
Page | 1

Data clustering optimization with visualization

Fabien Guillaume

MASTER THESIS IN SOFTWARE ENGINEERING

DEPARTMENT OF INFORMATICS

UNIVERSITY OF BERGEN

NORWAY

DEPARTMENT OF COMPUTER ENGINEERING

BERGEN UNIVERSITY COLLEGE

NORWAY

Page | 2

Contents

Chapter 1 - Introduction -- 9

1.1 Overview --- 10

1.2 Motivation --- 10

1.3 Background -- 11

1.3.1 Clustering--- 11

1.3.2 Particle Swarm Optimization -- 12

1.4 Goals -- 13

1.5 Outline -- 13

Chapter 2 - Kernel clustering --- 15

2.1 Introduction --- 16

2.1.1 Classification versus clustering --- 16

2.1.2 Hard clustering versus soft clustering --- 16

2.2 Definitions --- 17

2.2.1 Data points --- 17

2.2.2 Features -- 17

2.2.3 Distance measure -- 17

2.2.4 Cluster--- 19

2.2.5 Clustering procedure -- 20

2.3 Support Vector Machine --- 21

2.4 Kernel Clustering --- 23

2.5 Definition of Kernel -- 25

2.6 Support Vector Clustering --- 26

2.7 Mathematical aspect -- 29

2.7.1 Quadratic Programming -- 29

2.7.2 Karush-Kuhn-Tucker complementarity conditions (KKT conditions) ------------------------------ 30

Chapter 3 - Particle Swarm Optimization --- 31

3.1 Introduction --- 32

3.2 Basic Particles Swarm Optimization --- 33

3.2.1 Global Particles Swarm Optimization --- 33

3.2.2 Local Particle Swarm Optimization -- 34

3.2.3 Velocity component --- 35

3.3 Variations -- 35

Page | 3

3.3.1 Clamping --- 35

3.3.2 Inertia weight --- 36

3.3.3 Constriction Coefficient --- 36

3.4 Discussion -- 37

3.4.1 Exclusive velocity models -- 37

3.4.2 Initialization-- 37

3.4.3 Termination conditions --- 37

3.5 Parameters -- 39

3.6 Selection based PSO --- 39

3.6.1 Genetic Algorithm -- 39

3.6.2 Selection-based algorithm --- 42

3.7 Multi-Phase PSO -- 43

3.8 Custom PSO --- 44

Chapter 4 - Design of the system -- 46

4.1 Context --- 47

4.2 System Objective --- 47

4.2.1 System Description -- 47

4.2.2 Functional Requirements--- 48

4.2.3 Nonfunctional requirements -- 49

4.3 Principles and design -- 50

4.3.1 Model View Controller Pattern --- 50

4.3.2 Open-Closed Principle--- 51

4.4 Functional view --- 53

4.5 Process-- 53

4.5.1 PSO flow chart -- 54

4.5.2 SVC flow chart --- 54

4.5.3 Visualization flow chart --- 56

4.5.4 General architecture -- 57

4.6 Technology selection -- 58

4.6.1 Java -- 58

4.6.2 JBLAS -- 58

4.6.3 JMath -- 58

4.6.4 Gephi -- 59

Page | 4

4.6.5 Apache POI --- 59

Chapter 5 - User Interface --- 60

5.1 Overview --- 61

5.1.1 General interface --- 61

5.1.2 Different frames -- 62

5.2 PSO frame -- 62

5.3 SVC frame -- 63

5.4 Movie model frame --- 63

5.5 Console --- 64

5.6 Output frame --- 65

5.7 Export --- 67

5.7.1 Saving criterion --- 67

5.7.2 The process -- 68

Chapter 6 - Study case: The movie model --- 69

6.1 Movie model presentation -- 70

6.1.1 Concept of the model --- 70

6.1.2 Current issues --- 71

6.2 Role of the Particle Swarm Optimization -- 71

6.2.1 Connection with the swarm --- 71

6.2.2 Fitness function --- 74

6.3 Experiments --- 75

Chapter 7 - Study Case: DNA classification --- 77

7.1 Presentation of the problem -- 78

7.2 DNA recognition theory -- 79

7.2.1 Multi-Layer Perceptron --- 80

7.2.2 Neurons --- 81

7.2.3 Layers --- 81

7.2.4 Back-Propagation Algorithm -- 82

7.3 Role of the Particle Swarm Optimization -- 84

7.3.1 Structure --- 84

7.4 Experiment -- 85

7.4.1 Description --- 85

7.4.2 Results -- 86

Page | 5

Chapter 8 - Study Case: Support Vector Clustering --- 88

8.1 Role of the Particle Swarm Optimization -- 89

8.2 Connection SVC/PSO -- 90

8.3 Dataset --- 90

8.4 Experiment -- 90

8.5 Visualization through Gephi --- 92

Chapter 9 – Conclusion and further work --- 94

9.1 Summary --- 95

9.2 Encountered challenges -- 95

9.2.1 Lack of documentation --- 95

9.2.2 Complex implementation -- 95

9.2.3 Interdisciplinary aspect --- 95

9.3 Personal outcome-- 96

9.4 Next steps -- 96

9.4.1 Living project -- 96

9.4.2 Spring integration -- 97

9.5 Agent Oriented Swarm Optimization --- 97

9.5.1 The need of another approach --- 97

9.5.2 An alternative design -- 98

9.5.3 Real-time visualization -- 100

9.5.4 Distributed Agent Oriented Swarm Optimization -- 101

9.5.5 A disadvantage -- 101

9.6 Final word -- 102

References --- 103

Page | 6

List of Algorithms:

Algorithm 3.1: global best PSO ___ 33
Algorithm 3.2: local best PSO __ 34
Algorithm 3.3 Particle Clustering Algorithm___ 38
Algorithm 3.4 Selection-Based PSO ___ 43
Algorithm 3.5 Life-Cycle PSO ___ 44
Algorithm 3.6 Custom PSO __ 45
Algorithm 5.1: Output algorithm ___ 68

file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc382989305
file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc382989306
file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc382989307
file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc382989308
file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc382989309
file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc382989310
file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc382989311

Page | 7

List of figures:

Figure 1.1: Mind map Chapter 1 ___ 9
Figure 1.2: Process of data clustering __ 12
Figure 1.3: Basic Structure of PSO___ 12
Figure 2.1: Mind map Chapter 2 __ 15
Figure 2.2: Illustration of the Minkowski distance __ 19
Figure 2.3: Clustering granularity ___ 20
Figure 2.4: Clustering procedure ___ 21
Figure 2.5: Margin separation ___ 22
Figure 2.6: Illustration of the two mappings in the SVM. __ 23
Figure 2.7: The Cover Theorem ___ 24
Figure 2.8: Line segment connecting data points __ 29
Figure 3.1: Mind map Chapter 3 __ 31
Figure 3.2: Points crossover illustration __ 41
Figure 3.3: mutation operator ___ 41
Figure 4.1: Mind map Chapter 4 __ 46
Figure 4.2: MVC pattern __ 51
Figure 4.3: Open-Closed Principle ___ 52
Figure 4.4: PSO class diagram __ 52
Figure 4.5: Use cases Diagram ___ 53
Figure 4.6: PSO flow chart ___ 54
Figure 4.7: SVC flow chart ___ 55
Figure 4.8: SVC class Diagram __ 55
Figure 4.9: Visualization flow chart ___ 56
Figure 4.10: Visualization class diagram ___ 57
Figure 4.11: General architecture ___ 58
Figure 5.1: Mind map Chapter 5 __ 60
Figure 5.2: General GUI ___ 61
Figure 5.3: PSO frame __ 62
Figure 5.4: SVC frame __ 63
Figure 5.5: Movie model frame ___ 64
Figure 5.6: Console __ 64
Figure 5.7: Output ___ 65
Figure 5.8: A 3D chart __ 66
Figure 5.9: A 2D chart __ 66
Figure 5.10: TheExcel structure ___ 67
Figure 6.1: Mind map Chapter 6 __ 69
Figure 6.2: State transition diagram ___ 70
Figure 6.3: The Movie model interaction ___ 73
Figure 6.4: Movie model/PSO interactions with proxy___ 74
Figure 6.5: Dynamic particle model ___ 75
Figure 7.1: Mind map Chapter 7 __ 77
Figure 7.2: Illustration of a sliding window of size 2 __ 79
Figure 7.3: Sigmoid unit. __ 81
Figure 7.4: The MLP architecture ___ 82
Figure 7.5: A SVM/MLP particle __ 84
Figure 7.6: A MLP-SVM class diagram ___ 85
Figure 7.7: A DNA sequence file __ 87

file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc381864019

Page | 8

Figure 8.1: Mind map Chapter 8 __ 88
Figure 8.2: A SVC/PSO procedure ___ 89
Figure 8.3: A PSO 3D plot of SVC __ 91
Figure 8.4: The evolution of a particle SVC. ___ 91
Figure 8.5: Gephi visualization ___ 92
Figure 9.1: Mind map Chapter 9 __ 94
Figure 9.2: Enterprise Application ___ 97
Figure 9.3: Hierarchical swarm ___ 98
Figure 9.4: A Particle-Agent ___ 99
Figure 9.5: A Communication strategy __ 100
Figure 9.6: A Particle's movement. ___ 101

file:///C:/Users/Fabien/Google%20Drive/THESIS/Drafts/Thesis%20V1.2%20Corrected.docx%23_Toc381864072

Page | 9

Chapter 1 - Introduction

 Figure 1.1: Mind map Chapter 1

Page | 10

1.1 Overview

Today the number of sensors (Cameras, microphones, GPS ships, wireless networks…etc.) increases

exponentially so does the quantity of data. “Data is the new oil”1, oil is difficult to extract and refine,

likewise, data is hard to extract and refine in order to get value out of it. The problem is that is

unstructured and might be huge, for instance mass-spectrometric data may contain thousands of

attributes. A manual approach seems to be hopeless, it would cost a lot of highly qualified human

resources, time and money. Therefore a new approach is needed to analyze the new raw material that

data has become. One possible approach is clustering. This new field of computer science automates the

classification of big amounts of data without the need of a priori knowledge. A wide range of research has

been done and two new generations of algorithms have emerged, one from the field of statistical analysis

that lead to K-means algorithms and the other Kernel based algorithms [1]. The other approach comes

from nature’s own way of doing things. This field is called Computational intelligence, and implies

algorithms like Multi-Layer Perceptron, genetic clustering and so on…

As a result of this new approach the need to optimize the new algorithms generated has arisen The Multi-

layer Perceptron has several parameters to be optimized and it is a challenging task to estimate them.

Again, optimization is a well-known problem. This problem can be tackled in two different ways. First of

all we might consider a very mathematical approach like the simplex method [2]. Similarly to clustering,

the other one mimic nature and generates genetic algorithms and Swarm intelligence algorithms. Such an

approach allows to efficiently explore a search space to find a near-optimal solution. In this thesis I will

focus on Kernel based clustering [1] and Swarm optimization [3].

1.2 Motivation

Clustering analysis is a time consuming and challenging task if done manually. A lot of tools have been

developed to automate this task. However, the performance of any clustering algorithms depends largely

on the parameters used. Finding the values these parameters is already a difficult problem. The first

solution was to use an empirical approach and to adjust manually the parameters. Therefore, the need

for a more appropriate solution is needed. Researchers started to use Optimization theory to explore the

parameters space of Artificial Neural Network [4]. Another challenge that needs to be addressed is to

visualize the optimization algorithm itself. The optimization process takes place in a space of high-

dimension. It becomes difficult to visualize the exploration of the search space.

 Particle Swarm Optimization (PSO) is a well-known optimization algorithm [3]. It is based on the

intrinsic property of swarms to execute complex tasks by the self-organization of simple entities. We speak

of intelligence as an emergent property. It is a powerful way to explore a multi-dimensional search space,

and find a near optimal solution. In addition, it allows a greater control of the behavior of the algorithm

and it enables us to track dynamic optimum.

 Kernel Based Clustering is quite a new approach in data-mining [5]. The category of algorithm is

based on the following statement: “A complex pattern-classification problem, cast in a high-dimensional

1 David McCandless: The beauty of data visualization, TEDGlobal 2010

Page | 11

space nonlinearly, is more likely to be linearly separable2 than in a low-dimensional space provided that

the space is not densely populated” [6]. This method of clustering provides excellent results in various

problems, with a very efficient time frame.

Optimization techniques have been applied to different data-mining algorithms. However there are few

articles about optimized Kernel Based clustering. The lack of such system, the mathematical elegance of

Kernel based clustering in addition to simple efficiency of Particle Swarm Optimization (PSO) has triggered

our interest in designing such system.

1.3 Background

1.3.1 Clustering

Data clustering is often confused with classification. However, in classification the classes in which objects

need to be assigned are predetermined. In clustering, these classes have to be defined too. As mentioned

earlier, the clustering problem has been studied for many years. Even so, there is no uniform definition of

it. Generally, by data clustering, we mean that for a given data-set and a given similarity measure, we

regroup data points such that object in the same group are similar, and objects in different groups are

dissimilar, according to the similarity measure.

Clustering is applied to many problems, such as:

 Gene expression data [7].

 Image segmentation [8].

 Market research [9].

 And many others…

The creation of groups is based on the concept of similarity and distance. These are reciprocal concepts.

Similarity coefficients describes quantitatively how similar two data points are. The greater the similarity

coefficients, the greater the similarity. Distance measure, on the other hand, describes quantitatively how

different two data points are. The greater the distance, the greater the dissimilarity. We will define more

precisely these notions in the next chapter. To summarize, a cluster is a set of objects or data points that

share the same properties i.e. that have a small mutual distance.

Every clustering algorithms share a common structure:

2 Linearly separable: a hyper plane can discriminate the data points of two or more classes.

Page | 12

Figure 1.2: Process of data clustering

The data representation determines the structure of the clusters to be discovered in the data. Followed

by the modeling phase that defines the notions of cluster and the separating criteria between clusters.

The optimization phase refines the clusters and finally the result is validated.

1.3.2 Particle Swarm Optimization

Biologist have been studying the unpredictable choreography of a bird flock and especially the ability to

fly synchronously and recover their formation after a change of direction. They tried to simulate

graphically this phenomena. From this initial objective, the concept evolved into a population-based

search algorithm, the particle swarm optimization algorithm [3].

Figure 1.3: Basic Structure of PSO

In PSO, birds are assimilated to particles and are flown through hyper-dimensional search space. The

social-psychological tendency of individuals is used to update the velocity of particles. In other words,

each particles is influenced by the experience of others particles, its neighbors, and by its own knowledge.

This means that the behavior of the swarm is determined by each particle itself. This property is called

symbiotic cooperation. The modeling of this behavior encourages the particles to go back to successful

region of the search space. The basic structure of a PSO algorithm is presented in

Page | 13

Figure 1.3.

Figure 1.3 Two elements are critical when designing a PSO. The first is the fitness function which is highly

problem dependent, and is a measure of how well a particle performs. The second is the update of the

position, it is determined by the velocity, and in this case, there are various approaches. But it is important

to remember that the way how the velocity is computed strictly determines the behavior of the swarm.

Figure 1.3 just shows the very basic idea behind PSO, there are numerous variations of this structure. The

choice of a specific variation depends of the problem to be solved.

1.4 Goals

This thesis aims to exhibit the potential of swarm optimization and its ability to work on different tasks.

We will applied particle swarm optimizer to kernel based clustering and different study cases. From these

experiments we will draw conclusions about PSO’s abilities. We want to study the potential and limits of

such optimization approach.

Also, to demonstrate the flexibility of such an algorithm, Swarm optimization will be applied to a model

of dynamic system. This will prove the ability of Swarm Optimization to work in complex and highly non-

linear search space. Finally a critical objective is to visualize the experiments. The system will have a

visualization tool to represent the optimization process and a Graphical User Interface.

1.5 Outline

Chapter 1: Introduction: This chapter simply describes the overall idea, introduces a few definitions and

the outline of the thesis.

Page | 14

Chapter 2: Kernel clustering: This chapter presents the theoretical knowledge around Kernel based

algorithm and Kernel clustering.

Chapter 3: Particle Swarm Optimization: The theory behind Particle Swarm Optimization is detailed in

this chapter.

Chapter 4: Design of the system: The requirements and the design of the system are presented.

Chapter 5: User interface: The user interface of the system is exhibited and explained in this chapter.

Chapter 6: Study case – the movie model: This chapter presents a dynamic model, called the movie

model. We show the need of an optimization algorithm to improve such a model, and perform

experiments.

Chapter 7: Study case – DNA classification: We presents the problem of DNA classification using Artificial

Neural Network and Support Vector Machine, and apply Particle Swarm Optimization to find the

appropriate parameters.

Chapter 8: Study case – Support Vector Clustering: Particle Swarm Optimization is applied to Support

Vector Clustering. The data set used is presented and the different implications of such experiment are

presented in this chapter.

Chapter 9: Conclusion and further work: A summary of the experiments is done. We present our

conclusion and the evolution of this project in the future.

Page | 15

Chapter 2 - Kernel clustering

Figure 2.1: Mind map Chapter 2

Page | 16

2.1 Introduction

2.1.1 Classification versus clustering

Clustering and classification are based on the same concept similarity grouping (i.e. share common

properties) according to specific criteria. Actually, this is one of the oldest human ability, and can probably

be extended to more species [11]. In order to learn something, people try to find descriptive features of

an unknown object and compare them to known object according to their similarities and/or

dissimilarities. This allows people to classify information, for instance natural objects are splitted in three

groups, animals, plants, minerals. Each of these groups is further divided into subgroups and so on…

Data analysis naturally converged towards clustering and classification to provide a basis for further

reasoning, decisions making and understanding any kind of phenomena. Let us consider a clinical

treatment, a specific disease might have different subtype sharing similar symptoms but responding

differently to the same cure. Cluster analysis of gene expression data measuring the activity of genes can

be a solution to discovering subtypes and adapt the therapy [7] [12].

Cluster analysis is divided into two main domains: Classification and Clustering. In Classification data is

categorized in groups known a priori while the clustering process has to discover the groups in the data.

In other words clustering needs to find the common features between data by itself. The latter method is

a tool of choice to explore unknown data and extract knowledge from it.

2.1.2 Hard clustering versus soft clustering

As expected there are two types of clustering: hard and soft.

Given a set of input data 𝑋 = {𝑥1, … , 𝑥𝑗, … , 𝑥𝑁},𝑤ℎ𝑒𝑟𝑒 𝑥𝑗 = {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑑} ∈ 𝑅
𝑑 with each 𝑥𝑗𝑖 is called

a property, or features, d is the dimensionality of X and N is the cardinality of X.

A hard clustering process will seek to create k partition of X, 𝐶 = {𝐶1, … , 𝐶𝑘} with k < N subject to the

following constraint:

 Ci ≠ ∅, i = 1…k

 ⋃ Ci = X
k
i=1

 Ci ∩ Cj = ∅, i, j = 1…k, i ≠ j

Equation 2.1

It means that in hard clustering each data points is assigned to one and only one cluster.

Soft clustering on the other hand allows input patterns to belong to all k clusters with a degree of

membership 𝑢𝑖𝑗 ∈ [0, 1], 𝑢𝑖𝑗 represents the membership degree of object j to cluster i. The membership

function is subject to two constraints:

 ∑ 𝑢𝑖𝑗
𝑘
𝑖=1 = 1, ∀𝑗

 ∑ 𝑢𝑖𝑗
𝑁
𝑗=1 <

𝑁,∀𝑖, N is the number of data points

Equation 2.2

Soft clustering is also called fuzzy clustering [13]. The next section will clarify the vocabulary and give

definition of it.

