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Abstract 

Abstract 

The Soviet nuclear submarine Komsomolets sank on the 7
th

 of April 1989, 185 km southwest 

of the Bear Island in the Norwegian Sea to a depth of about 1655 m. The submarine contains 

one nuclear reactor, containing long-lived radionuclides such as caesium-137 (
137

Cs) along 

with other fission and activation products, in addition to two mixed uranium (U)/plutonium 

(Pu) nuclear warheads containing weapons grade plutonium.  

The Institute of Marine Research (IMR) has, in cooperation with the Norwegian Radiation 

Protection Authority (NRPA), monitored the areas adjacent to Komsomolets since 1993, 

where bottom water and sediment samples have been analysed for 
137

Cs and plutonium-239, 

240 (
239+240

Pu). Because of the large depth and strong currents in the area, it has not been 

possible to determine how close to the wreck the samples were taken.  

The present study has been carried out at the IMR. During sampling from R/V G. O. Sars in 

April 2013, Komsomolets was precisely located using a Kongsberg EM302 multibeam 

echosounder, a Simrad EK60 single beam echosounder and an Olex 3D bottom-mapping 

system. To ensure precise positioning of the sampling equipment, a Simrad MST342 wireless 

acoustic transponder was attached to the box-corer. The transponder communicated with R/V 

G. O. Sars’ dynamic positioning system, the Kongsberg HiPAP (High Precision Acoustic 

Positioning), while collecting the sediment samples. An attempt to use the acoustic 

transponder was also performed in 2012, but due to weather conditions and lack of time, the 

attempt did not succeed. 

1 cm thick slices from fifteen sediment cores collected adjacent to Komsomolets in 2012 and 

2013 have been analysed for 
137

Cs. A selection of the 0-1 and 1-2 cm layers from the 2013 

sampling were analysed for 
239+240

Pu, 
238

Pu, americium (
241

Am) and uranium-238 (
238

U). 

Further, isotope ratios were determined. Grain size analyses on the 0-1 cm layers of the 

selected cores were also performed, as well as dating of two cores from the 2012 sampling. 

No 
137

Cs peaks was found in any of the cores, neither no elevated activity concentrations of 

Pu-isotopes, 
241

Am and 
238

U. The activity concentrations of 
137

Cs in the 0-1 cm layers were 

comparable to 
137

Cs activity concentrations in surface sediments found in the area adjacent to 

Komsomolets in previous years. This was also the case for the 
137

Cs activity concentrations in 

surface sediments found elsewhere in the Barents Sea and deep areas of the Norwegian and 

Greenland Seas. 
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Abstract 

Although several model studies have shown that a radioactive leakage from Komsomolets will 

have insignificant impact on fish and other marine organisms, there are still public concerns 

about the condition of the submarine and the potential for radioactive leakage.  
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Introduction 

1. Introduction 

1.1. Background and objectives of the thesis 

In 1989, the Soviet nuclear attack submarine Komsomolets sank in the Norwegian Sea about 

185 km southwest of the Bear Island (Kolstad, 1995). The submarine represents a potential 

threat to the environment as it contains a nuclear reactor and two nuclear warheads. The 

concern arouse particularly in Norway, where the resting place of the wreck is located close to 

the Norwegian fishing grounds (Sagalevitch, 1995).  

Since 1993, the Institute of Marine Research (IMR) has yearly monitored the levels of 

radioactive contaminations in sediments and seawater in the area close to Komsomolets. Here, 

the extent of gamma-emitters are measured (Figure 1.1), while the Norwegian Radiation 

Protection Authority (NRPA) measures for alpha emitters (plutonium-239 (
239

Pu), plutonium-

240 (
240

Pu) and americium-241(
241

Am)) (Figure 1.2). So far, the detected levels are low and 

comparable with the general levels of the Norwegian and Barents Seas (Heldal et al., 2002).  

 

Figure 1.1. Caesium-137 (
137

Cs) in surface sediments and bottom water samples 

collected in areas adjacent to the sunken nuclear submarine Komsomolets (IMR). 
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Introduction 

 

Figure 1.2. Plutonium-239,240 (
239+240

Pu) and americium-241 (
241

Am) in surface 

sediments and bottom water samples collected in areas adjacent to Komsomolets 

(NRPA 200; 2003; 2004; 2005; 2008; 2011).        

During previous monitoring, uncertainties arose as to how close to the wreck the sediment and 

water samples were collected. The fact that the wreck rests as deep as approximately 1700 m, 

makes it difficult to know whether the monitoring can capture a potential leakage from the 

submarine.  

During the yearly sampling at the resting place of Komsomolets in 2012, a transponder was 

attached to the sampling equipment on board the R/V G. O. Sars to get an exact position of 

the sampling. The transponder communicated with the research vessel so that the sampling 

equipment could be positioned relative to the wreck on the seabed. For the very first time this 

system was used under the yearly sampling at areas adjacent to the submarine. It had 

previously been tested in Bjørnefjorden and Byfjorden by Leinebø (2011), with an accuracy of 

about ± 1 m at a depth of 600 m. Unfortunately, there were some problems with the sampling 

equipment, where the box-corer would not close its grab-arms when the transponder was 

attached to it. After a series of unsuccessful sampling attempts, the transponder was removed, 

and the sediment sampling was performed as usual (Appendix F). 

It was decided that the transponder was to be used on the 2013 monitoring of the resting place 

of Komsomolets. The author of this thesis was attending this cruise in the period of 01-

09.04.13 on the research vessel R/V G. O. Sars. 
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Introduction 

The objectives for this thesis are to: 

- Collect sediment cores in the immediate vicinity of the wreck of Komsomolets using 

R/V G. O. Sars wireless acoustic positioning system 

-  Determine the levels of gamma-emitters in the sediment cores 

- Determine the levels of alpha-emitters (Pu-isotopes, U-isotopes and 
241

Am) in selected 

layers of the sediment cores 

- Determine geochemical parameters such as age of the sediment layers and grain size 

distributions 

- Compare the results with levels of radionuclides in sediments elsewhere in the Barents 

and Norwegian Seas 

- Consider if there is any sign of leakage from Komsomolets 

1.2.  The Komsomolets 

 

Figure 1.3. The Komsomolets (Montgomery, 1995). 

On the 7
th

 of April 1989, the Soviet nuclear submarine Komsomolets sank in the Norwegian 

Sea about 185 km southwest of the Bear Island (Kolstad, 1995). The tragedy started at 11.00 

a.m. with a fire in the back section of the submarine (compartment 7, Figure 1.4). The back 

section contained reduction gear and/or diesel engines (Montgomery, 1995). According to 

press reports based on interviews with crew members, a liquid had been observed leaking 

from a hydraulic system (Eriksen, 1990). It took less than fifteen minutes for the submarine to 

reach the surface (Olgaard, 1994), and the reactor was switched to a stable cool-down mode, 

to ensure nuclear safety (Føyn, 1994a). The fire spread forwards reaching the compartment 

containing the pumps of the primary circuit and the nuclear reactor (compartment 5 and 4, 

Figure 1.4), and another fire also started at a control desk (compartment 3, Figure 1.4). 

Several explosions were heard, and after approximately five hours later the submarine began 

to sink (Olgaard, 1994).  
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There are probably several causes for this accident. Besides some technical defects on the 

submarine, the crew also had inadequate training while the officers showed poor decision-

making skills (Kolstad, 1995). Of the 69 crew members on board, 42 were killed in the 

accident. Five crew members tried to survive in a recue capsule built into the submarine 

(inside the V-shaped structure in the conning tower, Figure 1.4), but only one of them 

survived as it was shot to the surface. The Norwegian Defence Research Establishment stated 

that Komsomolets rests at a depth of 1655 m at the location 73˚43'16'' N and 13˚16'52'' E 

(Høibråten et al., 2003). The wreck is thought to rest in an almost upright position, where it is 

lodged 2.5-3 m in muddy sediments (Høibråten et al., 1997). 

1.2.1. The submarine 

Komsomolets (or “K-278”) means “member of the Young Communist League”, and is 

classified as a “Mike” in NATOs classification system for submarines (Montgomery, 1995). It 

was launched in May 1983 in Severodvinsk, and has a length of approximately 120 m.  

Komsomolets is the only submarine ever built in the “Mike” class, and is very special in that 

both its inner pressure hull and outer hull is made of titanium (Kolstad, 1995). The outer hull 

has a thickness of 9.8 mm and the pressure hull, which is approximately 10 cm thick, consists 

of seven compartments, which is shown in Figure 1.4 (Høibråten et al., 2003). Titanium is 

highly resistant as well as being lighter than both iron and steel, and by using this as a 

construction material; it was possible for Komsomolets to work at depths of 1000 m. 

 

Figure 1.4. Layout of the nuclear submarine Komsomolets showing the locations and use of 

various compartments (Høibråten et al., 1997). 

1.2.2. Radionuclide inventory 

The reactor is a 190 megawatts (MW) OK-650 b-3 pressurised-water reactor (PWR) (Nilsen 

et al., 1996), and is made of low-alloy steel with corrosion protection on the inside. Its 

installation includes a gas system to compensate for volume changes (Høibråten et al., 2003). 

The reactor is located in compartment four (Figure 1.4), which is separated from the central 

post by an especially thick bulkhead, and the fuel consists of metal alloys of uranium and 
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aluminium canned in stainless steel (Kolstad, 1995). There is no direct contact between the 

low-alloy steel and the titanium alloys, and lead is widely used for shielding in the reactor 

compartment. 

Soviet and Russian authorities have released very little information about the reactor 

construction and the reactor core, but the fuel is said to have an enrichment of 30% uranium-

235 (Kolstad, 1995). It is uncertain how many working hours it had before the tragedy, but it 

is estimated that 20-25 kg was used at the time of the accident, resulting in a produced 

quantity of approximately 2 kg plutonium-239 (
239

Pu) in the reactor core (Føyn, 1994a). This 

assumption is made based on the knowledge that this type of reactor will have an original 

content of about 200 kg uranium-235 (
235

U). In 1991, the amount of isotopes in the reactor 

was given by the Russian authorities (marked in Table 1.1) (Høibråten et al., 1997). 

Both the contents of transuranic radionuclides and the activities for the most important 

activation products (iron-55 (
55

Fe), cobolt-60 (
60

Co) and nickel-63 (
63

Ni)) are calculated by 

the Kurchatov Institute (Gladkov et al., 1994). The alpha emitters’ 
239

Pu, plutonium-240 

(
240

Pu) and Curium-242 (
242

Cm) are listed in Table 1.1, along with the short lived beta emitter 

plutonium-241 (
241

Pu) and its daughter nuclide Americium-241 (
241

Am). Table 1.1 also shows 

the activation products, which are produced by interaction between neutrons from the nuclear 

reactor and materials in the reactor itself and its shielding (Gladkov et al., 1994). 

The submarine contains two nuclear torpedoes with nuclear warheads, which is located in 

compartment one (Figure 1.4) in the bow. These torpedoes were designed for use in great 

depths, but the exact construction of the weapons is unknown (Høibråten et al., 2003).  

Estimates of the contents of radioactive material have been made, where contemporary 

nuclear warheads would be expected to contain about 10 kg of 
235

U or about 4 kg 
239

Pu 

(Høibråten et al., 2003). Assuming that the Soviet/Russian weapons-grade plutonium contains 

94% of 
239

Pu and 6% of 
240

Pu, this activity corresponds to a total of about 6,0 kg Pu in the two 

weapons altogether (Cochran and Norris, 1993). The activity is shown in Table 1.1 and the 

development over time for some of the most important radionuclides is listed in Figure 1.5. 
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Table 1.1. Komsomolets radionuclide inventory. The half-lives and the given and calculated 

activities (year 1989 and year 2089) are shown. This information is calculated by Gladkov et 

al. (1994) and summarized by Høibråten et al. (1997). 

Isotope Half-life 
Activity (Bq) 

1989 2089 

Reactor: 

Iron-55 2.73 y 1.3 · 10
14

 1.2 · 10
3
 

Cobalt-60 5.272 y 5.9 · 10
13

 1.1 · 10
8
 

Nickel-63 99.6 y 4.4 · 10
12

 2.2 · 10
12

 

Krypton-85 10.72 y 4.8 · 10
14

 7.5 · 10
11

 

Strontium-90 28.78 y 2.8 · 10
15

 2.5 · 10
14

 

Ruthenium-106 1.020 y 8.9 · 10
14

 - 

Caesium-134 2.062 y 3.5 · 10
15

 8.6 · 10
0
 

Caesium-137 30.254 y 3.1 · 10
15

 3.1 · 10
14

 

Cerium-144 284.893 d 9.8 · 10
15

 - 

Promethium-147 2.6234 y 7.5 · 10
15

 2.5 · 10
4
 

Plutonium-239 24204 y 4.4 · 10
12

 4.4 · 10
12

 

Plutonium-240 6555 y 1.7 · 10
12

 1.7 · 10
12

 

Plutonium-241 14.353 y 3.1 · 10
14

 2.5 · 10
12

 

Plutonium-242 373000 y 1.0 · 10
9
 1.0 · 10

9
 

Americium-241 432.1 y 4.4 · 10
10

 3.8 · 10
10

 

Americium-242m 142 y 1.5 · 10
9
 9.2 · 10

8
 

Americium-243 7362 y 1.7 · 10
9
 1.7 · 10

9
 

Curium-242 162.8 d 5.6 · 10
12

 - 

Curium-234 28.5 y 4.8 · 10
8
 4.2 · 10

7
 

Curium-244 18.077 y 3.1 · 10
10

 6.7 · 10
8
 

Weapons: 

Plutonium-239 24204 y 1.3 · 10
13

 1.3 · 10
13

 

Plutonium-240 6555 y 3.0  · 10
12

 3.0  · 10
12

 

Long-lived decay products: 

Neptunium-237 2140000 y - 2.5 · 10
8
 

Americium-241 432.1 y - 9.0 · 10
12

 

y = years, d = days 
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Figure 1.5. Contents of the most important radionuclides (besides 
239

Pu and 
240

Pu) in the 

reactor of the submarine Komsomolets as a function of time (AMAP, 1998). 

1.2.3. Damages due to the accident 

The front part of the submarine is most seriously damaged with holes in both the inner 

pressure hull and the outer hull. Videotapes taken during Russian expeditions in the summers 

1991-1993, show a large hole (approx. 20 m
2
) on the top of the front part of the pressure hull, 

situated just above the torpedoes in the first compartment (Høibråten et al., 1997). There are 

also several small cracks, and a large crack, approximately 2-3 cm wide on the port side of the 

submarine.  

The Yablakov report (1993) stated that the hatches in the torpedo section were open, and the 

nuclear materials in the warheads were in contact with seawater. Russian authorities pointed 

to an extensive corrosion due to a galvanic corrosion process accelerated by the titanium hull 

(Føyn, 1994a). However, since we lack detailed information about the material used, the 

protective coating of the warheads or the titanium hull of the submarine, it is impossible to 



 

17 

 

Introduction 

predict the exact time of when the corrosion will take place. Holes in the torpedo section were 

sealed by nine titanium plugs during the expedition to Komsomolets in 1994 (Høibråten et al., 

2003). This was done in order to prevent seawater from flowing through, and to minimise the 

immediate corrosion of the warheads. 

1.2.4. Observed releases of radionuclides 

Reports based on Russian measurements and the measurements taken by the IMR and the 

NRPA, state that there has been no observation of release of plutonium (Figure 1.2) (Føyn, 

1994b) (NRPA, 2012). Of fission products from the reactor, only a slight elevation of 

caesium-137 (
137

Cs) is recorded. These observations were made under the Russian cruises 

from 1991-1994, where the deep submersible manned vehicles MIR (one and two) were used. 

They were equipped to provide the radiation monitoring specially (Sagalevitch, 1995). The 

releases of the radionuclide were observed near the ventilation pipe, which went from the 

reactor to the top of the conning tower (Høibråten et al., 1997). In 1994, measurements were 

also taken inside the reactor-compartment ventilation tube, where the peak of the spectra 

revealed 
137

Cs
 
activity concentrations between 0.4 MBq/m

3
 and 4 MBq/m

3
 (Høibråten et al., 

2003). The values decreased rapidly outside the pipe, where no 
137

Cs
 
was detected in any 

spectra that were collected on the upper deck of the reactor compartment.  

1.3. Sources of caesium-137 (
137

Cs) 

The most important sources of caesium-137 (
137

Cs) in the Norwegian and Barents Seas are 

global fallout from nuclear weapon tests in the 1950s and 1960s, fallout from nuclear 

weapons testing near Novaya Zemlya, discharges from the nuclear reprocessing plants at 

Seallfield (UK) and Cap de la Hague (France) and the Chernobyl accident in 1986 (e.g. 

Aarkrog, 1994, Strand et al., 1994, Kershaw and Baxter, 1995, Salbu et al., 1997, Smith et al., 

2000). An overview of these sources and other actual and potential sources of 
137

Cs
 
in these 

waters are listed below. 

1.3.1. Nuclear weapon tests 

Nuclear weapons explosions have provided the largest inventory of both fission and neutron 

activation products in the global environment (AMAP, 1998). The first fission weapon test 

was performed in New Mexico, USA in July in 1945. This test, and the other fission weapon 

tests detonated in the years 1945-1952, resulted in depositions locally and did not influence 

the Polar Regions (Aarkrog, 1994).  Thermonuclear bombs (H-bomb) on the other hand, first 
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tested at Eniwetok Island in the Pacific Ocean on 1 November 1952, led to global fallout. The 

major sites for such atmospheric releases beside the Bikini Island and the Eniwetok Island 

(USA), were the Nevanda test site (USA), and Semipalatinsk (Kazakstan, Former Soviet 

Union (FSU)). 

In total, 522 atmospheric nuclear tests have taken place, where most of the atmospheric 

release occurred in the two periods 1952-1958 and 1961-1962 (UNSCEAR, 1993). They were 

separated by a temporary test ban treaty in 1959-1960. A treaty banning all atmospheric tests 

was sign in 1963 by USA, the Union of Soviet Socialist republics (USSR) and Great Britain. 

This led to a decrease in total global fallout, and since 1980, no atmospheric tests have been 

carried out by any country. Table 1.2 shows an overview of the total production of selected 

radionuclides by atmospheric nuclear tests. 

Table 1.2. Total releases of selected radionuclides by atmospheric nuclear tests (UNSCEAR, 

1993) 

Radionuclides Total productions (PBq) 

Strontium-90 (
90

Sr) 604 

Caesium-137 (
137

Cs) 912 

Plutonium-239 (
239

Pu) 6.5 

Plutonium-240(
240

Pu) 4.3 

Plutonium-239 (
241

Pu) 142 

 

80 of the atmospheric nuclear tests took place at Novaya Zemlya (Figure 1.8), as well as 42 

underground weapon tests (last one performed in 1990) (JNRE, 1996). Underwater nuclear 

weapon tests took also place at this archipelago in 1955, 1957 and 1961 (AMAP, 1998), 

where the detonations are assumed to have a short-term impact on the seawaters and a long-

term impact on the sediments.  

