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2 Preface

In this master thesis we want to study the newly discovered homotopy type theory, and its
models within mathematics. The main motivation is the article [KLV12] which gives a model
for homotopy type theory with a univalent universe in simplicial set, a well studied category
which also “models” the homotopy theory of topological spaces. Since the whole subject of
homotopy type theory is recent, we also give an introduction to the field; though we will not
give many of the beautiful results which can be found throughout the textbook [Uni13] which
was released in 2013.

The main focus of this thesis is to understand the connection between homotopy type
theory and the structure on categories which are models, so as to construct new models.
Unfortunately since the subject is such a new one, there is not a lot of literature and well
known methods, for instance a lot of the methods we study can be found in the 2012 (updated
in 2013 and 2014) preprints [Shu12], [KLV12] and 2013 preprint [Shu13]. Combined with
some pretty technical requirements, for instance in dealing with the coherence issue and the
resulting way to construct a universe/object classifier, has proven this endeavor to be difficult
and no complete new model has been found. We have however identified some concrete
problems and possibilities that allow some categories to be models.
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3 Category theory

The definition and facts in this chapter can be found in the first four chapters of [ML98].

Definition 3.1. A category C consists of the following:

Objects a proper class obj(C) of objects

Morphisms for each pair x, y ∈ obj(C) of objects, a set C(x, y) of morphisms from x to y

Composition for each triple x, y, z ∈ obj(C) a function

○ ∶ C(y, z) ×C(x, y) → C(x, z) ,
(g, f) ↦ g ○ f =∶ gf.

Identity for each object x ∈ obj(C) a morphism idx ∈ C(x,x) called the identity at x:

Associativity for any x, y, z,w ∈ obj(C) and any f ∈ C(x, y), g ∈ C(y, z), h ∈ C(z,w)

(h ○ g) ○ f = h ○ (g ○ f)

Left and right identity for any x, y ∈ obj(C) and any f ∈ C(x, y)

idy ○ f = f = f ○ idx

There are some size issues to consider when using proper classes, so we will call a category
small if the class of objects is a set. We will frequently use the notation c ∈ C to denote

c ∈ obj(C) for C a category, and if f ∈ C(x, y), we will use notations like f ∶ x→ y or x
fÐ→ y.

We will use many examples of categories, most of which should be pretty familiar to the
reader. In all the examples the composition, and identity should be straight forward.

Example 3.2. Probably the easiest example, and which we have already mentioned above,
is the category Set of sets, with objects all sets, and morphisms all functions between sets.

Example 3.3. Mon, of all monoids and monoid maps.

Example 3.4. Grp, of all groups with group homomorphisms.

Example 3.5. FinSet, of all finite sets and functions between these.

Example 3.6. Finally the category ∆ of all finite ordinals [n] = {0 < 1 < 2 < . . . < n} for all
n ≥ 0 and all order-preserving morphisms. Perhaps an odd choice of example, but a category
which will be very important to us.

There are also some ways of translating set-theoretic notions to categories. For instance we
call a morphism f ∶ x → y in a category C an isomorphism if there exists another morphism
g ∶ y → x, such that gf = idx and fg = idy; in this case we also call the objects x and y
isomorphic and write x ≅ y. Any set can be viewed as a category by taking its elements to be
the objects, and the only morphisms are the identity. Any monoid can be viewed as a category
with only one object and one morphism for each element in the monoid. Composition is then
given by multiplication of the elements in the monoid. Now, just like groups are monoids
with inverses in set theory, we can regard a group as a category with one object, and where
all the morphisms are isomorphisms.

Given any category there are a few way to construct other categories from them.
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Example 3.7. For any category C, we can form the opposite category Cop with the same
objects, but all arrows reversed.

Example 3.8. For any category C, and any object A ∈ C, we can form the over category
C/A with objects morphisms of the form B → A for any B ∈ C. Morphisms in C/A between
B → A and C → A are commutative diagrams in C of the form

B

��666666
// C

��������

A

Just like in group theory we want a function between groups that preserve the group
structure, we want a function between categories that preserve the category structure. Such
a function is called a functor:

Definition 3.9. A functor F ∶ C → D between two categories is a map sending each object
c ∈ C to an object F (x) ∈D and each morphism f ∶ x→ y in C to a morphism F (f) ∶ F (x) →
F (y) in D, such that F preserves composition

F (g ○ f) = F (g) ○ F (f),

whenever the left side makes sense, and for any x ∈ C, F preserves identity

F (idx) = idF (x).

With the viewpoint above of a group as a category, we see that any group homomorphism
gives a functor between two groups that are viewed as categories. Also with this definition we
can form the category Cat of all small categories and functors between them as morphisms.
Many interesting examples arise as functors between categories, so it would be nice to have a
“functor of functors”, so lets see what that amounts to.

Definition 3.10. A natural transformation α ∶ F → G, between two functors F,G ∶ C → D,
is a function which assigns to each x ∈ C a morphism αx ∶ F (x) → G(x) in D such that for
any morphism f ∶ x→ y in C we get a commutative diagram in D:

F (x) F (f) //

αx

��

F (y)
αy

��
G(x)

G(f)
// G(y)

.

Or written as an equation: G(f) ○ αx = αy ○ F (f), for any x, y ∈ C and f ∶ x→ y in C.

Composition of natural transformations is given in the obvious way, so that all functors
between two fixed categories form a category with natural transformations as morphisms.
There is especially one type of functor category we will be interested in, namely the simplicial
objects in a category.

Example 3.11. Given any category C, a functor F ∶ ∆op → C is called a simplicial object
in the category C. One very important example is functor categories where the codomain
is the category Set of sets, in which case the functor category is called a presheaf category.
Combining these two notions we get the category S of functors ∆op → Set called simplicial
sets.
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There are a number of constructions we can do within a category, and most of them are
characterized by a universal property. Thus these constructions can usually be given by a
universal construction which is called the limit of a diagram. A diagram in a category C is a
functor F ∶D → C, where D is a small category (or finite in which case the diagram will also
be called finite). A cone over F is an object c ∈ C with a collection of morphisms ιi ∶ c→ F (i)
for each i ∈D, such that for all f ∶ i→ j in D we have a commutative triangle

c
ιj

""DDDDDDDD
ιi

}}{{{{{{{{

F (i)
F (f)

// F (j).

A map of two cones {c → F (i)}i∈D → {d → F (i)}i∈D is a map c → d such that the following
diagram commutes for all possible f ∶ i→ j

c

��

�����������������

��333333333333333

d

!!DDDDDDDD

}}||||||||

F (i)
F (f)

// F (j).

If the limit exists, it is a special cone called the universal cone, and we denote it by

lim←ÐF
νj

##GGGGGGGGG
νi

{{xxxxxxxx

F (i)
F (f)

// F (j).

Universality is the property that for every other cone {c → F (i)}i∈D we have a unique map
of cones c→ lim←ÐF .

Some categories have the property that all limits exists and these are called complete.
Some important examples of limits are terminal objects, which is the limit of the empty
diagram so comes with a unique morphism from any object; product of two objects, which is
the limit of the diagram with two objects and no morphisms; equalizers of two morphisms,
which is the limit of the diagram with two objects and two parallel morphisms between them.
These are not in fact just random examples, but all limits of finite diagrams can be constructed
from iterated limits of these examples.

A colimit in C is a limit in Cop. Initial object is the colimit of the empty diagram so
comes with a unique morphism to any other object.

Having isomorphisms between categories are sometimes a too strict notion to consider,
as sometimes objects in different categories are related even though the categories are not
isomorphic. This inspired the definition of adjoints.



4

Definition 3.12. Let C and D be categories. An adjunction from between C and D is a
triple: F ∶ C →D, G ∶D → C and

φ ∶ C(Fx, y) ≅D(x,Gy),

which is an isomorphism of the morphism sets, and a natural transformation in both x ∈ C
and y ∈D.

In such a setting we call F the left adjoint, and G the right adjoint. It is an easy exercise
to see that:

Proposition 3.13. If (F,G,φ) is an adjunction between C and D, then F preserves all
colimits in C and G preserves all limits in D.
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4 Model categories

A model category is a convenient way of studying the homotopic properties in a category
in a more abstract way, so as to easier compare different categories with seemingly equal
homotopy structure. We do this by formally inverting a certain class of maps in the category,
but as often happens we lose a lot of control by localizing in this way. For instance the set of
maps in a category may no longer be a set after localization. To counter this, Daniel Quillen
did a clever trick when he introduced the notion of a model category. He also required two
other classes of maps with certain properties called fibrations and cofibrations to exist in the
category and showed that this gives a way of regaining the necessary control to talk about the
homotopy category. We will present model categories as they are presented in [Hov99], which
differs slightly from Quillen’s original presentation. We require functorial factorization to be
part of the structure, but in all interesting examples this is already the case so we consider
this no big inconvenience.

To define a model category we first need to give some preliminary definitions.

Definition 4.1. Given a category C, we can define the category MapC of morphisms in C
and commutative squares.

Definition 4.2. A map f in C is a retract of a map g in C if f is a retract of g as objects
of MapC. That is, if there is a commutative diagram

A //

f

��

C //

g

��

A

f
��

A // D // A,

such that both the horizontal compositions are the identity.

Definition 4.3. A functorial factorization is an ordered pair (α,β) ∶ MapC → MapC such
that f = β(f) ○ α(f) for all f ∈MapC.

Definition 4.4. Suppose i ∶ A → B and p ∶ X → Y are maps in a category C. Then we say
that i has the left lifting property with respect to p and that p has the right lifting property
with respect to i, if for every solid diagram

A //

i
��

X

f

��
B //

h
>>}

}
}

}
Y

we have the dotted arrow h ∶ B ⇢X such that the resulting triangles commute.

Definition 4.5. A model structure on C consists of three subcategories of C called weak
equivalences wC, fibrations fibC and cofibrations cofC and two functorial factorizations
(α,β) and (δ, γ) satisfying the following rules:

1. (2-out-of-3) If f and g are morphism in C such that g ○ f if defined and two of f ,g and
g ○ f are in wC then so is the third.

2. (Retracts) If f is a retract of g and g is in wC, fibC or cofC then so is f .
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3. (Lifting) Define a map to be a trivial/acyclic cofibration if it is in cofC⋂wC, and
a trivial/acyclic fibration if it is in fibC⋂wC. Then fibrations have the right lifting
property with respect to trivial cofibrations, and cofibrations have the left lifting property
with respect to trivial fibrations.

4. (Factorization) For any morphism f , α(f) is a cofibration, β(f) is a trivial fibration,
δ(f) is a trivial cofibration, and γ(f) is a fibration.

Definition 4.6. A model category is a category C with all small limits and colimits and a
model structure on C.

Since a model category has all small limits and colimits it automatically has an initial
object and a terminal object. We call an object fibrant if the unique map to the terminal
object is a fibration, and an object cofibrant if the unique map from the initial object is a
cofibration.

Definition 4.7. A model category C is called cofibrantly generated if there are sets I, called
the generating cofibrations, and J , called the generating trivial cofibrations, of maps such that:

1. The domains of the maps of I are small relative to I-cell;

2. The domains of the maps of J are small realtive to J-cell:

3. The class of fibrations is J-inj;

4. The class of trivial fibrations is I-inj.

For notation and more details look in definition 2.1.17 of [Hov99].

