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Preface

This thesis has been submitted for the degree of Philosophiae Doctor (Ph.D.) at the
Department of Earth Science, University of Bergen. The research presented herein was
carried out at the University of Bergen, under the principal supervision of Prof. Wojciech
Nemec, co-supervision of Prof. Robert Gawthorpe and external co-supervision of
Dr. Massimiliano Ghinassi (Univeristy of Padova). The project was funded through a
Bergen University 4-year scholarship that commenced in January 2010. Additional
financial support was kindly provided by the University of Bergen, University of Padova,
the International Association of Sedimentologists (IAS) and Statoil (through the
Akademia agreement on mobility funds) for covering fieldwork expenses, laboratory
analyses and participation in conferences abroad.

The thesis is structured according to the Norwegian guidelines for doctoral dissertations
in natural sciences, where the main part of the thesis consists of research papers either
published, submitted or about to be submitted to international peer-reviewed journals.
The present thesis comprises three papers: Paper 1 has already been published in the
journal Sedimentology; Paper 2 is in review in the same journal; and Paper 3 has been
submitted to the Journal of Sedimentary Research. Their text format and written English
(UK vs. USA) are thus inconsistent, as is also the format of their lists of references. The
three research papers are preceded by a general introduction that gives the project
background and aims, synthesizes its outcome, and outlines prospects for future
progress in the explored research field. An authorship statement provides an overview
of the contribution of each author to this collaborative research work.

Katarina Gobo

Bergen, 27 March 2014
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Abstract: what'’s this thesis about

Gilbert-type deltas form where a river system debouches into a relatively deep marine
or lacustrine basin, whereby the subaqueous delta slope is steep and fully dominated by
sediment gravity-transport processes. These deltas occur in various tectono-geomorphic
settings and have attracted considerable research interest in the last three decades or
so, although mainly from the viewpoint of their large-scale architecture, spatial-
stratigraphic stacking pattern and relationship to basin-margin faults. Side-scan sonar
studies of a number of such modern deltas provided highly instructive ‘snapshots’, but
lacked the stratigraphic perspective of a deltaic system evolution with time. More recent
detailed sedimentological studies of several ancient Gilbert-type deltas have meanwhile
indicated that these sedimentary systems are some of the most valuable archives for the
stratigraphic record of various allogenic and autogenic factors, most notably the record
of relative base-level changes.

The present series of case studies from the Plio-Pleistocene deltas in the Corinth Rift,
Greece, elucidates further this conceptual notion by focusing on such key issues as: the
‘birth’ and subsequent evolution of Gilbert-type delta as a valley-fill bayhead system
(Paper 1); the relationship between the delta-brink morphodynamics controlled by
base-level behaviour and the mode of the subaqueous delta-slope processes of sediment
dispersal (Paper 2); and the impact of these brink-to-slope temporal changes on the
sedimentation pattern in the delta-foot zone (Paper 3). The application of detailed facies
analysis has proven to be of crucial importance in unravelling the system formative
conditions. The case studies highlight the significant role of the rift-margin tectonics,
while revealing further the spatio-temporal patterns of the deltaic system’s own
responses to tectonically-induced perturbations.

This series of case studies from the Corinth Rift contributes to a better understanding
of the morphodynamics of evolving Gilbert-type deltaic systems and their pattern of
responses to both long- and short-term changes in base level. The studies contribute
also to a better understanding of the Plio-Pleistocene tectonic development history of
this youngest European rift basin.
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Development of Gilbert-type deltas

Introduction

Sedimentology of Gilbert-type deltas

Gilbert-type deltas - first described by Gilbert (1885) and afterwards named after him -
are a variety of deltaic systems that form where river debouches into a body of standing
water that is considerably deeper than the fluvial feeder channel. These deltas comprise
a steeply inclined foreset of subaqueous delta-slope deposits passing down-dip into
subhorizontal bottomset of prodelta deposits and overlain by a subhorizontal topset of
fluvial delta-plain deposits (Fig. 1). These characteristic units were defined by Barrell
(1912), with the term toeset commonly used to describe the tangential transition from
foreset to bottomset (e.g., Massari 1996; Sohn et al. 1997; Breda et al. 2007). The delta
thickness and bulk volume are determined by the host-water depth and river sediment
supply, respectively.

