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Abstract
Background: The molecular changes in vivo in acute myeloid leukemia cells early after start of conventional genotoxic
chemotherapy are incompletely understood, and it is not known if early molecular modulations reflect clinical response.

Methods: The gene expression was examined by whole genome 44 k oligo microarrays and 12 k cDNA microarrays in
peripheral blood leukocytes collected from seven leukemia patients before treatment, 2–4 h and 18–24 h after start of
chemotherapy and validated by real-time quantitative PCR. Statistically significantly upregulated genes were classified
using gene ontology (GO) terms. Parallel samples were examined by flow cytometry for apoptosis by annexin V-binding
and the expression of selected proteins were confirmed by immunoblotting.

Results: Significant differential modulation of 151 genes were found at 4 h after start of induction therapy with cytarabine
and anthracycline, including significant overexpression of 31 genes associated with p53 regulation. Within 4 h of
chemotherapy the BCL2/BAX and BCL2/PUMA ratio were attenuated in proapoptotic direction. FLT3 mutations
indicated that non-responders (5/7 patients, 8 versus 49 months survival) are characterized by a unique gene response
profile before and at 4 h. At 18–24 h after chemotherapy, the gene expression of p53 target genes was attenuated, while
genes involved in chemoresistance, cytarabine detoxification, chemokine networks and T cell receptor were prominent.
No signs of apoptosis were observed in the collected cells, suggesting the treated patients as a physiological source of
pre-apoptotic cells.

Conclusion: Pre-apoptotic gene expression can be monitored within hours after start of chemotherapy in patients with
acute myeloid leukemia, and may be useful in future determination of therapy responders. The low number of patients
and the heterogeneity of acute myeloid leukemia limited the identification of gene expression predictive of therapy
response. Therapy-induced gene expression reflects the complex biological processes involved in clinical cancer cell
eradication and should be explored for future enhancement of therapy.
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Background
Therapy with anthracycline and cytarabine results in mod-
ulation of a wide range of proteins including massive p53
protein activation followed by cell cycle arrest and apop-
tosis [1-3]. The p53 transcription factor transactivates a
wide range of pro-apoptotic genes [4,5] involved in cancer
cell elimination, and an intact p53 gene seems essential
for therapeutic response in AML [6]. Most of the molecu-
lar mechanisms behind chemotherapy are elucidated in
experimental systems and do not reflect tissue responses
and the complex cell-cell interactions that are present in
vivo [7]. As increasing evidence is proposing tumor-host
mechanisms as important for effective chemotherapy [8],
there is an immediate need to investigate these issues in
vivo in human cancer.

Clinical response to chemotherapy and karyotype analysis
of AML cells provide prognostic information about risk
for relapse [9]. Gene expression analysis may provide
important prognostic information in the 50% of patients
with standard risk for relapse due to normal karyotype
[10,11]. Recent studies of mutations or signaling response
in AML have also indicated potential for risk stratification
[12-14]. All these studies are based on bulk cell analysis,
and propose that analysis of patient cells under DNA
damaging therapy may provide biological important
information about the therapy response. Common for
most previous studies of chemotherapy induced gene
expression is the time of sample collection at 24 h and
later after start of chemotherapy [15,16]. We hypothesize
that earlier sampling and analysis of gene expression
could provide us with information about therapy
responses and early resistance mechanisms against inten-
sive chemotherapy.

In the present work we used high-density oligonucleotide
microarrays to monitor therapy-induced changes of gene
expression of AML blasts in seven de novo AML patients
before, at 2–4 h and at 18–24 h after start of intensive
chemotherapy infusion. There was no detectable decline
in viability in the sampled cells. Early gene expression was
dominated by p53-associated genes, while the later gene
expression was dominated by genes involved in cytarab-
ine detoxification, chemoresistance and cell-cell interac-
tions.

