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AB S T R A C T

Due to optimal nonlinearity and differential uniformity, perfect non-
linear (PN) and almost perfect nonlinear (APN) functions are of great
importance in cryptography. It is interesting that they also define opti-
mal objects in other domains of mathematics and information theory.

This dissertation is devoted to exploring the application of highly
nonlinear functions, especially PN and APN functions, to the construc-
tion of low-correlation sequences and optimal linear codes. For an
arbitrary odd prime p, there are only two basic classes of two-level
auto-correlation p-ary sequences with no subfield structures: the m-
sequences and the Helleseth-Gong sequences, where Helleseth-Gong
sequences are closely related to a class of p-ary perfect nonlinear func-
tions. Papers I and II are dedicated to investigating the cross-correlation
between the p-ary m-sequences and d-decimated Helleseth-Gong se-
quences for some decimations d, and to constructing sequence families
with low correlation from them. Papers III-IV have focused on the study
of linear codes defined from highly nonlinear functions. Paper III uti-
lizes some highly nonlinear functions including PN and APN functions
to construct ternary cyclic codes with the optimal minimum (Hamming)
distance. Paper IV further investigates the weight distribution of some
optimal cyclic codes proposed in Paper III. Paper V examines the cover-
ing radius of some linear codes defined from PN and APN functions
and presents a number of quasi-perfect linear codes.
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Introduction to the Thesis

1 SE Q U E N C E S O V E R F I N I T E F I E L D S W I T H
DE S I R A B L E CO R R E L AT I O N

1.1 PE R I O D I C CO R R E L AT I O N O F SE Q U E N C E S

Let {s1(t)} and {s2(t)} be two sequences of period N with symbols in
Zq, i.e., the set of integers modulo q. The periodic correlation between
two sequences {s1(t)} and {s2(t)} is the complex inner product of the
first sequence with a shifted version of the second sequence, namely,

Cs1,s2(τ) =
N−1

∑
t=0

ωs1(t+τ)−s2(t), (1)

where ω = e2π
√
−1/q is a complex primitive q-th root of unity. Pseu-

dorandom sequences with low-correlation find applications in signal
synchronization, navigation, radar ranging, random number generation,
spread-spectrum communications, multipath resolution, cryptography,
and signal identification in multiple-access communication systems [25].
Excellent introductions to low-correlation sequences and their applica-
tions can be found in Golomb [19], Golomb and Gong [20], Helleseth
and Kumar [29].

Throughout this section, our discussion will be confined to sequences
with symbols in Fp and period pn− 1, where p is a prime, n is a positive
integer and Fp is the finite field with p elements. Let k be a divisor of
the integer n and q be a power of a prime p. The trace function from
Fqn to Fqk is defined by

Trn
k (x) = x + xqk

+ xq2k
+ · · ·+ xqn−k

.

In particular, we denote the trace function from Fqn to Fq by Trn(x) for
simplicity.

1 .2 SE Q U E N C E S W I T H ID E A L TW O -LE V E L AU TO C O R R E L AT I O N

Given a sequence {s(t)} over Fp with period pn− 1, the autocorrelation
function Cs(τ) at shift τ of {s(t)} is defined as

Cs(τ) =
pn−2

∑
t=0

ωs(t+τ)−s(t). (2)

These Cs(τ) for τ ∈ {1, · · · , pn − 2} are called the out-of-phase auto-
correlation values. For applications in direct-sequence code-division
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Sequences and Linear Codes from Highly Nonlinear Functions

multiple access, coding theory and cryptography, it is desirable to have
sequences {s(t)} with minimal value max

1≤τ≤pn−2
|Cs(τ)|. It is possible

to construct sequences {s(t)} of period pn − 1 with autocorrelation
function satisfying

Cs(τ) =

{
pn − 1 if τ = 0,
−1 otherwise.

(3)

For obvious reasons, such sequences are said to have an ideal two-level
autocorrelation.

Sequences with ideal autocorrelation properties are of considerable
interest because of their applications in spread spectrum communication
systems, cryptography and their close connections with difference sets.
A number of ideal two-level autocorrelation sequences of period pn − 1
have been discovered during the past few decades.

1 .2 .1 B I N A RY TW O -LE V E L AU TO C O R R E L AT I O N SE Q U E N C E S

Binary sequences with two-level autocorrelation are closely related
to cyclic difference sets with Singer parameters. Let α be a primitive
element of F2n . The multiplicative group F∗2n = F2n \ {0} is cyclic and
can be denoted as F∗2n = 〈α〉. For k = 2n−1 (resp. k = 2n−1 − 1), the
k-subset D of F∗2n is called a cyclic difference set with Singer parameters

(v, k, λ) = (2n − 1, 2n−1, 2n−2),
(resp.) (v, k, λ) = (2n − 1, 2n−1 − 1, 2n−2 − 1),

if for any g ∈ F∗2n , g 6= 1, the equation g = x/y has exactly λ solutions
(x, y) with x and y in D [54].

It is well known that a binary sequence {s(t)} of period 2n − 1 has
ideal two-level correlation if and only if the set

D = {αt|s(t) = 0, 0 ≤ t < 2n − 1}

is a cyclic difference set with Singer parameter (2n − 1, 2n−1 − 1, 2n−2 −
1) of F∗2n [54]. The currently known binary sequences with ideal two-
level autocorrelation are summarized below.
• m-sequences: Let f (x) = ∑n

i=0 fixi ∈ F2[x] be a primitive polyno-
mial with coefficients in F2. A binary m-sequence {s(t)} is generated
from a nonzero n-tuple and the linear recurrence relation

n

∑
i=0

fis(t + i) = 0, for all t ≥ 0.
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Introduction to the Thesis

The m-sequence has period 2n − 1 and contains every nonzero binary n-
tuple exactly once, which leads to many nice pseudo-random properties.
With the above linear recursion, the 2n − 1 possible nonzero n-tuple
(s0, s1, · · · , sn−1) generate 2n− 1 m-sequences, which are identical under
cyclic shift. The binary m-sequence {s(t)} can (after a suitable cyclic
shift) be described simply by the trace function from F2n to F2 as:

s(t) = Trn(α
t),

where α is a primitive element in F2n . The different shifts of the m-
sequence are obtained by

s(t) = Trn(cαt),

where c = ατ ∈ F∗2n .
General m-sequences over any finite field Fq can be described in the

same manner via extending F2 to Fq, where q is a power of a prime.
Due to their excellent pseudo-random properties, m-sequences are of
great importance and have been intensively studied during the last half
century.
• Gordon-Mills-Welch (GMW) sequences [22]: Consider a proper

subfield F2k of F2n , where k is a divisor of n. The GMW sequence {s(t)}
is defined by

s(t) = Trk

((
Trn

k (α
t)
)r
)

,

where r is any integer relatively prime to 2k − 1 and in the range
1 ≤ r < 2k − 1. When r = 1, the GMW sequence reduces by the
transitivity of the trace function to an m-sequence.
• Kasami-Welch (KW) sequences [14, 37]: Let k be an integer where

1 ≤ k < bn/2c with gcd(k, n) = 1. For d = 22k − 2k + 1, consider a set

Bk = {(x + 1)d + xd + 1 | x ∈ F2n}.

