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Abstract

We have previously found that whole influenza virus vaccine induced a more
rapid and stronger humoral response, particularly after the first dose of vaccine,
than split virus vaccine in mice. In this study, we have evaluated the protective
efficacy of whole and split influenza virus vaccines in mice using a nonlethal
upper respiratory tract challenge model. We have also investigated the immu-
nological correlates associated with no or very little viral shedding after viral
challenge. Vaccination resulted in reduced viral shedding and shortened the
duration of infection by at least 2 days. After one dose of vaccine, whole virus
vaccine generally resulted in less viral shedding than split virus vaccine. In
contrast, two doses of split virus vaccine, particularly the highest vaccine
strengths of 15 and 30 mg HA, most effectively limited viral replication and
these mice had high concentrations of prechallenge influenza-specific serum
IgG. The vaccine formulation influenced the IgG2a/IgG1 ratio, and this IgG
subclass profile was maintained upon challenge to some extent, although it did
not influence the level of viral shedding. The concentration of postvaccination
serum IgG showed an inverse relationship with the level of viral shedding after
viral challenge. Therefore, serum IgG is an important factor in limiting viral
replication in the upper respiratory tract upon challenge of an antigenically
similar virus.

Introduction

Human influenza is a respiratory tract pathogen, and viral
replication occurs predominantly in the epithelial cells of
the respiratory tract. Immunity at this site usually involves
pre-existing influenza-specific immunoglobulin G (IgG)
and secretory IgA (S-IgA) antibodies, which promote
viral elimination by forming antibody–virus complexes
shortly after infection. Locally produced S-IgA is impor-
tant in protecting the upper respiratory tract [1], whilst
IgG plays an important role in preventing lethal influenza
pneumonia [2, 3]. Influenza infection also induces a cyto-
toxic T lymphocyte (CTL) memory response that has
proven to be, at least in mice, important for viral clearance
[4–8].

Vaccination is the main method of influenza prophy-
laxis. There are two types of vaccine, namely parenterally
administered inactivated vaccine and intranasal live, atte-
nuated virus vaccine (reviewed in [9]). Split virus is the
most utilized inactivated influenza vaccine formulation
and induces protective levels of antibody and causes few
side reactions [10, 11]. Whole virus vaccine is considered
more immunogenic than split virus vaccine [11, 12] but is
also more reactogenic and is therefore not widely used.
Recently, the urgency for developing pandemic influenza
vaccines has been highlighted by a number of avian sub-
types crossing the species barrier into man [13, 14].
Vaccine containing avian influenza subtypes (H5 and
H9) has proven to be poorly immunogenic in man [15–
17], and this has led to the re-evaluation of the use of
whole influenza virus vaccine.

We have recently found that whole and split influenza
virus vaccines appear to elicit different distribution of IgG*Both authors contributed equally to this work.
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subclasses in mice [18], which may indicate different T
helper (Th) responses [19]. We also found that whole virus
vaccine induced an earlier and stronger humoral response,
which may provide earlier protection after vaccination in
unprimed individuals. In this study, we have therefore
extended our work to investigate the efficacy of these
vaccines in a nonlethal murine challenge model. We
found that one dose of whole virus vaccine resulted in a
more limited viral shedding than one dose of split virus
vaccine. In contrast, two doses of split virus vaccine were
most effective in reducing viral shedding and this was
associated with high concentrations of prechallenge vac-
cine-induced serum IgG. Furthermore, we found that
irrespective of the IgG subclass, high concentrations of
serum IgG induced by vaccination were an important
indicator of the efficacy of the vaccine.