Methods
Preparation of AML blasts
The study was approved by the local Ethics Committee
(Regional komité for medisinsk og helsefaglig forskning-
setikk, Vest-Norge; REK Vest) affiliated with the University
of Bergen, and samples were collected after signed written
informed consent. During the time period 2001–2003 we
consecutively collected peripheral blood AML blasts from
7 patients with WBC counts above 1.5 × 109/L eligible for

treatment with chemotherapy. TP53 mutations are in gen-
eral infrequent in AML [6] as confirmed in our previously
described patient material where only two of 39 patients
comprised mutated TP53 [17]. This analysis included
patients 4 and 7 (Table 1) who were wild type for TP53.
The patients were treated with intravenous infusion of
idarubicine (12 mg/m2 during 30 min on days 1–3) and
cytarabine (200 mg/m2 daily as continuous infusion on
days 1–7). Peripheral blood was collected by antecubital
vein puncture. Cells were prepared by density gradient
separation (Ficoll-Hypaque; NyCoMed, Oslo, Norway;
specific density 1.077). The percentage of blasts exceeded
95% for all patients [1]. A total of 20–40 million cells
were pelleted and resuspended in Trizol (Invitrogen
Corp., Carlsbad, CA). Cryopreserved cells from patients 3
and 8 (Table 1) sampled at diagnosis were exposed to 1.6
μM or 8.0 μM daunorubicin. (Pfizer Inc., New York, USA)
in vitro (4 hours, 37°C, 5% CO2, humidified atmosphere,
in serumfree medium (Stemspan H3000, StemCell Tech-
nologies, Vancouver, BC, Canada). The control cells were
cultured with vehicle (NaCl 0.9%) and all cells were sam-
pled at the 4 hours time point, before the appearance of
any morphological signs (bright field and Hoechst epiflu-
orescence microscopy) of apoptosis. Patients 1, 2 and 3
have previously been analyzed for gene expression (cDNA
array only) after 4 h and presented in reference [1]. The
clinical and biological characteristics of the patients are
presented in Additional File 1.

Microarray analysis
The cDNA microarray Agilent Human clone 1_clonesetB
(Agilent Technologies, Inc., Palo Alto, CA) containing
12,814 unique clones, sourced from Incyte's UniGene 1
and Human Drug Target DNA clone sets http://
www.ncbi.nlm.nih.gov/projects/geo/ was used for partial
validation. Poly(A)RNA purification, cRNA synthesis,
aminoallyl cDNA synthesis and hybridization were per-
formed as previously described [18]. The Agilent Human
Whole Genome Oligo Microarray (Agilent Technologies,
Inc., Palo Alto, CA) was used to analyze samples. RNA was
isolated from AML blasts and purification of poly(A)RNA
was performed as described previously [18]. Aminoallyl-
U (aa-UTP from Ambion, Austin, TX) was incorporated
into cRNA followed by cross-coupling of Cy5- and Cy3 by
means of reactive Cy-NHS compounds (Amersham Bio-
sciences AB, Uppsala, Sweden) in order to generate fluor-
ochrome labeled targets for DNA microarray analysis.
Stratagene Universal RNA was used for reference Cy3-aa-
cRNA preparation (Stratagene, La Jolla, CA). The hybridi-
zation procedure was done according to the Agilent pro-
tocols, except for a more stringent wash (0.1 × SSC at
35°C for 10 minutes for the Oligo Array). The oligonucle-
otide microarrays were scanned (Agilent Scanner
G2505B) and features automatically extracted using Agi-
lent Feature Extraction v.7.5. Annotated microarray data
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were uploaded in the BASE database and formatted and
exported to ArrayExpress at the European Bioinformatics
Institute http://www.ebi.ac.uk/arrayexpress (Accession
number: E-TABM-632)) in agreement with the MIAME
guidelines.

Analysis of microarray gene expression data
Agilent's background subtracted signals (gIsWellAbove
BG; rIsWellAboveBG) were used to filter spots lower than
background intensity in both channels and intra-array
normalization was carried out using lowess [19]. Genes
with more than 30% missing values were removed and
the remaining missing values were estimated using LSim-
pute [20]. The samples were divided into three groups:
before, early (2–4 hours) and late (18–24 hours) after
start of treatment and the mRNA expression levels of the
treated samples were compared to the untreated ones. The
Rank product method [21] was used to identify genes con-
sistently up- or down-regulated. Gene ontology (GO)
analysis was applied for functional studies using iterative
group analysis (iGA) [22] utilizing the Source database
http://source.stanford.edu[23]. False discovery rates for
GO-terms were estimated by performing 100 permuta-
tions.

