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Chapter 1 Introduction

1.1 Motivation
Propagation and focusing of electromagnetic beams through layered anisotropic medium is of 
interest in the field of optical data storage, where thin layers are mounted on glass substrates, 
display technology, where polarised light passes through liquid crystals, and in biological and 
material sciences, where objects are portrayed through thin sheet glass. In the case of computing 
a focused or diffracted field of a three-dimensional optical problem, it would be required to evaluate
two-dimensional integrals with amplitude and phase functions. Obtaining numerical results for 
these kinds of problems, is a difficult task because of the rapidly oscillating integrands and the 
singularities in the Fresnel transmission and the reflection coefficients. If a layered medium is an 
anisotropic crystal, the numerical analysis is complicated significantly, as it gives rise to 
birefringence and mode coupling.

Research within this field is jointly being conducted by the Department of Engineering at the 
University College of Bergen [HIB] and the Department of Physics and Technology at the 
University of Bergen [UIB]. Their researchers have obtained both exact and asymptotic results for 
propagated and focused fields in uniaxial crystals, and they have been adopting various 
techniques to obtain numerical results. The double integrals, which can be used for obtaining the 
results, can be reduced to single integrals by means of applying parabolic approximations to the 
phase and amplitude functions, and even though the approximations tend to give numerical 
results, the procedure is time-consuming. As such obtaining numerical results from this sort of 
procedure might take a few minutes to several computing hours. To date, they have typically 
written software in Fortran, in order to achieve the numerical results, and this intermediary data is 
then used as input data for the MATLAB software, in order to present the final results.
This process of having to code one program for producing results that are passed to another, just 
to able to produce the final results, is convoluted, the use of different programs in series for 
producing the final result creating unnecessary work for the user. As such, the researchers have 
requested a singular software solution that will handle both the numerical calculations and the 
graphical presentation of the propagated electromagnetic fields from the initial data, which 
describes the characteristics of the medium and the type of electromagnetic wave.

1.2 Thesis overview
Chapter 2 describes the theoretical background for the solution, as well as introducing the problem 
that this solution is trying to solve. Chapter 3 analyses the problems related to the thesis, and 
describes the development methodology, and tools used for developing the application. Chapter 4 
discusses the design of the application and how it was implemented. Chapter 5 evaluates the 
thesis and the solution. Chapter 6 concludes the thesis and provides suggestions for further 
improvements to the solution. The appendices provide explanations for each of the dialog windows
and instructions for compiling the application.
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Chapter 2 Background

2.1 Transmission of Gaussian beams into uniaxial crystals
The researchers at UIB and HIB work with theories for the transmission of Gaussian beams into 
uniaxial crystals, which are a type of anisotropic material. The studies involving the propagation of 
Gaussian beams mainly focus on the propagation in isotropic medium, based on scalar theory and 
paraxial optics. The results of these studies may in some cases be applied for uniaxial crystals, as 
when a transmitted Gaussian beam is applied to the surface of a uniaxial crystal, the beam will be 
split into an ordinary beam, and an extraordinary beam, with different propagation directions at the 
interface [GAU1][GAU2], a property called birefringence. The equations for these are quite 

complex, consider solving for the exact solution of the transmitted electric field Et(r ,t ) at a 

three-dimensional point r of a uniaxial crystal, where Eot is the ordinary electric field, and

Eet the extraordinary electric field:

Et
(r ,t )=ℜ{[Eot

(r )+Eet
(r )]e−iω t

}

The solution for this requires solving multiple double integrals which would take considerable time 
even on a computer.[GAU2]

One case of using the results of studies that focus on propagation in isotropic medium, is when the
plane of incidence of a linearly polarised Gaussian beam is along its electric field [TM field], as 
opposed to when the plane of incidence is normal to the electric field [TE field]. When it is a 2D TE 
field, the problem becomes a scalar problem, when it is a 2D TM field, the problem becomes a 
vectorial problem, in which case, the electric field can be expressed in a form similar to that for 
scalar Gaussian beam propagating in an isotropic medium [GAU1]:

Eet
(x , z )∼∫
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a
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Figure 1: Rays passing through
birefringent material, Wikipedia,

Birefringence, by Mikael Häggström



Also, when one assumes that the aperture size a is larger than the beam waist σ , one may 

use also use the paraxial approximation to express an approximated equation in even simpler 
terms [GAU1]:

Et
( x , z)=E0 f E

x
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2.2 Problem statement
As the researchers at UIB and HIB derive new equations for making an approximation of the exact 
results of an original equation, they will also develop programs according to their theories for 
calculating numerical results to compare these with the exact results.These programs have been 
written in Fortran, and their complexity varies from operations performing single for-loops, to 
several nested for-loops.

The Fortran programs that have been written up to date, are very static in their function. They will 
output one or several files, this depends on the program the user would run, these files containing 
two columns of numbers that would be visualised on a 2D graph plot, the two numbers of each row
representing the coordinate point. The numbers that are calculated by the programs are dependent
on internal variables, but once a program has been compiled, the user has no way to alter these 
himself. This means that if the user wants to alter the behaviour of the program, by altering the 
variables that are used by the program, to set up a different scenario, he would have to go into the 
program’s code, alter these here, and compile and run the program over again.