Topset  Foreset Bottomset
|

Topset — essentially
= flat-lying gravels

Foreset — beds of sand
and gravel dipping at
10°-25°

Fig. 1. (A) Section through a Gilbert-type delta. (B) Vertical facies sequence produced by delta
progradation (after Gilbert 1885; Barrell 1912). Note that delta architecture is portrayed rather
simplistically.
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The mode of sediment transfer from the subaerial delta plain to the subaqueous delta
slope depends on the type and amount of sediment delivered by the fluvial system and
the density contrast between the sediment-laden river outflow and the basin water
(Bates 1953). Hypopycnal outflow results in a buoyant plume of fine-grained sediment
suspension (Fig. 2) that spreads away from the delta and gradually settles in its distal
realm (Nemec 1995). Homopycnal outflow involves rapid mixing of river and basin
water, which causes sediment deposition close to the river mouth (Colella et al. 1987).
Hyperpycnal outflows plunge down on the steep delta slope, depositing there their
sediment load (Fig. 2A). The latter two types of river outflow conditions thus favour
delta build-out, with most of the sediment deposited beneath the wave base and
transported by gravitational processes.

: ALLUVIAL SYSTEM BUOYANT SUSPENSION PLUME

SUSPENSION FALLOUT “RAIN' :

'/ DENSITY UNDERFLOW
(TURBIDITY CURRENT)

" SUSPENSION-LADEN ::
BUOYANT " - rl-
. FRESH-WATER PLUME. -

T PYCNOCTINALS zbrﬁ

Denser g
* (SALINE OR COLDER) - -
BASINAL WATER - .

WATER DEPTH

Fig. 2. (A) Schematic diagram showing deltaic buoyant hypopycnal plume and hyperpycnal underflow.
(B) The density layering of water column associated with a hypopycnal plume. (From Nemec 1995).

Gilbert-type deltas were initially considered to be exclusively lacustrine features, but
field studies since the 1980s have documented their common occurrence in marine
settings (e.g., Postma 1984; Postma & Roep 1985; Massari & Parea 1990; Dorsey et al.
1995; Massari 1996; Sohn et al. 1997; Mortimer et al. 2005; Longhitano 2008),
particularly as bayhead systems in fjords (Prior et al. 1981; Kostaschuk & McCann 1987;
Prior & Bornhold 1988, 1990) and estuarine incised valleys (e.g.,, Postma 1984; Li et al.
2006; Breda et al. 2007, 2009; Paper 1). They form not only in tectonically active areas
(Massari & Colella 1988; Gawthorpe & Colella 1990; Ford et al. 2007; Backert et al. 2010;
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Paper 1), but also in proglacial settings (Nemec et al. 1999; Lgnne et al. 2001; Lgnne
& Nemec 2004) and in natural and artificial lakes (Grover & Howard 1937; Fan & Morris
1992; Morris & Fan 1997), and have even been reported from extra-terrestrial settings
(Ori et al. 2000; Mangold & Ansan 2006). The growth, geometry and stacking pattern of
Gilbert-type deltas were studied by means of laboratory experiments (e.g., Jopling 1963;
Kostic & Parker 2003b; Kleinhans 2005; Lai & Capart 2007; Rohais et al. 2011; Bijkerk et
al. 2013) and numerical modelling (e.g., Muto & Steel 1992; Syvitski & Daughney 1992;
Hardy et al. 1994; Hardy & Gawthorpe 1998; Uli¢ny et al. 2002; Kostic & Parker 2003a).
This considerable research interest in Gilbert-type deltas stems partly from their
economic significance as stratigraphic traps for hydrocarbons (Graue et al., 1987; Muto
& Steel, 1997) and sites of mineral placers, but mainly from their sensitivity to relative
base-level changes, making them play an important role in basin analysis (Gawthorpe &
Colella 1990).