1.3.2. The Chernobyl accident 

The Chernobyl nuclear power plant accident is probably the most well-known accidental 

explosion, releasing about 100 PBq 
137

Cs (JNRE, 1996). The accident took place in Ukraine 

on April 26 1986, and affected the Northern Hemisphere, manly Europe and former USSR 

(Egorov et al., 1999). Due to run-off from contaminated areas on land and the marine 

transport from the Baltic, the North and the Norwegian Seas, contamination to the Arctic 
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Region still occur (Aarkrog, 1994). Figure 1.6 shows a map with sources of radioactivity in 

Europe, where the location of the Chernobyl accident are marked. 

 

Figure 1.6. Sources of radionuclides in the northern environment: The sunken nuclear 

submarines K-159 and Komsomolets (potential threat), the reprocessing plants Sellafield and 

Cap de la Hague, nuclear installations in Russia (Mayak, Tomsk and Krasnoyarsk), 

Chernobyl in Ukraine and nuclear weapons test site Novaya Zemlya (the archipelago located 

on the border between the Kara Sea and the Barents Sea) (NRPA, 2011). 

1.3.3. European reprocessing industry  

Discharges from the European reprocessing plants Sellafield (formerly Windscale), UK, and 

Cap de La Hague, France, are the main sources for radioactive contamination to marine areas 

along the Norwegian coast and to the Arctic Region (Figure 1.7) (JNRE, 1996). The principle 

radionuclides released are the beta/gamma emitters 
137

Cs, plutonium-241(
241

Pu), strontium-90 

(
90

Sr), and ruthenium-106 (
106

Ru), and the alpha emitters dominated by plutonium-238 

(
238

Pu), plutonium-239 (
239

Pu) and americium-241 (
241

Am) (Gray et al., 1995). Sellafield, the 

principle source with respect to quantities discharged, has discharged radioactive waste into 

the Irish Sea since 1951. A total release of 
137

Cs from this power plant have been estimated to 

be 10
15

 PBq (Aarkrog, 1994), with a maximum release in the period 1974-1978 (JNRE, 

1996).  
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Figure 1.7. Circulation of surface waters of the North, Norwegian, Greenland and Barents 

Sea, where Sellafield and Cap de La Hague are marked (IMR). 

1.3.4. Russian nuclear installations 

Mayak (Chelabinsk), Krasnoyarsk and Tomsk are the three reprocessing plants for spent 

nuclear fuel in Russia (Figure 1.6). Mayak started operating in 1948, and was the first plant 

established in the USSR for production of nuclear weapons material (JNRE, 1996). 

Radioactive wastes from Mayak and Tomsk are discharged into the drainage area of the Ob 

River, while waste from Krasnoyarsk are discharged directly into the Yenisy River. These 

rivers are major contributors of freshwater to the Kara Sea, which can contain large amounts 

of dissolved and particulate material (Standring et al., 2008). This material can contain 

radionuclides, which can be spread further into the Barents Sea after entering the Kara Sea.   
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1.3.5. Dumped radioactive materials 

FSU has dumped large amount of radioactive waste disposal in shallow seawaters of the 

Arctic Seas from 1959 - 1991, where they are present as actual and potential sources. In 1993, 

the Russian Federation published the so-called “White book”, which reported that the total 

amount were approximately 90 PBq at the time of dumping, where 89 PBq of the total 

inventory was high-level radioactive waste (Yablakov et al., 1993). According to the last 

edition of the White Book in 2000, this is to be found on the seabed in the Arctic (Sivintsev et 

al., 2005):  

 Three nuclear powered submarines with fuel 

- nuclear submarine (NS) K-27 dumped in the Stepovogo Fjord in the Kara Sea  

- NS Komsomolets accidentally sunk in the Norwegian Sea in 1989  

- NS K-159 accidentally sunk in the Barents Sea near the Kola Bay entrance in 2003  

 A submarine reactor with spent nuclear fuel (SNF) in the Novaya Zemlya trough 

 Shielding assembly with parts of SNF from the nuclear icebreaker Lenin in the 

Tsivolki Fjord  

 Five reactor compartments with and without SNF, from nuclear submarines and from 

the nuclear icebreaker Lenin 

 18 ships loaded with solid radioactive waste  

 More than 900 other radioactive items (unpacked radioactive waste) 

 More than 17000 containers with solid radioactive waste 

The main dumping area was situated in the eastern part of the Novaya Zemlya shelf (Figure 

1.8), where eight disposal areas hosted 70% of the FSUs total sea-disposal of radioactive 

waste products (Stepanets et al., 2007).  
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Figure 1.8. Ocean dumping sites and sites of nuclear weapon tests of FSU at the Novaya 

Zemlya. This map also shows an overview of gas deposits and the animal life at and around 

Novaya Zemlya (Champ et al., 1997). 
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1.4.  Caesium-137 (
137

Cs) 

1.4.1. Chemical and physical properties of Caesium-137 (
137

Cs) 

Caesium-137(
137

Cs) is a radioactive isotope of the alkali metal caesium (Cs) with atomic 

number 55 in group 1 in the periodic table. It is a chemical analog to potassium (K) and 

rubidium (Rb), and is formed anthropogenically as a fission product by nuclear fission. In the 

fission process a heavy nucleus, often uranium or plutonium, is bombarded with neutrons, 

which results in splitting of the original nucleus and formation of new elements (Choppin, 

2013).  

Caesium-137 (
137

Cs) did not exist prior to discovery of nuclear fission, but after years of 

nuclear industry and nuclear weapons, it is present almost everywhere on earth. It is the 

largest contributor to dose among anthropogenic radionuclide, and has often been chosen as 

the most significant representative of the anthropogenic radionuclides found in the marine 

environment (Povinec et al., 2003). 

Caesium-137(
137

Cs) has a half-life (t½) of 30.07 years (Schøtzig and Schraeder, 1993), and 

decays by beta emission (95%), where an electron is emitted. The beta decay leads to a 

change in elemental composition where a new element is formed. When 
137

Cs decays, meta-

stable barium-137 (
137

mBa) are formed, which further decays by gamma emission to stable 

barium-137 (
137

Ba) (Figure 1.9) (Choppin, 2013). 
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Figure 1.9. Caesium-137(
137

Cs) decay scheme. The nuclide with half-life of 30.07 years, 

decays mainly (94.6%) by beta emission with an energy of 0.512 MeV to the meta-stable 

barium-137m (
137

mBa), which further decays by gamma emission of 0.6617 MeV to the stable 

isotope barium-137 (
137

Ba) (Choppin, 2013). 

The 
137

mBa isotope goes through a change in energy state by emitting a photon, without 

changing the elemental composition, which results in the stable form of barium. This process 

happens rapidly, where the half-life of 
137

mBa is only 2.55 minutes (Choppin, 2013). The 

gamma emission from the meta-stable barium has a characteristic energy of 661.7 keV, which 

easily can be measured by a gamma detector (Schøtzig and Schraeder, 1993).  

In this case, the half-life of the mother nuclide is much larger than the half-life of the daughter 

nuclide, where the amount of daughter atoms becomes constant after some time. At that time 

the rate of decay of the daughter becomes equal to the rate of decay of the parent. This forms 

a steady state condition commonly known as the “secular equilibrium” (Choppin, 2013). In 

this condition, the activities of the different nuclides will be equal, meaning that it is irrelevant 

which one of the nuclides are measured. Due to more complicated sample preparation 

involving radiochemical separation of the beta measurements, it is more convenient to 

measure the activity from the gamma emitting 
137

mBa, whose energy is entitled the “caesium-

energy”. 
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1.4.2. Caesium-137 (
137

Cs) in the marine environment 

The distribution of radionuclides depends of their origin, nature and transport route. Caesium-

137 (
137

Cs) behaviour in the marine water column is very similar to that of conservative 

radionuclides (Povinec et al., 2003), where it will be in solution in seawater, which make its 

water transport easily to trace (Livingston, 2004). Caesium-137 (
137

Cs) was therefor often 

used as an oceanographic tracer (England and Maier-Reimer, 2001), which is extremely 

valuable for the transport and dispersion of costal pollution from Europe to the Artic. That is 

because the sources are few and relatively well defined, and the 
137

Cs-nuclide can be 

quantified accurately at extremely low activity concentrations (Chen et al., 1994). But due to 

the diffuse input following the Chernobyl accident, the use of 
137

Cs as an oceanographic 

tracer, has been somewhat diminished. However, 
137

Cs can be used in modelling experiments 

to study releases from point sources such as sunken nuclear submarines. 

1.4.3. Caesium-137 (
137

Cs) in sediments 

Sediments are the final sink for most particles and organic materials present in seawater (SFT, 

2007). Caesium-137 (
137

Cs) is, as mentioned, not very easily scavenged by particulate matter 

and is therefore found in the water column, but it is also found in sediments. The percentage 

of sedimentation of this radionuclide is rather small, where only 2% of all the 
137

Cs 

transported through the North Sea is stored in the North Sea sediments, where the rest passes 

through (Beks, 2000). Sediments consist mostly of clay, silica, calcium carbonate and organic 

matter (Sarmiento and Gruber, 2006), where this radionuclide binds irreversible to the clay 

mineral illite (Coughtrey, 1983). This means that higher levels of 
137

Cs activity concentrations 

may be expected in sediment cores with high clay content. The sedimentation rate also 

influences the activity concentration of 
137

Cs on the seabed, where this process can be quite 

complicated. It depends on numerous factors such as gravity force and counter currents 

(Lukashin and Shcherbinin, 2007). 

The relationship between radionuclides in bottom sediments and seawater can be described by 

the distribution coefficient, Kd (formula 1.1) (IAEA, 2004). 

(1.1)   Kd =  
                                                             

                                                     
 

IAEA presented in 2004 a list of the recommended Kd for open ocean environment for 

different radionuclides, where the Kd of 
137

Cs was set to 2 x 10
3
. This value can easily be 

compared to other Kds, where the recommended Kd of plutonium (Pu) for instance is 1 x 10
5
. 
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Pu has a much higher Kd then 
137

Cs, therefore making it an unconservative radionuclide, 

where it is easily scavenged and is to be fined in the sediments (Hunt et al., 2013). The 

process, however, is not that simple. The distribution of Pu between seawater and sediments 

greatly depends on its oxidation state (Ikäheimonen, 2003), where it may remobilize to the 

marine environment under the right conditions (Lindahl et al., 2010).  

1.5. Dispersion of caesium-137 (
137

Cs) from Komsomolets 

Several scientists have modelled the spread of caesium-137 (
137

Cs) from Komsomolets. Heldal 

et al. (2013) assessed the effect of a potential long term leakage and a pulse release of 
137

Cs 

from the wreck. The dispersal patterns of the two scenarios were quite similar, where the 

result of the pulse release is shown in Figure 1.10.  

 

Figure 1.10. Bq/m
2
 surface at different times after a pulse discharge of 100% of the total 

inventory of caesium-137 (
137

Cs) from the Komsomolets on April 26th, 1989. The colour 

scale is logarithmic and indicates levels from 0 (blue) to 5 (red) (Heldal et al., 2013). 

Figure 1.10 shows how the discharges from Komsomolets are either transported into the 

Arctic Ocean and eastwards along the shelf edge or re-circulated in the Fram Strait and 
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transported southwards in the East Greenland Current (EGC). A minor part flows into the 

Barents Sea, where it only flows southward on the eastern side of Spitsbergen. The part 

flowing south along East Greenland is recirculated in the Greenland Sea, recirculated in the 

Norwegian Sea, or advected out of the Norwegian Sea through the Denmark Strait. 

The results indicate that both continuous leakages and pulse discharges of 
137

Cs from 

Komsomolets induce negligible activity concentrations of 
137

Cs in cod and capelin (Heldal et 

al., 2013). 

1.6. Other sunken nuclear submarines in the North Atlantic 

Despite from Komsomolets there are six other sunken nuclear submarines in the North 

Atlantic (Eriksen, 1990). Table 1.3 show an overview of these submarines including the 

seventh submarine Kursk, which was raised 14 months after its sinking in year 2000 

(Hayrynen, 2003).  

Table 1.3. Sunken nuclear submarines in the North Atlantic (except the Komsomolets). 

Name /class Nationality 
Year of 

sinking 

Depth (m) of 

resting place 
Resting place 

Thresher 

(Eriksen, 1990) 

American 1963 2500 350 km off Capa Cod, 

Newfoundland 

Scorpion 

(Eriksen, 1990) 

American 1968 3100 650 km souoth-west of 

Azores 

k-27 /November 

class 

(Gwynn et al., 

2013) 

Soviet 1968 33 Dumped in the Stepovogo 

Bay at Novaya Zemlya in 

1982 

k-8 /November 

class 

(Eriksen, 1990) 

Soviet 1970 4680 300 nautical miles north-

west of Spain 

k-219 /Yankee 

class 

(Eriksen, 1990) 

Soviet 1986 1000 North-east of Bermuda 

K-159/ November 

class 

(Eriksen, 1990) 

Russian 2003 238 Outside the Murmansk fjord 

K-141 (Kursk)/ 

Oscar II class 

(Hayrynen, 2003) 

Russian 2000 (108 m) 150 km north of the naval 

base of Sveromorsk (raised) 
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Despite kursk, which is raised, the other submarines rests as potential sources of radioactive 

contamination on the seabed, where the magnitude of the threat will depend on the resting 

place of the submarine and on the extent of leakage (Eriksen, 1990). Radiological surveys on 

samples of sediments and seawater collected near the various sits of these submarines have 

been carried out, where no elevated levels of 
137

Cs have been detected (IAEA, 2001). 

However, some levels of 
60

Co have been detected in sediment samples collected close to the 

submarines Scorpion and Thresher (KAPL, 2000). 
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2. Materials and methods 

2.1. Sample collection 

The samples were collected during two cruises with R/V G. O. Sars; 18-19.09.2012 

(2012111) and 1-9.04.2013 (2013105). The author of this thesis attended the latter cruise. The 

2012-samples were collected by the staff from IMR’s Chemistry laboratory. 

In connection with previous monitoring of the resting place of Komsomolets, it has not been 

possible to determine how close to the wreck the samples were taken. In 2012, an attempt was 

made to collect samples close to the wreck, where the box-corer was equipped with a wireless 

acoustic transponder which communicated with R/V G. O. Sars dynamic positioning system 

(see Appendix F). Due to weather conditions and lack of time, the attempt did not succeed. 

The attempt was repeated with success in 2013. Therefore, the description of the sample 

collection is based on the collection of the 2013 samples. 

2.1.1. Search for the Komsomolets 

In earlier years, Komsomolets has been observed on echo sounding systems on board both 

R/V Johan Hjort and R/V G. O. Sars. In 2012, the submarine was located with the aid of the 

multibeam, the Olex system and the EK60 (Table 2.1). However, since the EK60 has a 7° 

detection radius from the vessel and the depth is approximately 1700 m, the actual area 

becomes quite large (Figure 2.1).   

 

Figure 2.1. Illustration of the detection radius of Simrad EK60 system. 

Despite not optimal weather conditions, we started (at the 7
th

 of April 2013 at approximately 

12.00 am) by mapping the seabed (1km
2
 around the vessel) by using the multibeam and the 

Olex-bottom mapping system. These and other equipment used on the 2013 cruise with R/V 

G. O. Sars are listed Table 2.1. The vessel passed slowly over the area where we knew the 

wreck was resting (from scientific reports and the 2012 monitoring, see Appendix F). When 



 

30 
 

Materials and methods 

we received a signal from the wreck, we marked it on a map, and established a route that the 

vessel should follow (Figure 2.2 a). This was a crisscrossing route (Figure 2.2 a and b), where 

we continued to mark the map every time that the Olex system or the Simrad EK60 received a 

signal from what was assumed to be the Komsomolets. The detected signals would eventually 

overlap each other, where this overlap-point would indicate the exact location of the 

submarine. An example of such signals is shown in Figure 2.3, which is result from the 

vertical sonar, Simrad EK60. 

 

 

Figure 2.2. (a) The route of the vessel tracked on the computer. (b) An illustration of how the 

route was established (the black lines) and where the signal was marked (the red spot). 

 

Figure 2.3. Result from Simrad EK60. The pointy signals are from Komsomolets, and the 

softer, rounded signals are from the seabed. 
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After approximately six hours of searching, we were satisfied with the determination of the 

location of the wreck (Figure 2.4), which respectively had the latitude and longitude of 

73°43'45" N and 13°16'00" E. 

Table 2.1. Equipment list for the 2012 and 2013 cruises with R/V G. O. Sars. 

Instrument Application 

OLEX program 

 

A program that can plot a real-time digital 3D picture of the seabed, 

aided by data from the vessels GPS and multibeam echo sounders. The 

program saves bottom data like depth, latitude, and longitude, which is 

constantly calculated and adapted to previous measurements. 

Multibeam 

Kongsberg EM302 

An echo sounder, which was used to map the seabed and to find the 

sunken submarine. 

Simrad EK60 Fisheries vertical sonar, which was used to see the prevalence of the 

submarine. 

Kongsberg DPS 

 

A computer controlled system that automatically maintain the vessel’s 

position and heading by using its own propellers and thrusters. This is 

used so that the vessel is placed at the exact same location during the 

sediment samples collection. 

Kongsberg HiPAP 

500: “High precision 

acoustic positioning” 

 

An acoustic underwater positioning system consisting of both a 

transponder (receiver) and a transmitter (transducer). The transmitter, 

placed inside the vessel, sends a signal against the seabed transponder, 

and the transponder responds to this and gives a replay. The transducer 

then calculates the accurate position of the transponder relative to the 

vessel. 

Simrad MST342 

 

A transponder that was attached to the box-corer, and connected to the 

HiPAP 500 system of the boat. The transponder sends the necessary 

information about the position of the box-corer at the seabed, so that the 

position can be determined with high accuracy. 

SBE911 Plus 

 

A CTD that measure Conductivity, temperature and depth vertically 

from the sea surface to the seabed. With the help of these parameters 

we can calculate depth, salinity, density and the waters sound velocity. 

Smøgen box-corer Used to collect sediment samples. 

Sediment cutter Used to cut the sediment cores into 1 cm layers. 
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2.1.2. Determining sample locations, and positioning the box-corer 

After locating Komsomolets, we determined 5 sample locations around the wreck (Figure 2.4). 

Location 1 (or “Grabb 1” as the yellow cross is named in Figure 2.4, represents station 194), 

was near the (assumed) front of the wreck. Location 2 (station 195) and 4 (station 197) were 

at the west and east side of the wreck, respectively, and location 3 (station 196) near the stern. 

In addition, location 5 (station 199) was 100 m upstream of the wreck (reference station). At 

this location, we had one unsuccessful sample collection (station 198, reference station), 

where the box-corer arms did not close up before entering the surface. The procedure was 

performed again at the same location, this time with a successful result. 

 

Figure 2.4. Olex picture from 2013. The wreck of Komsomolets is located within the dark 

square. The red circles indicate points where we received signals from the submarine, and the 

yellow crosses indicate sample locations (“Grabb 1” = station 194, “grabb 2” = station 195, 

etc.). 

The transponder, Simrad MST342, concealed by a protecting metal tube, was attached to the 

box-corer as shown in Figure 2.5.The vessel, and hence the box-corer was exactly positioned 

using Kongsberg DPS. The box-corer was then lowered, and when the position device was 
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close (within 1 m) to one of the pre-determined sample locations (location 1-5 in Figure 2.4), 

the last 20 m of wire was released. Thereby, the box-corer hit the seabed. The actual position 

of where the box-corer hit the seabed was determined by the HIPAP-system of the boat, and 

transferred to the Olex-program.  