The software they have been using for the graph plot is the MATLAB software, so after a Fortran 
program has executed, the outputted files would be loaded into MATLAB in order to visualise the 
results. If the user wants to prepare for a different scenario, he would repeat the above steps, 
which, in the case of a Fortran program running a computational-heavy task, would require waiting 
a long time until the program has executed. This is the case with some of the programs, and 
waiting around to manually load the outputted files into MATLAB would be trying on one’s patience.
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Figure 2: Workflow in the current situation



Chapter 3 Problem analysis
For every time the user wants to try out a new scenario, instead of interacting between a program’s
source code, running the program and loading the data into MATLAB, it would have been easier for
the user to simply input the values into a program, and have this program display the results of 
calculations once they were done in the form of a graph plot. So, a graphical user interface that 
would accept the inputted values, and simulate, replicate, or call the functions of the original 
Fortran programs, to then draw the graph plot, was needed.

One can then divide the problem in these parts:
- Graphical user interface
- Linking with Fortran systems
- Graph plotting

3.1 Graphical user interface
As the application would be run on a GNU/Linux desktop environment, one would have to choose 
a graphical library that is compatible with the desktop environments that are used by the different 
GNU/Linux distributions, the most prominent ones being KDE and GNOME. For this there are 
many graphical libraries that are compatible with most desktop environments, such as GTK+, 
wxWidgets, and Qt. Due to my former experience with Qt, not being familiar with other graphical 
libraries for GNU/Linux, and with Qt being well-documented[QT], the choice fell quickly on Qt, 
making the main implementation language C++. Additionally, Qt does not only provide support for 
graphical development, but also has several neat additional functions that are not restricted to 
graphical development. The version of Qt that was first considered was 5.0, but where as I had 
formerly used Qt 4.8, and 5.0 seemingly being different from 4.8 and having less documentation 
than the latter version, I settled on Qt 4.8.

3.2 Linking with Fortran systems
Because these Fortran programs already existed, and their source code was provided to me by my
supervisor, trying to simulate their function by coding the logic all over again, would be 
unnecessary. Instead, I looked to integrate the Fortran programs into the application, by taking 
advantage of the existing source code.

Three different strategies in regards to the existing Fortran programs were considered, letting the 
application edit the Fortran source files in regards to the input data, compile and run, have the 
application run the programs and input data by commands in the background, or extract the 
functionality of each program into their own functions, calling these functions from the application.

The strategy of letting the application edit and compile the source files was considered a bit 
reckless. Entering incorrect values as input could have made the program uncompilable, a 
scenario that would be hard to handle, and there would also be the possibility of injecting malignant
code. In addition, the application would have to wait for the compiler to finish, then run the program
and wait for that to finish, before the results could be displayed. There was also the issue of where 
the source files would be located, whether they should be part of the internal resources of the 
application, to be saved to the file system after having been edited, or whether they were on the file
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system, with defined blocks to be edited.

For the strategy of having the application run the programs and input commands, one would have 
to modify the programs to accept input from the standard input device, but one would also have to 
define for the application what kind of input the program is expecting. A configuration file for each 
program was considered for this task, which would have let the user select the configuration file 
and then be prompted with input fields for each input command. The concerns about this solution 
was whether if the file defined in the configuration really existed in the file system, whether it was 
an executable, and whether the correct amount of input fields had been defined, the program being
paused indefinitely because it would still await input.

What was ultimately chosen was to extract the functionality of the programs into functions, which 
would be called from the application. This wouldn’t mean that every function would have to be 
implemented in the main implementation language, but that we could write the interface in Fortran 
and still be able to call Fortran functions from C++. There are different approaches to this, most 
famously dynamic linking, in which code is compiled into non-executable machine code, but loaded
together with the executable when you run the executable file, allowing one to write references to 
functions that you won’t find within the scope of your code. Another way is by use of language 
binding, which functions similar to dynamic linking, except the code written in a secondary 
programming language may be compiled together with the main implementation language. As I 
had no experience in dynamic linking, I tried to give language binding a shot.

3.3 Graph plotting
The Qt libraries provide no native way for displaying graph plots in a Cartesian plane. This may be 
explained by developers of Qt applications wanting their own design for displaying plots, or graph 
plots having different methods for being displayed, that the developers of Qt have chosen to not 
decide on a standard method. However, Qt has a powerful graphics library, so it doesn’t prevent 
developers from writing their own tools for displaying graphics the way they want to. For someone 
to generate a graph plot for the use in a Qt application, they would have to write the functionality 
themselves, rely on a third-party library or even an external program. For Qt, some third-party 
libraries that can be used to display graph plots are called Qwt and QCustomPlot, and external 
programs that could be used would be gnuplot and MATLAB.

The plots that are required for this solution didn’t seem so advanced for me, and I was reluctant on 
using third-party libraries or external programs, as these would rely on being installed onto the 
user’s working environment, so I decided to write the functionality myself.

