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The Cutwidth problem is a notoriously hard problem, and its complexity is

open on several interesting graph classes. Motivated by this fact we investigate

the problem on superfragile graphs, a graph class on which the complexity of

the Cutwidth problem is open. We give an algorithm that solves Cutwidth

on superfragile graphs in O(n2) time and O(n) space, thus resolving the com-

plexity of the Cutwidth problem on superfragile graphs. We also explore the

usefulness of the algorithm for cutwidth on threshold graphs by Heggernes,

Lokshtanov, Mihai and Papadopoulos [21] as an approximation algorithm for

cutwidth on other graph classes. The Cutwidth problem is NP-hard for gen-

eral graphs and a brute force algorithm would require O(n!) time. We give two

faster algorithms solving the Cutwidth problem: One algorithm applying dy-

namic programming that runs in O∗(2n) time and space, and one algorithm

that runs in O∗(4n) time and O(n · log(n)) space by applying the divide-and-

conquer technique. Finally we take a look at a similar problem called Opti-

mal Linear Arrangement and suggest algorithms for solving the problem

on threshold graphs and superfragile graphs in polynomial time.
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Chapter 1

Introduction

Imagine being a member of a conference organizing committee. You are about

to rent a venue for the conference, and being careful with money, you want to

pay as little as possible. The cost of the venue is directly related to the capacity

of its waiting area. Therefore you want to find the venue with the lowest

capacity that can accommodate all the participants. You know that the people

attending this conference are of a special kind. They all have exactly two

favorite talks which they will attend. Since they are all highly eccentric, none

of them share the same preference of the two same talks. Between every talk

there is a fifteen-minute break, which the attendants must spend in the waiting

area. An attendant will not enter the waiting area before his first favorite talk

has ended, and will stay at the waiting area until his second favorite talk starts.

Knowing this, how can you find out the lowest capacity required, and in which

order should the talks be scheduled?

This can be modeled as a graph, where every talk is a vertex, and every person

forms an edge between the vertices corresponding to his two favorite talks.

Now, for an integer k, the capacity of the waiting area the problem becomes

the following: Find an ordering of the vertices, from left to right, such that

for all vertices, the number of edges going between the vertices on its left,

including itself, and the vertices on its right is less than or equal to k.

Let us give a concrete example: Adam and Beatrice are responsible for arrang-

ing the annual LA (Letters Association) conference on the first five letters in the

alphabet, and they have promised every VILP (Very Important Letter Person)

a massage chair between the talks. VILPs are as any other conference-goers,

1
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Figure 1.1: a) The graph representation of the LA talks. b) Adam’s
suggestion c) Beatrice’s suggestion.

they only attend two talks and none of them share interest in the same pair

of talks. There are six VILPs attending the conference in total, their names are

hidden for discretion, but their preferences are known: {A, C}, {A, D}, {B, C},
{B, D}, {B, E}, {C, D}. Adam says that they should do like every year, arrange

the talks in lexicographical order. Beatrice however, disagrees, she thinks that

the talk about letter B should be held second to last. Adam is outraged by

this radical suggestion and demands an explanation of this insanity. Beatrice

draws a graph modelling the connection between VILPs and the talks, as seen

in Figure 1.1. She explains that Adam’s suggestion would require five mas-

sage chairs while her suggestion only requires three and thus saving LA for a

substantial amount of money. Adam’s inclination towards order eagers him to

object, but he realizes fast that there is no point in arguing against math.

What Beatrice did was solve the Cutwidth problem, a problem so hard to

solve that it has been shown to belong to a class of problems named NP-

complete [18]. Solving this problem efficiently would be equivalent to solving

all problems in NP efficiently. Before a precise definition is given, necessary

definitions and terminologies will be introduced.

1.1 Definitions and notations

We define a S1, S2, . . . , Si as a partition of a set S if S1 ∪ S2 ∪ · · · ∪ Si = S and

|S1|+ |S2|+ · · ·+ |Si| = |S|. A graph G = (V, E) consists of a set of vertices

V, also denoted by V(G), and a set of edges E, also denoted by E(G). A pair

of vertices (u, v) is an edge in G if (u, v) ∈ E(G). A graph is simple if there is
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at most one edge between every pair of vertices, and there is no edge between

a vertex and itself. In this thesis, all graphs will be simple, unless otherwise

stated. Two vertices, u, v, are neighbors if (u, v) ∈ E. Equivalently, a vertex u is

in the neighborhood of vertex v if u and v are neighbors. The open neighborhood

of vertex v, denoted by N(v), is the set of all vertices u such that u and v are

neighbors. The open neighborhood of a set S ⊆ V(G), denoted N(S) is the set

of all vertices u /∈ S such that such that (u, v) ∈ V(G) for a vertex v in S. The

closed neighborhood of v, denoted N[v], is the open neighborhood of v plus v

itself. Similarly the closed neighborhood of a set S ⊆ V(G), denoted N[S] is the

open neighborhood of S plus the vertices of S. Given a set S, the cardinality of

S, denoted |S|, is the number of elements in S. The degree of a vertex v, denoted

deg(v), in graph G is the cardinality of the open neighborhood of v. The degree

of a set S ⊆ V(G), denoted deg(S), is the number of edges (u, v) ∈ E(G) such

that u ∈ S and v ∈ V(G) \ S. Vertex v is universal in G if all vertices in V(G) are

in the closed neighborhood of v. A vertex v is isolated in G if for all u ∈ V(G),

(u, v) 6∈ E(G). We define the degree of a vertex v with respect to a set of

vertices S, degS(v), to be the cardinality of N(v) ∩ S.

A graph H is a subgraph of graph G if V(H) ⊆ V(G) and E(H) ⊆ E(G). Given

a set S of vertices, G[S] denotes the induced subgraph of G induced by S. G[S]

is a graph consisting of the vertices of S and all edges (u, v) ∈ E(G) such that

both u, v ∈ S. For a given graph H, graph G is H-free if there does not exist

any set S ⊆ V(G) such that H is isomorphic to G[S]. A disjoint union of two

graphs, G1 and G2, is a graph G such that V(G) is the disjoint union of V(G1)

and V(G2), and E(G) is the disjoint union of E(G1) and E(G2).

A sequence of vertices v1, v2, . . . , vk−1, vk ∈ V(G) is a path of length k− 1 in G

if (v1, v2), (v2, v3), . . . ,(vk−1, vk) ∈ E(G), and it is a cycle of size k if (vk, v1) is

also in E(G). Ck is the graph consisting only of a cycle of size k. Pk is the graph

consisting of k vertices such that E(Pk) = (v1, v2), (v2, v3), . . . ,(vk−1, vk). Graph

G is connected if there is a path between every pair of vertices u, v ∈ V(G). A

clique in G is a set of vertices in G such that every pair of vertices in the set

are neighbors. A universal clique C in G is a clique in G such that the closed

neighborhood of C is V(G). Kk is the graph consisting only of a clique of size

k. A set of vertices S ⊆ G is an independent set if (u, v) /∈ E(G) for all v, u ∈ S.

A set of vertices S ⊂ V(G) is a vertex cover if for all edges (u, v) ∈ E(G), u ∈ S

or v ∈ S.
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A clique K of graph G is maximal if there is no v ∈ V(G) \ K such that K ∪ {v}
is also a clique. A maximal clique K in graph G is maximum if there is no clique

L in G such that |L| > |K|.

A linear ordering of the vertices of G is a bijective function σ : V(G)↔
{1, 2, . . . , |V(G)|}. A vertex v is to the left of vertex u if σ(v) < σ(u). A vertex v

is to the right of vertex u if σ(v) > σ(u). We will sometimes also denote a linear

ordering by σ =< v1, v2, . . . , vn >, meaning that σ(vi) = i for 1 ≤ i ≤ n. The

cut between two consecutive vertices vi, vi+1 in σ is the set of edges with one

endpoint in {v1, . . . , vi} and the other endpoint in {vi + 1, . . . , vn}. The size of

the cut is the number of edges in it. Given an ordering σ of G, we define Vi

to be the set of vertices {σ−1(1), σ−1(2), . . . , σ−1(i)} i.e, the first i vertices in

the ordering. We define the size of the cut between two close vertices, u and

v where σ(u) + 1 = σ(v), as deg(Vσ(u)). The cutwidth of an ordering σ of G,

cutwidth(σ, G), is maxi(deg(Vi)). A linear ordering σ of G is optimal if there is

no linear ordering σ∗ of G such that cutwidth(σ∗, G) < cutwidth(σ, G). The

cutwidth of a graph G, cutwidth(G), is cutwidth(σ, G), where σ is an optimal

linear ordering of G.

Unless stated otherwise, n refers to |V(G)|, the numbers of vertices in the input

graph G. By m we mean |E(G)|, the number of edges in the input graph G,

unless stated otherwise.

1.2 O-notation

How to measure the performance of algorithms? Measuring the time used

running on a specific computer can be problematic. First of all, computers are

different from each other, and some handle certain tasks better than others. The

choice of computers used could be a huge discussion in itself. On what input

should the algorithm be run on? Is the implementation optimal? There are

many factors that come into play. Thankfully there is a simpler way to measure

the performance of algorithms. Instead of actually taking the time spent on a

computer, we express the maximum number of constant time operations used

on an input of size n as a function f (n). However, some algorithms might

require less operations than others on certain inputs. To cope with this, a

notation called big O is introduced. Given an algorithm A and a function
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fA(n) describing the worst running time on input of size n, we say that fA(n)

is O(g(n)) if there is a constant c and an integer k such that fA(n) ≤ c · g(n)
for all n ≥ k. We say that the running time of algorithm A is O(g(n)) if fA(n)

is O(g(n)). If algorithm A uses at most 3 · n2 + 13 · n + 100 operations, we

say that algorithm A runs in time O(n2), as for all n > 1, 1000 · n2 is larger.

An algorithm A is efficient if there is a polynomial function f (n) such that the

running time of A is O( f (n)). We say that f (n) is linear if f (n) is O(n).

O-star-notation The O∗-notation is similar to the big O; instead of just exclud-

ing the constant factors, all polynomial factors are also excluded. For example

O(2n · n2) is O∗(2n). The O∗-notation becomes useful when comparing expo-

nential functions.

Big Omega and Big Theta There are also two other notations related to the

big O. A function f (n) is big Omega of a function g(n), Ω(g(n)), if there exist

a constant c > 0, such that f (n) ≥ c · g(n) for all n larger than some constant.

We say that a function f (n) is big Theta of a function g(n), Θ(g(n)), if f (n) is

both O(g(n)) and Ω(g(n)).

1.3 Complexity classes

Given two problems, A and B, is there any objective way to judge which one

is the hardest? If it is possible to transform all instances of A into instances

of B efficiently, such that a solution to B yields a solution to A, we say that A

is reducible to B. Such transformations are called reductions. By efficiently, we

mean that the time used to compute the reduction is polynomial in the input

size of A. In this case, it is easy to see that B is at least as hard as A, since any

efficient solution to B immediately gives an efficient solution to A. Consider

all problems that can be solved by polynomial-time algorithms and put them

into a class called P, for polynomial time. Then consider all problems that

are verifiable in polynomial time, defined as follows. Given an instance of the

problem, and a suggestion of a solution, if we can decide in polynomial time

whether the suggestion is correct, then we say that the problem is polynomial-

time verifiable. The class consisting of all problems verifiable in polynomial
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time is called NP. Clearly all problems in P are also in NP, the verifier can

just run the algorithm itself and compare the answer. Are all problems in NP

also in P? The answer to this question is not known. This question is one of

the seven Millennium Prize Problems given by Clay Mathematics Institute [1].

An answer to any of these problems grants a prize of one million US dollars.

For more information on computational complexity we will refer to the book

“Introduction to the Theory of Computation” by Michael Sipser [30].

Space complexity Some algorithms need to remember previously computed

values and these values have to be stored somewhere. In the computer world

this usually means some storage device as hard disk drives or random-access

memory. Similar to time, the amount of storage used by an algorithm is de-

scribed by some function f (n). As with time, we usually express the space

complexity in O-notation and O∗-notation.

NP-Completeness A problem is NP-hard if all problems in NP are reducible

in polynomial time to this problem. Finding a polynomial time algorithm solv-

ing such a problem would thus imply P=NP. A problem is NP-complete if it is

NP-hard and it is a member of NP. In 1971 Stephen Cook published a paper

[11] which proved that any problem in NP could be reduced in polynomial

time to the Satisfiability problem, commonly shortened to Sat. The Sat

problem is also verifiable in polynomial time, thus it became the first prob-

lem to be known as NP-complete. From then on it became enough to give a

polynomial reduction from Sat to show that a problem is NP-hard. Once a

problem is shown to be NP-hard, the hope for finding a polynomial-time al-

gorithm withers. However, there are ways to cope with NP-hardness, some of

which are mentioned below:

Approximation In optimization problems one wants to minimize or maximize

some parameter of the solution. We denote such maximum or minimum as

optimum or OPT for short. Sometimes it is deemed too costly to compute an

optimum solution, but a solution that is good enough is welcome. However, the

notion of good enough is not precise, so a precise measure is needed. This is

where approximation algorithms come into play. An approximation algorithm

has a guarantee that it will never be further away from the optimum than
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some r, which can be a constant or a function dependent on the input. We

say that an algorithm is r-approximate if it always gives solutions that are less

than or equal to r ·OPT on minimization problems, and more than or equal

to 1
r ·OPT on maximization problems. A classical example on approximation

is the 2-approximation-algorithm for the Minimum Vertex Cover problem

which asks to find a vertex cover of smallest cardinality. The approximation

algorithm picks an edge none of whose endpoints are yet in the vertex cover,

and adds both endpoints to the vertex cover. Since any solution must have at

least one of the endpoints of an edge, this algorithm will give a solution that

is at most twice the size of the optimum on any graph. For more information

on approximation we will refer to the book “Complexity and Approximation”

[2].