Page | 17

2.2 Definitions

2.2.1 Data points

A data point or object, also called input pattern represents a coherent group of informations, itself

composed of single units of information called features or properties. In order to be processed, data points

are converted in vectors where the dimension is the number of features.

For example, in the case of face recognition, the vector would be a single picture of a face then the

features would be the pixels on that image. The dimension of each input pattern becomes very high, very

quickly depending of image’s resolution.

Data points are noted as follow:

𝑥𝑗 = (𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑑)
𝑇
 , where d is the number of features (i.e. the dimension).

A data set is simply a collection of input patterns and its notation is:

𝑋 = {𝑥1, … , 𝑥𝑗, … , 𝑥𝑁}

For N data object with d features, an N*d pattern matrix is built from the corresponding vectors.

2.2.2 Features

Features are classified in three categories: continuous, discrete and binary. Continuous features take

values in an infinite range of sets, such as the weight of humans, the concentration of a molecule in a

blood sample, the frequency of a specific codon in a specific gene, etc… Discrete features have a countable

infinite number of values, such as the color of the eyes, the country of a person, the brand of a car. Binary

features are a special case of discrete properties, they can take only two values and are also called

dichotomous features. It can be a Boolean value for instance.

2.2.3 Distance measure

When an algorithm is clustering the pattern matrix, it has to deal with measuring the similarity or

dissimilarity between two patterns. However, with real world data, some or all the input patterns can

have missing values. If the number of incomplete patterns is small compared to the size of the input set,

then they can be discarded. Very often this is not the case and the major part of a set can have missing

features. Therefore the solution is to consider the contribution of the missing features to the proximity

measure as null. The distance between object 𝑥𝑖 and 𝑥𝑗 is defined by:

𝐷(𝑥𝑖, 𝑥𝑗) =
𝑑

𝑑 − ∑ 𝛿𝑖𝑗𝑙
𝑑
𝑙=1

∗ ∑ 𝑑𝑙(𝑥𝑖𝑙 , 𝑥𝑗𝑙)

𝑎𝑙𝑙 𝑙 𝑎𝑛𝑑 𝛿𝑙=0

 Equation 2.3

Where 𝑑𝑙(𝑥𝑖𝑙 , 𝑥𝑗𝑙) is the distance of feature l between object i and j and

Page | 18

𝛿𝑖𝑗𝑙 = {
1, 𝑖𝑓 𝑥𝑖𝑙 𝑜𝑟 𝑥𝑗𝑙 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 2.4

A distance or dissimilarity function on a data set X must satisfy the following properties:

 Symmetry:

𝐷(𝑥𝑖 , 𝑥𝑗) = 𝐷(𝑥𝑗, 𝑥𝑖) Equation 2.5

 Positivity:

𝐷(𝑥𝑖 , 𝑥𝑗) ≥ 0, ∀𝑥𝑖, 𝑥𝑗 Equation 2.6

 Triangle inequality:

𝐷(𝑥𝑖, 𝑥𝑗) ≤ 𝐷(𝑥𝑖, 𝑥𝑘) + 𝐷(𝑥𝑘 , 𝑥𝑗), ∀𝑥𝑖, 𝑥𝑗, 𝑥𝑘 Equation 2.7

 Reflexivity:

𝐷(𝑥𝑖 , 𝑥𝑗) = 0 𝑖𝑓𝑓 𝑥𝑖 = 𝑥𝑗 Equation 2.8

In this thesis, we will work with continuous variables and the distance measure will be the Euclidian

distance. This proximity measure is a special case of the Minkowski distance, called 𝐿𝑝 that is defined by:

𝐿𝑝 = 𝐷(𝑥𝑖, 𝑥𝑗) = (∑(|𝑥𝑖𝑙 − 𝑥𝑗𝑙|
𝑝
)

𝑑

𝑙=1

)

1/𝑝

Equation 2.9

The Euclidian distance is 𝐿2 is a special case when p=2, given by:

𝐿2 = 𝐷(𝑥𝑖, 𝑥𝑗) = (∑(|𝑥𝑖𝑙 − 𝑥𝑗𝑙|
2
)

𝑑

𝑙=1

)

1/2

Equation 2.10

There are two other well-known cases of the Minkowski distance, the Manhattan distance or 𝐿1and the

sup distance or 𝐿∞.

Page | 19

Figure 2.2: Illustration of the Minkowski distance

L2 satisfies the conditions given in Equation 2.5 to Equation 2.8. However, features can be measured in

various units and the variance of certain properties or their large value can bias their weight in a data set

[14]. To solve this problem Hogg and Tanis [15] proposed a method called data standardization, where

each feature has zero mean and unit variance:

𝑥𝑖𝑙 =
𝑥𝑖𝑙
∗ −𝑚𝑙

𝑠𝑙
, 𝑖 = 1…𝑁, 𝑙 = 1…𝑑

Equation 2.11

𝑥𝑖𝑙 is the raw data, 𝑚𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛:

𝑚𝑙 =
1

𝑁
∑𝑥𝑖𝑙

∗

𝑁

𝑖=1

Equation 2.12

While 𝑠𝑙 is the sample standard deviation:

𝑠𝑙 = √
1

𝑁
∑(𝑥𝑖𝑙

∗ −𝑚𝑙)
2

𝑁

𝑖=1

Equation 2.13

Another normalization exists, based on the extrema of the data. It puts all features in the interval [0, 1]:

𝑥𝑖𝑙 =
𝑥𝑖𝑙
∗ −𝑚𝑖𝑛(𝑥𝑖𝑙

∗)

𝑚𝑎𝑥(𝑥𝑖𝑙
∗) −𝑚𝑖𝑛(𝑥𝑖𝑙

∗)
 Equation 2.14

With the two last definitions at hands, we may try to define the concept of a cluster.

2.2.4 Cluster

The goal of a clustering algorithm is to partition a data set X into a certain number of clusters, i.e. subsets

of X where each member of a given subset shares common properties (have a small distance between

Page | 20

each other). However, there is no universally admitted definition of the term cluster. According to Britts

& all [11] a “formal definition is not only difficult, but may even be misplaced”.

According to the dictionary a cluster is “a group or bunch of several discrete items that are close to each

other”.

In [16] Everitt states three other definitions given by:

1. A cluster is a densely populated region of the feature space separated by relatively low density

region of this space.

2. “A cluster is a set of entities which are alike, and entities from different clusters are not alike.”

3. “A cluster is an aggregate of points in the test space such that the distance between two points in

the cluster is less than the distance between any point in the cluster and any point not in it.”

In other words, a cluster is a subset of the input data points that are similar. This similarity between data

points is obtained using a distance measure. The data point from another subset are not similar, that

means that the distance between two points from different cluster is larger than the maximum inner

distance of each cluster.

The last aspect that might be worth considering is the granularity of the clustering.

Figure 2.3: Clustering granularity

In Figure 2.3 one might see two clusters or three, both answers are right.

2.2.5 Clustering procedure

It is commonly admitted that the clustering procedure is divided into four major steps [12] as shown in

Figure 2.4.

Page | 21

Figure 2.4: Clustering procedure

 Step 1: Feature extraction applies transformations to extract or generate new features from the

original ones. This method could be more efficient for uncovering the data structure.

 Step 2: Clustering algorithm design determines the proximity measure.

 Step 3: Validation, Clustering algorithms can create clusters whether they exist or not in the data.

These steps are an attempt to evaluate the algorithm’s performance.

 Step 4: Interpretation of the results, experts in the relevant field try to interpret the results and

to see if the clustering provided meaningful information on the original dataset, or not.

In the next section we briefly introduce the Support Vector Machine (SVM) to lay the foundation for the

Support Vector Clustering (SVC). In the description of the SVM we want to avoid to use too much

mathematics, the goal is to give an overview of the SVM. The mathematical formulation will come in the

description of the SVC.

2.3 Support Vector Machine

The Support Vector Machine [17] is a binary learning machine, i.e. it can classify two classes of pattern. In

the context of pattern classification, the core idea can be summarized as follows:

Given a training sample, SVM constructs a hyper plane (decision surface) to discriminate between positive

and negative samples in order to maximize the margin of separation, Figure 2.5 illustrates this concept.

Page | 22

Figure 2.5: Margin separation

Support Vectors are a subset of data points selected by the learning algorithm. The machine is based on

the inner product kernel between a support vector and a vector drawn from the training data. Because of

this property, SVM is referred to as a kernel method. This kernel method designs an optimal decision

surface. The optimality is rooted in convex optimization [18]. However, such a feature comes at the price

of a high computational complexity. The kernel trick [19] solves the problem of computational complexity.

The kernel trick is detailed in section 2.6.

SVM projects training points into a feature space with a much higher dimension than the input space.

Such projection is non-linear, but according to the Cover Theorem [6], the data may become linearly

separable in the feature space. This means that the data points can be separated by the hyper plane in

the feature space. The non-linear map is unknown and is computationally expensive, and sometimes

become virtually impossible to compute. The kernel trick is then used to compute the images of the

training points in the feature space. This trick avoids the computation of the non-linear map. Let a

nonlinear map Φ:𝑅𝐷 → 𝐹 where F represent a feature space and k be a Mercer’s Kernel [20], we can

replace the inner product of Φ defined by:

Φ:𝑅𝐷 → 𝐹 Equation 2.15

𝑘(𝑥, 𝑥′) = Φ𝑇(𝑥′)Φ(𝑥) Equation 2.16

Mercer’s kernel are known mathematical functions (polynomial, sigmoid etc…), therefore we can

calculate the inner product of Φ without knowing it. In the feature space the learning algorithm selects

the support vector to build the decision surface and map it back in the input space. The second mapping

is achieved by first solving a convex optimization problem then applying a linear mapping from the feature

space to the output space. Figure 2.6 illustrates the concept of SVM.

Page | 23

Figure 2.6: Illustration of the two mappings in the SVM.

SVM has been initially designed to classify binary data. Later the Multi Class SVM was created allowing

the classification of a finite number of classes. But supervised learning assumes a priori knowledge on the

data (the number of classes). Hence, the Support Vector Clustering [5] was developed which is an

unsupervised learning algorithm using the core idea of SVM. We will explore the SVM with kernel

clustering in details in the next sections.

2.4 Kernel Clustering

The introduction of the Support Vector Machine [1] has increased the popularity of the Kernel algorithm

since 1990s, due to its high performance in both supervised classification and regression analysis. It has

been successfully applied in unsupervised classification or clustering since then. The key behind that is the

Cover Theorem [6]:

A complex pattern-classification problem, cast in a high-dimensional space

nonlinearly, is more likely to be linearly separable than in a low-dimensional space,

provided that the space is not densely populated.

Given a set 𝑋 = {𝑥1, … , 𝑥𝑗 , … , 𝑥𝑁} 𝑤𝑖𝑡ℎ 𝑥𝑗 ∈ 𝑅
𝑑 of input pattern and a nonlinear map Φ:𝑅𝐷 → 𝐹 where

F represents a feature space of arbitrarily high dimensionality. X is mapped into F through Φ so that a

linear algorithm can be performed. The Cover Theorem is illustrated in Figure 2.7.

A problem soon appears, as the dimensionality increases, so does the complexity. It is called the curse of

dimensionality [21]. This difficulty is overcome using the kernel trick from Mercer’s theorem [20]:

Page | 24

Let 𝑘(𝑥, 𝑥′) be a continuous symmetric kernel that is defined in the closed

interval 𝑎 ≤ 𝑥 ≤ 𝑏, and likewise for 𝑥′. The kernel 𝑘(𝑥, 𝑥′) can be expanded in the

series:

k(x, x′) = ∑λiφi(x)φi(x
′)

∞

i=1

Equation 2.17

With positive coefficients 𝜆𝑖 > 0 for all i. For this expansion to be valid and for it to

converge, it is necessary and sufficient that the condition:

∫∫k(x, x′)ψ(x)ψ(x′)dxdx′ ≥ 0

a

b

a

b

Equation 2.18

holds for all 𝜓(.), for which we have:

∫ψ2(x)dx < ∞

a

b

Equation 2.19

where a and b are the constants of integration

Calculating Φ is time-consuming and often infeasible. However, Mercer Theorem allows us to avoid this
computation and there is no need to explicitly describe the nonlinear mapping Φ neither the image
points in the feature space F. This technique is known as the Kernel trick.

Figure 2.7: The Cover Theorem

Page | 25

In the next section, the notion of Kernel is explained with different types of kernels.

2.5 Definition of Kernel

The function 𝑘(𝑥, 𝑥′) is called an inner product kernel, or kernel.

It is a function that computes the inner product of images produced in the feature

space under 𝛷 of two data points in the input space [22].

Two properties are derived from this definition:

Property 1: 𝑘(𝑥, 𝑥′) is symmetric about the center 𝑥′:

𝑘(𝑥, 𝑥′) = 𝑘(𝑥′, 𝑥) Equation 2.20

The maximum is reach for 𝑥 = 𝑥′.

Property 2: The volume under 𝑘(𝑥, 𝑥′) 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

However, this is the general definition of a kernel. To use the kernel trick, the function 𝑘(𝑥, 𝑥′) has to

satisfy Mercer’s theorem. In the scope of this observation, only four types of kernel remains, they are

listed below.

The polynomial kernel:

𝑘(𝑥, 𝑥′) = (𝑥 ∗ 𝑥′ + 1)𝑝 Equation 2.21

The Gaussian kernel:

𝑘(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
1

2𝜎2
‖𝑥 − 𝑥′‖2)

Equation 2.22

where 𝜎 is the width parameter or margin separation. In the case of clustering it controls the

granularity of the clustering.

The sigmoid kernel:

𝑘(𝑥, 𝑥′) = tanh(𝜃0(𝑥 + 𝑥
′) + 𝜃1) Equation 2.23

where 𝜃0 and 𝜃1 are user-specified parameter. Furthermore, the sigmoid kernel satisfies

Mercer’s theorem only for specific value of 𝜃0 and 𝜃1.

In the case of Support Vector Clustering, the Gaussian kernel is the most used because the polynomial

kernel does not allow tight contours of the clusters [23].

With all the previous definitions, we can now present the Support Vector Clustering algorithm (SVC).

Page | 26

2.6 Support Vector Clustering

Over the last years various Kernel clustering algorithms have been developed. They may be grouped in

three families. The first type is based on Kernelising the Metric, the metric is computed by means of

Mercer’s kernel in the feature space. The second implements K-means in the feature space using Kernel

Methods. The last one is based on Support Vector Machine including Kernel Methods. In this section we

introduce the Support Vector Clustering algorithm and explain the Kernel trick.

In SVC, the data points are mapped from data space into a high dimensional feature space by means of a

Mercer’s kernel (here the Gaussian kernel). Then we look for the smallest hyper-sphere capturing all the

image data points. Once mapped back into the data input space, the contour of the sphere describes the

boundaries of clusters. Finally, data points enclosed by the same closed contours are assigned to a cluster.

This is done by computing the adjacency matrix3.

Given a set 𝑋 = {𝑥1, … , 𝑥𝑗 , … , 𝑥𝑁} 𝑤ℎ𝑒𝑟𝑒 𝑥𝑗 ∈ 𝑅
𝑑 of input pattern and a nonlinear map Φ: 𝑅𝐷 → 𝐹. The

object is to find the smallest hyper-sphere in F capturing all the data points of X after the nonlinear

mapping. In other words, we need to find the hyper sphere H with the minimal radius R such as:

‖Φ(𝑥𝑗) − 𝛼‖
2
≤ 𝑅2, ∀𝑗 Equation 2.24

Where ‖. ‖ is the Euclidian distance, α is the center of H. The introduction of the slack variables 𝜉𝑗

incorporates soft constraints. Slack variables replace inequality constraints by equality constraints plus

non-negativity constraints. Equation 2.24 becomes:

‖Φ(𝑥𝑗) − 𝛼‖
2
≤ 𝑅2 + 𝜉𝑗 , where 𝜉𝑗 ≥ 0

Equation 2.25

With 𝜉𝑗 ≥ 0. The primal problem is solved in its dual form by introducing the Lagrangian.

𝐿 = 𝑅2 −∑(𝑅2 + 𝜉𝑗 − ‖Φ(𝑥𝑗) − 𝛼‖
2
)𝛽𝑗

𝑗

−∑𝜉𝑗𝜇𝑗
𝑗

+ 𝐶∑𝜉𝑗
𝑗

 Equation 2.26

With 𝛽𝑗 ≥ 0 and 𝜇𝑗 ≥ 0 are Lagrange multipliers and 𝐶 ∑ 𝜉𝑗𝑗 is a penalty term and C a constant. Applying

the stationary condition to L, i.e., setting to zero the derivative of L with respect to R, 𝛼 and 𝜉𝑗 leads to:

∑𝛽𝑗 = 1

𝑗

 Equation 2.27

𝑎 =∑𝛽𝑗Φ(𝑥𝑗)

𝑗

 Equation 2.28

3 An adjacency matrix is a matrix representing the connection of nodes in a graph. It is just one of the many
representations of a graph.

Page | 27

𝛽𝑗 = 𝐶 − 𝜇𝑗 Equation 2.29

This is a quadratic optimization problem [18] which involves the Karush-Kuhn-Tucker complementarity

conditions (see section 2.7.2) [24] we have:

𝜉𝑗𝜇𝑗 = 0 Equation 2.30

(𝑅2 + 𝜉𝑗 − ‖Φ(𝑥𝑗) − 𝛼‖
2
)𝛽𝑗 = 0 Equation 2.31

From Equation 2.31 we observe that the image of a point 𝑥𝑗 with 𝛽𝑗 > 0 and 𝜉𝑗 > 0 is outside the hyper

sphere H. According to Equation 2.30, 𝜇𝑗 = 0. It follows now from Equation 2.29 that 𝛽𝑗 = 𝐶. Such a point

is called a Bounded Support Vector (BCV). A point 𝑥𝑗 with 0 < 𝛽𝑗 < 𝐶 then from Equation 2.29 𝜇𝑗 > 0 →

 𝜉𝑗 = 0. Such a point lies on the feature space sphere and is called Support Vector (SV). All other points

are inside the sphere.

SVs lie on cluster boundaries while BSVs are outside, the rest are in the clusters. Using these relations we

can remove R, 𝛼 and 𝜇𝑗 and rewrite Equation 2.26 into its dual expression:

𝑊 =∑Φ(𝑥𝑗)
2
𝛽𝑗

𝑗

−∑𝛽𝑖𝛽𝑗Φ(𝑥𝑖). Φ(𝑥𝑗)

𝑖𝑗

 Equation 2.32

The variables 𝜇𝑗 are replaced by the following constraints:

0 < 𝛽𝑗 < 𝐶, 𝑗 = 1,… ,𝑁

At this stage we still don’t know the nonlinear map nor the Lagrange Multipliers. However, according to

Mercer’s theorem the dot product Φ(𝑥𝑖). Φ(𝑥𝑗) may be replaced by a Mercer kernel 𝐾(𝑥𝑖, 𝑥𝑗) as

𝐾(𝑥𝑖, 𝑥𝑗) = Φ(𝑥𝑖). Φ(𝑥𝑗) Equation 2.33

This replacement is known as the Kernel trick. The dual Lagrangian [25] W is now written as:

𝑀𝑎𝑥𝛽𝑗𝑊 =∑ 𝐾(𝑥𝑗, 𝑥𝑗)𝛽𝑗
𝑗

−∑𝛽𝑖𝛽𝑗 𝐾(𝑥𝑖, 𝑥𝑗)

𝑖𝑗

 , β is the Eigen-vector Equation 2.34

Subject to the constraints:

0 < 𝛽𝑗 < 𝐶 Equation 2.35

Page | 28

∑𝛽𝑗 = 1

𝑗

 𝑓𝑜𝑟 𝑗 = 1,… ,𝑁 Equation 2.36

As previously mentioned the appropriate kernel for SVC is the Gaussian kernel with the width parameter

q:

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒
−𝑞‖𝑥𝑖−𝑥𝑗‖

2

Equation 2.37

We define now the distance of each image point from the center of the sphere:

𝑅2(𝑥) = ‖Φ(𝑥) − 𝛼‖2 Equation 2.38

Using Equation 2.28 and the definition of Mercer kernel, we have:

𝑅2(𝑥) = 𝐾(𝑥, 𝑥) − 2∑𝛽𝑗 𝐾(𝑥𝑗, 𝑥)

𝑗

−∑𝛽𝑖𝛽𝑗 𝐾(𝑥𝑖, 𝑥𝑗)

𝑖𝑗

 Equation 2.39

SV lies on the surface of the sphere, i.e.