3.4 Implementation language
A minor argument towards choosing the implementation language, was that the application could 
also be cross-platform, not being restricted for use on the GNU/Linux platform. A sounding 
response to that would be to use Java, as Java provides an extensive library and any code written 
in Java is cross-platform, unless directly accessing functions from the operating system. However, 
most programming languages are cross-platform, how an application is written, and how it is 
compiled, determines whether or not it is cross-platform. Java applications traditionally relies on 
the Java Virtual Machine [JVM], which provides automatic garbage collection by detecting objects 
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that have been discarded and purges them from memory, but JVM also makes compatibility with 
other programming languages awkward, as there might not be support for compiling code written in
other programming languages into bytecode which is what JVM uses internally to produce machine
code.

On its own, C++ is cross-platform, having been standardised by the International Standardization 
Organization, and so the C++ Standard Libraries are available across any C++ compiler that 
conforms to the ISO standard and function the same. The problems with C++ comes across when 
it comes to memory management, GUI development, and accessing functions of the operating 
system. The two latter problems often come hand in hand, as it would be the operating system that
is in charge of drawing the GUI elements, and for the memory management, any object that is 
instantiated, meaning that its memory is allocated to the heap, should also be destroyed. The Qt 
framework solves the problems of GUI development and also accessing functions of the operating 
system. This does not imply that Qt has a solution for every such function, but it does for the more 
important ones, such as getting the current time, or creating new threads. It has no solution 
towards the memory management problem, but how it solves the two other problem is a strong 
argument for choosing C++ for the main implementation language. Another argument for choosing 
C++, is the possibility of accessing external entities that don’t come via include directives or are 
defined otherwise in the code.

Because the application also need to access Fortran functions, this also means some work needs 
to be done writing interfaces in Fortran, making Fortran into a secondary implementation language.

3.5 Development methodology
It is hard to define the methodology I used during this project. I tried to keep in mind the practices 
of Agile software development, though the Agile methods are not entirely suited to a single-man 
team, where Agile methods promote cooperation with other team members. This does not mean 
that you can’t derive any valuable lessons from the Agile methods, and you’re not meant to follow a
specific Agile method obediently either, but pick and choose between the practices that benefits 
your team the best[ASD], leaving me free to adapt to a lone developer working method. Agile 
values collaboration with the customer, and this means that the customer, or a representative for 
the customer, is part of the development process, being presented with working software at regular
intervals and giving feedback based on this. In the scope of this project, my supervisor was the 
customer and should have had frequent updates on the progress.

Concerning design practices, Agile values simple designs, requirements only changing according 
to needs. Keeping a simple design meant that instead of running a program by the application, 
after having it read the proper configuration, the application could just call the functions that had 
already been coded.

Something the Agile methodologies also value, is Test-Driven Development. Under this practice, 
any code to be written has to be preceded by a test that confirms its validity. If the test does not 
pass, one has to assume that either the code has not been written or it does not conform to the 
test’s parameters, and if the test passes before the code has been written, then there’s something 
wrong with the test. However, writing tests may not be so intuitive when you’re developing user 

11



interfaces. For code that is easily testable, there shouldn’t be any problem writing tests, although I 
opted out of writing unit tests as I’m not familiar with any testing frameworks for C++.

3.6 Development environment and tools
Because the main use for the application would be on GNU/Linux, the operating system the 
application was developed and tested on was Ubuntu 12.04, running on VMware Player 6.0.1. 
Choosing to run the operating system on a VM is not related to the project, but sharing this 
information may help understand the constraints of the work.

The Integrated Development Environment [IDE] used for developing the application was the 
NetBeans IDE 8.0 for C/C++. This IDE also provides tools for helping develop a Qt application, and
although the Qt Creator IDE could have been used, which is designed entirely for developing Qt 
applications, I felt NetBeans was more robust, where NetBeans also has support for syntax 
highlighting in Fortran source files.

The compilers used were from the GNU Compiler Collection [GCC], the IDE being set up to use 
the g++ compiler for both C++ files and Fortran files. In addition, qmake was used for setting up 
makefiles for the application, dependent on the Qt project files. qmake is also in charge of  
converting Qt-exclusive syntaxes which are not part of the C++ syntax, such as signals and slots, 
into proper C++ code. Both of these actions happen automatically when targeting the Qt project 
file.
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Chapter 4 Implementation

4.1 Overview
The application consists of a control window defined by MainWindow. A central widget to 
MainWindow is GraphPlotter, and is used to plot graphs from data that arrives from the threads. 
The dialogs are activated by menu options from MainWindow, and receive input which is sent to 
the threads. The threads interact with the Fortran functions.

4.2 MainWindow
This class inherits from QWidget, its purpose is to function as the controller of the main window of 
the application, from which the other UI elements are controlled. Its UI elements consists of a 
menu bar (QMenuBar), the visual representation of GraphPlotter, text boxes to change the 
properties of GraphPlotter, and a visual representation of QTableWidget, which displays the actual 
values of the graph being visualised in GraphPlotter.

MainWindow’s menu bar has two menus (QMenu), “File” and “Routines”, each menu containing a 
number of actions (QAction). File contains two actions, “Save as image...” and “Exit”. The “Save as
image…”-action is connected to a function that will cause GraphPlotter to open a file dialog to 
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accept a filename and directory for an image file, the “Exit”-action is connected to a function that 
will force the window to close, which will stop the application. “Routines” contains three actions, 
“2D TM Gaussian beam”, “2D TM Gaussian beam (simplified)”, and “2D TM Gaussian beam (non-
truncated, chi << 1)”, which will each open their own dialog window.