In the ex vivo experiment cell samples were treated with
different doses (0, 1.6, and 8 μM) of anthracycline (dau-
norubicin). The untreated sample was kept as a control.
Subsequently, the mRNA expression levels of the
untreated sample were compared to the treated. To study
if there was a general trend of up- or downregulation of
genes in the treated compared to the untreated sample,
the difference in expression levels was calculated for each
gene. The genes were ranked according to expression dif-
ference for each of the three comparisons, e.g. three differ-
ent rankings of the genes were produced, and these
rankings were analyzed together using the rank product
test [21]. The genes were then ordered by p-value for up-
and downregulation in the treated samples relative to the
untreated sample. On top of the rank product derived
gene lists, we performed an iterative group analysis using
GO terms as groups [22].

The gene expression profile of patients with FLT3 length
mutation/internal tandem mutation (ITD) (2/7) was ana-
lyzed against patients harboring FLT3 wildtype (5/7)
using Significant Analysis of Microarray (SAM) and Anal-
ysis of Variance (ANOVA) performed in J-Express http://
www.molmine.com[24].

Gene expression data validation using real time 
quantitative PCR
To confirm the observed differential gene expressions, we
also performed qPCR by using TaqMan Low Density
Arrays (T-LDA) (Applied Biosystems). We validated 22

upregulated genes and 8 downregulated genes of AML
blasts sampled at start and at 4 h after start of treatment.
The results of the T-LDA expression analysis were con-
cordant with the Agilent cDNA and the oligo DNA micro-
array analyses (Additional File 2). The high reliability is
reflected by correlation coefficients that varied from 0.72
to 0.96 between high density oligonucleotide microarrays
and T-LDA values. The gene expression ratios of BCL2/
BAX and BCL2/BCC3 were normalized, and p-value deter-
mined by a two-tailed Students t-test.

Measurement of apoptosis
Apoptosis was determined in parallel samples for dual
color flow cytometry with Annexin-V FITC and propidium
iodide (APOTEST-FITC, Nexin Research, Kattendijke, The
Netherlands), as described in Abrahamsen et al. 2002
[25]. Cell size was estimated in a hematology analyzer
Abbott CELL-DYN 4000, and nuclear morphology was
examined with epifluorescence microscopy analysis after
DNA specific staining with bisbenzimide 33342.

Protein purification, gel electrophoresis and 
immunoblotting
Material for protein analysis was collected according to
standard procedures [1]. The p53 protein was detected
using Bp53-12 monoclonal antibody, BAX protein was
detected using primary 2D2 antibody, BCL-2 protein was
detected using primary ΔC21 antibody and procaspase-3
protein was detected using primary E-8 antibody (Santa
Cruz Biotechnology, Santa Cruz, CA) and actin protein
was detected using primary AC-15 antibody (Abcam,
Cambridge, UK).