Heuristics Heuristics are algorithms that give good and/or fast solutions in

practice, but an approximation bound does not exist or is not yet known.

Heuristics may perform bad on particular types of input, but in real world

applications these situations are not likely to occur or does not even happen at

all. An example of this are algorithms that solve problems on road networks

(see Figure 1.2). First of all a road network is rather sparse; there are none or

few vertices of high degree. Secondly the roads are located in euclidean space,

so for finding shortest paths it is usually a good idea to go towards the desti-

nation spatially, thus techniques as is seen in the A*-algorithm [20] can reduce

the running time in practice.

Oslo
E39

Bergen

Stavanger
E39

E6

Kristiansand

Gothenburg

Ålesund

Stockholm

E6E18

E18

E39

E39

E16

Trondheim

Figure 1.2: Selected highways in Norway.



Chapter 1. Introduction 8

Restricted Input Instead of an algorithm that works on general input, we can

instead limit the allowed input. For example, restricting the input to graphs

with certain structural properties. This can be shown useful in the real world

as many problems properties that might make the problem easier to solve. For

example a graph representation of a river would in most cases be directed and

acyclic and one might be able exploit this fact to solve problems related to

rivers faster.

Faster exact algorithms If we require the solution of an NP-Hard problem

to be general and exact, then there is no polynomial-time algorithm unless

P=NP. But there is still room for improvement. A naive algorithm for the Min-

imum Vertex Cover problem is to try all subset of vertices, which takes O∗(2n)

time. A clever algorithm by Robson [29] has a running time of O∗(1.18882n).

Disregarding polynomial factors the difference in maximum input size is lin-

ear. Looking at the O-notation alone and disregarding polynomial factors we

can see that the naive algorithm for Minimum Vertex Cover can compute on

30 vertices in around one billion operations, while the faster algorithm could

compute around 120 vertices in the same amount of operations. While one

could argue that this improvement is small, another interesting look is how

many years of hardware development needed to achieve the improvement of

the new algorithm using the old one. Let us assume that the average computer

today can do one billion operations per second, and an optimistic assumption

that the number of operations per second will double every second year. It

would take 180 years until we could compute for 120 vertices using the naive

algorithm. This is a poor scientific measure because the difference in number

of operations depends on the parameters we measure within, in particular the

amount of operations currently done in a given timeframe. A better measure

would be how many times more vertices the clever algorithm can process in the

same timeframe as the naive algorithm. In this case the clever algorithm can

process roughly 4 times as many vertices as the naive algorithm in the same

timeframe. This can be seen as log(2)
log(1.1882) ≈ 4.02. An important milestone in the

field of exact algorithms is to find an O∗((2− ε)n) algorithm, where ε > 0, an

algorithm with running time faster than O∗(2n). This milestone is not reached

on Cutwidth, and it remains unknown whether or not an algorithm faster

than O∗(2n) time exists.
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Fixed parameter algorithms For many NP-complete decision problems that

ask whether a given graph on n vertices has a structure (like vertex cover) of

size k, we can restrict the exponential part of the running time to k and obtain

an algorithm that with running time O( f (k) · poly(n)), where f is typically an

exponential function. In this case we say that the problem is fixed parameter

tractable, often shortened to FPT. If k is sufficiently small with regards to f , we

clearly get many cases that are solvable in practice. We refer to “Parameterized

Complexity” by Downey and Fellows [15] for more depth on this subject.

1.4 Graph classes

It has been shown useful to classify graphs by structural properties. Some

problems may be NP-hard in general, but have polynomial-time algorithms on

graphs with certain structural properties. In this section a look at some well-

known graph classes will be taken. For more depth on this subject we will refer

to two classical books on graph classes: “Algorithmic graph theory and perfect

graphs” by Golumbic [19] and “Graph Classes: A survey” by Brandstädt, Le,

and Spinrad [7].

Figure 1.3: A tree.

Trees Trees form the class of connected graphs that contain no cycles. A

disjoint union of trees is called a forest. Trees form an easy class to work with;

many problems that are NP-hard in general admit polynomial-time algorithms

on trees. A graph is a tree if between any two vertices there is exactly one path.

Figure 1.3 is an example of a tree.

Chordal graphs A graph is chordal if it does not have Ck as an induced

subgraph for k > 3. Clearly, from this definition, the class of chordal graphs is
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a superclass of trees. Figure 1.4 shows a graph that is not chordal and a graph

that is chordal.

a) b)

Figure 1.4: Left: A graph containing C6. Right: Chordal graph.

Split graphs The graphs that can be partitioned exactly into one clique and

one independent set form the class split graphs. All split graphs are chordal

graphs, as split graphs clearly cannot have any cycles of length more than

three.

Interval graphs A graph is an interval graph if there is an assignment of its

vertices v1, v2, . . . , vn to intervals I1, I2, . . . , In of the real line such that:

1. every vertex vi is mapped to exactly one continuous interval Ii, and

2. there is an edge between vi and vj if and only if Ii ∩ Ij 6= ∅.

Interval graphs do not have Ck as induced subgraphs for k >, and therefore all

interval graphs are also chordal graphs. An example of an interval represen-

tation and its corresponding graph can be seen in Figure 1.5.

Proper interval graphs Proper interval graphs form the class of graphs that

have an interval model where no interval is contained in an other interval (see

Figure 1.6). We say that an interval [a, b] is contained in interval [c, d] if c < a

and b < d. This class is equivalent to unit interval graphs [28], where every

interval is of the same length.

Trivially perfect graphs Trivially perfect graphs form the class of all interval

graphs that have an interval model with no overlapping intervals. Two inter-

vals [a, b] and [c, d] overlap if a < c ≤ b < d, or c < a ≤ d < b. Another

name for trivially perfect graphs is nested interval graphs, as the intervals are
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Figure 1.5: An Interval representation and its corresponding graph.

a) b)

Figure 1.6: A) An interval contained in an other interval. B) Overlapping
intervals.

“nested” in each other. The disjoint union of trivially perfect graphs is trivially

perfect. Adding a universal vertex to a trivially perfect graph creates a new

trivially perfect graph. Every connected trivially perfect graph can be repre-

sented by a rooted tree, where every path from the root to a leaf represents a

maximal clique. We will call this representation a tree representation. This can

be useful as a tree representation uses O(n) space while the standard graph

representation uses O(n + m) space. Figure 1.7 shows a trivially perfect graph,

its interval representation and its tree representation.

Threshold graphs Threshold graphs are graphs that can be constructed by

repeatedly adding either an isolated vertex or a universal vertex (see Figure

1.8). In other words, there is an order of the vertices v1, v2, . . . , vn such that

vi is either universal or isolated in the graph induced by {v1, v2, . . . , vi}. We

call this the construction order of a threshold graphs. Threshold graphs form

a subset of interval graphs. Given v1, v2, · · · , vn, the construction order of

the threshold graph, an interval graph can be constructed as follows: vj is
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A) C)B)

Figure 1.7: A) A trivially perfect graph. B) Its interval representation. C) Its
tree representation.

assigned the interval [2 · j− 1, 2 · j] if it is isolated or the interval [1, 2 · j] if it is

universal. By this construction it is clear that all threshold graphs are trivially

perfect graphs. Threshold graphs are also split graphs, the universal vertices

form a clique while the isolated vertices form an independent set. The tree

representation of connected threshold graphs takes the form of a caterpillar. To

be more precise, the tree representation has a path P = v1, . . . vk, where v1 is

the root, such that N[P] = V(G).

1

2

3

4
5

6

Figure 1.8: Example of a threshold graph. Blue vertices are isolated at the
time they are added, red vertices are universal, and the order is represented
by the numbers.

Superfragile graphs Superfragile graphs form the class of graphs that can be

constructed with two operations:

1. Adding a universal clique to a disjoint union of cliques.

2. The disjoint union of superfragile graphs.

Another definition of superfragile graphs is through their forbidden subgraphs:

Superfragile graphs are exactly those graphs which contain no Dart, C4 or P4

as an induced subgraph (see Figure 1.9). Superfragile graphs are also trivially

perfect graphs: cliques are clearly trivially perfect graphs, a trivially perfect
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graph plus a universal vertex is also trivially perfect, and a disjoint union of

trivially perfect graphs is also trivially perfect. In the tree representation of a

connected superfragile graph there can be two cases: either the root vertex has

degree one and there is at most one vertex with degree larger than two, or the

root vertex has degree larger than one and no other vertex has degree larger

than two.

A) B) C)

Figure 1.9: Forbidden subgraphs of superfragile graphs. A) Dart, B) C4 and
C) P4.

Compact tree representation We want to give a new representation of triv-

ially perfect graphs which can be useful for classifying graphs. Notice that the

tree representation of a superfragile graph can only have one vertex with de-

gree more than two. This means that the tree representation of a superfragile

graph often consists of several longer paths without any branches. Surely, it

must be possible to compress the representation of this path, as all the vertices

have the same closed neighborhood. Therefore we will introduce a represen-

tation such that no such path of length greater than or equal to 2 exists. We

define a compact tree representation of a trivially perfect graph G as a rooted

tree of bags where every bag represents a set of vertices in G of at least size

1 and every vertex is in one and only one bag, and the vertices contained

in the bags in a path from the root to a leaf forms a maximal clique. There

are no edges between vertex u and v if there is no path from the root to a leaf

where both u and v is contained. Looking back to the definition of superfragile

graphs, connected superfragile graphs are those graphs that have a compact

tree representation of depth 1. Figure 1.10 gives examples of compact tree

representations.



Chapter 1. Introduction 14

A) B)

Figure 1.10: A) A tree representation of a superfragile graph and a compact
tree representation of the same graph, with depth 1. B) A tree representation
of a trivially perfect graph and its compact tree representation of depth 2.

1.5 Results on Cutwidth

The main focus of this thesis will be on the Cutwidth problem. The problem

is defined as follows: given a graph G and an integer k, is there a linear or-

dering σ of G such that the maximum number of edges crossing a vertical line

between any two consecutive vertices in σ is less than or equal to k? Cutwidth

appeared in 1967 in the paper “Large Scale Integration of MOS Complex Logic:

A Layout Method” by Weinberger [32], as a subroutine in a circuit design

method. Cutwidth has found applications within circuit design [9][32], net-

work reliability [24] and protein engineering [4]. Regarding the graph classes

introduced in Section 1.4, Cutwidth is known to be NP-complete on chordal

graphs [21] through an NP-completeness-proof on split graphs. Split graphs are

a subclass of chordal graphs, and therefore NP-completeness on them implies

NP-completeness on chordal graphs, too. To be more general: if a problem is

found NP-hard on a certain graph class, then it is NP-complete on all super-

classes of this graph class. Similarly, if a polynomial-time algorithm is found

on a certain graph class, the same algorithm holds for any subclass of this

graph class, and thus the problem is also in P on the subclasses. Among the

classes from Section 1.4, polynomial-time algorithms for Cutwidth has been

found for trees [33], threshold graphs [21] and proper interval graphs [21]. It

can also be solved in polynomial time on bipartite permutation graphs [22].

It remains unknown whether or not Cutwidth is NP-hard on interval graphs

and trivially perfect graphs. See Figure 1.11 for an illustration of the relations

between the aforementioned classes and their memberships.
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Chordal

Tree Split Interval

Trivially
Perfect

Proper
Interval

Threshold Superfragile

Figure 1.11: Cutwidth on selected graph classes. Red indicates NP-complete,
Green indicates membership in P, Grey is unknown. A class is a subclass of
another class, if it is below the other and there is a vertical line intersecting
both.

Cutwidth was shown to be in FPT in 1988 by Fellows and Langston [16]. An

algorithm running in linear time for constant cutwidth was given by Thilikos,

Serna and Bodlaender in 2005 [31]. An O(log2(n)) approximation algorithm

was presented by Leighton and Rao at FOCS in 1988 [25].

There are not many non-trivial graph classes on which Cutwidth is known

to be solvable in polynomial time. As already mentioned, the computational

complexity is open on interval graphs, and even on trivially perfect graphs.