CREEP
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Irictional sliding
wilh quasi-aiptic
grain contacts

SLIOE
Translational (as ahown)
or rotational;
coheren! mass
with minor
internal deformation

SLUMP
Coherent mass
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internal doformation
0 {discrete, non-pervasive
shear)

fosaibly wilh:
L3 enl?:ﬂagayt:::)lulw . FLOW <
o, curcent with plastic
3 behaviour

Remoulded mass.
- Non-tirbulent, but possibly
. with transient large-scale
turbulant chuening

FLOW
with fluidal
behaviour

Fully turbutent

FALL
Solitary grains or
icose
grain assemblages

Fig. 3. Depositional processes on the steep slope of Gilbert-type deltas and the resulting foreset facies
(from review by Nemec 1990).
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simgeidal and oblique rsing brirk trapeciory mouth bar lobes DELTA BRINK
foplap
— = A =—TOPSET —==
L= TR
FORESET.

e W~~~
DELTA FRONT

~— DELTA PLAIN -

wave base

Saessm

— 95‘-” TOE

Fig. 4. Schematic review of various architectural elements recognized in Gilbert-type deltas. No scale is
given, as the delta thickness depends on the host-basin depth and may range from a few metres to a few
hundred metres.

These steep-faced deltas were initially portrayed rather simplistically (Fig. 1), both in
terms of depositional architecture and subaqueous depositional processes. The latter
were traditionally lumped under the label of ‘slope avalanches’, but studies of modern
and ancient deltas over the last three decades have revealed a whole range of
delta-slope depositional processes (Fig. 3), including debrisflows, debrisfalls and both
sustained (hyperpycnal) and surge-type turbidity currents of high to low density (sensu
Lowe 1982). A considerable variation in Gilbert-type delta architecture has also been
recognized (Fig. 4):

o The delta brink during delta progradation may have a horizontal, falling or rising
trajectory (sensu Helland-Hansen & Martinsen 1996), which is considered to be an
important high-resolution record of relative base-level changes during the delta
life-span;

e The topset-foreset contact may be either transitional (sigmoidal) or erosional
(oblique), which is attributed to accommodation space formation or subtraction,
respectively (Massari 1996);

e The topset-foreset contact may display scoop-shaped ‘destructional’ scours and/or
‘constructional’ mounds (Fig.5) (Postma & Cruickshank 1988; Nemec et al. 1999;
Lgnne & Nemec 2004);

e The foreset unit may contain slope-draping mud layers, followed by an onlapping
or downlapping foreset reactivation (Nemec et al. 1999; Lgnne & Nemec 2004),
commonly at a reduced angle (Kostic et al. 2002);

e Delta slopes show the occurrence of ridges and chutes, which are respectively
attributed to subaqueous high-viscosity mass-movement processes and turbidity
currents (Prior et al. 1981; Kostaschuk & McCann 1987; Postma 1984);

e The delta-slope and delta-toe bedding may include ‘backsets’ of upslope-dipping
cross-strata filling a chute and/or abutting against a downslope obstacle; their
origin is attributed to turbidity currents that underwent hydraulic jump (Fig. 6)
(Postma 1984; Nemec 1990; Massari 1996; Nemec et al. 2007);

o The foreset-bottomset transition may be smoothly tangential (Gilbert 1885; Nemec
et al. 1999) or sharply angular (Colella 1988b; Zelilidis & Kontopoulos 1996); and
may be characterized by offset-stacked depositional lobes or hummock-shaped
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‘splays’ (Postma & Roep 1985; Postma & Cruickshank 1988; Prior & Bornhold
1988; Nemec et al. 1999; Lgnne & Nemec 2004);

e The delta toe may show scoop-shaped scour-and-fill features referred to as
‘spoon-shaped depressions’ (Massari & Parea 1990; Breda et al. 2007), ‘arcuate
scarps’ (Prior & Bornhold 1988) or ‘large flutes’ (Bornhold & Prior 1990), and
attributed to turbidity currents that underwent hydraulic jump at the break in
slope (Fig. 7).

() abliqualy towards and |
(F)) rwany from the vewsr |

Fig. 5. (A) Panoramic view and (B) overlay sketch of a sigmoidal brink-zone geometry in transverse
section; note the erosional scours in the lower part and the overlying mounds stacked in a compensational
manner, attributed to mouth-bar progradation (see Paper 2).