Example 4.8. The model category S of simplicial sets is cofibrantly generated with gener-
ating cofibrations

I = {∂∆[n] ⊆ ∆[n]∣n ≥ 0},

and generating trivial cofibrations

J = {Λk[n] ⊆ ∆[n]∣0 ≤ k ≤ n > 0}.

We will leave the rest of the study of model categories to be found in [Hov99] and will
only include the theorems we will need in the rest of the text.

Theorem 4.9. (Transfer principle [BM03])
Let D be a cofibrantly generated model category and let F ∶ D⇄ E ∶ G be an adjunction with

left adjoint F and right adjoint G. Assume that E has small colimits and finite limits. Define
a map f in E to be a weak equivalence (resp. fibration) iff G(f) is a weak equivalence (resp.
fibration). Then this defines a cofibrantly generated model structure on E provided

1. the functor F preserves small objects;

2. any sequential colimit of pushouts of images under F of the generating trivial cofibrations
of D yields a weak equivalence in E.
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Lemma 4.10. Under all the assumptions of Theorem , if D is right proper then so is E.

Proof. Suppose we have a pullback diagram

A //

��

X

����
B

∼ // Y,

where X ↠ Y is a fibration, and B
∼Ð→ Y is a weak equivalence. We want to know whether

A → X is a weak equivalence. By the definition of the model structure the map X ↠ Y
is a fibration iff the map GX ↠ GY ∈ D is a fibration, and B → Y is a weak equivalence
iff UB → UY ∈ D is a weak equivalence. Furthermore right adjoints like G always preserve
limits, so in fact the whole pullback diagram is sent to a pullback diagram in simplicial sets
of the form:

GA //

��

GX

����
GB

∼ // GY.

Now D is right proper so the map GA → GX is a weak equivalence, and hence by definition
A→X is also a weak equivalence.
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5 Dependent type theory

Type theory is a form of symbolic logic. That is a specific way of writing and rules for rewriting
formal symbols, where the rules we choose are meant to reflect our intuition about what these
symbols should represent. This viewpoint is strengthened by interpreting propositions in first-
ordered logic as types (the basic objects) of type theory, and the later interpretation of type
theory as a way of doing formal homotopy theory and formalizing mathematics in proof
assistants.

Dependent type theory, or more specifically Per Martin-Löf’s dependent type theory is
a flavor of type theory where we allow types that can depend on other types, which we will
see examples of below. Dependent type theory is in itself a constructive logic, so we have
no excluded middle (A ∨ ¬A), or double-negation (¬¬A → A). The original references for
Martin-Löf’s dependent type theory are [ML84] and [ML75]

There is an underlying logic in the type theory to take care of when two things are
definitionally equal (written a ≡ b), how to form formulas, how substitution in handled, what
are the free variables, what lambda abstraction is, and so on. We will not mention any of
this here, but direct the interested reader to [ML75] or in appendix A of [Uni13]. One could
also view definition 6.1 as a way of formalizing all the underlying logic.

There is a very important notion of universes which is crucial when talking about foun-
dations, just as a Grothedieck universe is important for the study of set theory and cat-
egory theory, but we will only talk informally about it. We have a sequence of universes
U0 ∶ U1 ∶ U2 ∶ . . .. Where U0 ∶ U1 is meant to denote that U0 “lives within” U1, just like we
use the notation a ∈ A in set theory to denote that a lives in A. We will usually not concern
ourself with which level of the sequence of universes our type lives at, so we will frequently
write A ∶ U to denote that A ∶ Un for some n. Our most basic types are assumes to live in
the lowest level of the hierarchy U0. Further our universes are assumed to be cumulative, i.e.
if A ∶ Ui then also A ∶ Ui+1. There are multiple ways of making the above notions formal,
but we will follow the style of [Uni13] and talk a bit more informally; however in parallel all
the notions are formalized expressively in the proof assistant [dt04] in the standard library
at https://github.com/HoTT/HoTT so that everyone can look at the formal proofs of every
statement.

As mentioned above the basic objects of type theory are called types and are the objects
A ∶ U . Further we call the objects of the types terms, and write a ∶ A to mean that a is a
term of the type A. A context is like a list of assumptions for proving a theorem, and if we
have a finite list of term declarations we call that a context. More formally:

Definition 5.1. We define a context inductively by

• The empty list is a context

• If Γ is a context and a is a term not appearing in Γ and A is a type which is valid in
Γ, then the new list Γ, a ∶ A is also a context.

We will define what it means for a type to be valid in a context below, and we will use
the notation Γ ⊢ a ∶ A to mean that declaring a ∶ A is valid in the context Γ, and by abuse
of notation we will also write Γ ⊢ A ∶ U to say that A is a valid type given the context Γ.
Forming a type usually consists of four steps:

https://github.com/HoTT/HoTT
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1. Formation in which we give the rules for forming the type, maybe depending on previ-
ously formed types.

2. Introduction in which we give the rules for forming the terms of the type.

3. Elimination in which we give the ways of retrieving a term of one of the old types used
to form the new type, or an induction rule for giving terms of types depending on the
new type.

4. Computation in which we give the relationship between the terms coming from Intro-
duction and Elimination.

We will see better how these rules work in practice by looking at some examples. We
will use the natural deduction style of showing that if the formulas above the line are valid,
then so is the formula under the line. Using the proposition as types interpretation we will
recover the usual rules of first-order logic when we later comment on what each operation in
logic should correspond to in type theory. Now we will give all the standard constructions in
dependent type theory which we will use in this article, following the four steps listed above.

Binary product type

1. The formation rule

Γ ⊢ A ∶ U Γ ⊢ B ∶ U
Γ ⊢ A ×B ∶ U

simply states that if we have two different types A,B, then using the same context we
can form a new type A ×B called the (binary) product type.

2. The introduction rule

Γ ⊢ a ∶ A Γ ⊢ b ∶ B
Γ ⊢ (a, b) ∶ A ×B

gives the way of constructing terms of the product type, given terms of the two types
from which it is constructed. That is, if a ∶ A and b ∶ B, we have a term (a, b) ∶ A×B. A
priori this term does not have to have any connection to the two terms from which it is
constructed, apart from the fact that we need to know these two terms exists and have
the right type, so the connection comes in the elimination principle and its computation
rule.

3. The elimination principle

Γ ⊢ p ∶ A ×B
Γ ⊢ pr1p ∶ A

Γ ⊢ p ∶ A ×B
Γ ⊢ pr2p ∶ B

gives us a chosen way of constructing a term of A and a term of B from a single term
of A × B. When we later learn about function types this exactly gives two functions
A ×B → A and A ×B → B.
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4. The computation rule

Γ ⊢ a ∶ A ∆ ⊢ b ∶ B
Γ,∆ ⊢ pr1(a, b) ≡ a ∶ A

Γ ⊢ a ∶ A ∆ ⊢ b ∶ B
Γ,∆ ⊢ pr2(a, b) ≡ b ∶ B

precisely gives that the functions pr1 and pr2 are the first and second projections of the
pair (a, b). Now all we need is the fact that all terms of A ×B are pairs constructed in
this way to see that product types behave exactly like the product of two sets (or more
generally like the categorical product in category theory).

Function type

1. The formation rule

Γ ⊢ A ∶ U Γ ⊢ B ∶ U
Γ ⊢ A→ B ∶ U

is the same as for products but with a different symbol symbol, and of course the terms
have a very different form.

2. The introduction rule

Γ, x ∶ A ⊢ f(x) ∶ B
Γ ⊢ λx.f(x) ∶ A→ B

use lambda abstraction to avoid giving a name to the function assigning x ∶ A to the
term f(x) by applying the rule hidden in the ⊢. For instance in normal math we have
for every natural number n another natural number 2 ∗n, so we could use the notation
λn ∶ N.2 ∗ n to avoid giving a name such as “double“ for this function so we reduce the
number of names we use, since everything in type theory has to have a unique name.

3. The elimination rule

Γ ⊢ f ∶ A→ B ∆ ⊢ t ∶ A
Γ,∆ ⊢ ft ∶ B

is chosen to mimic the behavior of the functions in sets (or morphisms in a category),
but we would like to remind the reader that without any computation rule ft is simply
a formal name for a term in B.

4. The computation rule

Γ, x ∶ A ⊢ f(x) ∶ B
Γ, t ∶ A ⊢ (λx.f(x))t ≡ ft ∶ B

is what allows us to conclude that at least all functions constructed using lambda
abstraction behave like functions ought to from our experience. So (λn ∶ N.2 ∗ n)(4) ≡
2 ∗ 4 for instance.



12

Both of these are special cases of something called dependent types, which is the backbone
of dependent type theory. We call a type B ∶ A→ U a type family, or dependent type, because
for each a ∶ A we get a type Ba ∶ U depending on A. If we now mimic the constructions before
with dependent types we get dependent sums and dependent products respectively, and if
we specialize to the special case where B ∶ A → U is B no matter what a ∶ A we use (so in
reality it is not a dependent type) we exactly get the old examples back, precisely we use
(λx ∶ A.B) ∶ A→ U .

Dependent sum type

1. The formation rule

Γ, x ∶ A ⊢ Bx ∶ U
Γ ⊢ ∑x∶ABx ∶ U ,

just like for product type, requires the knowledge of two types A and B. However as
want our type B to be a dependent type, it already contains the knowledge of the type
A, so we only need B and a big enough context Γ to contain A.

2. The introduction rule

Γ ⊢ a ∶ A Γ, a ∶ A ⊢ b ∶ Ba
Γ ⊢ (a, b) ∶ ∑x∶ABx

states that the terms we can construct in the dependent sum are pairs of terms a ∶ A
and b ∶ Ba, but we allow the second component to be of a type that depends upon the
first component.

3. The elimination/induction rule

Γ, z ∶ ∑x∶ABx ⊢ Cz ∶ U Γ, x ∶ A,y ∶ Bx ⊢ g ∶ C(x, y) Γ ⊢ p ∶ ∑x∶ABx
Γ ⊢ ind∑x∶A(z.C, x.y.g, p) ∶ C(p)

states that any type which depend on the dependent sum can be given a term as soon
as we have a term in the special case when the type depends only on pairs constructed
with the introduction rule. The intuition is that all terms of dependent sum ∑x∶ABx
are pairs (a, b) of terms a ∶ A and b ∶ Ba.

4. The computation rule

Γ, z ∶ ∑x∶ABx ⊢ Cz ∶ U
Γ ⊢ a ∶ A

Γ, x ∶ A,y ∶ Bx ⊢ g ∶ C(x, y)
Γ ⊢ b ∶ Ba

Γ ⊢ ind∑x∶ABx(z.C, x.y.g, (a, b)) ≡ g(a, b) ∶ C(a, b)

follow a general recipe for computation rule for induction as can be seen multiple times
in [Uni13]. The induction rule gives a way of generalizing pairs to all terms of dependent
sum type, and computation rule says that in the case of pairs we recover the original
term.
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Dependent product type

1. The formation rule

Γ, x ∶ A ⊢ Bx ∶ U
Γ ⊢ Πx∶ABx ∶ U

is just the same as for dependent sum, just as function type was the same as product
type, only with a different name.

2. The introduction rule

Γ, x ∶ A ⊢ f(x) ∶ Bx
Γ ⊢ λx.f(x) ∶ Πx∶ABx

is the exact same way as for functions types, only with the codomain Bx being allowed
to depend on which term a of the domain A we use. This basically says that if we
already have a way of assigning to each term x ∶ A a term f(x) ∶ Bx then we can collect
it all together using lambda abstraction into a single term of the dependent product
type.

