treatment groups in eWAT, iWAT and rWAT (figure 3.10). The fish oil + 

protein group had significantly higher expression level of adiponectin in iBAT compared to 

the corn oil + sucrose group (P<0.05). There were no significant differences of expression 

levels for any of the groups comparing with the control group in iBAT.  
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Figure 3.10: Relative expression levels of adiponectin for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the non-parametric test Kruskal-Wallis.  
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PAI-1: No differences were found in the expression levels of PAI-1 between the different 

treatment groups in eWAT, rWAT and iBAT (figure 3.11). The only significant difference in 

relative expression level was in iWAT between the control group and the fish oil + protein 

group, where the control group had significantly higher expression of PAI-1 (P<0.04).   
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Figure 3.11: Relative expression levels of PAI-1 for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the non-parametric test Kruskal-Wallis. 

3.1.4 Histology 

Histological sections were prepared to further investigate the obesity development of the 

different treatment groups. Pictures taken of eWAT and iWAT sections (figure 3.12 and 

3.13) with the microscope Olympus camera, showed enlarged adipocyte size from the 

treatment groups receiving sucrose compared to the treatment groups receiving protein in 
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the diet. This pattern can especially be seen in iWAT sections (figure 3.13), where the 

adipocytes are clearly larger in group C and E than B and D. The adipocyte size of the 

protein groups (B and D) are also smaller compared to the control group A, receiving a low 

energy diet.  

  

   

  

Figure 3.12: Microscopy pictures of paraffin-embedded sections of eWAT. The treatment groups C and E 

fed diets enriched with sucrose shows enlarged adipocytes compared with group A, B and D fed low energy 

or protein enriched diets. There are no crown-like structures localized in these sections. The sections were 

stained with H&E. The magnification was set at 400X, scale bar =50 µm. 
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Figure 3.13: Microscopy pictures of paraffin-embedded iWAT sections. The adipocytes are clearly 

enlarged in the sections from mice fed a sucrose enriched diet (group C and E). The adipocyte size from the 

sections of mice fed protein enriched diets (group B and D) are smaller compared to the control group A 

receiving low energy. The sections were stained with H&E. The magnification was set at 400X, scale bar = 

50 µm.  
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3.2 THE EFFECT OF THE DIFFERENT DIETS ON ADIPOSE TISSUE 

INFLAMMATION 

After investigating the obesity development of the different treatment groups, a subsequent 

assessment of inflammation status was done by measuring gene expression levels of 

macrophage markers along with cytokines and chemokines.  

 

3.2.1 Gene expression analysis - macrophage markers  

Although no crown-like structures were seen in the sections, expressions of genes selectively 

expressed in macrophages were measured. The macrophage marks genes measured in this 

study were: F4/80 and CD68. The figure of relative expression levels of CD68 in iWAT is 

not shown, because of incomplete detection of the samples when performing qPCR. 

 

F4/80: There were found no significant differences between the different treatment groups 

in relative expression levels of F4/80 in iWAT, rWAT and iBAT (figure 3.14). Statistical 

significance between the groups was only reached in eWAT, whereas the fish oil + sucrose 

group had significantly higher relative expression level than the control- (P<0.01) and the 

fish oil + protein group (P<0.009).  
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Figure 3.14: Relative expression levels of F4/80 for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the non-parametric test Kruskal-Wallis. 
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CD68: Significant difference of relative expression level of CD68 between the different 

treatment groups was only reached in eWAT (figure 3.15). The fish oil + protein group had 

also significantly higher relative expression of CD68 compared to the control group 

(P<0.01) and the corn oil + protein group (P<0.04).  

 

CD68 (eWAT)

a,b
a

b

a
a,b

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

Low energy Fishoil +

Protein

Fishoil +

Sucrose

Cornoil +

Protein

Cornoil +

Sucrose

Treatment groups

R
e
la

ti
ve

 e
x

p
re

ss
io

n

 

CD68 (rWAT)

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

Low energy Fishoil +

Protein

Fishoil +

Sucrose

Cornoil +

Protein

Cornoil +

Sucrose

Treatment groups

R
e
la

ti
ve

 e
x

p
re

ss
io

n

CD68 (iBAT)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

Low energy Fishoil +

Protein

Fishoil +

Sucrose

Cornoil +

Protein

Cornoil +

Sucrose

Treatment groups

R
e
la

ti
ve

 e
x

p
re

ss
io

n

 
Figure 3.15: Relative expression levels of CD68 for eWAT, rWAT and iBAT. The results are presented as 

mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, according to 

the non-parametric test Kruskal-Wallis. 
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3.2.2 Gene expression analysis – cytokines and chemokines 

As mentioned earlier, adipose tissue is an endocrine organ. Thus, inflammatory cytokines 

such as IL-6, TNF-alpha and MCP-1 was measured by qPCR. 

 

IL-6: Relative expression levels of IL-6 from the different treatment groups are shown in 

figure 3.16, where the control group and the fish oil + protein group had significant lower 

expression levels than the fish oil + sucrose group (P<0.009, P<0.05 respectively).  
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Figure 3.16: Relative expression levels of IL-6 for eWAT. (Figures of expression levels for the other tissues 

are not shown because of incomplete detection of the samples during quantitative real-time PCR run.) The 

result is presented as mean ± SEM. Groups with different superscript letters are significantly different at 

P<0.05, according to the non-parametric test Kruskal-Wallis. 
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TNF-α: Figure 3.17 shows no significant differences between the different treatment groups 

of relative expression level of TNF- α in iWAT and rWAT. The expression level in eWAT 

was significantly higher for the fish oil + sucrose group compared to the control group, the 

fish oil + protein group and the corn oil + protein group (P<0.06, P<0.0007 and P<0.007 

respectively). The relative expression level of TNF-α in iBAT gave significant difference 

between the fish oil + sucrose group and the control group, where the control group had 

significantly lower expression levels (P<0.03).       
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Figure 3.17: Relative expression levels of TNF-α for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the post-hoc ANOVA Tukey’s HSD test (for eWAT and rWAT) and the non-parametric test 

Kruskal-Wallis (for iWAT and iBAT). 
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MCP-1: The relative expression levels of MCP-1 in rWAT showed no significant difference 

between the different treatment groups (figure 3.18). There was no significant difference of 

expression level for any of the groups comparing with the control group in both eWAT and 

iWAT. The fish oil + sucrose group had significantly higher relative expression level of 

MCP-1 than the fish oil + protein group (P<0.004) in eWAT. Relative expression level of 

MCP-1 in iWAT for the fish oil + sucrose group was also only significantly higher than the 

fish oil + protein group (P<0.03). The only significant difference in relative MCP-1 

expression in iBAT was reached between the fish oil + sucrose group and the control group, 

where the control group had significantly lower relative expression level (P<0.05).  
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Figure 3.18: Relative expression levels of MCP-1 for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the non-parametric test Kruskal-Wallis. 
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3.3 THE EFFECT OF THE DIFFERENT DIETS ON METABOLISM 

Earlier studies in this laboratory have revealed that increasing the amount of protein to a 

corn oil enriched diet reduced the feed efficiency (Madsen, Pedersen et al., 2008). Whether 

increasing the amount of protein to a diet enriched in fish oil, was however not shown.  

3.3.1 Body weight gain and feed intake 

As mentioned before, the body weight gain and feed intake data can be used as an 

assessment for the mice’s contentment and development. The body weight gain for the 

treatment group receiving fish oil + sucrose was significantly higher than the groups 

receiving fish oil + protein (P<0.05) and corn oil + protein (P<0.04) (figure 3.19), but not 

significantly different compared to the control group. There was no significant difference in 

total feed intake in grams between the different treatment groups (figure 3.20). The total 

energy intake in kcal was however, significantly lower for the control group, due to a lower 

energy content in the diet compared to the fish oil + sucrose group (P<0.01) and corn oil + 

sucrose group (P<0.004) (figure 3.21 A). The results of total energy efficiency (bodyweight 

gain/Mcal consumed) for the fish oil + sucrose group was significantly higher than the 

treatment group receiving corn oil + protein (P<0.05) (figure 3.21 B).  
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Figure 3.19: Body weight gain for the 5 different treatment groups after the feeding trial of 63 

days. The data are presented as mean ± SEM. The groups with different superscript letters are 

significantly different at P<0.05, according to the post-hoc ANOVA Tukey’s HSD test.  
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Figure 3.20: Total feed intake for the 5 different treatment groups during the feeding trial of 63 

days. The data are presented as mean ± SEM. No significant difference was found between the 

treatment groups according to the post-hoc ANOVA Tukey’s HSD test. 
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Figure 3.21: Total energy intake (kcal) and energy efficiency (g/Mcal) for the 5 different treatment groups 

during the feeding trial. The data are presented as mean ± SEM. The groups with different superscript 

letters are significantly different at P<0.05, according to the post-hoc ANOVA Tukey’s HSD test (for total 

energy intake (kcal)) and the non-parametric test Kruskal Wallis (for total energy efficiency (g/Mcal)).  
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3.3.2 Determination of plasma parameters on the MAXMATTMPL 

To investigate the insulin sensitivity of the mice fed the different diets, different plasma 

parameters were analysed.  