In fact, at a very recent Dagstuhl seminar [6], it was conjectured to be NP-

complete even on a simple subclass of trivially perfect graphs. This motivates

our exploration of Cutwidth on superfragile graphs, another subclass of triv-

ially perfect graphs, for which the computational complexity is open.

1.6 Overview of the thesis

In this thesis we will focus on algorithms solving the Cutwidth problem.

We will both design exponential-time algorithms for general graphs, and give

polynomial-time algorithms solving Cutwidth on superfragile graphs.

Chapter 2: Dynamic programming and Divide-and-Conquer on Cutwidth

A naive solution to the Cutwidth problem is to try all possible linear order-

ings, which gives an algorithm with running time O∗(n!). In Chapter 2 we

show a faster algorithm that solves Cutwidth using O∗(2n) time and O∗(2n)
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space using dynamic programming techniques. Later in this chapter we will

also trade time with space and produce a polynomial-space algorithm with a

running time of O∗(4n).

Chapter 3: A look into the threshold-algorithm The first objective of this

thesis was to look at the linear-time algorithm for Cutwidth on threshold

graphs [21] and the techniques used by this algorithm. In particular, the algo-

rithm is easily applicable on any type of graph, since it does not rely on the

structure of threshold graphs for its execution. For this reason, the authors

asked whether or not it could be useful as an approximation algorithm on

some graph classes. In Chapter 3 we explore if these techniques are appli-

cable for constructing approximation algorithms and heuristic algorithms on

other graph classes.

Chapter 4: Cutwidth on Superfragile graphs In Chapter 4 we will take a

look on superfragile graphs, and show a polynomial-time algorithm solving

the Cutwidth problem on superfragile graphs. In fact Chapter 4 contains the

main scientific contribution of this thesis. As we have mentioned earlier the

computational complexity of Cutwidth on superfragile graphs has been open

until the results that we present in Chapter 4.

Chapter 5: Conclusion and further research We conclude with a summary

of the work presented in earlier. We introduce some new linear ordering

problems, and ask open questions related to these problems as well as the

Cutwidth problem.



Chapter 2

Dynamic Programming and

Divide-and-Conquer on Cutwidth

An easy way to solve the Cutwidth problem is to go through every possible

linear ordering of the graph and find out which one of them yields the low-

est cutwidth. There are a total of n! different orderings and for every one of

them the cutwidth must be calculated, which takes O(n + m) time. Thus this

naive algorithm has a running time of O(n! · (n + m)). In this Chapter we will

present two algorithms with faster running time using two different methods,

dynamic programming and divide-and-conquer. The existence of algorithms

for cutwidth with these running times have been known [3] [23] [5], but devel-

oping these on our own and working out all details is a good exercise to get a

better understanding of the Cutwidth problem and its challenges.

2.1 Dynamic Programming

On a sunny Saturday evening Bob’s more eccentric friend Alfred knocks at his

door. Alfred is a “Master Wizard” of the local “High Intelligence Club”, but

he often consults Bob, a programmer, for help. This time Alfred brought a

knotted string and a short ruler that is at least twenty times shorter than the

string. “I am to find the length between the two outermost knots of this string,

but it is impossible, this ruler is way too short,” Alfred tells Bob. Bob thinks

for a second and says, “I have two ways to find the length, I will show you

17
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in a bit.” Alfred is a bit puzzled, Bob did not even pass the entry test for the

club and now he claims to have solved one of the seven “Grand problems”

that have remained unsolved since the founding of the club. Bob asks Alfred

to fetch him pen and paper, and starts measuring from the first knot to the

second knot with the short ruler. “I noticed that the space between every knot

is no longer than the length of this ruler,” Bob says while Alfred handed him

a pen and some paper. First Bob writes down: Knot one to two: 15.3cm, he then

measures the length between the second knot and the third, the ruler shows

5.6cm, Knot one to three: 15.3cm + 5.6cm = 20.9cm he writes on the paper. He

continues measuring, writing down the length between the previous knot and

the current knot plus the previously found length, until he reaches the last

knot. The last thing he writes is Knot one to thirty-seven: 216.3cm. “Here is your

answer, two-hundred and sixteen point three centimeters,” Bob tells Alfred.

Alfred is curious and asks “How did you manage that?” and adds “You are

not even a member of the club,” in an arrogant manner. “Ahh, it is just an

old programmer trick... dynamic programming we call it,” Bob answers while

smiling proudly.

Dynamic programming is a method of solving problems on larger instances

through the solutions of smaller instances. The idea is that we can remember a

solution of previously solved instances and use it later to obtain solutions for

larger instances. Dynamic programming usually involves a recursive solution

formulation. Then the idea is to find an appropriate order in which the smaller

subproblems can be solved, so that their solution are calculated and stored in a

table. Then in larger instances, rather than using recursion, we simply look up

solutions of smaller instances in the table. But there is a trade off, sometimes

we have to store a vast amount of solutions and thus getting a worse space

complexity than alternative methods. We will now give an algorithm using

dynamic programming to solve Cutwidth on general graphs:

Preliminaries Let G be the input graph, and let k be the input integer. Given

a set S ⊆ V(G), we call a linear ordering σ an S-minimal ordering if σ(v) ≤ |S|
for all vertices v in S, and the size of the maximum cut between two consecutive

vertices of S in σ is minimized. We define the cut of a set S ⊆ V(G) in G,

cut(S), to be the size of the largest cut between two consecutive vertices of S

in an S-minimal ordering. We define the cutwidth of a set S ⊆ V(G) in G to
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be max{deg(S), cut(S)}. Clearly the cutwidth of G is equal to the cutwidth of

V(G), and thus an V(G)-minimal ordering is also an optimal linear ordering

of G. Figure 2.1 A shows that an optimal linear ordering is not necessarily

S-minimal for every set S.

a)

b)

c)

S V(G)/S

S V(G)/S

Figure 2.1: A) An S-minimal ordering, where the largest cut between two
consecutive vertices in S is 2. B) An ordering that is not S-minimal, as the
largest cut between two consecutive vertices in S is 3. C) A linear ordering
that is V(G)-minimal, and thus also optimal.

The Algorithm Let G be the input graph, and let k be the input integer. We

attack Cutwidth by calculating the cutwidth of a subset S ⊆ V(G). Assume

for the moment that the cutwidth of S is the maximum of the degree of S and

minS′⊂Scutwidth(S′) where |S′| = |S| − 1. We will prove this fact when proving

the correctness of our algorithm on the next page. We start by initializing the

cutwidth of ∅ to 0. Then find the cutwidth of all subsets of cardinality one

by using the result of the set of cardinality zero, then all of cardinality two

by using the results from the sets of cardinality one. The algorithm continues

until the cutwidth of the set containing all vertices, V(G), has been calculated.

If the cutwidth of V(G) is less than or equal to k, the algorithm return YES, if

not, the algorithm will return NO. There are in total 2n subsets S. For each S

the algorithm first checks all S′ ⊂ S such that |S′| = |S| − 1, for which there
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are O(n) of, then calculate the degree of S which takes O(n + m) time. Thus

the algorithm runs in O(2n · (n + m)) time. For every S ⊆ V(G) the cutwidth

of S has to be stored, thus O(2n) space is used by the algorithm.

Algorithm 1: CutwidthDP
Input: A graph G = (V, E) and an integer k
Output: YES if G has cutwidth ≤ k, NO otherwise

1 CW[∅] = 0;
2 for i = 1 to |V(G)| do
3 for all S ⊆ V(G) such that |S| = i do
4 CW[S] = max(minv∈S(CW[S \ {v}]), deg(S));

5 if CW[V(G)] ≤ k then
6 return YES;
7 else
8 return NO;

Proof of Correctness The algorithm considers all subsets S of V(G) and com-

putes the cutwidth of S for each such subset. By the definition of cutwidth of

of a set, the cutwidth of S = V(G) gives the cutwidth of G at the end. To

prove the correctness of the algorithm, we need to prove what we claimed in

the description of the algorithm, namely that

cutwidth(S) = max

{
deg(S)

min{cutwidth(S′) | S′ ⊂ S, |S′| = |S| − 1}

}
(2.1)

Let R = V(G) \ S. Let σ be an ordering in which vertices of S are ordered

before vertices of R. Observe that the local ordering of the vertices within R

is irrelevant for cutwidth(S). Hence to prove the above claim we only need

to prove that cut(S) = min{cutwidth(S′)|S′ ⊂ S, |S′| = |S| − 1}. Assume

that a vertex v is the rightmost vertex in an S-minimal ordering (σ(v) = |S|),
under the previously mentioned conditions. An S′-minimal ordering, where

S′ = S \ {v}, with v added to the end (such that σ(v) = |S|), will also be

an S-minimal ordering (see Figure 2.2). The algorithm does not know which

vertex is the rightmost in an S-minimal ordering, so it tries all |S| vertices in S.

Since all possibilities are covered, an S-minimal ordering is found, given that

we already know the minimal ordering for all S′ ⊂ S with |S′| = |S| − 1, and

under the assumption that the optimal linear layout orders S before the rest. It
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follows that when the algorithm examines S = V(G) it finds the cutwidth of

G.

S'

S

V V(G)\S

deg(S)

Figure 2.2: Given that an S-minimal ordering has v as the rightmost vertex
in S, the cutwidth of S is max(cutwidth(S′), deg(S)), where S′ = S \ {v}.

Even faster algorithm We can modify this algorithm to run even faster. Com-

puting the degree of S ⊆ V(G) in G takes O(n + m) time, but we can make it

take O(n) time. If we for every S ⊆ V(G) already know the degree of some

S′ ⊂ S, |S′| = |S| − 1, we can easily compute the degree of S. Let S′ ∪ {v} be

equal to S, then deg(S) = deg(S′)− degS′(v) + degV(G)\S(v). This can be com-

puted in O(n) time as v can have at most n− 1 neighbors. Storing the degree

for every subset of V(G) requires O(2n) space. Thus we get an O(2n · n) time

algorithm using O(2n) space.

With all the results of this section, we can now conclude the following:

Theorem 1. Cutwidth of an arbitrary graph on n vertices can be computed in O(2n ·
n) time and O(2n) space.

2.2 Divide and Conquer

“You said you had two ways to find the solution. Do you mind showing me

the second one?” Alfred asked Bob, humbly for once. “Oh, yes I can... another

programmer trick. Divide and Conquer we call it, let me show you.” “You see,

the length from knot one to knot nineteen plus the length from knot nineteen

to knot thirty-seven,” Bob explained. Alfred gave it some seconds of thought
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and said “Uhm, yeah... that might work.” “Alright then, we call this step

Divide. Now, that we have divided it into two parts, we have to Conquer these

two parts. However, our ruler is not long enough to measure them, do you

have any idea what we should do?” Bob asked rhetorically. “Can we divide

again?” Alfred answered. “Yes! We find the length between knot one to knot

nineteen by adding the length from knot one to knot ten to the length from

knot ten to knot nineteen,” Bob answered, took a long breath and added “We

continue dividing until we reach a trivial problem. Like what is the distance

between two consecutive knots, or even: what is the distance between knot i

and knot i? After we are done dividing, we start conquering. Elementary!”

Divide and Conquer is a useful method on problems that can be partitioned

into independent sub-problems recursively until a simple problem-instance is

reached. Divide-and-conquer-algorithms are especially useful within parallel

computing as they might often provide a straight-forward parallelization. The

divide and conquer method often provides more space-efficient algorithms

when compared to dynamic programming. We will now give a divide-and-

conquer-algorithm for the Cutwidth problem, running in O(4n · n2) time and

O(n · log(n)) space.

Preliminaries Let G be the input graph, and let k be the input integer. Given

a partition of V(G) into three sets L, R, S, we call a linear ordering σ an L, R, S-

minimal ordering if for all u ∈ L, v ∈ S, w ∈ R, we have that σ(u) < σ(v) <

σ(w), and the size of the maximum cut between two consecutive vertices of

S in σ is minimized under this restriction. We define the cut of three sets,

L, R, S ⊆ V(G), L ∩ R = L ∩ S = R ∩ S = ∅, denoted cut(L, R, S) as the

maximum of the degree of L, the degree of R (see Figure 2.3), and the size

of the largest cut between two consecutive vertices of S in an L, R, S-minimal

ordering.

The Algorithm Let G be the input graph, and let k be the input integer. The

main algorithm starts with a call (G, ∅, ∅, V(G)) to a recursive method. This

method takes as input (G, L, R, S) and it computes cut(L, R, S). In particular,

it recursively tries all subsets S′ of S, such that |S′| = b |S|2 c and the maximum

of cut(L ∪ S′, R, S \ S′) and cut(L, R ∪ S \ S′, S′) is minimized (see Figure 2.4).

When the base case is reached, |S| ≤ 1, the maximum of the degree of S∪ L and
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the degree of S∪R is returned. When the recursive algorithm obtains the value

of cut(∅, ∅, V(G)), the cutwidth of the graph G, it returns the value to the main

algorithm. The main algorithm returns YES if this value, the cutwidth of G, is

less than or equal to k, and NO otherwise. The algorithm starts with the set

V(G), of size n, and branches into two new instances for all subsets of size n
2 ,

for which there are O(2n) of. This gives a total of O(2n) · 2 ·O(2
n
2 ) · 2 ·O(2

n
4 ) . . .