𝑅 = {𝑅(𝑥𝑖)|𝑥𝑖 ∈ 𝑆𝑉} Equation 2.40

Vice versa, the contours that define the clusters are given by:

{𝑥|𝑅(𝑥) = 𝑅} Equation 2.41

They formed the cluster boundaries. One last step is necessary to complete the algorithm. We need to

assign a cluster to each data points and label them. We observe that the path connecting two given data

points belonging to different clusters must exit the hyper sphere of the feature space. Such a path must

contain a point y with 𝑅(𝑦) > 𝑅. This define the adjacency matrix 𝐴𝑖𝑗 between 2 points whose

images Φ(𝑥𝑖) and Φ(𝑥𝑗) lies in or on the sphere:

𝐴𝑖𝑗 = {
1 𝑖𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗, 𝑅(𝑦) ≤ 𝑅

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Equation 2.42

This is better illustrated through a graphical representation:

Page | 29

Figure 2.8: Line segment connecting data points

With this matrix, clusters are now defined as the connected components of the graph induced by A.

At this point, we make one observation here, BSVs are unclassified by this procedure. A possible solution

is to assign them to the closest cluster..

The last part of this chapter will give a brief overview of two key mathematical concepts used in SVC.

2.7 Mathematical aspect

2.7.1 Quadratic Programming

Quadratic Programming (QP) [25] is a class of problems that are close to linear programming problems,

with the difference that the objective function contains products of pairs of variables (called quadratic

terms). As we have seen in the SVC such problems are more than abstract. Fortunately this constitutes a

well-known class of problems, and the solution does exist. They belongs to a broader class of problems:

Convex Programming. Although solving such problems is beyond the scope of this thesis, it is necessary

to give an overview of QP here.

QP problems are usually minimization problems of the following form:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 +
1

2
𝑥𝑡𝑄𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≥ 𝑏 𝑎𝑛𝑑 𝑥 ≥ 0

Equation 2.43

This is solved by calculating the dual problem and introducing the Lagrangian. The dual is obtained using

the Karush-Kuhn-Tucker complementarity [24] conditions:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑏𝑇𝑦 −
1

2
𝑥𝑡𝑄𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑇𝑦 + 𝑧 − 𝑄𝑥 = 𝑐 𝑎𝑛𝑑 𝑦, 𝑧 ≥ 0

Equation 2.44

Page | 30

2.7.2 Karush-Kuhn-Tucker complementarity conditions (KKT conditions)

Let 𝜆 ∈ 𝑅+
𝑚. The following Lagrangian function is defined as:

𝐿(𝑋, 𝜆) = 𝑓(𝑋) + ∑𝜆𝑖𝑔𝑖(𝑋)

𝑚

𝑖=1

Equation 2.45

where 𝜆𝑖 is the Lagrangian multiplier.

The KKT conditions combine two conditions: The Stationary condition and the complementary slackness

condition:

To maximize L according to X we need the first order derivative to be zero:

𝜕𝑓

𝜕𝑋
(𝑋) +∑𝜆𝑖

𝜕𝑔𝑖
𝜕𝑋

(𝑋)

𝑚

𝑖=1

= 0 𝑤ℎ𝑒𝑟𝑒
𝜕

𝜕𝑋
 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

Equation 2.46

The complementary slackness conditions or positivity conditions stated as:

min[𝜆𝑖, 𝑔𝑖(𝑋)] = 0, ∀𝑖 ∈ {1…𝑚} Equation 2.47

Once again, solving QP is beyond the scope of this thesis. For more information we refer to [21], [24], [25],

[18] and many others. The literature about this topic is very rich.

Page | 31

Chapter 3 - Particle Swarm Optimization

Figure 3.1: Mind map Chapter 3

Page | 32

3.1 Introduction

First of all, let’s consider the following example. Imagine you are a bird in the middle of a flock during

migration. You have to fly thousands of kilometers to reach your warm destination. You have two choices,

you can either fly on your own or fly within the flock. We have all noticed the specific formation of some

bird flocks and we know that it is far from being random. Flying in such formation reduces the drag. It

makes it easier to fly long distances when you are in the middle of the flock. Once the birds at the edge of

the flock are tired they switch with birds inside. In this way birds can migrate over very long distances.

Would you prefer to fly alone or in a flock?

This simple cooperation method solves a complex problem: reducing drag in order to save energy to travel

long distance. The flock can be referred to as a swarm. A swarm is composed of individuals (often mobile)

that communicate directly or indirectly with each other to solve complex problems. This interaction

results in distributive collective problem-solving strategies and is referred to as Swarm Intelligence (SI) [3].

Computational Swarm Intelligence (CSI) refers to the algorithmic models of such behavior [3]. The idea of

creating such algorithms came from the biological study of bird flocks and ant swarms and to reproduce

their behaviors on computer models. These simulations showed great ability to explore multidimensional

space and quickly turned into a whole new domain of the algorithms.

We will focus on Particle Swarm Optimization [26] and some of its variations. In PSO, intelligence becomes

as an emergent property from the interactions between the individuals (or particles). It means that from

simple interactions one can solve complex problems. Particles follow a simple behavior: they try to

emulate the success of their neighboring individuals and their own success. A PSO algorithm uses a single

swarm that might be composed of many particles spread among sub-swarms. And each particle

represents a potential solution to a given problem. The performance of an individual is obtained using a

fitness function. This function takes the potential solution of a particle and “run” it through the current

problem, and then evaluates the output.

Particles are flown into a multidimensional space, called the search space, representing all the feasible

solutions of a given problem. Using the fitness function their position is updated to explore the search

space and find an optimal or near optimal solution.

Let 𝑥𝑖(𝑡) be the position of particle i at time step t then the position at time t+1 is:

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) Equation 3.1

with 𝑣𝑖(𝑡 + 1) being the velocity component of particle i at the time step t+1.

The velocity vector plays a fundamental role in the optimization process. It reflects the social information

exchanged in the swarm and the own experience of a particle. The former part is referred to as the social

component (SC) while the latter is referred to as the cognitive component (CC). We may say that velocity

is equal to social component + cognitive component. We will present the two main PSO algorithms in the

next section. They mainly differ by their social component.

Page | 33

3.2 Basic Particles Swarm Optimization

3.2.1 Global Particles Swarm Optimization

In global particle swarm optimization (gPSO) the neighborhood of a particle consists of the whole swarm.

It means that the social component of the velocity is obtained by gathering information from all particles.

We can say that the swarm is a fully connected graph of individuals. This social information is the global

best position of the swarm. The SC uses the particles that achieved the best fitness in the swarm.

The velocity component for particle i at time step t+1 in gPSO is:

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦
′(𝑡) − 𝑥𝑖(𝑡)] Equation 3.2

𝑐𝑐 is the contribution of the cognitive component and 𝑐𝑠 the contribution of the social component. 𝑟𝑐 and

𝑟𝑠 are issue from a random distribution to introduce a stochastic element. 𝑥𝑖(𝑡) is the position of particle

i at time t while 𝑦𝑖(𝑡) is the best personal position of particle i at time t. Finally 𝑦𝑖
′(𝑡) is the best known

position in the swarm at time t.

Let 𝑓: 𝑅𝑑 → 𝑅 be the fitness function and d the dimension of the search space. The local best position in

the case of a maximization problem is obtained by:

𝑦𝑖(𝑡) = {
𝑦𝑖(𝑡 − 1) , 𝑖𝑓 𝑓(𝑦𝑖(𝑡 − 1)) ≤ f(𝑦𝑖(𝑡))

𝑥𝑖(𝑡) , 𝑖𝑓 𝑓(𝑦𝑖(𝑡 − 1)) > f(𝑦𝑖(𝑡))

Equation 3.3

The global best position for a swarm of N particles is simply:

𝑦′(𝑡) = max (𝑓(𝑥1(𝑡)), … , 𝑓(𝑥𝑖(𝑡)), … , 𝑓(𝑥𝑁(𝑡))) Equation 3.4

gPSO

Initialize a swarm of N particles

Do while until stopping condition true

 For each particles do

 If 𝑓(𝑥𝑖) > 𝑓(𝑦𝑖) do //Set the personal best

 𝑦𝑖 = 𝑥𝑖

 Endif

 If f(𝑦𝑖) > 𝑓(𝑦′) do //Set the global best

 𝑦′ = 𝑦𝑖

 Endif

 Endfor

 For each particles do

 𝑣𝑖 = 𝑣𝑖 + 𝑐𝑐𝑟𝑐[𝑦𝑖 − 𝑥𝑖] + 𝑐𝑠𝑟𝑠[𝑦
′ − 𝑥𝑖] //Update the velocity

 𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 //Update the position

 Endfor

Endwhile

Algorithm 3.1: global best PSO

Page | 34

The initial population of a swarm is generally a random distribution of N particles in the search space. We

now present the pseudo code for gPSO:

3.2.2 Local Particle Swarm Optimization

The local particle swarm optimization (lPSO) main version of PSO differs from gPSO only in the way velocity

is calculated. Instead of using the global best position to obtain the social component, this is the local best

particle that is used. A neighborhood is defined for each particle. This can be done in two ways. The first

method is based on the Euclidian distance, we set a distance from which a particle i belongs or not to the

neighborhood of particle j. This method is computationally expensive. And spatial proximity is not

required. The second approach uses particle indices.

For a swarm of size N, we define a neighborhood of size 𝑛𝑠 ∈ {1…𝑁}, if 𝑛𝑠 = 𝑁 we have the gPSO. The

neighborhood of individual i is:

𝒩𝑖 = {𝑦𝑖−𝑛𝑠 (𝑡), 𝑦𝑖−𝑛𝑠 +1(𝑡),… , 𝑦𝑖(𝑡), … , 𝑦𝑖+𝑛𝑠 −1(𝑡), 𝑦𝑖+𝑛𝑠 (𝑡), }
Equation 3.5

The local best position in the case of a maximization problem is then:

𝑦𝑖
′′(𝑡 + 1) = 𝑚𝑎𝑥(𝑓(𝒩𝑖)) Equation 3.6

The velocity is now calculated by:

𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦𝑖
′′(𝑡) − 𝑥𝑖(𝑡)] Equation 3.7

One of the advantages of using neighborhood based on particle index is that the information regarding

good solutions is spread around the swarm regardless of their spatial proximity. The pseudo-code of the

lPSO is given in Algorithm 3.2

lPSO

Initialize a swarm of N particles

Do while stopping condition true

 For each particles do

 If 𝑓(𝑥𝑖) > 𝑓(𝑦𝑖) do //Set the personal best

 𝑦𝑖 = 𝑥𝑖

 Endif

 If f(𝑦𝑖) > 𝑓(𝑦′) do //Set the global best

 𝑦′ = 𝑦𝑖

 Endif

 Endfor

 For each particles do

 𝑣𝑖 = 𝑣𝑖 + 𝑐𝑐𝑟𝑐[𝑦𝑖 − 𝑥𝑖] + 𝑐𝑠𝑟𝑠[𝑦𝑖
′′ − 𝑥𝑖] //Update the velocity

 𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 //Update the position

 Endfor

Endwhile

Algorithm 3.2: local best PSO

Page | 35

3.2.3 Velocity component

The Velocity update equation is composed of three parts in every PSO variations.

 The first part consists of the momentum. This is the memory component of a particle. It

represents the previous velocity of an individual. An inertia weight can be affected to this

component, it balances the importance of the momentum.

 The second part is the cognitive component. This is the selfish behavior of a particle and drives a

particle toward its best known personal position. A coefficient is attributed to this component to

moderate its importance in the velocity update equation.

 The third and last part is the social component. As opposed to the cognitive component, it drives

a particles toward the best known position of the swarm or the neighborhood of the individual. It

is also affected by a coefficient.

3.3 Variations

PSO showed a great ability to solve standard optimization problems [27] and Neural Network Optimization

problems [28] [29]. Their goal is to improve the convergence and the quality of the solutions found by

PSO. A fundamental aspect of PSO is the trade-off of Exploration-Exploitation (EE trade-off) of the search

space. Exploration is the ability of the swarm to leave its initial area and spread through the search space.

Exploitation focusses on a promising area to refine potential solutions. There are two obvious extreme

cases of the EE-tradeoff. Firstly, if a swarm favours Exploration then it might miss some good areas of the

search space. Secondly, if a swarm favours Exploitation it might be trapped in local minima (or maxima

depending on the problem). Within PSO the problem is addressed by the velocity update equation. In this

section we present three variations of the velocity update. The velocity clamping, the inertia weight and

the Constriction coefficient are discussed.

3.3.1 Clamping

The velocity update consists of three components that determine the future position of a particle. In PSO

the velocity may increase quickly and the swarm might diverge completely. This means that the EE trade-

off is unbalanced toward Exploration. At every update, a particle literally jumps form one position to

another. To limit the growth of the velocity, the Clamping equation has been introduced. It acts as a speed

limitation on the velocity updates:

𝑣𝑖(𝑡 + 1) = {
𝑣𝑖
′(𝑡 + 1), if 𝑣𝑖

′(𝑡 + 1) ≤ 𝑉𝑀𝐴𝑋

𝑉𝑀𝐴𝑋 , if 𝑣𝑖
′(𝑡 + 1) > 𝑉𝑀𝐴𝑋

Equation 3.8

With 𝑣𝑖
′(𝑡 + 1) is the result using the equations Equation 3.2 and Equation 3.7. 𝑉𝑀𝐴𝑋 is the “speed limit”.

This value is important because it controls the EE trade-off. Small value increases the exploitation, large

value encourages exploration. The problem is to find the value for 𝑉𝑀𝐴𝑋, the authors of [30] used a

fraction of the domain of each dimension of the search space:

𝑉𝑀𝐴𝑋,𝑗 = 𝛿(𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗) Equation 3.9

The coefficient 𝛿 is determined using experiments.

Page | 36

The use of 𝑉𝑀𝐴𝑋 restricts the step-size of each particle, but also the direction of the movement. This

change of direction might encourage exploration, but might also skip the optimum. 𝑉𝑀𝐴𝑋 does not have

to be constant and can change over time. A common strategy is to start with a large value to encourage

exploration and then reduce it to exploit the good region found in the first stage.

3.3.2 Inertia weight

The inertia weight is a control mechanism for the EE trade-off [31]. In the velocity update equation we

have three components, and in front of the social and cognitive component there is a contribution

coefficient for each. However, there is no such coefficient for the momentum. This is exactly the role of

the inertia weight, it modulates the contribution of the momentum to the velocity update with 𝑤 being

the inertia weight:

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦
′(𝑡) − 𝑥𝑖(𝑡)] Equation 3.10

For 𝑤 ≥ 1 the swarm diverges and explores the search space at accelerating speed. Particles cannot move

back to promising area. For 𝑤 < 1 the particles decelerate until they become stationary. The optimal

value for the w is problem dependent (as for the velocity clamping). However, it has been shown that w

should not be under a certain limit to guarantee convergence of the swarm [32]:

𝑤 >
1

2
(𝑐1 + 𝑐2) − 1

Equation 3.11

Again, the inertia weight does not have to be constant. Five different approaches have been used, random

adjustment, linear decreasing, nonlinear decreasing, fuzzy adaptive inertia and increasing inertia. An issue

with the inertia weight is that velocity clamping is still necessary to limit the divergence of the swarm.

3.3.3 Constriction Coefficient

The last control mechanism for the EE trade-off is the Constriction coefficient. And it is also the one we

are going to use in this thesis. The idea is the same as for the inertia weight. However, the coefficient

applies for the three components of the velocity update equation:

𝑣𝑖(𝑡 + 1) = 𝜒[𝑣𝑖(𝑡) + 𝑐𝑐𝑟𝑐[𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)] + 𝑐𝑠𝑟𝑠[𝑦
′(𝑡) − 𝑥𝑖(𝑡)]] Equation 3.12

With

𝜒 =
2𝑘

|2 − 𝜙 − √𝜙(𝜙 − 4)|
 Equation 3.13

and 𝜙 = 𝑐𝑐𝑟𝑐 + 𝑐𝑠𝑟𝑠 and 𝜙 ≥ 4 and 𝑘 ∈ [0,1]. These equations were obtained using Eigenvalue Analysis

[33]. We can observe that 𝜒 ∈ [0,1] meaning that the velocity is reduced at each time step. There is no

need for Velocity Clamping. The parameter k controls the EE trade-off, a small value implies fast

convergence with local exploitation while a large value means high exploration and slow convergence of

the swarm. It is interesting to start with a high value of k and progressively reduce it. This approach and

the inertia weight approach are equivalent except that there is no need for velocity clamping.

Page | 37

3.4 Discussion

3.4.1 Exclusive velocity models

Three models have been explored by J. Kennedy [34].

 The Cognitive-Only model: The social component of the velocity update equation is removed. The

resulting model tends to perform local search around the initial position and display poor

performance in general. However, it is well suited for niching algorithms.

 The Social-Only model: This time the cognitive component is removed from the velocity update

equation. The swarm converges faster than for the Cognitive-only model and demonstrates better

result for dynamic environments [35]

 The Selfless model: This model is almost like the Social-Only model with one exception. In this

model, the current particle is not allowed to become the best solution of its neighborhood. The

performance of the selfless model is poor in dynamically changing environments, but outperforms

the Social-Only model in specific cases.

3.4.2 Initialization

The first step of any PSO algorithm is to initialize the control parameters and the swarm itself. A general

approach is to uniformly cover the search space, using a generator of random particle within the search

space. To ensure a good coverage of the search space at initialization, Sobol and Faure sequences have

been used [36] [37].The initial velocity is usually set to zero.

3.4.3 Termination conditions

Another aspect of PSO is the stopping condition. It has to satisfy two conditions. First of all, it should not

stop the PSO to converge too fast, since it might find a suboptimal solution. Secondly, it should not require

frequent calculation of the fitness function to minimize the number of computations needed. Five major

stopping conditions have been used:

Iterations: The PSO stops when a certain number of iterations is reached. If this limit is too small, the

swarm will find a suboptimal solution. If this limit is too large the PSO might make useless computations.

This condition is often used with other convergence criteria as a safety stopping condition, in case the

other one fails. However, during our experiment we have found this method very efficient to simply

explore a search space.

Acceptable solution: The PSO stops when an “acceptable” solution has been found. A threshold is defined,

and when a particle achieves a fitness within this threshold, the algorithm stops. However, this method

requires a priori knowledge of the optimum, and we need to define what is acceptable. If the problem is

the training of a neural network, then the optimum is usually zero because we want to minimize a

measurement error. In that specific case this solution is well suited. But most problems don’t require this

a priori knowledge of the optimum.