 

There was found no significant differences in plasma concentrations of glucose, 

triacylglycerol (TAG), glycerol and free fatty acids (FFA) between the 5 different treatment 

groups (figure 3.22).  
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Figure 3.22: Plasma concentrations of glucose, triacylglycerol, glycerol and free fatty acids from the 

different treatment groups analysed on MAXMAT. Data are presented as mean ± SEM, and statistical 

analysed by using post-hoc ANOVA Tukey’s HSD test and the non- parametric test Kruskal-Wallis (for 

plasma free fatty acids), where P<0.05 was considered as significant different. 
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There were also found no significant differences between the different treatment groups for 

plasma LDH and ALT analysis (figure 3.23). For plasma hydroxybutyrate significant lower 

concentration was reached for the control group compared to both of the groups with 

protein enriched diets (fish oil + protein P<0.0006, corn oil + protein P<0.02). The fish oil 

+ protein group also had significantly higher concentration of plasma hydroxybutyrate 

compared to both of the groups receiving sucrose enriched diets (fish oil + sucrose P<0.004, 

corn oil + sucrose P<0.007). 
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Figure 3.23: Plasma concentrations of LDH, ALT and hydroxybutyrate from the different treatment groups 

analysed on MAXMAT. Data are presented as mean ± SEM, and statistical analysed by using and the non- 

parametric test Kruskal-Wallis (for LDH) and the post-hoc ANOVA Tukey’s HSD test (for ALT and 

hydroxybutyrate). The groups with different superscript letters indicate significantly difference at P<0.05. 
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3.3.3 Determination of insulin in plasma by ELISA 

An ELISA kit was used in order to determine the insulin concentration in plasma from the 

different treatment groups. The results are shown in figure 3.22.  

 

There was no significant difference in plasma insulin concentrations between the different 

treatment groups. However, the highest levels of insulin can be seen in the sucrose groups, 

where the corn oil + sucrose group has the highest concentration (684 ± 271 pmol/L).  
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Figure 3.24: Plasma concentrations of insulin in pmol/L, determined by using ELISA kit. Data are 

presented as mean ± SEM, and statistical analysed by using the non- parametric test Kruskal-

Wallis, where P<0.05 was considered as significant different. 

 

3.3.4 Fatty acid composition by GLC 

The results from the gene expression levels of the proinflammatory cytokines were rather 

surprising, and did not correspond to the previous studies where omega-3 in fish oil has 

been shown to have an anti-inflammatory effect (Itoh, Suganami et al., 2007; Todoric, Loffler 

et al., 2006). Thus a full fatty acid profile of the diets (appendix I) and RBC along with liver 

and eWAT was performed by GLC. The different compositions of selected ∑ fatty acids of 

interest (given as mg fatty acid/g sample and % of total fatty acids) for this study are listed in 

table 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6.  
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RBC: The fatty acid composition in RBC can be reflected on the amount of fish oil ingested 

from the diet over time according to a human pilot study by De Groote et.al. (2008)          

(De Groote, De Laporte et al., 2008). As expected for this study, the ∑ n-3 comprising 

among other fatty acids; ALA (18:3n-3), EPA (20:5n-3) and DHA (22:6n-3) was significantly 

higher in the groups fed fish oil compared to the groups receiving corn oil (P<0.05) (table 

3.1 and 3.2). The groups receiving diets rich in n-6 had had significantly higher levels of LA 

(18:2n-6) and AA (20:4n-6) in the RBC (P<0.004). The fatty acid composition in the 

different diets (appendix I) confirms the higher amounts of n-3 fatty acids in the fish oil 

enriched diets as well as the higher amounts of n-6 fatty acids in the corn oil enriched diets.  

 

Table 3.1: Absolute fatty acid composition in RBC 

RBC Treatment groups 
Fatty acid 

(mg fatty acid/g sample) 
Low energy 

(n=6) 
Fish oil + 

protein 
(n=5) 

Fish oil + 
sucrose 
(n=5) 

Corn oil + 
protein 
(n=6) 

Corn oil + 
sucrose 
(n=6) 

∑ saturated 1.28 ± 0.02 1.17 ± 0.02 1.24 ± 0.03 1.21 ± 0.04 1.31 ± 0.05 

∑ monounsaturated 0.49 ± 0.01a 0.35 ± 0.01b 0.34 ± 0.01b 0.40 ± 0.01c 0.41 ± 0.01c 

∑ polyenes 1.40 ± 0.02a 1.19 ± 0.02b 1.28 ± 0.04a,b 1.45 ± 0.04a,c 1.53 ± 0.05a,c 

∑ n-3 0.25 ± 0.00a,b,c 0.72 ± 0.02a,c 0.79 ± 0.02a 0.11 ± 0.00b 0.21 ± 0.01b,c 

∑ n-6 1.14 ± 0.02a,b 0.47 ± 0.01a 0.49 ± 0.01a 1.34 ± 0.04b 1.32 ± 0.05b 

n-3/n-6 0.22 ± 0.00a,b,c 1.51 ± 0.02a,c 1.62 ± 0.01a 0.08 ± 0.00b 0.16 ± 0.00b,c 

The data is presented as mg fatty acid/g sample, mean ± SEM. The small letters indicate significant 

difference between the groups according to the post-hoc ANOVA Tukey’s HSD test (for ∑ monoenes and ∑ 

polyenes) and the non-parametric test Kruskal Wallis. Differences were deemed statistical significant when 

P<0.05. 

  

Table 3.2: Relative fatty acid composition in RBC. 

RBC Treatment groups 
Fatty acid 

(% of total fatty acids) 
Low energy 

(n=6) 
Fish oil + 

protein 
(n=5) 

Fish oil + 
sucrose 
(n=5) 

Corn oil + 
protein 
(n=6) 

Corn oil + 
sucrose 
(n=6) 

∑ n-3 7.31 ± 0.12a,b,c 24.88 ± 0.26a,c 25,97 ± 0.18a 3,22 ± 0.05b 5,97 ± 0.09b,c 

∑ n-6 33.54 ±0.15a,b,c 16.52 ± 0.15a,c 16.08 ± 0.09a 39.94 ± 0.26b 37.43 ± 0.37b,c 

n-3/n-6 0.22 ± 0.00a,b,c 1.51 ± 0.02a,c 1.62 ± 0.01a 0.08 ± 0.00b 0.16 ± 0.00b,c 

The data is presented as % of total fatty acids, mean ± SEM. The small letters indicate significant 

difference between the groups according to the non-parametric test Kruskal Wallis. Differences were 

deemed statistical significant when P<0.05. 
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Liver: There were found higher amount of saturated and monounsaturated in the liver of 

treatment groups fed sucrose compared to the ones fed protein (table 3.3). Although no 

significant differences were found between the groups mentioned. The accumulation of n-3 

fatty acids in the liver was higher for the fish oil group receiving sucrose compared to the 

fish oil + protein group. The amount of n-6 fatty acids was also higher in the liver for the 

treatment group fed corn oil + sucrose, compared to the corn oil + protein group. Also here 

the there were found no significant differences between the corn oil groups.  

 

Table 3.4 shows the % of total fatty acid, where the amount of n-3 fatty acids is significantly 

higher for the fish oil groups compared to the corn oil groups (P<0.05). The amount of n-6 

fatty acids is higher for the corn oil groups compared to the rest of the treatment groups, 

although the significant differences was reached between the corn oil + protein group and 

the fish oil + protein- and fish oil + sucrose group (P<0.006, P<0.00008 respectively). 

Significantly higher amount of n-6 fatty acids in the liver for the corn oil + sucrose group 

compared to the fish oil + sucrose group were also found (P<0.009). 

 

Table 3.3: Absolute fatty acid composition in liver. 