3. The elimination rule

Γ ⊢ f ∶ Πx∶ABx ∆ ⊢ t ∶ A
Γ,∆ ⊢ ft ∶ Bt

becomes what is expected if it is to be a generalization of elimination for the product
type.

4. The computation rule

Γ, x ∶ A ⊢ f(x) ∶ Πx∶A ∆ ⊢ t ∶ A
Γ∆ ⊢ (λx.f(x))t ≡ ft ∶ Bt

is what guarantees that the lambda abstractions in dependent products acts precisely
like functions where the type of the output is allowed to depend of the input.

In the examples that follow we will explain the elimination/induction rule in the viewpoint
of propositions as types, in which types of the form C ∶ B → U corresponds to propositions we
can prove about the type B. This viewpoint will be explained more in the end of this section.

Coproduct

1. The formation rule

Γ ⊢ A ∶ U Γ ⊢ B ∶ U
Γ ⊢ A +B ∶ U

is essentially the same as for binary product since coproduct A +B can be formed any
time we can form the types A and B.
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2. The introduction rule

Γ ⊢ a ∶ A
Γ ⊢ inl(a) ∶ A +B

∆ ⊢ b ∶ B
∆ ⊢ inr(b) ∶ A +B

is dual to the introduction rule for products in that we only need a term of A or B to
get a term om A+B, though with a new name to distinguish it from the original term.

3. The elimination/induction rule

indA+B ∶ ΠC ∶A+B→U((Πa∶ACinl(a)) → (Πb∶BCinr(b)) → Πx∶A+BCx)

codes a lot of information into one single type which is inhabited. If we analyze it we
can read that if we want to prove that something holds for all terms in A +B, we can
do this by proving it for all terms of A and all terms of B.

4. The computation rule

indA+B(C, c1, c2, inl(a)) ≡ c1(a)
indA+B(C, c1, c2, inr(b)) ≡ c2(b)

says that the above proof for terms of A + B which are terms coming from A or B
coincides with the original proof in that case.

Now we have a few different ways of constructing new types from already existing ones,
so it would be nice to have know that there does in fact exist some types in our system. We
will construct these types as inductive types, so they come with a very convenient induction
rule.

Unit type

1. The formation rule

1 ∶ U

says that without the need for any context (which is another way of saying for any
context) the type 1 exists.

2. The introduction rule

∗ ∶ 1

gives an inhabitant of 1 called ∗, again in no/all context(s).
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3. The elimination rule

ind1 ∶ ΠC ∶1→U(C∗ → Πx∶1Cx)

follows directly from the fact that 1 is inductively defined, and essentially says that if
we can prove something for the term ∗, we can prove the same thing for all terms of 1.

4. The computation rule

ind1(C, c,∗) ≡ c,

says the usual thing for induction rules, i.e. that the proof for all terms of 1 is the
correct one in the case of the term being ∗.

Empty type

1. The formation rule

0 ∶ U

is similar to the one for unit type; the empty type always exists.

2. The empty type is constructed to behave as if it does not have any elements, so there
are no introduction rules

3. The elimination rule

ind0 ∶ ΠC ∶0→UΠz∶0Cz

can be read as an ex falso rule, since any type/proposition A can be written as λz ∶ 0.A.
Hence if we somehow find ourself with an accessible term z ∶ 0 then induction given that
the type/proposition A is inhabited/proved, no matter what A is, since it does not in
fact depend on what z ∶ 0 is.

4. Since the empty type does not have any introduction rule there is no need for a com-
putation rule.

One of the most important types of dependent type theory, and the one that differentiates
extensional and intensional type theory, is the identity type:

Identity type

1. The formation rule

Γ ⊢ A ∶ U
Γ, a ∶ A, b ∶ A ⊢ (a =A b) ∶ U

looks slightly different the former ones, since the type is constructed using terms in
stead of types. The terms of identity type a =A b are called paths from a to b, when we
are using the viewpoint of homotopy theory which we discuss more in chapter 7.
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2. The introduction rule

Γ ⊢ A ∶ U
Γ, a ∶ A ⊢ refla ∶ (a =A a)

says that we always have a path from a to a called refla or the reflexivity path.

3. The induction rule

Γ, a ∶ A, b ∶ A,p ∶ (a =A b) ⊢ C(x, y, p) ∶ U Γ, a ∶ A ⊢ t ∶ C(a, a, refla)
Γ, a ∶ A, b ∶ A,p ∶ (a =A b) ⊢ ind=(C, t) ∶ Πa,b∶AΠp∶(a=Ab)C(a, b, p)

is arguably the most powerful tool in homotopy type theory, since it allows us to deduce
pretty much any proposition involving path between any two terms a and b as long as
we can prove it in the case of reflexivity refla on the term a.

4. The computation rule

Γ, a ∶ A, b ∶ A,p ∶ (a =A b) ⊢ C(x, y, p) ∶ U Γ, a ∶ A ⊢ t ∶ C(a, a, refla)
Γ, a ∶ A ⊢ ind=(C, t)(a, a, refla) ≡ t

as before, since it talks about induction, says that in the case of refla induction is the
correct term.

In the beginning of type theory the role of Identity types was not properly understood,
since the rules look very similar to rules for equality, in stead of the later understanding that
Identity types behave more like paths and homotopies. In fact there exists a flavor of type
theory called extensional type theory which add another rule to the type theory which make
Identity types nothing more than equality. The rule, without writing out the context, says
that if we have a p ∶ (a =A b) then a ≡ b which again implies (by induction) that p ≡ refla.
However this makes the type theory undecidable, so there is no efficient way of checking
whether a judgment Γ ⊢ x ∶ A is derivable in the type theory.

We can view propositions in logic as certain types in type theory, and then a proof of the
proposition corresponds to a inhabitant of the type. As remarked in the introduction to this
section the logic which can be represented in type theory is necessarily constructive. We now
give the translations from logic to type theory

• True is given by the unit type 1.

• False is given by the empty type 0.

• Conjunction, A and B, is given by the product type A ×B.

• Disjunction, A or B, is given by the sum type A +B.

• Implication, if A then B, is given by the function type A→ B.

• Equivalence, A if and only if B, is given by (A→ B) × (B → A).

• Negation, not A, is given by A→ 0.
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The use of equivalence here is very different from the equivalences discussed in 7.3, and
we call this version logical equivalence. This is all the rules for propositional logic, but we
can also give predicative logic by including quantifiers. If we have a type P ∶ A → U , which
we view as a proposition about the type A.

• For all x ∶ A, P (x) holds, is given by Π-type: ∏x∶A P (x).

• There exists x ∶ A such that P (x), is given by Σ-type: ∑x∶A P (x).

There is some subtle problems involved in the use of disjunction and existential quantifier
as used above, namely that terms of sum- and Σ-types remember the name of the term and
not just the existence. Hence there is slightly more information in the type theory than in the
logic, which is precisely that a term of A +B ”remembers” if it came from A or from B and
a term of ∑x∶A P (x) remembers exactly which x it is. There is a construction in type theory
called propositional truncation ∣∣ − ∣∣, which forgets the name of term and simple remembers
the existence. To give this construction however would require us to go into a discussion of
n-types, propositions within type theory which is not really relevant for the topics discussed
in this article. It basically collapses all type to be equivalent to either 1 or 0 depending on
whether it is inhabited or not, so all proposition become true of false, and the way in which
it is true is unique. This gives us classical logic. The interested readers is recommended to
read chapter 3 and chapter 7 of [Uni13].
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6 Contextual categories

In this chapter we will follow a number of sources and try to give an exposition of the current
knowledge of contextual categories. We will also look at ways of interpreting the structure
found in a flavor of logic into category theory. Since this is a relatively new field of study most
of the work is done in preprints so a number of the references are unfortunately unpublished
and therefore not peer-reviewed. We will try to give references to published results when
they are available. Contextual categories are of interest to us since it give a lot of necessary
conditions for a category to be a model for type theory, and some helpful sufficient conditions.
This is what directs us in chapter 9 and 10 to which categories could be of interest to show
models type theory.

6.1 Contextual category

This section follows [KLV12] which is the way the model for simplicial sets in 9 is constructed,
and which we try to mimic for the simplicial symmetric monoid in the same chapter. We give
the definition of a contextual category first for a dependent type theory without any way of
forming new types from old ones, and then give the ways to define new types afterwards.

Definition 6.1. A contextual category C consists of the following:

1. A category C;

2. a grading of objects, such that obj(C) = ∐n≥0 objn(C);

3. an object 1 ∈ obj0(C);

4. maps ftn ∶ objn+1(C) → objn(C) (whose subscripts we usually suppress);

5. for each X ∈ objn+1(C), a map pX ∶X → ft(X) called the canonical projection from X;

6. for each X ∈ objn+1(C) and f ∶ Y → ft(X), an object f∗(X) and a map q(f,X) ∶
f∗(X) →X;

such that:

1. 1 is the unique object in obj0(C);

2. 1 is a terminal object of C;

3. for each X ∈ objn+1(C) and f ∶ Y → ft(X), we have ft(f∗X) = Y , and the square

f∗X
q(f,X) //

pf∗(X)
��

X

pX
��

Y
f // ft(X)

is a pullback (called the canonical pullback of X along f); and

4. these canonical pullbacks are strictly functorial: that is, for X ∈ objn+1(C), 1∗ft(X)X =X
and q(1ft(X),X) = 1X ; and for X ∈ objn+1(C), f ∶ Y → ft(X) and g ∶ Z → Y , we have
(fg)∗(X) = g∗(f∗(X)) and q(fg,X) = q(f,X)q(g, f∗X).
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This definition is perhaps best understood through the standard example in which we will
be using it.

Example 6.2. Let T be a type theory, then there is a contextual category Con(T) directly
constructed from it as follows.

1. The category Con(T) has as objects contexts [x1 ∶ A1, . . . , xn ∶ An], for Ai ∈ T, (the [−]
notation is just list notation) up to definitional equality and renaming of free variables
in the type theory. Morphisms are given by substitution, in the following sense: a map

f ∶ [x1 ∶ A1, . . . , xn ∶ An] → [y1 ∶ B1, . . . , ym ∶ Bm(y1, . . . , ym−1)]

is given by a sequence (f1, f2, . . . , fm) with

[x1 ∶ A1, . . . , xn ∶ An] ⊢f1 ∶ B1

[x1 ∶ A1, . . . , xn ∶ An] ⊢f2 ∶ B2(f1)
⋮

[x1 ∶ A1, . . . , xn ∶ An] ⊢fm ∶ Bm(f1, . . . , fm−1)

and two such maps [fi] , [gi] are equal if for every i we have

[x1 ∶ A1, . . . , xn ∶ An] ⊢ fi ≡ gi

Composition is given by substitution, and the identity is given by the identity substi-
tution;

2. the grading is given by the length of the context;

3. 1 is given by the empty context [];

4. ft([x1 ∶ A1, . . . , xn ∶ An, xn+1 ∶ An+1]) = [x1 ∶ A1, . . . , xn ∶ An];

5. for Γ = [x1 ∶ A1, . . . , xn+1 ∶ An+1] we have

pΓ = (x1, . . . , xn) ∶ [x1 ∶ A1, . . . , xn+1 ∶ An+1] → [x1 ∶ A1, . . . , xn ∶ An]

by forgetting the last variable, where xi is the substitution [x1 ∶ A1, . . . , xn ∶ An] ⊢ xi ∶
Ai(x1, . . . , xn−1);

6. for contexts
Γ = [x1 ∶ A1, . . . , xn+1 ∶ An+1(x1 . . . , xn)] ,

and
Γ′ = [y1 ∶ B1, . . . , ym ∶ Bm(y1 . . . , ym−1)] ,

and a map
f = [fi(Ð→y )]

i≤n ∶ Γ
′ → ft(Γ),

the pullback f∗Γ is the context

[y1 ∶ B1, . . . , ym ∶ Bn(y1 . . . , ym−1), ym+1 ∶ An+1(f1(Ð→y ), . . . , fn(Ð→y )] ,

and q(f,Γ) ∶ f∗Γ→ Γ is given by [f1, . . . , fn, yn+1].
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For an object Γ we will in this chapter use the notation (Γ,A) to denote an object with
ft(Γ,A) = Γ, and in this case we will write pA in stead of p(Γ,A) for simplicity. We will
now give an example of how to interpret extra structure on the type theory in a contextual
category.