Fig. 6. Large backset (set of upslope-dipping cross-strata) within the foreset of Gilbert-type Espirito Santo
delta (Postma & Roep 1985); photograph courtesy of G. Postma.
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BOTTOMSET
Ve ¥ FRONTAL VIEW
6.2 (flow towards the viewer) VIEW FROM ABOVE
N £ Downflow velocity displayed for (Bow invisible, only impact on substrate shown)
I R isoconcentration surface of ~1 vol.%
6.0 Spoon-shaped scour
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(filled by waning flow)
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Fig. 7. Spoon-shaped multiple scour-and-fill features at the toe of Gilbert-type delta in (A) Bradano and
(B) Ventimiglia, Italy (Breda et al. 2007), with yellow arrows indicating the flow direction; photographs
courtesy of F. Massari. (C, D) Snapshot images of a numerical CFD simulation showing the formation of
spoon-shaped scour at the toe of slope chute channel; the flow in D was made invisible in order to see its
scouring effect, with the scour being subsequently filled in and smoothed out during the waning phase of
the flow; images courtesy of W. Nemec.

Gilbert-type deltas recording relative base-level changes

Gilbert-type deltas are sensitive coastal recorders of relative base-level changes. In
zones of active tectonics in particular, the combined effect of eustasy and tectonic
uplift/subsidence gives rise to diverse delta architecture. Large changes in relative base
level may lead to axial dissection of delta by an incised valley and its subsequent
drowning with the progradation of a younger bayhead delta (Ford et al. 2007; Backert et
al. 2010; Paper 1), or result in vertical stacking of successive deltas (Colella 1988a,
1988b; Breda et al. 2007, 2009). Low-magnitude short-term changes are recorded in the
delta brink-zone, with the relative base-level rise reflected in a sigmoidal geometry and
the relative base-level fall or stillstand in an oblique geometry (Fig. 4). As the brink zone
tends to be eroded by fluvial system and waves, the foreset and toeset/bottomset
deposits are the most valuable archives of allogenic and autogenic changes affecting the
delta front and its fluvial feeder system. However, the detailed facies anatomy of these
subaqueous deposits has been little studied. A systematic, bed-by-bed study has thus far
been used in the facies analysis of colluvial-cone deltas (Blikra & Nemec 1998) and
6
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fjord-hosted proglacial Gilbert-type deltas (Nemec et al. 1999; Lgnne et al. 2001; Lgnne
& Nemec 2004). Yet no attempt has, until now, been made to study the relationship
between the observed brink geometries and coeval subaqueous depositional processes.
The relative frequency, spatio-temporal association and time-sequence of changes of
these processes may vary from one delta to another and also within a single delta, thus
potentially reflecting the variable impact of particular controlling factors. Therefore, the
present study attempted to shed more light on this particular issue through detailed
facies analysis of some well-exposed deltas. The Gilbert-type deltas uplifted on the
southern side of the Corinth Rift have a well-studied structural, stratigraphic and
palaeogeographic framework, which allows various aspects of delta development to be
assessed.

Gilbert-type deltas in the Gulf of Corinth

The Gulf of Corinth in central Greece is the submerged part of a rapidly extending rift
that was initiated in Pliocene times (Ori 1989; Briole et al. 2000; Leeder et al. 2008).
This area has been extensively studied, with a main focus on its tectono-sedimentary
evolution and spatial-stratigraphic stacking pattern of the large Gilbert-type deltas
uplifted along the gulf's southern coast (Ori 1989; Seger & Alexander 1993; Dart et
al. 1994; Collier & Gawthorpe 1995; Ford et al. 2007; Rohais et al. 2007a, 2007b, 2008;
Backert et al. 2010; Ford et al. 2013).

"1 Recent deposits
Upper Group
(<0.4 Ma)

Middle Group

el
(1.5-0.7 Ma) )

_, ni
=, Derveni pe™®

Lower Group
(3.6-1.5 Ma)