Materials and methods

Mice. Female BALB/c A mice (6 to 8 weeks old purchased
from Taconic M&B A/S, Ry, Denmark) were housed
according to the Norwegian Animal Welfare Act, at a
temperature of 21 �C, with 12 h light/dark cycles and
food and water ad libitum. The animals, six groups with
24 mice per group, were vaccinated intramuscularly into
the quadriceps muscles with one or two doses at 3-week
intervals of 7.5, 15 or 30 mg HA of monovalent A/
Panama/2007/99 (H3N2) split or whole virus vaccine
(kindly provided by Sanofi-Aventis, Lyon, France). All
mice were vaccinated intramuscularly in both hind legs
(50 ml per leg), except mice immunized with 30 mg of split
virus vaccine, which required two injections per hind leg
(2� 40 ml per leg) to deliver the correct amount of anti-
gen. Nineteen unvaccinated mice were infected and used
as a control group. Three mice died 3–9 weeks after
vaccination and before viral challenge, presumably of nat-
ural causes. Nine weeks after the last dose of vaccine, a
baseline serum sample was collected, and the mice were
then intranasally challenged with 200 MID50 of the anti-
genically similar A/Moscow/10/99 (H3N2) influenza virus
(kindly provided by Diane Major, NIBSC, UK). The
WHO recommended inclusion of A/Moscow/10/99
(H3N2)-like strain as the H3N2 vaccine component
from 2000 to 2003, and the A/Panama/2007/99 (H3N2)
strain was most commonly used [20]. The mice were
administered with a small volume of inoculum (25 ml)
whilst awake to achieve an initial upper respiratory infec-
tion [21]. The mice were monitored daily for signs of
clinical illness, e.g. loss of activity and ruffled fur, and no
clear signs of illness or any significant loss of weight were
recorded. Nasal wash (NW) samples were collected daily
after viral challenge (up to day 4 or 6 in vaccinated or
control mice, respectively) and stored at �80 �C until
assayed for the presence of replicative virus [22]. Mice
(four animals per group) were killed, and the blood,

spleen, lungs, femur and tibia bones of the hind legs
were collected at various time points after challenge (days
5, 7 and 21).

Presence of replicating virus in NW samples. NW samples
were titrated in 10-fold serial dilutions in maintenance
medium (DMEM) containing 2.5 mg/ml of TPCK trypsin
(LS003665, Worthington Biomedical, Lakewood, NJ,
USA), 100 IU/ml of penicillin, 100 mg/ml of streptomycin
and 0.25 mg of fungizone (17–745E, Cambrex
Biowhittaker, East Rutherford, NJ, USA) and 0.14%
bovine serum albumin (A-6793, Sigma-Aldrich, St Louis,
MO, USA) [22]. The diluted samples (10 parallels of each
dilution at 100 ml/well) were then incubated on confluent
MDCK cell monolayers in 96-well plates at 35 �C for
30 min, before the removal and addition of 100 ml of
fresh maintenance medium. After a 72-h incubation per-
iod, the presence of replicative virus was detected by using
an HA assay with 0.7% turkey red blood cells. Wells were
scored for the presence of virus (100% haemagglutination)
and the 50% tissue-culture infectious dose (TCID50) was
calculated by the method of Reed and Muench [23]. All
NW samples from the same mouse were tested at the same
time.

Antibody-secreting cell (ASC) response. Lymphocytes
were isolated from the spleen, bone marrow and lungs,
and the number of influenza class-specific ASC was
detected in an ELISPOT assay as previously described
[18, 22]. Briefly, ELISPOT plates were coated with
10 mg/ml of A/Panama/2007/99 (H3N2) (100 ml/well) of
split virus vaccine overnight at 4 �C [24]. After incubation
of the appropriate number of lymphocytes at 37 �C, the
influenza-specific ASC were detected using 2 mg/ml of goat
anti-mouse biotinylated class (IgG; 1030–08, IgA; 1040–
08, IgM; 1020–08, Southern Biotechnology, Birmingham,
AL, USA) specific antibodies. The number of influenza-
specific ASC per 500,000 lymphocytes was calculated for
each individual animal.

ELISA. An indirect ELISA was used to detect the class
and IgG subclass (IgG1 and IgG2a) of influenza-specific
serum antibodies [18]. Briefly, 96-well ELISA plates were
coated with 10 mg/ml of A/Panama/2007/99 (H3N2) split
virus (100 ml/well) overnight at 4 �C. The influenza-speci-
fic antibodies were detected using goat anti-mouse bioti-
nylated class (see ELISPOT) or IgG subclass (IgG1; 1070–
08, IgG2a; 1080–08, Southern Biotechnology) specific
antibodies. Dilutions of appropriate immunoglobulin
standards were added to the plates (IgG, I-5381; IgA, M-
1421; IgM, M-3795, Sigma-Aldrich). The concentration
of influenza-specific antibody (mg/ml) was calculated for
each antibody class and each IgG subclass.

