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1.1 Overview 

Today the number of sensors (Cameras, microphones, GPS ships, wireless networks…etc.) increases 

exponentially so does the quantity of data.  “Data is the new oil”1, oil is difficult to extract and refine, 

likewise, data is hard to extract and refine in order to get value out of it. The problem is that is 

unstructured and might be huge, for instance mass-spectrometric data may contain thousands of 

attributes. A manual approach seems to be hopeless, it would cost a lot of highly qualified human 

resources, time and money. Therefore a new approach is needed to analyze the new raw material that 

data has become. One possible approach is clustering. This new field of computer science automates the 

classification of big amounts of data without the need of a priori knowledge. A wide range of research has 

been done and two new generations of algorithms have emerged, one from the field of statistical analysis 

that lead to K-means algorithms and the other Kernel based algorithms [1]. The other approach comes 

from nature’s own way of doing things. This field is called Computational intelligence, and implies 

algorithms like Multi-Layer Perceptron, genetic clustering and so on… 

As a result of this new approach the need to optimize the new algorithms generated has arisen The Multi-

layer Perceptron has several parameters to be optimized and it is a challenging task to estimate them. 

Again, optimization is a well-known problem. This problem can be tackled in two different ways. First of 

all we might consider a very mathematical approach like the simplex method [2]. Similarly to clustering, 

the other one mimic nature and generates genetic algorithms and Swarm intelligence algorithms. Such an 

approach allows to efficiently explore a search space to find a near-optimal solution. In this thesis I will 

focus on Kernel based clustering [1] and Swarm optimization [3]. 

1.2 Motivation 

Clustering analysis is a time consuming and challenging task if done manually. A lot of tools have been 

developed to automate this task. However, the performance of any clustering algorithms depends largely 

on the parameters used. Finding the values these parameters is already a difficult problem. The first 

solution was to use an empirical approach and to adjust manually the parameters. Therefore, the need 

for a more appropriate solution is needed. Researchers started to use Optimization theory to explore the 

parameters space of Artificial Neural Network [4]. Another challenge that needs to be addressed is to 

visualize the optimization algorithm itself. The optimization process takes place in a space of high-

dimension.  It becomes difficult to visualize the exploration of the search space. 

 Particle Swarm Optimization (PSO) is a well-known optimization algorithm [3]. It is based on the 

intrinsic property of swarms to execute complex tasks by the self-organization of simple entities. We speak 

of intelligence as an emergent property. It is a powerful way to explore a multi-dimensional search space, 

and find a near optimal solution. In addition, it allows a greater control of the behavior of the algorithm 

and it enables us to track dynamic optimum. 

 Kernel Based Clustering is quite a new approach in data-mining [5]. The category of algorithm is 

based on the following statement: “A complex pattern-classification problem, cast in a high-dimensional 

                                                           
 

1 David McCandless: The beauty of data visualization, TEDGlobal 2010 
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space nonlinearly, is more likely to be linearly separable2 than in a low-dimensional space provided that 

the space is not densely populated” [6]. This method of clustering provides excellent results in various 

problems, with a very efficient time frame. 

Optimization techniques have been applied to different data-mining algorithms. However there are few 

articles about optimized Kernel Based clustering. The lack of such system, the mathematical elegance of 

Kernel based clustering in addition to simple efficiency of Particle Swarm Optimization (PSO) has triggered 

our interest in designing such system. 

 

1.3 Background 

1.3.1 Clustering 

Data clustering is often confused with classification. However, in classification the classes in which objects 

need to be assigned are predetermined. In clustering, these classes have to be defined too. As mentioned 

earlier, the clustering problem has been studied for many years. Even so, there is no uniform definition of 

it. Generally, by data clustering, we mean that for a given data-set and a given similarity measure, we 

regroup data points such that object in the same group are similar, and objects in different groups are 

dissimilar, according to the similarity measure.  

Clustering is applied to many problems, such as: 

 Gene expression data [7]. 

 Image segmentation [8]. 

 Market research [9]. 

 And many others… 

The creation of groups is based on the concept of similarity and distance. These are reciprocal concepts. 

Similarity coefficients describes quantitatively how similar two data points are. The greater the similarity 

coefficients, the greater the similarity. Distance measure, on the other hand, describes quantitatively how 

different two data points are. The greater the distance, the greater the dissimilarity. We will define more 

precisely these notions in the next chapter. To summarize, a cluster is a set of objects or data points that 

share the same properties i.e. that have a small mutual distance. 

Every clustering algorithms share a common structure:  

                                                           
 

2 Linearly separable: a hyper plane can discriminate the data points of two or more classes. 
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Figure 1.2: Process of data clustering 

The data representation determines the structure of the clusters to be discovered in the data. Followed 

by the modeling phase that defines the notions of cluster and the separating criteria between clusters. 

The optimization phase refines the clusters and finally the result is validated. 

1.3.2 Particle Swarm Optimization 

Biologist have been studying the unpredictable choreography of a bird flock and especially the ability to 

fly synchronously and recover their formation after a change of direction. They tried to simulate 

graphically this phenomena. From this initial objective, the concept evolved into a population-based 

search algorithm, the particle swarm optimization algorithm [3].  

Figure 1.3: Basic Structure of PSO 

In PSO, birds are assimilated to particles and are flown through hyper-dimensional search space. The 

social-psychological tendency of individuals is used to update the velocity of particles. In other words, 

each particles is influenced by the experience of others particles, its neighbors, and by its own knowledge. 

This means that the behavior of the swarm is determined by each particle itself. This property is called 

symbiotic cooperation. The modeling of this behavior encourages the particles to go back to successful 

region of the search space. The basic structure of a PSO algorithm is presented in 
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Figure 1.3.

Figure 1.3 Two elements are critical when designing a PSO. The first is the fitness function which is highly 

problem dependent, and is a measure of how well a particle performs. The second is the update of the 

position, it is determined by the velocity, and in this case, there are various approaches. But it is important 

to remember that the way how the velocity is computed strictly determines the behavior of the swarm. 

Figure 1.3 just shows the very basic idea behind PSO, there are numerous variations of this structure. The 

choice of a specific variation depends of the problem to be solved. 

1.4 Goals 

This thesis aims to exhibit the potential of swarm optimization and its ability to work on different tasks. 

We will applied particle swarm optimizer to kernel based clustering and different study cases. From these 

experiments we will draw conclusions about PSO’s abilities. We want to study the potential and limits of 

such optimization approach. 

Also, to demonstrate the flexibility of such an algorithm, Swarm optimization will be applied to a model 

of dynamic system. This will prove the ability of Swarm Optimization to work in complex and highly non-

linear search space. Finally a critical objective is to visualize the experiments. The system will have a 

visualization tool to represent the optimization process and a Graphical User Interface. 

1.5 Outline 

Chapter 1: Introduction: This chapter simply describes the overall idea, introduces a few definitions and 

the outline of the thesis. 
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Chapter 2: Kernel clustering: This chapter presents the theoretical knowledge around Kernel based 

algorithm and Kernel clustering. 

Chapter 3: Particle Swarm Optimization: The theory behind Particle Swarm Optimization is detailed in 

this chapter. 

Chapter 4: Design of the system: The requirements and the design of the system are presented. 

Chapter 5: User interface: The user interface of the system is exhibited and explained in this chapter. 

Chapter 6: Study case – the movie model: This chapter presents a dynamic model, called the movie 

model. We show the need of an optimization algorithm to improve such a model, and perform 

experiments. 

Chapter 7: Study case – DNA classification: We presents the problem of DNA classification using Artificial 

Neural Network and Support Vector Machine, and apply Particle Swarm Optimization to find the 

appropriate parameters. 

Chapter 8: Study case – Support Vector Clustering: Particle Swarm Optimization is applied to Support 

Vector Clustering. The data set used is presented and the different implications of such experiment are 

presented in this chapter. 

Chapter 9: Conclusion and further work: A summary of the experiments is done. We present our 

conclusion and the evolution of this project in the future. 

  



Page | 15 

Chapter 2 - Kernel clustering 

 

 

 

Figure 2.1: Mind map Chapter 2 
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2.1 Introduction 

2.1.1 Classification versus clustering 

Clustering and classification are based on the same concept similarity grouping (i.e. share common 

properties) according to specific criteria. Actually, this is one of the oldest human ability, and can probably 

be extended to more species [11]. In order to learn something, people try to find descriptive features of 

an unknown object and compare them to known object according to their similarities and/or 

dissimilarities. This allows people to classify information, for instance natural objects are splitted in three 

groups, animals, plants, minerals. Each of these groups is further divided into subgroups and so on… 

Data analysis naturally converged towards clustering and classification to provide a basis for further 

reasoning, decisions making and understanding any kind of phenomena. Let us consider a clinical 

treatment, a specific disease might have different subtype sharing similar symptoms but responding 

differently to the same cure. Cluster analysis of gene expression data measuring the activity of genes can 

be a solution to discovering subtypes and adapt the therapy [7] [12]. 

Cluster analysis is divided into two main domains: Classification and Clustering. In Classification data is 

categorized in groups known a priori while the clustering process has to discover the groups in the data. 

In other words clustering needs to find the common features between data by itself. The latter method is 

a tool of choice to explore unknown data and extract knowledge from it. 

2.1.2 Hard clustering versus soft clustering 

As expected there are two types of clustering: hard and soft. 

Given a set of input data 𝑋 = {𝑥1, … , 𝑥𝑗, … , 𝑥𝑁},𝑤ℎ𝑒𝑟𝑒 𝑥𝑗 = {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑑} ∈ 𝑅
𝑑 with each 𝑥𝑗𝑖 is called 

a property, or features, d is the dimensionality of X and N is the cardinality of X. 

A hard clustering process will seek to create k partition of X, 𝐶 =  {𝐶1, … , 𝐶𝑘} with k < N subject to the 

following constraint: 

 Ci ≠ ∅, i = 1…k 

 ⋃ Ci = X
k
i=1   

 Ci ∩ Cj = ∅, i, j = 1…k, i ≠ j 

 

Equation 2.1 

It means that in hard clustering each data points is assigned to one and only one cluster. 

Soft clustering on the other hand allows input patterns to belong to all k clusters with a degree of 

membership 𝑢𝑖𝑗 ∈ [0, 1],  𝑢𝑖𝑗  represents the membership degree of object j to cluster i. The membership 

function is subject to two constraints: 

 ∑ 𝑢𝑖𝑗
𝑘
𝑖=1 = 1, ∀𝑗 

 ∑ 𝑢𝑖𝑗
𝑁
𝑗=1 <

𝑁,∀𝑖, N is the number of data points 
 

Equation 2.2 

Soft clustering is also called fuzzy clustering [13]. The next section will clarify the vocabulary and give 

definition of it. 
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2.2 Definitions 

2.2.1 Data points 

A data point or object, also called input pattern represents a coherent group of informations, itself 

composed of single units of information called features or properties. In order to be processed, data points 

are converted in vectors where the dimension is the number of features. 

For example, in the case of face recognition, the vector would be a single picture of a face then the 

features would be the pixels on that image. The dimension of each input pattern becomes very high, very 

quickly depending of image’s resolution. 

Data points are noted as follow: 

𝑥𝑗 = (𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑑)
𝑇
 , where d is the number of features (i.e. the dimension). 

A data set is simply a collection of input patterns and its notation is: 

𝑋 = {𝑥1, … , 𝑥𝑗, … , 𝑥𝑁} 

For N data object with d features, an N*d pattern matrix is built from the corresponding vectors. 

2.2.2 Features 

Features are classified in three categories: continuous, discrete and binary. Continuous features take 

values in an infinite range of sets, such as the weight of humans, the concentration of a molecule in a 

blood sample, the frequency of a specific codon in a specific gene, etc… Discrete features have a countable 

infinite number of values, such as the color of the eyes, the country of a person, the brand of a car. Binary 

features are a special case of discrete properties, they can take only two values and are also called 

dichotomous features. It can be a Boolean value for instance. 

2.2.3 Distance measure 

When an algorithm is clustering the pattern matrix, it has to deal with measuring the similarity or 

dissimilarity between two patterns. However, with real world data, some or all the input patterns can 

have missing values. If the number of incomplete patterns is small compared to the size of the input set, 

then they can be discarded. Very often this is not the case and the major part of a set can have missing 

features. Therefore the solution is to consider the contribution of the missing features to the proximity 

measure as null. The distance between object 𝑥𝑖 and 𝑥𝑗 is defined by: 

 

𝐷(𝑥𝑖, 𝑥𝑗) =
𝑑

𝑑 − ∑ 𝛿𝑖𝑗𝑙
𝑑
𝑙=1

∗ ∑ 𝑑𝑙(𝑥𝑖𝑙 , 𝑥𝑗𝑙)

𝑎𝑙𝑙 𝑙 𝑎𝑛𝑑 𝛿𝑙=0

 Equation 2.3 

 

Where 𝑑𝑙(𝑥𝑖𝑙 , 𝑥𝑗𝑙) is the distance of feature l between object i and j and 
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𝛿𝑖𝑗𝑙 = {
1, 𝑖𝑓 𝑥𝑖𝑙  𝑜𝑟 𝑥𝑗𝑙  𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
 

Equation 2.4 

 

A distance or dissimilarity function on a data set X must satisfy the following properties: 

 Symmetry: 

𝐷(𝑥𝑖 , 𝑥𝑗) =  𝐷(𝑥𝑗, 𝑥𝑖) Equation 2.5 

 

 Positivity: 

𝐷(𝑥𝑖 , 𝑥𝑗)  ≥ 0, ∀𝑥𝑖, 𝑥𝑗 Equation 2.6 

 

 Triangle inequality: 

𝐷(𝑥𝑖, 𝑥𝑗) ≤ 𝐷(𝑥𝑖, 𝑥𝑘) + 𝐷(𝑥𝑘 , 𝑥𝑗), ∀𝑥𝑖, 𝑥𝑗, 𝑥𝑘 Equation 2.7 

 

 Reflexivity: 

𝐷(𝑥𝑖 , 𝑥𝑗) = 0 𝑖𝑓𝑓 𝑥𝑖 = 𝑥𝑗 Equation 2.8 

 

In this thesis, we will work with continuous variables and the distance measure will be the Euclidian 

distance. This proximity measure is a special case of the Minkowski distance, called 𝐿𝑝 that is defined by: 

𝐿𝑝 = 𝐷(𝑥𝑖, 𝑥𝑗) = (∑(|𝑥𝑖𝑙 − 𝑥𝑗𝑙|
𝑝
)

𝑑

𝑙=1

)

1/𝑝

 
Equation 2.9 

 

The Euclidian distance is 𝐿2 is a special case when p=2, given by: 

𝐿2 = 𝐷(𝑥𝑖, 𝑥𝑗) = (∑(|𝑥𝑖𝑙 − 𝑥𝑗𝑙|
2
)

𝑑

𝑙=1

)

1/2

 
Equation 2.10 

 

There are two other well-known cases of the Minkowski distance, the Manhattan distance or 𝐿1and the 

sup distance or 𝐿∞. 
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Figure 2.2: Illustration of the Minkowski distance 

L2 satisfies the conditions given in Equation 2.5 to Equation 2.8. However, features can be measured in 

various units and the variance of certain properties or their large value can bias their weight in a data set 

[14]. To solve this problem Hogg and Tanis [15] proposed a method called data standardization, where 

each feature has zero mean and unit variance: 

𝑥𝑖𝑙 =
𝑥𝑖𝑙
∗ −𝑚𝑙

𝑠𝑙
, 𝑖 = 1…𝑁, 𝑙 = 1…𝑑 

Equation 2.11 

 

𝑥𝑖𝑙  is the raw data, 𝑚𝑙  𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛: 

𝑚𝑙 =
1

𝑁
∑𝑥𝑖𝑙

∗

𝑁

𝑖=1

 
Equation 2.12 

 

While 𝑠𝑙 is the sample standard deviation: 

𝑠𝑙 = √
1

𝑁
∑(𝑥𝑖𝑙

∗ −𝑚𝑙)
2

𝑁

𝑖=1

 
Equation 2.13 

 

Another normalization exists, based on the extrema of the data. It puts all features in the interval [0, 1]: 

𝑥𝑖𝑙 =
𝑥𝑖𝑙
∗ −𝑚𝑖𝑛(𝑥𝑖𝑙

∗ )

𝑚𝑎𝑥(𝑥𝑖𝑙
∗ ) −𝑚𝑖𝑛(𝑥𝑖𝑙

∗ )
 Equation 2.14 

 

With the two last definitions at hands, we may try to define the concept of a cluster. 

2.2.4 Cluster 

The goal of a clustering algorithm is to partition a data set X into a certain number of clusters, i.e. subsets 

of X where each member of a given subset shares common properties (have a small distance between 
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each other). However, there is no universally admitted definition of the term cluster. According to Britts 

& all [11] a “formal definition is not only difficult, but may even be misplaced”. 

According to the dictionary a cluster is “a group or bunch of several discrete items that are close to each 

other”. 

In [16] Everitt states three other definitions given by: 

1. A cluster is a densely populated region of the feature space separated by relatively low density 

region of this space. 

2. “A cluster is a set of entities which are alike, and entities from different clusters are not alike.” 

3. “A cluster is an aggregate of points in the test space such that the distance between two points in 

the cluster is less than the distance between any point in the cluster and any point not in it.” 