= O(2n) ·∏log(n)
i=1 2 ·O(2

n
2i ) = O(4n · n) instances. For each of these instances

O(n + m) time is spent on calculating the degrees, thus the algorithm has a

total running time of O(4n · n · (n + m)). Regarding space, the algorithm uses

O(n) space on each level of recursion, and there is maximum O(log(n)) levels

of recursion, so the algorithm uses O(n · log(n)) space.

L RS

deg(L)=2 deg(R)=3

Figure 2.3: Illustration of deg(L) and deg(R), where deg(L) is the size of the
cut between L and S, and deg(R) is the size of the cut between S and R.

Algorithm 2: DivideAndConquer
Input: A graph G = (V, E) and an integer k
Output: YES if G has cutwidth ≤ k, NO otherwise

1 if Recursive(G, ∅, ∅, V(G)) ≤ k then
2 return YES;
3 else
4 return NO;

Proof of Correctness Let G be the input graph, and let k be the input integer.

Given a partition of V(G) into L, R, S, and a linear order σ of G such that for

all u ∈ L, v ∈ S, w ∈ R, σ(u) < σ(v) < σ(w), we want to prove that the

recursive method correctly computes cut(L, R, S). Observe that the local or-

dering of vertices within L and within R are irrelevant for cut(L, R, S). Clearly,

there is a partition of S into S′ and S′′ such that cut(L, R, S) = max(cut(L ∪
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Algorithm 3: Recursive
Input: A graph G = (V, E) and a partition of V(G) into L, R, S.
Output: cut(L, R, S)

1 cut = 0;
2 if |S| > 1 then
3 cut = ∞;

4 for all S′ ⊆ S such that |S′| = b |S|2 c do
5 cut = min(cut, max(Recursive(G, L ∪ S′, R, S \ S′),
6 Recursive(G, L, R ∪ S \ S′, S′)));

7 cut = max(cut, deg(L), deg(R));
8 return cut;

S

L

L

RS' S''

R

L∪S'S''∪R

S'L RS''

Figure 2.4: The recursive call performed by the Divide-and-Conquer
algorithm.

S′, R, S′′), cut(L, R ∪ S′′, S′)). To see this, let σ be an L, R, S-minimal order-

ing and let i be the position of the largest cut in S. If |L ∪ S′| < i then

cut(L, R, S) = cut(L ∪ S′, R, S′′) and otherwise cut(L, R, S) = cut(L, R ∪ S′′, S′).

Thus by trying all subsets of S, we get the correct cut(L, R, S). Observe that

it is enough to check subsets S′ with |S′| = bS
2 c, since either |L ∪ S′| < i or

|L ∪ S′| ≥ i for these.

By the above discussion, we can conclude the following:

Theorem 2. Cutwidth of an arbitrary graph on n vertices can be computed in time

O(4n · n · (n + m)) and space O(n · log(n)).



Chapter 3

A look into the threshold algorithm

In 2008, Heggernes, Lokshtanov, Mihai and Papadopoulos gave an algorithm

for solving Cutwidth on threshold graphs in linear time [21] and thus showing

that Cutwidth on threshold graphs is in P. The authors asked whether or not

this algorithm, with some modifications, could be used as an approximation

algorithm for Cutwidth on other graph classes. The first task of this thesis

was to search for an answer to this question. We will later in this chapter give

an answer to this question, but let us first take a look at the algorithm for

threshold graphs:

3.1 Cutwidth on threshold graphs

Let G be a threshold graph, and let σ be a linear ordering minimizing cutwidth,

which we want to compute. This ordering will be created incrementally. Before

step i, the first i − 1 vertices of the resulting ordering will be ready. At step

i, the algorithm decides which vertex will be the i’th vertex of the resulting

ordering.

Preliminaries We define a set of vertices Vi to be the first i vertices in the

computed linear ordering. Given a set of vertices S ⊆ V(G) we define the

rank of a vertex v with respect to S, rankS(v), to be the degree of v with

respect to V(G) \ S minus the degree of v with respect to S, i.e. rankS(v) =

degV(G)\S(v)− degS(v) (see Figure 3.1).

25
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S
v

V(G)\S

Figure 3.1: The rank of v with respect to S is degV(G)\S(v)− degS(v) (number
of blue edges minus number of red edges).

The algorithm The algorithm goes through |V(G)| = n steps. At step i

the algorithm picks vertex v /∈ Vi−1 such that rankVi−1(v) is minimized. The

algorithm then sets Vi = Vi−1 ∪ {v} and σ(v) = i. If several vertices have

the same rank with respect to Vi−1, then the algorithm picks the one with

the largest degree in G. This means that the algorithm picks the vertex v

minimizing the degree of Vi−1 ∪ {v}, and when there is a tie, the vertex v

reducing the rank of most vertices with respect to Vi−1 ∪ {v} is picked.

Algorithm 4: MinCut
Input: A graph G = (V, E)
Output: A linear ordering σ =< v1, v2, . . . , vn > of G

1 V0 = ∅;
2 for i = 1 to n do
3 vi = an arbitrary vertex in V \Vi−1 ;
4 for every vertex v in V \Vi−1 do
5 if rankVi−1(v) < rankVi−1(vi) then
6 vi = v;
7 else
8 if rankVi−1(v) == rankVi−1(vi) and deg(v) > deg(vi) then
9 vi = v;

10 Vi = Vi−1 ∪ {vi};
11 σ(vi) = i;

12 return σ;
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3.2 Threshold algorithm on other graph classes

The threshold algorithm uses the rank and the degree of vertices to choose the

next vertex. Rank and degree are defined for all graphs and thus the algorithm

is applicable on all graph classes. Note that if a graph is disconnected, then

there is always an optimal ordering that keeps the connected components sep-

arate. Hence we can without loss of generality consider connected graphs. The

threshold algorithm, without modifications, could in fact result in an ordering

where the connected components are interleaved. Observe that a threshold

graph can only have one component that is not a vertex of degree zero, and

thus separating components in a linear ordering makes no difference on the

cutwidth. In the algorithm they will obviously get picked first, as their, and

only their, rank is zero. Thus, when applying the algorithm on other graph

classes, we believe it is fair to only consider connected graphs, as we can triv-

ially reduce a disconnected instance into several connected ones.

Split graphs

An interesting graph class to test the threshold algorithm on is split graphs.

Figure 3.2 shows that the threshold algorithm is not optimal. As mentioned,

Cutwidth is NP-complete on split graphs, thus a good approximation algo-

rithm would be welcome. However, we are able to construct an example where

the algorithm performs poorly. Let k ≥ 1 be an integer, and let us construct

a split graph with a clique of size 3k. For every vertex in the clique, add

k2 + 3k− 3 independent vertices and construct an edge between each of them

and the corresponding clique vertex. Furthermore, we partition the vertices of

the clique into k sets of size 3. For each of these sets we add k2 vertices, and

connect them with edges to the three vertices in the set. The graph now has

an independent set of size 3k · (k2 + 3k− 3) + k3 and a clique of size 3k, a total

of Θ(k3) vertices. Observe that we have Θ(k3) vertices of rank 1 and Θ(k3)

vertices of rank 3. We have carefully constructed the graph such that picking

all vertices of rank 1 first would leave every vertex in the clique at rank 2. The

structure of these graphs is shown in Figure 3.3.

On this graph the threshold algorithm will pick all vertices of rank 1 first,

giving a cut of size Θ(k3). Continuing the algorithm would pick all the vertices
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in the clique and then the rest of the independent set. This will also yield a cut

of size Θ(k3). Clearly, any labeling would not change the outcome of this, thus

the threshold algorithm gives a linear ordering with cutwidth Θ(k3). However,

there is a linear ordering where the vertices of the clique are ordered by the

partitioning given in the construction of the graph. The clique itself yields a

highest cut of size Θ(k2). By carefully placing each vertex of the independent

set close to its neighbors in the linear ordering, they also yield a largest cut

with size Θ(k2). Thus in an optimal ordering the cutwidth would be Θ(k2).

The threshold algorithm therefore yields an k3

k2 = k approximation on these

graphs. As n, the number of vertices, is Θ(k3), this is clearly Θ( 3
√

n) times

worse than optimal. Considering the fact that a log2(n) approximation already

exists for cutwidth on general graphs, we can without any doubt claim that the

threshold algorithm performs poorly as an approximation algorithm on split

graphs.

1 2 3 4 6 6 4 1 3 4 4 4 3 1

A) B) C)

Figure 3.2: A) A split graph. B) Ordering given by the threshold algorithm.
C) Optimal ordering.

Interval graphs

It is unknown whether or not Cutwidth is in P on interval graphs. While ap-

plying the threshold algorithm on interval graphs, we discovered that certain

vertices made the algorithm do bad choices. In particular, a vertex with low

degree adjacent to high degree vertices will often get placed far to the left in

the linear ordering compared to its neighbors, thus its edges will be unneces-

sarily long. We mean that an edge (u, v) ∈ E(G) is long if |σ(v)− σ(u)| is large,

and thus the edge is included in many cuts. Let us call such vertices bumps.

The idea of bumps is that they all have low degree such that they all will get

picked early by the threshold algorithm, but their neighbors will be picked
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CLIQUE OF SIZE 3k

INDEPENDENT SET OF SIZE k²

INDEPENDENT SET OF SIZE k² + 3k - 3

Figure 3.3: A graph where the threshold algorithm gives an ordering with
cutwidth Θ(k3), while an optimal ordering has cutwidth Θ(k2).

late, because of their relatively high degree. This is essentially the same idea

we used for the split graphs. By constructing a graph with several occurrences

of bumps, we can make the algorithm perform arbitrarily bad, achieving a lin-

ear ordering with cutwidth which is of factor Θ(n) times the cutwidth of an

optimal linear ordering. The graphs given by Figure 3.4 all yield a cutwidth

of 3, while the threshold algorithm gives a linear ordering with cutwidth that

is Θ(n). Because of this we think it is reasonable to discard the threshold

algorithm as an approximation algorithm for cutwidth on interval graphs.

A)

B)

Figure 3.4: A) Interval graph where the pattern is repeated along the dashed
line. B) Interval representation of the graph.

Unit interval graphs Even though a linear-time algorithm already exists for

Cutwidth on unit interval graphs, it could be interesting to test the threshold

algorithm on them. We observed that bumps made the threshold algorithm
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perform poorly on interval graphs. Are we able to do the same for unit in-

terval graphs? Yes. In fact, on the example given by Figure 3.5 the threshold

algorithm achieves an ordering with cutwidth Θ(n), while the optimal order-

ing yields a constant cutwidth.

A)

B)

Figure 3.5: A) Unit interval graph. B) Interval representation of the graph.

Trivially perfect graphs It is easy to show an example where the threshold

algorithm performs badly on disconnected trivially perfect graphs, e.g. Figure

3.6. In order to prove poor performance on connected graphs, we will need a

bit more complicated example: We define c as the size of the universal clique

in our graph. We will add l disjoint cliques, each of size l · c, and consider a

linear ordering where all l cliques are to the left of the universal clique. The

number of vertices in this graph will therefore be c · (l2 + 1), and the size of

the largest cut in our predefined ordering will be Θ(c2 · l2). Now, we want to

remove edges from every disjoint clique such that we obtain bumps. Clearly,

removing edges from a graph cannot increase its cutwidth. We will make each

former clique contain c·l
4 bumps, all with degree c·l

4 . In total the graph will have
c·l2

4 bumps. An example of such a graph is shown in Figure 3.7. How will the

threshold algorithm perform? The threshold algorithm will pick all c·l2

4 bumps

of degree c·l
4 , leaving a cut with size c2·l3

16 which is Θ(c2 · l3). By setting c = 1,

we see that we have a graph with n = Θ(l2) vertices and a cutwidth of Θ(l2),

where the threshold algorithm gives a linear ordering of cutwidth Ω(l3). By

replacing l2 with n, we see that the threshold algorithm performs Ω(
√

n) times

worse than the optimal on this trivially perfect graph. This is worse than the

approximation algorithm already known for general graphs, and thus we can

claim that the threshold algorithm is not useful as an approximation algorithm

on trivially perfect graphs.
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Figure 3.6: An interval representation of a disconnected trivially perfect
graph where the optimal cutwidth is 4, but the threshold algorithm yields a
linear ordering with cutwidth Θ(n).

Figure 3.7: An example of a trivially perfect graph where l is equal to 12,
and c is 1. The red intervals represent bumps.

Conclusion

On the graph classes we have looked at we have shown that the threshold al-

gorithm can give an ordering with cutwidth that is at least Ω(n) times the op-

timal. This is especially bad considering the fact that an O(log2(n)) algorithm

already exists, solving these instances. We do not exclude the possibility of the

threshold algorithm acting as a good approximation algorithm or heuristic on

certain types of graphs.