Haemagglutination inhibition (HI) assay. Nonspecific
inhibitors were removed by treating the serum overnight
at 37 �C with receptor destroying enzyme (Denka Seiken,
Tokyo, Japan) and then subsequent inactivation at 56 �C
[25]. The assay was carried out using 8 haemagglutinating
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units of virus and 0.7% turkey red blood cells as previously
described [24]. Titres are reported as the reciprocal of the
dilution of serum needed to inhibit 50% haemagglutina-
tion. Negative samples (titres <10) were assigned a titre of
5 for calculation purposes.

Virus neutralization (VN) assay. The assay was carried
out as previously described [18, 24]. Briefly, heat-treated
sera were diluted twofold and incubated in quadruplicate
with A/Panama/2007/99 (H3N2) at room temperature for
1 h. The serum/virus mixture was then added to confluent
MDCK monolayers in 96-well tissue-culture plates for
30 min at 35 �C and subsequently replaced with medium
for 72 h. The presence of virus was recorded by an HA
assay with 0.7% turkey red blood cells, and the neutraliza-
tion antibody titres were calculated [23].

Statistical analysis. Differences between the mean con-
centration (ELISA) and geometric mean (VN and HI) and
mean numbers of ASC (ELISPOT) were analysed by a two-
sided Student’s t-test. The NW titres were analysed by the
Mann–Whitney U-test using SPSS version 12 for windows. A
P-value� 0.05 was considered statistically significant.

Results

Mice were vaccinated with one or two doses of monovalent
split or whole A/Panama/2007/99 (H3N2) virus vaccine at
three different vaccine strengths (7.5, 15 or 30 mg HA).

The normal human dose in the current trivalent influenza
vaccines is 15 mg HA of each strain. Subsequently, mice
(including an unvaccinated control group) were challenged
with 200 MID50 of the antigenically closely related A/
Moscow/10/99 (H3N2) virus 9 weeks after the last dose
of vaccine. A low-challenge volume (25 ml) of a nonlethal
virus was administrated whilst the mice were awake, aim-
ing to produce a self-limiting upper respiratory tract infec-
tion [21, 22, 26]. A prechallenge serum sample and daily
NW samples were collected from all mice, before groups
of mice were killed at days 5, 7 and 21 after challenge.

Nasal wash viral titres after challenge

Nasal wash samples were collected daily from vaccinated
mice for the initial 4 days after viral challenge. Low viral
titres were detected 1 day after challenge followed by a
sharp increase in viral shedding with the peak titres
observed at day 2 in both the vaccinated and the unvacci-
nated control mice (Fig. 1). Vaccinated mice cleared the
infection more quickly than controls. Little or no virus was
detected at 4 days after challenge in vaccinated animals,
whereas the control mice had up to 24-fold higher titres at
day 4 and still low levels of viral shedding (<10 TCID50)
at day 6 (data not shown). One dose of vaccine (both
formulations) significantly reduced peak viral titres
(P< 0.05) compared with unvaccinated controls (three-
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Figure 1 Viral replication after viral challenge of mice previously vaccinated with split or whole virus vaccine. Mice were immunized with one or two

doses of split (7.5mg dark blue, 15mg dark green or 30 mg dark red) or whole (7.5mg pale blue, 15mg pale green or 30mg pale red) virus vaccine or
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to ninefold). Generally, mice vaccinated with one dose of
whole virus vaccine had lower peak viral NW titres than
mice vaccinated with one dose of split virus vaccine. Mice
immunized with one dose of whole virus vaccine or 30 mg
of split virus vaccine had a shorter duration of viral shed-
ding, with lower NW titres observed 3 days after challenge
than in mice vaccinated with 7.5 and 15 mg of split virus
vaccine. After one dose of vaccine, four of 71 mice had
NW< 10 TCID50, of which three mice were vaccinated
with whole virus vaccine.