In other words, a cluster is a subset of the input data points that are similar. This similarity between data 

points is obtained using a distance measure. The data point from another subset are not similar, that 

means that the distance between two points from different cluster is larger than the maximum inner 

distance of each cluster. 

The last aspect that might be worth considering is the granularity of the clustering. 

 

Figure 2.3: Clustering granularity 

In Figure 2.3 one might see two clusters or three, both answers are right. 

2.2.5 Clustering procedure 

It is commonly admitted that the clustering procedure is divided into four major steps [12] as shown in 

Figure 2.4. 
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Figure 2.4:  Clustering procedure 

 Step 1: Feature extraction applies transformations to extract or generate new features from the 

original ones. This method could be more efficient for uncovering the data structure. 

 Step 2: Clustering algorithm design determines the proximity measure. 

 Step 3: Validation, Clustering algorithms can create clusters whether they exist or not in the data. 

These steps are an attempt to evaluate the algorithm’s performance. 

 Step 4: Interpretation of the results, experts in the relevant field try to interpret the results and 

to see if the clustering provided meaningful information on the original dataset, or not. 

In the next section we briefly introduce the Support Vector Machine (SVM) to lay the foundation for the 

Support Vector Clustering (SVC). In the description of the SVM we want to avoid to use too much 

mathematics, the goal is to give an overview of the SVM. The mathematical formulation will come in the 

description of the SVC. 

 

2.3 Support Vector Machine 

The Support Vector Machine [17] is a binary learning machine, i.e. it can classify two classes of pattern. In 

the context of pattern classification, the core idea can be summarized as follows: 

Given a training sample, SVM constructs a hyper plane (decision surface) to discriminate between positive 

and negative samples in order to maximize the margin of separation, Figure 2.5 illustrates this concept. 
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Figure 2.5: Margin separation 

 

Support Vectors are a subset of data points selected by the learning algorithm. The machine is based on 

the inner product kernel between a support vector and a vector drawn from the training data. Because of 

this property, SVM is referred to as a kernel method. This kernel method designs an optimal decision 

surface. The optimality is rooted in convex optimization [18]. However, such a feature comes at the price 

of a high computational complexity. The kernel trick [19] solves the problem of computational complexity. 

The kernel trick is detailed in section 2.6. 

SVM projects training points into a feature space with a much higher dimension than the input space. 

Such projection is non-linear, but according to the Cover Theorem [6], the data may become linearly 

separable in the feature space. This means that the data points can be separated by the hyper plane in 

the feature space. The non-linear map is unknown and is computationally expensive, and sometimes 

become virtually impossible to compute. The kernel trick is then used to compute the images of the 

training points in the feature space. This trick avoids the computation of the non-linear map. Let a 

nonlinear map Φ:𝑅𝐷 → 𝐹 where F represent a feature space and k be a Mercer’s Kernel [20], we can 

replace the inner product of Φ defined by:  

Φ:𝑅𝐷 → 𝐹 Equation 2.15 

𝑘(𝑥, 𝑥′) = Φ𝑇(𝑥′)Φ(𝑥) Equation 2.16 

Mercer’s kernel are known mathematical functions (polynomial, sigmoid etc…), therefore we can 

calculate the inner product of Φ without knowing it. In the feature space the learning algorithm selects 

the support vector to build the decision surface and map it back in the input space. The second mapping 

is achieved by first solving a convex optimization problem then applying a linear mapping from the feature 

space to the output space. Figure 2.6 illustrates the concept of SVM. 



Page | 23 

 

Figure 2.6: Illustration of the two mappings in the SVM. 

SVM has been initially designed to classify binary data. Later the Multi Class SVM was created allowing 

the classification of a finite number of classes. But supervised learning assumes a priori knowledge on the 

data (the number of classes). Hence, the Support Vector Clustering [5] was developed which is an 

unsupervised learning algorithm using the core idea of SVM. We will explore the SVM with kernel 

clustering in details in the next sections. 

2.4 Kernel Clustering 

The introduction of the Support Vector Machine [1] has increased the popularity of the Kernel algorithm 

since 1990s, due to its high performance in both supervised classification and regression analysis. It has 

been successfully applied in unsupervised classification or clustering since then. The key behind that is the 

Cover Theorem [6]:  

A complex pattern-classification problem, cast in a high-dimensional space 

nonlinearly, is more likely to be linearly separable than in a low-dimensional space, 

provided that the space is not densely populated. 

Given a set 𝑋 = {𝑥1, … , 𝑥𝑗 , … , 𝑥𝑁} 𝑤𝑖𝑡ℎ 𝑥𝑗 ∈ 𝑅
𝑑 of input pattern and a nonlinear map Φ:𝑅𝐷 → 𝐹 where 

F represents a feature space of arbitrarily high dimensionality. X is mapped into F through Φ so that a 

linear algorithm can be performed. The Cover Theorem is illustrated in Figure 2.7. 

A problem soon appears, as the dimensionality increases, so does the complexity. It is called the curse of 

dimensionality [21]. This difficulty is overcome using the kernel trick from Mercer’s theorem [20]: 
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Let 𝑘(𝑥, 𝑥′) be a continuous symmetric kernel that is defined in the closed 

interval 𝑎 ≤ 𝑥 ≤ 𝑏, and likewise for 𝑥′. The kernel 𝑘(𝑥, 𝑥′) can be expanded in the 

series: 

k(x, x′) =  ∑λiφi(x)φi(x
′)

∞

i=1

 
Equation 2.17 

 

With positive coefficients 𝜆𝑖 > 0 for all i. For this expansion to be valid and for it to 

converge, it is necessary and sufficient that the condition: 

∫∫k(x, x′)ψ(x)ψ(x′)dxdx′  ≥ 0

a

b

a

b

 
Equation 2.18 

 

holds for all 𝜓(. ), for which we have: 

∫ψ2(x)dx < ∞

a

b

 
Equation 2.19 

 

where a and b are the constants of integration 

Calculating Φ is time-consuming and often infeasible. However, Mercer Theorem allows us to avoid this 
computation and there is no need to explicitly describe the nonlinear mapping Φ neither the image 
points in the feature space F. This technique is known as the Kernel trick. 

 
Figure 2.7: The Cover Theorem 
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In the next section, the notion of Kernel is explained with different types of kernels. 

2.5 Definition of Kernel 

The function 𝑘(𝑥, 𝑥′) is called an inner product kernel, or kernel.  

It is a function that computes the inner product of images produced in the feature 

space under 𝛷 of two data points in the input space [22]. 

Two properties are derived from this definition: 

Property 1: 𝑘(𝑥, 𝑥′) is symmetric about the center 𝑥′: 

𝑘(𝑥, 𝑥′) =  𝑘(𝑥′, 𝑥) Equation 2.20 

 
The maximum is reach for 𝑥 = 𝑥′. 

Property 2: The volume under 𝑘(𝑥, 𝑥′) 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

However, this is the general definition of a kernel. To use the kernel trick, the function 𝑘(𝑥, 𝑥′) has to 

satisfy Mercer’s theorem. In the scope of this observation, only four types of kernel remains, they are 

listed below. 

The polynomial kernel: 

𝑘(𝑥, 𝑥′) =  (𝑥 ∗ 𝑥′ + 1)𝑝 Equation 2.21 

 

The Gaussian kernel: 

𝑘(𝑥, 𝑥′) =  𝑒𝑥𝑝 (−
1

2𝜎2
‖𝑥 − 𝑥′‖2) 

Equation 2.22 

 

where 𝜎 is the width parameter or margin separation. In the case of clustering it controls the 

granularity of the clustering. 

The sigmoid kernel: 

𝑘(𝑥, 𝑥′) =  tanh(𝜃0(𝑥 + 𝑥
′) + 𝜃1) Equation 2.23 

 

where 𝜃0 and 𝜃1 are user-specified parameter. Furthermore, the sigmoid kernel satisfies 

Mercer’s theorem only for specific value of  𝜃0 and 𝜃1. 

In the case of Support Vector Clustering, the Gaussian kernel is the most used because the polynomial 

kernel does not allow tight contours of the clusters [23]. 

With all the previous definitions, we can now present the Support Vector Clustering algorithm (SVC). 
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2.6 Support Vector Clustering 

Over the last years various Kernel clustering algorithms have been developed. They may be grouped in 

three families. The first type is based on Kernelising the Metric, the metric is computed by means of 

Mercer’s kernel in the feature space. The second implements K-means in the feature space using Kernel 

Methods. The last one is based on Support Vector Machine including Kernel Methods. In this section we 

introduce the Support Vector Clustering algorithm and explain the Kernel trick. 

In SVC, the data points are mapped from data space into a high dimensional feature space by means of a 

Mercer’s kernel (here the Gaussian kernel). Then we look for the smallest hyper-sphere capturing all the 

image data points. Once mapped back into the data input space, the contour of the sphere describes the 

boundaries of clusters. Finally, data points enclosed by the same closed contours are assigned to a cluster. 

This is done by computing the adjacency matrix3. 

Given a set 𝑋 = {𝑥1, … , 𝑥𝑗 , … , 𝑥𝑁} 𝑤ℎ𝑒𝑟𝑒 𝑥𝑗 ∈ 𝑅
𝑑 of input pattern and a nonlinear map Φ: 𝑅𝐷 → 𝐹. The 

object is to find the smallest hyper-sphere in F capturing all the data points of X after the nonlinear 

mapping. In other words, we need to find the hyper sphere H with the minimal radius R such as: 

‖Φ(𝑥𝑗) − 𝛼‖
2
≤ 𝑅2, ∀𝑗  Equation 2.24 

 

Where ‖. ‖ is the Euclidian distance, α is the center of H. The introduction of the slack variables 𝜉𝑗 

incorporates soft constraints. Slack variables replace inequality constraints by equality constraints plus 

non-negativity constraints. Equation 2.24 becomes: 

‖Φ(𝑥𝑗) − 𝛼‖
2
≤ 𝑅2 + 𝜉𝑗  , where 𝜉𝑗 ≥ 0  

Equation 2.25 

 

With 𝜉𝑗 ≥ 0. The primal problem is solved in its dual form by introducing the Lagrangian. 

𝐿 = 𝑅2 −∑(𝑅2 + 𝜉𝑗 − ‖Φ(𝑥𝑗) − 𝛼‖
2
)𝛽𝑗

𝑗

−∑𝜉𝑗𝜇𝑗
𝑗

+ 𝐶∑𝜉𝑗
𝑗

 Equation 2.26 

 

With 𝛽𝑗 ≥ 0 and 𝜇𝑗 ≥ 0 are Lagrange multipliers and 𝐶 ∑ 𝜉𝑗𝑗  is a penalty term and C a constant. Applying 

the stationary condition to L, i.e., setting to zero the derivative of L with respect to R, 𝛼 and 𝜉𝑗 leads to: 

∑𝛽𝑗 = 1

𝑗

 Equation 2.27 

 

𝑎 =∑𝛽𝑗Φ(𝑥𝑗)

𝑗

 Equation 2.28 

                                                           
 

3 An adjacency matrix is a matrix representing the connection of nodes in a graph. It is just one of the many 
representations of a graph. 
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𝛽𝑗 = 𝐶 − 𝜇𝑗 Equation 2.29 

 

This is a quadratic optimization problem [18] which involves the Karush-Kuhn-Tucker complementarity 

conditions (see section 2.7.2) [24] we have: 

𝜉𝑗𝜇𝑗 = 0 Equation 2.30 

 

(𝑅2 + 𝜉𝑗 − ‖Φ(𝑥𝑗) − 𝛼‖
2
)𝛽𝑗 = 0 Equation 2.31 

 

From Equation 2.31 we observe that the image of a point 𝑥𝑗 with 𝛽𝑗 > 0 and 𝜉𝑗 > 0 is outside the hyper 

sphere H. According to Equation 2.30,  𝜇𝑗 = 0. It follows now from Equation 2.29 that 𝛽𝑗 = 𝐶. Such a point 

is called a Bounded Support Vector (BCV). A point 𝑥𝑗 with  0 < 𝛽𝑗 < 𝐶 then from Equation 2.29  𝜇𝑗 > 0 →

 𝜉𝑗 = 0. Such a point lies on the feature space sphere and is called Support Vector (SV). All other points 

are inside the sphere. 

SVs lie on cluster boundaries while BSVs are outside, the rest are in the clusters. Using these relations we 

can remove R, 𝛼 and 𝜇𝑗  and rewrite Equation 2.26 into its dual expression: 

𝑊 =∑Φ(𝑥𝑗)
2
𝛽𝑗

𝑗

−∑𝛽𝑖𝛽𝑗Φ(𝑥𝑖). Φ(𝑥𝑗)

𝑖𝑗

 Equation 2.32 

 

The variables 𝜇𝑗  are replaced by the following constraints: 

0 < 𝛽𝑗 < 𝐶, 𝑗 = 1,… ,𝑁 

At this stage we still don’t know the nonlinear map nor the Lagrange Multipliers. However, according to 

Mercer’s theorem the dot product Φ(𝑥𝑖). Φ(𝑥𝑗) may be replaced by a Mercer kernel 𝐾(𝑥𝑖, 𝑥𝑗) as 

𝐾(𝑥𝑖, 𝑥𝑗) =  Φ(𝑥𝑖). Φ(𝑥𝑗) Equation 2.33 

 

This replacement is known as the Kernel trick. The dual Lagrangian [25] W is now written as: 

𝑀𝑎𝑥𝛽𝑗𝑊 =∑ 𝐾(𝑥𝑗, 𝑥𝑗)𝛽𝑗
𝑗

−∑𝛽𝑖𝛽𝑗 𝐾(𝑥𝑖, 𝑥𝑗)

𝑖𝑗

 , β is the Eigen-vector  Equation 2.34 

 

Subject to the constraints: 

0 < 𝛽𝑗 < 𝐶 Equation 2.35 
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∑𝛽𝑗 = 1

𝑗

 𝑓𝑜𝑟 𝑗 = 1,… ,𝑁 Equation 2.36 

 

As previously mentioned the appropriate kernel for SVC is the Gaussian kernel with the width parameter 

q: 

𝐾(𝑥𝑖 , 𝑥𝑗) =  𝑒
−𝑞‖𝑥𝑖−𝑥𝑗‖

2

 
Equation 2.37 

 

We define now the distance of each image point from the center of the sphere: 

𝑅2(𝑥) = ‖Φ(𝑥) − 𝛼‖2 Equation 2.38 

 

Using Equation 2.28 and the definition of Mercer kernel, we have: 

𝑅2(𝑥) = 𝐾(𝑥, 𝑥) − 2∑𝛽𝑗 𝐾(𝑥𝑗, 𝑥)

𝑗

−∑𝛽𝑖𝛽𝑗 𝐾(𝑥𝑖, 𝑥𝑗)

𝑖𝑗

 Equation 2.39 

 

SV lies on the surface of the sphere, i.e. 

𝑅 = {𝑅(𝑥𝑖)|𝑥𝑖  ∈  𝑆𝑉} Equation 2.40 

 

Vice versa, the contours that define the clusters are given by:  

{𝑥|𝑅(𝑥) = 𝑅} Equation 2.41 

 

They formed the cluster boundaries. One last step is necessary to complete the algorithm. We need to 

assign a cluster to each data points and label them. We observe that the path connecting two given data 

points belonging to different clusters must exit the hyper sphere of the feature space. Such a path must 

contain a point y with 𝑅(𝑦) > 𝑅. This define the adjacency matrix 𝐴𝑖𝑗  between 2 points whose 

images Φ(𝑥𝑖) and Φ(𝑥𝑗) lies in or on the sphere: 

𝐴𝑖𝑗 = {
1 𝑖𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑥𝑖  𝑎𝑛𝑑 𝑥𝑗, 𝑅(𝑦) ≤ 𝑅  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                           
 

Equation 2.42 

 

 

This is better illustrated through a graphical representation: 
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Figure 2.8: Line segment connecting data points 

With this matrix, clusters are now defined as the connected components of the graph induced by A. 

At this point, we make one observation here, BSVs are unclassified by this procedure. A possible solution 

is to assign them to the closest cluster.. 

The last part of this chapter will give a brief overview of two key mathematical concepts used in SVC. 

2.7 Mathematical aspect 

2.7.1 Quadratic Programming 

Quadratic Programming (QP) [25] is a class of problems that are close to linear programming problems, 

with the difference that the objective function contains products of pairs of variables (called quadratic 

terms). As we have seen in the SVC such problems are more than abstract. Fortunately this constitutes a 

well-known class of problems, and the solution does exist. They belongs to a broader class of problems: 

Convex Programming. Although solving such problems is beyond the scope of this thesis, it is necessary 

to give an overview of QP here. 

QP problems are usually minimization problems of the following form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 +
1

2
𝑥𝑡𝑄𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≥ 𝑏 𝑎𝑛𝑑 𝑥 ≥ 0 

Equation 2.43 

 

This is solved by calculating the dual problem and introducing the Lagrangian. The dual is obtained using 

the Karush-Kuhn-Tucker complementarity [24] conditions: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑏𝑇𝑦 −
1

2
𝑥𝑡𝑄𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑇𝑦 + 𝑧 − 𝑄𝑥 = 𝑐 𝑎𝑛𝑑 𝑦, 𝑧 ≥ 0 
 

Equation 2.44 
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2.7.2 Karush-Kuhn-Tucker complementarity conditions (KKT conditions)  

Let 𝜆 ∈ 𝑅+
𝑚. The following Lagrangian function is defined as: 

𝐿(𝑋, 𝜆) = 𝑓(𝑋) + ∑𝜆𝑖𝑔𝑖(𝑋)

𝑚

𝑖=1

 
Equation 2.45 

 

where 𝜆𝑖 is the Lagrangian multiplier. 