Liver Treatment groups 
Fatty acid 

(mg fatty acid/g sample) 
Low energy 

(n=6) 
Fish oil + 

protein 
(n=5) 

Fish oil + 
sucrose 
(n=5) 

Corn oil + 
protein 
(n=6) 

Corn oil + 
sucrose 
(n=6) 

∑ saturated 14.69 ± 1.17a,b 12.15 ± 0.83a 15.06 ± 0.50a,b 13.19 ± 0.68a,b 21.02 ± 3.05b 

∑ monounsaturated 13.44 ± 1.64a,c 4.16 ± 0.48b 6.23 ± 1.14a,b,c 7.34 ± 0.85a,b,c 19.03 ± 3.99c 

∑ polyenes 16.50 ± 1.40a 17.67 ± 1.17a 19.43 ± 0.86a,b 20.19 ± 1.21a,b 29.33 ± 2.88b 

∑ n-3 3.24 ± 0.27a,b 10.83 ± 0.79a 12.94 ± 0.56a 1.72 ± 0.11b 3.28 ± 0.15a,b 

∑ n-6 13.26 ± 1.14a,b 6.84 ± 0.42a 6.49 ± 0.32a 18.47 ± 1.13b 26.05 ± 2.77b 

n-3/n-6 0.25 ± 0.01a,b,c 1.58 ± 0.06a,c 2.00 ± 0.03a 0.09 ± 0.01b 0.13 ± 0.01b,c 

The data is presented as mg fatty acid/g sample, mean ± SEM. The small letters indicate significant 

difference between the groups according to the non-parametric test Kruskal Wallis. Differences were 

deemed statistical significant when P<0.05. 
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Table 3.4: Relative fatty acid composition in liver. 

Liver Treatment groups 
Fatty acid 

(% of total fatty acids) 
Low energy 

(n=6) 
Fish oil + 

protein 
(n=5) 

Fish oil + 
sucrose 
(n=5) 

Corn oil + 
protein 
(n=6) 

Corn oil + 
sucrose 
(n=6) 

∑ n-3 7.25 ± 0.45a,b 31.34 ± 0.39a 31.41 ± 1.37a 4.10 ± 0.28b 4.97 ± 0.53b 

∑ n-6 29.43 ± 1.18a,b,c 19.90 ± 0.55a,c 15.78 ± 0.88a 43.70 ± 0.73b 37.69 ± 1.38b,c 

n-3/n-6 0.25 ± 0.01a,b,c 1.58 ± 0.06a,c 2.00 ± 0.03a 0.09 ± 0.01b 0.13 ± 0.01b,c 

The data is presented as % of total fatty acids, mean ± SEM. The small letters indicate significant 

difference between the groups according to the non-parametric test Kruskal Wallis. Differences were 

deemed statistical significant when P<0.05. 

 

eWAT: Measurements of the fatty acid profile in the adipose tissue is also of interest, since a 

large amount of sucrose in the diet can promote the de novo fatty acid synthesis (Chong, 

Fielding et al., 2007), which can lead to higher levels of saturated and monounsaturated fatty 

acids in the adipose tissue. The combination of fish oil and sucrose in the diet, might affect 

the level of n-3 fatty acids in the adipose tissue, not being as high as expected. The amount 

of saturated and monounsaturated fatty acids are quantitative higher for the treatment 

groups receiving sucrose compared to the ones receiving protein with the same type of fat 

(table 3.5). But both of the fish oil groups and corn oil groups were not significantly 

different from each other. Compared to the saturated and monounsaturated fatty acids in the 

RBC, showed no significant difference between the treatment groups receiving protein or 

sucrose (table 3.1). The saturated and monounsaturated fatty acids in the diet (appendix I, 

table A.1) did not show a remarkable difference between the protein and sucrose groups 

either.   

 

Another possible effect of the sucrose in the diet is to conduct more fat from the diet 

directly on to the adipose tissue. This suggestion is supported by data shown in table 3.5 

demonstrating that the amount of n-6 is higher in eWAT for the corn oil + sucrose group 

compared to the corn oil +protein group. Likewise, the amount of n-3 fatty acids is higher in 

eWAT from the fish oil + sucrose group compared to the fish oil + protein group. Table 3.6 

also shows a higher accumulation of n-3 fatty acids in eWAT for the groups receiving fish oil 

in the diet compared to the ones receiving corn oil diets. The same pattern are shown for the 

corn oil groups, who have significantly higher levels of n-6 fatty acids in the eWAT 

(P<0.05).  
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Table 3.5: Absolute fatty acid composition in eWAT. 

The data is presented as mg fatty acid/g sample, mean ± SEM. The small letters indicate significant 

difference between the groups according to the post-hoc ANOVA Tukey’s HSD test (for ∑ saturated and ∑ 

monoenes) and the non-parametric test Kruskal Wallis. Differences were deemed statistical significant 

when P<0.05. 

 

 

Table 3.6: Relative fatty acid composition in eWAT. 

eWAT Treatment groups 
Fatty acid 

(% of total fatty acids) 
Low energy 

(n=6) 
Fish oil + 

protein 
(n=5) 

Fish oil + 
sucrose 
(n=5) 

Corn oil + 
protein 
(n=6) 

Corn oil + 
sucrose 
(n=6) 

∑ n-3 2.08 ± 0.04a,b,c 11.20 ± 0.98a,c 13.63 ± 0.64a 0.83 ± 0.04b 1.03 ± 0.02b,c 

∑ n-6 31.85 ± 0.60a,b 23.91 ± 0.66a 22.64 ± 0.50a 44.62 ± 0.71b 43.52 ± 0.37b 

n-3/n-6 0.07 ± 0.00a,b,c 0.47 ± 0.05a,c 0.60 ± 0.04a 0.02 ± 0.00b 0.02 ± 0.00b,c 

The data is presented as % of total fatty acids, mean ± SEM. The small letters indicate significant 

difference between the groups according to the non-parametric test Kruskal Wallis. Differences were 

deemed statistical significant when P<0.05. 

 

 

 

 

 

 

 

 

 

eWAT Treatment groups 
Fatty acid 

(mg fatty acid/g sample) 
Low energy 

(n=6) 
Fish oil + 

protein 
(n=5) 

Fish oil + 
sucrose 
(n=5) 

Corn oil + 
protein 
(n=6) 

Corn oil + 
sucrose 
(n=6) 

∑ saturated 198.13 ± 6.16a,c 208.37 ± 25.12a,b 250.14 ± 8.27b 120.14 ± 7.43c 155.20 ± 8.06c 

∑ monounsaturated 371.74 ± 8.72a 267.90 ± 28.98b 269.15 ± 6.45b 278.97 ± 11.74b 305.22 ± 6.64b 

∑ polyenes 295.18 ± 2.15a 270.59 ± 32.23a,b 308.11 ± 9.29a,b 340.60 ± 24.01a,b 374.76 ± 14.29b 

∑ n-3 18.16 ± 0.47a,b,c  87.07 ± 14.48a,c 114.89 ± 7.27a 6.25 ± 0.54b 8.68 ± 0.32b,c 

∑ n-6 277.03 ± 1.91a,b 180.78 ± 19.22a 190.09 ± 3,77a 334.35 ± 23.54b 366.08 ± 14.04b 

n-3/n-6 0.07 ± 0.00a,b,c 0.47 ± 0.05a,c 0.60 ± 0.04a 0.02 ± 0.00b 0.02 ± 0.00b,c 
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3.3.5 Gene expression analysis - metabolism 

Both SREBP-1c and SCD1 are important genes regulating the metabolism of glucose, 

triglycerides and fatty acids (Haluzik, Colombo et al., 2004). The genes were measured in 

liver tissue by qPCR, and the relative gene expression levels are presented in figure 3.23. 

UCP-1 was also measured in the different adipose tissue (eWAT, iWAT, rWAT and iBAT). 

UCP-1 is known to exclusively be found in iBAT and play an important role in adaptative 

thermogenesis and energy expenditure (Lodhi and Semenkovich, 2009; Nedergaard, 

Golozoubova et al., 2001).  

 

SREBP-1c: The relative expression level of SREBP-1c in liver tissue was significant higher 

in the control group compared to the fish oil + protein group (P<0.004).  