No more improvements: The PSO stops when it fails to improve the fitness over a certain number of

iterations. Here, if the best solution of the swarm stays stuck in a small window over a predefined number

of iterations, we may consider that the PSO has converged and the solution is extracted. The main issue

Page | 38

with this condition is that it introduces two additional parameters to the PSO: the threshold that defines

an acceptable solution, and the window of iteration.

Normalized Swarm radius close to zero: The PSO stops when the radius of the swarm becomes small. The

normalized swarm radius is obtained using the following equations:

𝑅𝑛𝑜𝑟𝑚 =
𝑅𝑚𝑎𝑥

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑆)

Equation 3.14

where,

𝑅𝑚𝑎𝑥 = ‖𝑥𝑚 − 𝑦
′‖ Equation 3.15

𝑥𝑚 being the particle the further away from 𝑦′. Diameter(S) is the diameter of the swarm at time step

zero. This approach puts the global best at the center of the swarm. In this way, if the best position is still

moving, then the radius of the swarm is not yet close enough to zero. There exists a variation of this

stopping condition, this is given by the Particle Clustering Algorithm:

This algorithm creates a single cluster composed of 𝜖 % of the Swarm. In other words, with 𝜖 = 0.9 the

PSO stops when 90% of the particles are centered at the best solution. It gives more control over the

spatial disposition of the swarm to stop the search.

Small objective function slope: The PSO will stop when the slope of the objective function is close to

zero. We obtain the slope at time step t by:

𝑓′(𝑡) =
𝑓(𝑦′(𝑡)) − 𝑓(𝑦′(𝑡 − 1))

𝑓(𝑦′(𝑡))

Equation 3.16

We recognize the derived number of the objective function. If 𝑓′(𝑡) stays below a certain threshold 𝜖

during a set number of iterations, we consider that the swarm is not making any progress and we can

stop the PSO. This solution might cause the PSO to be stuck in a local minima, i.e. if a small group of

particles are stuck in a local minima, then the objective function slope might not evolve, it will cause the

PSO to stop. To avoid this problem, this stopping condition can be used with the radius method.

Particle Clustering Algorithm

Initialize Cluster 𝐶 = {𝑦′}

For about k times do

 Calculate the centroid of C

 𝑥′ =
∑ 𝑥𝑖
|𝐶|
𝑖=1,𝑥𝑖∈𝐶

|𝐶|

 For each particles do

 If ‖𝑥𝑖 − 𝑥
′‖ < 𝜖 do

 𝐶 ← 𝐶 ∪ {𝑥𝑖}
 Endif

 Endfor

Endfor

Algorithm 3.3 Particle Clustering Algorithm

Page | 39

3.5 Parameters

The parameters of PSO may vary from one version to another, but they all share a certain number of

parameters. We have already discussed some of them:

The size of the swarm, a large initial population implies a large diversity and a good space coverage.

However, the larger the swarm, the larger the computation per iteration is. A big swarm might also obtain

an optimal solution in fewer iterations. Usually a swarm should have between 10 and 30 particles [38].

Even if good results can be obtained with smaller swarms. The optimal size will depend on the

optimization problem to be solved. A smooth search space needs fewer particles than a rough one.

The number of iterations will also depend on external parameters. We have already seen the impact of a

given parameter in section 3.4.3.

The neighborhood size influences the interaction between particles. A small neighborhood implies few

interactions and vice versa. However, small neighborhoods tend to avoid local minima while large one

exploits more. A good strategy is to increase the size of the neighborhood during the search.

We need to make a last comment on the acceleration coefficient, the social and the cognitive coefficient

don’t need to be constant. Smooth search spaces are well suited for a large social coefficient while rough

search spaces are more suited for a large cognitive component. The adaptive acceleration coefficient has

been proposed by Clerc [39]. There is a lot more to discuss about the impact of different acceleration

coefficients, but in this thesis we will use only a constant one. The next parts of this chapter will present

two specific types of PSO. And at the end we will introduce the algorithm that has been designed for this

project.

3.6 Selection based PSO

3.6.1 Genetic Algorithm

The next PSO algorithm uses Genetic Algorithms (GA) approach [40]. This types of algorithm is inspired by

the genetic evolution of chromosomes. They maintains a population of genes (equivalent of a particle in

PSO). The main idea is to take this initial population, mutate it, and reproduce certain of its individuals.

Mutation and reproduction are used in the biological context. We then replace a part of the initial

population by the newly created genes. This section will briefly describe the major steps of any GA as:

 Parent Selection

 Crossover (or reproduction) strategies

 Mutation strategies

 Replacement strategies

3.6.1.1 Parent Selection

There are frequently used selection operators: random selection, proportional selection, tournament

selection, rank-based selection, Boltzmann selection, Elitism and Hall of fame.

We will present the strategies we are going to use in the design of our custom PSO:

Page | 40

Random selection: each individuals has a probability of
1

𝑁
 to be selected, where N is the total number of

individuals. This selector doesn’t use fitness information, meaning the best and the worst individuals have

the same probability to be used as parents.

Proportional selection: The selection is biased toward the fittest individuals. The higher the fitness of an

individual, the higher its probability to be selected is.

Tournament selection: a random group of the population is selected, the best individuals of this group is

then returned. If two parents are needed, this strategy is applied twice.

Many variations exits, and there are no rules to decide which one to use. For more information we refer

to A. Engelbrecht [3].

3.6.1.2 Crossover strategies

Crossover operators are divided in three categories:

 Asexual: only one parents is used for the reproduction.

 Sexual: two parents are needed for the reproduction. A noticeable point is that the same parent

can be selected twice depending of the selection operator used.

 Multi-recombination: more than two parents can be used for the reproduction.

Each of these categories can be further divided, Figure 3.2 illustrates this:

 One-point crossover: each parents is split in two, the offspring is the combination of a part of each

parent. The crossover point is randomly selected.

 Two-point crossover: each parents is split in three, each part is then swapped to create a new

offspring. Crossover points are randomly selected.

 Uniform crossover: Same principle but with more than two crossover points, each part of a parent

if swapped.

Page | 41

Figure 3.2: Points crossover illustration

3.6.1.3 Mutation strategies

Mutation operators are used to introduce new genetic material in the population. In other word, it

introduces diversity. Along with the reproduction operators, it ensures a strong diversity. Mutation is

applied at a certain probability 𝑃𝑚 to each offspring. Mutation points are selected on the offspring. The

mutation operator we are going to use is defined as:

A random value between 0 and 1 is added to the mutation points. For instance, 𝑚𝑖 is a mutation point in

an individual, then the mutated value is defined as:

𝑚𝑖 = 𝑚𝑖 + 𝑈(0,1) Equation 3.17

𝑈(0,1) being the Gaussian distribution between 0 and 1.

The next figure illustrates the mutation process.

 Figure 3.3: mutation operator

Page | 42

3.6.1.4 Replacement strategies

Once the offspring is created and mutated if necessary. It needs to be integrated in the current population.

Here is a list of the mains replacement strategies:

 Replace worst, where the worst individuals are replaced by the new offspring.

 Random replacement, where individuals are randomly selected to be replaced by the offspring.

 Parent-offspring, where offspring replace their parents.

 Elitist strategy for the above strategies exists, the best individuals are protected from the

replacement.

3.6.1.5 Summary

To briefly summarize, a generic genetic algorithm repeats the following steps until certain termination

conditions are satisfied:

1. Select parents in the current population

2. Apply a crossover operator to generate new individuals

3. Apply a mutation operator to ensure diversity without destroying good individuals

4. Integrate the new individuals in the current population

3.6.2 Selection-based algorithm

Selection-Based PSO is one of the first version of PSO combined with Genetic Algorithm given on the next

page. Algorithm 3.4 is executed before the velocity update in either local or global PSO. The memory of

the low-fitness particle is not lost. Their personal best position is conserved. Even if Selection-based PSO

improves the local search capabilities of PSO. The diversity is greatly reduced because half of the swarm

is removed. However, this downside can be overcome by applying mutation. In other words, the worst

half of the swarm is replaced by a mutated version of the top half. This maintains the diversity of the

swarm. The top half generates an offspring through mutations.

The reproduction process involves the selection of the particles that will generates an offspring. Clerc [39]

allowed a particle to generate a new one, kill itself or modify the inertia and acceleration coefficient. If no

improvement in the neighborhood is observed, a new particle is generated in the neighborhood. With this

approach, a large swarm reduces the probability to generate a particle. And a small swarm increases this

probability. Another approach [41] proposed to spawn a particle in the neighborhood of the global best

particle to reduce the complexity of the spawning process. The global best particle will generate an

offspring if it gets stuck in a local minima. This can be detected using the stopping condition previously

discussed. We will now present the Gaussian mutator introduced by Higashi and Iba [42].

Let 𝑥𝑖
′(𝑡 + 1) be the position of a particle after the velocity update, and P the probability to mutate. Then

for each component 𝑗 ∈ {1…𝑑} if 𝑈(0,1) < 𝑃 then the component 𝑥𝑖𝑗
′ (𝑡 + 1) is mutated using:

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗
′ (𝑡 + 1) + 𝑁(0, 𝜎)𝑥𝑖

′(𝑡 + 1) Equation 3.18

where 𝑁(0, 𝜎) is the Gaussian distribution 𝜎 is given by:

𝜎 =∝ (𝑥𝑚𝑎𝑥,𝑗 − 𝑥𝑚𝑖𝑛,𝑗), ∝∈ {0,1} Equation 3.19

Page | 43

Different Gaussian and Cauchy mutators have been proposed in [43], [44], [45] and [46]. Cauchy mutators

are mutators based on the Cauchy distribution instead of the Gaussian.

Algorithm 3.4 presents the pseudo code for the Selection-Based PSO.

The next section introduces the last variation of PSO.

3.7 Multi-Phase PSO

The sub-swarm has been developed by Løvberg et al. [47] and Al-Kazemi and Mohan [48]. Multi-phase

PSO split the swarm in subgroups where each subswarm exhibit different behaviors and perform different

tasks. Individuals can be allowed to migrate between groups. A common approach is to split the initial

swarm in two groups and randomly assigned individuals to the groups. Then, the research strategy

alternate between two phases. Firsts of all a group is in Attraction phase, means that particles within the

group will move toward the global best position. The second phase is the Repulsion phase where

individuals move away from the global best position.

The velocity update equation is then defined as follows:

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐𝑐𝑥𝑖(𝑡) + 𝑐𝑠𝑦
′(𝑡) Equation 3.20

In order to change between phases, the triplet representing the inertia weight, the cognitive and the social

coefficient (𝑤, 𝑐𝑐 , 𝑐𝑠) is changed. The attraction phase pushes the particle toward the global best particle,

i.e. they tend to ignore their cognitive component and follow the social one. The triplet is then: (1,-1, 1).

For the repulsion phase, individuals do the opposite, they ignore the social component and move

following their personal best position. The triplet is then: (1, 1, -1).

A group can change the phase after a user-specified number of iterations or when the there is no

improvement of the fitness value. In order to detect an improvement or that a stagnation occurs in the

fitness of a group, the termination conditions are presented in section 3.4.3. Furthermore, the velocity

vector of every particles is periodically randomly reset. This procedure must be used with caution. Since

it can drive a close particle away from a potential solution. To avoid this pitfall, a reset probability may be

introduce. Starting with a high probability and decreasing over time, this ensures a large diversity at the

beginning and then favours exploitation in later steps.

Selection-Based PSO

Initialize Cluster 𝐶 = {𝑦′}

For each particle do

 Select 𝑛𝑠 particles

 Score the performance of the current particle against the 𝑛𝑠 selected particles

Endfor

Sort the particles according to their score

Replace the worst half of the swarm by the best half without changing their personal

best positions

Algorithm 3.4 Selection-Based PSO

Page | 44

Multi-Phase PSO can exhibit more than two phases. The Life-cycle PSO [49] uses three phases. A regular

PSO behavior updating the velocity using either the lPSO or the gPSO. The second phase consists of

Genetic Algorithm individuals where particles reproduces with each other, mutate and finally the best

offsprings are selected (Survival of the fittest). Finally, a Hill Climber phase, where a particle’s position is

updated only if the new position is better. They become solitary stochastic Hill-climber. In the Life-Cycle

PSO the three types of individuals can coexist in the same swarm. The conditions for a change of phase

are the same for the Sub-Swarm PSO. Algorithm 3.5 presents the pseudo code of the Live-Cycle algorithm:

We detailed different variations of PSO in the last section to use them as a basis for the next section. We

will now explain a Custom PSO designed for this thesis that makes use of several characteristics of the

previous variations.

3.8 Custom PSO

The custom PSO tries to combine different advantages of several PSO. The first step is to split the swarm

in two sub swarms each in a different phase: Attraction and repulsion as introduced in 3.7 Multi-phase

PSO. Each group is following the global PSO approach. From the beginning this allows a great diversity in

the swarm.

Life-Cycle PSO

repeat

For each particle do

 Evaluate Fitness

 If no improvement

 Change of the phase

 Endif

Endfor

For each PSO particle do

 Update Velocity Vector

 Update position

Endfor

For each GA individual do

 Reproduce

 Mutate

 Select the new population

Endfor

For each Hill Climber do

 Find the new neighboring positions

 Evaluate their fitness

 Move toward the best one with a specified probability

Endfor

Until stopping condition is true

Algorithm 3.5 Life-Cycle PSO

Page | 45

At every iteration, each group updates its velocity and position. The algorithm then evaluates the

probability of the worst subswarm to mutate. If the random number generated is greater than the

predefined mutation probability the whole subswarm is mutated, and the phase is changed. This is the

approach used in the Selection-based PSO. However, Selection-based PSO tends to reduce diversity, to

avoid that we introduce the Gaussian mutation and we change the phase of the group. Finally, at later

stages of the search process, the algorithm switches the behavior of the best swarm to a hill climbing

behavior (defined earlier). The process stops once a predefined number of iterations has been reached.

The pseudo-code of this algorithm is presented in Algorithm 3.6 Custom PSO. We choose the simple

iteration condition to stop the search because the goal is to explore the search space. However, the

implementation will allow us to implement different stopping conditions.

We will discussed the advantages and disadvantages of this algorithm after the study cases.

Custom PSO

Initialize the Swarm using uniform distribution

Split the swarm in 2 equal groups, one in attraction phase, and one in repulsion phase.

Do

 For each group do

 Update the fitness of the group //also Set local and personal best.

 For each particles do

 Update velocity using Equation 3.20

 Update position

 Endfor

 If random >probability to mutate AND current group is the worst do

 Sort the group based on fitness

 Replace the worst half by the top half (applying

 Gaussian mutation and keeping the personal best.)

 Switch of phase (Attraction/Repulsion)

 Endif

 Endfor

 If reached 80% of max number of iterations do

 Switch the best swarm to hill climbing behavior

 Endif

While max number of iteration reached

Algorithm 3.6 Custom PSO

Page | 46

Chapter 4 - Design of the system

Figure 4.1: Mind map Chapter 4

Page | 47

4.1 Context

The software we are developing is designed to give the user the ability to run a PSO algorithm for different

study cases and the SVC on different data set. Furthermore, the user needs to understand what the

algorithms are doing. This means he needs to see what happened during the optimization process. It may

also be necessary for him to save interesting results too. From this requirements we extracted several key

features for this software:

 The architecture must be modular to easily change the data set of the SVC or the study case of

the PSO.

 The user must be able to specify different parameters for each algorithms.

 The user must be able to “see” by a 2D and 3D chart the clustering or the PSO graph.

 The user must be able to export the output of the PSO or of the SVC.

 The software must be portable (can run on any computer).

We tried to follow the Scrum methodology [50] to organize the development. It helped us to select

objectives for each day and week and move forward in the programming.

4.2 System Objective

The system aims to build a Particle Swarm Optimization Algorithm, a Support Vector Clustering algorithm

and different study cases. It is also design to visualize the output of these algorithms. The user can save

the results in different formats, and have deep views inside of the algorithm (particularly for the PSO).

This means to see what the PSO is exactly doing. Furthermore, the system lets the user export the

clustering results in an advanced tool or graph visualization to perform manual analysis of the results.

4.2.1 System Description

The system has to be able to perform three tasks:

1. Run PSO, SVC on a dataset

2. Visualize PSO or SVC

3. Export the data

The first task involves the following steps:

 Import a dataset into a data structure

 Setup the parameter of the desired algorithm

 Run the algorithm

The second task is composed of:

 Extract the results from the algorithm

 Translate these results to the appropriate data structure for visualization

 Display these results

The third task involves:

 Extract the results from the algorithm

 Insert these data in the appropriate file writer

Page | 48

 Export the data in the chosen file type.

4.2.2 Functional Requirements

4.2.2.1 Input

The data for SVC are loaded from a simple text file. Each row corresponds to a data points. The values

must be convertible in a double type, only numbers are accepted. Table 4.1 illustrates the structure of a

text file. As we can see, the data can be of any kind as long as they can be represented as numerical values.

Point1:Dimension1;dimension2;dimension3…;dimension N
Point2:Dimension1;dimension2;dimension3…;dimension N
…
PointM:Dimension1;dimension2;dimension3…;dimension N

Table 4.1: Clustering Input

For the PSO, it is different, the user, in the actual version, can run only the predefined optimization

problem. This limitation is due to the fact that PSO requires a fitness function that is highly problem

dependent, and in the form of a java class (implementing a “Fitness” interface). The constraints linked to

the fitness are in the form of a text file, where each rows represents one constraints, the total number of

rows is the dimensionality of the problem (one constraint per dimension). However, we are able to

implement multidimensional constraints. These constraints take the form of a java class too, and are

difficult to express in a text file and extract them into the system. However, we will presents the different

extensions of this software in the last chapter. For now, uni-dimensional constraints are illustrated in

Table 4.5:

Line 1:[lower_bond1:upper_bond1]
Line 2:[lower_bond2:upper_bond2]
Line 3:[lower_bond3:upper_bond3]
…
Line N:[lower_bondN:upper_bondN]

Table 4.2: Uni-dimensional constraints file

4.2.2.2 Output

There are two types of output of the system:

Output of PSO:

The data that is being exported in this case are particle’s position and fitness values. We save only the

best known position of a particle and its associated fitness value. The final output file is an Excel file having

the following structure:

Table 4.3: PSO Excel structure

Particle 1 𝑥11 … 𝑥1𝑁 Fitness value

Particle 2 𝑥21 … 𝑥2𝑁 Fitness value

…

Particle d 𝑥𝑑1 … 𝑥𝑑𝑁 Fitness value

Page | 49

Output of SVC is given by:

Regarding the SVC output, all the data are exported. This means we save the position of every data points

and its corresponding cluster label. In addition the adjacency matrix is saved. The Excel file has the

following structure:

Data point 1 ClusterLabel 𝑥11 … 𝑥1𝑁

Data point 2 ClusterLabel 𝑥21 … 𝑥2𝑁
…

Data point d ClusterLabel 𝑥𝑑1 … 𝑥𝑑𝑁

Table 4.4: SVC Excel structure

4.2.2.3 Functionality

Functionalities for task 1: The algorithms to:

 Import the data for the chosen algorithm into a data structure

 Setup the parameters of the algorithm

 Run PSO or SVC

Functionalities for task 2: Visualization to:

 Make these results usable for the visualization process:

o A particle will be represented as a 3D point. X coordinate is the index of the particle, Y

coordinate is the iteration (time step) and Z coordinate is the fitness of particle X at the

iteration Y.

o A data point from the clustering algorithm is represented as a node in a graph, the graph

is build using the adjacency matrix. The graph is then visualized using Gephi [50].(Section

4.6.4)

 Inject the results into the appropriate visualization tool

 Programmatically extract the results of each algorithm

Functionalities for task 3: Exporting to:

 Extract the results of the algorithm

 Use a file writer to export the result in an Excel file.