Chapter 4

Cutwidth on Superfragile graphs

As we have seen earlier, the computational complexity of Cutwidth is not

known on trivially perfect graphs, whereas it can be solved in linear time on

their subclass threshold graphs. In this chapter, we will show that Cutwidth

can be solved in polynomial time on another subclass of trivially perfect graphs,

namely superfragile graphs. Superfragile graphs are not related to threshold

graphs, other than being a subclass of trivially perfect graphs. The general

picture of a superfragile graph, which was defined in Chapter 1, is shown in

Figure 4.1. Informally, a connected superfragile graph is basically a star, where

we blow up each vertex to a clique. The center clique is universal. Superfragile

graphs forms the class of graphs with a compact tree representation of depth 1.

In a recent Dagstuhl seminar [6], it was conjectured that Cutwidth of trivially

perfect graphs that have a compact tree representation of depth 2, like Figure

4.2 B, is NP-hard to compute.

To show our result, we first provide an algorithm that gives an optimal segre-

gated (will be defined below) linear ordering of a superfragile graph in polyno-

mial time. We will later show that there always exists an optimal linear order-

ing that is segregated. We will thus show that our algorithm solves Cutwidth

on superfragile graphs in polynomial time, proving that Cutwidth on super-

fragile graphs is in P. We will assume that the input graph is connected; clearly

the cutwidth of a disconnected graph is the maximum cutwidth of the con-

nected components.

33
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A)

B)

C)

Figure 4.1: A) A set of disjoint cliques is superfragile. B) A graph with a
universal clique whose removal results in disjoint cliques, is superfragile. C)
A disjoint union of two superfragile graphs is also superfragile.

Preliminaries

Let G be a connected superfragile graph with universal clique U and compo-

nents of G[V \U]: C1, C2, . . . , Ck, and let σ be a linear ordering of G. Observe

first that for any pair of vertices u, v ∈ Ci (or u, v ∈ U), N[u] = N[v]. Thus the

vertices of each clique are equivalent with respect to how they are placed in a

linear ordering.

We say that two sets of vertices A and B cross in σ if σ(v) < σ(u) < σ(w) for

any v, w ∈ A and u ∈ B, or for any v, w ∈ B and u ∈ A. We say that σ is

segregated if the universal clique, U, and the disjoint cliques, C1, C2, . . . , Ck, in

G[V(G) \ U] do not cross each other in σ. We say that a clique Ci is on the

left side (of U) in a segregated linear order σ if maxv∈Ci(σ(v)) < minu∈U(σ(u)).

Similarly we say that a clique Ci is on the right side (of U) in a segregated linear

order σ if minv∈Ci(σ(v)) > maxu∈U(σ(u)).
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B)A)
0

1

2

Figure 4.2: A compact tree representation of trivially perfect graphs where
every vertex in the tree represents a set of vertices, and for every path from
the root to a leaf, the vertices contained in the sets in the path forms a
maximal clique. A) Superfragile graphs are those graphs that can be
represented with depth 1. B) Cutwidth is conjectured to be NP-complete on
those graphs with depth 2.

We say that two cliques Ci and Cj are close in a segregated linear ordering σ if

either minu∈Ci(σ(u)) = maxv∈Cj(σ(v))+ 1 or minv∈Cj(σ(v)) = maxu∈Ci(σ(u))+

1 holds. We say that two vertices, u and v, are close in σ if either σ(u) + 1 =

σ(v) or σ(u) = σ(v) + 1. We define a swap between two close vertices, u and

v, in σ as setting σ(u) = σ(v) and σ(v) = σ(u). Let us define a swap between

two close cliques, Ci and Cj, in a segregated linear ordering σ, where Ci is to

the left of Cj: we get a new segregated ordering where Ci and Cj are close,

Cj is to the left of Ci, and all other vertices (outside of Ci and Cj) keep their

positions.

A set of vertices S is gathered in σ if maxv∈S(σ(v)) −
minu∈S(σ(u)) = |S| − 1. The left degree of a vertex v in σ on a set of vertices

S, degLS
σ(v), is the number of vertices u ∈ N(v) ∩ S such that σ(u) < σ(v).

Similarly the right degree of a vertex v in σ, degRS
σ(v), is the number of ver-

tices u ∈ N(v) ∩ S such that σ(u) > σ(v). We say that an operation to change

a linear ordering σ into σ∗ is safe if cutwidth(σ∗, G) ≤ cutwidth(σ, G). We say

that the largest cut over a gathered set of vertices S in σ is maxi(deg(Vi)) where

min(σ(v ∈ S))− 1 ≤ i ≤ max(σ(u ∈ S)).

Given a superfragile graph G with universal clique U and a segregated linear

ordering σ of G, we say that the configuration of σ is a pair of integers (l, r),

where l = degLV(G)\U
σ (u) and r = degRV(G)\U

σ (u), for any u ∈ U. Similarly we

say that the configuration of σ for a subset S, S ⊆ V(G), is a pair of integers

(l, r), where l = degLS\U
σ (u) and r = degRS\U

σ (u), for any u ∈ U.
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Given a universal clique U and a vertex u ∈ U, we say that a segregated linear

ordering σ is good if there is no segregated linear ordering σ∗ with the same

configuration as σ such that cutwidth(σ∗, G) < cutwidth(σ, G). Two linear

orderings σ and σ∗ of G are twins if they have the same configuration and

if cutwidth(σ∗, G) = cutwidth(σ, G). We say that a set S of segregated linear

orderings covers (is a cover of) G, if for all segregated linear orderings σ of G

there is one segregated linear ordering σ∗ in S such that σ and σ∗ have the

same configuration and cutwidth(σ∗, G) ≤ cutwidth(σ, G). We say that a cover

S of G is sparse if for every σ in S, there exists no σ∗ of G with the same

configuration as σ such that cutwidth(σ∗, G) < cutwidth(σ, G), and there are

no σ, σ∗ in S such that σ and σ∗ are twins.

By adding a set of vertices S = {s1, s2, . . . , s|S|} to a linear ordering σ at position

i, we mean that σ(v) is set to σ(v) + |S| for all v that previously had σ(v) ≥ i,

and then σ(sj) is set to be equal i + j− i for all sj ∈ S.

A segregated linear ordering σ of G is optimal if there is no segregated linear

ordering σ∗ of G such that cutwidth(σ∗, G) < cutwidth(σ, G).

4.1 Segregated linear orderings

In this section, we will consider only segregated linear orderings. For a given

superfragile graph, we will find in polynomial time a segregated ordering of

minimum cutwidth, i.e, out of all its segregated orderings, one with smallest

cutwidth. We will call such an ordering an optimal segregated linear ordering.

Out first central result is stated in Lemma 4.1. See Figure 4.3 for an illustration

of this statement.

C1 C4 C7 U C6 C5 C3 C2

|C1| ≥ |C4| ≥ |C7| |C6| ≤ |C5| ≤ |C3|≤ |C2|

Figure 4.3: A segregated linear ordering where the cliques on the left side of
U appear in decreasing order by size, and the cliques on the right side of U
appear in increasing order by size.
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Lemma 4.1. For every superfragile graph there is an optimal segregated linear order-

ing where the cliques on the left side appear in decreasing order with respect to their

size, and the cliques on the right side appear in increasing order with respect to their

size.

Proof Let G be a superfragile graph with universal clique U, and C1, C2, . . . , Ck

as defined above. Let us consider two close cliques Ci and Cj, of size ci and

cj respectively, on the left side in a segregated linear ordering σ. Let u be the

size of the universal clique. We now want to find out whether or not swapping

Ci and Cj is safe. To do this, we need to check whether or not a swap could

increase the cutwidth. Notice that we only need to look at the largest cut over

the clique to the right, as the largest cut over the left clique cannot become

smaller by swapping the two cliques.

Case 1) ci and cj are both less than or equal to u: If Ci is to the right of Cj,

we get a largest cut over Ci of size ci · u + cj · u. Similarly if Cj is to the right

of Ci the largest cut over Cj is cj · u + ci · u. Since ci · u + cj · u is equal to

cj · u + ci · u, it is safe to swap them such that either Cj is to the left of Ci or to

the right of Ci. Thus we can safely swap them such that the larger clique is to

the left of the smaller clique.

Case 2) ci is greater than u, cj is not: If Ci is to the right of Cj, we get a

largest cut over Ci of size ( ci+u
2 )2 + cj · u. If Cj is to the right of Ci the largest

cut over Cj is cj · u + ci · u. For placing Ci to the left of Cj to be safe, we need

that cj · u + ci · u ≤ ( ci+u
2 )2 + cj · u. This is equivalent to 0 ≤ ( ci−u

2 )2, an in-

equality that always holds since ci and u are integers.

Case 3) ci is greater than or equal to cj, cj is greater than u: If Ci is to the

right of Cj, we get a largest cut over Ci of size ci+u
2

2
+ cj · u. If Cj is to the right

of Ci the largest cut over Cj is (
cj+u

2 )2 · u + ci · u. For placing Ci to the left of

Cj to be safe, we require that (
cj+u

2 )2 · u + ci · u ≤ ( ci+u
2 )2 + cj · u. Since ci is

greater than or equal to cj, we can set ci = cj + k, where k ≥ 0. Substituting

this into our equation we get (
cj+u

2 )2 · u + (cj + k) · u ≤ (
cj+k+u

2 )2 + cj · u, which

is equivalent to k·u
2 ≤

k·cj
2 + k2

4 . Since cj is greater than u, we know that this

inequality always holds.
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Similarly this holds for cliques on the right side in an ordering. We have now

shown that if two close cliques have different size, it is always safe to swap

the largest clique furthest away from the universal clique. We can do this until

the property of the lemma holds, without increasing the cutwidth of the linear

ordering. Thus we can always swap any optimal segregated linear ordering to

an optimal segregated ordering where the property from the lemma holds.

Now we give an algorithm that computes the cutwidth of an optimal seg-

regated linear ordering. The algorithm processes the disjoint cliques in de-

creasing order with respect to size, placing the cliques at the left or right side

close to the universal clique. Observe that, although we know that we have an

decreasing-increasing ordering of the cliques, we still need to decide on which

side of the universal clique each clique needs to go. Once we know which

cliques are on the right and which are on the left, we can apply Lemma 4.1.

There are O(2n) different partitions of the cliques, as a clique can either be to

the left of the universal clique or to its right. To cope with this, the algorithm

applies dynamic programming, where it only has to consider O(n) partitions.

This is a standard way of coping with partition problems of this type, like the

knapsack problem [13].

Observation 1. Given a superfragile graph G with universal clique U and the maxi-

mal cliques C1, . . . , Ck of G[V(G) \U] and a segregated linear ordering σ, the largest

cut over a clique Ci is dependent on the number of vertices to the left of Ci, not which

cliques are to its left, if Ci is to the left of U. Similarly the largest cut over a clique Ci

is dependent on the number of vertices to the right of Ci, not which cliques are to its

right, if Ci is to the right of U.

Since the next algorithm will be based on building covers, we need to prove

two properties of covers:

Lemma 4.2. Let G be a superfragile graph and S a set of segregated linear orderings

that covers G. There exists an optimal segregated linear ordering σ in S.

Proof Let us consider any segregated linear ordering σ of G. There must be a

segregated linear ordering σ∗ in S with the same configuration as σ such that
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cutwidth(σ∗, G) ≤ cutwidth(σ, G). If no such σ∗ exists then S is clearly not a

cover of G.

Lemma 4.3. Let G be a superfragile graph with a universal clique U and maximal

cliques C1, . . . , Ck where |Ci| ≥ |Cj| for i < j. Given a set of segregated linear

orderings S that covers G[U ∪ C1 ∪ · · · ∪ Ci−1], 1 ≤ i ≤ k, a set T covering G[U ∪
C1 ∪ · · · ∪ Ci] can be built by placing Ci close to U on the left side and on the right

side of U for every ordering in S.

Proof Consider any segregated ordering σ of G[U ∪ C1 ∪ · · · ∪ Ci] with the

property of Lemma 4.1 such that Ci is close to U in σ. Let σ′ be the the ordering

given by σ for G[U ∪C1 ∪ · · · ∪Ci−1]. Adding Ci close to the left side and right

side of U of σ′ would give σ. However, since S is a cover of G[U ∪ C1 ∪ · · · ∪
Ci−1], there is a σ∗ in S such that σ∗ and σ′ have the same configuration and

cutwidth(σ∗, G[U ∪C1 ∪ · · · ∪Ci−1]) ≤ cutwidth(σ′, G[U ∪C1 ∪ · · · ∪Ci−1]). By

Observation 1 there must be a σ∗ in T such that σ and σ∗ have the same

configuration and cutwidth(σ∗, G[U ∪C1 ∪ · · · ∪Ci]) ≤ cutwidth(σ, G[U ∪C1 ∪
· · · ∪ Ci]).