 

 

Figure 2.5. The box-corer and the transponder (marked with a red circle). Photo: Janita Flo. 

2.1.3. Sediment sample collection 

The samples were collected with a Smøgen box-corer (Figure 2.5). It is equipped with an 

inner box of stainless steel with an area of 30 x 30 cm and a height of 40 cm (Sværen, 2010a). 

The device takes an undisturbed portion of the seabed. The box-corer is supported with lead 

weights on a supporting frame, and is forced into the seabed by its weight. How far into the 

sediments it penetrates, depends on the composition of the seabed. When the box-corer hit the 

seabed, the “pin lock” holding the box-corers arms is removed. As the box-corer is slowly 

pulled out of the sediment, a mechanism allows the box-corer arms to swing below the sample 

box sealing in the sediment. Simultaneously, flaps above the sample box are closed to prevent 

the sample of being disturbed during recovery (Sværen, 2010a).  
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When the box-corer returned to the vessel, the radiation levels were checked with an 

Automess dose rate meter (Figure 2.6). This was done to ensure that the samples were safe to 

work with. Radiation levels did not exceed 0.2 μSv/h. The radiation levels were checked 

several times during the work. 

 

Figure 2.6. The radiation level was checked with an Automess dose rate meter (marked with a 

red circle). Photo: Janita Flo.  

Some of the samples had water on top of the sediments, which was removed using a hose.  

From the box-corer, sediment cores were collected using PVC tubes with an inner diameter of 

10 cm and a length of 40 cm (Sværen, 2010a). These tubes have a sharp lower edge, and were 

manually pressed into the box-corer (Figure 2.7). Excess material was removed, and the cores 

were transferred from the box by placing a thin metal plate underneath the core and seal them 

with plastic lids on the top and bottom. The maximum number of cores to be taken from one 

box is 4. 
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Figure 2.7. Taking sediment core samples. Photo: Janita Flo. 

Table 2.2 and 2.3 show an overview of the sediment samples collected in 2012 and 2013. 

Information like station number, location, date, number of cores and their length are listed, in 

addition to information about which of the samples were measured for caesium-137 (
137

Cs), 

lead-210 (
210

Pb) and radium-226 (
226

Ra), and which of the samples were sent to NRPA for 

further measurements. 
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2.2. Sample preparation 

The sample preparation of the 2012 samples took place during autumn 2012 and spring 2013, 

at IMR’s Chemistry laboratory by the author of this thesis. This is the same procedure as for 

the 2013 samples, prepared in the spring and summer of 2013. For these samples, slicing the 

cores and determination of wet weights of the samples were performed by the author of this 

thesis, and the rest were performed by the staff from IMR’s Chemistry laboratory (see 

Appendix A). The equipment used is listed in Table 2.4. 

Table 2.4. Equipment used in sample preparation. 

Instrument  Remark  Application  

Mettler-Toleodo PG5001-S  Max 5100 g   

d = 0.1g 

Weight measurements 

Mettler-Toleodo PG503-S Max 510 g 

d = 0.001g 

Weight measurements 

CHRIST ALPHA 1-4 freeze 

dryer with Edwards PV3 

vacuum pump 

  

Dry freezing of samples 

Porcelain mortar and pestle  homogenization 

Lorakon (LOkal 

RAdioaktivitets KONtroll) 

polyethylene boxes (60 mL) 

with lid counting container 

Nolato AB art.no.110170 

(box) and 112040 (lid) 

Hold sample material and 

ensure an appropriate sample 

geometry 

 

Piston  

 Pressing the sediment core 

upwards for cutting sediment 

samples 

 

2.2.1. Slicing the cores 

The sediment cores were cut in standing position using a piston (Table 2.4) pressing the core 

carefully upwards. The cores were cut in 1 cm slices (Figure 2.8) and transferred to pre-

weighed aluminum cups. The wet weights were determined using Mettler-Toleodo PG503-S 

(Table 2.4). The length of the sediment cores collected in 2012 varied between 3 cm to 13 cm 

(Table 2.2)  where the slicing of the cores were performed at IMR’s Chemistry laboratory. 
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They were sliced into a total of 76 samples. The 2013 cores were longer, varying from 8 cm 

to 19 cm (Table 2.3). They were sliced into a total of 159 samples, and the process was 

performed on board R/V G. O. Sars. The samples, either in form of whole cores (2012) or 1 

cm slices (2013), were frozen on board the vessel at a temperature of -20 °C.  

 

Figure 2.8. Cutting the core in 1 cm layers. Photo: Janita Flo. 

2.2.2. Homogenizing the samples 

The frozen samples were freeze-dried using CHRIST ALPHA 1-4 freeze dryer (Table 2.4, 

Figure 2.9 (a)) with Edwards RW3 vacuum pump until completely dryness. The dry weight of 

each sample was determined using Mettler-Toleodo PG503-S (Table 2.4). After drying, the 

samples were crushed and homogenized using a mortar (Table 2.4, Figure 2.9 (b)). Since 

Komsomolets resting place is on a muddy ground located at a great depth, the sediment 

samples did not contain any stones or shells with diameter >1 cm.  
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Figure 2.9. (a) Samples getting freeze-dried in the CHRIST ALPHA 1-4 freeze dryer with 

Edwards RW3 vacuum pump, and (b) a sample getting homogenized using a mortar.  

Photo: Janita Flo. 

Known amounts of the sample material were put in 60 mL Lorakon polyethylene boxes 

(Table 2.4), up to 5 mm from the top. This ensured that all of the samples were measured with 

the same geometry as the calibration standard (described in section 2.4.3). The sample mass 

was determined using Mettler-Toleodo PG5001-S (Table 2.4), and the box was marked with 

name, station number and cm layer, sampling date, journal number and sample mass.  

2.2.3. Lead 210 (
210

Pb) dating 

Uranium-238 (
238

U) has a nearly infinite half-life (t½), where its activity concentration on 

earth can be regarded as constant with respect to decay. However, depending on the earth 

crust, the actual activity concentration will vary from location to location (Goldberg, 1963). 

The decay-series of 
238

U
 
is one of the naturally existing radioactive decay-series, which is 

shown in Figure 2.10.  
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Figure 2.10. Daughters in the naturally occurring uranium-238 (
238

U) decay series (Schøtzig 

and Schraeder, 1993).  

Lead-210 (
210

Pb), which has a half-life (t½) of 22.3 years, is one of the daughters in this series, 

and is frequently used in dating marine sediments. The age (within the last 120 years) of a 

sediment sample can be measured based on the content of natural radioactivity; 
210

Pb and 

radium-226 (
226

Ra) (Goldberg, 1963). This is possible when sediments accumulate 

undisturbed, where the sediment rates also can be measured. The dating can be done by 

slicing a sediment core from marine sediments into samples representing sediment layers 

deposited in a certain period. Fresh 
210

Pb
 
will here deposit on surface sediments together with 

precipitating material. When buried, the 
210

Pb
 
decays and its activity concentration in the 

profile of the core follows the exponential decline with depth.  

Two of the sediment cores from the 2012 samples were wrapped in aluminum foil and sealed 

with aluminum tape in order to prevent escape of radon-222 (
222

Rn) gas. These samples were 

stored for at least one month in order to establish the necessary steady-state equilibrium 

between the radionuclides in the uranium-series (Figure 2.10). The age of a particular layer 

was found by calculating the amount of 
210

Pb which had decayed. These calculations have 

been performed by Ingrid Sværen, where the principle of this procedure is described by 

(Goldberg, 1963), and all equations used are obtained from Sværen (2010a). 
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2.2.4. Density correction 

Each core layer’s porosity was calculated using equation 2.1. Thereafter, the thickness of each 

layer below 1 cm was corrected for density compression using equation 2.2 (Tadjiki and 

Erten, 1994). All raw data are presented in Appendix A. 

 (2.1)  Porosity (%) = 
         

           
                       

                   
 

 

 (2.2)  CTi = NTi + NTi  [
      

       
] 

Where 

CTi =  the corrected thickness of layer i 

NTi =  the normal thickness of layer i 

P1 =  the porosity of the upper layer (1) 

Pi =  the porosity of layer i 

The corrected depth of the samples was then estimated by applying these parameters in 

equation 2.3: 

(2.3)  CDi = CDi-1 +[
     

 
]   [

   

 
] 

Where 

CDi =  the corrected depth of layer i, in the middle of the layer  

2.3. Gamma spectroscopy with an HPGe (high purity Germanium) 

detector 

2.3.1. Instrumentation at IMR 

The samples have been measured using two detectors; Rad-11and Rad-12. Rad-11 is an 

ORTEC GEM-series HPGe Coaxal Detector system, while Rad-12 is an ORTEC GMX-series 

GAMMMA-X HPGe Coaxal Photon Detector system, where both of them have Pop Top 

crystal configurations. Resolution (FWHM (Full Width Half Maximum)) at 1.33 MeV (
60

Co) 

is 1.95 keV for both the detectors, and the relative efficiency at 1.33 MeV are 58% in Rad-11 

and 38% in Rad-12. Rad-11 has a crystal diameter of 68.6 mm, and a length of 76.9 mm, 
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while the crystal diameter in Rad-12 is 59.0 mm, and the length is 78.3 mm. The detectors are 

cooled electrically with an Ortec X-Cooler, a mechanical cooler for HPGe detectors, where an 

Ortec CryoSecure Compressor Power Controller protects the cooler (Quality assurance data 

sheet Ra11 (2002); Rad12 (2004)).  

A circular led shield (Mdl Fabcast 04B1) is used to shield the detector. This is a low 

background shielding mounted in a frame with 10 cm solid lead with Cu/Cd lining and 25 mm 

lead under shielding (Sværen, 2010a). 

The counting room is surrounded by 195 mm concrete walls with sand having high olivine 

content. The construction is set up to ensure low background radiation levels, and therefore 

also a low quantification limit. The program used to collect the gamma spectra is ORTEC 

GammaVision cooler (Quality assurance data sheet Ra11 (2002); Rad12 (2004)). 

2.3.2. The HPGe detector 

Gamma-decay is the emission of electromagnetic radiation where the transition occurs 

between energy levels of the same nucleus (Choppin, 2013): 

(2.4)    
 * →   

  + γ 

Each gamma ray emitter emits radiation with one or more unique energies (Schøtzig and 

Schraeder, 1993), and the intensity of the radiation depends of the amount of the radionuclide. 

Gamma-rays do not cause ionization directly, but they do interact with matter. This is what 

happens in a germanium (Ge) detector, where the gamma-ray will transfer its energy to the 

detector material by exciting an electron in the Ge crystal to a higher energy state in the 

conduction band. Ge detectors are semiconductor diodes, where the gap between the valence- 

and the conduction band is so small that it only needs a tiny amount of excitation energy for 

an electron to transfer from the valence band to the conduction band. This procedure produces 

charge carries (electrons and electron holes), and when an external electrical field is applied, 

the conduction band electrons move towards the positive pole, while the electron holes move 

towards the negative pole. When the electron returns to its ground state, a photon will be 

emitted. These photons can be converted to a voltage pulse by integral sensitive preamplifier, 

proportional to the energy of the detected photon (Debertin and Helmer, 1988). 
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Figure 2.11. Schematic overview of a typical gamma spectrometer (taken from Heldal (2001). 

The gamma spectrometer system is shown schematically in Figure 2.11. The preamplifier 

sends out the produced voltage to the main amplifier, which shapes and amplifies the pulse, 

preparing it to conversion from an analogue to a digital signal. This is done by an analogue to 

digital-converter (ADC). Finally, the spectral analyser Multi Channel Analyser (MCA) takes 

up the energy spectrum. 

A peak in the energy spectrum at one or more exact energies enables an identification of the 

radionuclide, and the area of the peak is proportional to the activity of the radionuclide 

(Choppin, 2013). Different structures in these spectrums come from the different ways of 

transferring the gamma energy to the electrons in the detector, and this is done in four 

different ways; (Coherent Scattering,) photoelectric effect, Compton scattering and pair 

production (Figure 2.12). 
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Figure 2.12. Schematic description of the four main processes for gamma-ray interaction and 

absorption (Choppin, 2013). 

In the energy spectrum, the photoelectric effect can be seen by a full energy peak, for example 

661.7 kev, which represents the characteristic energy of caesium-137 (
137

Cs) (Schøtzig and 

Schraeder, 1993). Here, the total kinetic energy of the gamma ray is transferred to the detector 

material, and other features in the spectrum represent the spectral internal background. The 

Compton scattering is an example of where a gamma-ray transfer parts of their energy, where 

electrons of different energies will be released. When such an electron is absorbed in the 

detector, it gives rise to the Compton Continue, which can be seen as a continuous distribution 

of energies in the spectra. 

2.4. Measurements  

2.4.1. Measuring caesium-137 (
137

Cs) 

The method used at IMR for determination of caesium-137(
137

Cs) in sediments by gamma 

spectrometry is accredited by NS-EN ISO/IEC 17025, and is described by Sværen (2010b). 

Hereafter, all equations are taken from this method. 



 

46 
 

Materials and methods 

Measurements of the external background, which come from 
137

Cs radiation in the 

environment due to e.g. contamination of the detector, were carried out on an empty detector 

overnight with a counting time of about 60.000 seconds. The background measurements were 

used in the calculation of the activity concentrations of 
137

Cs (and 
226

Ra and 
210

Pb) (raw data 

in Appendix B). 

When calibrating the detector, a known quantity of 
137

Cs is measured in the same geometry as 

the sample. Here, two 
137

Cs standards delivered by “Analytics” and “Eckert & Ziegler”, with 

activities of 76.7 ± 4.4% and 2524 ± 1% Bq on the respective reference dates 01.10.2002 and 

01.01.2010, were used. The standards are solid matrixes with densities of 1.15 g/cm
3
, in 60 

mL boxes, which is the specific geometry. After one of the standards was measured, the 

geometry factor expressing the detector’s efficiency was determined (section 2.4.3). Later on, 

this factor was used in the sample measurements calculations.   

The detector is controlled weekly with a 
137

Cs point source, which is measured for 100 

seconds. This is done to ensure that the 
137

Cs peak is not moving, and that the efficiency of 

the detector is as expected. A control sample is also measured every second month for at least 

60.000 seconds, to check the reproducibility of the measurements. This control sample is an 

ordinary sediment sample with an activity of (average value of the last five years for both 

Rad11 and Rad12) 2.8 ± 0.4 Bq/kg 
137

Cs, which have been measured over several years 

(Appendix B). 

The number of counts in the regions of interest (ROI) (Figure 2.13 (a)) and the counting times 

were read and recorded in the log book of the respective detector. ROI 1 covers the peak at 

661.7 keV, and has a specific width of cannels (varies from detector to detector; 40 channels 

for Rad11, and 41 for Rad12). ROI 2 and ROI 3 are regions representing the internal 

background of the measurements, each covering an area of 10 channels, respectively 5 

channels to the left and right of the ROI 1 region. In each measurement the gross area, 

representing the registered counts, in ROI 1, ROI 2 and ROI 3 with corresponding counting 

time, are manually read. This was done in the same way for background, standard and sample 

measurements. All calculations were carried out in Microsoft Excel. 
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Figure 2.13. (a) An illustration of the region of interest (ROI) in the gamma spectrum of 

caesium-137 (
137

Cs), and (b) an illustration of the internal background in the gamma-

spectrum for 
137

Cs (Sværen, 2010b). 

All of the 2012 samples were measured for 
137

Cs, but for the 2013 samples, only the first 10 

cm of one core from each station were measured. The selected cores from 2013 were; 194-2, 

195-1, 196-1, 197-2 and 199-1 (reference station). Data and results from 
137

Cs measurements 

are presented in Appendix C. 

2.4.2. Background measurements 

The external background (bk) is measured as described in section 2.4.1, where the results are 

calculated by using equation 2.5: 

(2.5)  bk (cps) = 
     [(

       
  

)    ]

 
 

Where 

B1 =  gross area (counts) in ROI 1 

B2 =  gross area in ROI 2 

B3 =  gross area in ROI 3 

20 =  number of channels in ROI 2 and ROI 3 

x =  number of channels in ROI 1 

T =   live counting time (seconds) 
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Internal background (BK) is related to each measurement and is exemplified in Figure 2.12 

(b). Due to e.g. Compton scattering, BK also had to be calculated, which was done by using 

equation 2.6: 

(2.6)  BK (cps) = 
(
      

  
)    

 
 

Where 

N2 =  gross area in ROI 2 

N3 =  gross area in ROI 3 

x =  number of channels in ROI 1 

20 =  number of channels in ROI 2 and ROI 3 

T =   live counting time (seconds) 

2.4.3. Calibration 

In section 2.4.1, the calibration of the detector measuring 
137

Cs standard, is described. The 

activity in the standards on the calibration date is calculated by using the decay equation 2.7: 

(2.7)                           

Where  

A0 =  activity on the reference date (Bq) 

λ =  ln 2/ t½, t½= half-life of Cs-137 = 11020 days (Schøtzig and Schraeder, 1993) 

t = time since reference date (days) 

The geometry factor was then calculated by using the results from the standard measuring. 

Equation 2.8 was used for the calculations: 

(2.8)     
       
  
 

   
 

Where  

A0 =  activity on calibration date (eq. 2.6) 

N1 =  gross area in ROI 1 

T =  live counting time (seconds) 

Bk =  internal background (eq. 2.6) 
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2.4.4. Sample measurements 

After the internal background (BK) for the sample was determined by equation 2.6, the 

sample activity was found by using equation 2.9: 

(2.9)                  (
  

 
   ) 

Where 

G =  geometry factor (eq. 2.7) 

N1 =  gross area in ROI 1 

T =  live counting time (seconds) 

Bk =  internal background (eq. 2.5) 

The activity (Bq/kg) in dry weight (d.w.) in each sample could then be calculated by using 

equation 2.10: 

(2.10)          
       

 
 

Where  

A137 – Cs = activity in sample (eq. 2.9) 

w =  dry weight of sample (kg) 

Finally, by using equation 2.7 the activity A was corrected to activity A0, for decay since 

sampling date. 

2.4.5. Quantification limit 

The quantification level varies for different samples, due to variations in counting time, 

sample amount and internal background. The quantification limit is based on the minimum 

net counts in the 
137

Cs gamma line. Currie (1968) has defined three limiting levels that are 

shown in Table 2.5. 
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Table 2.5. Definition of quantification levels (Currie, 1968). 

Quantification limit levels Definition 

Lc The net signal level (instrument response) above which an 

observed signal may be reliably recognized as “detected”. 

Ld The “true” net signal level which may be prior expected to lead 

to detection. 

Lq The level at which the measurement precision will be 

satisfactory for quantitative determination. 

 

To make sure that low levels of 
137

Cs are not false identified and quantified, the Lq is 

consider. The Lq is the conservative way to calculate the lowest measurable level, which is 

done by equation 2.11: 

(2.11)         [   √   
 

  
]   

Where  

B =  number of counts 

B is found by using equation 2.12: 

(2.12)     
      

  
      

Where 

N2 =  gross area in ROI 2 

N3 =  gross area in ROI 3 

K1 =  number of channels in ROI 1 

The Lq is the minimum number of net counts in ROI 1 necessary to reach the quantification 

limit. The measurement is above this limit when; N1 – B > Lq. If the measurements are below 

this limit, the results are reported to be less than the quantification limit. 