Results
Pre-apoptotic AML cells in peripheral circulation were 
without signs of apoptosis during the first 24 hours of 
chemotherapy
In this study we examined seven AML patients before (-30
min), at 2–4 h and at 18–24 h after start of first day stand-
ard induction therapy (for patient characteristics, see
Additional File 1) [26], consisting of a 30 min infusion of
anthracycline and a 24 h continuous infusion of cytarab-
ine started concomitantly. According to our local guide-
lines we preferred use of idarubicin instead of
daunorubicin in patients below 60 years of age. There is
limited documentation that idarubicin has therapeutic
advantages over daunorubicin, and we regard these
anthracyclines as equal in therapy of AML. It has previ-
ously been reported that apoptotic cells are absent in bone
marrow and peripheral blood during intensive chemo-
therapy of AML for at least 24 h, even if the cell numbers
in peripheral circulation start to decline [27,28]. Based on
these reports and our own observations (Figure 1) we
assumed that AML blasts from patients early after chemo-
therapy represent pre-apoptotic AML cells. Two AML
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Figure 1 (see legend on next page)
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patients outside this gene expression analysis demon-
strated unaltered white blood cell (WBC) and lymphocyte
counts or a 50% reduction in WBC and 20% reduction in
lymphocytes at 24 h, respectively. Patient 1 and 4 (Addi-
tional File 1) had 12 and 23% reduction in WBC, respec-
tively, 24 h after start of chemotherapy. We therefore
conclude that the fraction of cancer cells at 4 and 18 h
after start of chemotherapy was nearly similar. Western
blot analysis of two samples (P3 and P4) detected a treat-
ment related induction of BAX protein but no cleavage
product of procaspase-3 was observed 2 to 18 h after start
of therapy (Figure 1A). As expected no apoptosis was
observed with flow cytometric analysis of annexin V FITC
and propidium iodide staining (P1, P3) during the first 6
hours of treatment (Figure 1B), and examination of AML
blasts for cell shrinkage or changes in nuclear morphology
within 24 h after start of treatment revealed no signs of
apoptosis (data not shown).

FLT3 mutation indicated low survival and a blunted 
therapy-induced gene expression
FLT3 length mutation/internal tandem mutation (ITD) is
strongly associated with disease relapse and low overall
survival [14]. We compared AML patients (Additional File
1) with wild type (2/7, mean survival 49 months, 28 and
>69 months respectively) and ITD FLT3 (5/7, mean sur-
vival 8 months, range 0–28), and found that at pretreat-
ment only 11 genes differed with false discovery rate of
zero (0). This included a 12-fold increase in HOXA5 and
a 24-fold increase in azurocidin. Four hours after start of
chemotherapy, 162 genes were modulated with false dis-
covery rate of zero (0), but only 43 of these genes were
upregulated. This suggests that treated patients with wild
type FLT3 activate genes involved in gene transcription
more vividly compared to patients with FLT3 ITD-muta-
tion. The low number of patients and the heterogeneity in
AML implicate that these observations need to be
explored in a larger cohort of AML patients.

Identification of p53-associated gene expression in AML 
cells after induction therapy with anthracycline and 
cytarabine
Samples from all treated patients were analyzed using Agi-
lent 44 k oligonucleotide microarrays and comparing
gene expression before and after induction therapy with
anthracycline and cytarabine. 113 upregulated genes (23
of unknown function) at early time points (2 – 4 hours)
and 108 genes at late time points (18 – 24 hours) per-
formed a minimum fold change of 1.6 and false discovery
rate (FDR) below 11%. Downregulation was likewise
observed for 38 genes at early and 17 genes at late time
points after treatment. Several of the highly overexpressed
genes did not have known function and performing
BLAST analysis revealed that several of them contained
Alu-like sequences. The downregulated genes showed low
fold changes ranging from 1.6 to 2.0. The 113 upregulated
genes (1.7 – 8.1 fold) in AML blasts 2–4 h after induction
chemotherapy included 31 genes related to the tumor
suppressor p53 (Additional File 2). The mRNA levels of
most of these genes except for BAX decreased at the end of
the first cytarabine infusion, 18–24 h after start of treat-
ment. The dendrogram and heat map presentations dem-
onstrate the consistently upregulated p53 related genes
during treatment (Figure 1C and 1D). Genes induced dur-
ing the first hours of treatment also included the prolifer-
ative constellation of ATF3 (activating transcription factor
3), CREB1 (cAMP responsive element binding protein 1),
PCNA (proliferating cell nuclear antigen) and EP400 (E1A
binding protein p400). An 8-fold overexpression of the
NOTCH modifier lunatic fringe (Drosophila) homolog,
LNGF, together with the NOTCH homolog 2 N-terminal
like protein, NOTCH2NL, was also observed.