The KW sequence {s(t)} is defined as the characteristic sequence of Bk
given by

s(t) =

{
0 if αt ∈ Bk,
1 if αt 6∈ Bk.

The exponent d = 22k − 2k + 1 was given by Kasami in [37] and histori-
cally due to Welch, but never published by him. Dillon and Dobbertin
in [14] proved that KW sequences have ideal two-level autocorrelation.
As gcd(k, n) = 1, the φ(n)/2 KW sequences are pairwise inequivalent,
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where φ(·) is the Euler-totient function. In particular, when k = 1, the
KW sequence is identical to an m-sequence.
• Kasami-Welch-like (KW-like) sequences [14, 48, 49]: Let n 6≡ 0

(mod 3) be a positive integer and k = (n± 1)/3. For d = 22k − 2k + 1,
define

Bk = {(x + 1)d + xd + 1 | x ∈ F2n}

and

Wk =

{
Bk if n is even,
F2n \ Bk if n is odd.

Then the characteristic sequence given by

s(t) =

{
0 if αt ∈Wk,
1 if αt 6∈Wk

has an ideal two-level autocorrelation. The KW-like sequences were
found by No et al. in [48, 49], where their two-level autocorrelation
property was conjectured. This conjecture was later confirmed by Dillon
and Dobbertin [14].
• Hyperoval sequences [43]: For odd n, consider a set

Mk = {x + xk | x ∈ F2n}

where k is one of the following:

i) k = 2 (the Singer Case);

ii) k = 6 (the Segre Case);

iii) k = 2σ + 2π where σ = (n + 1)/2 and 4π ≡ 1 (mod n) (the
Glynn I Case);

iv) k = 3 · 2σ + 4 where σ = (n + 1)/2 (the Glynn II Case).

Then a characteristic sequence {s(t)} of Mk given by

s(t) =

{
0 if αt ∈ Mk,
1 if αt 6∈ Mk

has an ideal two-level autocorrelation [43] and this sequence is called
the hyperoval sequence.
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1.2 .2 p-A RY TW O -LE V E L AU TO C O R R E L AT I O N SE Q U E N C E S

As mentioned in the last subsection, binary sequences with ideal two-
level correlation are equivalent to cyclic difference sets with Singer
parameters. But the p-ary case for an odd prime p behaves very differ-
ently. It was shown that p-ary sequences with ideal two-level correlation
are equivalent to a class of generalized weighing matrices [3], which in
turn give rise to a class of relative difference sets that are extensions of
Singer parameters. More concretely, given a p-ary sequence {s(t)} with
ideal two-level correlation, the set

D =

{
αt | s(t) = 0, 0 ≤ t <

pn − 1
p− 1

}
forms a cyclic difference set with Singer parameters [47](

pn − 1
p− 1

,
pn−1 − 1

p− 1
,

pn−2 − 1
p− 1

)
.

Up to now, only a few families of p-ary sequences {s(t)} with ideal
two-level correlation and period pn − 1 have been constructed. Aside
from the well understood m-sequences and GMW sequences, the p-ary
sequences with ideal two-level correlation constructed in the past fifteen
years are summarized below.
• Helleseth-Kumar-Martinsen (HKM) sequence [28]: Let p = 3,

n = 3k and d = 32k − 3k + 1. Define

f (x) = x + xd.

Then the ternary sequence {s(t)} of period 3n − 1 defined by

s(t) = Trn( f (αt))

has ideal two-level autocorrelation.
• Dillon sequence [13]: Let p be an odd prime and m be an odd

integer. For every even integer k with 0 ≤ k ≤ n− 1, let gk : Fpn → Fp
be the quadratic form given by

gk(x + xp2k
) = Trn(xpk+1)

and let hk be the related function given by hk(x) = xrgk(x), where r is
the odd part of pn − 1. Then the sequence {s(t)} defined by

s(t) = hk(α
t)

5
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has ideal two-level autocorrelation.
• Helleseth-Gong (HG) sequence [24]: Let p be an odd prime, n =

(2m+ 1)k, and s, 1 ≤ s ≤ 2m, be an integer such that gcd(s, 2m+ 1) = 1.
Let b0 = 1, bi = b2m+1−i, and bis = (−1)i for i = 1, 2, ..., m, where indices
of bis are taken mod 2m + 1. Let u0 = b0/2 = (p + 1)/2, and ui = b2i
for i = 1, 2, ..., m. Define

f (x) =
m

∑
i=0

uix(p2ki+1)/2.

Then the sequence {s(t)} defined by

s(t) = Trn( f (αt))

has ideal two-level autocorrelation. Let

g(x) =
m

∑
i=0

um−ix(p(2i+1)k+1)/(pk+1).

The sequence {s′(t)} with

s′(t) = Trn(g(αt))

also has ideal two-level autocorrelation. Take v = (p2mk + 1)/2. A
simple calculation implies gcd(v, p(2m+1)k − 1) = 1 and

Trn( f (x)) = Trn(g(xv)).

Thus, the sequence {s′(t)} is actually some decimation of the sequence
{s(t)}. HG sequences can be viewed as the generalization (within
equivalence) of HKM sequences, which are obtained from the HG
sequence {s′(t)} by letting p = 3, m = 1 and g(x) = x + x(p3k+1)/pk+1.
• Lin sequence [2, 32, 41]: Let n = 2m + 1 and d = 2 · 3m + 1. Then

the sequence defined by

s(t) = Trn(α
t + αdt)

has ideal two-level autocorrelation. This family of sequences was given
by Lin and its ideal two-level autocorrelation property was conjectured
in his PhD thesis [41] in 1998. Recently, the autocorrelation property
of this class of sequences was separately proved by Arasu et al. in
[2] via character sum and Hu et al. in [32] via decimation-Hadamard
transform.
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1.3 CR O S S C O R R E L AT I O N S B E T W E E N TW O -L E V E L

AU TO C O R R E L AT I O N SE Q U E N C E S A N D TH E I R

DE C I M AT I O N S

1.3 .1 CR O S S C O R R E L AT I O N A N D SE Q U E N C E FA M I L I E S

Let {a(t)} be a p-ary sequence of period pn− 1. Then a sequence {b(t)}
is called a d-decimation of {a(t)}, denoted by {a(dt)}, if elements of
{b(t)} are given by b(t) = a(dt) for t = 0, 1, · · · , pn − 2, where the
multiplication is computed modulo pn − 1.