D Pre-rift bedrock Mer A5 Prioni
 Fat i ‘ o e ;
" River . 7 SR . %

4 Delta progradation

Xylokastro

‘

¥

Fig. 8. Map of the southern coast of the Gulf of Corinth showing the main onshore faults and the
distribution of the pre-rift and syn-rift units; modified from Ford et al. (2007) and Backert (2009). The
large Gilbert-type deltas are labelled and the ones analysed in this study are marked with an asterisk; note
delta distribution in the fault blocks and their progressive northward migration over time. The inset frame
shows the location of the Gulf of Corinth in the Aegean region.
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These footwall-derived gravelly deltas developed concurrently with the evolution
and northward migration of the rift-margin system of normal faults (Fig. 8), with some
of the younger deltas inset in older ones as the infill of axially incised valleys (McMurray
& Gawthorpe 2000; Ford et al. 2007; Paper 1). The deltas were referred to as fan deltas,
which means formed by alluvial fans, although no evidence has been given in support of
this notion. It is more likely that these deltas were fed by antecedent and juvenile fluvial
systems, similarly to their modern counterparts built along the gulf's southern coast
(Seger & Alexander 1993; Ford et al. 2013). The deltas reach several hundred metres in
thickness in their spectacular, seismic-scale 3D outcrops (Fig. 9). Depositional
architecture and sequence stratigraphy of four deltas have been studied (Dart et al.
1994; Ford et al. 2007; Rohais et al. 2008; Backert et al. 2010), but without a
high-resolution analysis of depositional processes. Consequently, no link between the
observed changes in delta architecture and coeval changes in delta-slope processes has
been established, leaving a wide range of unexplored aspects of deltaic system
development (here addressed by Papers 1-3).

P Topse

.!,-;a.l.‘,@m,..:,»,,_,,?;..,."-_-.A._. S

Fig. 9. The Gilbert-type Evrostini delta in the Corinth Rift. The delta foreset is ~400 m thick and its dip
direction is to the north.

The present-study objectives

This study focused on the detailed facies anatomy and depositional architecture of a
number of Corinth deltas to recognize which subaqueous processes were involved in
their development at different stages of delta progradation. More specifically, the project
objectives were to:

e Provide a high-resolution sedimentological and sequence-stratigraphic analysis
of a previously unstudied, relatively young valley-fill deltaic system (Paper 1).

¢ Link the morphodynamic changes in delta-brink architecture with coeval changes
in the delta foreset facies (Paper 2).

e Link changes in foreset facies with the changes in depositional architecture and
facies in the corresponding toeset/bottomset deposits (Paper 3).

8
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e Assess the deltaic system’s formative conditions and link the morphodynamic
and architectural changes to allogenic or autogenic factors (Papers 1-3).

Another initial objective was to assess the geological rate of the morphodynamic and
facies changes by means of microfossil dating. However, this could not be achieved
because of two limiting factors: (i) the delta deposits are mostly coarse-grained and
unsuitable for the preservation of microfossils; and (ii) the sampled fine-grained
interbeds were barren or yielded non-satisfactory results for high-resolution
biostratigraphy.

The research outcome of this study — presented in papers 1-3 — is summarized in the
following chapter.

Summary of papers

Paper 1

Gobo, K., Ghinassi, M., Nemec, W. and Sjursen, E.
Development of an incised valley-fill at an evolving rift margin: Pleistocene eustasy and
tectonics on the southern side of the Gulf of Corinth, Greece.

Sedimentology, doi: 10.1111/sed.12089, in press, 2014.

This paper presents a detailed sequence-stratigraphic and facies analysis of an incised
valley-fill fluvio-deltaic succession whose development was controlled by the interplay
of syn-depositional rift-margin tectonics and eustatic changes. The study combines
facies analysis from outcrop data with previously published and re-evaluated U/Th
dates of coral-bearing deposits to identify the relative role of tectonic subsidence/uplift,
eustasy and regional climatic changes in the development of the valley-fill system.

The palaeovalley was incised in older rift-margin deltaic deposits due to tectonic
uplift accompanied by glacio-eustatic sea-level falls and was subsequently filled in
100 ka with gravelly fluvio-deltaic deposits. Syn-depositional flexure of a valley-parallel
relay ramp contributed to valley segmentation and strongly influenced the stratigraphic
architecture and facies distribution of the valley-fill. The valley segment upstream from
the ramp crest accumulated monotonous gravelly alluvium, whereas fluvio-deltaic
deposits filled the downstream valley segment. Three consecutive bayhead deltaic
systems - separated by transgressive lags — developed on top of one another, indicating
that the ramp crest delimited the landward extent of marine invasions and pinned down
the nucleation point of the bayhead systems. The ultimate growth of a thick Gilbert-type
delta resulted from the inherited bathymetry produced by the slope of the two
preceding shoal-water deltas. It is inferred that the coral-bearing deposits found directly
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outside the palaeovalley outlet mark the early flooding of the valley, whereas the
Gilbert-type delta topset represents the ultimate stage of valley drowning.