Clinically relevant concentrations of anthracyclines
induce apoptosis within hours after start of treatment ex
vivo [3]. AML cells obtained from one patient (P8) prior to
chemotherapy were also treated ex vivo with 8.0 μM dau-

DNA microarray analysis in AML cells during in vivo chemotherapyFigure 1 (see previous page)
DNA microarray analysis in AML cells during in vivo chemotherapy. AML blast viability was investigated in four 
patients sampled during in vivo chemotherapy. The expression of apoptosis related proteins were detected by Western blotting 
(P3, P4) (A). Expression of the pro-apoptotic protein BAX increased during therapy, suggesting initiation of cell death. How-
ever, no cleavage of the executioner protease pro-caspase-3 could be detected and this is in agreement with the flowcytomet-
ric analysis in (B). Apoptosis was measured using flowcytometric detection of Annexin-V FITC and propidium iodide staining 
(P1, P3) as described in Methods. No signs of apoptosis could be detected in the cells during the first six hours of therapy in 
either patient (B). Similar viability (~80%) was present at 18 h determined by analysis of nuclear morphology and cell scattering 
(data not shown). Early changes in gene expression of p53-associated genes were detected already 2–4 hours following induc-
tion therapy (C). The profiles of 27 of the 31 p53 associated genes are shown. Late response gene expression of p53-inducible 
genes was detected 18–24 hours after treatment induction (D). For abbreviations see Additional File 2. The dendrogram and 
heat maps show a Eucledian two-way cluster analysis based on the most consistently upregulated genes. Thus, genes that clus-
ter together have a similar expression profile as a response to induction therapy. In the diagram the relative mRNA levels in 
the blasts before therapy are colored in green, and upregulated genes following standard chemotherapy treatment are shown 
in violet according to the color scale below.
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norubicin for 4 h in order to compare with in vivo changes
of gene expression. Samples from the ex vivo experiment
were also analyzed using Agilent cDNA microarrays and
the results subjected to the same statistical analyses as
described in Methods. The p53 associated genes obtained
from the in vivo and ex vivo study are summarized in Addi-
tional File 2, predominantly supporting the in vivo treat-
ment observation.

p53 directs pre-apoptotic events through the FAS/TRAIL 
and the mitochondrial apoptotic pathway
Altogether five tumor necrosis factor-related receptor
genes were modulated 2–4 h after induction therapy
(Additional File 2). We also investigated the BCL2/BAX
and BCL2/PUMA ratios as apoptotic responders to treat-
ment at the different time points for each of the patients,
and found a significant increase in gene expression of the
apoptosis facilitators PUMA and BAX (Additional File 2)
and a decrease in the BCL2/BAX ratio as well as BCL2/
PUMA for most of the AML samples (0 versus 4 h p-values
< 0.0004, 0 versus 18 h p-values < 0.01, 4 versus 18 h p-
values 0.5 and 0.2, respectively) (Figure 2A,B). The mRNA
profile of three other pro-apoptotic mediators BAD, BAK1
and BIM did not change significantly during the first
hours, but the level of gene expression varied across
patients. There was no significant alteration of MCL-1
mRNA during chemotherapy. Two patients (P3 and P8)
were selected for ex vivo treatment experiments and deter-
mination of protein expression of the p53-targeted genes
BAX and BCL-2, and showed an appropriate induction of
these p53 regulated gene products (Figure 2C) in concord-
ance with mRNA expression. BAX mRNA was not induced
in P8 during the first 4 h of treatment, and several anti-
apoptotic genes increased. This is also reflected in the pro-
tein expression of BAX along with an increase of BCL-2
protein (Figure 2C). The lowest BCL-2/BAX ratio was
observed in patient 1 and 3, and these patients had the
longest observed survival in this limited cohort of patients
(Additional File 1).

