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In this supplement, we show how the full set of cellular dynamics shown in Figure 1A in the main text12

can be simplified to Eqns 1-6 in the main text. Following [77-80], we describe cell dynamics using13

reaction kinetics, from which we derive ordinary differential equations that characterize the population14

dynamics of cell numbers. In [15], we gave a simplified stochastic version of the reaction kinetics that15

follow; we use a deterministic framework here because of theadditional complexities we investigate. We16

first give the equations without feedback control and then explain the nature of the feedback control.17

Stem Cells and Multipotent Progenitor Cells18

We letS andMPPj denote stem cell and thejth (j = 0, 1, 2, ...N ) state of multipotent progenitor cells.19
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In the absence of feedback control, the reactions characterizing the dynamics of these cells are20

S
rs
−→ 2S (1)

S
rp
−→ S +MPP0 (2)

S
rp′
−−→ 2 ·MPP0 (3)

MPPj

rj
−→ MPPj+1 (4)

MPPj

λj

−→ 2 ·MPPj (5)

We assume that MPP proliferation declines as the terminal differentiation is approached, which means21

thatλj declines asj increases.22

Common Lymphoid Progenitors and Common Myleoid Progenitors23

After theN th intermediate multipotent progenitor state, a MPP cell differentiates into a Common Lym-24

phoid Progenitor (CLP) or Common Myeloid Progenitor (CMP) cell. Suppressing the dependence upon25

the concentrations of fully differentiated lymphoid and myeloid cells, we let0 ≤ ρ ≤ 1 denote the26

fraction of MPP differentiations that follow the CLP route then the reaction kinetics are27

MPPN

ρrd,MPP

−−−−−−→ CLP (6)

MPPN

(1−ρ)rd,MPP
−−−−−−−−−→ CMP (7)

Fully Differentiated Cells28

We consider the following simplified system of fully differentiated cells: 1) fully differentiated lymphoid29

cells are B cells (B), T cells (T), and natural killer cells (NK); 2) fully differentiated megakaryocytes30

are:erythrocytes (E) and platelets (P); and 3) fully differentiated granulocytes (G) combine neutrophils,31

esoinophils, basophils, mast cells, and macrophages. It isclear how to remove the simplifications by32

expanding the granulocyte class if one wishes complexity before simplicity.33
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With obvious interpretation of the new parameters, we write34

CLP
ρBrCLP
−−−−−→ B (8)

CLP
ρNKrCLP
−−−−−−→ NK (9)

CLP
(1−ρB−ρNK)rCLP
−−−−−−−−−−−−→ T (10)

CMP
ρErCMP
−−−−−−→ E (11)

CMP
ρGrCMP
−−−−−−→ G (12)

CMP
(1−ρE−ρG)rCMP
−−−−−−−−−−−→ P (13)

The total number of fully differentiated lymphoid cells, denoted byL, is the sum of the number of B, T,35

and NK cells and the total number of myeloid cells, denoted byM is the sumer of the number of E, P,36

and G cells. In evolutionary ecology, such sums would be called trophic species, since although there are37

differences in the cell (species) populations, they play the same general role in the ecosystem (organism).38

Feedback Control39

We do not explicitly model the cytokine-based feedback between the fully differentiated cells and the40

stem cells, nor the feedback within the niche. Instead, we follow [27] and modify the reaction rates, so41

that instead of being constant, they depend on the levels of fully differentiated products.42

We assume that the niche can support at mostK stem cells and that in absence of all other feedback,43

the dynamics in the niche follow Gompertzian kinetics (justified in [15]). In addition to the within-44

niche feedback control, we letΦs(L,M) denote the feedback control from the fully differentiated cells45

[using the short-handL,M to avoid writing 6 arguments], so thatrs in Eqn 1 is replaced byrs · S ·46

log(K/s) · Φs(L,M). Similarly rp in Eqn 2 is replaced byrp · Φs(L,M). We assume that there is47

additional feedback control on asymmetric differentiation of stem cells (Eqn 3) so thatrp′ is replaced by48

rp′Φs(L,M)Φp′(L,M). We assume that feedback control acts on each stage of MPP development so49

that each of theλj , rj are replaced byλjΦp(L,M). andrjΦp(L,M).50

We will describe the specific form of the feedback functions after giving the fully general reaction51

rate equations.52
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The Reaction Rate Equations53

We let µi denote the rate of mortality of cell typei (if fully developed cells also proliferate, we can54

capture that by settingµi < 0) and [ ] concentration of cells. The dynamics of the full system is then55

d[S]

dt
= [S] · log(K/[S])(rs − rp′Φp′([L], [M ]))Φs([L], [M ])− µs[S] (14)

d[MPP0]

dt
= [S] · log(K/[S])(rp + 2rp′Φp′([L], [M ]))Φs([L], [M ]) (15)

+(λ0 − r0)Φp([L], [M ])[MPP0]− µ0[MPP0]

d[MPPj ]

dt
= rj−1Φp(L,M)[MPPj−1] (16)

+(λj − rj)Φp(L,M)[MPPj]− µj [MPPj ], j = 1, 2, ..N − 1

d[MPPN ]

dt
= rN−1Φp(L,M)[MPPN−1] (17)