The algorithm The algorithm takes a superfragile graph G = (V, E) as input

and identifies the universal clique U and the cliques C1, . . . , Ck of G such that

|Ci| ≥ |Cj| for all i < j. Then the algorithm basically tries all segregated linear

orderings of C1, C2, . . . , Ck with the property of Lemma 4.1. Notice that there

is a bijection between a partition of the cliques into two sets and segregated

linear orderings with property of Lemma 4.1. Thus as mentioned earlier there

are up to O(2n) different orderings to consider. Observe that the new cuts

appearing when placing a new clique is not affected by which cliques are to

its left or right, but only by the number of vertices as remarked in Observa-

tion 1. This means that some orderings are unnecessary to look at, as there

are other orderings which have the same number of vertices on the left and

right side that are as good. Consequently, the algorithm only has to look at

O(n) orderings, as we explain next. The algorithm iterates through all cliques

C1, C2, . . . Ck in the given order where |C1| ≥ |C2| ≥ . . . |Ck−1| ≥ |Ck|. At step j

the algorithm looks at all the orderings in a sparse cover of cliques C1, . . . , Cj−1

and adds Cj both to the left side and the right side of each ordering, creating
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new orderings. At the end of step j the algorithm goes through all the newly

created orderings of C1, . . . , Cj and removes all orderings that are not good. If

there are two orderings with the same configuration and the same cutwidth

(twins), the algorithm removes one of them arbitrarily, such that the remaining

set of orderings sparsely covers G[U ∪ C1 ∪ · · · ∪ Cj]. At the end, after step

k, the algorithm goes through a set of orderings that covers G and returns

the cutwidth of the ordering yielding the lowest cutwidth. To save space, the

algorithm does not represent each ordering as an actual ordering, but as its

configuration and its cutwidth. This means that the algorithm does not give

an optimal segregated linear ordering, but instead returns the cutwidth of one.

Algorithm 5: CutwidthSuperfragile
Input: A superfragile graph G = (V, E)
Output: The cutwidth of G

1 Find U and C1, . . . Ck s.t. |Ci| ≥ |Cj| for all i < j;
2 S0 = (0, 0, 0);
3 for i = 1 to k do
4 for all triples (x, y, z) in Si−1 do
5 Si =

Si ∪ (x + |Ci|, y, max(z, cCut(|Ci|, |U|, x), uCut(|U|, x + |Ci|, y)));
6 Si =

Si ∪ (x, y + |Ci|, max(z, cCut(|Ci|, |U|, y), uCut(|U|, x, y + |Ci|)));
7 Si = cleanUp(Si) ;

8 ans = ∞;
9 for all triples (x, y, z) in Sk do

10 ans = min(ans, z);

11 return ans;

The method cCut takes as input three integers, |C|, |U| and x, and returns the

size of the largest cut over a clique C of size |C| that is between a universal

clique of size |U| and x vertices. If |C| is smaller than |U|, then the largest cut

over C is the cut that is closest to U, having a cut size of |C| · |U|+ u · x. If |C|
is larger than or equal to |U|, the largest cut over C will be the cut that is the

i-th closest to U, where i is |C|+|U|2 . The size of this cut is b |C|+|U|2 c · d |C|+|U|2 e+
|U| · x. This method uses O(1) time.

The method cleanUp takes as input a set of triples of integers S, and returns

a nice subset S′ of S. A subset S′ of S is nice if for all triples (x, y, a) ∈ S′

there is no triple (x, y, b) ∈ S′ with b 6= a, and for every triple (x, y, b) ∈ S
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Algorithm 6: cCut
Input: Three integers: |C|, |U|, x
Output: The largest cut over a clique of size |C| between a universal

clique of size |U| and x vertices

1 if |C| < |U| then
2 return |C| · |U|+ |U| · x;
3 else
4 return b |C|+|U|2 c · d |C|+|U|2 e+ |U| · x;

there is a triple (x, y, a) ∈ S′ such that a ≤ b. The naive way to finding this

set is by trying all pairs of triples, costing O(|S|2) time. By using e.g. hashing

on the x and y value of the triples this can be efficiently done in O(|S|) time.

The purpose of cleanUp is to enable us to store only one triple for each pair

of integers l, r, where l is the number of vertices on the left side and r is the

number of vertices on the right side in an ordering with the smallest cutwidth.

Algorithm 7: cleanUp
Input: A set of triples of integers : S
Output: A nice subset of S

1 S′ = S;
2 for all distinct pairs of triples (x, y, z1), (x, y, z2) ∈ S′ do
3 z = max(z1, z2);
4 S′ \ {(x, y, z)};
5 return S′;

The method uCut takes as input the size of the universal clique U, the number

of vertices to its left (l), and the number of vertices to its right (r). It returns the

largest cut over a universal clique (in a linear segregated ordering) U, when

U has l vertices to its left and r vertices to its right. Given a positive integer

i < |U|, the size of the cut between the i-th vertex and the i + 1-th vertex of u

will be i · (|U| − i) + i · r + (|U| − i) · l. Notice that this formula also takes care

of the cut to the left of U (i = 0) and the cut to the right of U (i = |U|), and

thus covers all cuts over U. As we want to find the size of the largest cut, we

need to find the value of i such that this formula is maximized. The derivative

of the formula with respect to i is |U| − 2 · i − l + r, thus i = |U|−l+r
2 yields

the highest cut, as the formula is quadratic and the sign before i2 is negative.

There is however a problem, i could be less than 0 or more than |U|, for which

the cut is undefined. If i is less than 0 then l > |U|+ r. In this case the size
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of the largest cut over U is |U| · l (i = 0) as all other cuts for 0 < i ≤ |U| must

necessarily be lower as our formula is quadratic. Similarly if i is more than |U|
then r > |U|+ l, and the largest cut over U is |U| · r by the previous argument.

This calculation takes O(1) time.

Algorithm 8: uCut
Input: Three integers: |U|, l, r
Output: The largest cut over a universal clique of size |U| with l

vertices to its left and r vertices to its right

1 if l − r > |U| then
2 return |U| · l;
3 else
4 if r− l > |U| then
5 return |U| · r;
6 else
7 mid = r+l+|U|

2 − l;
8 return mid · (|U| −mid) + mid · r + (|U| −mid) · l;

Now that we have explained what the subroutines do, we can go on to explain

the main algorithm, CutwidthSuper f ragile, and prove its correctness.

Proof of correctness Algorithm CutwidthSuper f ragile identifies U and C1, C2,

. . . , Ck such that |Ci| ≥ |Cj| for i < j. At step i the algorithm goes through the

segregated linear orderings of a sparse cover of G[U ∪ C1 ∪ · · · ∪ Ci−1] and

creates two segregated linear orderings of G[U ∪ C1 ∪ · · · ∪ Ci] by placing Ci

close to the universal clique on both sides. Placing Ci close to the universal

clique is according to Lemma 4.1. As the largest cut over cliques C1, . . . , Ci−1

remains unchanged when placing Ci, we only have to calculate the largest cuts

over Ci and U and compare it with the largest cut over C1, . . . , Ci−1, which is

already known. These new orderings will form a cover of G[U ∪ C1 ∪ · · · ∪ Ci]

by Lemma 4.3. The algorithm then goes through all the segregated linear or-

derings of G[U ∪ C1 ∪ · · · ∪ Ci] and removes as few orderings as possible such

that all orderings are good and there are no twins. These orderings now form

a sparse cover of G[U ∪ C1 ∪ · · · ∪ Ci]. After step k the algorithm has a set of

segregated linear orderings of G that covers G. This set contains an optimal

segregated linear ordering by Lemma 4.2, thus the algorithm only has to go

through all of the orderings in the set, and return the cutwidth of an optimal

segregated linear ordering.
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Running time analysis Finding U and C1, C2, . . . , Ck such that |Ci| ≥ |Cj|
for i < j takes linear time, which is O(n) when given a tree representation,

or O(n + m) when given the graph (adjacency list) representation. Then the

algorithm goes through a loop with k steps. At step i the algorithm goes

through a set of segregated linear orderings that covers G[U ∪ C1 ∪ · · · ∪ Ci−1],

which contains O(|U|+ |C1|+ · · ·+ |Ci−1|) orderings, which is O(n). For each

of these orderings, two new orderings are made in O(1) time, making a new set

with a total of O(n) orderings. Removing orderings from this set such that the

set forms a sparse cover of G[U ∪ C1 ∪ · · · ∪ Ci] takes O(n) time. Thus running

through this loop takes O(k · n) time. As k is can be O(n), this is O(n2). In the

end the algorithm loops through a set of size O(n), and spends O(n) time on

it. Thus this algorithm has running time O(n2).

When it comes to space, the algorithm only needs to know and store the uni-

versal clique U and the cliques C1, . . . , Ck and at each step store the previous

ordering and the next ordering. All of which is O(n), thus the algorithm uses

O(n) space. We can thus conclude the following:

Theorem 4.4. The cutwidth of an optimal segregated linear ordering of a superfragile

graph can be computed in O(n2) time and O(n) space.

Finding the actual linear ordering In order to find a linear ordering yielding

the lowest possible cutwidth, we need, for every triple (x, y, z) in Si, to store the

choices for C1, . . . , Ci which led to this triple. As there can be O(n) triples, and

storing the choices takes O(n) space for every triple, this will require O(n2)

space. However, we will next show that we can improve this to O(n) space by

using a divide-and-conquer strategy.

Divide and Conquer version

We gave an algorithm that computes the cutwidth of a superfragile graph in

O(n2) time, using O(n) space. However, if we want an actual linear ordering

yielding the lowest cutwidth, we have to use O(n2) space. We will now show

an algorithm using the principles of divide-and-conquer to find an optimal

linear ordering in O(n2) time, using O(n) space.
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The algorithm The algorithm takes as input a superfragile graph G = (V, E)

and then identifies the universal clique U of G and the cliques C1, . . . , Ck such

that |Ci| ≥ |Cj| for i < j. The algorithm then iterates through C1, . . . , Ck in k

steps, doing the same operations as the previous algorithm, Algorithm 5. After

these steps the algorithm goes through all the orderings in Sk and identifies the

number of vertices on the left side, denoted endX and the number on the right

side , denoted endY, of the ordering with the least cutwidth. The algorithm

now calls the recursive method recursive with (1, k, 0, 0, endX, endY) as input.

The recursive method takes six integers as input start, end, startX, startY,

endX, and endY as input. This recursive method then iterates through cliques

Cstart, . . . Cend in the same manner as earlier, with one exception: When process-

ing clique C start+end
2

, the method stores the size of the left and right sets. These

two values will then be carried through in the next iterations, such that for

each ordering we know how many vertices were on the left side and right side

after placing C1, . . . , C start+end
2

. After processing the cliques the method looks at

the orderings with endX vertices on the left side, and endY vertices on the right

side. For this orderings the number of vertices on the left side and number of

vertices on the right side after placing the cliques C1, . . . , C start+end
2

is known,

let us denote these numbers as midX and midY respectively. The method

now performs two calls to itself: (start, start+end
2 , startX, startY, midX, midY)

and ( start+end
2 + 1, end, midX, midY, endX, endY). When the recursive method

receives a call where start = end, then there is only one clique to place, namely

Cstart. As the number on the left side before adding the clique is given, startX,

and the number on the left side after adding the clique is given, endX, the

method can assess the placement of Cstart. If startX < endX then clearly Cstart

was placed on the left side, if not, Cstart was placed on the right side. After

storing the choice for Cstart the method does not call itself further. When the

recursive method terminates, the choice of side for all cliques C1, . . . , Ck is de-

termined. Finding the actual segregated linear ordering σ is now trivial, as the

side each clique is positioned at is known, and the order between the cliques

is known. In particular, the algorithm starts with placing all the cliques that

belong to the left side in decreasing order, then the universal clique is placed,

and at last the cliques that belong to the right side are placed in increasing

order. The main algorithm is given as Algorithm 9 and the recursive method

is given as Algorithm 10.

The method ordering takes a table choice and a superfragile graph G as input.
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Algorithm 9: DivideAndConquer
Input: A superfragile graph G = (V, E)
Output: An optimal segregated linear ordering of G

1 Find U and C1, . . . Ck s.t. |Ci| ≥ |Cj| for all i < j;
2 S0 = (0, 0, 0);
3 for i = 1 to k do
4 for all triple (x, y, z) in Si−1 do
5 Si =

Si ∪ (x + |Ci|, y, max(z, cCut(|Ci|, |U|, x), uCut(|U|, x + |Ci|, y)));
6 Si =

Si ∪ (x, y + |Ci|, max(z, cCut(|Ci|, |U|, y), uCut(|U|, x, y + |Ci|)));
7 Si = cleanUp(Si);

8 ans = ∞;
9 endX = 0;

10 endY = 0;
11 for all triples (x, y, z) in Sk do
12 if ans > z then
13 ans = z;
14 endX = x;
15 endY = y;

16 choice[];
17 recursive(1, k, 0, 0, endX, endY);
18 σ = ordering(choice, G);
19 return σ;

It identifies the universal clique U of G and the cliques C1, . . . , Ck such that

|Ci| ≥ |Cj| for i < j. It then gives a segregated linear ordering σ where the

vertices of each clique is placed according to the choice table. The choice table

describes for every clique Ci if clique Ci is to the left or right of the universal

clique U. Since the ordering has the property described by Lemma 4.1, the

cliques on the left side will be placed in decreasing order with respect to size,

and the cliques on the right side will be placed in increasing order with respect

to size. This method takes O(n) time.