GraphPlotter occupies the majority of the space of MainWindow’s window, and on its right-hand 
side one will find text boxes to modify the properties of GraphPlotter, which are the focus and 
scales GraphPlotter uses to draw the graph.

When the threads belonging to the dialog window for each routine have finished processing, 
MainWindow will receive QVectors from these which it will pass on to GraphPlotter, forcing 
GraphPlotter to draw its contents, and will also fill out the QTableWidget with the values returned.

14
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4.3 GraphPlotter

This class inherits from QWidget, its purpose is to draw the graph from the values returned from 
the threads belonging to the dialog windows. The draw context of the graph is determined by two 
QVectors, one for the x-coordinates and one for the y-coordinates, a focus, which determines the 
real point which should be in the exact middle of the draw context, and two scales, which 
determines the pixel-distance between each x-coordinate and y-coordinate respectively.

The QVectors of GraphPlotter are set by the public function setData(). setData() saves the 
QVectors to itself, and goes through each vector to find the minimum and maximum values of both 
vectors, which it will use to determine the focus of the graph and an appropriate scale. The focus is
determined by the addition of the half-distance between the maximum and minimum of the graph 

with the minimum for both vectors (eg. focus y=miny+
max y−miny

2
), placing the focus in the 

absolute middle of the graph. The scales are determined by evaluating the width and heights of the
draw context against the distance between the maximum and minimum x- and y-coordinates of the

graph(eg. scale y=
height
max y

−miny ). This ensures that the entire graph is covered by the draw 

context when it is being drawn. setData() ends by forcing GraphPlotter to redraw its context. 
setData() also accepts context text for the axes as QStaticText , which GraphPlotter 

GraphPlotter draws its context by overriding QWidget’s paintEvent(), which calls drawContext(). 
drawContext() creates a new object of the type QPixmap, on which it will draw the graph and its 
context, which paintEvent() will use to draw upon the widget. This QPixmap-object is also used 
when saving an image from MainWindow.

drawContext() calls drawGraph(), which creates its own QPixmap-object. This QPixmap-object is 
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needed to prevent drawing lines onto GraphPlotter’s own QPixmap-object, having the lines exit the
context of the graph. Another thing that deemed the QPixmap-object necessary, is Qt’s native 
painting engine, which can interpolate the drawing basis of a drawing object to proper pixel points, 
only ignoring drawing objects that fall entirely outside the context. This mean that if you were to tell 
Qt to draw a line between two points that fall outside the draw context, but they still intersect the 
context’s rectangle, it will still draw a line.
drawGraph() continues by going through each pair point in GraphPlotter’s vectors, to convert the 
point values into a pixel point and draw lines from one point to the other, based on the focus, the 
scales for the coordinates, and the draw context’s height and width (eg.

pixelx=scalex (entryx−focus x)+
width

2
).

After drawGraph() is finished, drawContext() continues by drawing visual information around the 
graph, which are tick marks accompanied by numbers, to represent exactly where a visual graph 
point is in relation to the data. Setting an arbitrary, constant value to distance the tick marks based 
on the real coordinates of a pixel point, would cause the tick marks and their numbers to not be 
drawn when the scale is too big, and pack them too tightly together when the scale is too small. 
And on the other hand, setting a constant value based on the number of pixels in a direction, would
cause the rendered numbers to have subjectively confusing forms, eg. 0,5496, 0,8371 could have 
been rendered next to eachother.

To remedy this, drawContext() will need to find a number by which it can space the tick marks out 
without them not being rendered, or being packed too close. This can be solved by using an order 
of magnitude, and drawing the ticks based on the real coordinates of a pixel point, which will then 
evenly space out the tick marks according to the real coordinates. As the scales determine the 
distances in the rendered graph, it would be proper to use these to determine the order of 
magnitude, however as the scales determine the pixel distance between each unit, and we want a 
distance between each pixel, the order of magnitude would be based on the inverse of the scales, 
giving us a unit distance between each pixel.

As viewing values in the power of ten is more intuitive than a series of numbers distanced by a 
seemingly random number, the base 10 logarithm is used on the inverse of the scales to determine
an exponent, and this exponent is rounded down to find an order of magnitude for the power of 10,

x=⌊log10(
1

scalex

)⌋ , y=10x . The distance y determines is still too small, a tick mark drawn

for every real y , where one pixel would contain many y , but this is just simply solved by 

multiplying y by 100.

To determine where drawContext() should start drawing tickmarks, and where it should end, the 
boundaries of the draw context are converted to real values, and then rounded, based on the order
of magnitude, into the nearest number that fits within the draw context, and drawContext() starts 
drawing tick marks based on these rounded numbers, starting from one rounded boundary and 
ending at the other. Because the tick marks might still get too closely packed together, when the 

spacing between the pixel is below a certain threshold, y  is multiplied by 500, giving a power of
5 instead.