2.4.6.  Uncertainty 

Every variable in the result calculations has its own uncertainty. The total uncertainty of the 

activity concentration, s, is composed of the uncertainties from background (sB), calibration 
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(sG), sample measurements (sa) and sample amount. The uncertainty used is two times the 

standard deviation (± 2σ). The equation for the uncertainty in measured internal background is 

showed in equation 2.13 (cps) + 2.14 (counts): 

(2.13)      
  

 
  

Where  

(2.14)      √[
     

  
]
 

  [
     

  
]
 

 

And 

sN2 =  (N2)
½ 

N2 =  gross area in ROI 2 

SN3 =  (N3)
½
 

N3 =  gross area in ROI 3 

T =  live counting time (seconds) 

x =  number of channels in ROI 1 

20 =  number of channels in ROI 2 and ROI 3 

Uncertainty in the geometry factor is calculated by using equation 2.15: 

(2.15) 

     √[
     

        
]
 

  [
          

           
]
 

  [
      

           
     ]

 

  [
      

           
    ]

 

 

Where the following variables from the standard measurement are included: 

T =  live counting time (seconds) 

sT = 1 second 

N =  gross area in ROI 1 

sN = (N)
½

 

BK = internal background  

sBK = uncertainty in internal background 

A = activity from Cs-137 

sA = uncertainty in activity from Cs-137 
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Uncertainty in activity from 
137

Cs in a sample (Bq) is calculated by using equation 2.16: 

(2.16)      √[(
 

 
   )    ]

 

  [
 

 
    ]

 

  [
      

  
    ]

 

  [       ]  

Where the following variables from the sample measurements are included: 

N =  gross area in ROI 1 

sN = (N)
½

 

T =  live counting time (seconds) 

sT = 1 second 

BK = internal background  

sBK = uncertainty in internal background 

G = geometry factor 

sG = uncertainty in geometry factor 

Uncertainty in activity concentration from 
137

Cs in a sample (Bq/kg) is calculated by using 

equation 2.17: 

(2.17)      √[
    

 
    ]

 

  [
              

  ]
 

 

Where 

a = activity in sample 

sa = uncertainty in sample activity 

p = sample weight (g) 

sP = uncertainty in sample weight 

1000 = unit conversion factor 

2.4.7. Quality assurance 

IMR is participating in international intercomparison exercises to ensure the quality of the 

measurements taken at the laboratory. These exercises are provided by NPL (National 

Physical Laboratory), and a part of this programme is to measure a 
137

Cs sample with an 

unknown activity concentration, and report the results. The results found at IMR, which 

participates yearly in such exercises, have been satisfying. The analysis of 
137

Cs content in 

sediment samples carried out at IMR are done according to an accredited method, described 

by (Sværen, 2010b). 
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Quality assurance is also done by the weekly measuring of the 
137

Cs point source, and the 

measuring of the control sample on a regular basis (described in section 2.4.1). 

2.5.  Analysis of plutonium-238 (
238

Pu), plutonium-239,240 (
239+240

Pu) and 

americium-241 (
241

Am) 

The 0-1 and 1-2 cm layers of cores 194-2, 195-1, 196-1, 197-2 and 199-1 (reference station) 

collected in 2013 were sent to the NRPA for analyse of plutonium-238 (
238

Pu), plutonium-

239,240 (
239+240

Pu) and americium-241 (
241

Am). They were analysed by alpha spectrometry 

after radiochemical separation. The radiochemical separation of Pu and Am is described in 

IAEA (1989). 

The sediment samples were initially ashed (550 C) over night after addition of yield 

determinants (
242

Pu and 
243

Am). The ash was then leached for several hours in aqua regia 

before Pu and Am was co-precipitated with iron (III) hydroxide (Fe(OH)3). Pu was then 

separated using TBP, ion-exchange (Eichrom anion 1x4 100-200 mesh; 8 M nitric acid 

(HNO3) and eluted with 9 M hydrogen chloride (HCl) + 0.1 M ammonium iodide (NH4I)) and 

TTA. Am was separated by ion exchange (8 M HNO3), co-precipitation with calcium oxalate 

(Ca(COO)2) followed by ion exchange to remove lanthanides, lead-210 (
210

Pb) and polonium-

210 (
210

Po). The samples were then electrodeposited on stainless steel discs using the method 

described by (Hallstadius, 1984). Finally the samples were analysed by alpha spectrometry 

using PIPS detectors (Canberra AlphaAnalyst). The chemical recovery was between 67 and 

88 % for Pu and between 36 and 94 % for Am. 

2.6.  Analyses of uranium-238 (
238

U), atom ratios of 
235

U/
238

U and 
239

Pu/
240

Pu and other elements by the Technical University of Denmark 

(DTU), RISØ campus 

The 0-1 and 1-2 cm layers of cores 194-2, 195-1, 196-1, 197-2 and 199-1 (reference station) 

collected in 2013 were sent to the Technical University of Denmark (DTU) for analyse of 

uranium-238 (
238

U) and the atom ratios of 
235

U/
238

U and 
239

Pu/
240

Pu. Other elements were also 

analysed for, which is to be fined in the appendix E. The samples were analysed by mass 

spectrometry.  

10 g of the samples were ashed at 550 C° overnight in glass beakers. Following addition of 

Hydrogen chloride (HCl) and nitric acid (HNO3) (aqua regia) samples were allowed to digest 

on a hot plate for 48 hours with gradually increasing heat from room temperature to about 90 
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C°. Samples were filtered through GF/A filters into pre weighed plastic bottles. A known 

fraction (about 1%) of the solution was removed for stable elements while ammonia (NH3) 

was added to pH 9 to the remaining solution forming iron (III) hydroxide (Fe(OH)3). The 

samples were stirred for 10 minutes and centrifuged. The precipitate was dissolved in 8 M 

HNO3 and passed through a 1 cm diameter and 10 cm long anion exchange column (AG1x4, 

100-200 mesh). Matrix elements and uranium were washed out using 100 ml 8 M HNO3 and 

Th eluted using 9 M HCl. Finally Pu was eluted by 100 ml 0.5 M HCl and evaporated to 

dryness. The evaporated samples were dissolved in 3 M HNO3 and passed through a 1 ml 

TEVA column to further purify the Pu. Uranium and residual matrix elements were washed 

out using 30 ml 3 M HNO3. Finally Pu was eluted using 20 ml 0.1 M HCl, evaporated to 

dryness, dissolved in 5 ml  3% nitroxyl (HNO) and analysed for Pu-isotopes using an Thermo 

Scientific X-series II  ICP-MS equipped with a CETAC U-5000AT
+
 ultrasonic nebulizer.  

2.7.  Grain size analysis 

Grain size analyses (Buchanan, 1984) were done on the 0-1 cm layers of cores 194-2, 195-1, 

196-1, 197-2 and 199-1 (reference station) collected in 2013. This procedure, described in 

McCave (2008) and Bianchi et al. (1999), was performed at the Institute of Geology by the 

author of this thesis with help from the staff of the institute.  

The samples were first dissolved in water and then sieved in the fraction of 63µm, where the 

>63µm residuals (sands and gravels) were dried in an oven at 50°C overnight, before 

weighting them. The ≤63µm samples (silt and clay) were saved in plastic buckets and left out 

to dry (approximately one week). The dry ≤63µm samples were then powdered using a mortar 

(Table 2.4), and 3.8 g were put into plastic shaker cups. These cups were then filled halfway 

with Calgon (0.05%), and covered with plastic wraps and put on a shaking table for 2 days. 

The samples were then put into the autosampler, MasterTech 52, which stirred them up again 

before sending them up to the sedigraph, SediGraph III, for analysis. The performing of the 

sedigraph grain size analysis is described in (UCL). Later on, the excel program Gradistat, 

described by Blott and Pye (2001), was used for determining the percentage of different 

fractions of silt and clay in the ≤63µm samples. 
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3. Results 

3.1. Activity concentrations of caesium-137 (
137

Cs) in sediment cores 

The results of the caesium-137 (
137

Cs) activity concentrations are presented in section 3.1.1 

and 3.1.2, which represent the samples collected in 2012 and 2013, respectively. All raw data 

are presented in Appendix C. 

3.1.1. Samples collected in 2012 

The 
137

Cs activity concentrations range from below the quantification limit to 7.4 ± 0.4 Bq/kg 

(d.w.) (Table 3.1 and Figure 3.1 to 3.4). The concentrations are typically highest in the 0-1 cm 

layer and decline further down the core. There is no 
137

Cs-peak in any of the cores, which can 

be related to a leakage from Komsomolets or other discharge events. 

The 
137

Cs activity concentrations of the samples did not vary much within the station that they 

were collected from, and showed no evident correlation with the sampling location. Station 

122 was the station containing the highest activity concentration. Cores 122-1 and 122-2 had 

activity concentrations of 4.0 and 7.4 Bq/kg (d.w.) (Table 3.1 and Figure 3.1), respectively in 

their 0-1 cm layers. This station is, according to the cruise report from 2012 (Appendix F), the 

station thought to be located farthest from Komsomolets. Station 123, which is probably also 

located at quite a distance from the submarine, was the station containing the lowest activity 

concentrations (Table 3.1 and Figure 3.2). Here, the 0-1 cm layers of the two cores 123-1 and 

123-2, only showed activity concentrations of 0.7 and 1.8 Bq/kg (d.w.), respectively. Station 

124, which was the station thought to be located nearest Komsomolets, had activity 

concentrations in the 0-1 cm layers of cores 124-1 to 124-4 ranging from 2.9 to 4.1 Bq/kg 

(d.w.) (Table 3.1 and Figure 3.3). The last station, station 125, was also thought to be located 

near the wreck. This station showed activity concentrations of 2.6 and 2.4 Bq/kg (d.w.) in the 

0-1 cm layers of cores 125-1 and 125-2, respectively (Table 3.1 and Figure 3.4). 
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Figure 3.1. Caesium-137 (
137

Cs) activity concentrations (Bq/kg d.w.) in cores 122-1 and   

122-2. Uncertainties (± 2σ) are marked with horizontal error bars. Measurements below the 

quantification limit are plotted as 0.5-the quantification limit and marked in light pink. 

Variations in the quantification limit are due to variations in sample sizes and counting time. 

 

Figure 3.2. Caesium-137 (
137

Cs) activity concentrations (Bq/kg d.w.) in cores 123-1 and   

123-2. Uncertainties (± 2σ) are marked with horizontal error bars. Measurements below the 

quantification limit are plotted as 0.5-the quantification limit and marked in light pink. 

Variations in the quantification limit are due to variations in sample sizes and counting time. 
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Figure 3.3. Caesium-137 (
137

Cs) activity concentrations (Bq/kg d.w.) in cores 124-1, 124-2, 

124-3 and 124-4. Uncertainties (± 2σ) are marked with horizontal error bars. Measurements 

below the quantification limit are plotted as 0.5-the quantification limit and marked in light 

pink. Variations in the quantification limit are due to variations in sample sizes and counting 

time. 

 

Figure 3.4. Caesium-137 (
137

Cs) activity concentrations (Bq/kg d.w.) in cores 125-1 and   

125-2. Uncertainties (± 2σ) are marked with horizontal error bars. Measurements below the 

quantification limit are plotted as 0.5-the quantification limit and marked in light pink. 

Variations in the quantification limit are due to variations in sample sizes and counting time. 
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3.1.2. Samples collected in 2013 

The 
137

Cs activity concentrations in all layers of cores 194-2 and 195-1, respectively located 

by the front and on the west side of Komsomolets, were below the quantification limit. The 

results are therefore not presented in a figure. 

The cores 196-1, 197-2 and 199-1 (reference station) have 
137

Cs activity concentrations which 

range from below the quantification limit to 6.4 ± 0.9 Bq/kg (d.w.) (Table 3.2 and Figure 3.5 

to 3.7). The cores indicate the same trend as the samples collected in 2012, where the 
137

Cs 

activity concentrations are typically highest in the 0-1 cm layer and decline further down the 

core. Nor in these samples is there any 
137

Cs-peak in the cores which can be related to a 

leakage from Komsomolets or other discharge events. 

The 
137

Cs activity concentrations of the samples did not vary much within the station that they 

were collected from, and they showed no evident correlation with the sampling location.  

Station 196 was the station containing the highest activity concentration (Table 3.2 and Figure 

3.5). This station was located by the rear end of the submarine. The second highest 

concentration was found at reference station 199. Here, the 0-1 cm layer of core 199-1 

(reference station) showed an activity concentration of 4.0 Bq/kg (d.w.) (Table 3.2 and Figure 

3.7). Station 197, located on the east side of the submarine, had the lowest activity 

concentration (despite station 194 and 195), where the 0-1 cm layer of core 197-2 had a value 

of 2.7 Bq/kg (d.w.) (Table 3.2 and Figure 3.6). 
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Figure 3.5. Caesium-137 (
137

Cs) activity concentrations (Bq/kg d.w.) in cores 196-1. 

Uncertainties (± 2σ) are marked with horizontal error bars. Measurements below the 

quantification limit are plotted as 0.5-the quantification limit and marked in light pink. 

Variations in the quantification limit are due to variations in sample sizes and counting time. 

 

Figure 3.6. Caesium-137 (
137

Cs) activity concentrations (Bq/kg d.w.) in cores 197-2. 

Uncertainties (± 2σ) are marked with horizontal error bars. Measurements below the 

quantification limit are plotted as 0.5-the quantification limit and marked in light pink. 

Variations in the quantification limit are due to variations in sample sizes and counting time. 
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Figure 3.7. Caesium-137 (
137

Cs) activity concentrations (Bq/kg d.w.) in cores 199-1 

(reference station). Uncertainties (± 2σ) are marked with horizontal error bars. 

Measurements below the quantification limit are plotted as 0.5-the quantification limit and 

marked in light pink. Variations in the quantification limit are due to variations in sample 

sizes and counting time. 
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3.2. Activity concentrations of plutonium-238 (
238

Pu), plutonium-239,240 

(
239+240

Pu), americium-241 (
241

Am) and uranium-238 (
238

U) analysis 

Activity concentrations of plutonium-238 (
238

Pu) and plutonium-239,240 (
239+240

Pu) and their 

plutonium (Pu)-isotope activity ratios (
238

Pu/
239+240

Pu) in the 0-1 and 1-2 cm layers of the 

cores 194-2, 195-1, 196-1, 197-2 and 199-1 (reference station) are shown in Table 3.3. The 

239+240
Pu activity concentrations range from 0.02-0.94 Bq/kg (d.w.), while the 

238
Pu activity 

concentrations range from below the detection limit to 0.05 Bq/kg (d.w.). 

The 
238

Pu activity concentrations of the 0-1 and 1-2 cm layers of core 194-2, and the 0-1 cm 

layer of core 195-1 were below the detection limit. The 
238

Pu/
239+240

Pu activity ratios for these 

layers could therefore not be determined. The other 0-1 and 1-2 cm layers of the sediment 

samples collected in 2013 had 
238

Pu/
239+240

Pu isotope activity ratios ranging from 0.03 to 0.06. 

The lowest and highest value was found in the 0-1 and 1-2 cm layers, respectively in core 

196-1.  

The activity concentrations of americium-241 (
241

Am) range from 0.07 to 1.16 Bq/kg (d.w.) in 

the 0-1 and 1-2 cm layers of the selected cores collected in 2013 (Table 3.4). The lowest and 

highest activity concentration was found in the 1-2 cm layer of core 194-2 and 0-1 cm layer of 

core 199-1 (reference station), respectively. The 
241

Am/
239+240

Pu activity ratios range from 

1.03 to 3.28. 
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The activity concentrations of uranium-238 (
238

U) and the 
235

U/
238

U isotope ratios of the 0-1 

and 1-2 cm layers for the selected cores collected in 2013 are shown in figure 3.4, where they 

respectively range from 8.3 to 22.1 Bq/kg (d.w.) and 0.0069 to 0.0073. The isotope ratios of 

239
Pu/

240
Pu are also shown in this table including its uncertainty given in percentage standard 

deviation (stdv). The isotope ratios ranged from 0.152 to 0.194. 

Table 3.4. Activity concentrations of  
238

U and the isotope ratios of 
235

U/
238

U and 
239

Pu/
240

Pu 

for the 0-1 and 1-2 cm layers of cores 194-2, 195-1, 196-1, 197-2 and 199-1 (reference 

station) collected in 2013. 

Core Depth (cm) 

238
U  

(mBq/g d.w.) 

(5% stdv) 

235
U/

238
U  

(5% stdv) 

239
Pu/

240
Pu 

Uncertainty  

(% stdv) 

194-2 0-1 15.4 0.0070 0.175 11.4 

194-2 1-2 13.7 0.0070 0.169 8.3 

195-1 0-1 22.1 0.0070 0.152 6.5 

195-1 1-2 14.9 0.0073 0.155 6.5 

196-1 0-1 8.3 0.0072 0.175 5.5 

196-1 1-2 9.2 0.0071 0.154 6.3 

197-2 0-1 10.3 0.0069 0.194 4.0 

197-2 1-2 10.2 0.0071 0.164 4.4 

199-1 0-1 9.1 0.0069 0.165 4.2 

199-1 1-2 9.8 0.0071 0.153 3.9 

 

3.3. Grain size analysis 

The result of the grain size distribution of the 0-1 cm layers of the cores 194-2, 195-1, 196-1, 

197-2 and 199-1 (reference station) showed somewhat the same result where most of the 

sample contained silt and clay (see Appendix D). The average percentage of sand and gravel 

(>63µm) in the samples were approximately 3% (Figure 3.8), where the highest and lowest 

values were found in the 0-1 cm layers of cores 196-1 and 195-1, respectively. The percentage 

of silt and clay were also determined (Figure 3.8) after sieving the samples for particles 

>63µm. The samples mostly contained different fractions of silt, and an average of 20% clay, 

where clay particles are ≤2µm. 
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Figure 3.8. Grain size distribution obtained by Gradistat of the 0-1 cm layers of cores 194-2, 

195-1, 196-1, 197-2, 199-1 (reference station) collected in 2013. 

3.4. Lead-210 (
210

Pb) dating 

3.4.1. Activity concentrations of lead-210 (
210

Pb) and radium-226 (
226

Ra) in sediment cores 

Lead-210 (
210

Pb) and radium-226 (
226

Ra) activity concentrations in cores 122-2 and 123-2 are 

presented in Tables 3.5 and 3.6 and Figures 3.9 and 3.10, respectively. The activity 

concentrations are used to calculate the age of each sediment layer (section 3.2.2). 
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Table 3.5. Lead-210 (
210

Pb) and radium-226 (
226

Ra) activity concentrations in core 122-2 

(2012).  

Depth 

(cm) 

210
Pb          

(Bq/kg d.w.) 

Uncertainty       

(± 2σ) 

226
Ra          

(Bq/kg d.w.) 