Genes involved in chemoresistance and cell-cell contact 
are expressed 18 h after start of chemotherapy
To allow an overview of genes modulated by chemother-
apy, we searched for functional gene ontology (GO)
annotations associated with the upregulated genes that
discriminate early and late response to the drugs (Figure 3,
Additional File 3). In total, 42 biological functions were
significantly associated with in vivo response of treatment.
Fifteen GO terms delineated coherent functions related to
apoptosis (e.g. DNA damage, regulation of cell cycle, reg-
ulation of apoptosis by TNF receptors and mitochondrial
signals). In contrast, the cells collected after approxi-
mately 24 h of chemotherapy demonstrated an increasing
number of genes related to cell-cell contact (Figure 3); this
included subunits of the T cell receptor complex and

chondroitin sulphate-containing proteins involved in cell
recognition. Within 2–4 h NOTCHL2 and LUNATIC were
induced, as part of pathways that may be related to the
later T-cell receptor gene induction. Both NOTCH [29]
and the myotubularin (MTM) family may be involved in
chemoresistance [30]. Likewise, chemokine receptors
CXCR4 and CX3CR1 were upregulated in this late phase
after start of chemotherapy. Integrin binding and CXCR4
chemokine receptor activation are important for migra-
tion of CD34+ hematopoietic progenitors and AML cells
to marrow stroma cells [31], and leukemia cells may uti-
lize CXCR4 to access niches that are normally restricted to
progenitor cells, and thereby home into a microenviron-
ment that favours their growth and survival [31,32].
Together, this may indicate hitherto unknown interac-
tions between leukemic cells and host compartments dur-
ing chemotherapy.

Discussion
Differentially overexpressed genes at 2–4 h included p53-
induced genes related to oxidative stress, cell cycle arrest,
DNA repair, autophagy and apoptosis (Figure 1C, Addi-
tional File 2). Although moderate, the early upregulation
of the p53 target gene DRAM (damage-regulated
autophagy modulator), encoding a lysosomal protein,
stands out as special [33,34]. It has been reported that
autophagy may delay the DNA damage response and
apoptotic death in breast cancer cells [35] and this duality
indicates a highly complex regulation of cell fate post ther-
apy.

In addition to the p53-induced genes with putative anti-
and pro-survival function (Additional File 2), several
novel features were observed. Upregulation of cytidine
deaminases (cyclic amidines) represents a significant
mechanism for inactivation of cytarabine and thereby
confers therapy resistance in AML (Figure 3 and Addi-
tional File 3) [36]. Another class of genes involved in cis-
platin resistance in solid cancers is the myotubularin
family, some of them encoding proteins with dual phos-
phatase activity [30,37]. Several genes indicate a tumor-
host modulation early during chemotherapy. This
includes the upregulation of chemokine receptors like
CXCR4, whose expression levels have been proposed of
major prognostic impact in acute myeloid leukemia [31].

The BCL2/BAX ratio as well as BCL2/BBC3 (PUMA) ratio
decreased at early time points in all samples analyzed
(Figure 2A, B). Interestingly, the baseline ratios were par-
ticularly high for two of the patients with poor outcome
as has also been reported for other patients with adverse
prognosis [38], while the two patients with the lowest
baseline ratios responded best to first course induction
therapy (Figure 2A and Additional File 1). Induction of
BAX was accompanied by increase of BBC3 mRNA, a pro-
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posed link between p53 and BAX [39], which in turn con-
nects TRAIL receptors with mitochondrial apoptosis [40].
The pro-apoptotic genes, along with p53-inducible death
domain (PIDD/LRDD) [41] were expressed at 18–24 h,
but was not reflected in cleaved procaspase-3 as verified
by Western blotting (Figure 1A).

Studies by others have suggested that apoptotic AML
blasts will not be detected in peripheral blood samples
during chemotherapy [27,28]. Dedicated phagocytes or

neighboring cells are presumably clearing these apoptotic
AML cells from circulation through receptors and adaptor
molecules that can link apoptotic cells to phagocytes
(reviewed in [42,43]). Our patients experienced no clini-
cal symptoms of tumor lysis, reflecting an intact absorb-
ance of apoptotic cells in the patient undergoing
chemotherapy. This observation was consistent with
absence of apoptosis by annexin V/propidium iodide
analysis or procaspase-3 cleavage (Figure 1). Routinely,
nuclear morphology was examined after density gradient