Immunization with two doses of either vaccine formula-
tion resulted in significantly lower NW titres than in the
control mice. Viral shedding was much lower in mice
vaccinated with two doses of split virus vaccine than in
those with one dose. In contrast, no clear difference in the
viral replication was observed after one or two doses of
whole virus vaccine. Mice immunized with two doses of
split virus vaccine had eight- to 130-fold lower NW titres
on the peak day than the unvaccinated controls, whereas
the group vaccinated with whole virus vaccine had only
two- to eightfold lower peak NW titres. The lowest NW
titres were observed in mice vaccinated with two doses of
the two highest strengths of split virus vaccine (15 and
30 mg), which generally had very low levels of viral shed-
ding on the peak day (2 days after challenge). Five mice
vaccinated with 30 mg of split virus vaccine had no detect-
able virus in the nasal cavity at any time point. After two
doses of vaccine, 20 mice had a peak NW titre< 10
TCID50, of these 13 were vaccinated with split virus
vaccine (12 mice from the 15 and 30 mg vaccine groups)
and six mice vaccinated with whole virus vaccine (3, 1 or 2
mice vaccinated with 7.5, 15 or 30 mg, respectively).
Importantly, mice were also divided into two groups
based on the peak viral NW titre with no or low NW
titres (<10 TCID50) or higher NW titres, to allow corre-
lation with humoral immunological parameters. Due to
the low number of mice with low NW titres (<10
TCID50) after one dose of vaccine, only mice vaccinated
with two doses of vaccine were analysed for the immuno-
logical correlates (Table 1).

ASC response after challenge

Higher numbers of influenza-specific IgG and IgA ASC
and low numbers of IgM ASC were detected after viral
challenge of vaccinated mice in the spleen, bone marrow
and lungs. Generally, the numbers of influenza-specific
IgG and IgA ASC in the spleen and the lungs were highest
7 days after challenge with lower numbers of ASC detected
at days 5 (data not shown) and 21 (Fig. 2). In the bone
marrow, mice vaccinated with whole virus vaccine had
peak numbers of ASC at 7 days after challenge, whereas
the highest numbers of ASC were observed at day 21 in
the split virus vaccine group. The number of IgM ASC
remained essentially stable after viral challenge of T
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vaccinated mice. The control mice had very low numbers
of influenza-specific (IgM, IgG and IgA) ASC after chal-
lenge, usually less than 10 per 5� 105 lymphocytes, in all
tissues (data not shown). The low numbers of lung ASC
observed after infection of control mice suggest that the
challenge dose of virus resulted in an upper respiratory
tract infection.

ASC response in the spleen
Higher numbers of IgA (two- to 10-fold) and IgG ASC
(two- to 12-fold) were observed 7 days after viral challenge
in mice previously immunized with one or two doses of
whole virus vaccine than split virus vaccine. Whereas simi-
lar numbers of ASC were detected by 21 days after chal-
lenge, except IgG ASC after one dose of split and IgA ASC
after two doses of whole virus vaccine. The number of IgM
ASC was higher (approximately twofold) after challenge of
mice vaccinated with whole virus vaccine at all sampling
days (data not shown). When the mice were grouped
according to no or low (<10) or higher (�10) NW titres,
the number of splenic ASC at 7 days after challenge was
dependent on the level of viral shedding (Table 1). Mice
with no or low NW titres (<10) had 40–50% less IgG and
IgA ASC in the spleen on the peak day, 7 days after
challenge, but similar numbers of ASC on the other sam-
pling days.

ASC response in the bone marrow
Mice immunized with one dose of whole virus vaccine
generally had the highest numbers of IgG ASC 7 days
after challenge, whereas the IgG ASC numbers increased
up to day 21 after challenge in mice immunized with split
virus vaccine (Fig. 2). Comparable numbers of IgG ASC
were observed 7 days after challenge in mice immunized
with two doses of split or whole virus vaccine but were
twofold higher at day 21 in mice previously immunized
with split virus vaccine. Higher numbers of IgA ASC were
detected at 7 days after viral challenge in mice immunized
with whole virus vaccine, but similar numbers of IgA ASC
were found at day 21 compared with mice vaccinated with
split virus vaccine. Similar numbers of IgG ASC were
detected at days 5 and 7, but at 21 days after challenge
mice with no or low NW titres (<10) had 70% higher
numbers of IgG ASC than mice with higher NW titres
(�10) (Table 1).