Given two p-ary sequences {a(t)}, {b(t)} of period pn− 1, their cross-
correlation function is defined by

Ca,b(τ) =
pn−2

∑
t=0

ωa(t+τ)−b(t), (4)

where 0 ≤ τ ≤ pn − 2 and ω = e2π
√
−1/p is a complex primitive p-th

root of unity.
The crosscorrelation function is important in code-division multiple-

access (CDMA) communication systems. Here each user is assigned a
distinct signature sequence. To minimize interference due to the other
users, it is desirable that the signature sequences have pairwise low val-
ues of crosscorrelation function. To provide the system in addition with
a self-synchronizing capability, the signature sequences are required
have low values of the autocorrelation function as well. It is worth
pointing that in practice, because of data modulation the correlations
that one runs into are typically of an aperiodic rather than a periodic
nature. The problem of designing for low aperiodic correlation, how-
ever, is much more difficult. Therefore, a typical approach has been to
design based on periodic correlation, and then to analyze the resulting
design for its aperiodic correlation properties.

Let F be a family of M p-ary sequences {si(t)} of period pn − 1. Let
Ci,j(τ) denote the crosscorrelation between the i-th and j-th sequences
at shift τ, i.e.,

Ci,j(τ) =
pn−2

∑
t=0

ωsi(t+τ)−sj(t), 0 ≤ τ ≤ pn − 2.

The maximum correlation value Cmax of F is defined by

Cmax = max{|Ci,j(τ)| : either i 6= j or τ 6= 0 }. (5)

7
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The classical goal in sequence design for CDMA systems has been
minimization of the parameter Cmax and maximization of the family
size M for a given period, which are conflicting requirements. Several
bounds due to Welch and Sidelnikov have been given on the best
one can do if two of the parameters, family size, period and Cmax, are
fixed [29]. Therefore, for theory and practice, it is interesting to study
the crosscorrelation of a pair of (decimated) two-level autocorrelation
sequences of period pn − 1.

1 .3 .2 CR O S S C O R R E L AT I O N O F B I N A RY SE Q U E N C E S

Subsection 1.2.1 summarized the known binary two-level autocorrela-
tion sequences: m-sequences, GMW sequences, KW sequences, KW-like
sequences and hyperoval sequences. There has been intensive research
concerning crosscorrelation of a pair of them or their decimations. If the
maximum crosscorrelation of a pair of binary sequences of period 2n− 1
is much larger than the optimum value, then the pair is not so attractive
in practice. The pairs of binary sequences having correlation with at
most 5 possible values have been of significant interest, see a summary
of these cases in [58] and references therein. It is generally challeng-
ing to settle the correlation distribution for a pair of binary sequences.
The correlation distributions for many pairs leading to 3-valued and
4-valued crosscorrelation have been determined [6, 11, 18, 26, 31, 37, 46].
However, it is more difficult to determine the correlation distribution
of those pairs leading to 5-valued crosscorrelation and most of the
correlation distributions are left open [30, 35, 36, 58].

1 .3 .3 CR O S S C O R R E L AT I O N O F p-A RY SE Q U E N C E S

Compared to the binary case, the research on the crosscorrelation of a
pair of p-ary sequences with ideal two-level autocorrelation is far less
developed.
• A p-ary m-sequence and its decimations: It was proved by Helle-

seth [23] that for d 6∈ {1, p, · · · , pn−1}, the crosscorrelation function
Cd(τ) of an m-sequence {s(t)} and its d-decimation takes on at least
three values. For p-ary sequences of length pn − 1, all the decimations
d known to give 3-valued crosscorrelation are listed below:

(i) d = p2k+1
2 , n

gcd(n,k) is odd [56];

(ii) d = p2k − pk + 1, n
gcd(n,k) is odd [56];

8
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(iii) d = 2 · 3 n−1
2 + 1, n is odd and p = 3 [16].

Some other families of decimations for p-ary m-sequences that lead to
low crosscorrelation Cd(τ) with few values were recently summarized
in [10].
• A p-ary m-sequence and a subclass of Helleseth-Gong sequences

with certain decimations: Gong, Helleseth and Hu in [21] showed
that the crosscorrelation between an m-sequence and a subclass of
Helleseth-Gong sequences with decimations d ∈ {1, (pn + 1)/(pk +
1)} takes values from the set {0,±p(n+k)/2} and they determined the
crosscorrelation distribution.

1 .4 SU M M A R I E S O F PA P E R S I A N D I I

Crosscorrelation properties of binary sequences with ideal two-level au-
tocorrelation have been extensively studied. The research for the p-ary
case is less developed. For p-ary sequences, there are only two basic
classes of two-level autocorrelation sequences with no subfield struc-
tures for an arbitrary odd prime p. One is the class of p-ary m-sequences
and the other is the class of p-ary Helleseth-Gong sequences [24]. For
crosscorrelation of p-ary sequences, the research has been mostly di-
rected to finding proper decimations d resulting in low-correlation from
m-sequences. Recently, Gong, Helleseth, and Hu studied the crosscor-
relation of m-sequences and a subclass of Helleseth-Gong sequences
as well as some of their decimations [21]. Many decimations that yield
three-valued crosscorrelation have been found by computer search.

Paper I extends the research in [21]. Let n = (2m+ 1)k, and s, 1 ≤ s ≤
2m, be an integer such that gcd(s, 2m + 1) = 1. Let b0 = 1, bi = b2m+1−i,
and bis = (−1)i for i = 1, 2, ..., m, where indices of bis are taken mod
2m+ 1. Let u0 = b0/2 = (p+ 1)/2, and ui = b2i for i = 1, 2, ..., m. Recall
that the Helleseth-Gong sequence {s(t)} is defined by s(t) = Trn( f (αt)),
with

f (x) =
m

∑
i=0

uix(p2ki+1)/2. (6)

For ui = (−1)i and d ∈ {1, (pn + 1)/(pk + 1)}, the crosscorrelation
between the m-sequence a(t) = Trn(αt) and the sequence b(t) =
Trn( f (αdt)) is 3-valued and the crosscorrelation distribution is deter-
mined [21].