Definition 6.3. A Π-type structure on a contextual category C consists of the following:

1. for each (Γ,A,B) ∈ objn+2(C), an object (Γ,Π(A,B)) ∈ objn+1(C);

2. for each section b ∶ (Γ,A) → (Γ,A,B) of a dependent projection pA, a morphism λ(b) ∶
Γ→ (Γ,Π(A,B));

3. for each pair of sections k ∶ Γ → (Γ,Π(A,B)) and a ∶ Γ → (Γ,A), a section app(k, a) ∶
Γ→ (Γ,A,B) such that the following diagram commutes:

(Γ,A,B)
pB

��
(Γ,A)

pA

��
Γ

a
::vvvvvvvvvv

app(k,a)

@@

Γ

4. for a ∶ Γ→ (Γ,A) and b ∶ (Γ,A) → (Γ,A,B), we have app(λ(b), a) = ba;

5. all the above structure is strictly stable under pullback: for any morphism f ∶ ∆→ Γ we
have

(∆, f∗Π(A,B)) =(∆,Π(f∗A,f∗B)),
λ(f∗b) = f∗(λ(b)), app(f∗k, f∗a) = f∗(app(k, a)).

If we look at the rules for dependent product in type theory we see that these are a direct
translation of those four rules, plus a rule guaranteeing that substitution through pullback is
strict.

Definition 6.4. A contextual functor F ∶ C→D of contextual categories consists of a functor
F ∶ C → D, between the underlying categories, respecting the grading, and preserving all the
structure of the contextual category with equality (not just isomorphism). Further, a contextual
functor of contextual categories with Π-type structure, or even more structure, should also
preserve the additional structure.

The following theorem is theorem 1.2.9 in [KLV12], but as noted there it has no complete
proof known.

Theorem 6.5. Let T be a type theory with any combination of type formers from chapter 5,
then Con(T) is initial among contextual categories, and contextual functors, with the same
extra structure corresponding to the type formers in the type theory.

We will assume that this theorem is true in this article, but will only use it for the following
definition. The definition does hold without the theorem, but is more natural with it.
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Definition 6.6. A model of dependent type theory T with any combination of type formers,
is a contextual category C together with a contextual functor F ∶ Con(T) →C.

Of course in light of the theorem above the functor F is automatically given.
More on the connection between type theory and categories can be found in chapter D.1

and D.4 of [Joh02b].

6.2 Type-theoretic fibration category

We now switch over to different way of interpreting type theory which may seem more natural
to readers more familiar with model categories than with dependent type theory. This method
follows [Shu12].

Definition 6.7. A type-theoretic fibration category is a category C with the following struc-
ture:

1. A terminal object 1;

2. a subcategory F ⊂ C containing all the objects, all the isomorphisms, and all the mor-
phisms with codomain 1. The morphisms of F are called fibrations, and we write them
as A ↠ B. Further any morphism having the left lifting property with respect to a
fibration is called an acyclic cofibration and is written A↣̃B;

3. all pullbacks of fibrations exists and are fibrations;

4. for every fibration g ∶ A↠ B, the pullback functor g∗ ∶ C/B → C/A has a partial right
adjoint Πg defined at all fibrations over A and whose values are fibrations over B.

5. every morphism factors as an acyclic cofibration followed by a fibration;

6. in the following commutative diagram:

X //

��

Y //

��

Z

��
A> ∼ //

@@ @@B // // C

if B ↠ C and A ↠ C are fibrations and A↣̃B is an acyclic cofibration, and both
squares are pullback square, then (by 3 Y → Z and X → Z are both fibrations, and we
also require that) X → Y should be an acyclic cofibration.

An object A is usually called fibrant if the map A→ 1 is a fibration, so we assume that all
objects in the category are fibrant. In type theory the name display map is sometimes used
in stead of fibrations, and its worth noting that conditions 1, 2, 3, 4 make C into a display
map category (see [Jac99] §10.4).

There are mainly two examples we will be interested in.

Example 6.8. Any contextual category of a type theory Con(T) is a type-theoretic fibration
category in the following way. We define the fibrations to be any morphism that is isomorphic
to a pX ∶ X → ft(X). We will not check the actual conditions here, but refer the interested
reader to [Shu12].
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The other example is the notion of type-theoretic model category which we now define.

Definition 6.9. A type-theoretic model category is a model category C with the following
additional properties:

1. Limits preserve cofibrations;

2. C is right proper, i.e. weak equivalences are preserved by pullback along fibrations;

3. pullback g∗ along any fibration has a right adjoint Πg.

Lemma 6.10. If C is a type-theoretic model category, then its full subcategory Cf
¯

of fibrant

objects is a type-theoretic fibration category

Proof. This follows almost immediately from the definition. 1 - 3 and 5 of Def 6.7 are always
true for model categories. For 4 we need to prove that Πg preserve fibration, but this is
equivalent to pullback g∗ preserving trivial cofibrations along fibrations. Pullback is a limit
so preserve cofibrations by definition, and weak equivalences is preserved since C is right
proper by definition. Lastly, 6 follows since cofibrations are stable under pullback, and weak
equivalences between fibrations are always stable under pullback.

In these last two examples we have one problem, which has long been a problem in inter-
preting type theory correctly, but has recently gained multiple different solutions. Pullback in
category theory preserves structure only up to isomorphisms, but in type theory it is required
to be preserved on the nose by equality. This is known as the coherence issue, and kept people
from accepting the categorical semantics for a long time. In the setting of contextual cate-
gories above this is treated properly, but this in turn makes it very difficult to find examples.
There are ways of fixing coherence by technical requirements on morphisms, but in [KLV12] a
much more pleasing way is presented by using the thought that there should exist a hierarchy
of “type of types”, such as the universes from chapter 5, which should also be representable
within our category.

Definition 6.11. Let C be a category. A universe in C is an object U together with a
morphism p ∶ Ũ → U and for each map f ∶X → U a choice of pullback square

(X; f)Q(f) //

P(X,f)
��

Ũ

p

��
X

f // U.

We often refer to a universe by U , with p and the chosen pullback understood.
Given a map f ∶ Y → X, we will write ⌜f⌝ for a map X → U such that f ≅ P(X;⌜f⌝)

(sometimes even just ⌜Y ⌝ if the map is understood). Also for a sequence of maps f1 ∶X → U ,
f2 ∶ (X; f1) → U , etc., we write (X; f1, . . . , fn) for ((. . . (X; f1); . . . ; fn).

Definition 6.12. Given a category C with a terminal object 1 and a universe U we define a
contextual category CU by:

1. objn(CU) = {(f1, . . . , fn)∣fi ∶ (1; f1, . . . , fi−1) → U};

2. CU((f1 . . . , fn), (g1, . . . , gm)) = C((1; f1, . . . , fn), (1; g1, . . . , gm));
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3. 1CU
= () the empty sequence;

4. ft(f1, . . . , fn+1) = (f1, . . . , fn);

5. the projection p(f1...,fn+1) = P(X,fn+1) is given by the universe structure;

6. given (f1, . . . , fn+1) and a map α ∶ (g1, . . . , gm) → (f1, . . . , fn) in CU , the canonical
pullback α∗(f1, . . . , fn+1) in CU is given by (g1, . . . , gm, fn+1α), with projection induced
by Q(fn+1α):

(1; g1, . . . , gm, fn+1α) //

��

Q(fn+1α)

''(1; f1, . . . , fn+1)
Q(fn+1)

//

��

Ũ

p

��
(1; g1, . . . , gm) α // (1; f1, . . . , fn)

fn+1 // U

Lemma 6.13. 1. These data define a contextual category CU .

2. This contextual category is well-defined up to canonical isomorphism given just C and
p ∶ Ũ → U , independently of the choice of pullbacks and terminal object.

All contextual categories can be given in exactly this way as the next lemma will show:

Lemma 6.14. Let C be a small contextual category. Consider the universe U in the presheaf
category [Cop, Set] given by

U(X) = {Y ∣ft(Y ) =X}
Ũ(X) = {(Y, s)∣ft(Y ) =X,s a section of pY },

with the obvious choice for projection map. Then [Cop, Set]U is isomorphic, as a contextual
category, to C.

Both of these lemmas should be straight forward to prove according to [KLV12], the second
with help from the Yoneda lemma.

6.3 The role of (locally) cartesian closure in models for dependent type
theory

This section will follow [See84] which is the first appearance of the connection between type
theories with Π-types, and locally cartesian closed categories. Though it does not handle the
problem of coherence, this problem was ultimately solved in [CD11]. We study this connection
since it gives the most requirements on categories that are models for type theory, which does
not have as much with a choice of model structure, so is not something we can easily ignore
as we will see later when we try to construct a model in the category of simplicial symmetric
monoids.

The connection starts with the realization that objects indexed over other objects behave
like over categories. More formally we have the theory of hyperdoctrines (which was already
know to model full first order logic).
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Definition 6.15. For C a category with finite limits, a C-indexed category is a functor
P ∶ Cop →Cat. We use the notation P(f) ∶= f∗ ∶ P(B) → P(A) for the functor induced from
f ∶ A→ B in C.

Definition 6.16. A C-indexed category P is a hyperdoctrine if

1. for each object A of C, P(A) is cartesian closed,

2. for each f ∶ A→ B of C, f∗ preserves exponents,

3. for each f ∶ A→ B of C, f∗ has adjoints ∑f ⊣ f∗ ⊣ ∏f ,

4. P satisfy the Beck condition: if

D
h //

k
��

C

g

��
A

f
// B

is a pullback in C, then for any object φ of P(C), ∑k h∗φ → f∗∑g φ is a isomorphism
in P(A).

As is perhaps obvious from the above notation we have for any category C with finite limits
a C-indexed category which is also called C. That is for any A ∈ C we have C(A) ∶= C/A the
over category so that f∗ is precisely the pullback. Almost from the definition we have that
C is a locally cartesian closed category iff the C-indexed category C is a hyperdoctrine.

We will now show that even by the most naive of interpretation of type theory in category
we get a locally cartesian closed category, and has finite limits so is in in particular cartesian
closed also. Given a type theory M, we define a category C(M) with objects closed types in
M and morphisms A→ B closed terms of the type A→ B.

Theorem 6.17. 1. If M has function types, then C(M) is a category.