 

SCD1: The control group showed significant higher relative expression levels of SCD1 in 

liver compared to the fish oil + protein- and fish oil + sucrose group (P<0.03, P<0.004 

respectively). The fish oil + sucrose group also showed significantly lower levels of SCD1 

compared to the corn oil + sucrose group (P<0.03).  
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Figure 3.25: Relative expression levels of SREBP-1c (A) and SCD1 (B) in liver for the different treatment 

groups. Data is presented as mean ± SEM. Groups with different superscript letters are significantly 

different at P<0.05, according to the non-parametric test Kruskal-Wallis.     
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UCP-1: The relative expression levels of UCP-1 were in general very low in all of the 

adipose tissues. However, the highest relative expression level was found in iBAT (figure 

3.24). There were no significant differences between the treatment groups regarding the 

relative expression levels of UCP-1 in eWAT, iWAT and iBAT. The only significant 

difference was reached in rWAT, whereas the fish oil + sucrose group had significantly 

higher levels of UCP-1 compared to fish oil + protein- and the corn oil + protein group 

(P<0.008, P<0.02 respectively). There was no significant difference in expression level of 

UCP-1 between the control group and the rest of the treatment groups.  
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Figure 3.26: Relative expression levels of UCP-1 for eWAT, iWAT, rWAT and iBAT. The results are 

presented as mean ± SEM. Groups with different superscript letters are significantly different at P<0.05, 

according to the non-parametric test Kruskal-Wallis (for eWAT and iWAT) and the post-hoc ANOVA 

Tukey’s HSD test (for rWAT and iBAT).
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4 DISCUSSION 

Previous studies have shown that dietary n-3 fatty acids have an anti-inflammatory effect in 

rodent models of obesity and human obese subjects (Itoh, Suganami et al., 2007; Todoric, 

Loffler et al., 2006). To elucidate the possible protection of n-3 fatty acids in fish oil on 

adipose tissue inflammation, we have performed a feeding experiment with initial 30 male 

C57BL/6J mice given 5 different diets. In addition, we wanted to investigate if the 

carbohydrate to protein ratio could influence the development of obesity and the 

inflammatory response.  

4.1 ANIMAL MODELS AND DIETS 

The C57BL/6J mouse model has been used in many previous obesity studies, because of its 

ability to develop a syndrome of obesity, along with hyperinsulinemia, hyperglycemia and 

hypertension when given free access to a high-fat, high-sucrose diet (Klaus, 2005; Surwit, 

Feinglos et al., 1995). When only given a low-fat chow diet, these mice remain relatively lean 

and physically normal. The development of metabolic syndrome related traits, due to a high-

fat diet in the C57BL/6J mouse closely parallels to the progression in human disease (i.e. 

diabetes) (Collins, Martin et al., 2004).   

 

In this study, 4 different high-fat diets were used. Two of the diets had fish oil, rich in n-3 

fatty acids as a fat source, and two had corn oil, rich in n-6 fatty acids as a fat source. The 

fish oil is enriched in EPA and DHA, whereas corn oil is a vegetable oil rich in linoleic acid, 

which is the predominant n-6 PUFA consumed in the Western diets (Simopoulos, 2000; 

Zhou and Nilsson, 2001). The two fish oil and corn oil diets had also different carbohydrate 

to protein ratio (table 2.2). 

 

To verify the different amount of n-3 PUFA and n-6 PUFA in the different diets, fatty acid 

composition analysis were performed (appendix I, table A.1). The amount of EPA (20:5n-3) 

and DHA (22:6n-3) were considerably higher in the fish oil diets. Likewise, a notable high 

amount of LA (18:2n-6) was found in the corn oil diets.  
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4.2 THE EFFECT OF THE DIFFERENT DIETS ON BODY WEIGHT- AND 

OBESITY DEVELOPMENT 

4.2.1 Body weight development, adipose tissue weights and histology  

A previous study by Madsen et al. (2008) showed that n-6 PUFA were pro-adipogenic when 

combined with a high-sucrose diet, and non-adipogenic when combined with a high-protein 

diet (Madsen, Pedersen et al., 2008). These findings were verified in this study. A surprising 

factor was, however, that the mice receiving fish oil gained more weight than the mice 

receiving corn oil. We expected that the mice fed fish oil would have gained less weight than 

the mice fed corn oil, as a previous study by Ruzickova et al. (2004) showed that diets rich in 

n-3 PUFAs from marine origin, EPA and DHA are able to limit the development of obesity 

in mice. However, the carbohydrate to protein ratio is probably of great importance. In the 

study by Ruzickova et al., the n-3 PUFA were given in combination with 35.4 % 

carbohydrate (sucrose) and 20.5 % protein (casein)(Ruzickova, Rossmeisl et al., 2004). In our 

study the n-3 were given in combination with either 9 % sucrose and 54 % casein, or 43 % 

sucrose and 20 % casein, in the fish oil + protein diet and fish oil + sucrose diet respectively 

(table 2.1). The results show that the weight gain was far more pronounced when fish oil was 

given in combination with sucrose than with protein (figure 3.19). The mice fed fish oil + 

sucrose also used less energy compared to the ones receiving protein, since they gained over 

twice as much weight during the feeding experiment. This indicates that the intake of protein 

enriched diet increased the energy expenditure, i.e. gluconeogensis and urea synthesis 

(Madsen, Pedersen et al., 2008). Regarding energy expenditure, the relative expression levels 

of UCP-1 was observed to be highest in iBAT, as expected (figure 3.26). However, with the 

exception of rWAT, UCP-1 expression was not significantly different between the groups. A 

study by Kopecky et al. (1996) suggested that high levels of UCP-1 in adipose tissue protects 

against obesity (Kopecky, Rossmeisl et al., 1996), but there is also reported by Enerback et.al. 

(1997), that mice lacking the UCP-1 gene were only cold-sensitive and not developing 

obesity under normal laboratory conditions (Enerback, Jacobsson et al., 1997). The energy 

expenditure required to maintain a body temperature is lowest in a thermoneutral 

environment at 30 ºC for mice (Lodhi and Semenkovich, 2009). The mice in our experiment 

were kept at 22-23 ºC during the feeding experiment, so the obesity development might have 

been affected by this chronic thermal stress condition.  
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The finding that the mice receiving fish oil + protein had lower adipose tissue weights of 

eWAT, iWAT, rWAT, iBAT compared to all other 4 groups (figure 3.2, 3.3, 3.4, 3.5), 

demonstrated that fish oil was not adipogenic in itself. Furthermore, histology pictures of the 

paraffin- embedded sections of eWAT and iWAT showed smaller adipocytes size for the 

mice receiving fish oil + protein also compared to the ones receiving the low energy diet 

(figure 3.12 and 3.13). The anti-adipogenic effect of EPA and DHA has indeed been 

suggested to reduce accumulation of body fat by limiting both hypertrophy and hyperplasia 

of adipocytes (Ruzickova, Rossmeisl et al., 2004). Our results demonstrate that this effect is 

abolished when fish oil is fed in combination with sucrose. Thus, the results clearly suggest 

that the carbohydrate to protein ratio determines the obesigenic effect of both corn oil and 

fish oil. 

4.2.2 Gene expression levels - Adipocyte differentiation  

Obesity may develop as a result of increased adipocyte size due to fat storage (adipocyte 

hypertrophy) or formation of new adipocytes from precursor cells (adipocyte hyperplasia), or 

even both (Kubota, Terauchi et al., 1999). Histology pictures from our study showed 

hypertrophied adipocytes for the mice receiving sucrose in the diet, for both corn oil and 

fish oil (figure 3.12 and 3.13). Hyperplasia is a result of adipocyte differentiation, thus to get 

any indication whether new adipocytes were formed in mice fed sucrose, the relative 

expression levels involved in adipocyte differentiation was measured. We chose PPAR-γ, 

which has been indicated to play a critical role in the determinant of body fat distribution in 

mice and humans along with adipogenesis (Tsai and Maeda, 2005). Jones et al. (2005) showed 

that PPAR-γ knockout mice had diminished weight gain when fed a high-fat diet. They also 

observed that the control mice had higher total body weight and significantly higher 

expression of PPAR-γ, compared to the PPAR-γ knockout mice (Jones, Barrick et al., 2005). 

There were also reported that PPAR-γ was higher expressed in adipose tissue in mice fed 

corn oil in combination with sucrose than in combination with protein (Madsen, Pedersen et 

al., 2008).  