There are two main contributions in Paper I. One contribution in
Paper I is that ui is not limited to (−1)i as in [21], but is relaxed to

9
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that in the definition of Helleseth- Gong sequences. The other con-
tribution in Paper I finds more decimation numbers for three-valued
cross-correlation by settling the ranks of the following two quadratic
forms over Fq with q = pk:

Qλ(x) = Trn
k

(
m

∑
i=0

uixq2i+1 + λx2

)
and

Qλ(x) = Trn
k

(
m

∑
i=0

uixq2i+1 + λxq(m+1)s+1

)
.

Paper II concerns the application of Helleseth-Gong sequences to
constructing p-ary sequence families with good correlation. In 2004,
Jang et al [34] used the Helleseth-Gong sequences and m-sequences to
construct a family of p-ary sequences with period pn − 1:

F =
{
{Trn( f (βα2t) + αt)} | β ∈ Fpn

}
,

where f (x) is the function given in (6). It was shown that the maximum
nontrivial correlation value Cmax (as in (5)) of all pairs of distinct se-
quences in such a family does not exceed pn/2 + 1, which is optimal
with respect to Welch’s bound [29].

Paper II acts as a second attempt to employ p-ary Helleseth-Gong
sequences and m-sequences to construct a new p-ary sequence family
with good correlation properties. Take q = pk. Starting from the dec-
imations d = 1 or (q(m+1)s + 1)d ≡ 2 (mod q2m+1 − 1), discovered in
Paper I, we construct two new families of sequences with period pn − 1:

A =
{
{Trn( f (αdt) + βαt)} | β ∈ Fpn

}
∪
{
{Trn(α

t)}
}

(7)

and

B =
{{

Trn
(

f (α2t) + uα(q
(m+1)s+1)t + vαt)} | u ∈ Fpn , v ∈ Γ

}⋃{{
Trn(wα(q

(m+1)s+1)t + αt)
}
|w ∈ Fpn

} (8)

where f (x) is the function given in (6) and Γ = {1, α, · · · , α(pn−3)/2}.
By the examination of the rank of certain quadratic forms, Paper II
shows that Family A has nontrivial correlation from the set {−1, −1±
p(n+k)/2,−1± p(n+3k)/2}, Family B has family size pn(pn + 1)/2 and
has the magnitude of nontrivial correlations upper bounded by 1 +
p(n+3k)/2.

10
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2 L I N E A R CO D E S F R O M H I G H LY NO N L I N E A R
FU N C T I O N S

Claude Shannon’s landmark paper “A mathematical theory of commu-
nication", written in 1948 [53], signified the beginning of the discipline in
electronic engineering called information theory and also the branch of
it called error-correcting codes. Given a communication channel which
may corrupt messages sent over it, the object of an error-correcting code
is to provide a systematic way of adding redundancy to a message so
that the original message can be recovered if it has been corrupted in
transmission [33].

The applications of error-correcting coding to communication chan-
nels are too numerous to mention. Error-correcting coding gives high
fidelity on compact discs. It has been used to transmit black and white
pictures from Mariner space probes as well as colorful pictures from
recent Voyager journeys. Since the publication of Shannon’s work, math-
ematicians have developed connections between error-correcting coding
and aspects of algebra and combinatorics. Sophisticated mathematical
techniques have proved useful for coding and coding problems. Among
all types of codes, linear codes have been studied the most. Because
of their algebraic structure, they are easier to describe, encode, and
decode than nonlinear codes [42]. Linear codes also have found a lot of
applications in cryptography [1, 44, 45].

2 .1 BA S I C S O F L I N E A R CO D E S

We denote by Fq the finite field of q elements, where q is a prime power.
Let Fn

q denote the n-dimensional vector space over Fq consisting of all
vectors (words) x = (x1, x2, · · · , xn) ∈ Fn

q with coordinates in Fq.
The Hamming distance dH(x, y) between any two words x, y ∈ Fn

q is
the number of positions where they differ, i.e.,

dH(x, y) = |{i | xi 6= yi}|.

Related to the Hamming distance is the Hamming weight wH(x) of a
vector x ∈ Fn

q which is the number of non-zero positions in x, i.e.,

wH(x) = |{i | xi 6= 0}|.

Any subset of Fn
q defines a code C of length n. The cardinality or the

size of C is denoted by |C| and an element c ∈ C is called a codeword of

11
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C. The minimum Hamming distance between two different codewords
c1, c2 ∈ C is the minimum distance d of C defined as

d(C) = min{dH(c1, c2) | c1, c2 ∈ C, c1 6= c2}.

The minimum distance d of a code C defines its error-correcting proper-
ties: t = b d−1

2 c, which is known as the packing radius of the code C. The
covering radius ρ of a code C is the smallest possible integer such that
the spheres of this radius around the codewords cover the whole space
Fn

q , i.e.,
ρ = max

x∈Fn
q

min
c∈C

d(x, c).

By convention, we use the notation (n, M, d)q to denote the code C
consisting of M codewords with coordinates in Fq and length n and
having minimum distance d. If C forms a linear subspace in Fn

q with
dimension k, then the size of C is |C| = qk and we refer to C as an [n, k]q
linear code over Fq. We also use the notation [n, k, d]q to emphasize that
C has minimum distance d.

A parity check matrix H of an [n, k]q linear code C is an (n− k)× n-
matrix such that

C = {x ∈ Fn
q | xHT = 0},

where T and 0 denote the transpose of a matrix and the all-zero vector
of size n− k, respectively. It follows that C has minimum distance d if
and only if any d− 1 columns in H are linearly independent and there
exist d linearly dependent columns. A generator matrix G of an [n, k]q
linear code C is a k× n-matrix where the k rows form a basis of C. It
follows that

C = {mG |m ∈ Fk
q}.

Let C⊥ denote the set of vectors in Fn
q orthogonal to all codewords in

an [n, k]q linear code C, i.e.,

C⊥ = {x ∈ Fn
q | (x, c) = 0, ∀c ∈ C},

where (x, c) = x1c1 + x2c2 + · · ·+ xncn and where all operations are
performed in Fq. It follows that C⊥ is also a linear code with length n
and dimension n− k, called the dual code of C with parameter [n, n−
k, d⊥]q. Moreover, the above defined matrices G and H connected with
the code C are a parity check matrix and a generator matrix of C⊥
respectively.