2. If M has Σ-types and (extensional) identity types, then C(M) has all finite limits.

3. If M has function types, then C(M) has all exponent, i.e. is cartesian closed.

4. If M has Π-types, then C(M) is locally cartesian closed.

Proof. 1. For any object A we have identity idA given by λx ∶ A.x. Given f ∶ A → B and
g ∶ B → C (which can in fact be read as both morphisms in the category and as terms
of function type), then we have g ○ f ∶ A→ C defined as λx ∶ A.g(f(x))

2. We have a terminal object in C(M) given by the unit type 1. And for any object A
we have a morphism A→ 1 given by λx ∶ A.∗ (where ∗ is the unique term in 1. It is an
easy lemma in type theory that this morphism is unique.

Binary products given by binary products, i.e. for objects A and B then A×B is given
by ∑x∶A(λx ∶ A.B). First and second projections are again themselves, and satisfy the
universal property.

Given s, t ∶ A ⇉ B, the equalizers of s, t is given by ∑x∶A(s(x) =B t(x)), with inclusion
into A given by the first projection.

It is a well known fact that terminal object, binary products and equalizers suffices to
have all finite limits.
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3. This does in fact follow from the existence of terminal object and being locally cartesian
closed, since C(M) ≅ C(M)/1. However it just as easy to see that the exponential
object BA is just the type A → B. The isomorphism A ×C → B ≅ C → BA is given by
t ∶ A×C → B being sent to λy ∶ C.λx ∶ A.t(x, y) ∶ C → BA, and s ∶ C → BA being sent to
λz ∶ A ×B.s(pr2(z))(pr1(z)) ∶ A ×C → B. That these are inverses is a standard result.

4. This is theorem 3.2 in [See84], so we will not repeat it here since the method used there
is somewhat convoluted and of no immediate interest.

There are other interesting ways to model type theory in categories which are symmetric
monoidal closed using linear type theory following [Lam68] and [Lam69]. This removes the
need to require cartesian closed, which not all closed monoidal categories satisfy, and which
perhaps is not necessary to model type theory. Unfortunately univalence does not seem to
have been properly explored in this model, which would be a very interesting direction to
explore.
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7 Homotopy theory in type-theoretic fibration categories

If we have a type-theoretic fibration category we can define quite a few of the notions of
homotopy theory and get that any type-theoretic fibration category is in fact a category of
fibrant objects. In this section we will follow [Uni13] and [Shu12]

7.1 In the type theory

In this subsection we will work exclusively in the dependent type theory given in chapter 5.
The first thing we note is that identity types behave like groupoid thanks to the induction
rule. That is whenever we have p ∶ a =A b and q ∶ b =A c, for some a, b ∶ A we have also
p−1 ∶ b =A a and q ○ p ∶ a =A c. More formally we have the following lemma.

Lemma 7.1. The following types are inhabited:

1. ∏A∶U ∏a,b∶A(a =A b) → (b =A a)

2. ∏A∶U ∏a,b,c∶A(a =A b) → (b =A c) → (a =A c)

Proof. We will only give the formal proof in the first case, and then give an informal proof of
both cases. This is because the induction rule 3 for equality is quite complex, and informally
is just says that we can replace any path by reflexivity.

1. λA.λa.λb.λp.ind=A((λx.λy.λp.(b =A a)), (λa.refla), a, b, p) ∶
∏A∶U ∏a,b∶A(a =A b) → (b =A a)

Arguably the informal proof is more plain to read and more informative

1. Given the information a, b ∶ A and p ∶ a =A b, we want to construct a term p−1 of the
type b =A a. With induction it suffices to do this in the case when b ≡ a and p ≡ refla, in
which case the type we want to construct a term of is a =A a. In this case we have the
obvious choice of choosing refl−1

a = refla. The rest follows from the induction principle.

2. Given a, b ∶ A, p ∶ a =A b and q ∶ b =A c, we want to construct a term p ⋅ q ∶ a =A c. By
induction of p it suffices to consider the case when b ≡ a and p ≡ refla, in which case
the type of q becomes a =A c. Now we could have stopped here and chosen refla ⋅ q ≡ q,
but for symmetry reasons we do induction of q also. Now we have c ≡ a and q ≡ refla,
and we can choose refla ⋅ refla ≡ refla.

Of course we also need to check that these paths (i.e. terms of the identity types) satisfy
the groupoid axioms. By which we mean that we want paths of paths (i.e. homotopies)
giving associativity, identity, and inverse as follows. For the rest of the theory we will only
give informal proofs, and we will suppress all subscripts on identity types for readability.
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Lemma 7.2. Suppose we are given A ∶ U , a, b, c, d ∶ A, p ∶ a = b, q ∶ b = c and r ∶ c = d. Then:

1. p = refla ⋅ p and p = p ⋅ reflb.

2. p ⋅ p−1 = refla and p−1 ⋅ p = reflb.

3. (p−1)−1 = p.

4. (p ⋅ q) ⋅ r = p ⋅ (q ⋅ r).

Proof. All of these are a simple application of induction which reduces the lemma simply to
the computation rules of the definition of cdot and −1. In all cases we only have to prove
refla = refla which we inhabit by reflrefla , showing that we are indeed dealing with paths
of paths here.

Thanks to induction we can prove that any function is continuous in the sense that it
preserve paths. It can also be said to act functorially when view from a more categorical
perspective.

Lemma 7.3. Suppose f ∶ A→ B is a function and a, b ∶ A, then we have a term of the type:

apf ∶ (a =A b) → (f(a) =B f(b)

Proof. By induction it suffices to assume p ∶ a =A b is refla. And then we define apf(p) ≡
reflf(a) ∶ f(a) =B f(a), and then use introduction rule for function type. Finally we lift it to
the general case with the induction.

This if course has all the properties we would expect, and we will only list them below
without proof. Which in all cases is only induction and reflexivity anyways.

Lemma 7.4. Given f ∶ A→ B, g ∶ B → C, p ∶ a =A b and q ∶ b =A y, we have:

1. apf(p ⋅ q) = apf(p) ⋅ apf(q).

2. apf(p−1) = (apf(p))−1.

3. apg(apf(p)) = apg○f(p).

4. apidA(p) = p.

One final property we want to mention that comes from the induction principle for identity
types is the following.

Lemma 7.5. Suppose that P is a type family over A, and that p ∶ a =A b. Then there is a
term p∗ ∶ P (a) → P (b).

Proof. By induction we can assume that p ≡ refla and then we define p∗ ≡ idP (a) ∶ P (a) →
P (a)

This has the following very important property:

Lemma 7.6. Let P ∶ A → U be a type family and u ∶ P (a) for some a ∶ A. Then for any
p ∶ a = b we have a term

lift(u, p) ∶ (a, u) = (b, p∗(u))
in ∑(a∶A) P (a)
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Which tells us that dependent type behave like fibrations pr1 ∶ ∑(a∶A) P (a) ↠ A, because
they have the path lifting property required of fibrations. With this knowledge we look at
how we can define some of the homotopy theory in the categorical model of type-theoretic
fibration category

7.2 In the categorical model

In this subsection we are working in a type-theoretic fibration category C, and all objects and
morphisms are assumed to be in C. By 5 of definition 6.7 in chapter 6 we have a factorization
of the diagonal morphism as B↣̃PB ↠ B × B and we call the object PB the path object
of B. We know from classical homotopy theory that we can define right homotopies with
the help of path objects, without the need for an interval object which is out of reach in a
type-theoretic fibration category.

We define a (right) homotopy between f, g ∶ A ⇉ B to be a lift of A → B ×B to a path
object for B. That is a diagram

PB

����
A (f,g)

//

H
;;xxxxxxxxx
B ×B

We denote a homotopy by H ∶ f ∼ g. Strictly speaking this depends on a choice of path object
for B, but since the map B↣̃PB is always an acyclic cofibration any path object factors
through any other so the homotopy relation is independent on any choice. There is a map
defined in Lemma 2.4 of [Shu12] called c, which is such that if H ∶ f ∼ g and K ∶ g ∼ h,
then c(H,K) ∶ f ∼ h, so it concatenates homotopies. The map B↣̃PB is usually just called
r (since it is the reflexivity term from the identity type), and we easily see that rf ∶ f ∼ f .
Finally the definition of ∼ is obviously symmetric, but we could also see it by considering the
following diagram, where we denoted the map PB↠ B ×B by (π1, π2):

B
r //

r

��

PB

(π1,π2)
����

PB
π2,π1)

//

v
::v

v
v

v
v

B ×B

We define a map f ∶ A→ B to be a homotopy equivalence if there is a map g ∶ B → A and
homotopies gf ∼ idA and fg ∼ idB. Now we can define the homotopy equivalences to be the
weak equivalences wC and note that they satisfy the following properties

• wC contains all the isomorphisms.

• wC satisfy the 2-out-of-3 property, i.e. if any two of f , g, or gf are in wC then so is
the third.

• Any diagonal B → B ×B factors as a map in wC followed by a fibration.

• Any pullback of a fibration in wC is also in wC.

The proof of all of these can be found in [Shu12]. These properties, together with 1 - 3
of Definition 6.7 make any type-theoretic fibration category into a category of fibrant objects
in the sense of [Bro73], where the weak equivalences are the homotopy equivalences.
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7.3 Some more words on equivalences in type theory

We have a notion of homotopy in our type theory also. Let f, g ∶ ∏x∶A P (x) be two dependent
functions. We define a homotopy f ∼ g in the following way:

f ∼ g ∶≡ ∏
x∶A

(f(x) = g(x)).

This can be shown to be an equivalence relation, using familiar properties of the identity
type. Normally one would be tempted to call this a proof of equality between functions, as
is the case in set theory, but there are no rules in the type theory so far that allow us to
deduce equality of the two function from a proof of homotopy. There is an axiom we can add
to our theory which says precisely that, called function extensionality, giving an equivalence
of types. Before we can state this axiom though we have to define precisely what we mean
by two types being equivalent.

There are multiple ways of defining equivalences, and large parts of chapter 4 of [Uni13]
discusses the differences and the way they are all equivalent. We will choose the easiest to
state which has all the properties we will need. Let f ∶ A→ B, then we have a type called

isequiv(f) ∶≡
⎛
⎝ ∑
g∶B→A

(f ○ g ∼ idB)
⎞
⎠
× ( ∑

h∶B→A
(h ○ f ∼ idA))

That is we have a right inverse g of f , such that the composition is homotopic to the identity,
and likewise a left inverse h. Now we say two types are equivalent if the exists a function
between them that is an equivalence. We use the following notation:

A ≃ B ∶≡ ∑
f ∶A→B

isequiv(f)

Now we can define the function extensionality axiom

Axiom 7.7 (Function extensionality axiom) For any A, B, f and g we have

(f = g) ≃ (f ∼ g).

We can note that we easily know of a map (f = g) → (f ∼ g), namely by induction on
f = g it suffices to define it in the case g ≡ f and the path begin reflexivity, in which case
take λx.reflf(x) ∶ ∏x∶A(f(x) = f(x)). Function extensionality is a very nice axiom to have
included in our type theory as it simplifies a lot of computation, and also makes possible to
prove nice new theorems we would like. There is however an even nicer axiom we will focus
more on, and which is well known to imply function extensionality. This theorem is called
the univalence axiom.

To define univalence we need a universe type U , such that all other types are elements
of this type. This is something we already assumed in chapter 5, but since some authors
do not use this terminology from the start we remark upon it here. It is in fact possible to
define everything up to univalence without a type of types, so if we were interested in study-
ing dependent type theories without univalence we could do with a weaker model. However
having a type of types enables us, for any A,B ∶ U , to define the type A =U B. Now we have a
presumably even more strong notion of two types being equivalent and we are at conflict upon
which to use. This is however where the univalence axiom of Voevodsky makes it appearance:
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Axiom 7.8 (Univalence axiom) For any A,B ∶ U we have

(A =U B) ≃ (A ≃ B).