Uncertainty       

(± 2σ) 

0-1 262 18 34 4 

1-2 166 11 38 4 

2-3 123 10 39 4 

3-4 74 7 41 4 

4-5 71 6 44 4 

5-6 67 6 40 4 

6-7 62 4 43 4 

7-8 47 6 32 4 

8-9 37 5 26 3 

9-10 34 5 23 3 

10-11 30 3 24 2 

11-12 34 3 24 3 

12-13 35 5 31 5 

 

 

Figure 3.9. Lead-210 (
210

Pb) activity concentrations (Bq/kg d.w.) (blue line) and radium-226 

(
226

Ra) activity concentrations (Bq/kg d.w.) (red line) in core 122-2. Uncertainties (2σ) are 

marked with horizontal error bars.  
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Table 3.6. Lead-210 (
210

Pb) and radium-226 (
226

Ra) activity concentrations in core 123-2 

(2012). 

Depth 

(cm) 

210
Pb          

(Bq/kg d.w.) 

Uncertainty       

(± 2σ) 

226
Ra          

(Bq/kg d.w.) 

Uncertainty       

(± 2σ) 

0-1 151 11 40 4 

1-2 100 8 44 5 

2-3 82 7 42 4 

3-4 70 6 43 4 

4-5 52 6 34 4 

5-6 39 5 25 3 

6-7 27 5 24 3 

 

 

Figure 3.10. Lead-210 (
210

Pb) activity concentrations (Bq/kg d.w.) (blue line) and radium-226 

(
226

Ra) activity concentrations (Bq/kg d.w.) (red line) in core 123-2. Uncertainties (± 2σ) are 

marked with horizontal error bars. 
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3.4.2. Dating results 

Dating of the layers in the sediment cores was carried out using the “Constantly Rate of 

Supply” (CRS) model (Appleby and Oldfield, 1978). The dating results are listed in Tables 

3.7 and 3.8. Core 122-2, which is 13 cm long, is somewhat longer than core 123-2, which is 

only 7 cm. Both cores have sediment layers dated from 2013 and back to the 19th century. 

There are no
137

Cs peaks present in either of the two cores that can verify the dating results. 

Table 3.7. Dating results for core 122-2 (2012). 

Depth (cm) Year; CRS 
137

Cs (Bq/kg d.w.) 
Uncertainty (± 

2σ) 

0-1 2013* 4.0 0.9 

1-2 1993 2.1 0.5 

2-3 1982 <0,8 - 

3-4 1970 0,6 0.7 

4-5 1964 <0,6 - 

5-6 1957 <0,6 - 

6-7 1949 <0,3 - 

7-8 1941 <0,7 - 

8-9 1932 <0,6 - 

9-10 1923 <0,6 - 

10-11 1906 <0,2 - 

11-12 1891 <0,3 - 

*The 0-1 cm layer is reported to be from the year after it was collected because the CRS 

model gives the result in decimal year (2012.8 ~ 2013).  

The bottom layer (12-13 cm) was not included in the dating calculations being a residual that 

did not represent a whole cm, where its dry weight was only 22 g (see Appendix A). 

 

 

 

 



 

70 
 

Results 

Table 3.8. Dating results for core 123-2 (2012). 

Depth 

(cm) 
Year; CRS 

137
Cs     

(Bq/kg) (d.w.) 

Uncertainty      

(± 2σ) 

0-1 2013* 1.8 0.8 

1-2 1996 0.7 0.8 

2-3 1984 <0.6 - 

3-4 1971 <0.4 - 

4-5 1955 <0.6 - 

5-6 1930 <0.5 - 

6-7 1875 <0.5 - 

*The 0-1 cm layer is reported to be from the year after it was collected because the CRS 

model gives the result in decimal year (2012.8 ~ 2013). 
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4. Discussion  

4.1. Activity concentrations of caesium-137 (
137

Cs) 

4.1.1. At the site of the Komsomolets 

All the sediment samples collected in 2012 had low caesium-137 (
137

Cs) activity 

concentrations. Since the acoustic transponder was not attached to the box-corer during the 

sampling, there is a possibility that none of the samples were collected close up to the 

submarine. Here, the given positions of the stations are the positions of the vessel during the 

sampling. Due to the large depth and strong currents in the area, these positions might differ 

from the actual positions of where the box-corer hit the seabed. 

The 2013 samples were collected with the acoustic transponder attached to the box-corer, and 

the stations were located as close to the submarine as possible. If there was a leakage from 

Komsomolets, one could expect the stations closest to the wreck to contain the highest activity 

concentrations. However, these samples do not show any higher 
137

Cs levels than the samples 

collected in 2012. There are also no correlations with the positions of the stations and the 

137
Cs

 
activity concentration detected in the collected samples. One might expect the samples 

collected at the stations located on the sides of the submarine, the ones closest to the 

ventilation pipe, to contain the highest 
137

Cs activity concentrations. But these stations contain 

even lower activity concentrations than the reference station, where one of them only contains 

activity concentrations below the quantification limit.  

When comparing 
137

Cs activity concentrations found in sediments in the present study with 

137
Cs activity concentrations found in sediments in the same area in previous years, the results 

do not differ that much. As seen from Figure 1.1, the 
137

Cs activity concentrations found in 

surface sediments in the area adjacent to Komsomolets in the period from 1993 to 2011, 

varied from below the quantification limit to 6.1 Bq/kg (d.w.). However, note that few 

sediment cores were analysed for 
137

Cs in the previous monitoring. But in the study of Heldal 

et al. (2002), two cores from the same box-corer sample collected in the area adjacent to 

Komsomolets in 1999, were analysed for 
137

Cs. Both cores only showed results under the 

detection limit. In 2001, two cores from the same box-corer sample collected in areas adjacent 

to the wreck, were also analysed for 
137

Cs, where the 0-1 cm layers showed results of 1.9 and 

3.8 Bq/kg (d.w.) (Figure 4.1) (IMR, unpublished data, 2001). The results from both these 

studies show comparable 
137

Cs activity concentrations with the result from the 2012 and 2013 
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samples, where no 
137

Cs-peaks can be found in their profiles. This strongly indicates that so 

far, there is little or no leakage from Komsomolets. The low levels can also be subscribed to 

the large depth where the wreck is resting. In addition, its resting place is located far from 

terrestrial areas and relatively far from any point source.  

 

Figure 4.1. Caesium-137 (
137

Cs) activity concentrations in two cores collected by the IMR in 

2001 in the areas adjacent to Komsomolets (IMR, unpublished data, 2001). The cores were 

originally ten cm, but only 4 cm (not corrected depth) were determined. Uncertainties are 

marked with horizontal error bars.  

4.1.2. Comparison with activity concentrations found in the Barents, Norwegian and 

Greenland Seas.  

Figure 4.2 shows average 
137

Cs
 
activity concentrations in surface sediments in the Barents, 

Norwegian and Greenland Seas and the area adjacent to Komsomolets (the IMR monitoring) 

in the period of 1993-2011. The average 
137

Cs activity concentration above the detection limit 

for each year is plotted. 
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Figure 4.2. Average caesium-137 (
137

Cs) activity concentrations in surface sediments from the 

area adjacent to Komsomolets, the Barents, Norwegian and Greenland Seas in 1993 - 2011 

(Føyn and Sværen, 1995, Nies et al., 1999, Heldal et al., 2002, Matishov and Matishov, 2004, 

Gwynn et al., 2012, NRPA, 2000; 2004; 2005; 2006; 2007; 2008; 2009; 2011). Only activity 

concentrations above the quantification limit are plotted.   

As seen from Figure 4.2, the 
137

Cs activity concentrations found in surface sediments 

collected in the area adjacent to Komsomolets, do not vary much from the activity 

concentrations found in surface sediments elsewhere in the Barents, Norwegian and 

Greenland Seas. In some years, the 
137

Cs activity concentrations found in the area close to the 

wreck, even show the lowest values. The highest activity concentrations are found in the 

Norwegian Sea in 2004 and 2006, in samples collected near the cost or in the Norwegian 

Coastal Current (NWCC). Elevated levels of 
137

Cs are known to be found in these areas, due 

to contribution of local terrestrial run off from Chernobyl fallout (Gwynn et al., 2012) (Figure 

4.3), and transport of discharges in the NWCC, due to the Baltic Sea outflow contaminated by 

Chernobyl fallout and earlier discharges from European reprocessing plants (Nies et al., 

1999). 

Many studies have been made in the Barents, Norwegian and Greenland Seas, for example by 

Føyn and Sværen (1995), Nies et al. (1999) and Heldal et al. (2002), respectively performed 

in the years 1991- 1993, 1995 and 1998-1999. The 
137
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layers of the sediment samples collected in 2012 and 2013 are comparable to these studies. 

E.g. the activity concentrations detected in surface sediment layers in the Barents Sea in the 

study of Heldal et al. (2002), varied between 0.7 and 6.3 Bq/kg (d.w.). This is almost equal to 

the activity concentrations found in the Barents Sea by Føyn and Sværen (1995) and Nies et 

al. (1999), which respectively varied from under the detection limit to 8.6 Bq/kg (d.w.), and 

from 1.5 to 5.8 Bq/kg (d.w.). On the other hand, the 
137

Cs activity concentrations detected in 

surface sediments from the Norwegian Sea by Nies et al. (1999), show a much higher result 

than for the surface sediment samples collected in the area adjacent to Komsomolets. Here, 

137
Cs activity concentrations up to 48 Bq/kg (d.w.) were detected, but these samples were 

collected near the Norwegian coast, assumed to be contaminated by earlier Seallafield 

discharges. The 
137

Cs activity concentrations found in surface sediment samples in the deep 

Norwegian and Greenland Seas in the study of Heldal et al. (2002) showed low activity 

concentrations. The 
137

Cs activity concentrations found in the deep Norwegian Sea, varied 

from below the quantification level to 4.8 Bq/kg (d.w.), while 
137

Cs-activity concentration of 

5.4 ± 0.1 Bq/kg (d.w.) was detected in the deep Greenland Sea. These activity concentrations 

are comparable to the 
137

Cs activity concentrations in the samples collected near the wreck in 

the present study. 

4.1.3. Comparison with activity concentrations found in other geographical areas 

Activity concentrations of 
137

Cs found in the present work are relatively low compared to 

activity concentrations found in other geographical areas. The Norwegian Fjords for instance, 

have 
137

Cs activity concentrations ranging from under the quantification limit to over 400 

Bq/kg (d.w.)(Sværen, 2010a, NRPA 2004; 2007; 2008; 2009; 2011) , and where the highest 

levels are found in the Sognefjord. One of the main reasons for the high activity 

concentrations is the Chernobyl accident. As seen from Figure 4.3, mid-Norway was severely 

affected by this accident, where terrestrial areas were contaminated by precipitation (Sværen, 

2010a). Contamination originating from the accident did also reach the Norwegian cost via 

ocean currents from the Baltic Sea (Loeng, 1991). The Baltic Sea was the marine area most 

affected by the Chernobyl accident, and shows 
137

Cs activity concentrations higher than 2000 

Bq/kg (d.w.) in sediment samples (Helsinki Commission, 2007).       
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Figure 4.3.Caesium-137 (
137

Cs) (kBq/m
2
) fallout from the Chernobyl accident in terrestrial 

areas in parts of northern Europe (AMAP, 1997). 

The Irish Sea is also one example of a geographical area with surface sediment samples 

containing different 
137

Cs activity concentrations than for sediment samples collected in the 

area adjacent to Komsomolets. Here, elevated levels ranging from 60-8000 Bq/kg (d.w.) were 

found in surface sediment layers collected in 1986 (Jones et al., 2007), which were results of 

the extensive releases from the nuclear reprocessing plant Sellafield. This area has been 

monitored since 1960, and the levels have gradually reduced due to steady reductions in 

releases from Sellafield since the mid-1970’s (Hunt et al., 2013). This was consistent with the 

result of the measurements carried out at the same location in 1999, where the levels were 

reduced to 70-5000 Bq/kg (d.w.). In 2012, sediment samples collected at Sellafield beach only 

showed 
137

Cs activity concentration of 39 Bq/kg (d.w.) (RIFE-18, 2013). 

Caesium-137 (
137

Cs) activity concentrations in sediment samples varying from 2 to 33 Bq/kg 

(d.w.) in the open Kara Sea was detected in 1992 on the joint Russian-Norwegian Expedition 

(Salbu et al., 1997). In this area, elevated 
137

Cs activity concentrations have been found in 

four overactivity zones (OAZ); the Novozemel’skaya, Vaigach, and the estuaries of Ob and 

Yenisy (Miroshnikov, 2013). Figure 4.4 gives an overview of these zones, and their 
137

Cs 
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activity concentrations found in studies carried out from 1995-2003. Sources of these 

contaminations mostly originates from global fallout, discharges from reprocessing plants like 

Sellafield, Mayak, Krasnoyarsk and Tomsk, and leakages from dumped radioactive materials 

(Miroshnikov, 2013). 

 

Figure 4.4. Positions of the overactivity zones in the Kara Sea, and their caesium-137 (
137

Cs) 

activity concentration (Bq/kg d.w.) distribution in the surface layer of sediments 

(Miroshnikov, 2013). 

4.1.4. Lead-210 dating and vertical distribution of caesium-137 (
137

Cs) in sediment cores 

The dating of the two cores 122-2 and 123-2 collected in 2012 did not have 
137

Cs-peaks in 

years/periods clearly indicating a dominating source present. The low levels of 
137

Cs found 

are most likely to originate from global fallout. Naturally, no levels of 
137

Cs
 
activity 

concentration were detected in sediment layers older than the 1950’s and 1960’s. If elevated 

levels were to be found in older sediment layers, a leakage from Komsomolets might be 

expected, as there is a possibility that 
137

Cs could “wander” downwards in the sediment 

(AMAP, 1997). The elevated levels in the uppermost layers of these cores can indicate a 

minor leakage from Komsomolets, but because of the low activity concentrations, this is rather 

unlikely. Since Komsomolets rest near the polar front in the Spitsbergen area, which is an ice-

melting zone in the Barents Sea, it may also be a result of contamination drifting with ice 

originating from the Kara Sea (Nurnberg et al., 1994, Pfirman et al., 1995). The peak at the 

depth of 3-4 cm in core 122-2 can indicate contamination from Sellafield, which had its 



 

77 

 

Discussion 

largest amount of discharge in the 70’s, and where the transient time from Sellafield to the 

Barents Sea is approximately 6-7 years (Dahlgaard, 1995).  

The dating of the two sediment cores starts by showing somewhat similar ages for the same 

depths of the cores, where 1 cm is approximately ten years in the beginning. But at the depth 

of 4-5 cm, the cores represent different ages, where this difference increases further down the 

cores and where both cores ends at the 19th century despite their different length. Since both 

cores are collected in the same area with most likely the same sedimentation rate, this is 

probably a result of the total uncertainty in the sampling, slicing and analysing of the cores as 

well as the uncertainty of the dating, which increases with the depth of the sediment core. 

4.2.  Activity concentrations of plutonium-238 (
238

Pu), plutonium-239,240 

(
239+240

Pu), americium-241 (
241

Am) and uranium-238 (
238

U)  

The activity concentrations of plutonium-238 (
238

Pu) and plutonium-239,240 (
239+240

Pu) found 

in the 0-1 and 1-2 cm layers of the selected cores in 2013, ranged from under the detection 

limit to 0.05 Bq/kg (d.w.) and from 0.02 to 0.94 Bq/kg (d.w.) (Tabel 3.3), respectively. There 

was no correlation between the sampling location and the activity concentrations found in the 

samples, where the same trends as observed for caesium-137 (
137

Cs), were also observed for 

these elements in the respective cores. These activity concentrations show no elevated levels, 

where they match the activity concentrations found in the deep Norwegian and Greenland 

Seas in the study of Heldal et al. (2002) in 1999, which ranged from 0.003 to 0.029 Bq/kg 

(d.w.) and from 0.009 to 0.470 Bq/kg (d.w.), respectively.  

The activity concentrations of americium-241 (
241

Am) found in the present study ranged from 

0.07 to 1.16 Bq/kg (d.w.), also showing no correlation between the sampling locations. The 

levels of this radionuclide and the levels 
239+240

Pu have been monitored by the IMR in the area 

adjacent to the Komsomolets in previous years (Figure 1.2), where the result of the monitoring 

matches the result found in the present study (NRPA, 2000; 2004). However, there are few, 

available published results on transuranic elements in sediments in this area. When comparing 

the activity concentrations of these elements with activity concentrations found elsewhere in 

the Barents and Norwegian Seas, one finds that the levels are somewhat the same, but where 

some of the samples collected near the coast of Spitsbergen show slightly elevated levels 

(NRPA, 2004; 2005). 
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This is also the case for the study Heldal et al. (2002) and the study of Zaborska et al. (2010), 

where the activity concentrations found near the Spitsbergen area show slightly elevated 

levels compared to the 
238

Pu and 
239+240

Pu activity concentrations found in the present study. 

These samples have been collected closer to the shore, where terrestrial run of might have 

caused these results. Elevated activity concentrations compared to the levels of 
238

Pu, 

239+240
Pu and 

241
Am found in 2013 are also to be found in sediment samples collected in the 

Irish Sea (Mitchell et al., 1999) and in the area near the Thule accident (Eriksson et al., 2008). 

In the western Irish Sea, 
238

Pu, 
239+240

Pu and 
241

Am activity concentrations were found in 

surface sediments in period of 1988-1997, where they respectively range from 1.34 to 5.58 

Bq/kg (d.w.), 8.0 to 33.3 Bq/kg (d.w.) and 2.1 to 35 Bq/kg (d.w.) (Mitchell et al., 1999). In 

the study of Dahlgaard et al. (2001), 
239+240

Pu activity concentrations found in surface 

sediments in 1997 in the area affected by the Thule accident, range from 12 to 642 Bq/kg. 

The activity concentration of uranium-238 (
238

U) in the present study, varied from 9.1 to 22.1 

mBq/g (d.w.). If a leakage was to happen, one would expect to find the highest activity 

concentrations in the sediments collected by the front of the submarine, since the warheads 

are located in the front section of the wreck (Figure 1.4). In the present study, the highest 

concentration is found on the west side of the submarine, next by the front, and with the 

lowest values by the rear end of the wreck. Compared to the atom concentrations found in 5 

hot particles (50 -100 ng) in the area affected by the Thule accident, these levels are relatively 

low, where the five particles had atom concentrations ranging from 8.34 to 65.34 ng (Eriksson 

et al., 2008). 

4.3. Using isotope ratios to identify contamination sources 

Different sources for radioactive contamination often exhibit characteristic isotope ratios, 

which can be used to identify the origin of the contamination (Oughton et al., 2004). Isotope 

ratios (including their references) originating from different sources located at the northern 

hemisphere are listed in Table 4.1.   
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Table 4.1. Isotope ratios for various sources (all references in brackets).  