12
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Let C be an [n, k]q linear code. Let Ai, i = 0, 1, · · · , n denote the
number of codewords of C with (Hamming) weight i. The sequence
(A0, A1, · · · , An) is called the weight distribution of C and the polynomial
A(x) = A0 + A1x+ · · ·+ Anxn is termed the weight enumerator of C. The
weight distribution of the dual code C⊥, denoted by A⊥0 , A⊥1 , · · · , A⊥n ,
can be determined by the MacWilliams identities if the weight distri-
bution of C is known [42]. The weight distribution (A0, A1, · · · , An)
is an important research object in coding theory because it allows the
computation of the probability of error detection and correction with
respect to some algorithms [38].

An [n, k]q linear code C is cyclic if any cyclic shift of a codeword is
also a codeword of C. By identifying (c0, c1, · · · , cn−1) ∈ C with

n−1

∑
i=0

cixi ∈ Fq[x]/(xn − 1),

any cyclic code C of length n over Fq corresponds to an ideal of the
polynomial residue class ring Fq[x]/(xn − 1) and can be expressed as
C = 〈g(x)〉, where g(x) is the generator polynomial of C. The polynomial
h(x) = (xn − 1)/g(x) is referred to as the parity-check polynomial of C.

The minimum distance d is a simple measure of the goodness of
a code. For a given length and number of codewords, a fundamental
problem in coding theory is to produce a code with the largest possible
d. Alternatively, given n and d, it is of interest to determine the maxi-
mum number Aq(n, d) of codewords in a code over Fq of length n and
minimum distance at least d.

Given a code C over Fq of length n and minimum distance d, the
sphere of radius r about any codeword c contains in total ∑t

i=0 (
n
i )(q−

1)i vectors in Fn
q . The fact that the spheres of radius t = b d−1

2 c about
codewords are pairwise disjoint immediately implies the following
elementary inequality, commonly referred to as the sphere packing bound
or the Hamming Bound.

Theorem 1. (Sphere Packing Bound) Let C be a code over Fq of length n and
minimum distance d. Then

Aq(n, d) ≤ qn

t
∑

i=0
(n

i )(q− 1)i
, (9)

where t = b d−1
2 c.

13
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From the sphere packing bound, we see that when we get equality in
the bound, we actually fill the space Fn

q with disjoint spheres of radius t.
In other words, every vector in Fn

q is contained in precisely one sphere
of radius t centered about a codeword. A code C that meets the sphere
packing bound with equality is called perfect. It follows that a code is
perfect if and only if its packing radius t equals its covering radius ρ.
The parameters for which perfect codes over Galois fields exist have
been completely classified in the early 1970s [55, 57, 60].

Theorem 2. A perfect code C with parameter (n, M, d)q satisfies one of the
following:

(1) (n, qn, 1)q, the whole space Fn
q , where n is a positive integer and q is a

prime power;

(2) (2l − 1, 2, 2l − 1)2, the binary repetition codes, where l is a positive
integer;

(3) (23, 211, 7)2 the binary Golay code;

(4) (11, 36, 5)3 the ternary Golay code;

(5)
(

qs−1
q−1 , q

qs−1
q−1 −s, 3

)
q
, where s is a positive integer and q is a prime power.

It is worth noting that we make no assumption of linearity on the
above codes. The codes of (1) through (4) are unique up to affine equiv-
alence. The Hamming codes occur under (5) and there exist nonlinear
perfect codes with the parameters as in (5) but not affine equivalent to
a Hamming code.

In the case when the covering radius exceeds the packing radius by
one, the code C is called quasi-perfect. As the parameters of perfect codes
are completely classified, it is particularly interesting to investigate
quasi-perfect codes. There has been a lot of research into constructing
quasi-perfect codes, e.g. certain double error correcting BCH codes.
However, unlike perfect codes, the corresponding classification task for
the sets of possible parameters for quasi-perfect codes is much more
complicated [33].

2 .2 PL A N A R A N D AL M O S T PE R F E C T NO N L I N E A R FU N C T I O N S

Let f (x) be a function from a finite Abelian group (A;+) to a finite
Abelian group (B;+). If for each nonzero a ∈ A, the difference function

14
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f (x + a)− f (x) takes on all the elements of B the same number of times,
the function f is called planar. Planar functions were introduced for the
study of affine and projective planes by Dembowski and Ostrom in 1968
[12]. Taking A = Zm

r and B = Zr, where r and m are positive integers
and Zr denotes the set of integers modulo r, Nyberg in [50] introduced
the so-called perfect nonlinear (PN) functions in cryptography. Then, in
this context, the bent functions introduced by Rothaus in [52] and later
generalized by Kumar et al. in [39] can be seen as a special case of
planar function. where q is a power of an odd prime,

Let f (x) be a function from finite field Fq to itself, where q is a power
of an odd prime. Define

∆ f = max
a∈F∗q

max
b∈Fq
|{x ∈ Fq : f (x + a)− f (x) = b}|.

Nyberg [51] defined a mapping to be differentially δ-uniform if ∆ f = δ.
This concept is of interest in cryptography since differential and linear
cryptanalysis exploit weaknesses in the uniformity of the vectorial
Boolean functions which are used as S-boxes in DES and in many other
block ciphers. It is desirable that the functions used for cryptography
have differential uniformity as small as possible.

In the binary case, the solutions of f (x + a) − f (x) = b come in
pairs and therefore ∆ f ≥ 2. In this sense, differentially 2-uniform
functions, called almost perfect nonlinear (APN), are optimal. In the case
when p is odd there exist differentially 1-uniform functions, which
are perfect nonlinear functions. It is interesting that PN functions and
APN functions also define optimal objects in sequence design, coding
theory and combinatorics. This fact has led to intensive research and an
abundance of results on PN functions and APN functions. Please refer
to [5, 7, 27, 59] for more details on these results. In what follows, we
shall be concerned mainly with the applications of PN, APN and some
other highly nonlinear functions to the construction of linear codes with
good properties.