16



After having drawn the graph and the visual information for the graph, drawContext() will then 
return to GraphPlotter’s paintEvent(), which will draw the QPixmap-object on the entire widget.

In the context of visualised graphs, one would expect y-coordinates to increase upwards. Qt, along
with many other graphical drawing systems, places the pixel point (0,0) in the top-left corner of its 
context, and increases y-pixel coordinates downwards. For all operations working on the y-
coordinates in GraphPlotter, this means it has to treat the y-pixel coordinates opposite of how it 
treats x-pixel coordinates, so where x-pixel coordinates would be increasing along with x-
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coordinates, y-pixel coordinates decrease when y-coordinates increase. Consider,

pixelx=scalex (entryx−focus x)+
width

2
, which for y-coordinates would be

pixely=scale y( focus y−entry y)+
height

2
.

GraphPlotter supports zooming and moving the graph around with the mouse.
When the mouse-wheel, or a similar input device, is scrolled inwards or outwards while the mouse 
pointer is over the widget, the scales will either increase by a multitude of 1.1, or decrease by a 
multitude of 1.1. This is handled by wheelEvent().
When the left mouse button is held down, the focus point changes based on which direction the 
mouse pointer is moving and the scales, conforming to mouse movement at any scale. This is 
handled by mouseMoveEvent().

Using GraphPlotter’s saveAsImage() will open a file dialog to select a directory and a filename for 
an image file. The file may be saved as any of the writable image formats of Qt, which includes 
JPEG, PNG, and BMP, however the user will have to write the extension in themselves, with 
.jpg, .png, .bmp, or choose an existing image to overwrite. This seems to regrettably be a design 
flaw with Qt’s QFileDialog, and a workaround to this might be more trouble than it’s worth.

4.4 Dialog windows and threads
The dialog windows inherit from QWidget, and the threads from QThread. There exists a QDialog 
class in the Qt libraries, but because hitting the Escape button when the focus is on a QDialog 
window would force the window to close without a possibility to ignore this event, using QDialog 
was undesirable (as explained in 4.5.a).

The dialog windows interact with threads, which interact with the Fortran functions. The dialog 
windows are activated by selecting the relevant menu option of MainWindow, and are modal, 
meaning that unless you close them, you will be unable to interact with any other UI element of the 
application. In this solution, there are 3 dialog windows, each dialog window having their own 
thread, each based on the different Fortran programs I received from my supervisor:
-GaussXIntensityDialog
-AnalyticIntensityDialog
-NewAnalyticIntensityDialog

The purpose of each of these dialog windows is covered in Appendix A.

Each dialog window contains a number of textboxes for writing in input, a push button to press to 
start a thread, and a progress bar that will be visible during the thread’s execution. All dialog 
windows except GaussXIntensityDialog also have a choice of what kind of result to be displayed in 
GraphPlotter and the QTableWidget of MainWindow.
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Figure 8: Screenshot from GaussXIntensity’s
dialog window



When the dialog window’s push button is activated, the input in the textboxes will be validated to 
check if erroneous values have not been inputted, and if there are none, the input is passed over to
the thread belonging to the dialog window, and the thread will start executing. At this point the 
progress bar belonging to the dialog window will be visible, updating based on the thread’s 
progress. The progress bar is important to let the user know that the program didn’t freeze, and 
how many operations are left before he can view the results.

The reason why the threads are necessary to the application, is because normally every operation 
a Qt application performs is done on a single thread, in some cases called the UI thread. This 
includes all UI operations and all calculations, so if a series of operations are being performed for a
relatively long time, any planned updates to the UI will have to wait until these operations are done.
This will make the application unresponsive until it has performed the offending operations, and 
can give the user the impression that the application has frozen. As some of the operations the 
threads currently perform may prove to be rather time-consuming, especially when the resolution 
(number of distinct points) of the graph is increased, executing these operations on the UI thread 
would undoubtedly cause the UI to freeze up.

4.5 Interacting with Fortran functions
GCC, when the gfortran driver has also been installed, is able to compile Fortran source files 
together with C++ source files, but the g++-compiler will specifically not recognise certain native 
Fortran operations when linking object files together, such as write, pause, or print, aborting the 
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Figure 9: Screenshot from AnalyticGaussDialog’s dialog
window 



linking process if it encounters these operations.

In C/C++, one may define references to entities that will only be checked whether they exist at the 
time of linking the object code together, not when the source files are being compiled into object 
code, this is possible by the use of the extern-keyword. A particular case for C++, is defining the 
extern “C”-directive, to prevent what has received the negative moniker, name mangling. Many 
compilers use name mangling as a way to prevent name conflict when linking object code, as in 
C++, functions may share names (function overloading). Name mangling is undesirable if you want
to access a specific entity that has not been processed as C++ code. Essentially, what the extern 
“C”-directive tells the compiler, is to treat the entities as C entities, because unlike C++, C does not 
support function overloading.

Something special that GCC does with names for functions or other entities under compilation, is 
to convert uppercase letters to lowercase, and add underscores to the name for the object code. 
Take for example the Fortran function ANALYTIC(), which would become analytic_() in the object 
code. This means one cannot just directly refer to an entity with the name you’d encounter in 
Fortran from C/C++, but you would type in the name as how the compiler would compile the name 
for object code.