The method cleanUp∗ takes as input a set of quintuples of integers S, and

returns a nice subset S′ of S. A subset S′ of S is nice if for all quintuples

(x, y, a, l1, r1) ∈ S′ there is no quintuple (x, y, b, l2, r2) ∈ S′, and for every quin-

tuple (x, y, b, l2, r2) ∈ S there exists a triple (x, y, a, l1, r1) ∈ S′ such that a ≤ b.

Finding this set can be done in O(|S|) time in a similar way as in the cleanUp

method.
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Algorithm 10: recursive
Input: Integers: start, end, startX, startY, endX, endY
Output: VOID

1 if start == end then
2 if startX < endX then
3 choice[start] = 1;
4 else
5 choice[start] = 0;

6 else
7 Sstart−1 = {(startX, startY, 0, 0, 0)};
8 mid = b start+end

2 c;
9 for i = start to end do

10 for all quintuples (x, y, z, l, r) in Si−1 do
11 if i = mid then
12 Si =

Si ∪ (x + |Ci|, y, max(z, cCut(|Ci|, |U|, x), uCut(|U|, x +
|Ci|, y)), x + |Ci|, y);

13 Si =
Si ∪ (x, y + |Ci|, max(z, cCut(|Ci|, |U|, y), uCut(|U|, x, y +
|Ci|)), x, y + |Ci|);

14 else
15 Si =

Si ∪ (x + |Ci|, y, max(z, cCut(|Ci|, |U|, x), uCut(|U|, x +
|Ci|, y)), l, r));

16 Si = Si ∪ (x, y +
|Ci|, max(z, cCut(|Ci|, |U|, y), uCut(|U|, x, y + |Ci|)), l, r);

17 Si = cleanUp∗(Si) ;

18 midX = 0;
19 midY = 0;
20 for all quintuples (x, y, z, l, r) in Sk do
21 if x == endX and y == endY then
22 midX = l;
23 midY = r;

24 recursive(start, mid, startX, startY, midX, midY);
25 recursive(mid + 1, end, midX, midY, endX, endY);
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Algorithm 11: ordering
Input: A table choice and a superfragile graph G
Output: a segregated linear ordering of G according to choice

1 Find U and C1, . . . Ck s.t. |Ci| ≥ |Cj for all i < j;
2 nxt = 1;
3 for i = 1 to k do
4 if choice[i] == 1 then
5 for Vertex v ∈ Ci do
6 σ(v) = nxt;
7 nxt = nxt + 1;

8 for Vertex v ∈ U do
9 σ(v) = nxt;

10 nxt = nxt + 1;

11 for i = k to 1 do
12 if choice[i] == 0 then
13 for Vertex v ∈ Ci do
14 σ(v) = nxt;
15 nxt = nxt + 1;

16 return σ;

Algorithm 12: cleanUp∗

Input: A set of quintuples of integers: S
Output: A “good” set of quintuples

1 for all distinct pairs of quintuples (x, y, z1, l1, r1), (x, y, z2, l2, r2) ∈ S do
2 if z1 > z2 then
3 S \ {(x, y, z1, l1, r1)};
4 else
5 S \ {(x, y, z2, l2, r2)};

6 return S;

Proof of correctness Let G be the input graph with a universal clique U and

cliques C1, . . . , Ck, such that |Ci| ≥ |Cj| for i < j. We want to prove that Algo-

rithm 9 produces an optimal segregated linear ordering. The algorithm starts

by finding the number of vertices on the left, l, of U and the number of vertices

on the right, r, of U in an optimal segregated linear ordering σ, by using the

same technique as in the previous algorithm. Clearly, σ in G[U] has 0 ver-

tices on the left and the right side of U. Thus the start and end configuration

of an optimal segregated ordering is known. The algorithm then performs a
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similar technique as before, but now the configuration of every good segre-

gated linear ordering after placing half the of the cliques is known. In other

words, for an optimal segregated linear ordering σ of G, the configuration

of σ in G[U ∪ C1 ∪ · · · ∪ C k
2
] is known. The algorithm then performs two re-

cursive call, one going from the start configuration to the configuration of σ

in G[U ∪ C1 ∪ · · · ∪ C k
2
] storing the configuration of σ after placing k

4 cliques.

The second call goes from the configuration of σ in G[U ∪ C1 ∪ · · · ∪ C k
2
] to

the configuration of σ in G, finding the configuration of σ after placing 3·k
4

cliques. Since the ordering of C1, . . . , C k
2

in σ does not affect any cut over

cliques C k
2+1, . . . , Ck and vice versa it is enough to only know the configura-

tion σ after placing C1, . . . , C k
2
. The algorithm continues doing these recur-

sive calls until the configuration of σ in G[U ∪ C1 ∪ · · · ∪ Ci] is known for all

1 ≤ i ≤ k. When all of these configurations are known, the side (with respect

to U) of each clique Ci in σ is found by looking at the configuration of σ in

G[U ∪ C1 ∪ · · · ∪ Ci−1] and G[U ∪ C1 ∪ · · · ∪ Ci]. When the side (with respect

to U in σ) of every clique is known, the actual ordering σ is easily found by

exploiting Lemma 4.1.

Running time analysis Finding U and C1, C2, . . . , Ck such that |Ci| ≥ |Cj|
for i < j takes linear time, which is O(n) when given a tree representation,

or O(n + m) when given the graph (adjacency list) representation. Then the

algorithm goes through a loop with k steps. At step i the algorithm goes

through a set of segregated linear orderings that covers G[U ∪ C1 ∪ · · · ∪ Ci−1],

which contains O(|U|+ |C1|+ · · ·+ |Ci−1|) orderings, which is O(n). For each

of these orderings, two new orderings are made in O(1) time, making a new set

with a total of O(n) orderings. Removing orderings from this set such that the

set forms a sparse cover of G[U ∪ C1 ∪ · · · ∪ Ci] takes O(n) time. Thus running

through this loop takes O(k · n) time. As k is can be O(n), this is O(n2). The

algorithm then goes through all orderings in a set of size O(n), picking the one

of smallest cutwidth. Then the recursive function gets called. At the first level

of the recursion tree the algorithm spends O(k · n) time, by going through

k cliques and for each of them checking up to n orderings. On the second

level of the recursion tree, the algorithm has made two calls, both placing k
2

cliques, but not the same amount of vertices. However if the first call places

a vertices and thus has to go through a orderings, the second call only has to

place n− a vertices and go through n− a orderings. Clearly k
2 · a+

k
2 · (n− a) =
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k
2 · n. So for every level in the recursion tree the vertices are not spread evenly,

but the cliques are. So at level i in the recursion tree the algorithm spends

O( k
2i−1 ) ·O(n) time. Since ∑

log(k)
i=0 O( k

2i ) is O(k), the algorithm spends O(k · n)
time in the recursive method. After the recursion is done, the algorithm calls

the method ordering which spends O(n) time. Thus the running time of this

algorithm is O(k · n), which is O(n2).

With the explanations above, we have now proved the following:

Theorem 4.5. An optimal segregated linear ordering of a superfragile graph can be

computed in O(n2) time and O(n) space.

4.2 Optimal linear orderings

We have so far shown that we can find an optimal segregated linear ordering

in O(n2) time. Now we want to show that we can change any linear ordering

safely into a segregated linear ordering. By safely we mean that the cutwidth

of the ordering will not increase.

Observation 2. When swapping two close vertices u and v, the only cut that changes

is the one between them. See Figure 4.4.

u     v uv

Figure 4.4: Swapping two close vertices u and v can only change the cut
between them.

Consider two close vertices u and v where σ(u) < σ(v). Let c be the number

of edges with one endpoint to the left of u and one endpoint to the right of v

(the green edges in Figure 4.4). Notice that all these edges appear in all the

cuts over u and v, even after swapping them. Thus in further proofs, when
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comparing these cuts, we will disregard these c edges, as they appear in all of

the cuts.

Lemma 4.6. In every linear ordering of an arbitrary graph G, it is safe to swap two

close vertices u and v, where σ(u) + 1 = σ(v) if one of the following conditions is

satisfied:

• degL(v) ≤ degR(v) or degR(v) ≤ degL(v), and (u, v) /∈ E(G).

• degL(v) + 2 ≤ degR(v) or degR(v) + 2 ≤ degL(v), and (u, v) ∈ E(G).

B

A
D

C A DCB A DBC

1 2 2 1 3 2

A) B) C)

Figure 4.5: A) A graph. B) A linear ordering where degL(B) + 1 = degR(B)
with cutwidth 2. C) A linear ordering where B is swapped, yielding a higher
cutwidth of 3.

Proof Given a graph G and a linear ordering σ, let u and v be close in the

ordering. Let lu be the left degree of u and let ru be the right degree of u,

and let lv and rv be the left and right degree of v respectively. Assuming that

σ(u) + 1 = σ(v), we want to show that swapping u and v is safe. Notice that

the only cut that changes when swapping u and v is the cut between them,

see Observation 2. Now we want to find the constraints such that this cut is

guaranteed not to be larger than the cutwidth of σ.

Case 1) u and v are not neighbors: We consider the sizes of the two cuts around

u and v:

I: lu + lv
II: ru + rv

If we swap u with v, we get a new cut of size lu + rv. We need one of the

following inequalities to be satisfied for this swap to be safe:
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I: lu + rv ≤ lu + lv ⇒ rv ≤ lv
II: lu + rv ≤ ru + rv ⇒ lu ≤ ru

From I and II we can see that the swap is safe if either rv ≤ lv or lu ≤ ru holds,

which is according to the lemma.

Case 2) u and v are neighbors: We consider the two cuts around u and v:

I: lu + lv − 1

II: ru − 1 + rv

If we swap u with v, we get a new cut of size lu + rv + 1. We need one of the

following inequalities to be satisfied for this swap to be safe:

I: lu + rv + 1 ≤ lu + lv − 1⇒ rv + 2 ≤ lv
II: lu + rv + 1 ≤ ru − 1 + rv ⇒ lu + 2 ≤ ru

From I and II we can see that the swap is safe if either rv + 2 ≤ lv or lu + 2 ≤ ru

holds, which is according to the lemma.

Lemma 4.7. Given a graph G, there is always an optimal linear ordering σ of V(G)

where the universal clique is gathered.

Proof Given a graph G and a linear ordering σ of V(G), consider any univer-

sal vertex u. If σ(u) is less than V(G)
2 , it is clear by Lemma 4.6 that we can swap

u safely until σ(u) is equal to V(G)
2 . Similarly, if σ(u) is greater than V(G)

2 + 1,

we can safely swap u until σ(u) is equal to V(G)
2 + 1.

Lemma 4.8. Given a superfragile graph G, there is always an optimal linear ordering

σ of V(G) that is segregated.

Proof Consider a clique Ci of G in a linear ordering σ where the universal

clique U is gathered, this can be assumed by Lemma 4.7. There exists a ver-

tex v ∈ Ci ∪ U, such that degLCi∪U
σ (v) = degRCi∪U

σ (v) or degLCi∪U
σ (v) + 1 =

degRCi∪U
σ (v). Clearly for any vertex w ∈ Ci where σ(w) < σ(v), we can

safely swap w to the right until σ(w) = σ(v) − 1. Similarly we can for any

vertex w ∈ Ci where σ(w) > σ(v) safely swap w until σ(w) = σ(v) + 1.
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If v ∈ Ci, then we clearly have an ordering where Ci is gathered. If v ∈ U,

then Ci and U are not necessarily gathered. However, Ci ∪ U is gathered.

Let L be degLV(G)\{Ci∪U}
σ (v), the vertices to the left of Ci ∪ U, and let R be

degRV(G)\{Ci∪U}
σ (v). Let us now consider two close vertices, u ∈ U and v ∈ Ci.

Let |Ci| − b be the number of vertices in Ci to the left of v, and let b− 1 be the

number of vertices in Ci to the right of v. Let |U| − a be the number of vertices

in U to the left of u, and let a− 1 be the number of vertices in U to the right of

u. We now have two cases:

Case 1) σ(u) < σ(v):

degL(v) = |Ci| − b + |U| − a + 1

degR(v) = b− 1 + a− 1

degL(u) = |Ci| − b + |U| − a + L

degR(u) = b + a− 1 + R

Let us consider the size of the cut between u and v in the ordering. Before the

swap it is degR(u) + degL(v)− 1 which is equal to b + a− 1 + R + |Ci| − b +

|U| − a + 1− 1 = |Ci|+ R + |U| − 1. After the swap the size of the cut between

u and v is degR(v) + 1 + degL(u) + 1− 1 which is equal to b− 1 + a− 1 + 1 +

|Ci| − b + |U| − a + L + 1− 1 = |Ci| + |U| + L − 1. Clearly this swap is safe

if the new cut between u and v is smaller than or equal to the old. Thus we

require that: |Ci|+ |U|+ L− 1 ≤ |Ci|+ R + |U| − 1⇒ L ≤ R. Notice that this

inequality is independent of the relative positions of u and v. So if L ≤ R then

we can safely repeatedly swap each vertex of Ci with its left neighbor, such

that eventually all vertices of Ci end up to the left of the vertices in U. This

will make both Ci and U gathered.