The KKT conditions combine two conditions: The Stationary condition and the complementary slackness 

condition: 

To maximize L according to X we need the first order derivative to be zero: 

𝜕𝑓

𝜕𝑋
(𝑋) +∑𝜆𝑖

𝜕𝑔𝑖
𝜕𝑋

(𝑋)

𝑚

𝑖=1

= 0 𝑤ℎ𝑒𝑟𝑒 
𝜕

𝜕𝑋
 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 

Equation 2.46 

 

The complementary slackness conditions or positivity conditions stated as: 

min[𝜆𝑖, 𝑔𝑖(𝑋)] = 0, ∀𝑖 ∈ {1…𝑚} Equation 2.47 

Once again, solving QP is beyond the scope of this thesis. For more information we refer to [21], [24], [25], 

[18] and many others. The literature about this topic is very rich. 
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Chapter 3 - Particle Swarm Optimization 

 

 

 

 

Figure 3.1: Mind map Chapter 3 
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3.1 Introduction 

First of all, let’s consider the following example. Imagine you are a bird in the middle of a flock during 

migration. You have to fly thousands of kilometers to reach your warm destination. You have two choices, 

you can either fly on your own or fly within the flock. We have all noticed the specific formation of some 

bird flocks and we know that it is far from being random. Flying in such formation reduces the drag. It 

makes it easier to fly long distances when you are in the middle of the flock. Once the birds at the edge of 

the flock are tired they switch with birds inside. In this way birds can migrate over very long distances. 

Would you prefer to fly alone or in a flock? 

This simple cooperation method solves a complex problem: reducing drag in order to save energy to travel 

long distance. The flock can be referred to as a swarm. A swarm is composed of individuals (often mobile) 

that communicate directly or indirectly with each other to solve complex problems. This interaction 

results in distributive collective problem-solving strategies and is referred to as Swarm Intelligence (SI) [3]. 

Computational Swarm Intelligence (CSI) refers to the algorithmic models of such behavior [3]. The idea of 

creating such algorithms came from the biological study of bird flocks and ant swarms and to reproduce 

their behaviors on computer models. These simulations showed great ability to explore multidimensional 

space and quickly turned into a whole new domain of the algorithms. 

We will focus on Particle Swarm Optimization [26] and some of its variations. In PSO, intelligence becomes 

as an emergent property from the interactions between the individuals (or particles). It means that from 

simple interactions one can solve complex problems. Particles follow a simple behavior: they try to 

emulate the success of their neighboring individuals and their own success. A PSO algorithm uses a single 

swarm that might be composed of many particles spread among sub-swarms. And each particle 

represents a potential solution to a given problem.  The performance of an individual is obtained using a 

fitness function. This function takes the potential solution of a particle and “run” it through the current 

problem, and then evaluates the output. 

Particles are flown into a multidimensional space, called the search space, representing all the feasible 

solutions of a given problem. Using the fitness function their position is updated to explore the search 

space and find an optimal or near optimal solution. 

Let 𝑥𝑖(𝑡) be the position of particle i at time step t then the position at time t+1 is: 

𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) Equation 3.1 

with 𝑣𝑖(𝑡 + 1) being the velocity component of particle i at the time step t+1. 

The velocity vector plays a fundamental role in the optimization process. It reflects the social information 

exchanged in the swarm and the own experience of a particle. The former part is referred to as the social 

component (SC) while the latter is referred to as the cognitive component (CC). We may say that velocity 

is equal to social component + cognitive component. We will present the two main PSO algorithms in the 

next section. They mainly differ by their social component. 
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3.2 Basic Particles Swarm Optimization 

3.2.1 Global Particles Swarm Optimization  

In global particle swarm optimization (gPSO) the neighborhood of a particle consists of the whole swarm. 

It means that the social component of the velocity is obtained by gathering information from all particles. 

We can say that the swarm is a fully connected graph of individuals. This social information is the global 

best position of the swarm. The SC uses the particles that achieved the best fitness in the swarm. 

The velocity component for particle i at time step t+1 in gPSO is: 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦
′(𝑡) − 𝑥𝑖(𝑡)] Equation 3.2 

𝑐𝑐 is the contribution of the cognitive component and 𝑐𝑠 the contribution of the social component. 𝑟𝑐 and 

𝑟𝑠 are issue from a random distribution to introduce a stochastic element. 𝑥𝑖(𝑡) is the position of particle 

i at time t while 𝑦𝑖(𝑡) is the best personal position of particle i at time t. Finally 𝑦𝑖
′(𝑡) is the best known 

position in the swarm at time t. 

Let 𝑓: 𝑅𝑑 → 𝑅 be the fitness function and d the dimension of the search space. The local best position in 

the case of a maximization problem is obtained by: 

𝑦𝑖(𝑡) = {
𝑦𝑖(𝑡 − 1) , 𝑖𝑓 𝑓(𝑦𝑖(𝑡 − 1)) ≤ f(𝑦𝑖(𝑡)) 

𝑥𝑖(𝑡) , 𝑖𝑓 𝑓(𝑦𝑖(𝑡 − 1)) > f(𝑦𝑖(𝑡)) 
   

Equation 3.3 

 

The global best position for a swarm of N particles is simply: 

𝑦′(𝑡) = max (𝑓(𝑥1(𝑡)), … , 𝑓(𝑥𝑖(𝑡)), … , 𝑓(𝑥𝑁(𝑡))) Equation 3.4 

gPSO 

Initialize a swarm of N particles 

Do while until stopping condition true 

 For each particles do 

  If 𝑓(𝑥𝑖) > 𝑓(𝑦𝑖) do  //Set the personal best 

   𝑦𝑖 = 𝑥𝑖 

  Endif 

  If f(𝑦𝑖) > 𝑓(𝑦′) do  //Set the global best 

   𝑦′ = 𝑦𝑖  

  Endif 

 Endfor 

 For each particles do 

  𝑣𝑖 = 𝑣𝑖 + 𝑐𝑐𝑟𝑐[𝑦𝑖 − 𝑥𝑖] + 𝑐𝑠𝑟𝑠[𝑦
′ − 𝑥𝑖] //Update the velocity 

  𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖    //Update the position 

 Endfor 

Endwhile  

Algorithm 3.1: global best PSO 



Page | 34 

The initial population of a swarm is generally a random distribution of N particles in the search space. We 

now present the pseudo code for gPSO: 

3.2.2 Local Particle Swarm Optimization 

The local particle swarm optimization (lPSO) main version of PSO differs from gPSO only in the way velocity 

is calculated. Instead of using the global best position to obtain the social component, this is the local best 

particle that is used. A neighborhood is defined for each particle. This can be done in two ways. The first 

method is based on the Euclidian distance, we set a distance from which a particle i belongs or not to the 

neighborhood of particle j. This method is computationally expensive. And spatial proximity is not 

required. The second approach uses particle indices. 

For a swarm of size N, we define a neighborhood of size 𝑛𝑠 ∈ {1…𝑁}, if 𝑛𝑠 = 𝑁 we have the gPSO. The 

neighborhood of individual i is: 

𝒩𝑖 = {𝑦𝑖−𝑛𝑠 (𝑡), 𝑦𝑖−𝑛𝑠 +1(𝑡),… , 𝑦𝑖(𝑡), … , 𝑦𝑖+𝑛𝑠 −1(𝑡), 𝑦𝑖+𝑛𝑠 (𝑡), } 
Equation 3.5 

The local best position in the case of a maximization problem is then: 

𝑦𝑖
′′(𝑡 + 1) = 𝑚𝑎𝑥(𝑓(𝒩𝑖))  Equation 3.6 

The velocity is now calculated by: 

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦𝑖
′′(𝑡) − 𝑥𝑖(𝑡)] Equation 3.7 

One of the advantages of using neighborhood based on particle index is that the information regarding 

good solutions is spread around the swarm regardless of their spatial proximity. The pseudo-code of the 

lPSO is given in Algorithm 3.2 

lPSO 

Initialize a swarm of N particles 

Do while stopping condition true 

 For each particles do 

  If 𝑓(𝑥𝑖) > 𝑓(𝑦𝑖) do  //Set the personal best 

   𝑦𝑖 = 𝑥𝑖 

  Endif 

  If f(𝑦𝑖) > 𝑓(𝑦′) do  //Set the global best 

   𝑦′ = 𝑦𝑖  

  Endif 

 Endfor 

 For each particles do 

  𝑣𝑖 = 𝑣𝑖 + 𝑐𝑐𝑟𝑐[𝑦𝑖 − 𝑥𝑖] + 𝑐𝑠𝑟𝑠[𝑦𝑖
′′ − 𝑥𝑖] //Update the velocity 

  𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖    //Update the position 

 Endfor 

Endwhile  

Algorithm 3.2: local best PSO 
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3.2.3 Velocity component 

The Velocity update equation is composed of three parts in every PSO variations.  

 The first part consists of the momentum. This is the memory component of a particle. It 

represents the previous velocity of an individual. An inertia weight can be affected to this 

component, it balances the importance of the momentum. 

 The second part is the cognitive component. This is the selfish behavior of a particle and drives a 

particle toward its best known personal position. A coefficient is attributed to this component to 

moderate its importance in the velocity update equation. 

 The third and last part is the social component. As opposed to the cognitive component, it drives 

a particles toward the best known position of the swarm or the neighborhood of the individual. It 

is also affected by a coefficient. 

3.3 Variations 

PSO showed a great ability to solve standard optimization problems [27] and Neural Network Optimization 

problems [28] [29]. Their goal is to improve the convergence and the quality of the solutions found by 

PSO. A fundamental aspect of PSO is the trade-off of Exploration-Exploitation (EE trade-off) of the search 

space. Exploration is the ability of the swarm to leave its initial area and spread through the search space. 

Exploitation focusses on a promising area to refine potential solutions. There are two obvious extreme 

cases of the EE-tradeoff. Firstly, if a swarm favours Exploration then it might miss some good areas of the 

search space. Secondly, if a swarm favours Exploitation it might be trapped in local minima (or maxima 

depending on the problem). Within PSO the problem is addressed by the velocity update equation. In this 

section we present three variations of the velocity update. The velocity clamping, the inertia weight and 

the Constriction coefficient are discussed. 

3.3.1 Clamping 

The velocity update consists of three components that determine the future position of a particle. In PSO 

the velocity may increase quickly and the swarm might diverge completely. This means that the EE trade-

off is unbalanced toward Exploration. At every update, a particle literally jumps form one position to 

another. To limit the growth of the velocity, the Clamping equation has been introduced. It acts as a speed 

limitation on the velocity updates: 

𝑣𝑖(𝑡 + 1) = {
𝑣𝑖
′(𝑡 + 1), if 𝑣𝑖

′(𝑡 + 1) ≤ 𝑉𝑀𝐴𝑋 

𝑉𝑀𝐴𝑋 , if 𝑣𝑖
′(𝑡 + 1) > 𝑉𝑀𝐴𝑋 

   
Equation 3.8 

 

With 𝑣𝑖
′(𝑡 + 1) is the result using the equations Equation 3.2 and Equation 3.7. 𝑉𝑀𝐴𝑋 is the “speed limit”. 

This value is important because it controls the EE trade-off. Small value increases the exploitation, large 

value encourages exploration. The problem is to find the value for 𝑉𝑀𝐴𝑋, the authors of [30] used a 

fraction of the domain of each dimension of the search space: 

𝑉𝑀𝐴𝑋,𝑗 =  𝛿(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) Equation 3.9 

The coefficient 𝛿 is determined using experiments. 
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The use of 𝑉𝑀𝐴𝑋 restricts the step-size of each particle, but also the direction of the movement. This 

change of direction might encourage exploration, but might also skip the optimum. 𝑉𝑀𝐴𝑋 does not have 

to be constant and can change over time. A common strategy is to start with a large value to encourage 

exploration and then reduce it to exploit the good region found in the first stage. 

3.3.2 Inertia weight 

The inertia weight is a control mechanism for the EE trade-off [31]. In the velocity update equation we 

have three components, and in front of the social and cognitive component there is a contribution 

coefficient for each. However, there is no such coefficient for the momentum. This is exactly the role of 

the inertia weight, it modulates the contribution of the momentum to the velocity update with 𝑤  being 

the inertia weight: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦
′(𝑡) − 𝑥𝑖(𝑡)] Equation 3.10 

For 𝑤 ≥ 1 the swarm diverges and explores the search space at accelerating speed. Particles cannot move 

back to promising area. For 𝑤 < 1 the particles decelerate until they become stationary. The optimal 

value for the w is problem dependent (as for the velocity clamping). However, it has been shown that w 

should not be under a certain limit to guarantee convergence of the swarm [32]: 

𝑤 > 
1

2
(𝑐1 + 𝑐2) − 1 

Equation 3.11 

 
Again, the inertia weight does not have to be constant. Five different approaches have been used, random 

adjustment, linear decreasing, nonlinear decreasing, fuzzy adaptive inertia and increasing inertia. An issue 

with the inertia weight is that velocity clamping is still necessary to limit the divergence of the swarm. 

3.3.3 Constriction Coefficient 

The last control mechanism for the EE trade-off is the Constriction coefficient. And it is also the one we 

are going to use in this thesis. The idea is the same as for the inertia weight. However, the coefficient 

applies for the three components of the velocity update equation: 

𝑣𝑖(𝑡 + 1) = 𝜒[𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦
′(𝑡) − 𝑥𝑖(𝑡)]] Equation 3.12 

With  

𝜒 =
2𝑘

|2 − 𝜙 − √𝜙(𝜙 − 4)|
 Equation 3.13 

 

and 𝜙 = 𝑐𝑐𝑟𝑐 + 𝑐𝑠𝑟𝑠 and 𝜙 ≥ 4 and 𝑘 ∈ [0,1]. These equations were obtained using Eigenvalue Analysis 

[33]. We can observe that 𝜒 ∈ [0,1] meaning that the velocity is reduced at each time step. There is no 

need for Velocity Clamping. The parameter k controls the EE trade-off, a small value implies fast 

convergence with local exploitation while a large value means high exploration and slow convergence of 

the swarm. It is interesting to start with a high value of k and progressively reduce it. This approach and 

the inertia weight approach are equivalent except that there is no need for velocity clamping. 
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3.4 Discussion 

3.4.1 Exclusive velocity models 

Three models have been explored by J. Kennedy [34]. 

 The Cognitive-Only model: The social component of the velocity update equation is removed. The 

resulting model tends to perform local search around the initial position and display poor 

performance in general. However, it is well suited for niching algorithms. 

 The Social-Only model: This time the cognitive component is removed from the velocity update 

equation. The swarm converges faster than for the Cognitive-only model and demonstrates better 

result for dynamic environments [35] 

 The Selfless model: This model is almost like the Social-Only model with one exception. In this 

model, the current particle is not allowed to become the best solution of its neighborhood. The 

performance of the selfless model is poor in dynamically changing environments, but outperforms 

the Social-Only model in specific cases. 

3.4.2 Initialization 

The first step of any PSO algorithm is to initialize the control parameters and the swarm itself. A general 

approach is to uniformly cover the search space, using a generator of random particle within the search 

space. To ensure a good coverage of the search space at initialization, Sobol and Faure sequences have 

been used [36] [37].The initial velocity is usually set to zero. 

3.4.3 Termination conditions 

Another aspect of PSO is the stopping condition. It has to satisfy two conditions. First of all, it should not 

stop the PSO to converge too fast, since it might find a suboptimal solution. Secondly, it should not require 

frequent calculation of the fitness function to minimize the number of computations needed. Five major 

stopping conditions have been used: 

Iterations: The PSO stops when a certain number of iterations is reached. If this limit is too small, the 

swarm will find a suboptimal solution. If this limit is too large the PSO might make useless computations. 

This condition is often used with other convergence criteria as a safety stopping condition, in case the 

other one fails. However, during our experiment we have found this method very efficient to simply 

explore a search space. 

Acceptable solution: The PSO stops when an “acceptable” solution has been found. A threshold is defined, 

and when a particle achieves a fitness within this threshold, the algorithm stops. However, this method 

requires a priori knowledge of the optimum, and we need to define what is acceptable. If the problem is 

the training of a neural network, then the optimum is usually zero because we want to minimize a 

measurement error. In that specific case this solution is well suited. But most problems don’t require this 

a priori knowledge of the optimum. 

No more improvements: The PSO stops when it fails to improve the fitness over a certain number of 

iterations. Here, if the best solution of the swarm stays stuck in a small window over a predefined number 

of iterations, we may consider that the PSO has converged and the solution is extracted. The main issue 
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with this condition is that it introduces two additional parameters to the PSO: the threshold that defines 

an acceptable solution, and the window of iteration. 