ASC response in the lungs
Viral challenge of mice immunized with one and two
doses of whole virus vaccine resulted in higher numbers
of IgA ASC at days 5 (data not shown) and 7 than in mice
vaccinated with split virus vaccine, with comparable num-
bers of IgA ASC detected at day 21 (Fig. 2). Similar
numbers of IgG ASC were detected in the lungs after
challenge of mice vaccinated with one or two doses of
vaccine (both formulations). However, three mice

200
S

pl
ee

n 
Ig

G
 A

S
C

S
pl

ee
n 

Ig
G

 A
S

C
B

M
 Ig

G
 A

S
C

B
M

 Ig
A

 A
S

C
Lu

ng
 Ig

G
 A

S
C

Lu
ng

 Ig
A

 A
S

C

150

100

50

0

200

150

100

100

50

75

50

25

0

0

100

75

1000

500

400

300

300

200

200

100

100

0

0

7 7 2121

Days after challenge Days after challenge

One dose of vaccine Two doses of vaccine

50

25

0

Figure 2 Influenza-specific IgG and IgA antibody-secreting cells (ASC) in

the spleen, bone marrow and lungs elicited after viral challenge of mice

previously vaccinated with split or whole virus vaccine. Mice were immu-

nized with one or two doses of split (7.5mg dark blue, 15mg dark green or

30 mg dark red) or whole (7.5mg pale blue, 15 mg pale green or 30 mg pale

red) virus vaccine and were challenged by intranasal infection 9 weeks

after the last dose of vaccine. The data are presented as the mean number

of influenza-specific ASC per 500,000 lymphocytes � SEM.

346 High Serum IgG Reduces Viral Replication A.-O. Hovden et al.
............................................................................................................................................................................................................

# 2005 Blackwell Publishing Ltd. Scandinavian Journal of Immunology 62, 342–352



vaccinated with one dose of 15 mg whole virus vaccine had
high numbers of IgG ASC after viral challenge, but this
was not associated with higher levels of viral shedding in
these mice. In contrast, two mice immunized with two
doses of 7.5 mg whole virus vaccine had high numbers of
IgG and IgA ASC at 7 days after challenge, and also high
peak NW titres (200–501 TCID50). Mice with no or low
NW titres (<10) had lower numbers of IgG and IgA ASC
(up to threefold) at 5 and 7 days after viral challenge than
mice with higher NW titres (�10) (Table 1).

Serum antibody response after challenge

Antibody class and IgG subclasses
IgG dominated the serum response both before and after
viral challenge (Table 2) with 1000-fold lower IgA than
IgG concentrations detected (results not shown). The pre-
challenge serum IgM concentrations were similar after one
dose of both vaccine formulations but were 10-fold higher
after two doses of split virus vaccine than whole virus
vaccine (data not shown). The control mice had lower
serum IgG antibody concentrations after challenge than
vaccinated mice, five- to 22-fold after one dose and four-
to 15-fold after two doses of vaccine (Table 2).

Similar concentrations of serum IgG were observed
before and up to 7 days after challenge in mice previously
immunized with one dose of either vaccine formulation.
However, at 21 days after challenge, the IgG concentration
was two- to threefold higher in mice vaccinated with whole
virus vaccine than split virus vaccine. Mice immunized
with two doses of vaccine had higher prechallenge serum
IgG concentrations (up to 10-fold) compared with mice
vaccinated once (Table 2). After vaccination with the two
highest strengths of split virus vaccine (15 and 30 mg),
significantly higher (P< 0.05) before and after (up to
day 7) challenge serum IgG concentrations were detected
than in the corresponding whole virus vaccine group.
However, 21 days after viral challenge, mice immunized
with two doses of split virus vaccine had lower serum IgG
concentrations than the comparable whole virus vaccine
mice, probably reflecting the lower level of viral replication
observed in these animals. Two doses of split virus vaccine
formulation were effective at inducing high levels of IgG,
and similar IgG concentrations were observed after both
immunization with 30 mg, which required four injections
to deliver the correct amount of antigen instead of the
usual two injections, and 15 mg split virus vaccine. Mice
vaccinated with two doses of vaccine and with no or low
NW titres (<10) had higher serum IgG concentrations
before (70%) and 5 days (85%) after challenge than mice
with higher peak NW titres (Table 1).