Case 2) σ(u) > σ(v):

degL(v) = |Ci| − b + |U| − a

degR(v) = b− 1 + a

degL(u) = |Ci| − b + 1 + |U| − a + L

degR(u) = b− 1 + a− 1 + R
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Let us consider the cut between u and v in the ordering. Before the swap its

size is degR(v) + degL(u)− 1 which is equal to b− 1 + a + |Ci| − b + 1 + |U| −
a + L− 1 = |Ci|+ |U|+ L− 1. After the swap the size of the cut between u

and v is degR(u) + 1 + degL(v) + 1− 1 which is equal to b− 1 + a− 1 + R +

1 + |Ci| − b + |U| − a + 1− 1 = R + |Ci| + |U| − 1. Clearly this swap is safe

if the new cut between u and v is smaller than or equal to the old. Thus we

require that: R + |Ci|+ |U| − 1 ≤ |Ci|+ |U|+ L− 1⇒ R ≤ L. Notice that this

inequality is independent of the relative positions of u and v. So if R ≤ L then

we can safely repeatedly swap the vertices of Ci with its right neighbor, such

that they all end up to the right of the vertices in U. This will make both Ci

and U gathered.

If L ≤ R then for every vertex of Ci, we can repeatedly swap it with its close

vertex to the left, until it is to the left of all vertices in U. If not, then for every

vertex of Ci, we can repeatedly swap it with its close vertex to the right, until

it is to the right of all vertices in U. Thus making both Ci and U gathered.

Clearly, we can make all cliques gathered without increasing the cutwidth and

thus making σ segregated.

From Theorem 4.4 and Lemma 4.8, we can now immediately conclude the

following.

Theorem 4.9. The cutwidth of a superfragile graph on n vertices can be computed in

O(n2) time and O(n) space.

From Theorem 4.5 and Lemma 4.8 it follows that we can produce a linear

ordering corresponding to the cutwidth also within the same running time, as

stated in the following theorem.

Theorem 4.10. An optimal linear ordering of a superfragile graph on n vertices can

be computed in O(n2) time and O(n) space.





Chapter 5

Conclusion and further research

The initial purpose of this thesis was to explore whether the algorithm for

solving Cutwidth on threshold graphs [21] could act as an approximation

algorithm on other graph classes. As we have seen in Chapter 3, this algorithm

does not seem to be useful in this respect on any of the graph classes that

we studied. The work on this thesis quickly developed in a more theoretical

direction. First we improved the naive O∗(n!) time solution on general graphs

with a standard dynamic programming algorithm solving Cutwidth in O∗(2n)

time and space in Chapter 2. We also traded time with space with a divide-

and-conquer algorithm solving Cutwidth in O∗(4n) time and O(n · log(n))

space. These algorithms were well known [3] [23] [5], but developing these

algorithms on our own was a good exercise to get a deeper understanding of

the Cutwidth problem.

The main result of this thesis is presented in Chapter 4. Motivated by the

fact that it is unknown whether or not Cutwidth is in P on interval graphs,

we started by looking at interval graphs and its subgraphs. Knowing that

Cutwidth is solvable in linear time on proper interval graphs, which have

representations where no intervals are nested, we took a look at those interval

graphs which have a representation where all intervals are nested, namely triv-

ially perfect graphs. Even on trivially perfect graphs and some of their simpler

subclasses, the computational complexity of Cutwidth is open. We concen-

trated on resolving this on a subclass of trivially perfect graphs, called super-

fragile graphs. Our main result in this thesis is giving an O(n2) time algorithm

solving Cutwidth on superfragile graphs. Before our result, it was unknown

55
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whether or not Cutwidth on superfragile graphs were in P or NP-complete.

Thus our algorithm is the first to show that Cutwidth on superfragile graphs,

in fact, is in P. Parallel to our discovery, Cutwidth was conjectured to be NP-

complete on those graphs with a compact tree representation of depth 2. This

implies that our result might be tight, in the sense that no natural superclass

of superfragile graphs admits a polynomial time algorithm for Cutwidth.

In this last chapter, we will have a look at graph parameters similar to cutwidth,

and we will give some discussions on these related to the work we have done in

this thesis. We will also list open problems for further research, both regarding

these parameters and regarding cutwidth.

5.1 Linear ordering problems

The Cutwidth problem belongs to a family of problems where the question is

whether or not a linear ordering of vertices exists such that some condition is

satisfied. These problems are often referred to as layout problems, and the word

layout is often used interchangeably with linear ordering. A survey by Dı́az,

Petit and Serna in 2002 [14] gives an overview over different layout problems

and results on them. Petit later followed up in 2011 with addenda [27] to this

survey including more results, many of which where published after the first

mentioned survey.

Bandwidth

The Bandwidth problem is one of the most well known and well studied

layout problems. Given a graph G = (V, E) the problem asks to find a linear

ordering σ of G such that max(u,v)∈E(G)(|σ(u)− σ(v)|) is minimized. In other

words the problem asks for an ordering where the length of the longest edge is

as small as possible. Surprisingly, the Bandwidth problem is NP-hard on trees

[17], but is, interestingly, solvable on interval graphs in O(n · log(n)) time [26].

One interesting fact is that while most linear ordering problems have an exact

O∗(2n) algorithm [5], the fastest exact algorithm for Bandwidth has a running

time that is O∗(4.383n) [12]. The bandwidth of a graph G, bandwidth(G) is

the lowest integer k such that there exists a linear ordering σ of G such that
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max(u,v)∈E(G)(|σ(u) − σ(v)|) ≤ k. The bandwidth of a graph gives an upper

bound on the cutwidth of the graph: consider any graph G with bandwidth

k, the cutwidth of G cannot be more than k·(k+1)
2 due to the argument that

follows. Given a linear ordering σ of G, a cut between two close vertices can at

most contain l edges of length l, l − 1 edges of length l − 1, and so on. If there

is an ordering where the length of an edge is at most k, then clearly the largest

cut can have at most ∑k
i=1 i edges.

Bandwidth on Threshold graphs Bandwidth is solvable in O(n · log(n)) time

on interval graphs, and thus also in the same time on threshold graphs. How-

ever, it could still be interesting to see if the threshold algorithm for Cutwidth

by Heggernes, Lokshtanov, Mihai and Papadopoulos [21] solves Bandwidth.

Experimenting with this idea, we quickly found a counter-example, where the

threshold algorithm performed worse than optimal. This example is shown in

Figure 5.1.

B)A) C)

BW: 3 BW: 2

Figure 5.1: A) A threshold graph G. B) The ordering given by the threshold
algorithm, with a bandwidth of 3 (red edge). C) An optimal ordering, with a
bandwidth of 2 (red edges).

Optimal Linear Arrangement

The Optimal Linear Arrangement problem, also known as the Minimum

Linear Arrangement problem, abbreviated OLA and MinLA respectively,

is closely related to both Cutwidth and Bandwidth. Instead of asking for

the linear ordering minimizing the largest cut or longest edge, it asks for the

linear ordering minimizing the sum of the lengths of all edges. A more formal

definition of OLA: given a graph G the problem asks for the linear ordering σ

of G such that ∑(u,v)∈E(G) |σ(u)− σ(v)| is minimized. This is equivalent to the

sum of the size of every cut, ∑
V(G)−1
i=1 deg(Vi), since each edge (u, v) ∈ E(G)
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is included |σ(u)− σ(v)| cuts. For this reason OLA is also referred to as sum

bandwidth and sum cutwidth. We say that OLA(G) is the lowest integer k such

that there exists a linear ordering σ of G such that ∑(u,v)∈E(G) |σ(u)− σ(v)| ≤ k.

Given a graph G with cutwidth k, OLA(G) is at most (n− 1) · k. This follows

from the fact that there are n− 1 cuts, all of which size is at most k. Similarly, if

k is the bandwidth of G, then OLA(G) is at most m · k, where m is the number

of edges in G, as there are m edges with length at most k. The computational

complexity of OLA is opposite to that of Bandwidth, as OLA is polynomial

on trees [8] and NP-hard on interval graphs [10].

OLA on Threshold graphs It is unknown whether or not OLA is in P for

threshold graphs. We thought of an algorithm where the vertices are pro-

cessed in the construction order of the input threshold graph. Let G be the

input graph and vi be the i-th vertex in the construction order of G. If vi is an

isolated vertex, vi placed at the end of the linear ordering, σ(vi) = i. If vi is a

dominant vertex, the vertex is placed in the end of the linear ordering, and con-

tinuously swapped to the left as long as ∑(u,v)∈E(G[{v1,...,vi}]) |σ(u)− σ(v)| ≤ k is

decreased by the operation. The idea is that whenever a dominant vertex vi is

added, it neighbors v1, . . . , vi−1, thus in order to minimize the sum of its edges,

it should be placed toward the middle of vertices v1, . . . , vi−1. Why not place

it exactly in the middle? Well, if there was a dominant vertex vj, j < i, then

placing vi just to the right of vj might not be optimal, as vj may have neighbors

to the right of vj, whose distance now are increased by 1. Toying with the idea

of this algorithm, we came to the realization that the algorithm for solving

Cutwidth on threshold graphs [21] actually gives such an ordering, in linear

time. In order to get an indication if such a linear ordering is optimal for OLA,

we implemented an exact O∗(2n) algorithm solving OLA and compared it to

the threshold algorithm for Cutwidth. Comparing the output of both algo-

rithms for all threshold graphs with up to 16 vertices, our result was positive:

the threshold algorithm for Cutwidth is optimal for all threshold graphs with

up to 16 vertices. This is of course no proof, but we believe that the correctness

of this algorithm deserves further study. In this regard we will state two open

questions:

• Is OLA on threshold graphs in P?
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• Does the threshold algorithm for the Cutwidth problem [21] also admit

an optimal ordering for OLA?

OLA on Superfragile graphs As with threshold graphs, the computational

complexity of OLA on superfragile graphs is open. We have made an al-

gorithm which we believe is correct, solving OLA on superfragile graphs in

O(n2) time and O(n). Given a superfragile graph G with universal clique U

and cliques C1, C2, . . . , Ck, the algorithm yields a linear ordering which is seg-

regated. The idea is that the sum of the lengths of the edges between vertices

in each clique is minimized, and a segregated linear ordering will do just that.

The sum of the lengths of the edges from vertices in U to vertices in cliques

C1, C2, . . . , Ck is however not necessarily minimized. In order to minimize this

sum, the cliques C1, . . . , Ck are placed such that the number of vertices to the

left of U is as close to the number of vertices to the right of U as possible. To

find such an ordering, we can apply the idea of the knapsack problem, similar

to what we did for Cutwidth on superfragile graphs. Our algorithm gives an

optimal segregated linear ordering, but we do not know if such an ordering is

in fact an optimal linear ordering. As with OLA on threshold graphs we tested

this algorithm on all superfragile graphs with up to 20 vertices, by comparing

our algorithm to the exact algorithm. The result was positive: our algorithm

is optimal for all superfragile graphs with up to 20 vertices. We will thus state

two open questions:

• Is OLA on superfragile graphs in P?

• Given a superfragile graph G, is there always an optimal linear ordering

σ of V(G) that is segregated?

5.2 Further research on Cutwidth

Throughout this thesis we stated that is unknown whether or not the Cutwidth

problem is NP-hard on several graph classes. Since most of these questions

were left unanswered in the thesis, we find it natural to ask them again:

• Is Cutwidth in P or NP-hard for trivially perfect graphs with compact

tree representation of depth 2?
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• Is Cutwidth in P or NP-hard for trivially perfect graphs?

• Is Cutwidth in P or NP-hard for interval graphs?

Notice that in order to prove that Cutwidth is NP-hard on all these classes,

it is enough to show that it is NP-hard for the graphs with a compact tree

representation of depth 2, as they are subgraphs of trivially perfect graphs and

interval graphs. Similarly, in order to prove that they are all in P, it is enough

to show that Cutwidth is polynomial time solvable for interval graphs, as

interval graphs is a superclass to both the other classes. Of course, Cutwidth

on these classes can be both NP-hard and in P, but only if P=NP.

In Chapter 2 we gave an O∗(2n) algorithm solving the Cutwidth problem on

general graphs. As mentioned earlier, a common question for NP-hard prob-

lems has been if there is any algorithm faster than O∗(2n) and this question

remains unanswered for Cutwidth on general graphs. So we pose the ques-

tion again:

• Is there an algorithm with running time O∗((2 − ε)n), ε > 0, solving

Cutwidth on general graphs?
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