Source 
240

Pu/
239

Pu  

(atom ratio)
 

238
Pu/

239+240
Pu  

(activity ratio) 

241
Am/

239+240
Pu  

(activity ratio)
 

Global Fallout 0.175 – 0.190 

 (1, 2, 14, 15, 26) 

0.025 – 0.040 

(1, 2, 4, 12, 13, 15, 18, 

29) 

0.25 – 0.40* 

(3
1
, 15, 28) 

Sellafield 0.18-0.22 

(4, 30, 31, 33) 

0.17 – 0.30 

(4, 10, 11, 12, 29, 31) 

 

1.5** 

(5, 10, 31) 

Cap la Hauge 0.25-0.34 

(8, 32) 

0.36 

(8, 32) 

 

- 

Chernaya Bay 0.03 

(2, 15, 15)  

0.025 

(2, 14) 

0.05*** 

(2, 14) 

Riverine discharges 

(Karsnyarsk, Mayak 

and Tomsk) 

0.05 – 0.30 

(6, 9, 18, 19, 20, 

21) 

0,01 ± 0,02  

(9, 20) 

- 

Thule 0.03 – 0.06 

(6, 12, 17, 24, 25) 

0.015 – 0.025 
(1, 17) 

0.10* – 0.16 

(3
2
, 17, 24) 

Chernobyl –fuel 

particles  

0.40 – 0.52 

(7, 22, 23, 26) 

0.42 – 0.48 

(4, 26, 29) 

 

0.06 – 0.13*** 

(3
3
, 29) 

*Decay corrected to 1995 (originally reference Smith et al. (1987)
1
 and Aarkrog et al. 

(1987)
2
) 

**Decay corrected to 1993 

*** Decay corrected to 2000 

****Decay corrected to 1986 (originally reference Aarkrog et al. (1999)
3
) 

Reference: 1.Oughton et al. (2004), 2. Smith et al. (2000), 3. Ikäheimonen (2003), 4. Kershaw 

et al. (1995), 5. Beks (2000), 6. Lind et al. (2005), 7. Kutkov (1995), 8. Oughton et al. (1999), 

9. Oughton et al. (2000), 10. MacKenzie et al. (1998), 11. Vintro et al. (2000), 12. Holme and 

McIntyre (1984), 13. Ostlund (1990), 14. Kelley et al. (1999), 15. Smith et al. (1995), 16. 

Beasley et al. (1998), 17.Eriksson et al. (2008), 18. Skipperud et al. (2004), 19.Børretzen et 

al. (2005), 20. Gauthier-Lafaye et al. (2008), 21. Skipperud et al. (2009), 22. Boulyga and 

Becker (2002), 23. Muramatsu et al. (2000), 24. Dahlgaard et al. (2001), 25. Mitchell et al. 

(1997), 26. Varga (2007)   28.UNSCEAR (1982), 29. Holm et al. (1992), 30.Eigl et al. (2013), 

31. Povinec et al. (2002), 32.Cundy et al. (2002), 33.McCarthy and Nicholls (1990) 

The 
238

Pu/
239+240

Pu activity ratios found in the 0-1 and 1-2 cm layers of sediment cores 

collected in 2013 range from 0.03 to 0.06 (Table 3.3). This is comparable to, or slightly higher 

than the activity resulting from atmospheric weapons tests (Table 2.4). The highest 

238
Pu/

239+240
Pu activity ratio (0.06) is found in the 1-2 cm layer of core 196-1. This is too low 
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to match the activity ratio in discharges from European reprocessing industry. This activity 

ratio has a relative high uncertainty compared to the other samples (Table 3.3), which might 

have biased this result.  

Direct alpha measurements are often associated with considerable uncertainties. The 

240
Pu/

239
Pu ratio determined by mass spectroscopy is therefore more precise. The 

240
Pu/

239
Pu 

mass ratios found in the 0-1 and 1-2 cm layers of sediment cores collected in 2013 varied 

from 0.152 to 0.194 (Table 3.4). This is comparable to, or slightly lower than the 
240

Pu/
239

Pu 

ratios of global fallout (Table 4.1) 

Although it appears that global fallout is the main contamination source in the samples 

analysed in the present study, Sellafield may, however, be a minor contamination source. 

Liquid waste discharged in the Irish Sea consist of a mixture of Pu from weapons production 

(
240

Pu/
239

Pu = 0.05 – 0.06) and reprocessing of spent nuclear fuel (
240

Pu/
239

Pu = 0.2 – 0.4) 

(Stepanov et al., 1999). This has previously been confirmed by McCarthy and Nicholls 

(1990), where the average 
240

Pu/
239

Pu activity ratio found in sediments of the Irish costal 

zones near the location of emission of waste from Sellafield, was 0.18 in 1977-1986. It is also 

known that Sellafield is an important source of Pu in the Barents Sea, where 19-27% of the Pu 

found in sediments in the north-western Barents Sea in the study of Zaborska et al. (2010), 

was calculated to primarily originate from this reprocessing plant. Also, Herrmann et al. 

(1998) reported that Pu derived from Sellafield was traced in deep waters of the Norwegian, 

Greenland and Barents Seas, where the activity concentration of 
239, 240

Pu in the Atlantic 

current flow, correlate negatively with latitude after passing through the Irish Sea (Zaborska 

et al., 2010).  

The 
241

Am/
239+240

Pu activity ratios of the samples collected in 2013 range from 1.03 to 3.28 

(Figure 3.3). The 0-1 and 1-2 cm layers of core 194-1 had much higher activity ratios then the 

other samples, but also substantially higher uncertainties. By excluding these samples, the 

241
Am/

239+240
Pu activity ratios range from 1.03 and 1.54. These activity ratios probably reflect 

the origin of global fallout in addition to the influence of discharges of 
241

Am and 
241

Pu from 

European reprocessing plants, where most of the samples show activity concentrations 

between the ratios of these two sources (Table 4.1). The 
241

Am/
239+240

Pu activity ratio 

presented for global fallout in Table 4.1 is decay corrected to 1995. This activity ratio will be 

slightly higher today as plutonium-241 (
241

Pu) (t½ = 14.4 years) decays to 
241

Am (Mitchell et 

al., 1999), where the 
241

Am/
239+240

Pu activity ratio will increase to a maximum of 2.66 in year 
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2059 (Holm et al., 1992). However, in this study, the build-up of 
241

Am from
 241

Pu has not 

been accounted for, where the amount of sample material in the selected samples collected in 

2013 were too small to determine the 
241

Pu activity. This makes the comparison of 

241
Am/

239+240
Pu activity ratio with different sources less than a hundred percent reliable. 

The Pu isotope ratios found in the present study matches the Pu isotope ratios found in the 

Barents Sea and the deep Norwegian and Greenland Seas. The 
240

Pu/
239

Pu atom ratios 

correspond to the atom ratios found in the study of Stepanov et al. (1999) in 1991 to 1998, 

while the 
238

Pu/
239+240

Pu activity ratios matches or are slightly lower than the activity ratios 

found in the study of Heldal et al. (2002). The study of Heldal et al. (2002) also show activity 

concentrations of 
241

Am and 
239+240

Pu, but the combination of these (
241

Am/
239+240

Pu) show 

slightly lower values then the 
241

Am/
239+240

Pu ratios found in the present study, where they 

range from 0.2 to 1.7. However, the activity
 
concentrations of 

241
Am and 

239+240
Pu in the 

present study are still too low to indicate other sources than global fallout and the European 

reprocessing plants. 

The 
235

U/
238

U atom ratios found in the present study ranged from 0.0069 to 0.0073 (Table 

3.4). This match the atom ratios for natural uranium ratios in soil, which is approximately 

0.007 (Ranebo et al., 2007). This result indicates that no highly enriched U-isotopes are found 

in the samples collected close to Komsomolets in 2013. 

4.4. Grain size distributions 

The grain size analyses of the five 0-1 cm layers collected in 2013 were quite similar (see 

Figure 3.8). This is as expected, as the samples are collected at a relatively large depth and 

within a small area. Surface sediment samples collected in 1999 in the area adjacent to 

Komsomolets ,were found to contain the minerals illite, kaolite and smectite (Heldal et al., 

2002). 

The sediment samples collected in this study are likely to have the same mineral content as 

the sediment samples in the study of Heldal et al. (2002). This indicate that the sediments in 

the area adjacent to Komsomolets may work as a sink for caesium-137 (
137

Cs), as the clay 

mineral illite is known to bind irreversible to the 
137

Cs (Coughtrey and Thorne, 1983). As no 

137
Cs peaks are found in any layers of the collected sediment cores, this may contribute to 

confirm that there has been no leakage from the submarine. 
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4.5. Inaccuracy in sampling and sample preparation 

The box-corer might penetrate the seabed with a certain angle (Figure 4.5), depending on the 

seabed conditions. This differs from the ideal sediment collection described in section 2.1.3, 

where the result of this inaccuracy will be sediment slices, non-parallel to the sediment 

surface. The tubes also cause a pressure on the sediment at the seabed. This again causes the 

sampling material, to a varying extent, to be compressed through the cores. When sub 

sampling cores in tubes, material will be transported along the walls of the tubes. As a result, 

the slices of one (or two) centimetres may contain material from adjacent layers.  

 

Figure 4.5. Schematic drawing of box-corer sampling, subsampling of cores (in black) and 1 

cm slices (white lines) (Sværen, 2010a). 

Slicing the cores can also be a source of error, where material might adhere to the tube when 

rotating the cutting apparatuses in the slicing process. When pressing the sediment core up 

using the piston, there is some compaction of the sediments due to the friction between the 

tube and sediments in contact with the tube. The fact that a ruler was used to measure the 

slices of 1 cm, may also add inaccuracy to the sediment samples, in case of small variation in 

the size of the slices. Loss of sediment material during the cutting process, may also be a 

problem, as this is roughly estimated to be 5% in each core (Sværen, 2010a). An evenly 

distributed loss from each slice will not affect the dating, but if this is not the case, it will 

cause inaccuracy.  

Some of the sediment cores from 2012 got a big residual (see appendix A), which decreased 

the number of slices in the respective cores. These were the first cores I performed the sample 

preparation on, so the technique was new to me. 
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The deviation in measurements between parallel cores from the same box-corer collection, 

can partly be caused by the sampling and the sample preparation, but chances are that 
137

Cs is 

not necessarily homogenous distributed within the sediments.  

4.6. The effect and consequences of potential leakages from Komsomolets 

The results from the present study confirm that no or an insignificant leakage from 

Komsomolets has taken place up until today. Many different estimations and conclusions 

have, however, been made of the outcome of a potential leakage. For instance, Alexander 

Kurchatov stated in the Moscow Times in 1994, that the only solution that could solve the 

problem would be to raise the submarine (Kurchatov, 1994). On the other hand, Høibråten et 

al. (2003), Føyn (1994b) and Heldal et al. (2013) concluded that Komsomolets represents a 

minor pollution problem, partly because of the great depth at which the wreck is resting.  

There are also different estimates of when Komsomolets will start leaking. Gladkov et al. 

(1994) estimated, e.g., that the first step of corrosion of the wreck will take at least 2000 

years. If this is correct, Komsomolets will in time probably sag into the sediments and after a 

while be covered by mud, particles and dead plankton (Sivintsev et al., 2005). This will help 

to reduce the consequence of a potential leakage. Nevertheless, different measures, like 

covering up the wreck or raising it, have been discussed for preventing a disposal from the 

submarine (FAS, 2000). This kind of measures are both time consuming and expensive, and 

may also lead to risk of contamination. For example, an accidental leakage during the rising 

of Komsomolets, would lead to much more harm if it was to happen in the upper mixed layer 

of the ocean. After all, this is where discharges would contaminate the marine resources 

directly without being diluted in large water masses in advance (Iosjpe et al., 2011).  

The main cause of the Norwegian concern about Komsomolets is that its resting place is 

located close to Norwegian fishing grounds. The fisheries are of major importance of the 

Norwegian economy, and the Barents Sea is one of the world’s richest ocean areas, with 

yearly catches of 2.0-2.5 million tons of fish (Føyn and Sværen, 1995, Fisheries, 2014). In 

2013 a new Norwegian export record was set, with a value of total 61 billion NOK (NSC, 

2014). Currently, Norway export seafood to some 140 countries worldwide, with Russia and 

France being the two most important markets. For both the local consumers and the export 

industry, it is imminent to document the levels of radioactive contamination in the Barents 

and Norwegian Seas, including the adjacent area of Komsomolets. If a leakage from the wreck 

should occur, there are reasons to believe it will affect the Norwegian fisheries, regardless of 
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whether the contamination does or does not, have a direct impact on the fish itself (Føyn and 

Sværen, 1995).  

If future monitoring shows that there has been a leak, certain measures should be considered. 

First of all, an expanded program of analyses of radioactive contamination in sediments, 

seawater and marine resources (fish, seaweed, etc.) have to be performed. Furthermore, it is 

important that good and understandable, scientifically founded information is given to the 

public. If the Norwegian government manages to communicate this to the public, it may 

reduce the harm done to the fish industry. 

4.7. Suggestion for further work 

Most of the latest studies concerning Komsomolets rules a leakage from the submarine in the 

years to come as absolutely unlikely (Gladkov et al., 1994). And if a leakage was to happen, it 

would not have a significant impact on marine resources (Føyn, 1994b, Høibråten et al., 2003, 

Heldal et al., 2013). However, it is important that the monitoring of the resting place of the 

wreck continues. A yearly monitoring is not necessarily required, but the use of the acoustic 

transponder during sampling, should be a part of the standard procedure every time, as it will 

reduce the uncertainties related to the sampling position.  

Some work in the present study might not need a yearly performance, e.g. the particle size 

analysis and the dating of the cores. The plutonium (Pu) isotope analysis of the 0-1 cm layers 

on the other hand, is very much of interest. Here, Pu-isotope activity ratios, obtained from the 

Pu content in the sediments, may indicate which source a potential elevated activity 

concentration originates from. This will help to confirm or reject a possible leakage from the 

submarine if elevated Pu levels were to be found in the sediments from the area adjacent to 

Komsomolets. 

Suggestions of further work concerning Komsomolets will be; 

- Always use the acoustic transponder attached to the box-corer when collecting 

sediment samples 

- Continue monitoring of sediments and seawater at the resting place of the wreck 

- Prepare isotope ratios 

- Good and understandable, scientifically founded information about the situation of 

Komsomolets, is to be given to the public 
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5.  Conclusion  

The present study confirms that an acoustic transponder can be used on sediment sampling 

equipment on 1700 m depth. This kind of equipment can further be used to sample in the 

vicinity of any other point target at the seabed, or in the water column. This relatively 

inexpensive equipment could in some cases replace expensive equipment as Remotely 

Operated underwater Vehicle (ROV). 

IMR has performed yearly monitoring of the levels of radioactive contaminations in 

sediments and seawater in the area close to Komsomolets, since 1993. The first successful 

sampling with an acoustic transponder attached to the sampling equipment, was performed in 

2013. Such sampling will make it easier to detect a possible leak in the future.  

The sediment cores collected in 2012 and 2013 did not contain elevated levels of caesium-137 

(
137

Cs). This is consistent with pervious monitoring by IMR in the area adjacent to 

Komsomolets. The 
137

Cs activity concentrations found in the present study are comparable to 

137
Cs activity concentrations found in the Barents Sea and the deep areas of the Norwegian 

and Greenland Seas.  

Low levels of plutonium -238 (
238

Pu), plutonium-239,240 (
239+240

Pu), americium-241 (
241

Am) 

and uranium-238 (
238

U) were found in the 0-1 and 1-2 cm layers of cores collected in 2013. 

The activity concentrations of 
238

Pu,
 239+240

Pu and 
241

Am found in the present study are 

comparable to levels found in previous studies in the deep parts of the Norwegian and 

Greenland Seas. The isotope ratios of 
238

Pu/
239+240

Pu, 
240

Pu/
239

Pu  and 
241

Am/
239+240

Pu  

indicate that global fallout is the major source of the activity concentrations found in the 

present study, followed by the European reprocessing plants, mainly Sellafield. The 
235

U/
238

U 

atom ratio matches with the atom ratio for natural uranium. 

The dating of the two sediment cores collected in 2012 had no
137

Cs-peaks in years/periods 

clearly indicating a dominating source present. This also points to global fallout as the major 

source in the area adjacent to Komsomolets. 

The result of the grain size distribution of the 0-1 cm layers of the selected cores collected in 

2013, showed that the sediment samples contained 70 % silt, 20 % clay, and only 3 % sand 

and gravel. As illite probably is the major mineral in the clay content, the sediments in the 

area adjacent to Komsomolets, may work as a sink for 
137

Cs where it binds irreversible to this 
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mineral. As no 
137

Cs peaks are found in any layers of the collected sediment cores, this may 

contribute to confirm that there has been no leakage from the submarine. 

Public concerns about the condition of Komsomolets arose particularly in Norway, since the 

submarine rests close to the Norwegian fishing grounds. A leak affecting the fish in these 

areas would have a major effect on the Norwegian export industry and economics. However, 

the latest studies and modelling have concluded that both a continuous leakages and pulse 

discharges of 
137

Cs from the wreck induce negligible activity concentrations of 
137

Cs in 

marine resources. It is still reason to believe that a leak from the submarine may affect the 

Norwegian fish export and economics.  