After viral challenge, the IgG2a subclass dominated the
serum antibody response both in mice vaccinated with
whole virus vaccine and in unvaccinated controls
(Table 2). In contrast, mice immunized with split virus T
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vaccine had a more mixed IgG2a and IgG1 antibody
response. In these mice, the concentration of IgG2a
increased with increasing vaccine strength and was also
higher at 21 days after challenge. The concentration of
prechallenge serum IgG1 and IgG2a was higher in mice
with no or low NW titres (<10) than in mice with higher
NW titres, 343 mg/ml of IgG1 compared with 144 mg/ml
and 562 mg/ml of IgG2a compared with 332 mg/ml,
respectively.

HI and VN antibodies
Generally, the HI and VN titres increased up to 21 days
after challenge (Table 3). The HI and VN titres were much
lower in the control group than in mice vaccinated with
one or two doses of vaccine. Higher VN titres were
observed 21 days after challenge in mice vaccinated once
with split virus vaccine than mice immunized with whole
virus vaccine. Generally, mice vaccinated with two doses of
split virus vaccine had higher HI and VN titres than mice
vaccinated with whole virus vaccine at all time points, with
up to twofold higher HI and VN titres at 21 days after
challenge. Mice with no or low NW titres (<10) had
higher HI (20–200%) and VN (50–80%) titres compared
with mice with higher NW titres at all time points after
challenge (Table 1).

Discussion

Mice are widely used as a model for studying the immune
response and protective efficacy of influenza vaccines. We
have previously observed that the formulation of an influ-
enza vaccine can influence the outcome of the humoral

immune response in mice [18]. We found that whole virus
vaccine, particularly after the first dose, more rapidly
induced higher serum antibody titres (especially neutraliz-
ing antibody) and elicited higher numbers of IgG ASC in
the spleen and bone marrow. In this study, we have
extended our work to investigate the protective efficacy
of these two vaccine formulations by using a nonlethal
upper respiratory tract challenge model. We have also
examined the humoral immunological correlates that
were associated with no or very limited viral shedding
(NW titres< 10 TCID50).

In this study, mice were challenged intranasally 9 weeks
after the last dose of vaccine, a period of time more similar
to the situation normally observed in man, where several
weeks or months may pass before the vaccinee is exposed
to epidemic influenza. We found that viral challenge of
animals immunized with one dose of either vaccine for-
mulation resulted in less viral shedding (three- to ninefold)
and shortened the duration of infection by at least 2 days
compared with unvaccinated control mice. One dose of
whole virus vaccine generally resulted in less viral replica-
tion after viral challenge than one dose of split virus
vaccine, and the time course of infection was modified
resulting in a sharp reduction in viral shedding from day 3.
Although mice immunized with one dose of 30 mg of split
virus vaccine had higher level of viral replication on the
peak day, they also had a similar sharp decrease in viral
shedding from day 3. Mice immunized with two doses of
split virus vaccine (15 and 30 mg) had very high prechal-
lenge serum IgG concentrations, in addition to IgM and
HI antibodies, which appears to have significantly mod-
ified the course of infection resulting in no or very limited

Table 3 Serum haemagglutination inhibition (HI) and virus neutralization (VN) antibody titres induced after viral challenge of mice previously

vaccinated with split or whole virus vaccine

Days after challenge

One dose of vaccine Two doses of vaccine

Vaccine formulation Vaccine strength (mg) Pre-challenge 7 21 Pre-challenge 7 21

HI Split 7.5 320 538 3044 640 659 3355

15 480 640 6089 960 1685 2637

30 320 640 2918 960 1057 2918

Whole 7.5 240 659 3729 640 554 1685

15 240 729 4434 480 466 2637

30 240 466 4007 960 659 1522

Control* 6 98

VN Split 7.5 ND 153 2347 ND 364 1612

15 254 3620 472 2560

30 320 1810 508 1733

Whole 7.5 236 2153 216 613

15 226 1810 208 1336

30 174 1589 320 698

Control 21 182

ND, not done. The data are presented as the geometric mean HI and VN titres at 7 and 21 days after challenge. Prechallenge HI titres were obtained

from pooled sera from 12 mice.