2 .3 TH R E E CL A S S E S O F L I N E A R CO D E S

Let m be a positive integer and q be a power of a prime. Let α be a
primitive element of Fqm . Let f (x) be a mapping from Fqm to itself with
f (0) = 0. Define a linear code C over Fq of length n = qm − 1, which
admits one of the following matrices as its parity-check matrix:
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Type I

H1 =

[
1 α α2 · · · αqm−2

f (1) f (α) f (α2) · · · f (αqm−2)

]
,

Type II

H2 =

 1 α α2 · · · αqm−2

f (1) f (α) f (α2) · · · f (αqm−2)
1 1 1 · · · 1

 ,

Type III

H3 =

 1 α α2 · · · αqm−2

f (1) f (α) f (α2) · · · f (αqm−2)

1 −1 (−1)2 · · · (−1)qm−2

 ,

where each symbol stands for the column of its coordinates with respect
to a basis of the Fq-vector space Fqm . We shall say the code C is of Type
I/II/III if it admits the matrix H1/H2/H3 as its parity-check matrix. It
follows that the dual codes C⊥ of Type I, II and III have H1, H2 and H3
as their respective generator matrices. Then, the dual code C⊥ of Type
I, II and III can be written in terms of the trace function as:

Type I

C⊥ =
{
(c0, c1, · · · , cqm−2) | ci = Trm(aαi + b f (αi)), a, b ∈ Fqm

}
,

Type II

C⊥ =
{
(c0, c1, · · · , cqm−2) | ci = Trm(aαi + b f (αi) + c), a, b, c ∈ Fqm

}
,

Type III

C⊥ =
{
(c0, c1, · · · , cqm−2) | ci = Trm(aαi + b f (αi) + c(−1)i), a, b, c ∈ Fqm

}
.

In the case of q = 2, the linear codes C defined above are binary
codes. Carlet, Charpin and Zinoviev in [8] intensively studied the linear
code C of Type I for APN functions and Almost Bent functions (Almost
Bent (AB) functions are functions from F2m to itself satisfying that for
every u, v ∈ F2n , v 6= 0, the sum ∑x∈F2n (−1)v· f (x)+u·x only takes value

in {0,±2
m+1

2 }, where m is odd. It is well known that all AB functions
are APN functions but the inverse is not true [7]). It was shown that
f (x) is APN if and only if the linear code C of Type I has parameters
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[2m − 1, 2m − 1− 2m, 5] and furthermore f (x) is AB if and only if the
dual code C⊥ of Type I has nonzero weights 2m−1 − 2

m−1
2 , 2n−1 and

2m−1 + 2
m−1

2 , which implies that f is AB if and only if the linear code
C of Type I is a uniformly packed code with length 2m − 1, minimum
distance 5 and covering radius 3 [8].

It is worth noting that for a binary linear code C with length 2m − 1
and dimension 2m − 1− 2m, according to the Hamming bound in (9),
its minimum distance d satisfies

b(d−1)/2c

∑
i=0

(
2m − 1

i

)
≤ 22m−1

22m−1−2m = 22m.

It follows that the minimum distance d is less than or equal to 6. On the
other hand, the existence of a linear [n, k, d] code implies the existence
of a linear [n− 1, k, d− 1] code. If the minimum distance of a [2m −
1, 2m − 1− 2m]2 linear code equals 6, then one deduces a [2m − 2, 2m −
1− 2m, 5]2 linear code. But this code does not exist [4]. Thus, the largest
possible minimum distance of a binary [2m − 1, 2m − 1− 2m] linear
code is 5. We shall say in the sequel that a linear code C is optimal if it
achieves the largest possible minimum distance for given length and
dimensions. In this sense, the binary linear code C of Type I is optimal
if and only if f (x) is APN. Note that the codes C of Types II and III are
exactly the same for the binary case. It is easily seen that if f is APN,
this code has parameter [2m − 1, 2m − 2− 2m, 6] since any codeword
in C has even weight. The inverse is true as well. This is because the
condition that C has no codeword of weight 4 implies that there do not
exist four distinct elements x, y, z, w ∈ F2m satisfying{

x + y + z + w = 0
f (x) + f (y) + f (z) + f (w) = 0.

This is equivalent to saying that f (x) is an APN function [7]. By the
Hamming bound in (9), it also follows that the linear codes C of Types
II and III are optimal if and only if f (x) is APN.

Consider the case of q = ph, where p is an odd prime and h is a
positive integer. For PN functions f from Fqm to itself, Carlet, Ding and
Yuan [9] in 2006 investigated the properties of the code C of Type I and
its dual.

Theorem 3. [9] Let m > 1 and q = ph with h a positive integer. Let f (x) be
a perfect nonlinear mapping from Fqm to itself with f (0) = 0. Then the code C
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of Type I has parameter [qm − 1, qm − 1− 2m, d1]q with 2 ≤ d1 ≤ 4 and the
dual code C⊥ has parameter [qm − 1, 2m, d⊥1 ]q with d⊥1 ≥

q−1
q (qm − qm/2).

Furthermore, in the special case that q = 3, i.e., (p, h) = (3, 1), if f (x) =
f (−x) for all x ∈ Fqm and f (x) = 0 if and only if x = 0, then the code C has
minimum distance 4.

In [9], Carlet et al studied another class of linear codes C with parity-
check matrix

Type II'

H′2 =

 0 1 α α2 · · · αqm−2

f (0) f (1) f (α) f (α2) · · · f (αqm−2)
1 1 1 1 · · · 1


and its dual when f (x) is a PN function over Fqm . The class is referred
to as of Type II’ due to its close connection with the code of Type II.

Theorem 4. [9] Let m > 1 and q = ph with h a positive integer. Let f (x)
be a perfect nonlinear mapping from Fqm to itself. Then the code C of Type II’
has parameter [qm, qm − 1− 2m, d′2]q with d′2 = 5 if q = 3 and 3 ≤ d′2 ≤ 4
otherwise. The dual code C⊥ has parameter [qm, 2m + 1]q with the minimums
distance no less than q−1

q (qm − qm/2).

For any mapping f (x) with f (0) = 0, it is easy to check that if
(c0, c1, · · · , cqm−2) is a codeword of the code of Type II, then (0, c0, c1, · · · ,
cqm−2) is a codeword of the code C of Type II’. It follows that

d′2 ≤ d2,

where d2, d′2 are the minimum distances of the codes of Type II and II’
respectively.

Similar to the proof of Theorem 7 in [9], we have the following
corollary.

Corollary 1. Let m > 1 and q = ph with h a positive integer. Let f (x) be a
perfect nonlinear mapping from Fqm to itself with f (0) = 0. Then the code C
of Type II has parameter [qm − 1, qm − 2− 2m, d2]q with d2 = 5 if q = 3 and
3 ≤ d2 ≤ 4 otherwise.

By examining the linear codes C defined from the following PN
functions from Fpm to itself (which were the only PN functions over
Fpm known until 2005),
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• f (x) = xpk+1, where k ≥ 0 is an integer such that m/ gcd(m, k) is
odd;

• f (x) = x
3k+1

2 , where p = 3, k is odd and gcd(m, k) = 1;

• f (x) = x10 − ux6 − u2x2, where p = 3 and m is odd,

the authors in [9] deduced many optimal and almost optimal codes and
employed them to construct secret sharing schemes with nice access
structures. The weight distributions of the dual codes C⊥ of Types I and
II’ defined from the PN functions listed above were completely settled
in [17, 40]. As the codes C⊥ of Type II and Type II’ are closely related,
one can determine the weight distributions of the code C⊥ of Type II
from the above PN functions with the same technique used in [40].