Suggestions for further work concerning Komsomolets are to continue the monitoring of 

sediments and seawater collected at the resting place of the wreck. The acoustic transponder 

should always be a part of the sampling equipment, to ensure that the samples are collected 

close to the submarine, so a possible leakage in the future can easily be detected. 
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Appendix A: Sample weights and porosities 

 

 

Table A1. Sample weights (g) and porosities (%) in the sediment layers of core 122-1  

Sampling date 06.09.12 

Sample-id 122-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 146.6 66.1 144.1 63.6 55.9 

1-2  2.5 120.6 58.1 118.1 55.6 53.0 

2-3  2.5 121.9 61.0 119.4 58.5 51.0 

3-4  2.6 133.8 68.6 131.2 66.0 49.7 

4-5  2.6 134.4 71.1 131.8 68.5 48.0 

5-6  2.5 141.0 76.0 138.5 73.5 46.9 

6-7  2.5 137.0 76.8 134.5 74.3 44.8 

7-8  2.5 135.5 77.6 133.0 75.1 43.5 

8-9  2.5 156.6 92.6 154.1 90.1 41.5 

9-10  2.5 145.8 91.7 143.3 89.2 37.8 

10-11  2.5 179.8 115.7 177.3 113.2 36.2 

11-12 8.3 334.3 206.3 326.0 198.0 39.3 
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Table A2. Sample weights (g) and porosities (%) in the sediment layers of core 122-2  

Sampling date 06.09.12 

Sample-id 122-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.6 201.5 91.8 198.9 89.2 55.2 

1-2  2.6 125.5 60.1 123.0 57.6 53.2 

2-3  2.6 125.8 63.0 123.2 60.4 51.0 

3-4  2.6 116.9 60.0 114.4 57.4 49.8 

4-5  2.6 142.2 74.7 139.6 72.2 48.3 

5-6  2.6 124.3 67.1 121.7 64.5 47.0 

6-7  2.6 133.4 72.4 130.8 69.9 46.6 

7-8  2.6 134.1 75.7 131.5 73.1 44.4 

8-9  2.6 146.2 86.0 143.7 83.5 41.9 

9-10  2.6 156.0 96.1 153.5 93.6 39.0 

10-11  2.6 156.8 98.1 154.2 95.6 38.0 

11-12  2.5 166.7 102.7 164.2 100.2 39.0 

12-13  2.5 41.5 24.5 39.0 22.0 43.7 

 

 

 

Table A3. Sample weights (g) and porosities (%) in the sediment layers of core 123-1  

Sampling date 06.09.12 

Sample-id 123-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 187.4 91.1 184.9 88.6 52.1 

1-2  2.6 155.8 81.3 153.2 78.7 48.7 

2-3  8.3 548.1 303.0 539.8 294.7 45.4 
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Table A4. Sample weights (g) and porosities (%) in the sediment layers of core 123-2  

Sampling date 06.09.12 

Sample-id 123-2 

Layer 
Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 166.6 77.0 164.1 74.5 54.6 

1-2  2.5 136.2 67.3 133.6 64.8 51.5 

2-3  2.5 134.4 69.8 131.9 67.3 49.0 

3-4  2.5 152.3 82.4 149.8 79.9 46.7 

4-5  2.5 174.2 97.6 171.7 95.1 44.6 

5-6  2.5 153.7 91.9 151.2 89.4 40.9 

6-7  2.5 130.4 77.6 127.9 75.1 41.3 

 

 

Table A5. Sample weights (g) and porosities (%) in the sediment layers of core 124-1  

Sampling date 06.09.12 

Sample-id 124-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 159.9 72.5 157.4 70.0 55.5 

1-2  2.5 135.2 62.7 132.7 60.2 54.6 

2-3  2.5 162.3 81.9 159.8 79.4 50.3 

3-4  2.5 149.5 78.4 147.0 75.9 48.4 

4-5  8.3 592.4 315.3 584.1 307.0 47.4 

 

 

Table A6. Sample weights (g) and porosities (%) in the sediment layers of core 124-2  

Sampling date 06.09.12 

Sample-id 124-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 141.2 62.6 138.7 60.1 56.7 

1-2  2.5 151.6 71.4 149.1 68.8 53.8 

2-3  2.5 153.7 76.9 151.2 74.3 50.8 

3-4  2.5 145.4 75.4 142.8 72.9 49.0 

4-5  2.5 154.7 81.7 152.2 79.2 48.0 

5-6  2.5 186.2 101.7 183.7 99.2 46.0 

6-7  2.5 65.4 34.3 62.9 31.8 49.5 
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Table A7. Sample weights (g) and porosities (%) in the sediment layers of core 124-3  

Sampling date 06.09.12 

Sample-id 124-3 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 185.0 88.9 182.5 86.4 52.7 

1-2  2.5 151.8 74.8 149.3 72.3 51.5 

2-3  2.5 155.1 78.7 152.6 76.2 50.1 

3-4  2.5 137.7 71.5 135.2 69.0 48.9 

4-5  2.5 142.4 76.8 139.9 74.3 46.9 

5-6  2.5 186.0 105.8 183.4 103.3 43.7 

6-7  2.5 117.0 59.2 114.5 56.7 50.5 

 

 

Table A8. Sample weights (g) and porosities (%) in the sediment layers of core 124-4  

Sampling date 06.09.12 

Sample-id 124-4 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 196.9 94.4 194.4 91.8 52.8 

1-2  2.5 143.1 70.0 140.5 67.5 52.0 

2-3  2.5 175.1 91.4 172.6 88.8 48.5 

3-4  2.5 173.8 93.0 171.2 90.4 47.2 

4-5  2.5 177.4 98.2 174.9 95.7 45.3 

5-6  2.5 202.5 113.3 200.0 110.8 44.6 

 

Table A9. Sample weights (g) and porosities (%) in the sediment layers of core 125-1  

Sampling date 06.09.12 

Sample-id 125-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 167.4 75.7 164.8 73.1 55.6 

1-2  2.5 157.5 79.4 155.0 76.9 50.4 

2-3  2.5 138.6 70.1 136.1 67.6 50.3 

3-4  2.5 172.5 89.3 170.0 86.8 48.9 

4-5  2.5 154.9 82.4 152.4 79.8 47.6 

5-6  2.5 149.4 81.7 146.8 79.2 46.1 

6-7  2.5 209.8 111.6 207.3 109.1 47.4 
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Table A10. Sample weights (g) and porosities (%) in the sediment layers of core 125-2  

Sampling date 06.09.12 

Sample-id 125-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 154.1 71.1 151.6 68.6 54.8 

1-2  2.5 157.6 77.4 155.1 74.9 51.7 

2-3  2.5 151.7 77.3 149.2 74.8 49.8 

3-4  2.5 162.4 85.2 159.9 82.7 48.3 

4-5  2.5 153.5 82.5 151.0 80.0 47.0 

5-6  2.5 164.8 90.7 162.3 88.2 45.7 

6-7  2.5 192.3 108.0 189.8 105.5 44.4 

7-8  2.5 105.2 56.8 102.7 54.3 47.2 

 

 

Table A11. Sample weights (g) and porosities (%) in the sediment layers of core 194-1  

Sampling date 07.04.13 

Sample-id 194-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 155.0 84.2 152.5 81.7 46.4 

1-2  2.5 109.1 57.0 106.6 54.5 48.9 

2-3  2.5 126.8 65.9 124.3 63.4 49.0 

3-4  2.5 121.5 65.5 119.0 63.0 47.1 

4-5  2.5 134.2 75.2 131.7 72.7 44.8 

5-6  2.5 121.5 67.6 119.0 65.1 45.3 

6-7  2.5 121.6 65.4 119.1 62.9 47.2 

7-8  2.5 116.4 63.2 113.9 60.7 46.7 

8-9  2.5 118.0 62.1 115.5 59.6 48.4 

9-10  2.5 137.5 74.7 135.0 72.2 46.5 

10-11  2.5 123.3 70.3 120.8 67.8 43.9 

11-12  2.5 136.2 77.0 133.7 74.5 44.3 

12-13  2.5 133.5 74.2 131.0 71.7 45.3 

13-14  2.5 113.2 63.5 110.7 61.0 44.9 

14-15  2.5 155.5 87.6 153.0 85.1 44.4 

15-16  2.5 140.2 79.7 137.7 77.2 43.9 

 

 

 



 

102 

 

Appendices 

 

 

Table A12. Sample weights (g) and porosities (%) in the sediment layers of core 194-2  

Sampling date 07.04.13 

Sample-id 194-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 107.5 53.1 105.0 50.6 51.8 

1-2  2.5 153.4 78.3 150.9 75.8 49.8 

2-3  2.6 127.8 66.4 125.2 63.8 49.0 

3-4  2.5 142.1 74.7 139.6 72.2 48.3 

4-5  2.5 139.9 72.5 137.4 70.0 49.1 

5-6  2.5 148.1 76.2 145.6 73.7 49.4 

6-7  2.6 123.5 65.7 120.9 63.1 47.8 

7-8  2.5 127.8 67.2 125.3 64.7 48.4 

8-9  2.5 133.9 69.2 131.4 66.7 49.2 

9-10  2.5 132.1 68.1 129.6 65.6 49.4 

10-11  2.6 140.0 72.4 137.4 69.8 49.2 

11-12  2.6 149.4 77.1 146.8 74.5 49.2 

12-13  2.5 162.2 86.0 159.7 83.5 47.7 

13-14  2.5 145.5 82.4 143.0 79.9 44.1 

14-15  2.6 167.3 97.6 164.7 95.0 42.3 

15-16  2.5 188.6 110.4 186.1 107.9 42.0 

16-17  2.5 177.3 105.1 174.8 102.6 41.3 
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Table A13. Sample weights (g) and porosities (%) in the sediment layers of core 194-3  

Sampling date 07.04.13 

Sample-id 194-3 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 146.5 70.5 144.0 68.0 52.8 

1-2  2.5 133.3 66.1 130.8 63.6 51.4 

2-3  2.5 162.5 81.5 160.0 79.0 50.6 

3-4  2.5 140.5 70.6 138.0 68.1 50.7 

4-5  2.5 143.7 71.2 141.2 68.7 51.3 

5-6  2.5 160.3 79.6 157.8 77.1 51.1 

6-7  2.5 172.2 88.1 169.7 85.6 49.6 

7-8  2.5 159.4 86.0 156.9 83.5 46.8 

8-9  2.5 153.9 84.3 151.4 81.8 45.9 

9-10  2.5 187.5 105.6 185.0 103.1 44.3 

10-11  2.5 181.8 104.1 179.3 101.6 43.3 

11-12  2.5 167.4 96.3 164.9 93.8 43.1 

12-13  2.5 192.5 111.5 190.0 109.0 42.6 

13-14  2.5 217.2 126.3 214.7 123.8 42.3 

14-15  2.5 157.4 91.1 154.9 88.6 42.8 

15-16  2.5 109.1 63.0 106.6 60.5 43.3 

16-17  2.5 98.0 55.9 95.5 53.4 44.1 

 

Table A14. Sample weights (g) and porosities (%) in the sediment layers of core 194-4  

Sampling date 07.04.13 

Sample-id 194-4 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 175.6 96.0 173.1 93.5 46.0 

1-2  2.5 165.3 85.2 162.8 82.7 49.2 

2-3  2.5 146.8 76.0 144.3 73.5 49.1 

3-4  2.5 173.4 93.1 170.9 90.6 47.0 

4-5  2.5 167.8 90.8 165.3 88.3 46.6 

5-6  2.5 165.7 88.0 163.2 85.5 47.6 

6-7  2.5 142.2 75.3 139.7 72.8 47.9 

7-8  2.5 160.5 87.2 158.0 84.7 46.4 

8-9  2.5 167.0 95.9 164.5 93.4 43.2 

9-10  2.5 173.8 101.8 171.3 99.3 42.0 

10-11  2.5 184.5 114.2 182.0 111.7 38.6 

11-12  2.5 188.8 120.2 186.3 117.7 36.8 

12-13  2.5 191.8 121.1 189.3 118.6 37.4 

13-14  2.5 214.7 135.0 212.2 132.5 37.6 

14-15  2.5 201.1 123.8 198.6 121.3 38.9 
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Table A15. Sample weights (g) and porosities (%) in the sediment layers of core 195-1 

Sampling date 07.04.13 

Sample-id 195-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  26.0 84.9 44.8 58.9 18.8 68.1 

1-2  26.0 97.7 45.8 71.7 19.8 72.4 

2-3  26.0 101.0 46.1 75.0 20.1 73.2 

3-4  26.0 118.2 54.0 92.2 28.0 69.6 

4-5  26.0 123.2 56.9 97.2 30.9 68.2 

5-6  26.0 115.4 54.2 89.4 28.2 68.4 

6-7  26.0 129.5 62.3 103.5 36.3 64.9 

7-8  26.0 131.7 65.8 105.7 39.8 62.3 

8-9  26.0 107.8 54.9 81.8 28.9 64.7 

9-10  26.0 124.4 62.4 98.4 36.4 63.0 

10-11  26.0 96.7 49.8 70.7 23.8 66.3 

11-12  26.0 122.6 62.4 96.6 36.4 62.3 

12-13  26.0 137.1 72.0 111.1 46.0 58.6 

13-14  26.0 139.2 75.4 113.2 49.4 56.4 

14-15  26.0 120.7 63.2 94.7 37.2 60.7 

15-16  26.0 120.5 65.3 94.5 39.3 58.4 

16-17  26.0 138.2 76.6 112.2 50.6 54.9 

17-18  26.0 128.8 72.9 102.8 46.9 54.4 

18-19  26.0 190.3 108.7 164.3 82.7 49.7 
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Table A16. Sample weights (g) and porosities (%) in the sediment layers of core 195-2  

Sampling date 07.04.13 

Sample-id 195-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 70.5 36.6 68.0 34.1 49.8 

1-2  2.5 153.3 78.3 150.8 75.8 49.8 

2-3  2.5 114.9 58.2 112.4 55.7 50.4 

3-4  2.5 117.6 55.2 115.1 52.7 54.2 

4-5  2.5 108.8 48.6 106.3 46.1 56.6 

5-6  2.5 111.3 49.3 108.8 46.8 57.0 

6-7  2.5 104.8 48.3 102.3 45.8 55.2 

7-8  2.5 110.1 51.2 107.6 48.7 54.7 

8-9  2.5 118.0 57.5 115.5 55.0 52.4 

9-10  2.5 116.1 58.8 113.6 56.3 50.4 

10-11  2.5 123.5 63.7 121.0 61.2 49.4 

11-12  2.5 123.1 62.7 120.6 60.2 50.1 

12-13  2.5 138.9 70.3 136.4 67.8 50.3 

13-14  2.5 137.9 74.1 135.4 71.6 47.1 

14-15  2.5 109.4 61.5 106.9 59.0 44.8 

 

 

Table A17. Sample weights (g) and porosities (%) in the sediment layers of core 196-1  

Sampling date 07.04.13 

Sample-id 196-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 134.2 59.8 131.7 57.3 56.5 

1-2  2.5 130.4 59.2 127.9 56.7 55.7 

2-3  2.5 137.8 64.0 135.3 61.5 54.6 

3-4  2.5 142.0 66.1 139.5 63.6 54.4 

4-5  2.5 137.0 64.3 134.5 61.8 54.0 

5-6  2.5 143.2 71.8 140.7 69.3 50.8 

6-7  2.5 149.6 75.2 147.1 72.7 50.6 

7-8  2.5 166.2 84.3 163.7 81.8 50.0 

8-9  2.5 146.4 75.7 143.9 73.2 49.1 

9-10  2.5 144.8 76.0 142.3 73.5 48.4 
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Table A18. Sample weights (g) and porosities (%) in the sediment layers of core 196-2  

Sampling date 07.04.13 

Sample-id 196-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 150.2 62.3 147.7 59.8 59.5 

1-2  2.5 136.5 60.5 134.0 58.0 56.7 

2-3  2.5 136.4 60.8 133.9 58.3 56.5 

3-4  2.5 142.1 64.7 139.6 62.2 55.5 

4-5  2.5 155.7 73.0 153.2 70.5 54.0 

5-6  2.5 154.1 72.7 151.6 70.2 53.7 

6-7  2.5 137.1 66.9 134.6 64.4 52.2 

7-8  2.5 167.3 85.5 164.8 83.0 49.6 

8-9  2.5 176.7 90.9 174.2 88.4 49.3 

9-10  2.5 158.9 83.6 156.4 81.1 48.1 

 

 

 

 

Table A19. Sample weights (g) and porosities (%) in the sediment layers of core 197-1  

Sampling date 07.04.13 

Sample-id 197-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 166.1 75.9 163.6 73.4 55.1 

1-2  2.5 159.5 74.2 157.0 71.7 54.3 

2-3  2.5 149.6 73.0 147.1 70.5 52.1 

3-4  2.5 151.1 76.0 148.6 73.5 50.5 

4-5  2.5 156.7 79.8 154.2 77.3 49.9 

5-6  2.5 145.8 74.9 143.3 72.4 49.5 

6-7  2.5 160.3 83.3 157.8 80.8 48.8 

7-8  2.5 177.7 92.5 175.2 90.0 48.6 

8-9  2.5 172.0 88.7 169.5 86.2 49.1 

9-10  2.5 181.1 92.8 178.6 90.3 49.4 

10-11  2.5 184.4 98.6 181.9 96.1 47.2 
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Table A20. Sample weights (g) and porosities (%) in the sediment layers of core 197-2  

Sampling date 07.04.13 

Sample-id 197-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  3.9 150.0 64.4 146.1 60.5 58.6 

1-2  3.8 162.8 74.5 159.0 70.7 55.5 

2-3  3.9 145.6 67.9 141.7 64.0 54.8 

3-4  3.9 180.3 86.8 176.4 82.9 53.0 

4-5  2.4 162.1 79.8 159.7 77.4 51.6 

5-6  2.4 176.7 89.5 174.3 87.1 50.0 

6-7  2.4 178.1 87.7 175.7 85.3 51.4 

7-8  2.4 160.0 77.8 157.6 75.4 52.1 

8-9  2.4 186.5 94.8 184.1 92.4 49.8 

9-10  2.4 157.5 83.4 155.1 81.0 47.8 

10-11  2.5 152.7 86.5 150.2 84.0 44.1 

11-12  2.4 83.8 48.9 81.4 46.5 42.9 

 

 

 

 

Table A21. Sample weights (g) and porosities (%) in the sediment layers of core 199-1 

(reference station) 

Sampling date 08.04.13 

Sample-id 199-1 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.4 138.0 56.2 135.6 53.8 60.3 

1-2  2.4 145.3 62.9 142.9 60.5 57.7 

2-3  2.4 153.7 71.2 151.3 68.8 54.5 

3-4  2.4 162.6 76.7 160.2 74.3 53.6 

4-5  2.4 155.1 77.2 152.7 74.8 51.0 

5-6  2.4 153.9 79.2 151.5 76.8 49.3 

6-7  2.4 154.7 79.8 152.3 77.4 49.2 

7-8  2.5 183.6 94.6 181.1 92.1 49.1 

8-9  2.4 110.0 60.2 107.6 57.8 46.3 
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Table A22. Sample weights (g) and porosities (%) in the sediment layers of core 199-2 

(reference station)  

Sampling date 08.04.13 

Sample-id 199-2 

Layer 

(cm) 

Empty 

cups (g) 

Gross wet 

weight (g) 

Gross dry 

weight (g) 

Net wet 

weight (g) 

Net dry 

weight (g) 

Porosity 

(%) 

0-1  2.5 166.1 72.5 163.6 70.0 57.2 

1-2  2.5 185.9 88.5 183.4 86.0 53.1 

2-3  2.5 155.9 74.6 153.4 72.1 53.0 

3-4  2.5 150.8 73.3 148.3 70.8 52.3 

4-5  2.5 158.6 79.8 156.1 77.3 50.5 

5-6  2.5 188.1 97.9 185.6 95.4 48.6 

6-7  2.5 186.1 97.1 183.6 94.6 48.5 

7-8  2.5 207.2 111.7 204.7 109.2 46.7 
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Appendix B: Data from control, background and calibration measurements 

 

 

 Figure B1: Weekly measurements of caesium-137 (
137

Cs) in the point source at 

detector RAD-11. 

 

Figure B2: Weekly measurements of caesium-137 (
137

Cs) in the point source at detector RAD-
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Figure B3: Caesium-137 (
137

Cs) (Bq/kg d.w.) in a sediment control sample measured at 

detector RAD-11 

 

 

Figure B4: Caesium-137 (
137

Cs) (Bq/kg d.w.) in a sediment control sample measured at 

detector RAD-12 
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Table B1. External Background from caesium-137 (
137

Cs) in detector RAD-11 

Measuring 

date 

Gross 

area in 

ROI 1 

Gross 

area in 

ROI 2 

Gross 

area in 

ROI 3 

Counting 

time (sec) 

Internal 

background 

(cps) 

External 

background 

(cps) 

08.10.12 3680 883 961 859737 0.004290 -0.000009 

06.12.12 361 72 91 74981 0.004348 0.000467 

22.02.13 403 96 98 98788 0.003928 0.000152 

14.03.13 295 83 56 73069 0.003805 0.000233 

12.04.13 359 97 116 89700 0.004749 -0.000747 

08.07.13 951 233 252 251531 0.003856 -0.000076 

23.09.13 989 263 264 241641 0.004362 -0.000269 

11.11.13 1003 281 260 248595 0.004352 -0.000318 

03.01.14 1434 369 379 349794 0.004277 -0.000177 

22.01.14 339 71 81 84729 0.003588 0.000413 

 

 

 

Table B2. External Background from caesium-137 (
137

Cs) in detector RAD-12 

Measuring 

date 

Gross 

area in 

ROI 1 

Gross 

area in 

ROI 2 

Gross 

area in 

ROI 3 

Counting 

time (sec) 

Internal 

background 

(cps) 

External 

background 

(cps) 

08.10.12 3415 837 804 859896 0.00391 0.00006 

06.12.12 293 77 89 75121 0.00453 -0.00063 

22.02.13 394 104 95 99021 0.00412 -0.00014 

08.05.13 238 77 62 65965 0.00432 -0.00071 

08.07.13 947 246 227 250936 0.00386 -0.00009 

07.10.13 1087 307 274 266197 0.00447 -0.00039 

27.12.13 1580 373 368 361785 0.00420 0.00017 

22.01.14 342 97 85 85006 0.00439 -0.00037 

24.03.14 1021 262 277 251613 0.00439 -0.00033 
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Table B3. Calibration. Caesium-137 (
137

Cs) geometry factor measured every second month at detector RAD-11. 