*Challenge of 19 unvaccinated controls.
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viral replication. Others have also shown that parenteral
influenza vaccination results in a shorter duration of viral
shedding in both man [27] and mice [28]. In man, lower
levels of viral shedding are associated with lower grade
fever and a reduction in the severity of illness [29].

The common mucosal system allows specific IgA ASC
precursor populations induced at one site to migrate and
home to other mucosal surfaces. Importantly, cells gener-
ated systemically by parenteral vaccination also home to
the mucosa although less efficiently than mucosally gener-
ated cells [30]. Earlier we have observed that parenteral
influenza vaccination of mice resulted in high numbers of
IgG ASC and low numbers of IgM in the spleen and bone
marrow, whereas there were little or no IgA-secreting cells
[18]. In this study, we found only very low numbers of splenic
IgG and IgA ASC after infection of unvaccinated control
mice, which is probably due to the mild upper respiratory
tract infection observed in our experimental animals.
Furthermore, we found that upon viral challenge of vacci-
nated mice, the ASC response in the spleen, bone marrow and
lungs consisted mainly of IgG and IgA ASC, with low num-
bers of IgM-secreting cells. This indicates a class switch to IgA
as a result of respiratory tract infection [31].

The nasal associated lymphoid tissue (NALT) is the
inductive site of mucosal responses in the upper respiratory
tract and is also important in lymphocyte recirculation
[32, 33]. In naı̈ve mice, S-IgA and CTLs generated in
the NALT are the major effectors involved in recovery
from primary influenza infection. In the lower respiratory
tract, the bronchus-associated lymphoid tissue (BALT) is
probably the inductive site [34]. In a primary influenza
infection, IgM ASC are first detected in the lungs at day 5,
whereas IgA and IgG ASC appear later and are present for
longer periods of time [35]. This contrasts with the earlier
and transient detection of IgG and IgA ASC in the lungs
found in this study upon viral challenge of vaccinated
mice. In mice, influenza infection elicits immunological
memory which upon subsequent viral encounter results in
an earlier increase in the number of ASC and a concomi-
tant increase in antibody production leading to reduced
viral shedding from 2 to 3 days after infection [36, 37].
Further studies are needed to evaluate the role of the ASC
response in the NALT to provide a clearer picture of the
B-cell response in the upper respiratory tract after viral
challenge of parenterally vaccinated mice.

We have previously found that vaccination of mice with
whole virus vaccine, particularly after the first dose, pro-
duced higher numbers of IgG ASC in the spleen and bone
marrow than after vaccination with split virus vaccine [18].
In addition, whole virus vaccine elicited very low numbers
of IgA ASC in the bone marrow, whereas no IgA ASC was
detected after split virus vaccination (unpublished observa-
tions). Upon viral challenge of whole virus vaccinated
mice, earlier and higher numbers of IgG and IgA ASC
were detected in the spleen and bone marrow than in split

virus-vaccinated mice. This may be correlated with more
potent IgG and IgA memory responses induced by whole
virus vaccine, which was reactivated upon subsequent viral
challenge. Mice that had significantly reduced viral repli-
cation, and therefore presumably lower levels of antigenic
stimulation, had lower numbers of ASC in the spleen and
lungs, but higher numbers of IgG ASC in the bone mar-
row. B cells differentiate into short-lived or long-lived ASC
after activation by antigen in the secondary lymphoid
organs and the long-lived ASC home to the bone marrow
[38–41] where they secrete antibody for long periods of
time, contributing to the serum antibody level. We have
found that the number of bone marrow IgG ASC detected
after vaccination [18] appears to be an important indicator
of the concentration of serum IgG found after challenge
and thus of the protective efficacy of the vaccine.