2 .4 SU M M A R I E S O F PA P E R S I I I , IV A N D V

Papers III, IV and V continued the study on the linear codes C and their
duals of Types I and III defined from certain functions over Fpm .

Note that in the case when f (x) are monomials over Fqm , the lin-
ear codes C defined in the previous subsection become cyclic codes,
which have efficient encoding and decoding algorithms in storage and
communication systems.

Very recently Ding and Helleseth constructed many optimal ternary
cyclic codes of Type I from monomials xe [15]. It was shown that all
APN monomials and a number of other monomials over F3m , i.e., q = 3,
can be used to generate cyclic [3m − 1, 3m − 1− 2m]3 codes achieving
the largest possible minimum distance 4. At the end of the paper they
presented nine monomials, for which the optimality of the ternary
codes constructed is confirmed from the numerical results while the
theoretical proof is left open.

SU M M A RY O F PA P E R III

Starting with attacking one of the nine open problems proposed in
[15], Paper III constructed plenty of optimal ternary cyclic codes with
parameters [3m − 1, 3m − 1− 2m, 4] and [3m − 1, 3m − 2− 2m, 5].

Let C(1,e) and C(1,e,s), where s = pm−1
2 , denote the cyclic codes of Types

I and III defined from monomials xe over Fpm , respectively. In other
words, C(1,e) and C(1,e,s) are the cyclic codes over Fp with generator
polynomials m1(x)me(x) and (1 + x)m(x)me(x), where mi(x) is the
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minimal polynomial of αi over Fp for a primitive element α in Fpm .
According to the Hamming bound, one is not likely to find optimal
codes C(1,e) and C(1,e,s) if p > 3. We are thus interested in the case where
p = 3.

In Paper III, we are mainly concerned with the monomials xe, where
e 6≡ 3i (mod 3m − 1) for any 0 ≤ i ≤ m− 1, such that the ternary cyclic
codes C(1,e) have parameter [3m − 1, 3m − 1− 2m, 4] and C(1,e,s) have
parameter [3m − 1, 3m − 2− 2m, 5].

In the first part of Paper III, we characterized the conditions for
the following integers e to generate cyclic codes C(1,e) with parameter
[3m − 1, 3m − 1− 2m, 4]:

(1) e = r(3m−1 − 1) (r = 2 corresponds to Open problem 7.8 in [15]);

(2) e = 3m−1
2 + r;

(3) e = 3m−1
2 − r;

and presented some integers r meeting those conditions. The critical
technique used is to determine the degrees of irreducible factors of the
following two polynomials over F3 :

f (x) = (x + 1)e + xe + 1, g(x) = (x + 1)e − xe − 1.

It turned out that for each of the eight remaining open problems in [15],
the cases of h = 0, 1, 2, 3 and h = m− 1, m− 2, m− 3 can be settled as
well. Nevertheless, new techniques are required for the general case.

In the second part of Paper III, we wished to find integers e such that
the corresponding codes C(1,e,s) have parameter [3m − 1, 3m − 2− 2m, 5],
which are optimal in the sense that they achieve the maximum possible
minimum distance. The constructed cyclic codes C(1,e,s) with parameter
[3m − 1, 3m − 2− 2m, 5] are closely connected to PN monomials over
F3m . We in this part showed that the cyclic code C(1,e,s) has parameter
[3m − 1, 3m − 2− 2m, 5] if e is one of the following integers:

(1) e = 3m−1
2 + r, where m is even and xr is a PN function over F3m ;

(2) e = 2, where m is even;

(3) 2ed ≡ 2 · 3τ (mod 3m − 1), where m is odd, τ is an integer with
0 ≤ τ ≤ m− 1 and xd is a PN function over F3m .

It is interesting that when m is odd, the following five classes of APN
exponents e [27, 59] are covered by Case (3):
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(i) e = 3m+1−1
8 for m ≡ 3 (mod 4); and e = 3m+1−1

8 + 3m−1
2 for m ≡ 1

(mod 4); or

(ii) e = 3(m+1)/2−1
2 for m ≡ 3 (mod 4); and e = 3(m+1)/2−1

2 + 3m−1
2 for

m ≡ 1 (mod 4); or

(iii) e = 3m+1
4 + 3m−1

2 ; or

(iv) e = 3(m+1)/2 − 1; or

(v) e = (3(m+1)/4 − 1)(3(m+1)/2 + 1) for m ≡ 3 (mod 4),

because one can respectively find integers

(i) d = 3k + 1 for k = 1; or

(ii) d = 3k + 1, for k = (m + 1)/2; or

(iii) d = (3k + 1)/2 for k = 1; or

(iv) d = (3k + 1)/2, where k = (m + 1)/2 if m ≡ 1 (mod 4), and
k = (m− 1)/2 if m ≡ 3 (mod 4); or

(v) d = (3k + 1)/2, where k = (m + 1)/4 if m ≡ 3 (mod 8), and
k = (3m− 1)/4 if m ≡ 7 (mod 8)

satisfying the conditions in Case (3).
As shown in [15], the above APN exponents can be used to generate

optimal ternary cyclic codes C(1,e) as well. The interest in further inves-
tigating the cyclic codes C(1,e) and C(1,e,s) defined from the above APN
exponents e led us to the work in Paper IV.

SU M M A RY O F PA P E R IV

As pointed out in Subsection 2.1, the weight distribution (A0, A1, · · · , An)
is an interesting research topic in coding theory [38]. It is thus of signifi-
cant interest to determine the weight distribution of the optimal ternary
cyclic codes C(1,e), C(1,e,s) and their duals constructed in [15] and Paper
III. According to the MacWilliams Identities [42], the weight distribution
of a linear code C will be settled if the weight distribution of its dual
code C⊥ is known. Due to the close connections to certain exponential
sums, we focused our attentions on the weight distributions of the cyclic
codes C⊥(1,e) and C⊥(1,e,s) in Paper IV (Paper IV used notation C(1,e) and
C(1,e,s) to denote the corresponding cyclic codes instead. Please see the
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explanation at the bottom of this page1). For consistency of notation,
we shall adhere to the foregoing convention for the remainder of this
section.

Paper IV studied the weight distributions of cyclic codes C⊥(1,e) and

C⊥(1,e,s) for several classes of integers e, which covers the five APN ex-
ponents aforementioned as special cases. At the beginning of Paper IV,
we presented a number of classes of three-weight cyclic codes over Fp

via examining the condition for the cyclic codes C⊥(1,d) and C⊥(1,e) to have
the same weight distribution.