Normalized Swarm radius close to zero: The PSO stops when the radius of the swarm becomes small. The 

normalized swarm radius is obtained using the following equations: 

𝑅𝑛𝑜𝑟𝑚 =
𝑅𝑚𝑎𝑥

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑆)
 

Equation 3.14 

where, 

𝑅𝑚𝑎𝑥 = ‖𝑥𝑚 − 𝑦
′‖ Equation 3.15 

𝑥𝑚 being the particle the further away from 𝑦′. Diameter(S) is the diameter of the swarm at time step 

zero. This approach puts the global best at the center of the swarm. In this way, if the best position is still 

moving, then the radius of the swarm is not yet close enough to zero. There exists a variation of this 

stopping condition, this is given by the Particle Clustering Algorithm: 

This algorithm creates a single cluster composed of 𝜖 % of the Swarm. In other words, with 𝜖 = 0.9 the 

PSO stops when 90% of the particles are centered at the best solution. It gives more control over the 

spatial disposition of the swarm to stop the search. 

Small objective function slope: The PSO will stop when the slope of the objective function is close to 

zero. We obtain the slope at time step t by: 

𝑓′(𝑡) =
𝑓(𝑦′(𝑡)) − 𝑓(𝑦′(𝑡 − 1))

𝑓(𝑦′(𝑡))
 

Equation 3.16 

 

We recognize the derived number of the objective function. If 𝑓′(𝑡) stays below a certain threshold 𝜖 

during a set number of iterations, we consider that the swarm is not making any progress and we can 

stop the PSO. This solution might cause the PSO to be stuck in a local minima, i.e. if a small group of 

particles are stuck in a local minima, then the objective function slope might not evolve, it will cause the 

PSO to stop. To avoid this problem, this stopping condition can be used with the radius method. 

Particle Clustering Algorithm 

Initialize Cluster 𝐶 = {𝑦′} 

For about k times do 

 Calculate the centroid of C 

  𝑥′ =
∑ 𝑥𝑖
|𝐶|
𝑖=1,𝑥𝑖∈𝐶

|𝐶|
 

 For each particles do 

  If ‖𝑥𝑖 − 𝑥
′‖ < 𝜖 do 

   𝐶 ← 𝐶 ∪ {𝑥𝑖} 
  Endif 

 Endfor 

Endfor 

Algorithm 3.3 Particle Clustering Algorithm 
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3.5 Parameters 

The parameters of PSO may vary from one version to another, but they all share a certain number of 

parameters. We have already discussed some of them: 

The size of the swarm, a large initial population implies a large diversity and a good space coverage. 

However, the larger the swarm, the larger the computation per iteration is. A big swarm might also obtain 

an optimal solution in fewer iterations. Usually a swarm should have between 10 and 30 particles [38]. 

Even if good results can be obtained with smaller swarms. The optimal size will depend on the 

optimization problem to be solved. A smooth search space needs fewer particles than a rough one. 

The number of iterations will also depend on external parameters. We have already seen the impact of a 

given parameter in section 3.4.3. 

The neighborhood size influences the interaction between particles. A small neighborhood implies few 

interactions and vice versa. However, small neighborhoods tend to avoid local minima while large one 

exploits more. A good strategy is to increase the size of the neighborhood during the search. 

We need to make a last comment on the acceleration coefficient, the social and the cognitive coefficient 

don’t need to be constant. Smooth search spaces are well suited for a large social coefficient while rough 

search spaces are more suited for a large cognitive component. The adaptive acceleration coefficient has 

been proposed by Clerc [39]. There is a lot more to discuss about the impact of different acceleration 

coefficients, but in this thesis we will use only a constant one. The next parts of this chapter will present 

two specific types of PSO. And at the end we will introduce the algorithm that has been designed for this 

project. 

3.6 Selection based PSO 

3.6.1 Genetic Algorithm 

The next PSO algorithm uses Genetic Algorithms (GA) approach [40]. This types of algorithm is inspired by 

the genetic evolution of chromosomes. They maintains a population of genes (equivalent of a particle in 

PSO). The main idea is to take this initial population, mutate it, and reproduce certain of its individuals. 

Mutation and reproduction are used in the biological context. We then replace a part of the initial 

population by the newly created genes. This section will briefly describe the major steps of any GA as:  

 Parent Selection 

 Crossover (or reproduction) strategies 

 Mutation strategies 

 Replacement strategies 

3.6.1.1 Parent Selection 

There are frequently used selection operators: random selection, proportional selection, tournament 

selection, rank-based selection, Boltzmann selection, Elitism and Hall of fame. 

We will present the strategies we are going to use in the design of our custom PSO: 
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Random selection: each individuals has a probability of 
1

𝑁
 to be selected, where N is the total number of 

individuals. This selector doesn’t use fitness information, meaning the best and the worst individuals have 

the same probability to be used as parents. 

Proportional selection: The selection is biased toward the fittest individuals. The higher the fitness of an 

individual, the higher its probability to be selected is. 

Tournament selection: a random group of the population is selected, the best individuals of this group is 

then returned. If two parents are needed, this strategy is applied twice. 

Many variations exits, and there are no rules to decide which one to use. For more information we refer 

to A. Engelbrecht [3]. 

3.6.1.2 Crossover strategies 

Crossover operators are divided in three categories: 

 Asexual: only one parents is used for the reproduction. 

 Sexual: two parents are needed for the reproduction. A noticeable point is that the same parent 

can be selected twice depending of the selection operator used. 

 Multi-recombination: more than two parents can be used for the reproduction. 

Each of these categories can be further divided, Figure 3.2 illustrates this: 

 One-point crossover: each parents is split in two, the offspring is the combination of a part of each 

parent. The crossover point is randomly selected. 

 Two-point crossover: each parents is split in three, each part is then swapped to create a new 

offspring. Crossover points are randomly selected. 

 Uniform crossover: Same principle but with more than two crossover points, each part of a parent 

if swapped. 
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Figure 3.2: Points crossover illustration 

3.6.1.3 Mutation strategies 

Mutation operators are used to introduce new genetic material in the population. In other word, it 

introduces diversity. Along with the reproduction operators, it ensures a strong diversity. Mutation is 

applied at a certain probability 𝑃𝑚 to each offspring. Mutation points are selected on the offspring. The 

mutation operator we are going to use is defined as: 

A random value between 0 and 1 is added to the mutation points. For instance, 𝑚𝑖 is a mutation point in 

an individual, then the mutated value is defined as: 

𝑚𝑖 = 𝑚𝑖 + 𝑈(0,1) Equation 3.17 

𝑈(0,1) being the Gaussian distribution between 0 and 1. 

The next figure illustrates the mutation process. 

 

 Figure 3.3: mutation operator 
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3.6.1.4 Replacement strategies 

Once the offspring is created and mutated if necessary. It needs to be integrated in the current population. 

Here is a list of the mains replacement strategies: 

 Replace worst, where the worst individuals are replaced by the new offspring. 

 Random replacement, where individuals are randomly selected to be replaced by the offspring. 

 Parent-offspring, where offspring replace their parents. 

 Elitist strategy for the above strategies exists, the best individuals are protected from the 

replacement. 

3.6.1.5 Summary 

To briefly summarize, a generic genetic algorithm repeats the following steps until certain termination 

conditions are satisfied: 

1. Select parents in the current population 

2. Apply a crossover operator to generate new individuals 

3. Apply a mutation operator to ensure diversity without destroying good individuals 

4. Integrate the new individuals in the current population 

3.6.2 Selection-based algorithm 

Selection-Based PSO is one of the first version of PSO combined with Genetic Algorithm given on the next 

page. Algorithm 3.4 is executed before the velocity update in either local or global PSO. The memory of 

the low-fitness particle is not lost. Their personal best position is conserved. Even if Selection-based PSO 

improves the local search capabilities of PSO. The diversity is greatly reduced because half of the swarm 

is removed. However, this downside can be overcome by applying mutation. In other words, the worst 

half of the swarm is replaced by a mutated version of the top half. This maintains the diversity of the 

swarm. The top half generates an offspring through mutations. 

The reproduction process involves the selection of the particles that will generates an offspring. Clerc [39] 

allowed a particle to generate a new one, kill itself or modify the inertia and acceleration coefficient. If no 

improvement in the neighborhood is observed, a new particle is generated in the neighborhood. With this 

approach, a large swarm reduces the probability to generate a particle. And a small swarm increases this 

probability. Another approach [41] proposed to spawn a particle in the neighborhood of the global best 

particle to reduce the complexity of the spawning process. The global best particle will generate an 

offspring if it gets stuck in a local minima. This can be detected using the stopping condition previously 

discussed.  We will now present the Gaussian mutator introduced by Higashi and Iba [42]. 

Let 𝑥𝑖
′(𝑡 + 1) be the position of a particle after the velocity update, and P the probability to mutate. Then 

for each component 𝑗 ∈ {1…𝑑} if 𝑈(0,1) < 𝑃 then the component 𝑥𝑖𝑗
′ (𝑡 + 1) is mutated using: 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗
′ (𝑡 + 1) + 𝑁(0, 𝜎)𝑥𝑖

′(𝑡 + 1) Equation 3.18 

where 𝑁(0, 𝜎) is the Gaussian distribution 𝜎 is given by: 

𝜎 =∝ (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗), ∝∈ {0,1} Equation 3.19 
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Different Gaussian and Cauchy mutators have been proposed in [43], [44], [45] and [46]. Cauchy mutators 

are mutators based on the Cauchy distribution instead of the Gaussian. 

Algorithm 3.4 presents the pseudo code for the Selection-Based PSO.  

The next section introduces the last variation of PSO. 

3.7 Multi-Phase PSO 

The sub-swarm has been developed by Løvberg et al. [47] and Al-Kazemi and Mohan [48]. Multi-phase 

PSO split the swarm in subgroups where each subswarm exhibit different behaviors and perform different 

tasks. Individuals can be allowed to migrate between groups. A common approach is to split the initial 

swarm in two groups and randomly assigned individuals to the groups. Then, the research strategy 

alternate between two phases. Firsts of all a group is in Attraction phase, means that particles within the 

group will move toward the global best position. The second phase is the Repulsion phase where 

individuals move away from the global best position. 

The velocity update equation is then defined as follows: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐𝑐𝑥𝑖(𝑡) + 𝑐𝑠𝑦
′(𝑡) Equation 3.20 

In order to change between phases, the triplet representing the inertia weight, the cognitive and the social 

coefficient (𝑤, 𝑐𝑐 , 𝑐𝑠) is changed. The attraction phase pushes the particle toward the global best particle, 

i.e. they tend to ignore their cognitive component and follow the social one. The triplet is then: (1,-1, 1). 

For the repulsion phase, individuals do the opposite, they ignore the social component and move 

following their personal best position. The triplet is then: (1, 1, -1). 

A group can change the phase after a user-specified number of iterations or when the there is no 

improvement of the fitness value. In order to detect an improvement or that a stagnation occurs in the 

fitness of a group, the termination conditions are presented in section 3.4.3. Furthermore, the velocity 

vector of every particles is periodically randomly reset. This procedure must be used with caution. Since 

it can drive a close particle away from a potential solution. To avoid this pitfall, a reset probability may be 

introduce. Starting with a high probability and decreasing over time, this ensures a large diversity at the 

beginning and then favours exploitation in later steps. 

Selection-Based PSO 

Initialize Cluster 𝐶 = {𝑦′} 

For each particle do 

 Select 𝑛𝑠 particles 

 Score the performance of the current particle against the 𝑛𝑠 selected particles 

Endfor 

Sort the particles according to their score 

Replace the worst half of the swarm by the best half without changing their personal 

best positions 

Algorithm 3.4 Selection-Based PSO 
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Multi-Phase PSO can exhibit more than two phases. The Life-cycle PSO [49] uses three phases. A regular 

PSO behavior updating the velocity using either the lPSO or the gPSO. The second phase consists of 

Genetic Algorithm individuals where particles reproduces with each other, mutate and finally the best 

offsprings are selected (Survival of the fittest). Finally, a Hill Climber phase, where a particle’s position is 

updated only if the new position is better. They become solitary stochastic Hill-climber. In the Life-Cycle 

PSO the three types of individuals can coexist in the same swarm. The conditions for a change of phase 

are the same for the Sub-Swarm PSO. Algorithm 3.5 presents the pseudo code of the Live-Cycle algorithm: 

We detailed different variations of PSO in the last section to use them as a basis for the next section. We 

will now explain a Custom PSO designed for this thesis that makes use of several characteristics of the 

previous variations. 

3.8 Custom PSO 

The custom PSO tries to combine different advantages of several PSO. The first step is to split the swarm 

in two sub swarms each in a different phase: Attraction and repulsion as introduced in 3.7 Multi-phase 

PSO. Each group is following the global PSO approach. From the beginning this allows a great diversity in 

the swarm. 

Life-Cycle PSO 

repeat 

For each particle do 

  Evaluate Fitness 

  If no improvement 

   Change of the phase 

  Endif 

Endfor 

For each PSO particle do 

  Update Velocity Vector 

  Update position 

Endfor 

For each GA individual do 

  Reproduce 

  Mutate 

  Select the new population 

Endfor 

For each Hill Climber do 

  Find the new neighboring positions 

  Evaluate their fitness 

  Move toward the best one with a specified probability 

Endfor 

Until stopping condition is true 

Algorithm 3.5 Life-Cycle PSO 
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At every iteration, each group updates its velocity and position. The algorithm then evaluates the 

probability of the worst subswarm to mutate. If the random number generated is greater than the 

predefined mutation probability the whole subswarm is mutated, and the phase is changed. This is the 

approach used in the Selection-based PSO. However, Selection-based PSO tends to reduce diversity, to 

avoid that we introduce the Gaussian mutation and we change the phase of the group. Finally, at later 

stages of the search process, the algorithm switches the behavior of the best swarm to a hill climbing 

behavior (defined earlier). The process stops once a predefined number of iterations has been reached. 

The pseudo-code of this algorithm is presented in Algorithm 3.6 Custom PSO. We choose the simple 

iteration condition to stop the search because the goal is to explore the search space. However, the 

implementation will allow us to implement different stopping conditions. 

 

We will discussed the advantages and disadvantages of this algorithm after the study cases. 

  

Custom PSO 

Initialize the Swarm using uniform distribution 

Split the swarm in 2 equal groups, one in attraction phase, and one in repulsion phase. 

Do  

 For each group do 

  Update the fitness of the group //also Set local and personal best. 

  For each particles do 

   Update velocity using Equation 3.20 

   Update position 

  Endfor 

  If random >probability to mutate AND current group is the worst do 

   Sort the group based on fitness 

   Replace the worst half by the top half (applying  

   Gaussian mutation and keeping the personal best.) 

   Switch of phase (Attraction/Repulsion) 

  Endif 

 Endfor 

 If reached 80% of max number of iterations do 

  Switch the best swarm to hill climbing behavior 

 Endif 

While max number of iteration reached  

Algorithm 3.6 Custom PSO 
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Chapter 4 - Design of the system 

 

 

 

 

Figure 4.1: Mind map Chapter 4 
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4.1 Context 

The software we are developing is designed to give the user the ability to run a PSO algorithm for different 

study cases and the SVC on different data set. Furthermore, the user needs to understand what the 

algorithms are doing. This means he needs to see what happened during the optimization process. It may 

also be necessary for him to save interesting results too. From this requirements we extracted several key 

features for this software: 

 The architecture must be modular to easily change the data set of the SVC or the study case of 

the PSO. 

 The user must be able to specify different parameters for each algorithms. 

 The user must be able to “see” by a 2D and 3D chart the clustering or the PSO graph. 

 The user must be able to export the output of the PSO or of the SVC. 

 The software must be portable (can run on any computer). 

We tried to follow the Scrum methodology [50] to organize the development. It helped us to select 

objectives for each day and week and move forward in the programming. 

4.2 System Objective 

The system aims to build a Particle Swarm Optimization Algorithm, a Support Vector Clustering algorithm 

and different study cases. It is also design to visualize the output of these algorithms. The user can save 

the results in different formats, and have deep views inside of the algorithm (particularly for the PSO). 

This means to see what the PSO is exactly doing. Furthermore, the system lets the user export the 

clustering results in an advanced tool or graph visualization to perform manual analysis of the results. 

4.2.1 System Description 

The system has to be able to perform three tasks: 

1. Run PSO, SVC on a dataset 

2. Visualize PSO or SVC 

3. Export the data 

The first task involves the following steps: 

 Import a dataset into a data structure 

 Setup the parameter of the desired algorithm 

 Run the algorithm 

The second task is composed of: 

 Extract the results from the algorithm 

 Translate these results to the appropriate data structure for visualization 

 Display these results 

The third task involves: 

 Extract the results from the algorithm 

 Insert these data in the appropriate file writer 
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 Export the data in the chosen file type. 

4.2.2 Functional Requirements 

4.2.2.1 Input 

The data for SVC are loaded from a simple text file. Each row corresponds to a data points. The values 

must be convertible in a double type, only numbers are accepted. Table 4.1 illustrates the structure of a 

text file. As we can see, the data can be of any kind as long as they can be represented as numerical values. 