This incised valley-fill succession differs from the existing facies models for such
depositional systems because it comprises gravelly shoal-water and Gilbert-type deltaic
deposits, shows strong wave influence and lacks evidence of tidal activity. The four
end-member models for incised valley-fill suggested in literature are discussed in terms
of the rates of sediment supply and accommodation development. It is pointed out that
the departures of particular field cases from these conceptual models may reveal
important information on the system’s own specific formative conditions. The valley-fill
case described in the paper represents conditions of high sediment supply and a rapid,
but stepwise, development of accommodation controlled by the spatio-temporal
evolution of normal faults at the rift margin, which overprinted the eustatic signal.
Overall, the study adds to a better understanding of the Pleistocene tectonics and
palaeogeography of the Corinth Rift margin, and to the spectrum of conceptual models
for incised valley-fill architecture.

Paper 2

Gobo, K., Ghinassi, M. and Nemec, W.

Gilbert-type deltas recording short-term relative base-level changes: delta-brink
morphodynamics and related foreset facies.

Sedimentology (MS in review)

This paper focuses on detailed facies anatomy of the foreset deposits of Gilbert-type
deltas to evaluate whether the morphodynamics of delta-brink zone bear on the
delta-slope depositional processes. Detailed sedimentological logging was carried out in
three Corinthian deltas of different age, size and development stage.

In all these systems, the delta-slope facies abound in deposits of turbidity currents
(whether slope collapse-generated brief surges or longer-duration, sustained
hyperpycnal flows) and cohesionless debrisflows. Subordinate facies include debrisfall
gravel, backset beds and minor tidal deposits. The facies are commonly organized in two
distinct assemblages - one dominated by debrisflows (DFA) and the other by turbidites
(TFA) - and their occurrence seems to be directly related to the type of brink-zone
geometry. DFA assemblages tend to be associated with a sigmoidal brink geometry and
are considered to form during relative base-level rise, when the aggrading delta front
undergoes frequent collapses due to excessive sediment storage and over-steepening.
TFA assemblages are linked to oblique brink geometry and are attributed to intense
sediment bypass during a relative base-level fall or stillstand. Such generic link between
the delta-front morphodynamic responses to relative base-level changes and the
delta-slope sedimentation processes occurs at an advanced stage of delta development.
An early-stage bayhead delta appears to be dominated by hyperpycnal flows
irrespectively of the short-term low-magnitude relative base-level changes.

The study suggests that the foreset deposits alone may possibly be used to decipher
the record of relative base-level changes when the topset-foreset contact is poorly
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exposed or when the sigmoidal evidence of relative base-level rise was obliterated by
fluvial erosion.

Paper 3

Gobo, K., Ghinassi, M. and Nemec, W.

Reciprocal changes in foreset to bottomset facies in a Gilbert-type delta: response to
short-term changes in base level

Journal of Sedimentary Research (MS in review)

The topic of this paper is a direct sequel of Paper 2, with the main focus on depositional
processes at the foreset-bottomset transition and their relation to changes in the delta
slope regime and brink-zone morphodynamics. This study of the Gilbert-type Ilias delta
at the Corinth Rift margin combines observations from two outcrop sections, where the
topset-foreset contact and foreset-bottomset transition are conveniently exposed.
Outcrop photomosaics and marker bedding surfaces were used to correlate packages of
foreset deposits with coeval toeset and bottomset deposits.