4.2.3 Nonfunctional requirements

 Flexibility: The data used for the clustering algorithm comes from any type of database, the only

limitation is that they have to be expressed in terms of multi-dimensional data points. On the

other hand, PSO is a lot more restricted. The uni-dimensional constraints are easily put into a text

file. However, it was difficult to explicitly represent the fitness function and multi-dimensional

constraint in a text file. We choose to restrict the PSO to the predefined use cases and integrate

a more advanced solution at a later stage in the project.

 Usability: The software needs to have a graphical user interface to maximize its readability. The

interface has to be both functional and intuitive to allow anyone to run the algorithm. It must be

user friendly.

Page | 50

 Portability: The software needs to be platform independent. In this way it can be run on Windows,

Mac OSX, Linux etc…without recompiling the code. The Java programming language was therefore

a perfect choice.

 Adaptability: Many versions of PSO exists, many visualization techniques too. The design of the

software is adaptable and will let any developer modify the source code easily and implement

different versions. The detailed architecture of the software is explained in the next section of

this chapter.

4.3 Principles and design

4.3.1 Model View Controller Pattern

The model view controller (MVC) pattern [52] is like any other design pattern, it is designed to enable all

interactive applications to clearly separate between the different components of the architecture. The

necessary functions of an application are regrouped under three categories:

 The model (data model)

 The view (UI)

 The controller (handles event, and synchronization)

The model contains the logic of the application, in our case, the implementation of the PSO, the SVC, and

the visualization. It does not communicate with the view.

The view is what the user will see and use, it handles the user events such as hover4, mouse click, text box

etc…). It send the user’s request to the controller.

The controller receives requests from the View and sends them to the model which executes them. It can

also inform the view of any changes (unexpected events. Figure 4.2 illustrates this:

4 A hover is the action of dragging the cursor over an element of the interface.

Page | 51

Figure 4.2: MVC pattern

In our software, every algorithm has a class that monitors every other class and interfaces needed to run

the algorithm and also sends information to the view. It is at the same time a model and a controller.

However, there are several algorithms, so instead of having one main controller, and a model for each

algorithm the controller is split between the different algorithms. The view consists of a GUI application.

Depending on the requirement, it could be a text based interface. However, in our case it was important

to have a visual feedback, therefore the GUI is a good solution.

4.3.2 Open-Closed Principle

The Open-closed principle has been largely applied in this project too, it stands for: “Open for extension,

close for modification” [53].

This principle states that an entity should allow the modification of its behavior without changing its

source code. In other word a service should rely on abstraction and not on implementation details. In

Figure 4.3.A we can see that the “PSO” class depends on the implementation of the

“AttractionRepusionVelocity” class. This would work if we were sure that no other implementation of the

velocity equation would be used. However, in Swarm Optimization there are many different strategies to

compute the velocity equation and this design made their implementation complicated. By applying the

Open-Closed principle we break the dependency across the implementation and rely on the interface

which does not contain any code, but just signature of a “Velocity” type class.

Page | 52

Figure 4.3: Open-Closed Principle

In this program, every study case is implemented by a “Fitness” interface allowing to just plug the proper

fitness function and constraints into the PSO and run it. To make this even easier, we instantiate the class

“PSOExperiment” which is composed of a fitness function and a set of constraints. The PSO then just needs

this class to be able to execute an optimization problem. Figure 4.4 shows the connection between the

main parts of the system. The dashed arrows represents “interface realization” relation, as we can see,

the PSO does not depend on the problem it is solving, but rather on interfaces.

Figure 4.4: PSO class diagram

Page | 53

4.4 Functional view

The description of the system leads to the creation of the use cases diagram (Figure 4.5). This diagram

summarizes all the interactions we want to integrate in the UI. However, it is not an exhaustive list. The

software is susceptible to evolve even after this thesis. But it gives a good overview of the capabilities of

the program and was an efficient tool to set objectives for the development.

Figure 4.5: Use cases Diagram

We want the user to run the PSO through different study cases. Once the user has selected an algorithm

and successfully run it, she/he can visualize what the algorithm did, and save the data. We tried to

precisely define the possible user interactions and summarized them in Figure 4.5. The user needs to be

able to select a study case, and specifies the corresponding parameters. She/he has to specify the size of

the swarm and the number of iterations as a termination condition and finally run the PSO.

The next set of possible actions is related to visualization. It is important to let the user “see” the swarm

through different scales. This means that he should be able to visualize the evolution of a single particle,

a subswarm, or the whole swarm. And get also a visual feedback of a specific study case if it is relevant.

The last group of actions concerns the possibility to export the results of an experiment.

4.5 Process

In this section we will discuss the implementation of the PSO and the SVC. Instead of giving snapshots of

the source code, we use flowcharts to explain the process of each algorithms.

Page | 54

4.5.1 PSO flow chart

The first algorithm we are going to present is the Particle Swarm Optimization. Figure 4.6 illustrates the

flow chart of the algorithm.

The first step on every PSO process is to load the fitness function and the different constraints. Once this

is done, the swarm is initialized. It means that the different parameters (initial size and number of

iterations) are loaded and the particles are randomly generated within the search space using a Gaussian

distribution. Once a particle is generated, their fitness value is evaluated for the first time, and its velocity

vector is set to zero (particles are static when generated, they have no inertia yet). The next step is to

iterate through all the particles of every subswarm and update the fitness, the velocity and then the

position in this order. Then the probability to mutate a particle is evaluated and if it exceeds a predefined

threshold it will mutate using a Gaussian mutator. However, the mutation keeps the best known position

of the particle. In this way there is no loss of information. The evaluation of the hill climbing follows. We

decided to activate the hill climbing behavior once we reached 80% of the maximum number of iterations.

At this point in the process, one of the subswarm started to converge. The exploration is not necessary

anymore, and we can try to move faster toward the best possible solution. Finally, once the maximum

number of iterations is reached all the particles stop to move and the data are saved for further process.

At this point the user can visualize the results and save them.

Figure 4.6: PSO flow chart

In addition, Figure 4.4 shows the class diagram of the PSO. As we can see, the PSO relies mainly on three

interfaces: Velocity, Fitness and Termination Condition. We decided to abstract the concept of

termination condition because as explained in 3.4.3 there are several possibilities to stop the optimization

process even though we are using only a simple limit on the iteration. Further development will require

different stopping criteria.

4.5.2 SVC flow chart

The Support Vector Kernel Clustering is a more straight forward algorithm even though the concept

behind is more complex to apprehend.

Here, the first step is to load the data set, the data points are loaded into a matrix of double type, one

row representing a single data points. Then the Kernel function is loaded, we will use only a Gaussian

Kernel because Polynomial Kernel is proved to give poor results for SVC. Once the Kernel and the data are

Page | 55

set, the dual problem is formulated and solved using a quadratic solver or the PSO in order to compute

the Lagrangian multiplier. The next step is to identify the Support Vectors and the Bounded Support

Vector. This let us compute the radius of the hyper sphere in the feature space and generates the

adjacency matrix. Now the points can be assigned to a cluster by finding the strongly connected

component in the graph induced by the adjacency matrix. At this stage, the clustering process is done.

The adjacency matrix can be visualized using the Gephi library [50] and the results may be exported.

Figure 4.7: SVC flow chart

Figure 4.8 shows the class diagram of the SVC implementation. The “Open-closed” principle is not as

obvious as in the PSO. Nevertheless, we can see that the algorithm relies on two major abstractions. First

for the Mercer’s Kernel to have the possibility to implement the others types of kernels (section 2.5) and

second for the Quadratic Optimization Problem solver. In this way we have the option to use different QP

solvers of the PSO and compare their results (e.g. to compute a fitness function).

Figure 4.8: SVC class Diagram

Page | 56

4.5.3 Visualization flow chart

The visualization process is straight forward. The first important step is to use the appropriate visualization

tool for the PSO and the SVC. In the case of PSO, the user has the choice to visualize the evolution of the

swarm, a specific subswarm or even a single particle. He can do that in two-dimensions for all of the

elements, or in three-dimensions for the Swarm and the sub swarms. Once the user has selected what

she/he wants to visualize, the selected data are processed to fit the library for two or three dimension

charts. In the case of SVC visualization, the adjacency matrix is extracted from the algorithm. The

corresponding graph is built and exported as a gefx5 file. This file can now be opened with Gephi to analyze

it. We decided to use this approach to avoid the expensive and complex dimension reduction that occurs

in almost every visualization technique for clustering. Both PSO and SVC results can be exported as excel

files. The clustering results are stored simply as data points and their corresponding cluster labels.

However, it was more difficult to know exactly what to save in the PSO. A lot of data is generated and

maybe keeping only the best solution is not what the user always wants. After meeting with our

collaborator Ryan Hughes at PricewaterhouseCoopers [53], it appears that to have good representation

of the fitness structure, it is necessary to save the best positions of every particles in the swarm and their

corresponding fitness values. This way enables the user to see if there might be more than one region of

high fitness value in the search space. Figure 4.9 shows the visualization process:

Figure 4.9: Visualization flow chart

5 Gefx file is a specific file type for the Gephi platform to store and manipulate graph

Page | 57

Figure 4.10 shows the class diagram for the visualization process. The class “SIC” is the GUI, because the

visualization starts from the GUI in this software. The “Open-closed” principle is not applied here but we

decided to regroup all the different types of charts one class. However, each “Particle” has a method to

return its data from the optimization process. Hence, the subswarm also has a method to extract these

data. In this way, the process of extracting the data is straight forward and gives a lot of flexibility to

display any kind of chart. The visualization class can process these data to generate the appropriate plot.

It is easy to programmatically add new types of charts within the limits of the library. We choose JMathPlot

mainly for its “easy-to-use” feature. The different technologies will be presented in the last section of this

chapter.

The GUI also uses a TextWriter and an ExcelWriter class. These classes contain a method to export data in

a text file or in an Excel file. They are used to save the data from an experiment.

Figure 4.10: Visualization class diagram

4.5.4 General architecture

Figure 4.11 shows the general overview of the software. The GUI is related to the PSOController to define

the parameter of the experiment and uses PSOExperiment to run the swarm. A PSOExperiment is simply

a set of constraints and a fitness function. The constraints determines the search space for the swarm.

While the fitness function evaluates the position of a particle. This fitness function defines the

optimization problem. The MovieController helps to define more precisely the experiment to run. But this

is specific for this study case. The PSOController can retrieve all the data from the swarm and forward

Page | 58

them to the GUI. The GUI decides whether to expert this data in a file or to visualize them depending of

the user’s requests.

On a programmatic level, the code is separate in several group of classes. Each group is coherent, this

means that they fulfil a specific task such as running the optimization algorithm, dealing with the user

interface, the visualization system, exporting the results and finally one for each study case. All the classes

of a group is inside a package.

Figure 4.11: General architecture

4.6 Technology selection

This section will briefly describes the different technologies we used during the development.

4.6.1 Java

First of all, Java has been selected has the programming language because it is an Object Oriented

programming langue, it is portable and also from our good experience with it, from earlier projects.

Anothers attracting feature is that there are a wide variety of libraries in Java. An additional feature is that

we will also be able to integrate Netbeans Rich-Client Platform for the GUI or any other platforms (Spring

for instance).

4.6.2 JBLAS

JBLAS is an open source library for fast linear algebra. It is based on BLAS and LAPACK industrial standard

for matrix computations [54]. JBLAS possesses a small, but active community and is easy to use.

4.6.3 JMath

JMath [55] is a set of independent packages to fit engineering and scientific computing needs. It is easy to

integrate, to modify and to extend. JMath is composed of three packages. JMathArray for linear algebra

for double arrays. JMathPlot is designed for plot in 2D and 3D. Finally, JMathIO is for binary and ASCII

input/ouput of double arrays.

Page | 59

4.6.4 Gephi

Gephi [50] is a freeware for graph visualization and manipulation. As for all these libraries we choose them

based on how active they are, the community is probably the most active of all of them. We choose Gephi

to visualize the clustering process because it is powerful enough to let the user highlights any relevant

aspect of the graph. However, Gephi was not easy to learn, but the website provides all the necessary

tutorials and the source code is well documented.

4.6.5 Apache POI

The last library is Apache POI [56]. This library is designed to read and write into Microsoft Office type files

from the Java programming language. As part of the Apache community, the documentation is almost

exhaustive, with a lot of tutorials. Moreover, people have been very reactive to help us in understanding

this large library.

Table 4.5 summarizes the different libraries we have used.

Library Community size Community Activity

JBLAS Small Active Linear algebra

JMath Big Very active scientific plot 3d and
2d

Gephi Very big Very active Graph visualization
and manipulation

Apache POI Very big Very active Microsoft office
connector

Table 4.5: Libraries summary

Page | 60

Chapter 5 - User Interface

Figure 5.1: Mind map Chapter 5

Page | 61

5.1 Overview

5.1.1 General interface

The design of the user interface is critical, and can drastically influence the user’s experience. We decided

to use a Graphical User Interface, based on the framed concept of Swing. Throughout this chapter we will

describe the different frames of the user interface. The GUI is split in four different frames: a console

which allows to display various information regarding the current experiment and the state of the system.

A visualization frame, tailored to visualize as much information as possible regarding the Swarm

Optimization Process. A third frame is dedicated to the configuration of the PSO and the problem to be

solved. Finally, the last frame is used to configure the desired PSO problem.

Here is a picture of the User Interface:

Figure 5.2: General GUI

In Figure 5.2 Label 2 and 3 are two illustrations of the configuration pane of user-selected problem.

Number 2 is dedicated to the movie model case. Number 3 is for the Support Vector Clustering case.

Every frames can be closed, minimized or maximized depending of the user’s needs without loss of

information. I.e. if by mistakes the configuration frame is closed, it can be reopened through the “view”

menu. This will restore the frame in its previous state keeping the information already selected.

Page | 62

5.1.2 Different frames

5.2 PSO frame

This frame is fundamental to the software as it control the Swarm. As we can see in Figure 5.3, it is

composed of a Drop-down menu to select the study case to run. Once selected the corresponding

configuration pane will be open for study case related parameters. This drop-down menu is followed by

two text field to specify the size of the swarm and the maximum number of iterations of the algorithm.

Once everything is filled in the “optimize” button “run” the algorithm, display the output frame and unlock

the export button. The reset button reinitialize all the parameters to run a different experience. We tried

to minimize the number of parameters the user can play with, to keep the interface as simple as possible.

However, this design choice came at the expense of less control over the algorithm. Through our

experimentation, it turns out to be enough parameters. On a later version, we will choose between

advanced and simple configuration frame.

We will talk in more details about the export function in section 5.7.

Figure 5.3: PSO frame

Page | 63

5.3 SVC frame

This interface let the user choose a data set to run the clustering algorithm. The text field of the cost refers

to the upper bound on the Eigenvalue (see section 2.6). It is also possible to choose different Kernel

functions (see section 2.5). All these parameters are sufficient to configure a Support Vector Clustering

problem and to solve it. The three last button allow us to run the algorithm, and save the output in two

different ways. Firstly, as spreadsheet of data points labelled by their assigned cluster. And secondly, a

graph file that can be processed using the Gephi software [50] to do the visualization on the produced

results.

Figure 5.4: SVC frame

5.4 Movie model frame

The movie model frame, does not need a lot of option. As we will see in the next chapter this model uses

a database of 154 movies, indexed by numbers ranging from 571 to 725. Here the user can target one

single movie, a serie of movies (non consecutive indexed) or simply a range with the first and last index.

The program will then automatically run all the movies between these two indexes. However, running

these types of experiments are time consuming. This model is not optimized in its current state of

development. We will explain this in more details later.

Page | 64

Figure 5.5: Movie model frame

5.5 Console

The console Is purely informative and gives information about the state of the system as the user

configures an experiment. It has no other purpose. However, it was prooved to be very useful.

Figure 5.6: Console

Page | 65

5.6 Output frame

This frame has more functions, it is available only when an experiment is done. The drop down menu

allows the user to select an experiment to visualize. They are stored in the order they are done. The system

keeps track of everything that the swarm does during every experiment. It gives us the possibility to fully

explore the swarm after the optimization process terminates. As we can see, it is possible to visualize

either in three dimensions or in two dimensions the evolution of the swarm or a subswarm.

This frame gives another level of information of the swarm. Indeed, we can look at the evolution of a

single particle during the process or directly select the best particle of the desired subswarm. The last part

at the bottom of the frame is a simple note to explain how to read the three dimensional chart as the

framework we used did not allow any legend on the axis of the chart.

Figure 5.7: Output

If the user finds a chart particularly interesting, he can save it by simply clicking on ‘it and select the

appropriate option. Even if it is a three dimensional chart from the program he can setup the view of the

chart in the desired view and take a snapshot of it. Figure 5.8 is an example of a chart generated by the

Page | 66

algorithm. The z-axis represents the fitness, the x-axis is the time and finally the y-axis is the index of the

particles.

Figure 5.8: A 3D chart, description in the text above.

Figure 5.9 shows a two dimensional chart generated by the algorithm. The x- axis is the time, the y-axis

represents the fitness. Each particle corresponds to one color.

Figure 5.9: A 2D chart, description in the text above.

Page | 67

5.7 Export

5.7.1 Saving criterion

It did not make any sense to save all the data because most of them are useful only for the visualization

part. Nevertheless, it was necessary to export more than just the final solution. For every experiment we

decided to save the final position of every particle at the end of the optimization process. The reason

behind this choice is simple. Some particle other than the best particle might have a high fitness and be

located in a very different position than the best particle. This suboptimal particle might be worth keeping

for further analysis on the user side. It might not be the case, but we decided to give the user this

possibility (e.g. it could highlight unexpected acceptable solution). In addition, a summary table is created

keeping track of the final solution of every experiments. Figure 5.10 shows a final excel file. We can see

at the bottom the summary table and the spreadsheet created for every experiment.

Figure 5.10: The Excel structure of the output file

Page | 68

5.7.2 The process

The export button needs a few explanations on its action. When the user did several experiments with

the swarm he can export the results to an Excel workbook. Once clicked, the export button opens a simple

file chooser to select the location where the user wants to save his data and with the desired name for

the file. After this, another algorithm starts to save the important data. To be precise the system is saving

every experiments in a list. This list is sent to the output system. Algorithm 5.1 explains the process to

save the results of the experiments.

Output algorithm

Create a new spreadsheet summary

For each experiment exp do

 Create a new spreadsheet e

 Export exp in e

 Export the final solution of exp in summary

Endfor

Add all the spreadsheet to the workbook

Write the workbook to the desired location.

Algorithm 5.1: Output algorithm

Page | 69

Chapter 6 - Study case: The movie model

Figure 6.1: Mind map Chapter 6

Page | 70

Now that the system is fully described, we can present the first study case. This chapter is about the movie

model. Firstly we need to introduce the movie model and explain how it works.

6.1 Movie model presentation

6.1.1 Concept of the model

This model was designed by Christopher Ryan Hughes in his master thesis from 2012 [57]. It is designed

to study the impact of release strategies on the diffusion of motion-picture movies at the US domestic

box-office. It captures consumer choice as a behavioral process accounting for the movie’s intrinsic

attributes and various other parameters (word-of-mouth, network effect, etc…). The model estimates

weekly box-office receipts for a database of 154 movies. It tries to answer two main questions:

 What is the optimal release date for a movie given marketplace competition?