Point1:Dimension1;dimension2;dimension3…;dimension N 
Point2:Dimension1;dimension2;dimension3…;dimension N 
… 
PointM:Dimension1;dimension2;dimension3…;dimension N 
 

Table 4.1: Clustering Input 

For the PSO, it is different, the user, in the actual version, can run only the predefined optimization 

problem. This limitation is due to the fact that PSO requires a fitness function that is highly problem 

dependent, and in the form of a java class (implementing a “Fitness” interface). The constraints linked to 

the fitness are in the form of a text file, where each rows represents one constraints, the total number of 

rows is the dimensionality of the problem (one constraint per dimension). However, we are able to 

implement multidimensional constraints. These constraints take the form of a java class too, and are 

difficult to express in a text file and extract them into the system. However, we will presents the different 

extensions of this software in the last chapter. For now, uni-dimensional constraints are illustrated in 

Table 4.5: 

Line 1:[lower_bond1:upper_bond1] 
Line 2:[lower_bond2:upper_bond2] 
Line 3:[lower_bond3:upper_bond3] 
… 
Line N:[lower_bondN:upper_bondN] 

Table 4.2: Uni-dimensional constraints file 

4.2.2.2 Output 

There are two types of output of the system: 

Output of PSO: 

The data that is being exported in this case are particle’s position and fitness values. We save only the 

best known position of a particle and its associated fitness value. The final output file is an Excel file having 

the following structure: 

Table 4.3: PSO Excel structure 

Particle 1 𝑥11 … 𝑥1𝑁  Fitness value 

Particle 2 𝑥21 … 𝑥2𝑁  Fitness value 

…     

Particle d 𝑥𝑑1 … 𝑥𝑑𝑁  Fitness value 
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Output of SVC is given by: 

Regarding the SVC output, all the data are exported. This means we save the position of every data points 

and its corresponding cluster label. In addition the adjacency matrix is saved. The Excel file has the 

following structure: 

Data point 1 ClusterLabel 𝑥11 … 𝑥1𝑁 

Data point 2 ClusterLabel 𝑥21 … 𝑥2𝑁 
…     

Data point d ClusterLabel 𝑥𝑑1 … 𝑥𝑑𝑁 

Table 4.4: SVC Excel structure 

4.2.2.3 Functionality 

Functionalities for task 1: The algorithms to: 

 Import the data for the chosen algorithm into a data structure 

 Setup the parameters of the algorithm 

 Run PSO or SVC 

Functionalities for task 2: Visualization to: 

 Make these results usable for the visualization process:  

o A particle will be represented as a 3D point. X coordinate is the index of the particle, Y 

coordinate is the iteration (time step) and Z coordinate is the fitness of particle X at the 

iteration Y. 

o A data point from the clustering algorithm is represented as a node in a graph, the graph 

is build using the adjacency matrix. The graph is then visualized using Gephi [50].(Section 

4.6.4) 

 Inject the results into the appropriate visualization tool 

 Programmatically extract the results of each algorithm 

Functionalities for task 3: Exporting to: 

 Extract the results of the algorithm 

 Use a file writer to export the result in an Excel file. 

4.2.3 Nonfunctional requirements 

 Flexibility: The data used for the clustering algorithm comes from any type of database, the only 

limitation is that they have to be expressed in terms of multi-dimensional data points. On the 

other hand, PSO is a lot more restricted. The uni-dimensional constraints are easily put into a text 

file. However, it was difficult to explicitly represent the fitness function and multi-dimensional 

constraint in a text file. We choose to restrict the PSO to the predefined use cases and integrate 

a more advanced solution at a later stage in the project. 

 Usability: The software needs to have a graphical user interface to maximize its readability. The 

interface has to be both functional and intuitive to allow anyone to run the algorithm. It must be 

user friendly. 
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 Portability: The software needs to be platform independent. In this way it can be run on Windows, 

Mac OSX, Linux etc…without recompiling the code. The Java programming language was therefore 

a perfect choice. 

 Adaptability: Many versions of PSO exists, many visualization techniques too. The design of the 

software is adaptable and will let any developer modify the source code easily and implement 

different versions. The detailed architecture of the software is explained in the next section of 

this chapter. 

4.3 Principles and design 

4.3.1 Model View Controller Pattern 

The model view controller (MVC) pattern [52] is like any other design pattern, it is designed to enable all 

interactive applications to clearly separate between the different components of the architecture. The 

necessary functions of an application are regrouped under three categories: 

 The model (data model) 

 The view (UI) 

 The controller (handles event, and synchronization) 

The model contains the logic of the application, in our case, the implementation of the PSO, the SVC, and 

the visualization. It does not communicate with the view. 

The view is what the user will see and use, it handles the user events such as hover4, mouse click, text box 

etc…). It send the user’s request to the controller. 

The controller receives requests from the View and sends them to the model which executes them. It can 

also inform the view of any changes (unexpected events. Figure 4.2 illustrates this: 

                                                           
 

4 A hover is the action of dragging the cursor over an element of the interface. 
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Figure 4.2: MVC pattern 

In our software, every algorithm has a class that monitors every other class and interfaces needed to run 

the algorithm and also sends information to the view. It is at the same time a model and a controller. 

However, there are several algorithms, so instead of having one main controller, and a model for each 

algorithm the controller is split between the different algorithms. The view consists of a GUI application. 

Depending on the requirement, it could be a text based interface. However, in our case it was important 

to have a visual feedback, therefore the GUI is a good solution. 

4.3.2 Open-Closed Principle 

The Open-closed principle has been largely applied in this project too, it stands for: “Open for extension, 

close for modification” [53]. 

This principle states that an entity should allow the modification of its behavior without changing its 

source code. In other word a service should rely on abstraction and not on implementation details. In 

Figure 4.3.A we can see that the “PSO” class depends on the implementation of the 

“AttractionRepusionVelocity” class. This would work if we were sure that no other implementation of the 

velocity equation would be used. However, in Swarm Optimization there are many different strategies to 

compute the velocity equation and this design made their implementation complicated. By applying the 

Open-Closed principle we break the dependency across the implementation and rely on the interface 

which does not contain any code, but just signature of a “Velocity” type class. 
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Figure 4.3: Open-Closed Principle 

In this program, every study case is implemented by a “Fitness” interface allowing to just plug the proper 

fitness function and constraints into the PSO and run it. To make this even easier, we instantiate the class 

“PSOExperiment” which is composed of a fitness function and a set of constraints. The PSO then just needs 

this class to be able to execute an optimization problem. Figure 4.4 shows the connection between the 

main parts of the system. The dashed arrows represents “interface realization” relation, as we can see, 

the PSO does not depend on the problem it is solving, but rather on interfaces. 

 

Figure 4.4: PSO class diagram 



Page | 53 

4.4 Functional view 

The description of the system leads to the creation of the use cases diagram (Figure 4.5). This diagram 

summarizes all the interactions we want to integrate in the UI. However, it is not an exhaustive list. The 

software is susceptible to evolve even after this thesis. But it gives a good overview of the capabilities of 

the program and was an efficient tool to set objectives for the development. 

 

Figure 4.5: Use cases Diagram 

We want the user to run the PSO through different study cases. Once the user has selected an algorithm 

and successfully run it, she/he can visualize what the algorithm did, and save the data. We tried to 

precisely define the possible user interactions and summarized them in Figure 4.5. The user needs to be 

able to select a study case, and specifies the corresponding parameters. She/he has to specify the size of 

the swarm and the number of iterations as a termination condition and finally run the PSO. 

The next set of possible actions is related to visualization. It is important to let the user “see” the swarm 

through different scales. This means that he should be able to visualize the evolution of a single particle, 

a subswarm, or the whole swarm. And get also a visual feedback of a specific study case if it is relevant. 

The last group of actions concerns the possibility to export the results of an experiment. 

4.5 Process 

In this section we will discuss the implementation of the PSO and the SVC. Instead of giving snapshots of 

the source code, we use flowcharts to explain the process of each algorithms. 
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4.5.1 PSO flow chart 

The first algorithm we are going to present is the Particle Swarm Optimization. Figure 4.6 illustrates the 

flow chart of the algorithm. 

The first step on every PSO process is to load the fitness function and the different constraints. Once this 

is done, the swarm is initialized. It means that the different parameters (initial size and number of 

iterations) are loaded and the particles are randomly generated within the search space using a Gaussian 

distribution. Once a particle is generated, their fitness value is evaluated for the first time, and its velocity 

vector is set to zero (particles are static when generated, they have no inertia yet). The next step is to 

iterate through all the particles of every subswarm and update the fitness, the velocity and then the 

position in this order. Then the probability to mutate a particle is evaluated and if it exceeds a predefined 

threshold it will mutate using a Gaussian mutator. However, the mutation keeps the best known position 

of the particle. In this way there is no loss of information. The evaluation of the hill climbing follows. We 

decided to activate the hill climbing behavior once we reached 80% of the maximum number of iterations. 

At this point in the process, one of the subswarm started to converge. The exploration is not necessary 

anymore, and we can try to move faster toward the best possible solution. Finally, once the maximum 

number of iterations is reached all the particles stop to move and the data are saved for further process. 

At this point the user can visualize the results and save them. 

 

Figure 4.6: PSO flow chart 

In addition, Figure 4.4 shows the class diagram of the PSO. As we can see, the PSO relies mainly on three 

interfaces: Velocity, Fitness and Termination Condition. We decided to abstract the concept of 

termination condition because as explained in 3.4.3 there are several possibilities to stop the optimization 

process even though we are using only a simple limit on the iteration. Further development will require 

different stopping criteria. 

4.5.2 SVC flow chart 

The Support Vector Kernel Clustering is a more straight forward algorithm even though the concept 

behind is more complex to apprehend. 

Here, the first step is to load the data set, the data points are loaded into a matrix of double type, one 

row representing a single data points. Then the Kernel function is loaded, we will use only a Gaussian 

Kernel because Polynomial Kernel is proved to give poor results for SVC. Once the Kernel and the data are 
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set, the dual problem is formulated and solved using a quadratic solver or the PSO in order to compute 

the Lagrangian multiplier. The next step is to identify the Support Vectors and the Bounded Support 

Vector. This let us compute the radius of the hyper sphere in the feature space and generates the 

adjacency matrix. Now the points can be assigned to a cluster by finding the strongly connected 

component in the graph induced by the adjacency matrix. At this stage, the clustering process is done. 

The adjacency matrix can be visualized using the Gephi library [50] and the results may be exported. 

 

 

Figure 4.7: SVC flow chart 

Figure 4.8 shows the class diagram of the SVC implementation. The “Open-closed” principle is not as 

obvious as in the PSO. Nevertheless, we can see that the algorithm relies on two major abstractions. First 

for the Mercer’s Kernel to have the possibility to implement the others types of kernels (section 2.5) and 

second for the Quadratic Optimization Problem solver. In this way we have the option to use different QP 

solvers of the PSO and compare their results (e.g. to compute a fitness function). 

 

Figure 4.8: SVC class Diagram 
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4.5.3 Visualization flow chart 

The visualization process is straight forward. The first important step is to use the appropriate visualization 

tool for the PSO and the SVC. In the case of PSO, the user has the choice to visualize the evolution of the 

swarm, a specific subswarm or even a single particle. He can do that in two-dimensions for all of the 

elements, or in three-dimensions for the Swarm and the sub swarms.  Once the user has selected what 

she/he wants to visualize, the selected data are processed to fit the library for two or three dimension 

charts. In the case of SVC visualization, the adjacency matrix is extracted from the algorithm. The 

corresponding graph is built and exported as a gefx5 file. This file can now be opened with Gephi to analyze 

it. We decided to use this approach to avoid the expensive and complex dimension reduction that occurs 

in almost every visualization technique for clustering. Both PSO and SVC results can be exported as excel 

files. The clustering results are stored simply as data points and their corresponding cluster labels. 

However, it was more difficult to know exactly what to save in the PSO. A lot of data is generated and 

maybe keeping only the best solution is not what the user always wants. After meeting with our 

collaborator Ryan Hughes at PricewaterhouseCoopers [53], it appears that to have good representation 

of the fitness structure, it is necessary to save the best positions of every particles in the swarm and their 

corresponding fitness values. This way enables the user to see if there might be more than one region of 

high fitness value in the search space. Figure 4.9 shows the visualization process:  

 

Figure 4.9: Visualization flow chart 

                                                           
 

5 Gefx file is a specific file type for the Gephi platform to store and manipulate graph 
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Figure 4.10 shows the class diagram for the visualization process. The class “SIC” is the GUI, because the 

visualization starts from the GUI in this software. The “Open-closed” principle is not applied here but we 

decided to regroup all the different types of charts one class. However, each “Particle” has a method to 

return its data from the optimization process. Hence, the subswarm also has a method to extract these 

data. In this way, the process of extracting the data is straight forward and gives a lot of flexibility to 

display any kind of chart. The visualization class can process these data to generate the appropriate plot. 

It is easy to programmatically add new types of charts within the limits of the library. We choose JMathPlot 

mainly for its “easy-to-use” feature. The different technologies will be presented in the last section of this 

chapter.  

The GUI also uses a TextWriter and an ExcelWriter class. These classes contain a method to export data in 

a text file or in an Excel file. They are used to save the data from an experiment. 

 

Figure 4.10: Visualization class diagram 

4.5.4 General architecture 

Figure 4.11 shows the general overview of the software. The GUI is related to the PSOController to define 

the parameter of the experiment and uses PSOExperiment to run the swarm. A PSOExperiment is simply 

a set of constraints and a fitness function. The constraints determines the search space for the swarm. 

While the fitness function evaluates the position of a particle. This fitness function defines the 

optimization problem. The MovieController helps to define more precisely the experiment to run. But this 

is specific for this study case. The PSOController can retrieve all the data from the swarm and forward 
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them to the GUI. The GUI decides whether to expert this data in a file or to visualize them depending of 

the user’s requests. 

On a programmatic level, the code is separate in several group of classes. Each group is coherent, this 

means that they fulfil a specific task such as running the optimization algorithm, dealing with the user 

interface, the visualization system, exporting the results and finally one for each study case. All the classes 

of a group is inside a package. 

 

 

Figure 4.11: General architecture 

4.6 Technology selection 

This section will briefly describes the different technologies we used during the development. 

4.6.1 Java 

First of all, Java has been selected has the programming language because it is an Object Oriented 

programming langue, it is portable and also from our good experience with it, from earlier projects. 

Anothers attracting feature is that there are a wide variety of libraries in Java. An additional feature is that 

we will also be able to integrate Netbeans Rich-Client Platform for the GUI or any other platforms (Spring 

for instance). 

4.6.2 JBLAS 

JBLAS is an open source library for fast linear algebra. It is based on BLAS and LAPACK industrial standard 

for matrix computations [54]. JBLAS possesses a small, but active community and is easy to use. 

4.6.3 JMath 

JMath [55] is a set of independent packages to fit engineering and scientific computing needs. It is easy to 

integrate, to modify and to extend. JMath is composed of three packages. JMathArray for linear algebra 

for double arrays. JMathPlot is designed for plot in 2D and 3D. Finally, JMathIO is for binary and ASCII 

input/ouput of double arrays. 
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4.6.4 Gephi 

Gephi [50] is a freeware for graph visualization and manipulation. As for all these libraries we choose them 

based on how active they are, the community is probably the most active of all of them. We choose Gephi 

to visualize the clustering process because it is powerful enough to let the user highlights any relevant 

aspect of the graph. However, Gephi was not easy to learn, but the website provides all the necessary 

tutorials and the source code is well documented. 

4.6.5 Apache POI 

The last library is Apache POI [56]. This library is designed to read and write into Microsoft Office type files 

from the Java programming language. As part of the Apache community, the documentation is almost 

exhaustive, with a lot of tutorials. Moreover, people have been very reactive to help us in understanding 

this large library. 

Table 4.5 summarizes the different libraries we have used. 

Library Community size Community Activity  

JBLAS Small Active Linear algebra 

JMath Big Very active scientific plot 3d and 
2d 

Gephi Very big Very active Graph visualization 
and manipulation 

Apache POI Very big Very active Microsoft office 
connector 

Table 4.5: Libraries summary 
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Chapter 5 - User Interface 

 

 

Figure 5.1: Mind map Chapter 5 
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5.1 Overview 

5.1.1 General interface 

The design of the user interface is critical, and can drastically influence the user’s experience. We decided 

to use a Graphical User Interface, based on the framed concept of Swing. Throughout this chapter we will 

describe the different frames of the user interface. The GUI is split in four different frames: a console 

which allows to display various information regarding the current experiment and the state of the system. 

A visualization frame, tailored to visualize as much information as possible regarding the Swarm 

Optimization Process. A third frame is dedicated to the configuration of the PSO and the problem to be 

solved. Finally, the last frame is used to configure the desired PSO problem. 

Here is a picture of the User Interface: 

 

 

Figure 5.2: General GUI 

In Figure 5.2 Label 2 and 3 are two illustrations of the configuration pane of user-selected problem. 

Number 2 is dedicated to the movie model case. Number 3 is for the Support Vector Clustering case. 

Every frames can be closed, minimized or maximized depending of the user’s needs without loss of 

information. I.e. if by mistakes the configuration frame is closed, it can be reopened through the “view” 

menu. This will restore the frame in its previous state keeping the information already selected. 
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5.1.2 Different frames 

5.2 PSO frame 

This frame is fundamental to the software as it control the Swarm. As we can see in Figure 5.3, it is 

composed of a Drop-down menu to select the study case to run. Once selected the corresponding 

configuration pane will be open for study case related parameters. This drop-down menu is followed by 

two text field to specify the size of the swarm and the maximum number of iterations of the algorithm. 

Once everything is filled in the “optimize” button “run” the algorithm, display the output frame and unlock 

the export button. The reset button reinitialize all the parameters to run a different experience. We tried 

to minimize the number of parameters the user can play with, to keep the interface as simple as possible. 

However, this design choice came at the expense of less control over the algorithm. Through our 

experimentation, it turns out to be enough parameters. On a later version, we will choose between 

advanced and simple configuration frame. 