The GCC compiler will resolve different data types used by Fortran and C/C++ into the same data 
type in the object code. For example, Fortran’s DOUBLE PRECISION and REAL*8 are the same 
as C/C++’s double. However, Fortran may also use complex numbers, defined by COMPLEX, but 
C itself does not support for complex data types, and to use complex data types in C++ requires 
including one of the standard libraries. Also, where Fortran would define an array by DOUBLE 
PRECISION array(54,3), C/C++ would define an array using double array[3][54].

In the standard format for writing Fortran code, you are required to include a margin before any 
operation, and every line is limited to a certain number of characters. This means that a function 
name, together with the names of its parameters, may be very limited, making it difficult to pass 
multiple parameters to a function. One solution to this, is using the Fortran COMMON-keyword. 
This keyword defines a static container, which can hold a number of objects, and all Fortran 
functions in a program can access the container and its contents by using the same definition. In 
C, a similar object would be struct, although there’s no need to define struct in every function that 
wants to use it. For the GCC linker, struct objects and the COMMON-container may be the same, 
so by defining a struct object with the same name, same size, and the same type of variables and 
variable names, as what a Fortran function would use for a COMMON-container, a C++ program 
would be able to access the container, eg. COMMON/EPSBLOCK/eps1,eps1o,eps1e, where eps1,
eps1o, and eps1e in a function would defined as DOUBLE PRECISION, would be extern struct 
{ double eps1, eps1o, eps1e; } epsblock_ ;.

Fortran supports passing functions as parameters to a different function, similar to C++, but in the 
case of Fortran, this is much simpler. C++ would need to convert the function to a pointer, defining 
the parameters it should accept and its return type, in Fortran it just needs to pass the name of the 
function. In fact, Fortran treats all function parameters as pointers, meaning that an original 
variable that is passed to another function, would change if this function modified the parameter 
variable.
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Because of uncertainty of how native Fortran functions operate on numbers compared to C++’s 
standard library functions, the complex data type, and passing functions as parameters to 
functions, interaction functions that use the various Fortran functions were made in Fortran to 
simulate the behaviour of each program, simply returning non-complex numbers. These interaction
functions are called from the threads.

The Fortran programs the logic of the Fortran interaction functions were based on, had for-loops 
that start from one defined value, and end at another defined value, with a defined number of steps
between the two values for the for-loop to iterate over. For every such step, output would be 
deposited into various files defined in the programs. In this solution, instead of depositing the 
output into files, the interaction functions accept parameters that is equivalent to the output of the 
original programs, and repeating the same logic as inside the original for-loops, calling any other 
Fortran functions that the original program called. Because the parameters are treated as pointers, 
when the function returns to the function that called it, the values for these have changed. Here the
threads use a for-loop instead, storing the variables into array-structures under each iteration. 
There are also some interaction functions that simply help setting up any common variables that 
would be constant under the execution of the thread’s for-loop.

4.5.a Sample behaviour of a thread

When a thread starts executing, it will modify the relevant Fortran COMMON-containers to the 
input it has received from the dialog windows. Then based on the resolution the user has defined 
for the outputted graph, the thread will step as many steps as defined by the resolution, from the 
defined z-observation start, to the defined z-observation end. For each step, the thread calls the 
interaction function it controls, passing variables for the interaction function’s output. The modified 
variable and observed z-point are stored onto QVectors, the QVectors being passed out with an 
emitted Qt signal.
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Because the COMMON-containers are static to the program, care has to be taken to not allow 
multiple threads to work on the data at the same time. Due to them being static, they are not 
thread-safe, and two threads modifying an entry at the same time would lead to data corruption. 
This means that any other threads has to be blocked from executing, the solution used by this 
application is by making the dialog windows a thread belongs to modal, and preventing the user 
from closing the dialog window while the thread is executing, to prevent the user from taking any 
action that would start another thread. The Fortran functions not being thread-safe is regrettable, 
as the program could have benefitted from several threads calling the same function with different 
parameters on a multi-core processor, reducing the time a user has to wait for the calculations to 
finish.
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Figure 10: Sequence diagram for the interaction with Fortran functions
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Figure 11: Overview of internal program logic



Chapter 5 Evaluation

5.1 Results
Taking the parameters for the numerical results in [Transmission of a two-dimensional Gaussian 
beam into a uniaxial crystal], for a LiNbO3 crystal, and applying them to the input for 
NewAnalyticIntensityDialog, an attempt to replicate the figures 2, 5, 6, 7 was performed, as the 
access for the function that calculates the transmission of a non-truncated 2D TM Gaussian beam 
for negative crystals is achieved through this dialog window.
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Figure 12: Total intensity 1 where θ=0 ( sx=0.0 , sz=1.0 )
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Figure 13: Total intensity 2 where θ=
π
4

( sx=0.766 , sz=0.766 )

Figure 14: Total intensity 3 where θ=
π
2

( sx=1.0 , sz=0.0 )
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Figure 16: Curvature R of transmitted beam, where θ=
π
4

Figure 15: Beam width σ , where θ=
π
4



No attempt to understand the full implications of these graphs is made here, these are just for 
demonstration purposes, using known values, to demonstrate the correctness of the solution 
against existing results.

