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Additional File 1 — Supplementary Material

In this supplement, we show how the full set of cellular dyi@nshown in Figure 1A in the main text
can be simplified to Eqns 1-6 in the main text. Following [1];8ve describe cell dynamics using
reaction kinetics, from which we derive ordinary differ@hequations that characterize the population
dynamics of cell numbers. In [15], we gave a simplified staticaversion of the reaction kinetics that
follow; we use a deterministic framework here because oattditional complexities we investigate. We

first give the equations without feedback control and thgsia® the nature of the feedback control.

Stem Cells and Multipotent Progenitor Cells

We letS and M P P; denote stem cell and thé" (j = 0, 1,2, ...N) state of multipotent progenitor cells.
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In the absence of feedback control, the reactions charzicigthe dynamics of these cells are

s 5 28 (1)

s % S+ MPPR 2)

s s 2.MPPR ©)
MPP; . MPP, (4)
MpPP; Yy 2. MPP )

We assume that MPP proliferation declines as the termirfifi@rdntiation is approached, which means

that\; declines ag increases.

Common Lymphoid Progenitors and Common Myleoid Progenitos

After the N*" intermediate multipotent progenitor state, a MPP celledéhtiates into a Common Lym-
phoid Progenitor (CLP) or Common Myeloid Progenitor (CMB)N.cSuppressing the dependence upon
the concentrations of fully differentiated lymphoid and etoid cells, we leth < p < 1 denote the

fraction of MPP differentiations that follow the CLP routesh the reaction kinetics are

]VIPPN PTd,MPP CLP (6)
Mppy  LZAramers o onrp @)

Fully Differentiated Cells

We consider the following simplified system of fully differéated cells: 1) fully differentiated lymphoid
cells are B cells (B), T cells (T), and natural killer cellsK 2) fully differentiated megakaryocytes
are:erythrocytes (E) and platelets (P); and 3) fully défgiated granulocytes (G) combine neutrophils,
esoinophils, basophils, mast cells, and macrophages.cle@ how to remove the simplifications by

expanding the granulocyte class if one wishes complexifyreesimplicity.
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With obvious interpretation of the new parameters, we write

cLp Bttty B (8)

cLp PEETCLR,  NK (9)
CLP (1—pB—pNK)TrCcLP T (10)
cmMp  2ZEEME, O p (11)

cmp fLefeMr, @ (12)

cmp oeezrelrome g (13)

The total number of fully differentiated lymphoid cells,raeed byL, is the sum of the number of B, T,
and NK cells and the total number of myeloid cells, denotedbys the sumer of the number of E, P,
and G cells. In evolutionary ecology, such sums would beddtophic species, since although there are

differences in the cell (species) populations, they playsdime general role in the ecosystem (organism).

Feedback Control

We do not explicitly model the cytokine-based feedback leetwthe fully differentiated cells and the
stem cells, nor the feedback within the niche. Instead, Wevid27] and modify the reaction rates, so
that instead of being constant, they depend on the leveldlgfdifferentiated products.

We assume that the niche can support at nidstem cells and that in absence of all other feedback,
the dynamics in the niche follow Gompertzian kinetics (fiesd in [15]). In addition to the within-
niche feedback control, we I€t;(L, M) denote the feedback control from the fully differentiateti
[using the short-hand,, M to avoid writing 6 arguments], so that in Egn 1 is replaced by, - S -
log(K/s) - ®s(L, M). Similarly r, in Eqn 2 is replaced by, - ®;(L, M). We assume that there is
additional feedback control on asymmetric differentiatxd stem cells (Eqn 3) so tha} is replaced by
rp®s(L, M)®, (L, M). We assume that feedback control acts on each stage of MRbgewent so
that each of the\;, r; are replaced by,;®,(L, M). andr;®,(L, M).