 What distribution strategy will maximize a movie’s box-office revenue given its intrinsic attributes

and the behavioral characteristics of consumers?

The model is based on the usage of different states of consumers. It means that a consumer can be in six

mutually exclusive behavioral states:

1. Undecided: The consumer doesn’t know the movie is playing or is undecided whether he is going

to see it or not.

2. Intender: The consumer has decided that he is going to see the movie.

3. Rejecter: The consumer has decided that he is not going to see the movie.

4. Positive Spreader: The consumer is actively spreading positive word-of-mouth.

5. Negative Spreader: The consumer is actively spreading negative word-of-mouth.

6. Inactive: The consumer has seen the movie, but is no longer spreading word-of-mouth.

The state transition is described in the following state transition chart:

Figure 6.2: State transition diagram

Page | 71

This transition is ruled by equations and influenced by a set of parameters. The state transition equations

are outside the scope of this thesis. The parameters that influence these states are relevant to us because

it is this one that PSO is going to optimize. They are separated into four different categories:

 Movie attributes: These are unique for each movies and outside of control of distributors. They

include theme acceptability, viewer satisfaction, perceived movie quality… etc. The price is not

included as it tends be constant across movies.

 Marketing strategy: how the movie is advertised through the media or word-of-mouth.

 Distribution strategy: It includes the release date, the initial number of theaters…etc.

 Adoption structure: It consists of the average time needed for consumers to forget the movie is

playing, and average time to spread active word-of-mouth messages (Positive or Negative).

The movie release strategy plays a key role on the box office revenues. Three distinct release strategies

are identifies:

 Wide-release: Large advertising campaign and large number of theaters for the initial screening.

 Platform-release strategy: Local advertising, small number of initial theaters. It increases within

two to four weeks after the release.

 Limited-release strategy: few or no advertising, very small number of theater for the initial

screening with no expectations of wider release.

The model uses rule-based logic to assign the most appropriate release strategy to a movie in the

database, but this is outside the scope of this thesis.

The dataset used is constructed from movies released in 2009 containing for each movie: weekly box-

office receipts theater counts and descriptive variables.

More information on the model itself are available at C. Hughes [57] and for more information regarding

dynamic modeling J. Sterman [10].

6.1.2 Current issues

This model is slow to run. The main reason behind this is that every time the model is called it reload the

whole database. It results in a 9 seconds run on our configuration. Unfortunately this source code of the

model was not available to us because it is designed with Anylogic [58] and its license is expensive. The

designer of the model will update it in the future.

Moreover, it is worth mentioning that this model is still in development. These are the only known issues

at the moment.

6.2 Role of the Particle Swarm Optimization

6.2.1 Connection with the swarm

In order to make accurate predictions, the model needs a set of parameters. At this stage, the goal of the

model is to make predictions for released movies. In this way, the model can compare its output to the

historical box-office revenue and then compute the squared error (computed within the model itself). The

role of Particle Swarm Optimization here, is to fine tune the parameters of the model for a given movie in

Page | 72

order to maximize the inverse squared error. We did not have control over the fitness function and had

to use the one provided. (Further collaboration will improve this aspect, we believe).

The first challenge was to be able to run programmatically the model which was run by a script through

the command line. The initial idea was quite complex, uses depreciated JAVA library, and failed several

times. The solution was to use the ProcessBuilder class provide by the JAVA API. It gives the possibility to

call external program within the JAVA code. The final code is simple:

We simply needed to specify which program to call, “cmd.exe” with Windows, the location and the script

through the variables “drive” and “file”. At line 2 we specify the working directory. And finally run the

command at line 3.

The PSO required to load parameters in the movie, select the movie and retrieve its output, all

programmatically. Fortunately, the model uses separated text file for each of these requirements:

 “Input_param.txt”: one parameters per line, very easy to read and write.

 “output_box.txt”: simple double value to compute the fitness.

 “input_readMovie.txt”: just the index of the movie to be analyzed.

To write into a text file we used the New Input Output library of JAVA:

The method “Files.write” takes only a list of String as parameter, this is why an ArrayList is declared at

line 1. At line 2 we add to the list the desired String to write, in our case, either a list of parameters or

the index of a movie. Finally, line 3 writes the string into the file at the location “path” with the proper

encoding (we used UTF-8)

We implemented the following structure to be able to communicate back and forth between the PSO and

the model:

Page | 73

Figure 6.3: The Movie model interaction

The PSO sends the potential solution of a particle in the “input_param.txt” file and specify the movie in

the same. Then run the model, which sends back its output in the PSO. This design worked fine, but create

multiples dependencies of the PSO on the model, which is usually considered as a bad design.

Our collaborator Mr. Hughes suggested to extend this experiment to any kind of dynamic model.

However, this design was not suited for such a task. Indeed, the PSO depends of the model’s structure.

We applied a proxy pattern to fix this problem.

The proxy pattern is a class functioning as an interface to something else, usually a complex object that is

expensive to call or duplicate. In our case, we created a proxy for the movie model, once all the parameter

for the movie model are set in the proxy. The proxy forward them to the model, allowing the model to be

called only when it is absolutely necessary.

Page | 74

Figure 6.4: Movie model/PSO interactions with proxy

This pattern completely breaks the dependency of PSO toward the model. It only relies on the proxy’s

implementation to run, allowing us to use any kind of dynamic model with minimum modification, only

the proxy’s parameters need to be modified.

6.2.2 Fitness function

The position of a particle represents a set of feasible parameters of the model. The fitness of such

parameters is evaluated by comparing the performance of the model compared to the historical

performance of the movie being studied. This concept is illustrated in Figure 6.5. The evaluation of the

model is done within the model, and we did not have control over it. This is the reason why the fitness

function evolves between negative infinity and one. We noticed that the model perfectly matches the

historical performances of the movie.

Page | 75

Figure 6.5: Dynamic particle model

6.3 Experiments

Due to the slow running time of the model, around thirty minutes per movie, we selected only a few movie

to optimize. Mr. Hughes in PWC recommended certain movies that are challenging due to complex release

strategies. Furthermore, each movie is unique and we cannot compare the final fitness between movies.

Hence, we want to compare the fitness obtain with the PSO with the fitness obtained by a previously used

method (classical optimization method). Table 6.1 compares the results of the PSO against the initial

performance of the model. As we can see, PSO outperforms the classical approach on 8 movies out of 11.

The experiments were performed several time. We observed that the PSO is sometimes worst or

equivalent to the classical approach as for the movie “Transformers: Revenge of the Fallen” (index 636).

This is due to the random initialization of the swarm and the stochastic element in the velocity equation.

Indeed, the random starting point of the swarm might initialize the swarm, far from an optimal solution.

Hence, the convergence is slower when we stopped the optimization after 10 iterations, the swarm ended

up in a position close to the classical method or worst. Furthermore, the stochastic element might not

help to improve the performance. Its role is to encourage the exploration of the search space at the cost

of driving some particles away from a near-optimal solution.

The following Table 6.1, compares the result of the swarm Optimization with the classical approach. We

selected 11 movies out of the database. As we can see, the PSO outperformed the classical method on 8

movies with, sometimes, very large improvement in the performance of the model (cf: “Sunshine

Cleaning”, index 595).

Page | 76

Title (database index) Fitness (PSO) Fitness (classical method)

Sunshine Cleaning (595) 0.542041 -0.01124

Terminator Salvation: The Future Begins (623) 0.973589315 0.765042455

Away we go (629) 0.46346917 0.246040903

Transformers: Revenge of the Fallen (636) 0.841458566 0.898601731

The hurt locker (637) 0.661136538 0.455146655

500 Days of Summer (644) -0.170461313 0.399418732

Taking Woodstock (663) 0.848825872 0.540585803

9 (669) -1.090255369 0.08923669

Capitalism: A Love Story (677) 0.730379031 0.540698928

Paranormal Activity (681) 0.75274435 0.487752198

An education (686) 0.507373612 0.397807509

Table 6.1: Movie model results

However, the non-linear nature of the model and its highly dynamical propriety (each movies possess a

unique set of parameters) along with the slow running time of the model showed that a more advanced

collaboration with the PWC company is required. This experiment holds as a proof of concept for the next

development step of this project. Nevertheless, these results confirmed that this approach had a great

potential for such problems.

Page | 77

Chapter 7 - Study Case: DNA classification

Figure 7.1: Mind map Chapter 7

Page | 78

7.1 Presentation of the problem

One of the main research goals of molecular biology has been to determine a complete genetic description

of any organism. In the Human Genome Project [59].the goal was to decipher the exact sequence of about

3 billion nucleotides in the 46 human chromosomes. An important part of the genome project is the

computational processing of data [60]. The data first have to be organized into databases, and then

analyzed to see what information they contain. Since the birth of the Human Genome Project, sequence

analysis as a computational method has been used to infer biological information from the sequence data.

The classical approach for analyzing sequences is by sequence matching using either single or multiple

alignment techniques [61] [62]. With these techniques one seeks to determine whether sequences are

significantly similar or not. Another approach is to use theories from neural computing or statistical

learning theory to detect genetic information on the DNA sequences.

Neural networks have been applied to various tasks such as automatic hyphenation of natural languages

[63] [64], edge detection [65], recognition of hand written Zip code and DNA sequence recognition [66].

A neural network trained by a Back propagation algorithm (BP) may learn to categorize between different

types of bacteria cells related to the structure of their DNA-sequences. Such a method is based on pattern

recognition analysis, and is built on the assumption that some underlying characteristics of the DNA-

sequence can be used to identify its bacteria type. Other neural network paradigms than a MLP network

may also be used to analyze DNA sequences [67].

In this paper, however, we will focus on how to use both a Multi-Layer Perceptron (MLP) and a Support

Vector Machine (SVM) network to distinguish between eukaryotic and prokaryrotic sequences on basis of

their nucleotide frequency structure. Cells can be divided into two major groups, prokaryotic and

eukaryotic cells. All prokaryotic cells are uni-cellular organisms and consist mostly of bacteria. The genome

of a prokaryotic cell consists of one double helix DNA strand, floating freely in the cell. This double helix

strand is often circular. The genome of the bacterium E.Coli, for instance, consists of a circular strand of

five and a half million bases.

A nucleotide sequence can be viewed as a language based on an alphabet of four letters: A, G, C and T

where the number of A’s is the same as the number of T’s and the number of C’s is the same as the number

of G’s. However, the relation of A(T) and G(C) can vary tremendously, and depends on the actual species

that are studied. This fact can for instance be used in environmental research, where oil on the sea surface

may contain many different types of species that can be identified on basis of their DNA sequence

structure.

Most eukaryotes are multicellular, but some are uni-cellular. The main difference between prokaryotic

cells and eukaryotic cells is that eukaryotic cells contain a nucleus that is surrounded by a membrane.

Prokaryotic cells do not have such a nucleus. In such cells the frequency distribution of pairs of nucleotides

are different from those in prokaryotic cells.

We will train a MLP network and a Support Vector Machine using PSO and compare the result with our

previous research paper [68]. But first, we need to introduce the DNA recognition theory.

Page | 79

7.2 DNA recognition theory

Statistical analysis of several DNA sequences has shown that the distribution of nucleotides is far from
random [17]. Some dinucleotide combinations in prokaryotic DNA sequences are more dominating than
in eukaryotic cells. We will anticipate that this simple difference in data occurrence might be sufficient to
allow species identification. We may then train, for instance a MLP network (see section 7.2.4), to use the
differences in the nucleotide distribution to discriminate between eukaryotic and prokaryotic cells. We
assume therefore that the identification of the DNA sequence is based solely on the frequency of
nucleotide sub-sequences.
A sliding window is used to count the number of nucleotide sub-sequences of the DNA sequence. In
general the size of the window may vary, from one base wide to a user defined number w. By choosing a
window of length one, we simply count the number of the different bases of the DNA sequence. The result
will be four different frequencies, one for each base. A window of length two will give sixteen different
ordered sub-sequences. The frequency of each sub-sequence is computed by counting the occurrence of
each nucleotide pair in the DNA sequence.

The number of triplets or codon units of the DNA sequence, may be estimated by using a window of three
bases wide. This results in 43 or 64 ordered triplets. This is maybe the most relevant sub-sequence to study
because the codon itself has important meanings in the DNA sequence. In general, a window of w bases
results in 4w sub-sequences of length w to be counted.

For a sliding window of length two the frequency of sub-sequence AA is denoted as ƒAA, for AC as ƒAC and

so on. These numbers are collected in a vector Fn, where n denotes the number of DNA sub-sequences.

For a sliding window of size two, n is equal to 16. The counting of the different nucleotide pairs is

illustrated in Figure 7.2. In the figure the counting of the nucleotide pair AC is shown. After counting the

pair AC, the window is moved one letter to the right to cover the next nucleotide pair. This is done to the

end of the DNA sequence.

ACATGATGCTA...

ACATGATGCTA...

ACATGATGCTA...

ACATGATGCTA...

Figure 7.2: Illustration of a sliding window of size 2

Normalization:

The DNA sequences obtained on online databases have different sequence length. The frequency of the

different nucleotide pairs have to be normalized before and presenting them to the MLP network. The

normalization condition of the frequency vector 𝐹𝑛 is given by:

𝑆𝑛 =
𝐹𝑛
|𝐹𝑛|

Equation 7.1

Page | 80

Here |𝐹𝑛| means the Euclidean norm of the frequency vector. This non-linear transformation conserves

the direction of the vector and enhances the differences among the input vectors. The geometric

interpretation of the transformation is that the vector 𝐹𝑛 is moved onto the hyper unit sphere.

In our case, we will use a sliding window of size three and incorporate the redundancy of the genetic code

(see Appendix A). It means that the representation of the genetic code will be built into the neural network

by use of the frequency vector.

7.2.1 Multi-Layer Perceptron

In this chapter we will study the application of PSO on a supervised learning algorithm: A multi-layer

Perceptron. ANN has been known for a long time and is inspired by the biological neural network. In the

brain, it is composed of artificial neurons connected by synapses and organized by layers.

The MLP has three basic features:

 Each unit (neuron) includes a differentiable nonlinear activation function.

 The network contains one or more hidden layers.

 The network is highly connected: each unit of a layer is fully connected to every unit of the next

layer.

These features makes the theoretical analysis of the network difficult for two reasons. Firstly, the high

connectivity and the nonlinearity of the network makes the analysis hard to undertake. Secondly, the

presence of hidden layer makes the learning process difficult to visualize.

We are going to use the back propagation (BP) algorithm to train the network. The training requires a set

of data points associated with their corresponding target vector. It means, we have data that we know to

which cluster they belong, allowing us to use them to train the network.

The BP algorithm consists of two phases:

 Feed forward phase: the synaptic weight are fixed and the input signal is propagated through the

network layer by layer and neuron by neuron, from the input layer toward the output layer.

 Back propagation phase: The network computes an error signal by comparing the output of the

network to the desired output (target vector). This error is propagated backward, layer by layer

from the output layer toward the input layer. In this phase the weights are adjusted according to

the error signal.

This two phases are applied until the error reaches a threshold value defined by the user.

MLP uses two types of signals:

 Function signals: they are defined as input signals at the input of network, propagates forward

neuron by neuron to emerge as output signal at the end of the network.

 Error signals: They are defined by output neurons using an error-dependent function. It

propagates backward layer by layer through the network.

Page | 81

7.2.2 Neurons

An artificial neuron is an entity that receives one or several signals as input. Each input signals arrive

through a synapse, it simply assigns a weight to the original signal representing the strength of the signal.

Each unit preprocess the signals by computing the following summation that is called the induced local

field:

𝑦 =∑𝑥𝑖𝑤𝑖

𝑛

𝑖=0

Equation 7.2

 Then a sigmoid function (or logistic function) is applied to compute the output signal of the current unit:

𝜎(𝑦) =
1

1 + 𝑒−𝑦

Equation 7.3

The input neuron (which receives the value from the data points being evaluated) is the only one that

does not compute anything. It just transmit the input signal through its synapses. X0 is a bias applied to

every unit. The bias is nothing more than the multiplication of an input vector with a matrix. Using a bias

adds another dimension to the input space, which always takes the value one to avoid input vector of

zeros.

Figure 7.3: Sigmoid unit.

A single neuron cannot classify anything. However, neurons are organized in layers as we can see in the

next section.

7.2.3 Layers

A MLP is composed of three type of layers:

 An input layer: it transmits the input data point through its synapses to the others layers. It does

not compute anything.

 One or several hidden layers: it receives the signals coming from the input layer and computes

output signals using the sigmoid function and finally sends its signals to the output layer.

Page | 82

 An output layer: it contains as many unit as there are clusters (or classes) in the dataset. Each unit

computes an output signal as in a hidden layer.

Figure 7.4 shows a typical architecture of a Multi-layer Perceptron with one hidden layer.

Figure 7.4: The MLP architecture

The structure of a MLP is given in Figure 7.4.

7.2.4 Back-Propagation Algorithm

For a classification problem of dimension n, with c clusters, we create L-2 hidden layer. Then the network

has L layers (also referred as the depth of the network).

The BP algorithm consists of five steps:

1. Initialization: the weight matrix is initialized using a uniform distribution.

2. All the training examples are presented once, the network perform one forward and one

backward propagation (respectively step 3 and 4).

3. Forward propagation: we denote a training example {𝑥(𝑡), 𝑑(𝑡)}, 𝑥(𝑡) is presented as input

vector to the input layer of the network, and 𝑑(𝑡) is applied to the output layer as a target vector.

The signal of each unit is computed layer by layer using the induced local field equation. Then the

sigmoid function is applied to obtain the function signal. The induced local field 𝑣𝑗
𝑙(𝑡) for training

example t, neuron j and layer l is:

𝑣𝑗
𝑙(𝑡) =∑𝑤𝑗𝑖

(𝑙)(𝑡)

𝑖

𝑦𝑗
𝑙−1(𝑡)

Equation 7.4

Page | 83

Where 𝑦𝑗
𝑙−1(𝑡) is the output signal of unit j of layer l-1 and 𝑤𝑗𝑖

(𝑙)
(𝑡) is the weight of synapse between unit

j in layer l and unit i in layer l-1 at iteration t. Assuming a sigmoid function we have:

𝑦𝑗
𝑙(𝑡) =

{

𝑥𝑗(𝑡) if l=0, i.e. input layer

𝑜𝑗(𝑡) if l=L, i.e. output layer

1

1 + 𝑒−𝑣𝑗
𝑙(𝑡)

Equation 7.5

Once every induced local field and function signal are computed, the error signal is evaluated using the

following equation:

𝑒𝑗(𝑡) = 𝑑𝑗(𝑡) − 𝑜𝑗(𝑡) Equation 7.6

Where 𝑑𝑗 is the jth element of the desired output vector 𝑑(𝑡) and 𝑜𝑗 is the jth element of the real output

vector 𝑜(𝑡) obtained from the output layer. Once the error vector is obtained, the forward propagation

ends.

4. Backward propagation: it uses the error vector previously computed to compute the local

gradient. Indeed, the back propagation tries to find the steepest vector in the error function in

order to minimize the error for the next iteration. The local gradient 𝛿 is defined by:

𝛿𝑗
(𝑙)
(𝑡) =

{

 𝑒𝑗
(𝐿)(𝑡)𝜑𝑗

′ (𝑣𝑗
(𝐿)(𝑡)) for neuron j in output layer L

𝜑𝑗
′ (𝑣𝑗

(𝐿)(𝑡))∑𝛿𝑘
(𝑙+1)(𝑡)𝑤𝑘𝑗

(𝑙+1)(𝑡)

𝑘

 for neuron j in hidden layer l

Equation 7.7

where 𝜑′ is the differentiation of the sigmoid function with respect to the argument. And k is varying

through the connected neurons of neuron j.