Again the function (A =U B) → (A ≃ B) is quite easy to construct by doing induction of
A = B, and then defining idA ∶ A → A, which is easily seen to be an equivalence in the sense
of isequiv(idA) being inhabited.

Since univalence actually depend on a choice of universe U , the axiom does in fact state
that the universe U is univalent. What one usually does is assume that all universes in the
type theory are univalent.
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8 Monoids in monoidal categories

We will now recall some facts about the category SMon of Symmetric Monoids. The most
basic facts can be found in Kelly’s book [Kel82] chapter 1, or Dundas, Goodwillie, McCarthy
[DGM13] Appendix A.9.

8.1 Monoidal category

A monoidal category V = (V0,⊗, I, α, l, r) consists of a category V0, a functor ⊗ ∶ V0×V0 → V0,
and object I ∈ V, and three natural isomorphisms aXY Z ∶ (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z),
lX ∶ I ⊗X →X, rX ∶X ⊗ I →X, such that the following two diagrams commute:

((W ⊗X) ⊗ Y ) ⊗Z

1⊗a
��

a // (W ⊗X) ⊗ (Y ⊗Z) a // W ⊗ (X ⊗ (Y ⊗Z))

(W ⊗ (X ⊗ Y )) ⊗Z a
// W ⊗ ((X ⊗ Y ) ⊗Z)

a⊗1

OO
, (8.1)

(X ⊗ I) ⊗ Y ) a //

r⊗1 ''OOOOOOOOOOO
X ⊗ (I ⊗ Y )

1⊗lwwppppppppppp

X ⊗ Y

. (8.2)

We will be most interested in the case where V0 is the category Set of small sets, or sSet
of simplicial sets. We also have the representable functor U ∶= V(I,−) ∶ V0 → Set, we denote
it by U because in many cases it is isomorphic to the normal forgetful functor. A monoidal
category is furthermore called symmetric if there in addition is a natural isomorphism cXY ∶
X ⊗ Y → Y ⊗X such that the following diagrams commute:

X ⊗ Y c //

1 %%KKKKKKKKKK Y ⊗X
c

��
X ⊗ Y

(8.3)

(X ⊗ Y ) ⊗Z a //

c⊗1
��

X ⊗ (Y ⊗Z) c // (Y ⊗Z) ⊗X
a

��
(Y ⊗X) ⊗Z a

// Y ⊗ (X ⊗Z)
1⊗c

// Y ⊗ (Z ⊗X)

(8.4)

X ⊗ I c //

r
##FFFFFFFFF I ⊗X

l

{{xxxxxxxxx

X

(8.5)

Note that 8.5 defines r in terms of l and c so we really only need one of r or l in the definition
of a symmetric monoidal category. There is one more important property we can demand of a
monoidal category (and one which both our standard examples satisfy), namely being closed.
If the tensor product is the usual cartesian product ⊗ = ×, and the unit is the terminal object
I = ∗ (in which case the category is called cartesian monoidal), being closed coincides with
the usual notion of a cartesian closed category.
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Definition 8.1. A monoidal category is closed if each functor − ⊗ Y ∶ V0 → V0 has a right
adjoint V(Y,−); so we have a natural isomorphism

V(X ⊗ Y,Z) ≅ V(X,V(Y,Z)) (8.6)

Note two important special cases, if X is replaces by I or W ⊗X. In the first case we get
an isomorphism

V(Y,Z) ≅ V(I ⊗ Y,Z) ≅ V(I,V(Y,Z) = U(V(Y,Z)).
So that V(Y,Z) normally called the internal hom-object, since its underlying set is the normal
hom-set V(Y,Z), and it is an internal object in the monoidal category. In the second case we
get the isomorphisms:

V(W,V(X,V(Y,Z))) ≅V(W ⊗X,V(Y,Z))
≅V((W ⊗X) ⊗ Y,Z)
≅V(W ⊗ (X ⊗ Y ), Z)
≅V(W,V(W ⊗ Y,Z)).

So we also get an isomorphism of internal hom-objects:

V(W ⊗ Y,Z) ≅ V(X,V(Y,Z)). (8.7)

The following is taken from [Por08].
If we have a monoidal category V we can form the category of monoids MonV, with

objects triples (C,C ⊗ C mÐ→ C, I
eÐ→ C), with C ∈ V. We further require our operation m to

be associative, and the unit e(I) to be a unit of the operation, by requiring the following
diagrams to commute:

C ⊗C ⊗C 1⊗m //

m⊗1
��

C ⊗C
m

��
C ⊗C m

// C

C ⊗ I 1⊗e //

%%JJJJJJJJJJ C ⊗C
m

��

I ⊗Ce⊗1oo

yytttttttttt

C

If we also have that the following diagram commutes, we call the monoid a symmetric monoid,
and we use the notation SMonV for the category of symmetric monoids in V:

C ⊗C c //

m
%%KKKKKKKKKK C ⊗C
m

��
C

A monoid morphism (C,m, e) → (C ′,m′, e′) is then a morphism f ∶ C → C ′ such that the
following diagrams commute:

C ⊗C m //

f⊗f
��

C

f
��

C ′ ⊗C ′
m′

// C ′
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I
e //

e′ ��@@@@@@@@ C

f
��
C ′

Thanks to the rich structure MonV inherits from being a category of models of an alge-
braic theory, we know: (example 5.2.2) [Bor94]

Lemma 8.2. The category MonV is locally finitely presentable.

So as a corollary we get:

Corollary 8.3. MonV is both complete and cocomplete.

For definition and more results about locally finitely presentable categories and algebraic
theories we direct the reader to the above reference.

There is a standard way of lifting the tensor product ⊗ from V to a tensor product ⊕ in
MonV, simply define:

(C1,m1, e1) ⊕ (C2,m2, e2) ∶= (C1 ⊗C2,m, e),

where
m ∶ (C1 ⊗C2) ⊗ (C1 ⊗C2)

1⊗c⊗1ÐÐÐ→ (C1 ⊗C1) ⊗ (C2 ⊗C2)
m1⊗m2ÐÐÐÐ→ C1 ⊗C2

e ∶ I ≅ I ⊗ I e1⊗e2ÐÐÐ→ C1 ⊗C2.

We suppress all associativity from these formulas, because from a well know result [ML98]
XI.3 we know that any monoidal category is equivalent to a strict monoidal category (one in
which all the natural isomorphisms are identity), so there is always a coherent choice of which
natural isomorphism to choose. Also any symmetric monoidal category can be strictified to a
permutative category (also known as a strict symmetric monoidal category), as show in [Isb69].
This tensor product is simply the pointwise tensor product coming from V, and this makes
MonV into a symmetric monoidal category, and does give the coproduct in SMonV:

(C1,m1, e1)
i1Ð→ (C1,m1, e1) ⊕ (C2,m2, e2)

i2←Ð (C2,m2, e2)

i1 ∶ C1 ≅ C1 ⊗ I
1⊗eÐÐ→ C1 ⊗C2

i2 ∶ C2 ≅ I ⊗C2
e⊗1ÐÐ→ C1 ⊗C2.

We will now look at a different monoidal product on Set and show that it gives the
structure of a closed symmetric monoidal category.

8.2 The category of symmetric monoids in sets

We remember that the category of small sets Set with cartesian product ×, and the terminal
object ∗ as tensor product and unit, makes Set into a (cartesian) closed symmetric monoidal
category (where the natural isomorphisms a, r, l, c are suppressed). Then it is possible to
construct the category of symmetric monoids in Set, which we will call SMon: with objects
triples (C,C ×C mÐ→ C,∗ eÐ→ C), with C ∈ Set and m(a, b) = a + b, for a, b ∈ C and e(∗) = 1C .

Now we will take some care to construct the tensor product to be such that SMon is a
closed symmetric monoidal category, with the internal hom-object coming from the fact that
Set is symmetric monoidal.
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The forgetful functor U ∶ SMon→Mon→ Set has a left adjoint Sym ∶ Set
(−)∗ÐÐ→Mon

qÐ→
SMon, which we will use the next few paragraphs to define. If we start with a set A, we can
construct the free monoid A∗ as the set of finite words with letters in A including the empty
word, defined recursively as

• ∅ ∈ A∗

• al ∈ A∗, if a ∈ A and l ∈ A∗.

In this way each word is a finite string of elements a ∈ A, and we call these elements the
letters of the word. If ∅ appears anywhere in the word we suppress it, unless it appears just
by itself. The monoid operation is concatenation of words, written a ⋅ b = ab if a and b are
words, defined recursively in a

• ∅ ⋅ b = b

• (cl) ⋅ b = c(l ⋅ b), if a = cl with c ∈ A and l ∈ A∗.

Let us look at an example:

Example 8.4. If S = {a, b} is a set of two elements, we have a monoid S∗. Some of the words
in S∗ include s0 = ∅, s1 = a, s2 = b, s3 = aa, s4 = ab, s5 = bb, s6 = aaabbbaabbabaaab, and
infinitively many more. Concatenation is simply written as s1 ⋅ s2 = a ⋅ b = ab = s4, s2 ⋅ s1 = ba,
or s0 ⋅s5 = ∅ ⋅ bb = bb = s5. So we see that the empty word always takes the role of the identity,
and that the monoid is in general not symmetric.

This free construction makes A∗ into a monoid with concatenation as operation and the
empty word as identity. Alternatively we can define A∗ = ∐n≥0A

×n. Also if we have a function
f ∶ A→ B, we get a function f∗ ∶ A∗ → B∗ defined recursively as:

• f(∅) = ∅

• f(al) = f(a)f(l), for a ∈ A and l ∈ A∗.

This map is by definition a monoid map, so there is nothing really to check there. This makes
(−)∗ ∶ Set→Mon into a functor, which is left adjoint to the forgetful functor U ∶ Mon→ Set.
As we saw in example 8.4 the monoid product is not symmetric. There is however a way to
rectify this by disregarding the order of the letters in the words. More precisely we have an
action of the symmetric group of order n on words of length n (that is, has n letters). The
length of a word is defined recursively as:

• length(∅) = 0

• length(al) = 1 + length(l), where a ∈ A and l ∈ A∗.

This completes the definition of the map (−)∗ ∶ Set →Mon, and we now define the map
q ∶ Mon → SMon by taking quotient of equivalence classes. If we now have a word w of
length n, it is of the form w = a1a2 . . . an with ai ∈ A for i = 1,2, . . . n. The action is then
given by σ⋅ (a1a2 . . . an) = aσ−1(1)aσ−1(2) . . . aσ−1(n) for σ ∈ Σn. We easily see that id ⋅ w = w
and τ ⋅ (σ⋅w) = (τσ)⋅w, so it is indeed an action. As we remember from group theory every
action of a group gives an equivalence relation on the set, so we can quotient out by this
relation to get a new set. However we also see that concatenation plays nicely together with



8 Monoids in monoidal categories 37

the equivalence classes, since v ⋅ w = vw where v denotes the equivalence class of v in the
quotient. So the quotient is in fact a monoid under concatenation, and it should be quite
evident that it has now been turned into a symmetric operation so we have achieved our goal.
That is, if A is a set, we get:

SymA ∶= ∐
n∈N

(A×n/Σn).