We will describe the specific form of the feedback functiofisragiving the fully general reaction

rate equations.



s The Reaction Rate Equations

s« We let u; denote the rate of mortality of cell type(if fully developed cells also proliferate, we can

s capture that by setting; < 0) and [ ] concentration of cells. The dynamics of the full systis then

A8 190 10 o</ 151) s — oy (L] [MD)®(L] [M)) — S (14)
AETOL 18] b0/ 181)(ry + 21y (121, 1), (21, [M]) (15)
+(Ao — 0)@y (L], [M))[MPPy] — io[ MPP)
WP~ a1 DM PP, ] (19)
+(Aj = 75)®p(L, M)[MPP;] = p;[IMPP;,j =1,2,.N =1
AMPINL @y (L MM PPy ] (an
+(AN = Ta,mpp)®p(L, M)[M PPN] — un[MPPy]
d[(/;fp L pp®y (L, M)([L], [M])MPPy] - ro1p[CLP] — porplCLP]  (18)
ACHEL g pp @y (LML~ p(IL] M) PPy (19)
—remp|CMP] — penp[CM P
B rereps((BlINKL IT)ICLP] - up[B] (20)
ANEL — responx((B INK] [T)ICLP] ~ pk[NK] (21)
W~ vern(1 - pp(UB) VKL IT) - ponsc([BL INK] [T))CLP] - prT] (22)
A rersppe(E)[G).[PICMP] — pilE] (23)
A rerppol1E)1G] [PICMP) - ngld] (24)
A reap(L— p((E1.[GL[P) ~ p6(E). (G [P)CMP) — uplP]  (25)

s Rapid Development and Differentiation of Progenitor Cellsand Lumped Myeloid

- and Lymphoid Cells

ss If the development rate of MPP cells is fast (either becalisedactions are fast @¥ is small), we can

s USe aquasi-steady state analysis as is commonly done fhiaklis-Menten kinetics [81]. We then write
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Egn 16 as

AL~ (M PP 0
Ty
+(2E = 1),(L.21) - Ky pp
Ty "i

If we assume that the left-hand side of Eqn 26 érﬁfl(hre much less than 1, then Egn 26 simplifies to

PP =" - M) e @7)
Tj Tj
Applying a similar analysis to Eqn 17 leads to
r A Nty A
[MPPy] = =L . (1 - Z5)! L1 - 2" MPR) (28)
Td Td =1 Ty T
which we write as
[MPPy] = Qn[MPP)] (29)

with the obvious definition of2 . Eqns 18 and 19 become

d[(iip] = ramppr®,(L, M)p([L],[M])QN[MPPy| — rcrp[CLP] — pcrp[CLP] (30)
AOMEL o ppy (L)L = p([LL, M) M PR R

—rcmp|CMP] — o p[CMP]

(32)

We now denote progenitors by MPP, lump B, NK, and T cells intynaphoid class, with concentration
denoted byZ] and E, G, and P cells into a myeloid class, with concentratenoted by /], equations

14-25 simplify to



U5 1) tog /1S . = 1 @ (L MID)OLEL M — 8] (@9)
AMEEL 5] 1og(K/[8)(ry + 2y By (L), [M])) (L] [M) (34
HO = raarpe) (L) (M) PP] = 1, [MPP)
AOLPL vy pi (L )L, M) (M PP @)
—rcpp|CLP] — perp(CLP]
AOMPL s sepp (L M)~ (L], (M) (MPP) o)
—remp[CMP] = pcyp(CMP]
A e nlCLP)+ (- m)lL) @7
A s b [CMP)+ (1 = )] @39)
«  ltis these equations that form the bases of the analysissimein text, and complement the variety

s Of other models of the dynamics of the HSC system (Suppleangiiable 1)
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Supplementary Table S1 An Overview of Some Key Models Applietto HSCs and Their De-

scendants

Source Kind of Model

Focus

(65) Till et al 1964 Branching Process

(82) Vogel et al 1969 Stochastic branching processes
(83) Mackey 1978 Nonlinear ordinary differential
equations for cycling cells

(76) Novak and Necas 1994 Steady state algebraic analysis

(84) Abkowitz et al 1996 Markov Birth and Death Process

(85) Haurie et al 1998 Delay differential equations

(29) Abkowtiz et al 2000 Stochastic comparent model
(86) Bernard et al 2004
(87) Colijn and Mackey 2005 Delay-differential equations

(52) Dingli and Pacheco 2006 Allometric scaling methods

Nonlinear ordinary differential atjons

Origins of Varialilit
Dewedat of
erythroblastic colonies

Aplasticemia

neagje proliferation
in the steady state
Eniethat hematopoiesis
is stochastic
Origifigeriodic hematological
disorders
Pastefindividual
variation following transplants
Origins of oscillatory WBC diseases
scillating leukemia
ink3sting the size of the
active HSC pool