 

Considering PPAR-γ’s role in adipocyte differentiation, eWAT weights showed that the mice 

fed sucrose in the diet had the most fat (figure 3.2). Thus, it was expected higher relative 

gene expression levels of PPAR-γ for the group fed fish oil + sucrose in the diet compared 
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to the one fed corn oil + protein. However, this study demonstrated that the mice fed fish 

oil had lower relative expression levels of PPAR-γ in eWAT compared to the mice fed corn 

oil, when combined both with protein and sucrose (figure 3.8). The statistical difference was 

only obtained between the fish oil + protein group and corn oil + protein group. The reason 

for different results compared to the observations by Madsen et al. (2008) is not clear, but in 

the study by Madsen et al. the mice were pair fed. This indicates that the relative expression 

level and activity of PPAR-γ do not necessary have a connection.  

 

Preadipocyte factor-1 plays an important role in inhibition of adipocyte differentiation 

(Barbu, Hedlund et al., 2009). Villena et al. (2008) showed that the mice overexpressing this 

gene were resistant to high-fat diet induced obesity. The adipose tissue mass was also 

remarkable reduced, and the mice were highly insulin resistant mainly due to a reduction in 

insulin stimulated glucose uptake in muscle and adipose tissue (Villena, Choi et al., 2008). In 

our study the only significant difference of Pref-1 relative expression levels were reached in 

iBAT, however almost the same expression tendency can be seen in eWAT (figure 3.9). Both 

groups receiving the protein enriched diets had higher expression levels of Pref-1 than the 

ones receiving sucrose enriched diets. Moreover, our results showed that the fish oil + 

sucrose group had the lowest expression of Pref-1 in eWAT, which is reflected on the high 

eWAT mass (figure 3.2). Likewise, the expression of Pref-1 from the two protein groups 

were notably higher compared to the sucrose groups in both eWAT and iBAT, which could 

also be reflected on the lower eWAT and iBAT mass (figure 3.2 and 3.5 respectively). The 

mice from the protein groups did however not show significantly higher plasma insulin 

levels, and hence were they possibly not insulin resistant. In this respect it should be noted 

that insulin levels were measured in plasma obtained from fed- and not fasted mice. 

Furthermore, the results showed no correlation between the adipose tissue weights (eWAT) 

for the corn oil + sucrose group who had relatively the same expression level of Pref-1 in 

eWAT compared to the fish oil + protein group. The adipose tissue weights were overall 

twice as much for the corn oil + sucrose group compared to the fish oil + protein group.  

 

Plasminogen activator inhibitor-1 is another factor related to obesity. Shimomura et al.(1996) 

observed an increased PAI-1 expression level in visceral fat in rodent model during the 

development of obesity (Shimomura, Funahashi et al., 1996). Our results showed only 
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significant difference of PAI-1 expression levels in iWAT, which is a subcutaneous adipose 

tissue. The highest expression levels were however found in eWAT, where the corn oil + 

protein group had the highest expression of PAI-1 compared to the other treatment groups. 

Although the mice in this group were not the most obese, can also other factors such as the 

levels of triacylglycerol (TAG) and free fatty acids (FFA) be able to stimulate the expression 

of PAI-1 in adipocytes (Loskutoff and Samad, 1998). Plasma levels of TAG and FFA were 

not significantly different between the groups, but the corn oil + protein group did not have 

the lowest levels of the parameters either.  

 

Adiponectin is thought to enhance insulin sensitivity by promoting adipocyte differentiation. 

A low expression level of adiponectin is observed in obesity and inflammatory states, 

whereas a high level of adiponectin associated with an accelerated adipocyte differentiation 

(Fu, Luo et al., 2005). In addition, previous studies have demonstrated that diets enriched in 

n-3 PUFAs are able to increase the expression level of adiponectin in adipose tissue in 

rodent models (Flachs, Mohamed-Ali et al., 2006; Neschen, Morino et al., 2006; Todoric, 

Loffler et al., 2006). Even though there were no significant differences in adiponectin 

expression levels between the two fish oil groups in any of the adipose tissues, graphically 

assessments showed a higher expression level for the fish oil + protein group compared to 

the fish oil + sucrose group in both eWAT and iBAT (figure 3.10). These data suggest that 

the fish oil in combination with protein may have enhanced the level of adiponectin 

expression in adipose tissue. Adiponectin might also be able to inhibit adhesion of 

macrophages into endothelial cells. It is plausible that the lower expression level of 

adiponectin from the fish oil + sucrose group in eWAT may have contributed to an 

increased macrophage infiltration in adipose tissue (Xu, Barnes et al., 2003), which can be 

seen from elevated expression levels of the macrophage markers CD68 and F4/80 for the 

same group (see section 1.4.1).  

 

The secretion of adiponectin is also reported to be inversely related to the expression levels 

of proinflammatory adipokines. Gustafson et al. (2003) showed that both TNF-α and IL-6 

suppress the mRNA expression levels and secretion of adiponectin (Gustafson, Jack et al., 

2003). The highest relative expression levels of TNF-α and IL-6 is from the fish oil + 

sucrose group in eWAT, that is correlated with the lowest expression level of adiponectin for 
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the same group in eWAT. The expression levels of TNF-α and IL-6 are increased in obese 

subjects, and the suppression mechanism may resulted in the lower expression level of 

adiponectin observed in the fish oil + sucrose group, with the most obese mice. 

Furthermore, Ajuwon et al. (2005) reported that adiponectin is able to inhibit LPS-induced 

NF-κB activation, and subsequently decrease the level of IL-6 and increase PPAR-γ (Ajuwon 

and Spurlock, 2005a) 

 

In conclusion, we presume that the increased adipose tissue mass is due to the sucrose 

enrichment in the diets, which led to hypertrophied adipocytes. Whether hyperplasia also 

occurs is not certain based on these results. There are no clear indications from gene 

expression analysis, thus we need to count cells in order to figure this out. 

4.3 THE EFFECT OF THE DIFFERENT DIETS ON ADIPOSE TISSUE 

INFLAMMATION 

4.3.1 Gene expression levels - Macrophage markers, cytokines and chemokines 

A major objective in this study was to investigate if n-3 fatty acids in fish oil can protect 

against adipose tissue inflammation. Obesity is considered as a chronic low-grade 

inflammatory condition, and hence linked to the infiltration of macrophages in adipose 

tissue. We could not register any CLS in the histology sections, but the formation of CLS 

occur late, usually when the cells are dying, thus inflammation can occur even without seeing 

any CLS (Cinti, Mitchell et al., 2005). The infiltrated macrophages enhance the inflammatory 

status by secreting several proinflammatory molecules, such as TNF-α and IL-6 (Rausch, 

Weisberg et al., 2008; Stienstra, Duval et al., 2008). The expression levels from the 

macrophage-specific markers CD68 and F4/80 can give an indication of the macrophage 

infiltration status, and thus the degree of adipose tissue inflammation. 

 

The relative expression levels of F4/80 and CD68 indicates that sucrose in the diet had lead 

to infiltration of macrophages, especially in eWAT where significant differences were 

reached (figure 3.14 and 3.15 respectively). There is a clear pattern showing that the relative 

expression levels of both F4/80 and CD68 from the fish oil + sucrose group are remarkable 

higher in all the white adipose tissues compared to the other treatment groups. Numerous of 
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studies have reported that the consumption of n-3 PUFAs have a favourable effect on 

adipose tissue inflammation. One of the studies carried out by Todoric et al. (2006), 

presented evidence that the enrichment of n-3 PUFA in a high-fat diet is able to prevent the 

development of an inflammatory gene expression profile, and macrophage infiltration in the 

adipose tissue of obese mice. The attenuating effect of n-3 PUFAs on the macrophage 

surface marker CD68 was highly noticeable (Todoric, Loffler et al., 2006). Our results 

suggest that the n-3 PUFAs from the fish oil groups more effectively prevent macrophage 

infiltration when combined with protein rather than sucrose. Xu et al. (2003) reported that 

the macrophage-markers including CD68 and F4/80 were remarkable upregulated in WAT 

in mice of genetic and high-fat diet induced obesity (Xu, Barnes et al., 2003). The significant 

higher eWAT mass (g) for the fish oil + sucrose group compared to the groups fed protein 

might also be reflected on a higher expression of the macrophage-specific genes. The higher 

relative expression level of MCP-1 in all the adipose tissues (eWAT, iWAT, rWAT and 

iBAT) for the fish oil +sucrose group, also affect the expression levels of CD68 and F4/80 

because of MCP-1 ability to recruit macrophages into adipose tissue (Gustafson, 

Hammarstedt et al., 2007).  

 

In conclusion, the findings showed no CLS which is a general phenomenon in WAT 

indicating an inflammatory state. The macrophage markers showed increased expression 

levels for the mice fed high-sucrose diets. Surprisingly, were the most pronounced 

expression shown when sucrose was given in combination with fish oil. 