We will talk in more details about the export function in section 5.7. 

 

 

Figure 5.3: PSO frame 
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5.3 SVC frame 

This interface let the user choose a data set to run the clustering algorithm. The text field of the cost refers 

to the upper bound on the Eigenvalue (see section 2.6). It is also possible to choose different Kernel 

functions (see section 2.5). All these parameters are sufficient to configure a Support Vector Clustering 

problem and to solve it. The three last button allow us to run the algorithm, and save the output in two 

different ways. Firstly, as spreadsheet of data points labelled by their assigned cluster. And secondly, a 

graph file that can be processed using the Gephi software [50] to do the visualization on the produced 

results. 

 

 

Figure 5.4: SVC frame 

5.4 Movie model frame 

The movie model frame, does not need a lot of option. As we will see in the next chapter this model uses 

a database of 154 movies, indexed by numbers ranging from 571 to 725. Here the user can target one 

single movie, a serie of movies (non consecutive indexed) or simply a range with the first and last index. 

The program will then automatically run all the movies between these two indexes. However, running 

these types of experiments are time consuming. This model is not optimized in its current state of 

development. We will explain this in more details later. 
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Figure 5.5: Movie model frame 

5.5 Console 

The console Is purely informative and gives information about the state of the system as the user 

configures an experiment. It has no other purpose. However, it was prooved to be very useful. 

 

Figure 5.6: Console 
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5.6 Output frame 

This frame has more functions, it is available only when an experiment is done. The drop down menu 

allows the user to select an experiment to visualize. They are stored in the order they are done. The system 

keeps track of everything that the swarm does during every experiment. It gives us the possibility to fully 

explore the swarm after the optimization process terminates. As we can see, it is possible to visualize 

either in three dimensions or in two dimensions the evolution of the swarm or a subswarm. 

This frame gives another level of information of the swarm. Indeed, we can look at the evolution of a 

single particle during the process or directly select the best particle of the desired subswarm. The last part 

at the bottom of the frame is a simple note to explain how to read the three dimensional chart as the 

framework we used did not allow any legend on the axis of the chart. 

 

Figure 5.7: Output 

If the user finds a chart particularly interesting, he can save it by simply clicking on ‘it and select the 

appropriate option. Even if it is a three dimensional chart from the program he can setup the view of the 

chart in the desired view and take a snapshot of it. Figure 5.8 is an example of a chart generated by the 
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algorithm. The z-axis represents the fitness, the x-axis is the time and finally the y-axis is the index of the 

particles. 

 

 

Figure 5.8: A 3D chart, description in the text above. 

Figure 5.9 shows a two dimensional chart generated by the algorithm. The x- axis is the time, the y-axis 

represents the fitness. Each particle corresponds to one color. 

 

Figure 5.9: A 2D chart, description in the text above. 
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5.7 Export 

5.7.1 Saving criterion 

It did not make any sense to save all the data because most of them are useful only for the visualization 

part. Nevertheless, it was necessary to export more than just the final solution. For every experiment we 

decided to save the final position of every particle at the end of the optimization process. The reason 

behind this choice is simple. Some particle other than the best particle might have a high fitness and be 

located in a very different position than the best particle. This suboptimal particle might be worth keeping 

for further analysis on the user side. It might not be the case, but we decided to give the user this 

possibility (e.g. it could highlight unexpected acceptable solution). In addition, a summary table is created 

keeping track of the final solution of every experiments. Figure 5.10 shows a final excel file. We can see 

at the bottom the summary table and the spreadsheet created for every experiment. 

 

Figure 5.10: The Excel structure of the output file 
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5.7.2 The process 

The export button needs a few explanations on its action. When the user did several experiments with 

the swarm he can export the results to an Excel workbook. Once clicked, the export button opens a simple 

file chooser to select the location where the user wants to save his data and with the desired name for 

the file. After this, another algorithm starts to save the important data. To be precise the system is saving 

every experiments in a list. This list is sent to the output system. Algorithm 5.1 explains the process to 

save the results of the experiments. 

  

Output algorithm 

Create a new spreadsheet summary 

For each experiment exp do 

 Create a new spreadsheet e 

 Export exp in e 

 Export the final solution of exp in summary 

Endfor 

Add all the spreadsheet to the workbook 

Write the workbook to the desired location. 

Algorithm 5.1: Output algorithm 
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Chapter 6 - Study case: The movie model 
 

 

 

Figure 6.1: Mind map Chapter 6 
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Now that the system is fully described, we can present the first study case. This chapter is about the movie 

model. Firstly we need to introduce the movie model and explain how it works. 

6.1 Movie model presentation 

6.1.1 Concept of the model 

This model was designed by Christopher Ryan Hughes in his master thesis from 2012 [57]. It is designed 

to study the impact of release strategies on the diffusion of motion-picture movies at the US domestic 

box-office. It captures consumer choice as a behavioral process accounting for the movie’s intrinsic 

attributes and various other parameters (word-of-mouth, network effect, etc…). The model estimates 

weekly box-office receipts for a database of 154 movies. It tries to answer two main questions: 

 What is the optimal release date for a movie given marketplace competition? 

 What distribution strategy will maximize a movie’s box-office revenue given its intrinsic attributes 

and the behavioral characteristics of consumers? 

The model is based on the usage of different states of consumers. It means that a consumer can be in six 

mutually exclusive behavioral states: 

1. Undecided: The consumer doesn’t know the movie is playing or is undecided whether he is going 

to see it or not. 

2. Intender: The consumer has decided that he is going to see the movie. 

3. Rejecter: The consumer has decided that he is not going to see the movie. 

4. Positive Spreader: The consumer is actively spreading positive word-of-mouth. 

5. Negative Spreader: The consumer is actively spreading negative word-of-mouth. 

6. Inactive: The consumer has seen the movie, but is no longer spreading word-of-mouth. 

The state transition is described in the following state transition chart: 

 

Figure 6.2: State transition diagram 
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This transition is ruled by equations and influenced by a set of parameters. The state transition equations 

are outside the scope of this thesis. The parameters that influence these states are relevant to us because 

it is this one that PSO is going to optimize. They are separated into four different categories: 

 Movie attributes: These are unique for each movies and outside of control of distributors. They 

include theme acceptability, viewer satisfaction, perceived movie quality… etc. The price is not 

included as it tends be constant across movies. 

 Marketing strategy: how the movie is advertised through the media or word-of-mouth. 

 Distribution strategy: It includes the release date, the initial number of theaters…etc. 

 Adoption structure: It consists of the average time needed for consumers to forget the movie is 

playing, and average time to spread active word-of-mouth messages (Positive or Negative). 

The movie release strategy plays a key role on the box office revenues. Three distinct release strategies 

are identifies: 

 Wide-release: Large advertising campaign and large number of theaters for the initial screening. 

 Platform-release strategy: Local advertising, small number of initial theaters. It increases within 

two to four weeks after the release. 

 Limited-release strategy: few or no advertising, very small number of theater for the initial 

screening with no expectations of wider release. 

The model uses rule-based logic to assign the most appropriate release strategy to a movie in the 

database, but this is outside the scope of this thesis. 

The dataset used is constructed from movies released in 2009 containing for each movie: weekly box-

office receipts theater counts and descriptive variables. 

More information on the model itself are available at C. Hughes [57] and for more information regarding 

dynamic modeling J. Sterman [10]. 

6.1.2 Current issues 

This model is slow to run. The main reason behind this is that every time the model is called it reload the 

whole database. It results in a 9 seconds run on our configuration. Unfortunately this source code of the 

model was not available to us because it is designed with Anylogic [58] and its license is expensive. The 

designer of the model will update it in the future. 

Moreover, it is worth mentioning that this model is still in development. These are the only known issues 

at the moment. 

6.2 Role of the Particle Swarm Optimization 

6.2.1 Connection with the swarm 

In order to make accurate predictions, the model needs a set of parameters. At this stage, the goal of the 

model is to make predictions for released movies. In this way, the model can compare its output to the 

historical box-office revenue and then compute the squared error (computed within the model itself). The 

role of Particle Swarm Optimization here, is to fine tune the parameters of the model for a given movie in 
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order to maximize the inverse squared error. We did not have control over the fitness function and had 

to use the one provided. (Further collaboration will improve this aspect, we believe). 

The first challenge was to be able to run programmatically the model which was run by a script through 

the command line. The initial idea was quite complex, uses depreciated JAVA library, and failed several 

times. The solution was to use the ProcessBuilder class provide by the JAVA API. It gives the possibility to 

call external program within the JAVA code. The final code is simple: 

 

We simply needed to specify which program to call, “cmd.exe” with Windows, the location and the script 

through the variables “drive” and “file”. At line 2 we specify the working directory. And finally run the 

command at line 3. 

The PSO required to load parameters in the movie, select the movie and retrieve its output, all 

programmatically. Fortunately, the model uses separated text file for each of these requirements: 

 “Input_param.txt”: one parameters per line, very easy to read and write. 

 “output_box.txt”: simple double value to compute the fitness. 

 “input_readMovie.txt”: just the index of the movie to be analyzed. 

To write into a text file we used the New Input Output library of JAVA: 

 

The method “Files.write” takes only a list of String as parameter, this is why an ArrayList is declared at 

line 1. At line 2 we add to the list the desired String to write, in our case, either a list of parameters or 

the index of a movie. Finally, line 3 writes the string into the file at the location “path” with the proper 

encoding (we used UTF-8) 

We implemented the following structure to be able to communicate back and forth between the PSO and 

the model: 
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Figure 6.3: The Movie model interaction 

The PSO sends the potential solution of a particle in the “input_param.txt” file and specify the movie in 

the same. Then run the model, which sends back its output in the PSO. This design worked fine, but create 

multiples dependencies of the PSO on the model, which is usually considered as a bad design. 

Our collaborator Mr. Hughes suggested to extend this experiment to any kind of dynamic model. 

However, this design was not suited for such a task. Indeed, the PSO depends of the model’s structure. 

We applied a proxy pattern to fix this problem. 

The proxy pattern is a class functioning as an interface to something else, usually a complex object that is 

expensive to call or duplicate. In our case, we created a proxy for the movie model, once all the parameter 

for the movie model are set in the proxy. The proxy forward them to the model, allowing the model to be 

called only when it is absolutely necessary. 
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Figure 6.4: Movie model/PSO interactions with proxy 

This pattern completely breaks the dependency of PSO toward the model. It only relies on the proxy’s 

implementation to run, allowing us to use any kind of dynamic model with minimum modification, only 

the proxy’s parameters need to be modified. 

6.2.2 Fitness function 

The position of a particle represents a set of feasible parameters of the model. The fitness of such 

parameters is evaluated by comparing the performance of the model compared to the historical 

performance of the movie being studied. This concept is illustrated in Figure 6.5. The evaluation of the 

model is done within the model, and we did not have control over it. This is the reason why the fitness 

function evolves between negative infinity and one. We noticed that the model perfectly matches the 

historical performances of the movie. 
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Figure 6.5: Dynamic particle model 

6.3 Experiments 

Due to the slow running time of the model, around thirty minutes per movie, we selected only a few movie 

to optimize. Mr. Hughes in PWC recommended certain movies that are challenging due to complex release 

strategies. Furthermore, each movie is unique and we cannot compare the final fitness between movies. 

Hence, we want to compare the fitness obtain with the PSO with the fitness obtained by a previously used 

method (classical optimization method). Table 6.1 compares the results of the PSO against the initial 

performance of the model. As we can see, PSO outperforms the classical approach on 8 movies out of 11. 

The experiments were performed several time. We observed that the PSO is sometimes worst or 

equivalent to the classical approach as for the movie “Transformers: Revenge of the Fallen” (index 636). 

This is due to the random initialization of the swarm and the stochastic element in the velocity equation. 

Indeed, the random starting point of the swarm might initialize the swarm, far from an optimal solution. 

Hence, the convergence is slower when we stopped the optimization after 10 iterations, the swarm ended 

up in a position close to the classical method or worst. Furthermore, the stochastic element might not 

help to improve the performance. Its role is to encourage the exploration of the search space at the cost 

of driving some particles away from a near-optimal solution. 

The following Table 6.1, compares the result of the swarm Optimization with the classical approach. We 

selected 11 movies out of the database. As we can see, the PSO outperformed the classical method on 8 

movies with, sometimes, very large improvement in the performance of the model (cf: “Sunshine 

Cleaning”, index 595). 
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Title (database index) Fitness (PSO) Fitness (classical method) 

Sunshine Cleaning (595) 0.542041 -0.01124 

Terminator Salvation: The Future Begins (623) 0.973589315 0.765042455 

Away we go (629) 0.46346917 0.246040903 

Transformers: Revenge of the Fallen (636) 0.841458566 0.898601731 

The hurt locker (637) 0.661136538 0.455146655 

500 Days of Summer (644) -0.170461313 0.399418732 

Taking Woodstock (663) 0.848825872 0.540585803 

9 (669) -1.090255369 0.08923669 

Capitalism: A Love Story (677) 0.730379031 0.540698928 

Paranormal Activity (681) 0.75274435 0.487752198 

An education (686) 0.507373612 0.397807509 

Table 6.1: Movie model results 

 

However, the non-linear nature of the model and its highly dynamical propriety (each movies possess a 

unique set of parameters) along with the slow running time of the model showed that a more advanced 

collaboration with the PWC company is required. This experiment holds as a proof of concept for the next 

development step of this project. Nevertheless, these results confirmed that this approach had a great 

potential for such problems. 
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Chapter 7 - Study Case: DNA classification 

 

 

 

 

Figure 7.1: Mind map Chapter 7 
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7.1 Presentation of the problem 

One of the main research goals of molecular biology has been to determine a complete genetic description 

of any organism. In the Human Genome Project [59].the goal was to decipher the exact sequence of about 

3 billion nucleotides in the 46 human chromosomes. An important part of the genome project is the 

computational processing of data [60]. The data first have to be organized into databases, and then 

analyzed to see what information they contain. Since the birth of the Human Genome Project, sequence 

analysis as a computational method has been used to infer biological information from the sequence data. 

The classical approach for analyzing sequences is by sequence matching using either single or multiple 

alignment techniques [61] [62]. With these techniques one seeks to determine whether sequences are 

significantly similar or not. Another approach is to use theories from neural computing or statistical 

learning theory to detect genetic information on the DNA sequences. 

Neural networks have been applied to various tasks such as automatic hyphenation of natural languages 

[63] [64], edge detection [65], recognition of hand written Zip code and DNA sequence recognition [66]. 

A neural network trained by a Back propagation algorithm (BP) may learn to categorize between different 

types of bacteria cells related to the structure of their DNA-sequences. Such a method is based on pattern 

recognition analysis, and is built on the assumption that some underlying characteristics of the DNA-

sequence can be used to identify its bacteria type. Other neural network paradigms than a MLP network 

may also be used to analyze DNA sequences [67]. 

In this paper, however, we will focus on how to use both a Multi-Layer Perceptron (MLP) and a Support 

Vector Machine (SVM) network to distinguish between eukaryotic and prokaryrotic sequences on basis of 

their nucleotide frequency structure. Cells can be divided into two major groups, prokaryotic and 

eukaryotic cells. All prokaryotic cells are uni-cellular organisms and consist mostly of bacteria. The genome 

of a prokaryotic cell consists of one double helix DNA strand, floating freely in the cell. This double helix 

strand is often circular. The genome of the bacterium E.Coli, for instance, consists of a circular strand of 

five and a half million bases. 

A nucleotide sequence can be viewed as a language based on an alphabet of four letters: A, G, C and T 

where the number of A’s is the same as the number of T’s and the number of C’s is the same as the number 

of G’s. However, the relation of A(T) and G(C) can vary tremendously, and depends on the actual species 

that are studied. This fact can for instance be used in environmental research, where oil on the sea surface 

may contain many different types of species that can be identified on basis of their DNA sequence 

structure. 

Most eukaryotes are multicellular, but some are uni-cellular. The main difference between prokaryotic 

cells and eukaryotic cells is that eukaryotic cells contain a nucleus that is surrounded by a membrane. 

Prokaryotic cells do not have such a nucleus. In such cells the frequency distribution of pairs of nucleotides 

are different from those in prokaryotic cells. 

We will train a MLP network and a Support Vector Machine using PSO and compare the result with our 

previous research paper [68]. But first, we need to introduce the DNA recognition theory. 
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7.2 DNA recognition theory 

Statistical analysis of several DNA sequences has shown that the distribution of nucleotides is far from 
random [17]. Some dinucleotide combinations in prokaryotic DNA sequences are more dominating than 
in eukaryotic cells. We will anticipate that this simple difference in data occurrence might be sufficient to 
allow species identification. We may then train, for instance a MLP network (see section 7.2.4), to use the 
differences in the nucleotide distribution to discriminate between eukaryotic and prokaryotic cells. We 
assume therefore that the identification of the DNA sequence is based solely on the frequency of 
nucleotide sub-sequences. 
A sliding window is used to count the number of nucleotide sub-sequences of the DNA sequence. In 
general the size of the window may vary, from one base wide to a user defined number w. By choosing a 
window of length one, we simply count the number of the different bases of the DNA sequence. The result 
will be four different frequencies, one for each base. A window of length two will give sixteen different 
ordered sub-sequences. The frequency of each sub-sequence is computed by counting the occurrence of 
each nucleotide pair in the DNA sequence. 
 