Finally the synaptic weights in layer l are adjusted using the equation:

𝑤𝑗𝑖
(𝑙)(𝑡 + 1) = 𝑤𝑗𝑖

(𝑙)(𝑡) + 𝛼 [𝑤𝑗𝑖
(𝑙)(𝑡 − 1)] + 𝜂𝛿𝑗

(𝑙)(𝑡)𝑦𝑖
(𝑙−1)(𝑡) Equation 7.8

where 𝛼 is the learning rate and 𝜂 is the momentum.

5. Iteration: forward and backward propagation are repeated until a chosen stopping criterion is

met (often the error reaching a predefined threshold).

Once the BP algorithm terminates, the weights are fixed and the network can be used to classify unseen

data points. A major difficulty with MLP is to find the right value for the different parameters of the

network: number of hidden units, number of hidden layer, learning rate and momentum. Another issue

is the time consuming training. If the learning performs too well, the network can be over trained. It means

that the network perform very well on the training data, but will fail to classify unseen data points.

For a complete proof of the BP algorithm, see to Mitchell [69].

Page | 84

7.3 Role of the Particle Swarm Optimization

The BP algorithm tries to minimize an error function. This could be done by using a PSO. This is a common

approach, instead of using the BP algorithm, swarm optimization can be used to find the weight matrix

that minimize the error function. However, we will use the PSO to find the other parameter of the

network. Indeed, a particle will represent a possible configuration of the network. In other words, the

position of a particle will be the following vector: (learning-rate, momentum, number of hidden neuron).

The weight matrix is determined using the back-propagation algorithm.

7.3.1 Structure

In this study case we try to use PSO to determine the parameters of the MLP and the SVM networks.

The support vector Machine uses a Gaussian Kernel (see section 2.5). This means we need to determine

two parameters: gamma and the cost (Figure 7.5 A). The MLP needs 3 parameters to be determined: the

learning rate, the momentum and the number of hidden unit (the input and output layer are already

determined) (Figure 7.5 B).

Figure 7.5: A SVM/MLP particle

The implementation of the MLP was done using the Neuroph library [70]. While the SVM was

implemented by using LIBSVM [71]

The program works in several steps:

1. The data is stored in text files containing the DNA sequences. The ‘IOManager’ class calls the

‘TextReader’ class to extract the DNA sequences from our text files, and converts them into

‘Sequence’ class.

Page | 85

2. Now that the sequences are loaded, the ‘IOManager’ computes the frequency vector of each

sequence using the ‘Alphabet’ class, which contains the representation of the codons of the

genetic code to identify triplet of amino acids as codon.

3. Now the fitness of either the MLP or the SVM network is initialized, followed by the generation of

the swarm.

4. The PSO is executed and the data retrieved at the end.

The following diagram shows the structure of this study case. As reminder the class ‘PSOexperiment’ is a

class that defines a template to create an experiment to run on the PSO, while the ‘Fitness’ interface

defines an abstract fitness function to make the PSO functional.

Figure 7.6: A MLP-SVM class diagram

7.4 Experiment

7.4.1 Description

The dataset we used was composed of 54 sequences: 28 eukaryotic sequences and 26 prokaryotic

sequences. Figure 7.7 shows the type of file we have to deal with. The process required to automate the

extraction of the DNA sequence within the file (the two last line in the illustration). All files were not

identical but every DNA sequences were tagged with “SQ”, the extraction was a straight forward String

analysis of the file. The common approach is to split the data set in two, one part to train the SVM or the

MLP, another to test their performance. However, in our case the data set is too small to be split, the MLP

does not perform well with too few training data. We decided to evaluate each classifiers on the training

data only. In order to limit the training time of the MLP we limited the number of iteration to 10000. The

swarm was composed of 20 particles separated in two sub swarms. And we used a fixed number of

Page | 86

iterations: 10. In total, the MLP has been trained 2000 times like the SVM. This gives an idea how

computationally expensive such optimization can be. It all depends on the fitness function, as we saw in

the movie model.

7.4.2 Results

The PSO performed well to find the configuration of the neural network. The parameters obtained are the

following:

Learning rate Momentum Hidden neurons Error Running time
(min)

0.83 0.3 59 0.0096 11.5

Table 7.1: Final MLP results

 While the configuration of the SVM is:

Gamma Cost Error Running time (sec)

0.58 975 0.074 3.6

Table 7.2: Final SVM results

Our first conclusion are the following, as we can see the SVM does not perform so well. The data showed

that the custom-PSO algorithm was not able to properly optimize the SVM classifier, it converged after

only two iterations and didn’t improve afterwards.

To confirm this results, we reproduced the experiments using the global PSO (Algorithm 3.1). The swarm

had the following parameters:

 Initial size: 25 particles

 Inertia coefficient: 0.95

 Cognitive coefficient: 0.9

 Social coefficient: 0.9

 Number of iterations: 10

The results for the MLP are the following:

Learning rate Momentum Hidden neurons Error Running time
(min)

0.78 0.82 75 0.0094 17

And for the SVM:

Gamma Cost Error Running time (sec)

0.8 624 0.074 5

The results are similar. Regarding the MLP, we observe a high learning rate in both case. And large hidden

layer, the second experiments gave a high momentum too. And both experiments reached a low error.

However, the downside is a long training time. Regarding the SVM, in the second experiments, the gamma

was higher with a lower cost, but the error was identical, and the running time still low.

Page | 87

By doing these experiments, it confirmed the ability of PSO to optimize an MLP and an SVM. However, it

also showed the limit of the SVM in this particular DNA classification problem. The MLP outperformed the

SVM but had a very long training time.

However, explaining and exploring this issue would require a work far beyond this thesis. We simply make

experiments with the algorithm and make observations regarding its capacity to resolve certain problems.

Figure 7.7: A DNA sequence file

Page | 88

Chapter 8 - Study Case: Support Vector Clustering

Figure 8.1: Mind map Chapter 8

Page | 89

8.1 Role of the Particle Swarm Optimization

Swarm Intelligence has been used to find the parameters of a Support Vector Machine [72] [73] [74]. We

are going to applied PSO to determinate near-optimal Eigenvector for the Support Vector Clustering.

We presented the Support Vector Clustering in section 2.6. As we saw this is a quadratic optimization

problem to solve. The classical approach involves numerical analysis methods or more advanced

algorithms such as the Sequential Minimal Optimization algorithm (SMO) [75]. The SMO has been

developed only for support vector machine but not clustering. A version for SVC exists but we did not find

any information about it. Numerical analysis can be heavy to run and to understand. While SMO is very

fast, the algorithm is hard to comprehend. We are going to use Particle Swarm Optimization to solve this

optimization problem. The PSO will try to maximize the Lagrangian (Equation 2.34). In other words, it will

try to compute the Eigenvector. Once the PSO has terminated, the SVC resumes its clustering process as

explained in section 2.6. The following flow chart illustrates the new clustering procedure:

Figure 8.2: A SVC/PSO procedure

As we can see, the kernel matrix is computed once and for all, as it does not depend on the Eigenvector.

By computing it only once, we avoid to do this expensive computation every time we evaluate the position

of a particle. The PSO output its solution to the SVC, which resume its clustering procedure.

The classification consists of the following steps:

1. The PSO find a near-optimal Eigenvector

2. The distance of every data points from the center of the hyper-sphere in the feature space is

computed by using Equation 2.39.

3. Support Vectors, Bounded Support Vectors are identified.

4. The radius of the hyper-sphere is simply the distance of a Support Vector from the center of the

hyper-sphere.

5. The adjacency matrix is computed as follow:

Page | 90

a. For all pair of data point, we select every points on the line defined by a pair of points.

We test the co-linearity of vectors i.e. for every pair (A,B) a point C is on the line (AB) if

and only if 𝐴𝐵⃗⃗⃗⃗ ⃗ and 𝐴𝐶⃗⃗⃗⃗ ⃗ are co-linear:

∀𝑖, 𝑗, 𝐴𝐵𝑖𝐴𝐶𝑗 = 𝐴𝐵𝑗𝐴𝐶𝑖 Equation 8.1

b. Then we check if for all point C on the line (AB), we have:

𝑅(𝐶) ≤ 𝑅𝐴𝐷𝐼𝑈𝑆 Equation 8.2

c. Steps a and b consists of Equation 2.42

8.2 Connection SVC/PSO

The connection between the two algorithms is made in a similar fashion as for the movie model. Using a

controller, the SVC calls directly the PSO to find a near-optimal Eigen-value. Then the adjacency matrix is

computed and exported in the software Gephi using the Gephi API [50].

8.3 Dataset

We used a data set called “Flame” [76] of 2 dimensions, composed of 240 vectors containing two clusters.

The following scatter plot represents the data set, no clusters are labelled as no analysis has been run yet

on these data points. The scatter is just the actual data points on a two-dimensional plot. In other words,

this is the raw data.

The two clusters are clearly visible.

8.4 Experiment

We tried different values for the cost and gamma. However, the output was always the same. The cost

was fixed at 1 and the gamma value was set at 2. After several tests, we set up the swarm with 20 particles

and 100 iterations. The same evolution of the swarm occurred at every experiments. Figure 8.3 is an

example of this pattern. The swarm always starts to drop in the fitness landscape and tends to stay in a

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

Flame data sets, 240 vectors

Page | 91

low fitness region for about half of the time of the optimization process. Then, the whole swarm increases

drastically its performances, but slowly decreases afterwards.

Figure 8.3: A PSO 3D plot of SVC

The following figure shows the behavior of one particle through the optimization process. We can see

more clearly this pattern.

Figure 8.4: The evolution of the fitness of a particle SVC.

Page | 92

Several trials have been done. However, increasing the length of the optimization process did not changed

the outcome. The swarm still has the same behavior. We used different behaviors of the particle such as

the cognitive-only model and the social only-model, but the fitness achieved was the same. The adjacency

matrix computed from the PSO’s solution was a nearly fully connected graph. Such a graph has only one

strongly connected component leading to the discovery of only one cluster by the algorithm.

Unfortunately, it means that the PSO is unable to find the Eigenvector for the Support Vector Clustering

algorithm because the SVC procedure requires the exact solution of its QP equation, and the PSO provides

only approximations.

8.5 Visualization through Gephi

Nevertheless, we proceeded with the visualization of the adjacency matrix. An undirected graph is created

from the previously computed adjacency matrix. The graph is composed of 240 nodes and around 28 600

edges. Once the graph is created, it is loaded in the open source software Gephi [50]. The ForceAtlas2 [77]

algorithm is applied to the graph. This algorithm re-arrange the nodes of a graph to regroup highly

connected nodes. It improves the readability of a graph and highlights strongly connected component,

which correspond to the clusters discovered by the SVC in our case. Figure 8.5 shows the result of the

visualization process. As mentioned previously, the PSO was unable to find the proper Eigen-vector. The

direct consequences of this, is the failure of the SVC to discover any cluster in the data.

Figure 8.5: Gephi visualization

Page | 93

This last experience shows a limit of our custom PSO algorithm. Not as a poor quadratic optimizer, but as

a poor solution for the Support Vector Clustering. This experience demonstrates that SVC does require an

optimal solution, “near-optimal” is simply not good enough for such a task.

Page | 94

Chapter 9 – Conclusion and further work

Figure 9.1: Mind map Chapter 9

Page | 95

9.1 Summary

During the first experiment, PSO demonstrated a great ability to explore the parameter space of the movie

model. It achieved large fitness values with few iterations. The second study case uses PSO to find the

parameters of a Multi-Layer Perceptron and a Support Vector Machine in order to classify two types of

DNA sequences. The PSO gave a noticeable improvement in the performance of the MLP, but a less

noticeable increase in performance of the SVM. However, the two first study cases demonstrate a great

ability of PSO to explore parameter spaces. And we can consider extending this application to the

classification more than two types of DNA sequences.

Unfortunately, the last study case using Swarm Optimization to find the Eigenvector of the Support Vector

Clustering algorithm has failed. Indeed, it appears that a near-optimal solution for the SVC is not good

enough to compute with accuracy the radius of the hyper-sphere in the feature space. This inability leads

to a completely wrong adjacency matrix because of the approximate solution is not optimal. In the end,

the SVC was unable to discover any clusters in our dataset, even though the data set contained only two

clusters with a clear separation. PSO is able to find parameter where exact solutions are not an absolute

requirement. However, for SVC, it seems that mathematical exactness is necessary, and a near-optimal

Eigenvector is not enough.

9.2 Encountered challenges

We summarize the main challenges encountered within this research project.

9.2.1 Lack of documentation

The Support Vector Machine is very well documented, a lot of implementation exists, even custom

optimization algorithm have been created to find the Eigenvector [77]. However, Support Vector

Clustering is close to SVM in the form (it is kernel based and involves Quadratic Programming) but it is

completely different since it is unsupervised learning. We came across one main article about it [78]. The

main principle was clear but very few details on how to solve the Eigenvector. A version of the Sequential

Minimal Optimization algorithm [77] has been made for SVC, no implementations nor articles about it

were available. Furthermore, the method to compute the adjacency matrix was unclear as again no

detailed explanation was given.

9.2.2 Complex implementation

We made the choice of a Swing based JAVA application right from the beginning as it seemed to be the

most efficient way. Unfortunately, the size of the program turned bigger and more complex than

expected. This type of application is not suited for such a task. As the decoupling between the different

logical parts (PSO, SVC and the study cases) and the visualization part was particularly difficult to achieve.

We believe it has been successfully done after the architecture of the program was changed for the third

time. We realized this problem too late for the project to finish before the deadline.

9.2.3 Interdisciplinary aspect

This thesis belongs to the field of Computational Intelligence and Software Engineering. By nature, it is

deeply interdisciplinary as PSO, for instance, it is inspired by the work of biologist, since the SVC algorithm

Page | 96

is highly mathematical, mixing both of them were very interesting, and maybe applied to a wide variety

of problems

9.3 Personal outcome

In order to complete such a project, we needed to learn rigorous planning. We followed a plan with daily

objectives and deadlines to meet. It gave a great insight on project management, and how hard it can be

to meet deadlines.

While doing research about the different technologies we could use, we had to try many programming

languages (JAVA, JavaScript, Dart, C++). Before selecting a specific library, we have to learn how to use it,

discover their strengths and weaknesses. In a few word, the technical outcome was tremendous.

9.4 Next steps

9.4.1 Living project

This project is far from being finished. Indeed, our cooperation with Mr. Hughes at PwC to optimize the

movie model revealed two observations:

5. The need of efficient optimization software for such a model, as the current optimization

techniques are not so efficient. The field of dynamic modeling is relatively new, and comes from

the business world. Today not so many computer scientists have been worked in this field.

6. Working with Mr. Hughes at PWC and presenting the PSO algorithm to his coworkers exhibited

another point. It is difficult to introduce an optimization techniques such as PSO. In other word,

the challenge was to explain that “heavy” mathematics is not required to create powerful

optimization algorithms. Effective communication with no software engineering people makes it

difficult to explain how our approach could lead to new perspective in the modelling process.

From these points, we decided to push the project further in this direction after the thesis ends. The goal

is to develop an optimization algorithm for a dynamic model. It has to be easy to use and we want that

the user select only a few options prior the run of the optimization process. The options are:

 The algorithm (global PSO, local PSO, etc…). However, the different parameter values of each

algorithm will not be available to the user.

 And the choice between two swarm behavior: exploration, exploitation. Sometimes in dynamic

modelling, we are not looking for one unique solution. We want to explore the search space as

much as possible to detect interesting features (sub optimal regions, for instance). And

exploitation to try to find the best solution as quick as possible (with a higher risk of finding only

local optimal).

 An alternative view, more technical, will give full control of the parameter of the algorithms to

the user, like: the size of the swarm, termination conditions, behavior of the particles etc…

 And finally, this program must be independent of the operating system. The JAVA programming

language is well suited for such a requirement as it needs only the Java Virtual Machine to be run.

However, we will use a more advanced solution presented in the next section.

Page | 97

This engineering process makes a challenge to the modeler too, as we will need to create templates for

the models in order to load them in the optimization program. A first version of this template is already

created. However, it needs further refinement to be easier to use.

9.4.2 Spring integration

As mentioned earlier (in 9.2.2) the limitation of a Swing based application makes the evolution of the

program difficult. Even if JAVA is portable, we decided to transform the current program in an enterprise

application based on the Spring framework [79]. This framework uses the Java Enterprise Edition model,

and makes the implementation of the MVC easier. Indeed, it is based on tiered enterprise application

Figure 9.2 shows the concept of enterprise application. The middle tier

execute all the logic. In our case, it will execute the PSO. The database

will store the different models to be optimized. And lastly, the client will

use a web page to set up its experience. This point is fundamental to

improve the user experience. We will be able to use all the power of

HTML5/CSS3 and Javascript to create our user interface, and

visualization algorithm, in a very user friendly way. The user will have

nothing to install, he will just need to continue to the corresponding

web page, load its model, and run the optimization algorithm.

Furthermore, the client side is completely disconnected from the logic.

It will give us a greater freedom to change the algorithm or even

implement a new one.

9.5 Agent Oriented Swarm Optimization

9.5.1 The need of another approach

At the moment, the Swarm implementation is hierarchical as shown in Figure 9.3. This means that when

the PSO algorithm execute the move command on the swarm, it is first passed to the swarm, then to the

sub swarms and finally reaches the particles. It works in the same way for any other commands as fitness

evaluation or finding the best particle. Furthermore, every evaluation of the fitness function is made on

the same Java Virtual Machine. This solution works just fine for our study cases. It would be useful to run

simultaneously with several fitness evaluations on many JVM, or even many processors. In other words,

develop a parallel version of PSO. We also would like to reach an implementation closer to the biological

model for two reasons:

Figure 9.2: Enterprise Application

Page | 98

 A new architecture could improve the performance

 More flexible implementation could help to distribute (on a cluster of servers for instance) the

computation for very intensive optimization problems.

The only way to know is to implement such architecture and test it.

Figure 9.3: Hierarchical swarm

9.5.2 An alternative design

9.5.2.1 Particle as Agent

Our new architecture is based on Multi-Agent System (MAS) [80]. We are going to use the following

definition of an agent:

An agent is a computer system that is situated in some environment, that is capable

of autonomous action in this environment in order to meet its delegated objectives.

This definition matches the role of a particle. From now on, we will explain MAS only through Particle

Swarm Optimization to avoid unnecessary explanations. Three notions are important in this definitions.

Firstly, an agent lives in an environment, the search space of our fitness function. Secondly, the agent is

capable of autonomous action, it can move in the environment, and communicate with other particles

(request for the best particle for instance). Finally, an agent has delegated objectives, and it has to find

the optimal possible value of a fitness function, based on [Russel and Norvig, 1995, p32] [81]. A particle

as agent can be viewed as follows:

Page | 99

Figure 9.4: A Particle-Agent

An agent is an entity well suited for a particle.

9.5.2.2 Communication strategies

Agents can be social. It means that they can communicate with each other using a messaging system. This

will be useful to find the best solution discovered by the swarm or by a subswarm. Let’s assume a swarm

of N Agents, and a request for the best known solution. The MAS uses an interface agent (IAg) to handle

all the user request.