Since this is a symmetric monoid, we will use + for the monoid operation.
We will now construct an internal hom-object, and show that it has a left adjoint, giving

SMon the structure of a closed monoidal category. The main ideas here are taken from
the notes of Harold Simmons [Sim]. For any B,C ∈ SMon, we have the set of morphisms
SMon(B,C), and this can be given the pointwise symmetric monoid structure which we
denote SMon(B,C). For any f, g ∈ SMon(B,C), we define f + g ∶ B → C by (f + g)b =
(fb) + (gb), and an identity element to be the constant function id(b) = 1C . This is a
symmetric monoid structure since

(f + g)(b1 + b2) = f(b1 + b2) + g(b1 + b2)
= f(b1) + f(b2) + g(b1) + g(b2)
= f(b1) + g(b1) + f(b2) + g(b2)
= ((f + g)(b1) + (f + g)(b2)),

for any f, g ∶ B → C and b1, b2 ∈ B, and it is clearly symmetric by the same calculation.
This construction is functorial in the following sense: let h ∶ B2 → B1 and l ∶ C1 → C2 be

morphisms of monoids. Then we have pre- (denoted by an upper star) and post composition
(denoted by a lower star) fitting in a diagram of the form:

SMon(B1,C1)
l∗ //

h∗
��

SMon(B1,C2)

h∗
��

SMon(B2,C1)
l∗ // SMon(B2,C2)

,

which commutes since composition is associative h∗l∗g = l ○ g ○h = l∗h∗g, for any g ∶ B1 → C1.
We also note that these morphisms are actually in SMon,

h∗(g1 + g2)b = (g1 + g2)(hb) = ((g1(h)b)) + ((g2(h)b)) = (h∗g1b) + (h∗g2b)
l∗(f1 + f2)b = l((f1 + f2)b) = l(f1b + f2b) = (l(f1b)) + (l(f2b)) = (l∗f1b) + (l∗f2b).

All this shows that SMon(−,−) ∶ SMonop × SMon → SMon is a functor. This gives an
endofunctor SMon(B,−) ∶ SMon→ SMon, and we want to show that this has a left adjoint
− ⊗B ∶ SMon→ SMon, for all B ∈ SMon.

We construct the monoid A ⊗B as the bilinearization of A ×B, which is the same con-
struction used to make the tensor product for abelian groups, which fortunately works in
our case also. More concretely we form the free monoid Sym(A ×B) on the underlying set
A ×B (remember that × is the coproduct in SMon so A ×B is in fact a symmetric monoid,
with the pointwise symmetric monoid structure from A and B). Then we divide out by the
equivalence relation generated by the following relations:

(a1 + a2, b1) ∼ (a1, b1) + (a2, b1)
(a1, b1 + b2) ∼ (a1, b1) + (a1, b2)
(1A, b1) ∼ (1A,1B) ∼ (a1,1B),
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for all a1, a2 ∈ A and b1, b2 ∈ B. We denote the equivalence class of the pair (a, b) ∈ A⊗B by
a⊗ b. This does in fact give A⊗B the structure of a symmetric monoid, with operation

( ∑
a⊗b∈A⊗B

na⊗ba⊗ b) + ( ∑
a⊗b∈A⊗B

ma⊗ba⊗ b) = ∑
a⊗b∈A⊗B

(na⊗b +ma⊗b)a⊗ b

with na⊗b,ma⊗b ≥ 0 denoting the number of appearances of a ⊗ b in the word, and identity
1A ⊗ 1B.

We then have an adjunction, given by the pair:

f � // f ♯

SMon(A⊗B,C) ≅ SMon(A,SMon(B,C))
g♭ g�oo

with the defining equations

f ♯ab = f(a⊗ b) g♭(a⊗ b) = gab,

for a ∈ A, b ∈ B. The required naturality conditions now follow directly from the construction,
and the two functions are easily seen to be inverses of each other. By defining (f1+f2)♯ = f ♯1+f ♯2
and (g1+g2)♭ = (g1)♭+(g2)♭, for f1, f2 ∈ SMon(A⊗B,C) and g1, g2 ∈ SMon(A,SMon(B,C)),
we get also:

SMon(A⊗B,C) ≅ SMon(A,SMon(B,C))

this is of course a completely general fact, as we noticed in 8.7, so there is really nothing to
check.
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9 Simplicial models

We will give a short exposition on Voevodsky’s model of a univalent universe in simplicial
sets based on [KLV12]. Then we explain some of the things which also work in simplicial
symmetric monoids, and some of the things which do not.

9.1 Simplicial sets

In simplicial sets S we have representable objects ∆[n], given by ∆[n]m = ∆([m], [n], such
that for any simplicial set X we have S(∆[n],X) ≅ Xn. Mimicking the idea that we have a
universe in presheaf categories given by U(X) = {Y ∣ftY = X} from lemma 6.14, we define a
presheaf universe Uα such that Uα(X) is the set of well-ordered morphisms Y ↠ X where
each fiber Yx has cardinality < α. We will not use any other cardinality than α, so we just
use the notation U ∶= Uα. Then we can prove that U is representable, and is represented
by the simplicial set U given by Un ∶= U(∆[n]). And we further get another simplicial set
Ũ with a fibration π ∶ Ũ ↠ U which is universal among well-ordered fibrations with fibers of
cardinality < α, and weakly universal among all fibrations of cardinality < α. Further it can
be proved that the simplicial set U is fibrant, by using minimal fibrations and properties of
the left and right adjoints of the pullback.

Now we have a fibrant universe representing all fibrations in the category, it only remains
to show that the universe is univalent. We then want an object representing weak equivalences
between fibrations E1 ↠ B, E2 ↠ B over a common base, i.e. types in a context. We already
know that morphisms between fibrations over a common base can be represented since S is
locally cartesian closed, so we have a internal “hom-object” Hom(E1,E2) → B, and since S
is right proper this morphism is also a fibration. Now [KLV12] show that there is a simplicial
subset EqB(E1,E2) which represents weak equivalences as we desired, and which is also
fibrant in S/B.

The final step is now to show that the universe U is univalent, which is a question of a
canonical map PU → Eq(Ũ) being a weak equivalence, i.e. that Eq(Ũ) can be seen as a
path object for the universe U (remember that path objects are the models for identity types,
so this is in fact equivalent to the univalence axiom from type theory). The object PU is
a path object for U , i.e. a factorization of the diagonal as U↣̃PU ↠ U × U , and Eq(Ũ) ∶=
EqU×U(pr∗1 Ũ , pr∗2 Ũ), with pr1, pr2 ∶ U ×U the two projections. Since weak equivalences have
the 2-out-of-3 property, this is equivalent to the map U → Eq(Ũ) in the following diagram in
S/U ×U

U //

∼

""FFFFFFFFF Eq(Ũ)

PU

OO

being a weak equivalence. The map U → Eq(Ũ) is essentially given by a diagonal map.
[KLV12] does succeed in showing that the universe U is univalent and hence constructing the
first good model for homotopy type theory.
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9.2 Simplicial symmetric monoids

We will be working in the category of simplicial symmetric monoids sSMon ∶= Cat(∆op,SMon).
We can give sSMon the structure of a model category by lifting the model structure from
simplicial sets through the adjunction Sym ∶ Set⇄ SMon ∶ U by using the transfer principle
4.10.

Lemma 9.1. sSMon is a simplicial model category, with A → B a weak equivalence (or
fibration) iff UA = sSMon(∗,A) → sSMon(∗,B) = UB is a weak equivalence (or fibration)
of simplicial sets.

Proof. This is a standard argument from [GJ99] II.6 (Cor 6.6 in fact).

We want to construct a universe representing all α-small fibrations in some sense, so we
try to mimic the construction in S from [KLV12].

Definition 9.2. Let Sym∆[n] be the simplicial monoid given as:

(Sym∆[n])[m] ∶= Sym(∆[n]m) = Sym(∆([m], [n])),

Lemma 9.3. Since the category of simplicial symmetric monoids sSMon is an enriched
presheaf category we know that every object is given as a colimit of the representable functors
Sym∆[n]. See Mac Lane III.7 [ML98].

Because of this Lemma it gives some credibility to the construction of simplicial monoids
over the special objects Sym∆[n], so we are somewhat justified in giving the following defi-
nition which is the same as in [KLV12].

Definition 9.4. U is the simplicial set, which will be give a symmetric monoid structure,
given as

U ∶= {[n] ↦ [Y fÐ→ Sym∆[n]]} ,

with Y a simplicial monoid and f a fibration, with fiber Yx of cardinality < α for each x ∈
Sym∆[n], and [−] meaning isomorphism classes of maps (where the isomorphisms are to be
taken in the over category SMon/Sym∆[n]). If we have a map [n′] → [n] in ∆, we get an
induced map Un → Un′ given by pullback along the induced map Sym∆[n] → Sym∆[n′]. The
monoid structure is given by the pullback over the common base:

[Y → Sym∆[n]] ∗ [Y ′ → Sym∆[n]] = [Y ×Sym∆[n] Y
′ → Sym∆[n]] .

This gives Un the structure of a symmetric monoid for all n, with the identity (Sym∆[n] =
Sym∆[n] as the unit. Standard isomorphisms for pullback give associativity and identity
since we are taking isomorphism classes of maps over Sym∆[n].

We have by the Yoneda embedding for SMon-enriched functors a one to one correspon-
dence:

Un ≅ sSMon(Sym∆[n], U),

where we will use the notation ⌜f⌝ ∶ Sym∆[n] → U for the map that [Y fÐ→ Sym∆[n]] ∈ Un
corresponds to.
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Definition 9.5. Let Ũ be the simplicial symmetric monoid given as

Ũn ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y

f
��

Sym∆[n]

s

99rrrrrrrrrrr
= Sym∆[n]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

the set of isomorphism classes of diagrams of the above form, such that s is a section of the
fibration f ∈ Un. The monoid structure is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y

f
��

Sym∆[n]

s

;;wwwwwwwww
=Sym∆[n]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y ′

f ′
��

Sym∆[n]

s′
;;wwwwwwwww

=Sym∆[n]

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y ×Sym∆[n] Y
′

��
Sym∆[n]

::

= Sym∆[n]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the dotted line is the unique induced map coming from the pullback, since we have a
map s ∶ Sym∆[n] → Y and a map s′ ∶ Sym∆[n] → Y ′, which both agree when mapping back
to Sym∆[n] since they are both sent to the identity.

We have a map π ∶ Ũ → U given by forgetting the section, and:

Lemma 9.6. π ∶ Ũ → U is a fibration.

Proof. We look at squares:

SymΛk[n]

��

// Ũ

��
Sym∆[n]⌜f⌝ // U

where the left vertical map is precisely one of the generating acyclic cofibrations, and ask
whether there exists a lifting. We can factor through the pullback to get a diagram of the
form:

SymΛk[n]

��

// ●

f

��

// Ũ

��
Sym∆[n] = Sym∆[n]⌜f⌝ // U

,

where by the definition of U , f is a fibration, so we have a lifting in the diagram on the right,
and hence a lifting in the outer diagram as desired.

Unfortunately this fibration is not a universal fibration in the category sSMon, by the
following example, so we will cease to study this object much further since it does not have
the desired property.

Example 9.7. Consider the diagram.

Ũ

π

��
N

f
// U

(9.1)
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Here we consider N as a discrete simplicial symmetric monoid, so any map N→ U is uniquely
given by specifying what the map is in the 0−simplexes, N → U0 = {Y → Sym∆[0]} = {Y →
N}. Since f is a monoid morphism it has to send 0 ∈ N to N = N ∈ U . Furthermore the only
inverse image of the identity in Ũ is the identity (N = N,N = N) ∈ Ũ . So for any fibration over
N which has a nontrivial fiber over 0, we see that this is not a pullback in the above diagram,
so specifically we see that π is not a universal fibration.