Secretory IgA functions mainly in the prevention of
influenza infection in the upper respiratory tract, whereas
serum IgG is thought to be important in limiting viral
replication and therefore severity of illness, e.g. viral pneu-
monia (reviewed in [36]). Secretory IgA is locally pro-
duced (reviewed in [42]) and is actively transported
across the epithelial cells of the mucosa [1]. Parenterally
administered inactivated influenza vaccine does not effec-
tively induce mucosal IgA in an unprimed host [43]. No
IgA was detected in the NW immediately after challenge
of our vaccinated mice (data not shown), and thus IgA was
probably not involved in the reduction in viral shedding
observed in this study. IgM antibodies also have the ability
to be actively secreted across the mucosal surfaces in man
[44], but this is not unequivocally demonstrated in rodents
[45, 46]. We found only very low concentrations of vac-
cine-induced serum IgM before challenge, and thus it was
probably not essential in reducing viral shedding.

Serum IgG enters mucosal secretions by passive diffu-
sion, which occurs more effectively in the lungs than in the
nasal cavity [47]. Therefore, in the upper respiratory tract
damage to the epithelial layer during viral replication may
be important for passage of IgG across the mucosal barrier
[48]. Yoshikawa et al. [37] have in an elegant study
demonstrated that viral neutralization by IgG antibodies
alters the kinetics of influenza infection. We have shown
here that high concentrations of vaccine-induced influenza-
specific serum IgG were important in significantly reducing
viral shedding but did not completely prevent infection.
This has been confirmed by passive immunization where
IgG antibodies have been shown to substantially reduce
viral shedding in an upper respiratory tract challenge
model but not inhibit infection [3, 26, 49, 50]. It was
also concluded in a recent study that following vaccination
with as little as 0.07mg of influenza HA subcutaneously,
mice were protected against illness and that this was corre-
lated with systemic IgG antibody [51].

In man, parenteral vaccination generally induces high
concentrations of serum IgG and is effective at reducing
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morbidity and mortality in years of close antigenic match
between vaccine viruses and circulating strains. In contrast,
S-IgA has been shown to be more cross-reactive with
drifted strains [52] and an ideal influenza vaccine would
also benefit from the induction of S-IgA.

Influenza infection induces primarily an IgG2a response
as observed in this study and previous study [53], and
higher prechallenge serum IgG2a concentrations were
found in mice with no or very low levels of viral shedding.
The IgG2a subclass is an efficient activator of complement
[54], and it participates in the antibody-dependent cyto-
toxic response [55]. These two functions of IgG antibodies
have previously been shown to be important in preventing
and clearing influenza virus infection [55]. Mice with
limited viral replication also had higher concentrations of
IgG1 antibodies, and this antibody class has been shown to
be effective in neutralizing virus [56]. Therefore, it appears
that the subclass of IgG was not so important as the
absolute concentration of IgG in reducing viral shedding.
We have earlier found that whole virus vaccine elicited a
higher serum IgG2a/IgG1 ratio than split virus vaccine
[18]. A high ratio of serum IgG2a/IgG1 may indicate a
Th1 response, which is characterized by an effective cell-
mediated response [57–59] including IFN-g production
which is important in blocking viral replication.
Interestingly, the Th profile, shown by the IgG2a/IgG1
ratio following vaccination, appears to some degree to
influence the subsequent Th response upon viral challenge.
We have previously speculated that whole virus vaccine
may produce a more effective cellular response than split
virus vaccine. If Th1 memory cells and CTLs are able to
generate effective cellular responses in the respiratory tract,
whole virus vaccine may be a more appropriate vaccine in
combating severe influenza infection.

In conclusion, this study shows that the presence of
vaccine induced IgG was an important factor in reducing
viral replication and shortening the course of infection upon
viral challenge. One dose of whole virus vaccine was more
immunogenic and more effective in limiting viral replica-
tion than one dose of split virus vaccine. Two doses of split
virus vaccine, particularly the two highest strengths, resulted
in high serum IgG concentrations which upon viral chal-
lenge appeared to be important in significantly limiting viral
shedding in the upper respiratory tract. However, parenteral
vaccination did not generally produce sterilizing immunity
to prevent infection. In man, limited viral replication in
vaccinees upon subsequent influenza infection may in fact
be beneficial in inducing both mucosal and cellular
responses to complement the vaccine-induced immunity.
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