Theorem 5. Let m ≥ 3 be odd. (i) Let p ≡ 3 (mod 4). If e is an even integer
satisfying 2(pk + 1)e ≡ 2 (mod pm − 1) for some nonnegative integer k,
then C⊥(1,e) is a [pm − 1, 2m] cyclic code with the weight distribution in Table

1. (ii) Let p be any odd prime. If e is an integer satisfying (pk + 1)e ≡ 2
(mod pm − 1) for some positive integer k with gcd(m, k) = s, then C⊥(1,e) is
a [pm − 1, 2m] cyclic code with the weight distribution of

• Table 2 when e ≡ 1 + (p− 1)/2 (mod p− 1); and

• Table 3 when e ≡ 1 (mod p− 1).

Using Theorem 5, the weight distributions of the cyclic codes C⊥(1,e)
for the five classes of APN exponents listed in the previous subsection
can be determined. Then the weight distributions of the cyclic codes
C(1,e) are then settled via the MacWilliams identities [42].

Apart from Theorem 5, Paper IV studied the value distributions of
the following two exponential sums:

T(a, b) = ∑
x∈Fpm

ωTr(ax+bxe) (10)

1 Let mi(x) be the minimal polynomial over Fp of αi for a primitive element α in
Fpm . In some of the literature, the notation C(1,e) was used to denote the cyclic code
with generator polynomial m1(x)me(x) (Convention 1) whilst, elsewhere, the notation
C(1,e) was used to denote the cyclic code with parity-check polynomial m−1(x)m−e(x)
(Convention 2). In Paper III, we adopted Convention 1 that C(1,e), C(1,e,s) denotes the
cyclic codes with generator polynomials m1(x)me(x) and (1 + x)m1(x)me(x), whilst
in Paper IV, we adopted Convention 2 that C(1,e), C(1,e,s) denotes the cyclic codes with
parity-check polynomial h(x) = m−1(x)m−e(x) and h(x) = (1 + x)m−1(x)m−e(x).
The reason for doing this is that Paper III studied the minimum distances of cyclic
codes C(1,e) and C(1,e,s) and Paper IV focused on the weight distributions of their duals
separately.
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Table 1: Weight distribution I

Hamming weight Multiplicity
0 1

(p− 1)pm−1 − p
m−1

2 1
2 (p− 1)(pm − 1)(pm−1 + p

m−1
2 )

(p− 1)pm−1 + p
m−1

2 1
2 (p− 1)(pm − 1)(pm−1 − p

m−1
2 )

(p− 1)pm−1 (pm − 1)(pm−1 + 1)

Table 2: Weight distribution II

Hamming weight Multiplicity
0 1

(p− 1)pm−1 − (p−1)
2 p

m+s−2
2 (pm − 1)(pm−s + p

m−s
2 )

(p− 1)pm−1 + (p−1)
2 p

m+s−2
2 (pm − 1)(pm−s − p

m−s
2 )

(p− 1)pm−1 (pm − 1)(pm − 2pm−s + 1)

and
S(a, b, c) = ∑

x∈Fpm

ωTr(ax+bxe+cxs), (11)

where p ≡ 3 (mod 4), e is an integer satisfying (pk + 1)e ≡ 2pτ

(mod pm − 1) for some integer τ ∈ Zm and positive integer k with
gcd(m, k) = 1 and s = (pm − 1)/2. These two exponential sums are
closely related to the exponential sum

T0(a, b) = ∑
x∈Fpm

ωTr(axpk+1+bx2).

By settling the distribution of (T0(a, b), T0(−a, b)) when (a, b) runs
through F2

pm , Paper IV derived the value distributions of T(a, b) and
S(a, b, c). The value distribution of S(a, b, c) was later utilized to settle
the weight distributions of the cyclic codes C⊥(1,e,s). For the special case

when p = 3, the weight distributions of the cyclic codes C⊥(1,e,s) for the
last three classes of APN exponents were thus determined.

SU M M A RY O F PA P E R V

As introduced in Subsection 2.1, a code C over Fq of length n is called
a perfect code if its covering radius equals its packing radius, i.e.,
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Table 3: Weight distribution III

Hamming weight Multiplicity
0 1

(p− 1)pm−1 − (p− 1)p
m+s−2

2 1
2 (pm − 1)(pm−s + p

m−s
2 )

(p− 1)pm−1 + (p− 1)p
m+s−2

2 1
2 (pm − 1)(pm−s − p

m−s
2 )

(p− 1)pm−1 (pm − 1)(pm − pm−s + 1)

ρ = b(d− 1)/2c. The parameters of perfect codes have been completely
classified [55, 60]. The next interesting case is when the covering radius
exceeds the packing radius by one. Codes satisfying this condition
are termed quasi-perfect (QP) codes. Quasi-perfect codes have been
extensively studied, but classification of putative sets of parameters for
quasi-perfect codes seems to be much more complicated than that for
the perfect codes.

Let p be a prime and m be a positive integer. Let f be a mapping
from Fpm to itself with f (0) = 0. Recall that the linear codes C of Type
I defined in Subsection 2.3 admit the matrix

H1 =

[
1 α α2 · · · αqm−2

f (1) f (α) f (α2) · · · f (αqm−2)

]
as their parity-check matrix, where α is a primitive element of Fpm and
each symbol stands for the column of its coordinate with respect to a
basis of the Fp-vector space Fpm .

Paper V studied the covering radius of the linear code C of Type I for
certain functions f (x). For the binary case, we proved that the code C
is a quasi-perfect code with parameter [2m − 1, 2m − 1− 2m, 5] for any
quadratic APN function

f (x) =
m−1

∑
i,j=0

ai,jx2i+2j
, ai,j ∈ F2m ,

where m ≥ 3. In the case when p is odd, we investigated the covering
radius of the code C for certain monomials f (x) = xe. It was shown that
for odd m ≥ 3 and arbitrary odd prime p, the code C f is quasi-perfect
if xe is a PN monomial over Fpm with (e− 1)4 ≤ pm − 1. In addition, it
is also proved that for odd m and p ≡ 3 (mod 4), the code C f is quasi-
perfect if e is the even solution to 2de ≡ 2 (mod pm − 1), where xd is
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a PN monomial over Fpm with (d− 1)4 ≤ pm − 1. As a consequence,
for odd m ≥ 3 and odd prime p, we derive an abundance of p-ary
quasi-perfect linear codes of length pm − 1 and dimension pm − 1− 2m.
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