 

CYTOKINES AND CHEMOKINES 

The development of inflammation in adipose tissue leads to an increased expression of 

proinflammtory cytokines and chemokines. Our results also showed that TNF-α, IL-6 and 

MCP-1 were significantly higher in WAT when mice were fed sucrose than protein, and 

surprisingly higher when fed fish oil compared to corn oil. The upregulation of these genes 

in adipose tissue is known to correlate with adiposity and insulin resistance (Dahlman, 

Kaaman et al., 2005; Lumeng, Deyoung et al., 2007). Previous studies by Hotamisligil et al. 

(1995, 1993) have shown an increased expression level of TNF-α mRNA in adipose tissue 

from both obese humans and different rodent models of obesity (Hotamisligil, Arner et al., 

1995; Hotamisligil, Shargill et al., 1993). TNF-α secreted by adipose tissue macrophages is 
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considered to be one of the most important mediators of inflammation (Gustafson, 

Hammarstedt et al., 2007). Lacasa et al. (2007) showed that TNF-α stimulated preadipocytes 

had an increased activation of the NF-κB pathway consistent with upregulated expression 

level of IL-6, IL-8, MCP-1 and IL1β (Lacasa, Taleb et al., 2007). It has also been observed 

increased mRNA levels and secretion of MCP-1 in human obesity, where the MCP-1 level 

was doubled compared to nonobese subjects (Dahlman, Kaaman et al., 2005). Skurk et al. 

(2007) also suggested that adipocyte size may be a key determinant of adipokine secretion. 

There was a notable increased expression of proinflammatory adipokines mainly as a result 

of hypertrophic adipocytes (Skurk, Alberti-Huber et al., 2007).  

 

We expected that fish oil would reduce inflammation, but still the results seen can indicate 

the opposite. What distinguishes our study from the previous studies (Ruzickova, Rossmeisl 

et al., 2004; Sierra, Lara-Villoslada et al., 2006), that show an anti-inflammatory effect when 

using fish oil, is the different amount of sucrose prepared in the diet. Actually, sucrose 

appears to be a main contributor to adipose tissue inflammation. Earlier studies support this 

view, among others Morohoshi et al. (1995, 1996) demonstrated that isolated human 

monocyte from healthy volunteers incubated with glucose, gave significantly increased TNF-

α and IL-6 mRNA levels when increasing the level of glucose (Morohoshi, Fujisawa et al., 

1995; Morohoshi, Fujisawa et al., 1996). Also in a vivo study by Aljada et. al. (2006) observed 

that oral glucose ingestion in healthy human subjects resulted in an increased NF-κB binding 

and TNF- α expression level (Aljada, Friedman et al., 2006). In addition, increased IL-6 levels 

have been observed during hyperglycaemic, but not during normoclycemic clamp (Krogh-

Madsen, Moller et al., 2004). However, it should be noted that IL-6 and TNF-α levels have 

been reported to be decreased after a carbohydrate-enriched meal in type 2 diabetes mellitus 

patients (Manning, Sutherland et al., 2004). 

 

A diet enriched in sucrose also leads to secretion of insulin. Unfortunately, we were not able 

to obtain statistical difference in this experiment when measuring plasma insulin in the state 

due to large individual variations within the groups (figure 3.24). However, given that insulin 

is secreted from the pancreatic β-cells in response to glucose, it should be mentioned that 

insulin is reported to activate NF-κB in different cell systems, by inducing phosphorylation 

of IκB (Bertrand, Atfi et al., 1998; Bertrand, Desbois-Mouthon et al., 1999; Bertrand, Philippe 
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et al., 1995; Pandey, He et al., 2002; Zhou and Kuo, 1997). This might be of importance as 

activation of the NF- κB system appears to represent a link between obesity, inflammation of 

adipose tissue, and insulin resistance (Arkan, Hevener et al., 2005; Kim, Kim et al., 2001; 

Shoelson, Lee et al., 2003). Thus, the glucose component in the diet might contribute to 

development of adipose tissue inflammation directly, or indirectly by stimulating insulin 

secretion and thereby NF- κB activation. Why fish oil fails to reduce inflammation when 

combined with sucrose remains an open question. 

4.4 THE EFFECT OF THE DIFFERENT DIETS ON METABOLISM 

In an attempt to gain insight into what metabolic pathways that were influenced by the 

different diets given, we measured plasma levels of TAG. The lowering effect of fish oil on 

plasma TAG concentration is well documented (Flachs, Mohamed-Ali et al., 2006; 

Nascimento, Barbosa-da-Silva et al., 2009; Riediger, Othman et al., 2008). Flachs et al (2006) 

showed that mice with free access to food enriched with EPA and DHA had lower plasma 

TAG levels. Our results showed no significant difference between the treatment groups of 

plasma TAG levels. Again, it should be mentioned that we had plasma obtained from mice 

in the fed state only. The lack of statistical difference is probably due to large individual 

variations within the groups. The plasma levels of TAG, indeed tended to be lower in the 

fish oil + protein group. It was also observed that when fish oil was given in combination 

with sucrose, the TAG lowering effect was somewhat abolished (figure 3.22). Thus, the 

TAG lowering effect appears to be more efficient when fish oil is fed in combination with 

protein.  

 

Another plasma parameter measured was hydroxybutyrate, which was also the only 

parameter showing significant difference between the treatment groups. Higher 

hydroxybutyrate indicate higher fatty acids oxidation (Cahill, 2006). Since mice consuming 

fat combined with protein accumulate less fat in adipose tissue, we can assume that these 

mice burn fat, whereas mice consuming fat in combination with sucrose store this fat in 

adipose tissue. If this is true, differences in fatty acid composition should be noticed in 

adipose tissue. Our results showed that the accumulation of n-3 fatty acids were higher in 

adipose tissue (eWAT) for the group when fish oil was in combination with sucrose than 



DISCUSSION 

 

 

89

protein (table 3.5). Likewise are the results for the corn oil diets, which showed a higher 

incorporation of n-6 fatty acids in eWAT for the group fed corn oil in combination with 

sucrose. This is especially pronounced when data is calculated as mg/g sample (absolute 

values), but can also be seen when data is presented as relative fatty acid composition (table 

3.6). This effect was however far less pronounced in RBC. Looking at absolute values in 

table 3.1, the levels of n-3 are 9.72 % higher in RBC isolated from mice fed fish oil + 

sucrose than fish oil + protein, whereas the levels of n-3 are 31.95 % higher in eWAT from 

mice fed fish oil + sucrose than fish oil + protein. The fatty acid composition in RBC has 

been reported to reflect the amount of fish oil ingested from the diet. Cao et al. (2006) 

showed that fish oil supplements increased the erythrocyte membrane EPA and DHA by 

300% (Cao, Schwichtenberg et al., 2006). On the protein based diet we observed 554.55 % 

higher levels of n-3 in RBC when corn oil was exchanged with fish oil (table 3.1). On the 

sucrose based diet the difference was 276.19% (table 3.1). Thus, the levels of n-3 fatty acids 

in RBC were far higher for the fish oil groups compared to the corn oil groups (table 3.1 and 

3.2). Although the statistical analysis did not show any significant difference of n-3/n-6 in 

RBC between the control group and the fish oil + sucrose group, we can see that the 

incorporation level is quite different. The reason for not obtaining statistical difference is 

because the data failed the homogeneity of variance test, due to large individual variations 

within the group. Thus, a non-parametric test; Kruskal-Wallis was used.  

 

Another phenomenon observed from the fatty acid composition results in liver and eWAT 

(table 3.5 and 3.6), was that sucrose in the diet led to higher amounts of monounsaturated 

fatty acids than the groups receiving protein. This might be due to the de novo fatty acid 

synthesis, which is increased when fed a high-carbohydrate diet (Chong, Fielding et al., 2007). 

Steraoyl-CoA desaturase (SCD) is an enzyme catalyzing the synthesis of monounsaturated 

fatty acids from saturated fatty acids (Flowers and Ntambi, 2009; Ntambi, Miyazaki et al., 

2002). The relative expression level of SCD1 was also increased for the mice fed sucrose in 

the diet, in combination with corn oil and also for the control group (figure 3.25). This might 

be of importance also in relation to obesity development, as hepatic SCD1 deficiency is 

reported to be sufficient to protect mice against high-carbohydrate-induced obesity 

(Miyazaki, Flowers et al., 2007).  
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The sterol regulatory element-binding proteins (SREBPs) enhance transcription of genes 

encoding enzymes of cholesterol and lipid synthesis and uptake (Shimomura, Bashmakov et 

al., 1999). The relative expression level of SREBP-1c was significantly lower for the fish oil 

+ protein compared to the control group (figure 3.25). PUFAs are in general known to 

reduce expression of SREBP-1c, but the results showed that sucrose in the diet prevented 

this inhibition.  