Standard 

no. 

Calibration 

date 

Reference 

date 

Activity 

in the 

standard 

(Bq) 

Uncertainty 

in the 

standard 

activity 

(Bq) 

Gross 

area in 

ROI 1 

(counts) 

Gross 

area in 

ROI 2 

(counts) 

Gross 

area in 

ROI 3 

(counts) 

Counting 

time 

(sec) 

Internal 

background 

(cps) 

G 

(Bq/cps) 

sG 

(Bq/cps) 

26 11.10.12 01.10.02 60.9 0.9 144671 711 496 74897 0.032 32.1 0.5 

26 27.02.13 01.10.02 60.4 0.9 170353 902 524 89031 0.032 32.1 0.5 

36 14.06.13 01.01.10 2330.8 23.3 6014291 39008 27097 83354 1.586 33.0 0.3 

36 30.08.13 01.01.10 2319.5 23.2 1056685 6777 4473 14764 1.523 33.1 0.3 

36 09.01.14 01.01.10 2300.3 23.0 6246281 39116 25321 88027 1.464 33.1 0.3 

 

Table B4. Calibration. Caesium-137 (
137

Cs) geometry factor measured every second month at detector RAD-12. 

Standard 

no. 

Calibration 

date 

Reference 

date 

Activity 

in the 

standard 

(Bq) 

Uncertainty 

in the 

standard 

activity 

(Bq) 

Gross 

area in 

ROI 1 

(counts) 

Gross 

area in 

ROI 2 

(counts) 

Gross 

area in 

ROI 3 

(counts) 

Counting 

time 

(sec) 

Internal 

background 

(cps) 

G 

(Bq/cps) 

sG 

(Bq/cps) 

26 10.10.12 01.10.02 60.9 0.9 127415 576 426 77715 0.026 37.8 0.6 

36 15.11.12 01.01.10 2361.9 23.6 9303277 54759 48277 149309 1.380 38.8 0.4 

36 07.12.12 01.01.10 2358.6 34.9 4891925 29062 25266 78650 1.382 38.8 0.6 

26 28.02.13 01.10.02 60.4 0.9 133730 624 421 81952 0.026 37.6 0.6 

36 17.04.13 01.01.10 2339.3 23.4 1066673 6064 5178 17292 1.300 38.8 0.4 

36 04.07.13 01.01.10 2327.8 23.3 4874287 27062 23040 79501 1.260 38.8 0.4 

36 10.10.13 01.01.10 2313.5 23.1 5530670 30094 25445 90863 1.222 38.8 0.4 

36 06.01.14 01.01.10 2300.8 23.0 14004694 75112 62898 231480 1.192 38.8 0.4 

36 24.01.14 01.01.10 2298.2 23.0 5660468 30064 25213 93732 1.179 38.8 0.4 

36 27.03.14 01.01.10 2289.2 22.9 4281688 22290 18635 71193 1.150 38.8 0.4 
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Appendix C: Data and results from caesium-137 (
137

Cs) measurements 

 

Table C1. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment core 122-1  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

122-1 

0-1  06.09.12 01.11.12 39.20 1000000 41 14193 1404 1752 7.4 0.4 

1-2  06.09.12 15.02.13 36.90 93925 40 938 147 184 2.6 0.9 

2-3  06.09.12 18.02.13 34.20 234344 40 1779 331 408 1.2 0.6 

3-4  06.09.12 19.02.13 49.60 84091 40 720 134 188 0.6 0.7 

4-5  06.09.12 20.02.13 48.90 89010 40 652 132 211 0.6 - 

5-6  06.09.12 21.02.13 49.00 91157 40 656 176 188 0.6 - 

6-7  06.09.12 28.02.13 55.00 89698 40 637 141 190 0.5 - 

7-8  06.09.12 01.03.13 55.60 81099 40 614 158 188 0.5 - 

8-9  06.09.12 04.03.13 55.40 254208 40 1869 494 583 0.3 - 

9-10  06.09.12 05.03.13 62.30 76332 40 592 167 200 0.5 - 

10-11  06.09.12 06.03.13 63.40 79945 40 674 148 203 0.5 - 

11-12  06.09.12 07.03.13 49.10 104878 40 701 182 228 0.5 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C2. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment core 122-2  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

122-2 

0-1  06.09.12 14.12.12 48.80 80558 41 955 125 144 4.0 0.9 

1-2  06.09.12 17.12.12 48.00 259231 41 2395 390 446 2.1 0.5 

2-3  06.09.12 18.12.12 46.40 77430 41 557 121 153 0.8 - 

3-4  06.09.12 19.12.12 50.40 98676 41 737 139 182 0.6 0.7 

4-5  06.09.12 20.12.12 51.70 95545 41 659 126 174 0.6 - 

5-6  06.09.12 21.12.12 54.00 87074 41 561 139 180 0.6 - 

6-7  06.09.12 27.12.12 48.10 493538 41 3401 814 1001 0.3 - 

7-8  06.09.12 06.02.13 55.50 77641 41 603 135 167 0.7 - 

8-9  06.09.12 08.02.13 61.90 81046 41 579 133 156 0.6 - 

9-10  06.09.12 28.12.12 61.80 88222 41 655 161 192 0.6 - 

10-11  06.09.12 02.01.13 62.30 435098 41 3306 847 940 0.2 - 

11-12  06.09.12 11.02.13 65.70 255173 41 1929 539 577 0.3 - 

12-13  06.09.12 07.01.13 22.20 262135 41 1420 364 376 0.7 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C3. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment cores 123-1 and 123-2  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

123-1 

0-1  06.09.12 30.01.13 48.90 102972 40 908 180 221 0.7 0.6 

1-2  06.09.12 08.03.13 47.10 93816 40 757 146 192 0.6 0.7 

2-3  06.09.12 11.03.13 50.20 239944 40 1826 389 496 0.3 - 

 123-2 

0-1  06.09.12 13.02.13 50.20 91808 41 829 143 155 1.8 0.8 

1-2  06.09.12 14.02.13 49.10 86222 41 696 119 181 0.7 0.8 

2-3  06.09.12 15.02.13 50.00 93244 41 677 154 176 0.6 - 

3-4  06.09.12 18.02.13 47.60 233461 41 1553 391 440 0.4 - 

4-5  06.09.12 19.02.13 55.90 83181 41 641 137 164 0.6 - 

5-6  06.09.12 20.02.13 58.70 94182 41 674 154 184 0.5 - 

6-7  06.09.12 21.02.13 66.40 82658 41 616 147 175 0.5 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table V4. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment cores 124-1 and 124-2  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

124-1 

0-1  06.09.12 31.01.13 49.30 74554 40 864 124 143 2.9 0.8 

1-2  06.09.12 12.03.13 47.60 86972 40 848 121 155 2.3 0.7 

2-3  06.09.12 13.03.13 44.80 92550 40 661 148 190 0.6 - 

3-4  06.09.12 17.06.13 51.60 220382 40 1549 374 530 0.3 - 

4-5  06.09.12 18.06.13 48.50 96663 40 710 201 200 0.6 - 

 124-2 

0-1  06.09.12 07.02.13 47.10 63850 40 804 108 131 3.5 0.9 

1-2  06.09.12 19.06.13 49.00 78072 40 836 127 158 2.3 0.8 

2-3  06.09.12 20.06.13 50.40 95535 40 830 160 212 0.6 0.7 

3-4  06.09.12 21.06.13 49.90 81965 40 639 129 180 0.6 - 

4-5  06.09.12 23.06.13 49.20 189320 40 1396 329 432 0.4 - 

5-6  06.09.12 25.06.13 54.90 99186 40 742 154 257 0.5 - 

6-7  06.09.12 26.06.13 31.90 81655 40 488 115 142 0.8 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C5. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment cores 124-3 and 124-4  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

124-3 

0-1  06.09.12 08.02.13 53.90 104987 40 1483 169 212 4.1 0.6 

1-2  06.09.12 11.10.13 54.50 83911 41 912 112 165 2.9 0.8 

2-3  06.09.12 14.10.13 52.60 243793 41 1804 336 509 0.4 - 

3-4  06.09.12 15.10.13 54.70 81872 41 597 123 159 0.6 - 

4-5  06.09.12 16.10.13 54.10 85267 41 580 127 177 0.6 - 

5-6  06.09.12 17.10.13 59.00 96463 41 612 156 199 0.8 - 

6-7  06.09.12 18.10.13 57.40 94291 41 704 150 189 0.6 0.7 

 124-4 

0-1  06.09.12 14.02.13 48.80 87502 40 974 124 189 2.6 0.7 

1-2  06.09.12 23.10.13 52.20 88455 41 680 120 212 0.6 - 

2-3  06.09.12 24.10.13 52.60 101032 41 700 144 230 0.6 - 

3-4  06.09.12 25.10.13 50.20 76153 41 506 120 185 0.7 - 

4-5  06.09.12 28.10.13 55.80 273019 41 1979 451 642 0.3 - 

5-6  06.09.12 29.10.13 63.20 83199 41 631 167 174 0.6 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C6. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment cores 125-1 and 125-2  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

125-1 

0-1  06.09.12 11.02.13 48.60 238690 40 2583 363 453 2.6 0.4 

1-2  06.09.12 27.06.13 52.20 72913 40 660 117 131 1.4 0.7 

2-3  06.09.12 01.07.13 51.50 354253 40 2725 574 794 0.3 - 

3-4  06.09.12 02.07.13 50.50 75458 40 585 135 140 0.6 0.7 

4-5  06.09.12 03.07.13 52.60 96465 40 665 174 203 0.5 - 

5-6  06.09.12 04.07.13 54.60 83648 40 598 154 183 0.5 - 

6-7  06.09.12 05.07.13 58.80 83836 40 602 135 203 0.5 - 

 125-2 

0-1  06.09.12 13.02.13 50.40 91831 40 1049 168 184 2.4 0.7 

1-2  06.09.12 31.10.13 50.50 90534 41 810 140 160 1.7 0.8 

2-3  06.09.12 02.11.13 51.60 106016 41 752 155 218 0.6 - 

3-4  06.09.12 04.11.13 54.50 148858 41 1007 265 340 0.5 - 

4-5  06.09.12 05.11.13 55.90 89159 41 576 147 217 0.6 - 

5-6  06.09.12 06.11.13 56.10 100182 41 646 157 194 0.5 - 

6-7  06.09.12 07.11.13 56.20 85332 41 544 175 204 0.7 - 

7-8  06.09.12 08.11.13 54.50 95141 41 637 151 197 0.6 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C7. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment core 194-2  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

194-2 

0-1  07.04.13 12.11.13 50.30 84310 41 689 146 170 0.7 - 

1-2   07.04.13 18.11.13 57.40 261424 41 2218 478 575 0.3 - 

2-3  07.04.13 25.11.13 54.90 262949 41 2064 448 591 0.3 - 

3-4  07.04.13 26.11.13 55.80 93181 41 698 186 198 0.6 - 

4-5  07.04.13 27.11.13 55.90 85393 41 618 145 177 0.6 - 

5-6  07.04.13 28.11.13 53.70 83478 41 592 133 187 0.6 - 

6-7  07.04.13 29.11.13 52.10 79235 41 578 121 166 0.7 - 

7-8  07.04.13 02.12.13 53.60 258160 41 1885 463 640 0.4 - 

8-9  07.04.13 03.12.13 52.00 82286 41 523 142 161 0.7 - 

9-10  07.04.13 04.12.13 52.30 100055 41 716 173 182 0.6 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C8. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment core 195-1  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

195-1 

0-1  07.04.13 13.11.13 42.00 92936 41 668 159 192 0.8 - 

1-2   07.04.13 05.12.13 43.10 61279 41 413 86 124 0.9 - 

2-3  07.04.13 09.12.13 43.40 250953 41 1716 379 462 0.4 - 

3-4  07.04.13 10.12.13 49.90 99425 41 724 162 191 0.6 - 

4-5  07.04.13 12.12.13 47.60 86057 41 521 128 182 0.7 - 

5-6  07.04.13 13.12.13 48.60 86641 41 567 126 162 0.7 - 

6-7  07.04.13 16.12.13 50.10 147784 41 996 248 342 0.5 - 

7-8  07.04.13 17.12.13 53.10 96826 41 632 132 213 0.6 - 

8-9  07.04.13 18.12.13 51.90 84750 41 543 135 169 0.6 - 

9-10  07.04.13 19.12.13 52.90 97639 41 683 166 212 0.6 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C9. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment core 196-1  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

196-1 

0-1  07.04.13 14.11.13 50.40 82879 41 1208 111 140 6.4 0.9 

1-2   07.04.13 04.12.13 48.30 85729 40 1373 138 191 5.7 0.8 

2-3  07.04.13 05.12.13 43.70 61480 40 900 98 131 5.4 1.1 

3-4  07.04.13 09.12.13 45.00 251011 40 3749 372 501 5.9 0.5 

4-5  07.04.13 10.12.13 43.70 99500 40 952 151 177 2.3 0.7 

5-6  07.04.13 11.12.13 45.80 62560 40 471 84 133 0.7 - 

6-7  07.04.13 12.12.13 46.30 86219 40 756 141 176 1.0 0.7 

7-8  07.04.13 13.12.13 48.00 86890 40 683 134 186 0.6 - 

8-9  07.04.13 16.12.13 53.70 148055 40 1095 261 316 0.4 - 

9-10  07.04.13 17.12.13 55.10 96986 40 712 165 211 0.5 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C10. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment core 197-2  

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1 

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

197-2 

0-1  07.04.13 15.11.13 52.70 98190 41 1035 140 192 2.7 0.7 

1-2   07.04.13 08.01.14 47.20 193025 41 2011 302 394 2.5 0.6 

2-3  07.04.13 09.01.14 48.70 88892 41 798 138 157 1.7 0.8 

3-4  07.04.13 13.01.14 49.90 317809 41 2298 511 641 0.3 - 

4-5  07.04.13 14.01.14 51.10 101377 41 698 149 202 0.6 - 

5-6  07.04.13 20.01.14 52.20 258583 41 1871 381 543 0.3 - 

6-7  07.04.13 28.01.14 50.80 84988 41 595 143 179 0.7 - 

7-8  07.04.13 29.01.14 52.60 92911 41 614 153 193 0.6 - 

8-9  07.04.13 30.01.14 54.30 91593 41 665 173 184 0.6 - 

9-10  07.04.13 31.01.14 59.70 102666 41 720 191 211 0.5 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Table C11. Data and result from caesium-137 (
137

Cs) measurements in 1 cm slices from sediment core 199-1 (reference station)  

 

 

Sample-id/ 

layer (cm) 

Sampling 

date 

Measuring 

date 

Sample 

mass (g) 

Counting 

time (sec) 

Channels 

in top 

Gross area 

ROI 1  

(counts) 

Gross area 

ROI 2 

(counts) 

Gross area 

ROI 3 

(counts) 

Decay 

corrected 

activity
a
 

(Bq/kg 

d.w.) 

Uncertaint

y (Bq/kg 

d.w.) 

199-1 

0-1  08.04.13 11.11.13 46.60 236141 41 2701 332 437 4.0 0.5 

1-2   08.04.13 13.01.14 48.50 317611 40 3659 478 601 3.2 0.4 

2-3  08.04.13 16.01.14 52.70 285595 40 2440 487 598 0.6 0.4 

3-4  08.04.13 17.01.14 50.00 88186 40 744 133 184 0.8 0.7 

4-5  08.04.13 20.01.14 52.20 249667 40 1737 432 506 0.3 - 

5-6  08.04.13 03.02.14 53.80 227725 41 1635 426 444 0.4 - 

6-7  08.04.13 04.02.14 54.70 108287 41 834 171 213 0.5 - 

7-8  08.04.13 05.02.14 57.80 83312 41 608 129 145 0.6 - 

8-9  08.04.13 06.02.14 57.40 85729 41 646 180 197 0.6 - 
a
Values in italic; measurements below the quantification limit (0.5*Lq) 
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Appendix D: Data from grain size distribution 

 

 

 

 

 

Table D1. Result of sieving of the 0-1 layers of selected cores collected in 2013 

Sample-id 
Sand and gravel 

(>63 µm) 

Coarse silt  

(<63µm -

>16µm) 

Medium silt  

(<16µm - >8µm) 

Fine silt  

(<8µm - 

>2µm) 

Clay 

(≤2µm) 

194-2 2.1 11.3 10.7 58.7 17.2 

195-1 0.2 5.5 11.0 59.3 24.0 

196-1 4.7 9.9 11.0 54.2 20.2 

197-2 4.0 9.7 11.7 56.6 18.0 

199-1 (ref) 3.8 8.9 11.4 57.2 18.8 
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Appendices 

Appendix F: Cruise report from monitoring of the area adjacent to 

Komsomolets in 2012 

 

Prøver ved Komsomolets F/F G. O. Sars 2012 (Toktleder: Edda Johannesen) 

Tidsbruk 

Søk etter ubåten startet ca halv tolv kvelden 5. sept. Etter krysspeiling ble ubåten lokalisert til 

å ligge innefor området merket av med blått i kart under. Dette området er ca 250-300 x 250-

300 meter.  Utenfor dette området ble ekkoregistreringene fra ubåten borte. Det ble registrert 

sterke signaler ved posisjon 73°43.473, 13°15.817 (grønt kryss øverst på kartet) og 73°43.445 

og 13°16.007 (nederste grønne kryss).  Selve peilearbeidet tok ca 2 timer.  Grabbprøver ble 

tatt ved fire posisjoner (grønne firkanter). Det var vanskelig å få gode prøver, så det ble flere 

bomskudd, slik at vi totalt på stasjonen brukte 11 timer (ekskludert peiletiden) for å få disse 

fire prøvene. Hver grabb tar ca 1 time hvis det ikke er noen problemer, men nå tok noen av 

disse forsøkene 3.5 timer. 

Bruk av transponder. 

Det ble forsøkt bruk av transponder, men det virket som den hindret grabben i å lukke seg, evt 

hindret gode prøver, så derfor ble den fjernet etter gjentatte bomskudd. 

Gitt presisjonsnivået på ekkomålingene av posisjonen til vraket, så er det muligens ikke 

nødvendig med en så nøyaktig posisjonering av grabbene som transponderen gir.  
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Appendices 

Skjermbilde med kart fra Olex systemet på GOSars. På kartet vises båtens posisjon ved de fire 

vellykkede grab-prøvene (grab 1:73°43.547,13°15.621,  grab 2, 73°43.482,13°16.318, grab 

3: 73°43.398,13°16.088, grab 4: 73°43.418,13°15.784)., område med ekkosignaler fra båten 

(blått) og to kraftige registreringer av ubåten (grønne kryss). 

 

 

 

 