In the interest of seeing how the functions accessed through GaussXIntensityDialog and 
AnalyticIntensityDialog compared to the function accessed through NewAnalyticIntensityDialog, the

same input values were used, where θ=0 .
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Figure 18: Output due AnalyticIntensityDialog

Figure 17: Copolarized axial intensity, where θ=
π
4



Although the output due AnalyticIntensityDialog has a similar form to the output due 
NewAnalyticIntensityDialog, the output due GaussXIntensityDialog expresses a more complicated, 
but weaker transmission. It is not the purpose of this thesis to explain why this happens, but this 
output remains true to that of the original Fortran program. As the two other functions rely on 
greater approximations than GaussXIntensityDialog’s function, this explains some of the 
difference. 

5.2 Testing
Because a lot of the application revolves around the UI and graphical elements, which carry 
properties that depend on how the window of the graphical element is visualised, it is hard to test 
the graphical elements without getting visual confirmation. This meant that to see if a graphical 
element was being displayed and working correctly, the application needed to be compiled and ran
to confirm the functionality and visuals. At the application’s current complexity, this was non-trivial, 
the compile time not being so long that I had to wait for the application to run. Each time a major UI
element was introduced, it’s functionality would be tested in this way, to ensure that any graphical 
elements belonging to it was rendered, and that any actions performed towards the interactive 
elements were registered and handled.

Because I didn’t use a testing framework, there was no white-box testing, which is to automatically 
tests the internal structures of a program using testing instructions. The reason I chose to not 
white-box test the application was because I was unfamiliar with any C++ testing frameworks, and 
uncertain of how the testing frameworks would work towards Qt objects and the Fortran functions. 
Since the source code for classes defined as Qt objects technically isn’t C++-compliant until after 
qmake has made them into meta-object code, which is C++-compliant, it would be difficult to 
predict whether a testing framework would take this into account when executing the tests. And 
because the Fortran functions are static, and for C++ considered, only exists in the object code, 
the situation is similar to the former situation.
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Figure 19: Output due GaussXIntensityDialog



Black-box testing, which is to check what the program does, not how it does it, was however 
performed. In the beginning, a second-degree polynomial function was used to check whether 
GraphPlotter would render the function correctly, and what would happen if the scales and focus 
was changed around. Because the lower bound for the polynomial function was a bigger negative 
value than the positive value of the upper bound, it was expected that the function would slope 
down from the left, and then slope up to a lower point than leftmost part. This way, it would be 
possible to see if the x- and y-coordinates were not rendered the wrong way around. For the 
Fortran functions, the output of the threads interacting with these was compared with the output of 
the original Fortran programs.

If the application crashed, debugging with Qt’s debug tool would be used, to trace the steps the 
application would take along the path of actions that had made it crash. In most of the cases where
application crashed, it was due to the Fortran interaction functions, where trivial problems such as 
neglecting to define a function name was the culprit.

30



Chapter 6 Summary

6.1 Conclusion
With this thesis, I have defined the problem and subproblems, analysed how the subproblems 
could be solved, and shown how Fortran can used in a graphical application and how a graph 
would be plotted besides on a series of two-dimensional values. The work with the thesis has 
provided important lessons to myself, and given me insight for the physics behind birefringent 
material.

At the start of the thesis work, I had originally opted for modifying the existing Fortran programs to 
accept console input, and use Qt’s QProcess to interact with the programs, with directives provided
by a configuration file. But all the time before switching the strategy, I was concerned that the 
configuration file directives wouldn’t always be correct and that the solution would create needless 
complexity, and I am glad that I discovered how GCC solves cross-language programming, even 
though I think it shouldn’t be necessary to guess how the compiler names a function in the object 
code.

The use of an Agile development methodology didn’t go as planned either, the customer 
collaboration promoted by Agile being a failure mainly on my part, and since I was working by 
myself on the project, it was easy to be unfaithful to the Agile principles.

Because I already had gone from one subject in which we were developing graphical Qt 
applications, it was easy to get back into the flow of working with Qt, although I still had to rely on 
the Qt 4.8 documentation. Fortran was an entirely new field for me, so no attempts to delve deep 
into existing program logic were made, for example, when trying to implement the logic from two 
other programs and these returning uninitialised values, I suspected that deeper down the problem
could stem from data types being inconsistent, but I didn’t have enough knowledge about Fortran 
to troubleshoot this.

I’m not entirely satisfied with how the solution turned out, and I will provide suggestions to further 
improvements for the solution.

6.2 Future work
As it stands now, users are not able to save the numerical results resulting from the routines, 
preventing them from analysing the numbers closer with resorting to the data entries in the 
QTableWidget belonging to MainWindow. Therefore, it would be desirable to add a class that not 
only took care of saving these results to a file in a certain format, but also load entries in the same 
format to the program for GraphPlotter to plot onto a graph.

GraphPlotter could be extended so it can render more than one graph at the same time in the 
same context, the user being able to choose different outlining styles and colours for each graph. 
The save to image function should also be fixed, so that depending on the image format the user 
chooses, the filename extension is automatically appended to the filename, and checks whether it 
won’t save over an existing file. The folder the user saves to should also be remembered for the 
next time the user wants to save an image, whether for the application’s lifetime or for the next time
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the application is execute is up to personal preference. This should have to be accomplished by 
using the file dialog window native to the OS.