Expression of apoptosis modulators BCL-2, BAX and BBC3 during chemotherapyFigure 2
Expression of apoptosis modulators BCL-2, BAX and BBC3 during chemotherapy. The ratio of BCL2/BAX or 
BCL2/BBC3 mRNA was determined after Agilent Human Whole Genome Oligo Microarray analysis (A). Ratios were 
observed to decrease in the first hours post induction treatment, indicating an increase in pro-apoptotic gene expression. 
Ratios varied greatly between patients and low baseline ratios were associated with better response to treatment (Additional 
File 1). Ratios were normalized and mean presented with standard deviation (error bars) (B), indicating early pro-apoptotic 
alteration in BCL2/BAX mRNA. Two patients (P3 and P8) were treated with anthracycline ex vivo and protein expression ana-
lyzed using Western blots (C). The ex vivo response to anthracycline included increased stabilization of p53 followed by regula-
tion of p53 target gene expression in concordance with in vivo observations.
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centrifugation of mononuclear cells, and nuclei were not
observed fragmented or condensed (data not shown).
Our previous reports of pre-apoptotic BAX induction in
vitro [44], and the lack of cleaved caspase substrate pro-
teins in AML patient samples support the conclusion that

the early phase after chemotherapy represents a physio-
logical window to examine pre-apoptotic gene modula-
tion in vivo. We observed no induction of genes that are
involved in the classical clearance of apoptotic cells in the
circulating AML blasts [42,43] except for an induction of

Gene ontology analysis of chemotherapy induced genesFigure 3
Gene ontology analysis of chemotherapy induced genes. Gene ontology (GO) annotations associated with overex-
pressed genes that significantly discriminate between Early (2–4 h) and Late (18–24 h) responses were determined using the 
Source database http://source.stanford.edu and iterative group analysis (iGA) [22]. All overexpressed genes in the array were 
analyzed to determine gene products associated with any GO-term. The significant annotations consisting of genes found to be 
significantly up- or downregulated for early and late response were selected by use of 100 permutations. The threshold for sig-
nificant GO annotations was set to p-value 4.5E-4. Number of genes (%), horizontal axis, represents the proportion of the 
identified genes belonging to each GO term that significantly changed their expression at early or late timepoints after start of 
chemotherapy.
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the extracellular molecule MFGE8 (milk fat globule-EGF
factor 8 protein) (data not shown). MFGE8 is like annexin
V capable of binding to phosphatidylserine (PS) and facil-
itates engulfment by bridging PS on the apoptotic cell
with macrophages [45]. Another indication of apoptotic
cell clearance was a 9-fold increase in mRNA expression of
GalNAc4S-6ST (N-acetylgalactosamine 4-sulfate 6-O-sul-
fotransferase), and a high level of this molecule has been
detected on apoptotic human peripheral blood lym-
phocytes [43]. Furthermore, several receptors that are
expressed on monocytic/macrophage lineage cells were
upregulated, probably related to chemotherapy induced
differentiation of the leukemic cells [46]. We hypothesize
that lack of classical "eat-me" signals of the pre-apoptotic
cells in this study is caused by the nature of chemotherapy
induced cell death and cell phenotype.

We observed increased expression of T-cell receptor com-
plex components after 18–24 h of therapy (Figure 3). AML
cell number in peripheral blood was rapidly declining
after chemotherapy and partly followed by a decrease in
lymphocytes, not sufficient to explain the increase in T-
cell receptor related genes. The chemotherapy induced
expression of T-cell receptor complex genes could reflect
aberrant gene expression of leukemic blasts, mirroring the
flexible pattern of gene expression observed in pluripotent
hematopoietic stem cells [47].

Conclusion
In conclusion, this study of gene expression of AML blasts
in vivo following start of induction chemotherapy con-
firms the vivid response to therapeutic DNA damage
observed in experimental systems. The most prominent
genes that were upregulated immediately after chemo-
therapy are pivotal determinants of apoptosis regulation
in vitro (Additional File 4). More striking is the upregula-
tion of genes potentially involved in interaction between
AML blasts and the host microenvironment, supporting
the hypothesis that the host response in chemotherapy is
crucial for persistent remission [48]. The observations pre-
sented here provide us with a more nuanced picture of
leukemic cell demise after intensive chemotherapy in vivo,
and motivate for an expanded patient study to search for
possible therapy response biomarkers.
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