 

In conclusion, the results indicate that sucrose may be the main adipogenic factor, because 

of its ability to direct fat on to adipose tissue, and the fish oil could not prevent this. It also 

seems like sucrose is attenuating the known positive effects of fish oil, (i.e. TAG lowering 

effect and SREBP-inhibition).  

4.5 FUTURE REMARKS 

This study shows that the carbohydrate to protein ratio determines the adipogenic potential 

of both corn oil and fish oil. Sugar leads to inflammation of adipose tissue. In sharp contrast 

to our hypothesis, fish oil did not protect the mice against adipose tissue inflammation, but 

rather enhanced the process compared to corn oil.  

 

Increased levels of cytokines, glucose, insulin, free fatty acids and triacylglycerol indicate 

insulin resistance. In this study we only have plasma samples from fed-state, so we can not 

draw any conclusions about the diabetic state. Blood sampling of mice in fasted state should 

be carried out. In addition, a glucose tolerance test should be performed, which is easier than 

performing the gold standard hyperinsulinemic euglycemic clamp experiments.   

 

Even though there were not observed any “crown-like structures” in the adipose tissue 

sections, inflammation can not be excluded.  Immunohistochemistry analysis to further 

assess the macrophage infiltration state with CD68 or F4/80 anti body stain should be 

performed. These genes are macrophage specific-markers that can detect macrophages in the 

adipose tissue, thus immunohistochemistry analysis can give a good additional assessment 

regarding the inflammation state.   
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The data obtained from this study opens some important questions; are fish oil always 

healthy? Does sugar also attenuate other reported beneficial effects of fish oil? Even though 

statistical significance was not obtained, the data indicated that sugar also attenuated the 

triacylglycerol lowering effect of fish oil. Sucrose was combined with fish oil in this study. 

Although people are not expected to use sugar on their fish, it is often eaten with other types 

of carbohydrate rich-food, such as bread and potatoes. Thus, further investigation is needed 

to elucidate if the question raised also concerns human nutritional recommendations. 
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5 CONCLUSIONS  

The aim for this study was to find out whether the type of dietary fat can modulate 

inflammation. In addition, was the objective to investigate the diets’ interaction of 

macronutrients in the development of obesity, and estimate whether the carbohydrate to 

protein ratio could influence the inflammatory response.  

 

What are the effects of the different diets on body weight- and obesity development? 

A high carbohydrate to protein ratio in the diet gave the greatest body weight development, 

and the weight gain was highest in combination with fish oil. Increased adipose tissue mass 

and hypertrophied adipocytes from histology assessments might be due to the sucrose in the 

diet as well. Mice fed fish oil + protein had smaller adipocytes compared to the mice fed low 

energy.  

 

What are the effects of the different diets on adipose tissue inflammation? 

A high carbohydrate to protein ratio in the diet led to higher relative expression levels of 

macrophage markers and proinflammatory cytokines in adipose tissue. Fish oil in the diet did 

not protect against adipose tissue inflammation when fed in combination with sucrose, 

compared to corn oil. However, fish oil given in combination with protein tended to lower 

the inflammatory response. It is also plausible that the glucose or insulin level is responsible 

for the inflammation process seen in adipose tissue.  

 

What are the effects of the different diets on metabolism? 

The TAG lowering effect of fish oil was somewhat abolished when given in combination 

with sucrose. Sucrose in the diet led to higher accumulation of n-3 fatty acids in combination 

with fish oil, and higher accumulation of n-6 fatty acids in combination with corn oil in 

adipose tissue (eWAT). This indicates that sucrose may be the main adipogenic factor. 

Sucrose in the diet also led to higher amounts of monounsaturated fatty acids in liver and 

eWAT.  

 

All the findings showed that negative health effects due to a high-fat diet are not dependent 

on the fat source alone, but also the interaction between the different macronutrients is of 

significance. 
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APPENDIX 

Appendix I -Fatty acid composition  

Table A.1: Fatty acid composition of the diets expressed in mg fatty acid/g sample 

Fatty acids Diets  
mg/fatty 

acid/g sample 
Low energy Fish oil 

+ Protein 
Fish oil 

+ Sucrose 
Corn oil 

+ Protein 
Corn oil + 

Sucrose 

SFA      
14:0 0,15 9,7 9,9 0,3 0,3 
15:0 0,00 0,8 0,8 0,0 0,0 
16:0 6,95 30,3 31,0 24,0 24,0 
17:0 0,07 0,6 0,7 0,0 0,0 
18:0 2,13 5,9 6,8 4,0 4,1 
20:0 0,17 0,8 1,1 0,0 0,0 
22:0 0,00 0,0 0,0 0,0 0,0 
24:0 0,10 0,0 0,0 0,1 0,0 

 
MUFA 

     

14:1n-9 0,00 0,0 0,0 0,0 0,0 
16:1n-9 0,00 0,7 0,6 0,0 0,0 
16:1n-7 0,09 11,2 11,3 0,4 0,4 
18:1n-11 0,00 0,0 0,0 0,0 0,0 
18:1n-9 15,72 29,8 29,4 60,9 60,9 
18:1n-7 1,08 4,5 5,3 1,3 1,3 
20:1n-11 0,00 0,1 0,0 0,0 0,0 
20:1n-9 0,15 2,2 2,3 0,3 0,3 
20:1n-7 0,00 0,3 0,3 0,0 0,0 
22:1n-11 0,00 1,6 1,5 0,0 0,0 
22:1n-9 0,00 0,0 0,0 0,0 0,0 
24:1n-9 0,00 0,6 0,6 0,0 0,0 

 
n-6 

     

18:2n-6 32,48 37,3 39,0 117,8 117,3 
20:2n-6 0,00 0,0 0,0 0,0 0,0 
20:3n-6 0,00 0,0 0,0 0,0 0,0 
20:4n-6 0,22 1,6 1,6 0,0 0,0 

 
n-3 

     

16:3n-3 0,00 1,5 1,5 0,0 0,0 
16:4n-3 0,15 3,4 3,2 1,2 1,1 
18:3n-3 3,39 1,8 5,1 1,6 1,6 
18:4n-3 0,00 5,2 5,3 0,0 0,0 
20:4n-3 0,00 1,5 0,7 0,0 0,0 
20:5n-3 0,00 26,5 26,7 0,4 0,5 
22:5n-3 0,00 2,8 2,8 0,0 0,0 
22:6n-3 0,00 17,9 18,0 0,2 0,3 

      
∑ n-3 3,54 60,6 63,4 3,3 3,5 
∑ n-6 32,70 38,9 40,7 117,8 117,3 

n-3/n-6 0,1 1,6 1,6 0,0 0,0 
          SFA: saturated fatty acid, MUFA: monounsaturated fatty acid 
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Chemicals and reagents 

Appendix II- RNA extraction  

Table A.2: Chemicals and reagents used in RNA extraction. 

Product name Vendor 

Trizol Invitrogen art. no. 15596-026, USA 

Chloroform  Merck, Germany 

Isopropanol (2-propanol) Arcus kjemi, Norway 

Ethanol  Arcus kjemi, Norway 

DEPC Sigma art. no. F32490, USA 

RNase free ddH2O MilliQ Gradient, Lab-tec, Norway 

DNA free kit Ambion art. no. 1906, USA 

Appendix III-RNA quality on Bioanalyzer (RNA 6000 Nano) 

Table A.3: Chemicals and reagents used in RNA quality on Bioanalyzer . 

Product name Vendor 

RNA 6000 Nano LabChip kit  Agilent Technologies art. nr 5065-4476 

RNA 6000 ladder Ambion art. nr 7152 

RNase free ddH2O MilliQ Gradient, Lab-tec, Norway 

Appendix IV-RT-reaction  

Table A.4: Chemicals and reagents used in RT-reaction. 