The number of triplets or codon units of the DNA sequence, may be estimated by using a window of three 
bases wide. This results in 43 or 64 ordered triplets. This is maybe the most relevant sub-sequence to study 
because the codon itself has important meanings in the DNA sequence. In general, a window of w bases 
results in 4w sub-sequences of length w to be counted. 
 
For a sliding window of length two the frequency of sub-sequence AA is denoted as ƒAA, for AC as ƒAC and 

so on. These numbers are collected in a vector Fn, where n denotes the number of DNA sub-sequences. 

For a sliding window of size two, n is equal to 16. The counting of the different nucleotide pairs is 

illustrated in Figure 7.2. In the figure the counting of the nucleotide pair AC is shown. After counting the 

pair AC, the window is moved one letter to the right to cover the next nucleotide pair. This is done to the 

end of the DNA sequence. 

ACATGATGCTA...

ACATGATGCTA...

ACATGATGCTA...

ACATGATGCTA...
 

Figure 7.2: Illustration of a sliding window of size 2 

Normalization: 

The DNA sequences obtained on online databases have different sequence length. The frequency of the 

different nucleotide pairs have to be normalized before and presenting them to the MLP network. The 

normalization condition of the frequency vector 𝐹𝑛 is given by: 

𝑆𝑛 =
𝐹𝑛
|𝐹𝑛|

 
Equation 7.1 
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Here |𝐹𝑛|  means the Euclidean norm of the frequency vector. This non-linear transformation conserves 

the direction of the vector and enhances the differences among the input vectors. The geometric 

interpretation of the transformation is that the vector 𝐹𝑛 is moved onto the hyper unit sphere. 

In our case, we will use a sliding window of size three and incorporate the redundancy of the genetic code 

(see Appendix A). It means that the representation of the genetic code will be built into the neural network 

by use of the frequency vector. 

7.2.1 Multi-Layer Perceptron 

In this chapter we will study the application of PSO on a supervised learning algorithm: A multi-layer 

Perceptron. ANN has been known for a long time and is inspired by the biological neural network. In the 

brain, it is composed of artificial neurons connected by synapses and organized by layers. 

The MLP has three basic features: 

 Each unit (neuron) includes a differentiable nonlinear activation function. 

 The network contains one or more hidden layers. 

 The network is highly connected: each unit of a layer is fully connected to every unit of the next 

layer. 

These features makes the theoretical analysis of the network difficult for two reasons. Firstly, the high 

connectivity and the nonlinearity of the network makes the analysis hard to undertake. Secondly, the 

presence of hidden layer makes the learning process difficult to visualize. 

We are going to use the back propagation (BP) algorithm to train the network. The training requires a set 

of data points associated with their corresponding target vector. It means, we have data that we know to 

which cluster they belong, allowing us to use them to train the network. 

The BP algorithm consists of two phases: 

 Feed forward phase: the synaptic weight are fixed and the input signal is propagated through the 

network layer by layer and neuron by neuron, from the input layer toward the output layer. 

 Back propagation phase: The network computes an error signal by comparing the output of the 

network to the desired output (target vector). This error is propagated backward, layer by layer 

from the output layer toward the input layer. In this phase the weights are adjusted according to 

the error signal. 

This two phases are applied until the error reaches a threshold value defined by the user. 

MLP uses two types of signals: 

 Function signals: they are defined as input signals at the input of network, propagates forward 

neuron by neuron to emerge as output signal at the end of the network. 

 Error signals: They are defined by output neurons using an error-dependent function. It 

propagates backward layer by layer through the network. 
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7.2.2 Neurons 

An artificial neuron is an entity that receives one or several signals as input. Each input signals arrive 

through a synapse, it simply assigns a weight to the original signal representing the strength of the signal. 

Each unit preprocess the signals by computing the following summation that is called the induced local 

field: 

𝑦 =∑𝑥𝑖𝑤𝑖

𝑛

𝑖=0

 
Equation 7.2 

 Then a sigmoid function (or logistic function) is applied to compute the output signal of the current unit: 

𝜎(𝑦) =
1

1 + 𝑒−𝑦
 

Equation 7.3 

The input neuron (which receives the value from the data points being evaluated) is the only one that 

does not compute anything. It just transmit the input signal through its synapses. X0 is a bias applied to 

every unit. The bias is nothing more than the multiplication of an input vector with a matrix. Using a bias 

adds another dimension to the input space, which always takes the value one to avoid input vector of 

zeros. 

 

Figure 7.3: Sigmoid unit. 

A single neuron cannot classify anything. However, neurons are organized in layers as we can see in the 

next section. 

7.2.3 Layers 

A MLP is composed of three type of layers: 

 An input layer: it transmits the input data point through its synapses to the others layers. It does 

not compute anything. 

 One or several hidden layers: it receives the signals coming from the input layer and computes 

output signals using the sigmoid function and finally sends its signals to the output layer. 
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 An output layer: it contains as many unit as there are clusters (or classes) in the dataset. Each unit 

computes an output signal as in a hidden layer. 

Figure 7.4 shows a typical architecture of a Multi-layer Perceptron with one hidden layer. 

 

Figure 7.4: The MLP architecture 

The structure of a MLP is given in Figure 7.4. 

7.2.4 Back-Propagation Algorithm 

For a classification problem of dimension n, with c clusters, we create L-2 hidden layer. Then the network 

has L layers (also referred as the depth of the network). 

The BP algorithm consists of five steps: 

1. Initialization: the weight matrix is initialized using a uniform distribution. 

2. All the training examples are presented once, the network perform one forward and one 

backward propagation (respectively step 3 and 4). 

3. Forward propagation: we denote a training example {𝑥(𝑡), 𝑑(𝑡)}, 𝑥(𝑡) is presented as input 

vector to the input layer of the network, and 𝑑(𝑡)  is applied to the output layer as a target vector. 

The signal of each unit is computed layer by layer using the induced local field equation. Then the 

sigmoid function is applied to obtain the function signal. The induced local field 𝑣𝑗
𝑙(𝑡) for training 

example t, neuron j and layer l is: 

𝑣𝑗
𝑙(𝑡) =∑𝑤𝑗𝑖

(𝑙)(𝑡)

𝑖

𝑦𝑗
𝑙−1(𝑡) 

Equation 7.4 
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Where 𝑦𝑗
𝑙−1(𝑡) is the output signal of unit j of layer l-1 and 𝑤𝑗𝑖

(𝑙)
(𝑡) is the weight of synapse between unit 

j in layer l and unit i in layer l-1 at iteration t. Assuming a sigmoid function we have: 

𝑦𝑗
𝑙(𝑡) =

{
 
 

 
 
𝑥𝑗(𝑡)       if l=0, i.e. input layer

𝑜𝑗(𝑡)       if l=L, i.e. output layer

1

1 + 𝑒−𝑣𝑗
𝑙(𝑡)
                                      

 

Equation 7.5 

 

Once every induced local field and function signal are computed, the error signal is evaluated using the 

following equation: 

𝑒𝑗(𝑡) = 𝑑𝑗(𝑡) − 𝑜𝑗(𝑡) Equation 7.6 

Where 𝑑𝑗 is the jth element of the desired output vector 𝑑(𝑡) and 𝑜𝑗 is the jth element of the real output 

vector 𝑜(𝑡) obtained from the output layer. Once the error vector is obtained, the forward propagation 

ends. 

4. Backward propagation: it uses the error vector previously computed to compute the local 

gradient. Indeed, the back propagation tries to find the steepest vector in the error function in 

order to minimize the error for the next iteration. The local gradient 𝛿 is defined by: 

𝛿𝑗
(𝑙)
(𝑡) =

{
 

 𝑒𝑗
(𝐿)(𝑡)𝜑𝑗

′ (𝑣𝑗
(𝐿)(𝑡))   for neuron j in output layer L                          

𝜑𝑗
′ (𝑣𝑗

(𝐿)(𝑡))∑𝛿𝑘
(𝑙+1)(𝑡)𝑤𝑘𝑗

(𝑙+1)(𝑡)

𝑘

 for neuron j in hidden layer l
 

Equation 7.7 

 

where 𝜑′ is the differentiation of the sigmoid function with respect to the argument. And k is varying 

through the connected neurons of neuron j. 

Finally the synaptic weights in layer l are adjusted using the equation: 

𝑤𝑗𝑖
(𝑙)(𝑡 + 1) = 𝑤𝑗𝑖

(𝑙)(𝑡) + 𝛼 [𝑤𝑗𝑖
(𝑙)(𝑡 − 1)] + 𝜂𝛿𝑗

(𝑙)(𝑡)𝑦𝑖
(𝑙−1)(𝑡) Equation 7.8 

where 𝛼 is the learning rate and 𝜂 is the momentum. 

5. Iteration: forward and backward propagation are repeated until a chosen stopping criterion is 

met (often the error reaching a predefined threshold). 

Once the BP algorithm terminates, the weights are fixed and the network can be used to classify unseen 

data points. A major difficulty with MLP is to find the right value for the different parameters of the 

network: number of hidden units, number of hidden layer, learning rate and momentum. Another issue 

is the time consuming training. If the learning performs too well, the network can be over trained. It means 

that the network perform very well on the training data, but will fail to classify unseen data points. 

For a complete proof of the BP algorithm, see to Mitchell [69]. 
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7.3 Role of the Particle Swarm Optimization 

The BP algorithm tries to minimize an error function. This could be done by using a PSO. This is a common 

approach, instead of using the BP algorithm, swarm optimization can be used to find the weight matrix 

that minimize the error function. However, we will use the PSO to find the other parameter of the 

network. Indeed, a particle will represent a possible configuration of the network. In other words, the 

position of a particle will be the following vector: (learning-rate, momentum, number of hidden neuron). 

The weight matrix is determined using the back-propagation algorithm. 

7.3.1 Structure 

In this study case we try to use PSO to determine the parameters of the MLP and the SVM networks. 

The support vector Machine uses a Gaussian Kernel (see section 2.5). This means we need to determine 

two parameters: gamma and the cost (Figure 7.5 A). The MLP needs 3 parameters to be determined: the 

learning rate, the momentum and the number of hidden unit (the input and output layer are already 

determined) (Figure 7.5 B). 

 

 

Figure 7.5: A SVM/MLP particle 

The implementation of the MLP was done using the Neuroph library [70]. While the SVM was 

implemented by using LIBSVM [71] 

The program works in several steps: 

1. The data is stored in text files containing the DNA sequences. The ‘IOManager’ class calls the 

‘TextReader’ class to extract the DNA sequences from our text files, and converts them into 

‘Sequence’ class. 
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2. Now that the sequences are loaded, the ‘IOManager’ computes the frequency vector of each 

sequence using the ‘Alphabet’ class, which contains the representation of the codons of the 

genetic code to identify triplet of amino acids as codon. 

3. Now the fitness of either the MLP or the SVM network is initialized, followed by the generation of 

the swarm. 

4. The PSO is executed and the data retrieved at the end. 

The following diagram shows the structure of this study case. As reminder the class ‘PSOexperiment’ is a 

class that defines a template to create an experiment to run on the PSO, while the ‘Fitness’ interface 

defines an abstract fitness function to make the PSO functional. 

 

 

Figure 7.6: A MLP-SVM class diagram 

7.4 Experiment 

7.4.1 Description 

The dataset we used was composed of 54 sequences: 28 eukaryotic sequences and 26 prokaryotic 

sequences. Figure 7.7 shows the type of file we have to deal with. The process required to automate the 

extraction of the DNA sequence within the file (the two last line in the illustration). All files were not 

identical but every DNA sequences were tagged with “SQ”, the extraction was a straight forward String 

analysis of the file. The common approach is to split the data set in two, one part to train the SVM or the 

MLP, another to test their performance. However, in our case the data set is too small to be split, the MLP 

does not perform well with too few training data.  We decided to evaluate each classifiers on the training 

data only. In order to limit the training time of the MLP we limited the number of iteration to 10000. The 

swarm was composed of 20 particles separated in two sub swarms. And we used a fixed number of 
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iterations: 10. In total, the MLP has been trained 2000 times like the SVM. This gives an idea how 

computationally expensive such optimization can be. It all depends on the fitness function, as we saw in 

the movie model. 

7.4.2 Results 

The PSO performed well to find the configuration of the neural network. The parameters obtained are the 

following:  

Learning rate Momentum Hidden neurons Error Running time 
(min) 

0.83 0.3 59 0.0096 11.5 

Table 7.1: Final MLP results 

 While the configuration of the SVM is: 

Gamma Cost Error Running time (sec) 

0.58 975 0.074 3.6 

Table 7.2: Final SVM results 

Our first conclusion are the following, as we can see the SVM does not perform so well. The data showed 

that the custom-PSO algorithm was not able to properly optimize the SVM classifier, it converged after 

only two iterations and didn’t improve afterwards. 

To confirm this results, we reproduced the experiments using the global PSO (Algorithm 3.1). The swarm 

had the following parameters: 

 Initial size: 25 particles 

 Inertia coefficient: 0.95 

 Cognitive coefficient: 0.9 

 Social coefficient: 0.9 

 Number of iterations: 10 

The results for the MLP are the following: 

Learning rate Momentum Hidden neurons Error Running time 
(min) 

0.78 0.82 75 0.0094 17 

And for the SVM: 

Gamma Cost Error Running time (sec) 

0.8 624 0.074 5 

 

The results are similar. Regarding the MLP, we observe a high learning rate in both case. And large hidden 

layer, the second experiments gave a high momentum too. And both experiments reached a low error. 

However, the downside is a long training time. Regarding the SVM, in the second experiments, the gamma 

was higher with a lower cost, but the error was identical, and the running time still low. 
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By doing these experiments, it confirmed the ability of PSO to optimize an MLP and an SVM. However, it 

also showed the limit of the SVM in this particular DNA classification problem. The MLP outperformed the 

SVM but had a very long training time. 

However, explaining and exploring this issue would require a work far beyond this thesis. We simply make 

experiments with the algorithm and make observations regarding its capacity to resolve certain problems. 

 

Figure 7.7: A DNA sequence file 
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Chapter 8 - Study Case: Support Vector Clustering 

 

Figure 8.1: Mind map Chapter 8 
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8.1 Role of the Particle Swarm Optimization 

Swarm Intelligence has been used to find the parameters of a Support Vector Machine [72] [73] [74]. We 

are going to applied PSO to determinate near-optimal Eigenvector for the Support Vector Clustering. 

We presented the Support Vector Clustering in section 2.6. As we saw this is a quadratic optimization 

problem to solve. The classical approach involves numerical analysis methods or more advanced 

algorithms such as the Sequential Minimal Optimization algorithm (SMO) [75]. The SMO has been 

developed only for support vector machine but not clustering. A version for SVC exists but we did not find 

any information about it. Numerical analysis can be heavy to run and to understand. While SMO is very 

fast, the algorithm is hard to comprehend. We are going to use Particle Swarm Optimization to solve this 

optimization problem. The PSO will try to maximize the Lagrangian (Equation 2.34). In other words, it will 

try to compute the Eigenvector. Once the PSO has terminated, the SVC resumes its clustering process as 

explained in section 2.6. The following flow chart illustrates the new clustering procedure: 

 

Figure 8.2: A SVC/PSO procedure 

As we can see, the kernel matrix is computed once and for all, as it does not depend on the Eigenvector. 

By computing it only once, we avoid to do this expensive computation every time we evaluate the position 

of a particle. The PSO output its solution to the SVC, which resume its clustering procedure. 

The classification consists of the following steps: 

1. The PSO find a near-optimal Eigenvector 

2. The distance of every data points from the center of the hyper-sphere in the feature space is 

computed by using Equation 2.39. 

3. Support Vectors, Bounded Support Vectors are identified. 

4. The radius of the hyper-sphere is simply the distance of a Support Vector from the center of the 

hyper-sphere. 

5. The adjacency matrix is computed as follow: 
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a. For all pair of data point, we select every points on the line defined by a pair of points. 

We test the co-linearity of vectors i.e. for every pair (A,B) a point C is on the line (AB) if 

and only if 𝐴𝐵⃗⃗⃗⃗  ⃗ and 𝐴𝐶⃗⃗⃗⃗  ⃗ are co-linear: 

∀𝑖, 𝑗, 𝐴𝐵𝑖𝐴𝐶𝑗 = 𝐴𝐵𝑗𝐴𝐶𝑖 Equation 8.1 

b. Then we check if for all point C on the line (AB), we have: 

𝑅(𝐶) ≤ 𝑅𝐴𝐷𝐼𝑈𝑆 Equation 8.2 

c. Steps a and b consists of Equation 2.42 

 

8.2 Connection SVC/PSO 

The connection between the two algorithms is made in a similar fashion as for the movie model. Using a 

controller, the SVC calls directly the PSO to find a near-optimal Eigen-value. Then the adjacency matrix is 

computed and exported in the software Gephi using the Gephi API [50]. 

8.3 Dataset 

We used a data set called “Flame” [76] of 2 dimensions, composed of 240 vectors containing two clusters. 

The following scatter plot represents the data set, no clusters are labelled as no analysis has been run yet 

on these data points. The scatter is just the actual data points on a two-dimensional plot. In other words, 

this is the raw data. 

 

The two clusters are clearly visible. 