+(λN − rd,MPP )Φp(L,M)[MPPN ]− µN [MPPN ]

d[CLP ]

dt
= rd,MPPΦp(L,M)ρ([L], [M ])[MPPN ]− rCLP [CLP ]− µCLP [CLP ] (18)

d[CMP ]

dt
= rd,MPPΦp(L,M)(1− ρ([L], [M)])[MPPN ] (19)

−rCMP [CMP ]− µCMP [CMP ]

d[B]

dt
= rCLPρB([B], [NK], [T ])[CLP ]− µB[B] (20)

d[NK]

dt
= rCLPρNK([B], [NK], [T ])[CLP ]− µNK [NK] (21)

d[T ]

dt
= rCLP (1 − ρB([B], [NK], [T ])− ρNK([B], [NK], [T ]))[CLP ]− µT [T ] (22)

d[E]

dt
= rCMP ρE([E], [G], [P ])[CMP ] − µE [E] (23)

d[G]

dt
= rCMP ρG([E], [G], [P ])[CMP ]− µG[G] (24)

d[P ]

dt
= rCMP (1 − ρE([E], [G], [P ])− ρG([E], [G], [P ]))[CMP ]− µP [P ] (25)

Rapid Development and Differentiation of Progenitor Cellsand Lumped Myeloid56

and Lymphoid Cells57

If the development rate of MPP cells is fast (either because the reactions are fast orN is small), we can58

use a quasi-steady state analysis as is commonly done for Michaelis-Menten kinetics [81]. We then write59
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Eqn 16 as60

1

rj

d[MPPj ]

dt
= Φp(L,M)[MPPj−1] (26)

+[(
λj

rj
− 1)Φp(L,M)−

µj

rj
][MPPj ]

If we assume that the left-hand side of Eqn 26 andµj

rj
are much less than 1, then Eqn 26 simplifies to61

[MPPj] =
rj−1

rj
(1 −

λj

rj
)−1[MPPj−1] (27)

Applying a similar analysis to Eqn 17 leads to62

[MPPN ] =
rN−1

rd
· (1 −

λN

rd
)−1

N−1∏

j=1

rj−1

rj
(1−

λj

rj
)−1[MPP0] (28)

which we write as63

[MPPN ] = ΩN [MPP0] (29)

with the obvious definition ofΩN . Eqns 18 and 19 become64

d[CLP ]

dt
= rd,MPPΦp(L,M)ρ([L], [M ])ΩN [MPP0]− rCLP [CLP ]− µCLP [CLP ] (30)

d[CMP ]

dt
= rd,MPPΦp(L,M)(1− ρ([L], [M)])ΩN [MPP0] (31)

−rCMP [CMP ]− µCMP [CMP ]

(32)

We now denote progenitors by MPP, lump B, NK, and T cells into alymphoid class, with concentration65

denoted by[L] and E, G, and P cells into a myeloid class, with concentrationdenoted by[M ], equations66

14-25 simplify to67
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d[S]

dt
= [S] · log(K/[S])(rs − rp′Φp′([L], [M ]))Φs([L], [M ])− µs[S] (33)

d[MPP ]

dt
= [S] · log(K/[S])(rp + 2rp′Φp′([L], [M ]))Φs([L], [M ]) (34)

+(λ− rd,MPP )Φp([L], [M ])[MPP ]− µp[MPP ]

d[CLP ]

dt
= rd,MPPΦp(L,M)ρ([L], [M ])ΩN [MPP ] (35)

−rCLP [CLP ]− µCLP [CLP ]

d[CMP ]

dt
= rd,MPPΦp(L,M)(1− ρ([L], [M)])ΩN [MPP ] (36)

−rCMP [CMP ]− µCMP [CMP ]

d[L]

dt
= rCLP [CLP ] + (rl − µl)[L] (37)

d[M ]

dt
= rCMP [CMP ] + (rm − µm)[M ]. (38)

It is these equations that form the bases of the analysis in the main text, and complement the variety68

of other models of the dynamics of the HSC system (Supplementary Table 1)69
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Supplementary Table S1 An Overview of Some Key Models Applied to HSCs and Their De-70

scendants71

Source Kind of Model Focus

(65) Till et al 1964 Branching Process Origins of Variability

(82) Vogel et al 1969 Stochastic branching processes Development of

erythroblastic colonies

(83) Mackey 1978 Nonlinear ordinary differential Aplasticanemia

equations for cycling cells

(76) Novak and Necas 1994 Steady state algebraic analysis Lineage proliferation

in the steady state

(84) Abkowitz et al 1996 Markov Birth and Death Process Evidence that hematopoiesis

is stochastic

(85) Haurie et al 1998 Delay differential equations Originsof periodic hematological

disorders

(29) Abkowtiz et al 2000 Stochastic comparent model Patterns of individual

variation following transplants

(86) Bernard et al 2004 Nonlinear ordinary differential equations Origins of oscillatory WBC diseases

(87) Colijn and Mackey 2005 Delay-differential equations Oscillating leukemia

(52) Dingli and Pacheco 2006 Allometric scaling methods Estimating the size of the

active HSC pool

72
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