Product name Vendor 

TaqMan RT buffer 10X 

25 mM Magnesium chlorid 

10 mM deoxyNTPs 

50 µM Oligo d(T)16 primer 

RNase inhibitor (20 U/µl) 

Multiscribe reverse transcriptase (50 U/µl) 

RNase free ddH2O 

Applied Biosystems art. no. N808 0234 

Applied Biosystems art. no. N808 0234 

Applied Biosystems art. no. N808 0234 

Applied Biosystems art. no. N808 0234 

Applied Biosystems art. no. N808 0234 

Applied Biosystems art. no. N808 0234 

MilliQ Gradient, Lab-tec, Norway 
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Appendix V- Quantitative Real-Time PCR 

Table A.5: Chemicals and reagents used in quantitative real- time PCR. 

Product name Vendor 

SYBR GREEN Master Roche, Norway 

Primer (see table A.6) Invitrogen Ltd, UK 

RNase free ddH2O MilliQ Gradient, Lab-tec, Norway 

 

Table A.6: List of primers obtained from Invitrogen Ltd, UK used in quantitative real- time PCR. 

Housekeeping gene Sequence 5’ ���� 3’ 

TBP Forward     ACC CTT CAC CAA TGA CTC CTA TG  

Reverse     ATG ATG ACT GCA GCA AAT CGC  

Calnexin Forward     GCA GCG ACC TAT GAT TGA CAA CC 

Reverse     GCT CCA AAC CAA TAG CAC TGA AAG G 

Beta-actin Forward    ATG GGT CAG AAG GAC TCC TAC G  

Reverse     AGT GGT ACG ACC AGA GGC ATA C 

Primer  Sequence 5’ ���� 3’ 

TNF- alpha Forward    CCC TCA CAC TCA GAT CAT CTT 

Reverse     GCT ACG ACG TGG GCT ACA G 

IL-6 N Forward    CCT CTC TGC AAG AGA CTT CC 

Reverse     AGA ATT GCC ATT GCA CAA CTC 

MCP-1 Forward     GTG TTG GCT CAG CCA GAT GC 

Reverse     GCT TGG TGA CAA AAA CTA 

PAI1 Forward     AGC GGG ACC TAG AGC TGG TC 

Reverse     CCA GTA AGT CAT TGA TCA TAC CTT TGGT 

STAMP2 Forward     TCA AAT GCG GAA TAC CTT GCT 

Reverse     GCA TCT AGT GTT CCT GAC TGG A 

F4/80 Forward     CTT TGG CTA TGG GCT CTC AGT C 

Reverse     GCA AGG AGG ACA GAG TTT ATC GTG 

CD68 Forward     CTT CCC AGA GGC AGC ACA G 

Reverse     AAT GAT GAG AGG CAG CAA GAG G 

PPAR-gamma Forward     ACA GCA AAT CTC TGT TTT ATG C 

Reverse     TGC TGG AGA AAT CAA CTG TGG 

Pref-1 Forward     TTC TGC GAA ATA GAC GTT CGG 

Reverse      TCG TTC TCG CAT GGG TTA GG 

Adiponectin Forward     GAT GGC AGA GAT GGC ACT CC 

Reverse     CTT GCC AGT GCT GCC GTC AT 

UCP1 Forward     AGC CGG CTT AAT GAC TGG AG 

Reverse     TCT GTA GGC TGC CCA ATG AAC 



APPENDIX 

 

 

109

Primer Sequence 5’ ���� 3’  

SREBP-1c Forward     GGA GCC ATG GAT TGC ACA TT 

Reverse     GCT TCC AGA GAG GAG GCC AG 

SCD1 Forward     ACA CCT GCC TCT TCG GGA TT 

Reverse      TGA TGC CCA GAG CGC TG 

Appendix VI-Histological methods 

Table A.7: Chemicals and reagents used in fixation, dehydration, embedding and cutting of tissues. 

Product name  Vendor 

4 % formaldehyde  Merck art. no. 1.04003.1000 

NaH2PO4 x H2O  Merck art. no. 1.06346.0500 

Na2HPO4 x 2H2O Merck art. no. 1.06580.0500 

Ethanol (100 %) Arcus kjemi, Norway 

ddH2O MilliQ Gradient, Lab-tec, Norway 

Methanol  Merck art. no. 1.06018.2500 

Xylene Prolabo art. no. 28973.328 

Haematoxylin  Chemi-teknik AS, Norway 

Eosin Y Chemi-teknik AS, Norway 

Microscopy Entellan Merck, Germany 

Appendix VII-ELISA 

Table A.8: Reagents in Insulin Mouse Ultrasensitive ELISA kit for 96 wells.   

Product name Vendor 

Insulin Mouse Ultrasensitive ELISA kit: DRG Instruments GmbH, Germany 
Standard 0                              Lot no. 17609 
Standard 1 (0.175 µg/l)           Lot no. 17599 
Standard 2 (0.45 µg/l)             Lot no. 17600 
Standard 3 (1.0 µg/l)               Lot no. 17601 
Standard 4 (2.5 µg/l)               Lot no. 17602 
Standard 5 (6.5 µg/l)               Lot no. 17603 
Coated plate                            Lot no. 15771 
Enzyme conjugate 11X           Lot no. 15878 
Enzyme Conjugate Buffer       Lot no. 17606 
Wash Buffer 21 X                   Lot no. 17557 
TMB Substrate solution          Lot no. 15873 
Stop Solution 0.5 M H2SO4        Lot no. 17561 
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Appendix VIII - RNA quality and quantification on the Nanodrop ND-100 

 

Table A.9: RNA concentration and A260/A280 and A260/A230 from measurements on nanodrop. 

eWAT – Nanodrop measurements iWAT – Nanodrop measurements 
Mice 
no. 

[RNA] 
ng/µl A260 260/280 260/230 Mice no. 

[RNA] 
ng/µl A260 260/280 260/230 

1 1950,34 48,76 2,00 1,77 1 354,56 8,86 1,94 2,19 
2 285,08 7,13 1,89 2,07 2 263,98 6,60 1,88 2,22 
3 1500,84 37,52 1,99 1,77 3 1210,80 30,27 2,02 2,18 
4 391,18 9,78 1,95 2,06 4 363,46 9,09 1,91 2,20 
5 332,36 8,31 1,95 2,14 5 417,42 10,44 1,97 2,14 
6 302,84 7,57 1,93 2,10 6 854,01 21,35 2,02 2,22 
7 224,96 5,62 1,96 2,12 7 493,12 12,33 1,99 2,19 
8 830,66 20,77 1,94 2,07 8 1074,97 26,87 2,05 2,20 
9 622,21 15,56 2,01 1,71 9 696,54 17,41 2,00 2,20 
10 65,19 1,63 1,90 2,19 10 582,83 14,57 1,97 2,24 
11 348,61 8,72 1,91 2,19 11 615,92 15,40 2,01 2,00 
13 574,12 14,35 1,98 2,20 13 948,28 23,71 2,00 2,20 
14 1000,76 25,02 2,01 1,84 14 701,78 17,54 1,95 2,23 
15 208,15 5,20 1,84 2,18 15 861,68 21,54 1,99 2,15 
16 315,73 7,89 2,04 1,91 16 826,41 20,66 2,07 2,24 
17 314,64 7,87 2,05 1,79 17 568,38 14,21 1,97 2,13 
19 223,11 5,58 2,03 1,70 19 44,88 1,12 1,83 1,75 
20 628,31 15,71 2,07 1,96 20 439,68 10,99 1,98 2,20 
21 409,85 10,25 2,03 2,19 21 993,88 24,85 2,02 2,22 
22 264,82 6,62 1,94 2,23 22 59,06 1,48 1,84 2,32 
23 584,04 14,60 2,08 1,72 23 843,66 21,09 2,00 2,10 
24 389,25 9,73 1,92 1,98 24 532,08 13,30 1,97 2,23 
25 655,59 16,39 1,98 2,19 25 737,08 18,43 2,07 2,21 
26 627,96 15,70 1,97 2,17 26 288,37 7,21 2,01 2,20 
27 239,87 6,00 1,99 2,17 27 766,95 19,17 1,97 1,98 
28 459,85 11,50 2,03 1,71 28 777,92 19,45 2,05 2,21 
29 301,91 7,55 2,00 2,13 29 396,51 9,91 1,95 2,23 
30 976,07 24,40 2,05 1,82 30 995,76 24,89 2,04 2,21 
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Appendix IX- RNA integrity on the Bioanalyzer (RNA 6000 Nano) 

 

 

Figure A.1: Results from the Bioanalyzer displayed as a gel-like image and electropherograms. RNA from 

a selection of adipose tissue (eWAT, iWAT, rWAT and iBAT) samples is presented with RINs.  

 