9.3 Object of weak equivalences

In this section we will study the weak equivalences between fibrations, so we fix two fibrations
E1 ↠ B, and E2 ↠ B. We want to prove an SMon-enriched natural isomorphism

sSMon/B
⎛
⎜⎜⎜
⎝

X

f
��
B

,

EqB(E1,E2)

��
B

⎞
⎟⎟⎟
⎠
≅ F (X,f),

where EqB(E1,E2) is the object we wish to defined, and F ∶ sSMon/B Ð→ Set is the functor
defined as:

F (X,f) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f∗E1
∼ //

$$HHHHHHHHH f∗E2

��
X

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

i.e. the set of weak equivalences between the pullbacks of E1 ↠ B and E2 ↠ B along
f ∶X → B.

Since sSMon has a model structure defined by lifting along a right adjoint, we have by
4.10 that sSMon is right proper. So pullback preserves all weak equivalences, and we get the
following lemma showing that F is a meaningful functor.

Lemma 9.8. If f ∶ E1 → E2 be a weak equivalence over B and g ∶ B′ → B, then the induced
map g∗E1 → g∗E2 is a weak equivalence.

Furthermore, if sSMon were locally cartesian closed, so that we would have an internal
hom object in sSMon/B and we could choose the functor F to have codomain sSMon,
we get the desired representability by showing the following lemma. Unfortunately sSMon
is not locally cartesian closed so we are missing the crucial ingredient to get an object of
weak equivalences, and hence to define univalence in a way following [KLV12]. It is not even
possible to define some object EqB(E1,E2) in a meaningful way mimicking [KLV12] since it is
well known that the set of weak equivalences very seldom can be given any symmetric monoid
structure. For instance the set of invertible matrices, i.e. isomorphisms of vector spaces, is
not an abelian group under sum of matrices since the sum of two invertible matrices is in
general not invertible. The lemma itself still holds though, and it is a nice lemma so we finish
the section with it.
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Lemma 9.9. Let f ∶ E1 → E2 is a morphisms in sSMon over B. If for one 0-simplex

Sym∆[0] bÐ→ B in each connected component, the induced map fb ∶ b∗E1 → b∗E2 is a weak
equivalence, then f is a weak equivalence.

Proof. (following [KLV12]) We can assume that B is connected, otherwise we use the result
in each connected component. Take some vertex b ∶ Sym∆[0] → B, and let Fi ∶= b∗Ei. Then
we have a diagram like this, for every e ∶ Sym∆[0] → F1

πn+1(B, b)

id
��

// πn(F1, e)
πn(fb)

��

// πn(E1, e)
πn(f)

��

// πn(B, b)

id
��

// πn−1(F1, e)
πn−1(fb)

��
πn+1(B, b) // πn(F2, f(e)) // πn(E2, f(e)) // πn(B, b) // πn−1(F2, f(e))

.

So by the five lemma πn(f) must be an isomorphisms since each of the πn(fb) are. On
the bottom of the diagram we also have an isomorphism since π0(B, b) = 0, because B is
connected.
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10 Various models

In this section we will mainly study a category which could be called many-pointed simplicial
sets. It is a generalization of the category S∗ to a presheaf category A, since S∗ lacks some
of the nice properties required to model type theory. The idea is to give a model for type
theory, preferably with univalence, in the category of Γ-spaces, which are functors Γop → S∗.
Γ-spaces give rise to a way to study connective spectra, and the hope was to study the
interplay between type theory and the theory of spectra. Unfortunately the theory of models
for type theory turned out to be too technical and not well studied enough for the author to
quite so far.

10.1 Many-pointed simplicial sets

Let A denote the a slight generalization of ∆ which contain ∆ as a full subcategory. A has one
object for each natural number [n] = {0→ 1→ . . .→ n} and also one object [−1] = ∗, which is
initial in A, and also a retract of [0]. We look at the presheaf category A ∶= [Aop,Set]. We
have the inclusion j ∶ ∆↪ A which induces a forgetful functor j∗ ∶ A→ S, by precomposition
with j. This functor has a left adjoint j∗ given by the left Kan extension, and since we want
to use this to define the model structure on A through theorem 4.10 we want to understand
j∗ better. By inspection we have that any two maps X1 → X−1 must be equal since [−1]
is initial, so the map d−1 ∶ X0 → X−1 (which is not the inverse of a map d, but just the
map for the map induced by the map [−1] → [0] in Aop) factors through the surjective map
X0 ↠ π0(j∗X). So we get the following picture.

X1

d01
��

d00
��
X0

d−1

��

OO

q

$$ $$JJJJJJJJJ

π0(j∗X)
h

zzttttttttt

X−1

s−1

OO

To see this, suppose that we have y ∈ π0(j∗X), it must the in the image of a x ∈X0 since q
is surjective. We define the map π0(j∗X) →X−1 by sending y ↦ d−1(x). This is well defined
since if we have any x′ ∈ X0 which is sent to y it must be in the same path component, so
there must be an element p ∈ X1 such that x = d0

0(p) and x′ = d0
1(p) and hence they must be

sent to the same element d−1(x) in X−1.

This implies that if we have an isomorphism A(j∗X,Y ) ≅ S(X, j∗Y ), we must have that
(j∗X)n ≅ Xn∐π0(X) for X ∈ S, where we set X−1 = ∅. To see this assume we have a map
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f ∶X → j∗Y , i.e. a diagram as follows in S:

X2

������

f2 // Y2

������
X1

d01
��

OO OO

d00
��

f1 // Y1

d01
��

OO OO

d00
��

X0

OO

f0 // Y0

OO

then we get a diagram as follows in A:

π0(X)∐X2

������

s10s
0s−1○h○π0(f)∐ f2 // Y2

������
π0(X)∐X1

d01
��

OO OO

d00
��

s0s−1○h○π0(f)∐ f1 // Y1

d01
��

OO OO

d00
��

π0(X)∐X0

d−1

��

OO

s−1○h○π0(f)∐ f0 // Y0

d−1

��

OO

q

zzzzuuuuuuuuuu

π0(j∗Y )
h

$$IIIIIIIII

π0(X)

s−1

OO

h○π0(f) //

π0(f)
77ppppppppppp

Y−1.

s−1

OO

To see that the above diagram commutes, and is the lower part of a diagram in A, is a
technical exercise which can be checked. I have given full name to the first few maps to
outline how the proof starts. One could note that there is a choice of map π0(X) → Y2, since
there are two degenerate maps s1

0, s
1
1 ∶ Y1 → Y2 but thanks to the simplicial identities these

are in fact equal as maps Y0 → Y2 so the map is well defined.
If on the other hand we have a map g ∶ j∗X → Y ∈ A, we have in each degree n ≥ 0 a map

gn ∶ π0(X)∐Xn → Yn, so we have a map Xn → Yn, and we can forget all information about
π0(X) and get a map X → j∗Y . It is now clear that the set of maps f ∶ X → j∗Y ∈ S are
isomorphic to the set of maps j∗X → Y ∈ A by the above discussion.

Since the functor j∗ simply adds the set of path-components in each degree (even the
degree −1 where there was nothing before) it is easy to see that it sends small objects in S
to small objects in A. Further is we take pushouts diagrams of the form

Λk[n]∐∗ //

��

Xa

��
∆[n]∐∗ // Xa+1,

where the left side is the generating cofibrations, it follows by the same arguments as in S that
the map on the right side is a weak equivalence. Also by the same arguments as in simplicial
sets sequential colimits of weak equivalences is again a weak equivalence. And hence by the
transfer theorem 4.10 the category A is a cofibrantly generated model structure.



10 Various models 47

We now have a cofibrantly generated model structure on A given by lifting the model
structure on S through the adjunction j∗ ∶ A ⇄ S ∶ j∗, and just as for sSMon lemma 4.10
gives that A is a right proper model structure. Since A is a presheaf category it is a topos,
and hence locally cartesian closed.

The advantage of working in cofibrantly generated model categories is that is gives us
tools for describing the cofibrations as something other than just maps with lifting properties.
The cofibrations in a cofibrantly generated model category, with generating cofibrations and
generating acyclic cofibrations I and J can be described in the following two equivalent way.
Cofibrations are given as I − cof , i.e. the maps with left lifting property with respect to
the maps with the right lifting property with respect to the maps in I. Equivalently they
can be given as retracts of maps in I − cell, i.e. closure under pushouts and sequential
colimits of maps in I. The set I is the set of injections {∂∆[n]∐∗ ↪ ∆[n]∐∗∣0 ≤ n} (since
π0(∂∆[n]) = π0(∆[n]) = ∗), and pushouts of injections in any topos are injections. Further
the sequential colimit of injections is again an injection. Lastly any retract of an injection is
an injection. So the set of cofibrations is precisely the set of injections.

Further we know that limits always preserve injections, so it preserves the cofibrations
in A. This gives that A is a type-theoretic model category (Def 6.9) so its subcategory of
fibrant objects Af is a type-theoretic fibration category.

10.2 Possible future work

If we could construct a univalent universe in A we could use methods similar to the methods
in [Shu12] and [Shu13] to get a univalent universe in (AΓop)f the category of fibrant objects
in a category which could be called many pointed Gamma-spaces. The category Γop is a
skeleton of the category of finite pointed sets.

Then it would be a problem of looking at the full subcategory of ordinary Gamma-spaces
which is the category SΓop

∗ , formed from the full subcategory of A of all many-pointed spaces
having just the one point set ∗ as its −1 simplex, i.e. normal pointed simplicial sets ∗/S ≅
[∆op,Ens∗].

There is another category which could be of interest to examine further, namely the
category Cat of small categories. It is a cartesian closed category, but not locally cartesian
closed since pullback does not preserve coequalizers, see remarks following Corollary 1.5.3 in
[Joh02a]. We have however that for any fibration f ∶ A→ B the pullback f∗ ∶ Cat/B →Cat/A
has a right adjoint ∏f . The canonical model structure on Cat, found in [JT91], is given by
a functor is

• a weak equivalence if it is an equivalence of categories.

• a cofibration if it is an isocofibration, i.e. if it is injective on objects.

• a fibration if it is an isofibration.

Definition 10.1. An isofibration is a functor F ∶ E → B such that for any object e ∈ E and
any isomorphism φ ∶ F (e) ≅ b, there exists an isomorphism ψ ∶ e ≅ e′ such that F (ψ) = φ.

Now we could try to continue as for A and show that this model structure give Cat the
structure of a model category with limits that preserve cofibrations, and which is right proper.
This would mean that Cat is a type-theoretic model category, and we could study Catf the
subcategory of fibrant objects which would be a type-theoretic fibration category.
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[Hov99] Mark Hovey. Model categories, volume 63 of Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 1999.

[Isb69] John R. Isbell. On coherent algebras and strict algebras. J. Algebra, 13:299–307,
1969.

[Jac99] Bart Jacobs. Categorical logic and type theory, volume 141 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 1999.

[Joh02a] Peter T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 1,
volume 43 of Oxford Logic Guides. The Clarendon Press, Oxford University Press,
New York, 2002.

[Joh02b] Peter T. Johnstone. Sketches of an elephant: a topos theory compendium. Vol. 2,
volume 44 of Oxford Logic Guides. The Clarendon Press, Oxford University Press,
Oxford, 2002.
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