Both foreset and toeset-bottomset deposits tend to be organized into
debrisflow-dominated (DFA) and turbidite-dominated assemblages (TFA), but show a
reverse pattern of reciprocal changes. The DFA assemblages of delta foreset deposits
tend to pass downdip into TFA assemblages of delta-foot deposits, whereas foreset TFA
assemblages pass downdip into delta-foot DFA assemblages. The bottomset deposits
show marked textural bimodality, with alternating fine-grained turbiditic sandstones
and mainly clast-supported debrisflow conglomerates. The latter facies dominates in the
bottomset DFA assemblages, while also filling chutes extending from the delta slope to
its foot zone. The downdip changes from DFA to TFA assemblage are linked to delta-
brink sigmoidal architecture, whereas the downdip changes from DFA to TFA are linked
to the delta-brink oblique architecture. It is suggested that the excess brink-zone
aggradation during base-level rise spawns frequent small debrisflows that ‘freeze’
mainly on the delta slope (foreset DFA), while predominantly turbidity currents are
reaching the delta-foot zone (toeset-bottomset TFA). The relative fall or stillstand of
base level intensifies deposition from hyperpycnal flows on the delta slope (foreset
TFA), while slope chutes formed by large river floods allow the subsequent transfer to
brink- and chute wall-derived debrisflows to the delta-foot zone (toeset-bottomset
DFA). The observations indicate that the delta-brink morphodynamic response to
short-term changes in relative base level has a major impact on the subaqueous pattern
of delta sedimentation processes. The deltaic system’s autogenic variability and regional
climatic fluctuations inevitably add ‘noise’ to the facies record of these changes. The
study suggests that the reciprocal alternation of TFA and DFA assemblages in delta
foreset and toeset-bottomset deposits may potentially be used to decipher the hidden
record of short-term relative base-level changes that occurred over the life-span of an
ancient delta.
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Conclusions and perspective

The research presented in this thesis provides important new insights in the
morphodynamic development of Gilbert-type deltas, from the system’s bayhead
nucleation stage in a tectonically-controlled incised valley (Paper 1) to the pattern of its
subaqueous depositional processes and facies partitioning during subsequent
progradation influenced by relative base-level changes (Papers 2 & 3). The main
novelty is the recognition of a generic link between the morphodynamics of the delta-
brink zone — controlled by the base-level behaviour and reflected in delta-front
architecture — and the coeval changes in sedimentary facies of the delta slope, toe and
prodelta zone (Fig. 10). The primary signal of system changes deciphered in these Plio-
Pleistocene Corinthian deltas is due to the changes in base level, with an inevitable
superimposed ‘noise’ from the secondary signal of delta autogenic variation and
probably the allogenic signal of climate seasonality and regional climatic fluctuations.

I:] Debrisflow-dominated
facies assemblage (DFA)

Turbidite-dominated S chute
I:I facies assemblage (TFA)

Fig. 10. Schematic cartoon showing the generic link between the morphodynamic responses of
delta-brink zone to short-term relative base-level changes and the coeval depositional processes on the
delta slope and in its foot zone. See Papers 2 & 3 for further explanation.
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The delta-brink architecture reflects relative base-level changes, but tends to be
erased by subsequent incision of the delta-plain fluvial system or is often non-preserved
in outcrop sections. The present study points to an attractive possibility for the
recognition of such a ‘hidden’ record of relative base-level changes on the basis of the
delta foreset and/or toeset-bottomset facies. The interpretive model suggested by this
study thus bears important implications for basin analysis and may serve as a powerful
tool for the spatial facies prediction and assessment of heterogeneities in a Gilbert-type
deltaic hydrocarbon reservoir (such as the mid-Jurassic Oseberg Fm. in the northern
North Sea; Graue et al., 1987).

However, the postulated facies model is tentative and needs to be verified on a wider
data basis. Although the evidence of a generic link between the delta-brink architecture
(oblique vs. sigmoidal) and coeval foreset facies (TFA vs. DFA assemblages) in the
present study is dawn from both valley-confined and open-coast deltaic systems, the
number of the cases analysed is very small (Paper 2). Likewise, the evidence of
reciprocal facies changes in the foreset and toeset-bottomset TFA and DFA assemblages
comes from a single case study (Paper 3). The research project’s results are interesting
and highly promising, but obviously require verification and thus invite a new wave of
worldwide detailed sedimentological studies of Gilbert-type deltas.

The future high-resolution sedimentological studies should also focus on the
distinction of the primary signal of base-level changes from the secondary signal of the
delta’s own autogenic variability and the allogenic signal of possible climatic
fluctuations. This research issue is a challenging task, but is not infeasible in terms of a
detailed facies analysis combined with studies of modern Gilbert-type deltas.
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