8.4 Experiment 

We tried different values for the cost and gamma. However, the output was always the same. The cost 

was fixed at 1 and the gamma value was set at 2. After several tests, we set up the swarm with 20 particles 

and 100 iterations. The same evolution of the swarm occurred at every experiments. Figure 8.3 is an 

example of this pattern. The swarm always starts to drop in the fitness landscape and tends to stay in a 
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low fitness region for about half of the time of the optimization process. Then, the whole swarm increases 

drastically its performances, but slowly decreases afterwards. 

 

Figure 8.3: A PSO 3D plot of SVC 

The following figure shows the behavior of one particle through the optimization process. We can see 

more clearly this pattern. 

 

Figure 8.4: The evolution of the fitness of a particle SVC. 
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Several trials have been done. However, increasing the length of the optimization process did not changed 

the outcome. The swarm still has the same behavior. We used different behaviors of the particle such as 

the cognitive-only model and the social only-model, but the fitness achieved was the same. The adjacency 

matrix computed from the PSO’s solution was a nearly fully connected graph. Such a graph has only one 

strongly connected component leading to the discovery of only one cluster by the algorithm. 

Unfortunately, it means that the PSO is unable to find the Eigenvector for the Support Vector Clustering 

algorithm because the SVC procedure requires the exact solution of its QP equation, and the PSO provides 

only approximations. 

8.5 Visualization through Gephi 

Nevertheless, we proceeded with the visualization of the adjacency matrix. An undirected graph is created 

from the previously computed adjacency matrix. The graph is composed of 240 nodes and around 28 600 

edges. Once the graph is created, it is loaded in the open source software Gephi [50]. The ForceAtlas2 [77] 

algorithm is applied to the graph. This algorithm re-arrange the nodes of a graph to regroup highly 

connected nodes. It improves the readability of a graph and highlights strongly connected component, 

which correspond to the clusters discovered by the SVC in our case. Figure 8.5 shows the result of the 

visualization process. As mentioned previously, the PSO was unable to find the proper Eigen-vector. The 

direct consequences of this, is the failure of the SVC to discover any cluster in the data. 

 

Figure 8.5: Gephi visualization 
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This last experience shows a limit of our custom PSO algorithm. Not as a poor quadratic optimizer, but as 

a poor solution for the Support Vector Clustering. This experience demonstrates that SVC does require an 

optimal solution, “near-optimal” is simply not good enough for such a task. 

  



Page | 94 

Chapter 9 – Conclusion and further work 

 

 

Figure 9.1: Mind map Chapter 9 
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9.1 Summary 

During the first experiment, PSO demonstrated a great ability to explore the parameter space of the movie 

model. It achieved large fitness values with few iterations. The second study case uses PSO to find the 

parameters of a Multi-Layer Perceptron and a Support Vector Machine in order to classify two types of 

DNA sequences. The PSO gave a noticeable improvement in the performance of the MLP, but a less 

noticeable increase in performance of the SVM. However, the two first study cases demonstrate a great 

ability of PSO to explore parameter spaces. And we can consider extending this application to the 

classification more than two types of DNA sequences. 

Unfortunately, the last study case using Swarm Optimization to find the Eigenvector of the Support Vector 

Clustering algorithm has failed. Indeed, it appears that a near-optimal solution for the SVC is not good 

enough to compute with accuracy the radius of the hyper-sphere in the feature space. This inability leads 

to a completely wrong adjacency matrix because of the approximate solution is not optimal. In the end, 

the SVC was unable to discover any clusters in our dataset, even though the data set contained only two 

clusters with a clear separation. PSO is able to find parameter where exact solutions are not an absolute 

requirement. However, for SVC, it seems that mathematical exactness is necessary, and a near-optimal 

Eigenvector is not enough. 

9.2 Encountered challenges 

We summarize the main challenges encountered within this research project. 

9.2.1 Lack of documentation 

The Support Vector Machine is very well documented, a lot of implementation exists, even custom 

optimization algorithm have been created to find the Eigenvector [77]. However, Support Vector 

Clustering is close to SVM in the form (it is kernel based and involves Quadratic Programming) but it is 

completely different since it is unsupervised learning. We came across one main article about it [78]. The 

main principle was clear but very few details on how to solve the Eigenvector. A version of the Sequential 

Minimal Optimization algorithm [77] has been made for SVC, no implementations nor articles about it 

were available. Furthermore, the method to compute the adjacency matrix was unclear as again no 

detailed explanation was given. 

9.2.2 Complex implementation 

We made the choice of a Swing based JAVA application right from the beginning as it seemed to be the 

most efficient way. Unfortunately, the size of the program turned bigger and more complex than 

expected. This type of application is not suited for such a task. As the decoupling between the different 

logical parts (PSO, SVC and the study cases) and the visualization part was particularly difficult to achieve. 

We believe it has been successfully done after the architecture of the program was changed for the third 

time. We realized this problem too late for the project to finish before the deadline. 

9.2.3 Interdisciplinary aspect 

This thesis belongs to the field of Computational Intelligence and Software Engineering. By nature, it is 

deeply interdisciplinary as PSO, for instance, it is inspired by the work of biologist, since the SVC algorithm 
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is highly mathematical, mixing both of them were very interesting, and maybe applied to a wide variety 

of problems 

9.3 Personal outcome 

In order to complete such a project, we needed to learn rigorous planning. We followed a plan with daily 

objectives and deadlines to meet. It gave a great insight on project management, and how hard it can be 

to meet deadlines. 

While doing research about the different technologies we could use, we had to try many programming 

languages (JAVA, JavaScript, Dart, C++). Before selecting a specific library, we have to learn how to use it, 

discover their strengths and weaknesses. In a few word, the technical outcome was tremendous. 

9.4 Next steps 

9.4.1 Living project 

This project is far from being finished. Indeed, our cooperation with Mr. Hughes at PwC to optimize the 

movie model revealed two observations: 

5. The need of efficient optimization software for such a model, as the current optimization 

techniques are not so efficient. The field of dynamic modeling is relatively new, and comes from 

the business world. Today not so many computer scientists have been worked in this field. 

6. Working with Mr. Hughes at PWC and presenting the PSO algorithm to his coworkers exhibited 

another point. It is difficult to introduce an optimization techniques such as PSO. In other word, 

the challenge was to explain that “heavy” mathematics is not required to create powerful 

optimization algorithms. Effective communication with no software engineering people makes it 

difficult to explain how our approach could lead to new perspective in the modelling process. 

From these points, we decided to push the project further in this direction after the thesis ends. The goal 

is to develop an optimization algorithm for a dynamic model. It has to be easy to use and we want that 

the user select only a few options prior the run of the optimization process. The options are:  

 The algorithm (global PSO, local PSO, etc…). However, the different parameter values of each 

algorithm will not be available to the user. 

 And the choice between two swarm behavior: exploration, exploitation. Sometimes in dynamic 

modelling, we are not looking for one unique solution. We want to explore the search space as 

much as possible to detect interesting features (sub optimal regions, for instance). And 

exploitation to try to find the best solution as quick as possible (with a higher risk of finding only 

local optimal). 

 An alternative view, more technical, will give full control of the parameter of the algorithms to 

the user, like: the size of the swarm, termination conditions, behavior of the particles etc… 

 And finally, this program must be independent of the operating system. The JAVA programming 

language is well suited for such a requirement as it needs only the Java Virtual Machine to be run. 

However, we will use a more advanced solution presented in the next section. 
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This engineering process makes a challenge to the modeler too, as we will need to create templates for 

the models in order to load them in the optimization program. A first version of this template is already 

created. However, it needs further refinement to be easier to use. 

9.4.2 Spring integration 

As mentioned earlier (in 9.2.2) the limitation of a Swing based application makes the evolution of the 

program difficult. Even if JAVA is portable, we decided to transform the current program in an enterprise 

application based on the Spring framework [79]. This framework uses the Java Enterprise Edition model, 

and makes the implementation of the MVC easier. Indeed, it is based on tiered enterprise application 

Figure 9.2 shows the concept of enterprise application. The middle tier 

execute all the logic. In our case, it will execute the PSO. The database 

will store the different models to be optimized. And lastly, the client will 

use a web page to set up its experience. This point is fundamental to 

improve the user experience. We will be able to use all the power of 

HTML5/CSS3 and Javascript to create our user interface, and 

visualization algorithm, in a very user friendly way. The user will have 

nothing to install, he will just need to continue to the corresponding 

web page, load its model, and run the optimization algorithm. 

Furthermore, the client side is completely disconnected from the logic. 

It will give us a greater freedom to change the algorithm or even 

implement a new one. 

 

 

 

 

 

 

 

9.5 Agent Oriented Swarm Optimization 

9.5.1 The need of another approach 

At the moment, the Swarm implementation is hierarchical as shown in Figure 9.3. This means that when 

the PSO algorithm execute the move command on the swarm, it is first passed to the swarm, then to the 

sub swarms and finally reaches the particles. It works in the same way for any other commands as fitness 

evaluation or finding the best particle. Furthermore, every evaluation of the fitness function is made on 

the same Java Virtual Machine. This solution works just fine for our study cases. It would be useful to run 

simultaneously with several fitness evaluations on many JVM, or even many processors. In other words, 

develop a parallel version of PSO. We also would like to reach an implementation closer to the biological 

model for two reasons: 

Figure 9.2: Enterprise Application 
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 A new architecture could improve the performance 

 More flexible implementation could help to distribute (on a cluster of servers for instance) the 

computation for very intensive optimization problems. 

The only way to know is to implement such architecture and test it. 

 

Figure 9.3: Hierarchical swarm 

9.5.2 An alternative design 

9.5.2.1 Particle as Agent 

Our new architecture is based on Multi-Agent System (MAS) [80]. We are going to use the following 

definition of an agent: 

An agent is a computer system that is situated in some environment, that is capable 

of autonomous action in this environment in order to meet its delegated objectives. 

This definition matches the role of a particle. From now on, we will explain MAS only through Particle 

Swarm Optimization to avoid unnecessary explanations. Three notions are important in this definitions. 

Firstly, an agent lives in an environment, the search space of our fitness function. Secondly, the agent is 

capable of autonomous action, it can move in the environment, and communicate with other particles 

(request for the best particle for instance). Finally, an agent has delegated objectives, and it has to find 

the optimal possible value of a fitness function, based on [Russel and Norvig, 1995, p32] [81]. A particle 

as agent can be viewed as follows:  
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Figure 9.4: A Particle-Agent 

An agent is an entity well suited for a particle.  

9.5.2.2 Communication strategies 

Agents can be social. It means that they can communicate with each other using a messaging system. This 

will be useful to find the best solution discovered by the swarm or by a subswarm. Let’s assume a swarm 

of N Agents, and a request for the best known solution. The MAS uses an interface agent (IAg) to handle 

all the user request. 

We may have two strategies to handle such request: 

 IAg sends a request for the best know solution to every agents, he processes all the messages 

once every agent has answered. This approach sends a lot of messages, and could lead to a too 

high usage of the network. 

 IAg sends one request to the first particle (P1), the message contains the request, and the list of 

the particle who already received this request, only P1 at the beginning. P1 then creates an answer 

with his best known solution, and add his name to the list within the message. Then, it forwards 

this message to the next particle that is not in the list. The following particle compares its best 

known solution to then one in the message. If the new solution is better, it is specified in the 

message. The particle adds its name in the list, and forward the message to another particle. The 

message jumps from particle to particle until every particle has received the message. At this 

point, the best particle has been found (the message has been through the whole swarm looking 

for the best position). The last particle send the message back to the IAg. This strategy uses less 

messages than the previous strategy. With this agent-based approach, only four messages are 

exchanged since six messages are sent in the first method. 

Figure 9.5 illustrates both approaches. 
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Figure 9.5: A Communication strategy 

We want to implement the second strategy as it uses less messages. Furthermore, it does not require to 

sort the particles to find the best solution. It is both easier to implement and faster to execute. 

9.5.3 Real-time visualization 

Each agent will use a system of event listener. Every time a particles moves, or evaluates its position, it 

will trigger an event. This event will send back the data of the agent in a database and alert the interface 

agents that something has changed. The interface agent will then render the new state of the swarm by 

retrieving information in the database. This system will allow us to visualize the swarm without interfering 

with it, at any moment. Figure 9.6 shows the flow of messages when the particle moves. 
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Figure 9.6: A Particle's movement. 

9.5.4 Distributed Agent Oriented Swarm Optimization 

It is important to remember that as Agents, the particles do not need to reside on the machine. This 

feature is particularly interesting when it comes to heavy optimization problems. We can create the 

swarm in a cluster of servers. In this way each particle can move from one server to another depending 

on available resources. We call these particles, migrating particles. They are more complex to be 

implemented, but they will be facilitated by the use of JADE [82]. JADE is probably the most advanced 

platform to create and maintain a Multi-Agent System. It facilitates the migration of agent between 

servers, and contains its own message system and is written in JAVA. These three points may make JADE 

the right platform to use in the future project. 

9.5.5 A disadvantage 

Such a new architecture has one disadvantage. The particles become independent. It is then difficult to 

update the particles in a synchronous way, i.e., the notion of iteration becomes unclear, as particles can 

easily be updated one by one in any order. However, we choose to operate the swarm in a asynchronous 

way. Every particles will move freely with a delay between each move. However, they are not going to 

wait until every particle in the swarm move one time step before it starts a new displacement. This 

approach gives more freedom to the particle. 
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9.6 Final word 

Finally, the software developed will move into the Open-source community. It seems to be the right choice 

as it can gather more people on the project. More people means more opinions, and it can only stimulate 

the development. This is not going to happen yet, as a website and forum needs to be created. 

This thesis lead us to new exciting challenges. However, we would like to explore the different aspects of 

PSO and clustering in the future. 

Today, three distinct new projects might emerge from our work: 

 The first one, was presented in Section 9.4 and 9.5 and it is an agent based PSO library. 

 The second one, is an independent optimization software tailored for dynamical model. 

 And finally, we would like to create a platform implementing various clustering algorithms. The 

goal behind these ideas is the same. We want to make unsupervised learning and Swarm 

Optimization more accessible to a wider number of researchers and not only to experts in 

datamining and optimization. 

Finally, the thesis was an incredible learning experience. 
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Appendix 

Redundancy of the genetic code: 

The following table lists the different codons, their corresponding molecule and their index in our 

frequency vector. The color is just to visualize the redundancy. 

final index Index Codons Translation 

0 0 Phe/F (Phenylalanine) TTT 

0 1 Phe/F (Phenylalanine) TTC 

1 2 Leu/L (Leucine) TTA 

1 3 Leu/L (Leucine) TTG 

1 4 Leu/L (Leucine) CTT 

1 5 Leu/L (Leucine) CTC 

1 6 Leu/L (Leucine) CTA 

1 7 Leu/L (Leucine) CTG 

2 8 Ile/I (Isoleucine) ATT 

2 9 Ile/I (Isoleucine) ATC 

2 10 Ile/I (Isoleucine) ATA 

3 11 Met/M (Methionine) START ATG 

4 12 Val/V (Valine) GTT 

4 13 Val/V (Valine) GTC 

4 14 Val/V (Valine) GTA 

4 15 Val/V (Valine) GTG 

5 16 Ser/S (Serine) TCT 

5 17 Ser/S (Serine) TCC 

5 18 Ser/S (Serine) TCA 

5 19 Ser/S (Serine) TCG 

6 20 Pro/P (Proline) CCT 

6 21 Pro/P (Proline) CCC 

6 22 Pro/P (Proline) CCA 

6 23 Pro/P (Proline) CCG 

7 24 Thr/T (Threonine) ACT 

7 25 Thr/T (Threonine) ACC 

7 26 Thr/T (Threonine) ACA 

7 27 Thr/T (Threonine) ACG 

8 28 Ala/A (Alamine) GCT 

8 29 Ala/A (Alamine) GCC 

8 30 Ala/A (Alamine) GCA 
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8 31 Ala/A (Alamine) GCG 

9 32 Tyt/Y (Tyrosine) TAT 

9 33 Tyt/Y (Tyrosine) TAC 

10 34 STOP (Ochre) TAA 

10 35 STOP(Amber) TAG 

11 36 His/H (Histidine) CAT 

11 37 His/H (Histidine) CAC 

12 38 Gln/Q (Glutamine) CAA 

12 39 Gln/Q (Glutamine) CAG 

13 40 Asn/N (Asparagine) AAT 

13 41 Asn/N (Asparagine) AAC 

14 42 Lys/K (Lysine) AAA 

14 43 Lys/K (Lysine) AAG 

15 44 Asp/D (Aspartic acid) GAT 

15 45 Asp/D (Aspartic acid) GAC 

16 46 Glu/E (Flutamic acid) GAA 

16 47 Glu/E (Flutamic acid) GAG 

17 48 Cys/C (Cysteine) TGT 

17 49 Cys/C (Cysteine) TGC 

10 50 STOP (Opal) TGA 

18 51 Trp/W (Tryptophan) TGG 

19 52 Arg/R (Arginine) CGT 

19 53 Arg/R (Arginine) CGC 

19 54 Arg/R (Arginine) CGA 

19 55 Arg/R (Arginine) CGG 

20 56 Ser/S (Serine) AGT 

20 57 Ser/S (Serine) AGC 

19 58 Arg/R (Arginine) AGA 

19 59 Arg/R (Arginine) AGG 

21 60 Gly/G (Glycine) GGT 

21 61 Gly/G (Glycine) GGC 

21 62 Gly/G (Glycine) GGA 

21 63 Gly/G (Glycine) GGG 
Table 0.1: Genetic code 

 