We may have two strategies to handle such request:

 IAg sends a request for the best know solution to every agents, he processes all the messages

once every agent has answered. This approach sends a lot of messages, and could lead to a too

high usage of the network.

 IAg sends one request to the first particle (P1), the message contains the request, and the list of

the particle who already received this request, only P1 at the beginning. P1 then creates an answer

with his best known solution, and add his name to the list within the message. Then, it forwards

this message to the next particle that is not in the list. The following particle compares its best

known solution to then one in the message. If the new solution is better, it is specified in the

message. The particle adds its name in the list, and forward the message to another particle. The

message jumps from particle to particle until every particle has received the message. At this

point, the best particle has been found (the message has been through the whole swarm looking

for the best position). The last particle send the message back to the IAg. This strategy uses less

messages than the previous strategy. With this agent-based approach, only four messages are

exchanged since six messages are sent in the first method.

Figure 9.5 illustrates both approaches.

Page | 100

Figure 9.5: A Communication strategy

We want to implement the second strategy as it uses less messages. Furthermore, it does not require to

sort the particles to find the best solution. It is both easier to implement and faster to execute.

9.5.3 Real-time visualization

Each agent will use a system of event listener. Every time a particles moves, or evaluates its position, it

will trigger an event. This event will send back the data of the agent in a database and alert the interface

agents that something has changed. The interface agent will then render the new state of the swarm by

retrieving information in the database. This system will allow us to visualize the swarm without interfering

with it, at any moment. Figure 9.6 shows the flow of messages when the particle moves.

Page | 101

Figure 9.6: A Particle's movement.

9.5.4 Distributed Agent Oriented Swarm Optimization

It is important to remember that as Agents, the particles do not need to reside on the machine. This

feature is particularly interesting when it comes to heavy optimization problems. We can create the

swarm in a cluster of servers. In this way each particle can move from one server to another depending

on available resources. We call these particles, migrating particles. They are more complex to be

implemented, but they will be facilitated by the use of JADE [82]. JADE is probably the most advanced

platform to create and maintain a Multi-Agent System. It facilitates the migration of agent between

servers, and contains its own message system and is written in JAVA. These three points may make JADE

the right platform to use in the future project.

9.5.5 A disadvantage

Such a new architecture has one disadvantage. The particles become independent. It is then difficult to

update the particles in a synchronous way, i.e., the notion of iteration becomes unclear, as particles can

easily be updated one by one in any order. However, we choose to operate the swarm in a asynchronous

way. Every particles will move freely with a delay between each move. However, they are not going to

wait until every particle in the swarm move one time step before it starts a new displacement. This

approach gives more freedom to the particle.

Page | 102

9.6 Final word

Finally, the software developed will move into the Open-source community. It seems to be the right choice

as it can gather more people on the project. More people means more opinions, and it can only stimulate

the development. This is not going to happen yet, as a website and forum needs to be created.

This thesis lead us to new exciting challenges. However, we would like to explore the different aspects of

PSO and clustering in the future.

Today, three distinct new projects might emerge from our work:

 The first one, was presented in Section 9.4 and 9.5 and it is an agent based PSO library.

 The second one, is an independent optimization software tailored for dynamical model.

 And finally, we would like to create a platform implementing various clustering algorithms. The

goal behind these ideas is the same. We want to make unsupervised learning and Swarm

Optimization more accessible to a wider number of researchers and not only to experts in

datamining and optimization.

Finally, the thesis was an incredible learning experience.

Page | 103

References

[1] T. Hofmann, A. J. Smola and B. Schölkopf, "Kernel Methods in Machine Learning," The Annals of

Statistics, vol. 36, 2008.

[2] K. McKinnon, Convergence of the Nelder-Mead simplex method to a non-stationary point, vol. 9,

Siam J Optimization, 1996, pp. 148-158.

[3] A. P. Engelbrecht, Computational Intelligence: an introduction, Wiley, 2007.

[4] T. Kristensen, Neural Networks, Fuzzy logic and Genetic Algorithms, Cappelen Academic Publisher,

1997.

[5] G. Guojun, M. Chaoqun and W. Jianhong, Data Clustering: Theory, Algorithms and Applications,

Siam, 2007.

[6] T. M. Cover, Geometrical and statistical properties of systems of linear inequalities with applications

in pattern recognition, Vols. EC-14, IEEE Transactions on Electronic Computers, 1965, pp. 326-334.

[7] K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery and W. L. Ruzzo, Model-based clustering and data

transformations for gene expression data, Bioinformatics, 2001.

[8] W. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis.," vol. 24,

no. 5, pp. 603-619, 2002.

[9] M. Christopher, "Cluster analysis and market segmentation," vol. 3, no. 2, pp. 99-102, 1969.

[10] J. Sterman, Business Dynamics, Cambridge: Irwan McGraw-Hill, 2000.

[11] B. Everitt, S. Landau and M. Leese, Cluster analysis, 4 ed., London: Arnold, 2001.

[12] X. Rui and W. I. C. Donald, Clustering, Wiley, 2009.

[13] L. Zadeh, "Fuzzy sets," Information and control, 1965, pp. 338-353.

[14] R. Duda, P. Hart and D. Stork, Pattern classification, New York: John Wiley & Sons, 2001.

[15] R. Hogg and E. Tanis, Probability and Statistical Inference, Upper Saddle River: Prentice Hall, 2005.

[16] B. Everitt, Cluster analysis, 2 ed., London: Social Science Research Council, 1980.

[17] S. Haykin, Neural Network and Learning Machine, Hamilton: Pearson International Edition, 2009.

[18] S. Boyd and L. Vandenberghe, Convex Optimization, New York: Cambridge University Press, 2004.

Page | 104

[19] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization,

Optimization and Beyond, MIT Press, 2002.

[20] J. Mercer, "Functions of positive and negative type, and their connection with the theory of integral

equations.," Transaction of the London Philosophical Society, pp. 415-446, 1909.

[21] R. Bellman, Dynamic Programming, Princeton: Princeton University Press, 1957.

[22] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge and New York:

Cambridge University Press, 2004.

[23] D. M. Tax and R. P. Duin, "Support vector domain description," Pattern Recognition, pp. 1991-1999,

1999.

[24] R. Fletcher, Practical Methods of Optimization, Chichester: Wiley-Interscience, 1987.

[25] R. J. Vanderbei, Linear Programming Foundations and extensios, 3 ed., Princeton: Springer, 2008.

[26] J. Kennedy and R. Eberhart, Particle Swarm Optimization, Proceedings of IEEE International

Conference on Neural Networks, 1995.

[27] J. Kennedy and R. Eberhard, A Discrete Binary Version of the Particle Swarm Algorithm In

Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, 1997, pp.

4104-4109.

[28] R. Eberhard, P. Simpson and R. Dobbins, Computational Intelligence PC Tools, Academic Press

Professional, 1996.

[29] J. Salerno, Using Particle Swarm Optimization Technique to Train a Recurrent Neural Model,

Proceeding of the IEEE International Conference on Tools with Artificial Intelligence, 1997.

[30] Y. Shi and R. Eberhart, Empirical Study of Particle Swarm Optimization, Proceedings of the IEEE

Congress on Evolutionary Computation, 1999.

[31] Y. Shi and R. Eberhart, A Modified Particle Swarm Optimizer, Proceeding of the IEEE Congress on

Evolutionary Computation, 1998.

[32] F. van den Bergh, "An Analysis of Particle Swarm Optimizers, PhD thesis," Pretoria, 2002.

[33] M. Clerc and J. Kennedy, The Particle Swarm-Explosion, Stability, and Convergence in a

Multidimensional Complex Space, IEEE Transactions on Evolutionary Computation, 2002.

[34] J. Kennedy, The Particle Swarm: Social Adaptation of Knowledge, Proceedings of the IEEE

International Conference on Evolutionary Computation, 1997.

[35] A. Carlisle and G. Dozier, Adapting Particle Swarm Optimization to Dynamic Environments,

Proceedings of the International Conference on Artificial Intelligence, 2000.

Page | 105

[36] K. Parsopoulos, D. Tasoulis and M. Vrahatis, Multiobjective Optimization using Parallel Vector

Evaluated Particle Swarm Optimization, Proceedings of the IASTED International Conference on

Artificial Intelligence and Applications, 2004.

[37] R. Brits, "Niching Strategies for Particle Swarm Optimization, Master Thesis," Pretoria, 2002.

[38] R. Brits, A. Engelbrecht and F. van den Bergh, "A Niching Particle Swarm Optimizer," Proceedings of

the Fourth Asia-Pacific Conerence on Simulated Evolution and Learning, pp. 692-696, 2002.

[39] M. Clerc, "Think Locally, Act Locally: The Way of Life of Cheap-PSO, An Adaptive PSO," 2001.

[40] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Harbor: University of Michigan Press,

1975.

[41] C. Koay and D. Srinivasan, "Particle Swarm Optimization-Based Approach for Generator

Maintenance Scheduling," Proceedings of the IEEE Swarm Intelligence Symposium, pp. 167-173,

2003.

[42] H. Higashi and H. Iba, "Particle Swarm Optimization with gaussian Mutation," Proceedings of the

IEEE Swarm Intelligence Symposium, pp. 72-79, 2003.

[43] C. Wei, Z. He, Y. Zheng and W. Pi, "Swarm Direction Embedded in Fast Evolutionary Programming,"

Proceedings of the IEEE Congress on Evolutionary Computation, vol. 2, pp. 1278-1283, 2002.

[44] B. Secrest and G. Lamont, "Visualizing Particle Swarm Optimization - Gaussian Particle Swarm

Optimization," Proceedings of the IEEE Swarm Intelligence Symposium, pp. 198-204, 2003.

[45] X. Yao and Y. Liu, "Fast Evolutionary Programming," Proceedings of the Fifth Annual Conerence on

Evolutionary Programming, pp. 451-460, 1996.

[46] X. Yao, Y. Liu and G. Liu, "Evolutionary Programming Made Faster," IEEE Transactions on Evolutionary

Computation, vol. 2, no. 3, pp. 82-102, 1999.

[47] M. Løvberg, T. Rasmussen and T. Krink, "Hybrid Particle Swarm Optimiser with Breeding and

Subpopulation," Proceedings of the Genetic and Evolutioary Computation Conference, pp. 469-476,

2001.

[48] B. Al-Kazemi and C. Mohan, "Multi-phase Generalization if the Particle Swarm Optimization

Algorithm," Proceedings of the IEEE Congress on Evolutionary Computation, pp. 489-494, 2002.

[49] T. Krink and M. Løvberg, "The Life-Cycle Model: Combining Particle Swarm Optimization, Genetic

Algorithm and Hill Climbers," Proceedings of the Parallel Problem Solving from Nature Conference,

Lecture Notes in Computer Science, vol. 2439, pp. 621-630, 2002.

[50] K. Schwaber and J. Sutherland, The Scrum Guide: The definitive Guide to Scrum, The rules of the

Game, 2011.

Page | 106

[51] A. Gephi, "Gephi: Makes graphs handi," Association Gephi, [Online]. Available: https://gephi.org/.

[52] T. Reenskaug, "THING-MODEL-VIEW-EDITOR: an Example from a planningsystem," Palo Alto, 1979.

[53] M. C. Robert, "The Open-Closed Principle," C++ Report, p. 1, 1996.

[54] M. L. Braun, J. Schaback, M. L. Jugel and N. Oury, "Linear Algebra for Java," [Online]. Available:

http://mikiobraun.github.io/jblas/.

[55] y. Richet, "JMATHTOOLS," [Online]. Available: http://jmathtools.berlios.de/doku.php?id=start.

[56] A. C. Oliver, G. Stampoultzis, A. Sengupta, R. Klut and D. Fisher, "Apache POI: The Java library for

Microsoft document," The Apache Software Foundation, [Online]. Available: http://poi.apache.org/.

[57] C. R. Hughes, "Modeling Movie Release Strategies," San Francisco, 2012.

[58] A. Inc., "Multimethod simulation software and solution," Anylogic, [Online]. Available:

http://www.anylogic.com/.

[59] F. Collins and D. Gallas, "A nw five-year plan for the U.S. Human Genome Project," Science, vol. 262,

pp. 43-46, 1993.

[60] J. Claverie, "Computational methods for the identification of genes in vertebrate genomic

sequences," In Human Molecular Genetics, pp. 1735-1744, 1997.

[61] H. Douzono, S. Hara and Y. Noguchi, "A Design Method of DNA chips for SNP Analysis Using Self

Organising Maps," in Proceedings of IEEE International Joint Conference on Neural Network,

Washington DC, 2001.

[62] D. F. Feng and R. F. Doolittle, "Progressive sequence alignment of amino acid sequences and

construction of phylogenetic trees from them," Methods in Enzymology, p. 266, 1996.

[63] T. Kristensen, "A Neural Network Approach to Hyphenating Norwegian," in Proceedings of IEEE

International Joint Conference on Neural Networks, Como, 2000.

[64] T. Kristensen and D. Langmyhr, "Two Regimes for Computer Hyphenation – a Comparison.," in

Proceedings of IEEE International Joint Conference on Neural Networks, Washington DC, 2001.

[65] T. Kristensen and R. Patel, "Edge Detecting in a Lateral Inhibition Network," in Proceedings of IEEE

World Congress on Computational Intelligence, Honolulu, 2002.

[66] C. F. Allex, J. W. Shavlik and F. R. Blattner, "Neural Network Input Representations that Produce

Accurate Consensus Sequences fram DNA Fragment Assemblies," Bioinformatics, vol. 15, 199.

[67] R. Nusinov, "Strong Preferences in Nucleotide Sequences of DNA Geometry," Journal of Molecular

Evolution, vol. 20, 1984.

Page | 107

[68] T. Kristensen and F. Guillaume, "Classification of DNA sequences by a MLP and a SVM Network," in

Biocomp’13 – International Conference Bioinformatics and Computational Biology, Las vegas, 2013.

[69] T. M. Mitchell, Machine Learning, Carnegie Mellon University: McGRAW-HILL internation editions,

1997.

[70] "Java Neural Network Framework Neuroph," [Online]. Available:

http://neuroph.sourceforge.net/index.html.

[71] "LIBSVM -- A Library for Support Vector Machines," [Online]. Available:

http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

[72] X. Guo, J. Yang, C. Wu, C. Wang and Y. Liang, "A novel LS-SVMs hyper parameter selection baesd on

particle swarm optimization," Neurocomputing, no. 71, pp. 3211-3215, 2008.

[73] S.-W. Lin, K.-C. Ying, S.-C. Chen and Z.-J. Lee, "Particle swarm optimization for parameter

determination and feature selection of support vector machines," Expert Systems with Applications,

no. 35, pp. 1817-1824, 2008.

[74] C.-L. Huang and J.-F. Dun, "A distributed PSO-SVM hybrid system with feature selection and

parameter optimization," Applied Soft Computing, no. 8, pp. 1381-1391, 2008.

[75] J. C. Platt, "Fast Training of Support Vector Machines using Sequential Minimal Optimization,"

Microsoft Research, Redmond, 2000.

[76] L. Fu and E. Medico, "FLAME, a novel fuzzy clustering method for the analysis of DNA microarray

data.," BMC bioinformatics, vol. 1, no. 8, p. 3, 2007.

[77] J. Platt, "Sequential Minimal Optimization: A fast Algorithm for Training Support Vector Machine,"

1998.

[78] A. Ben-Hur, D. Horn, H. T. Siegelmann and V. Vapnik, "Support Vector Clustering," Journal of Machine

Learning Research 2, pp. 125-137, 2001.

[79] P. Software, "Spring," Pivotal Software, 2013. [Online]. Available: http://spring.io/.

[80] M. Wooldridge, An introduction to Multi Agent Systems, Liverpool: Wiley, 2009.

[81] S. Russel and P. Norvig, Artificial Intelligence A modern approach, Pearson, 2010.

[82] "JADE - Java Agent Development Framework," Telecom Italia, Motorola, Whitestein Technologies

AG, Profactor GmbH, France Telecom R&D, 6 12 2013. [Online]. Available: http://jade.tilab.com/.

[83] M. Pernollet, "jzy3d," [Online]. Available: http://jzy3d.org/index.php.

[84] O. s. community, "JFreeChart," Object Refinery Limited, [Online]. Available:

http://www.jfree.org/jfreechart/.

Page | 108

Appendix

Redundancy of the genetic code:

The following table lists the different codons, their corresponding molecule and their index in our

frequency vector. The color is just to visualize the redundancy.

final index Index Codons Translation

0 0 Phe/F (Phenylalanine) TTT

0 1 Phe/F (Phenylalanine) TTC

1 2 Leu/L (Leucine) TTA

1 3 Leu/L (Leucine) TTG

1 4 Leu/L (Leucine) CTT

1 5 Leu/L (Leucine) CTC

1 6 Leu/L (Leucine) CTA

1 7 Leu/L (Leucine) CTG

2 8 Ile/I (Isoleucine) ATT

2 9 Ile/I (Isoleucine) ATC

2 10 Ile/I (Isoleucine) ATA

3 11 Met/M (Methionine) START ATG

4 12 Val/V (Valine) GTT

4 13 Val/V (Valine) GTC

4 14 Val/V (Valine) GTA

4 15 Val/V (Valine) GTG

5 16 Ser/S (Serine) TCT

5 17 Ser/S (Serine) TCC

5 18 Ser/S (Serine) TCA

5 19 Ser/S (Serine) TCG

6 20 Pro/P (Proline) CCT

6 21 Pro/P (Proline) CCC

6 22 Pro/P (Proline) CCA

6 23 Pro/P (Proline) CCG

7 24 Thr/T (Threonine) ACT

7 25 Thr/T (Threonine) ACC

7 26 Thr/T (Threonine) ACA

7 27 Thr/T (Threonine) ACG

8 28 Ala/A (Alamine) GCT

8 29 Ala/A (Alamine) GCC

8 30 Ala/A (Alamine) GCA

Page | 109

8 31 Ala/A (Alamine) GCG

9 32 Tyt/Y (Tyrosine) TAT

9 33 Tyt/Y (Tyrosine) TAC

10 34 STOP (Ochre) TAA

10 35 STOP(Amber) TAG

11 36 His/H (Histidine) CAT

11 37 His/H (Histidine) CAC

12 38 Gln/Q (Glutamine) CAA

12 39 Gln/Q (Glutamine) CAG

13 40 Asn/N (Asparagine) AAT

13 41 Asn/N (Asparagine) AAC

14 42 Lys/K (Lysine) AAA

14 43 Lys/K (Lysine) AAG

15 44 Asp/D (Aspartic acid) GAT

15 45 Asp/D (Aspartic acid) GAC

16 46 Glu/E (Flutamic acid) GAA

16 47 Glu/E (Flutamic acid) GAG

17 48 Cys/C (Cysteine) TGT

17 49 Cys/C (Cysteine) TGC

10 50 STOP (Opal) TGA

18 51 Trp/W (Tryptophan) TGG

19 52 Arg/R (Arginine) CGT

19 53 Arg/R (Arginine) CGC

19 54 Arg/R (Arginine) CGA

19 55 Arg/R (Arginine) CGG

20 56 Ser/S (Serine) AGT

20 57 Ser/S (Serine) AGC

19 58 Arg/R (Arginine) AGA

19 59 Arg/R (Arginine) AGG

21 60 Gly/G (Glycine) GGT

21 61 Gly/G (Glycine) GGC

21 62 Gly/G (Glycine) GGA

21 63 Gly/G (Glycine) GGG
Table 0.1: Genetic code