The dialog windows and threads should really be inheriting from abstract classes, that inherit from 
QWidget and QThread respectively. Although the Fortran functions have been granted extended 
life by this solution, it could be worth it to remake them into thread-safe functions in C++. An even 
better method would be to integrate a script engine, and remake the functions into scripts to be 
processed by the script engine.
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Appendices

Appendix A
As written, each of the dialog windows were based on Fortran programs I had received from my 
supervisor.

GaussXIntensityDialog was based on a program called unigauss. This program uses the 
equation for calculating the electric field using a form similar to that for scalar Gaussian beam 
propagating in an isotropic medium [Equation 1]. This program was the most advanced one, with 
several different independent functions, and also the slowest. From this program, I extracted 17 
clear input variables which are echoed in the dialog window, the class of the thread belonging to 
GaussXIntensityDialog having a variable for each of these. The thread is in charge of calling an 
interaction function in Fortran called GAUSSXAXIS() for each iteration of its for-loop, from which it 

extracts |Ex|
2 at a point of the uniaxial crystal.

AnalyticIntensityDialog was based on a program called zanalytic. This program uses a simplified 

equation for calculating the electric field when the aperture size a is larger than the beam waist σ

[Equation 2]. From this program, I extracted 13 clear input variables, which are echoed in the 
dialog window, the class of the thread belonging to AnalyticIntensityDialog having a variable for 
each of these. The thread is in charge of first calling an interaction function in Fortran called 
INITIALISEGAUSS(), before it starts calling an interaction function called ANALYTIC() for each 
iteration of its for-loop. Because there's a choice for the output in the dialog window, the output of 

from the thread is based on the choice, which is either the total intensity E=E x+E z , the 

intensity's x-component E x , Z
~

, or beam width σ at the point.

NewAnalyticIntensityDialog was based on a program called znewanalytic. This program uses a 

variation for the equation for calculating the electric field when the aperture size a is larger than 
the beam waist σ [Equation 2], for when the crystal is a negative uniaxial crystal. From this 
program, I extracted 14 clear input variables, which are echoed in the dialog window. The class of 
the thread belonging to NewAnalyticIntensityDialog inherits from the class of the thread belonging 
to AnalyticIntensityDialog, as the variables of these two programs are equal, except for the one 
zanalytic doesn't have. Because it inherits AnalyticIntensityDialog, it also calls 
INITIALISEGAUSS(), but calls an interaction function called NANALYTIC() in its for-loop. Because 
there's a choice for the output in the dialog window, the output of from the thread is based on the 

choice, which is either the total intensity E=E x+E z , the intensity's x-component Ex , the 

curvature R(Z
~

) , or beam width σ at the point.
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Appendix B
In order to compile the application, g++, gfortran and the Qt SDK needs to be installed. To install 
g++, gfortran, and the Qt SDK on Debian GNU/Linux distributions, use the following commands:

1. sudo apt-get install g++
2. sudo apt-get install gfortran
3. sudo apt-get install qt-sdk

To compile the application, first extract the ZIP-compressed archive fortemvisrelease.zip:
1. Copy fortemvisrelease/nbproject/qt-Release.pro to fortemvisrelease/
2. Run “qmake -makefile qt-Release.pro” in fortemvisrelease
3. Run “make”
4. (Optional) Run “make clean”

The compiled executable will be located as fortemvisrelease/dist/Release/fortemvisrelease.
It is also possible to load the project into NetBeans IDE 8.0 for C/C++ by importing 
fortemvisrelease.zip.

34



References
GAU1: Stamnes, Jakob J.; Velauthapillai, Dhayalan, Transmission of a two-dimensional Gaussian 
beam into a uniaxial crystal, 2001
GAU2: Stamnes, Jakob J.; Velauthapillai, Dhayalan, Double refraction of a Gaussian beam into a 
uniaxial crystal, 2012
QT: Various developers, Qt4.8 documentation http://qt-project.org/doc/qt-4.8/, , 
ASD: Martin, Robert C.; Newkirk, James W.; Koss, Robert S., Agile Software Development, 2012

35


	Acknowledgements
	List of acronyms
	List of figures
	Table of contents
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis overview

	Chapter 2 Background
	2.1 Transmission of Gaussian beams into uniaxial crystals
	2.2 Problem statement

	Chapter 3 Problem analysis
	3.1 Graphical user interface
	3.2 Linking with Fortran systems
	3.3 Graph plotting
	3.4 Implementation language
	3.5 Development methodology
	3.6 Development environment and tools

	Chapter 4 Implementation
	4.1 Overview
	4.2 MainWindow
	4.3 GraphPlotter
	4.4 Dialog windows and threads
	4.5 Interacting with Fortran functions
	4.5.a Sample behaviour of a thread


	Chapter 5 Evaluation
	5.1 Results
	5.2 Testing

	Chapter 6 Summary
	6.1 Conclusion
	6.2 Future work

	Appendices
	Appendix A
	Appendix B

	References

