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a b s t r a c t

Breast cancers reveal elevated E2 levels compared to plasma and normal breast tissue. Previously, we
reported intra-tumour E2 to be negatively correlated to transcription levels of 17�-HSD2 but positively
correlated to 17�-HSD7. Here, we explored these mechanisms further by analysing the same breast
tumours for 17ˇ-HSD2 and -7 SNPs, as well as 17ˇ-HSD7 gene copy number.

Among the SNPs detected, we found the 17ˇ-HSD2 rs4445895 T allele to be associated with lower
intra-tumour mRNA (p = 0.039) and an elevated intra-tumour E2 level (p = 0.006). In contrast, we found
the 17ˇ-HSD7 rs1704754 C allele to be associated with elevated mRNA (p = 0.050) but not to E2 levels in
breast tumour tissue.

Surprisingly, 17ˇ-HSD7 – gene copy number was elevated in 19 out of 46 breast tumours examined.
Elevated copy number was associated with an increased mRNA expression level (p = 0.013) and ele-
vated tumour E2 (p = 0.025). Interestingly, elevated 17ˇ-HSD7 – gene copy number was associated with
increased expression not only of 17ˇ-HSD7, but the 17ˇ-HSD7 II pseudogene as well (p = 0.019). Expres-
sion level of 17ˇ-HSD7 and its pseudogene was significantly correlated both in tumour tissue (rs = 0.457,
p = 0.001) and in normal tissue (rs = 0.453, p = 0.002). While in vitro transfection experiments revealed

no direct impact of 17ˇ-HSD7 expression on pseudogene level, the fact that 17ˇ-HSD7 and 17ˇ-HSD7 II
share a 95.6% sequence identity suggests the two transcripts may be subject to common regulatory
mechanisms.

In conclusion, genetic variants of 17ˇ-HSD2 and 17ˇ-HSD7 may affect intra-tumour gene expression
as well as breast cancer E2 levels in postmenopausal women.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
. Introduction

While E1 is the main unconjugated oestrogen produced in post-
enopausal women [1], it must be reduced to E2 to execute bio-
ogical effects. The reversible inter-conversion between E1 and E2 is
atalysed by a group of enzymes called 17�-hydroxysteroid dehy-
rogenases (17�-HSDs), named after their major redox activity at

Abbreviations: E2, estradiol; E1, estrone; E1S, estrone sulphate; 17�-HSD,
7�-hydroxysteroid dehydrogenase; CYP19, aromatase; SNP, single nucleotide
olymorphism; ER, estrogen receptor; TF, transcription factor.
∗ Corresponding author at: Department of Oncology, Jonas Lies vei 26, Haukeland
niversity Hospital, N-5021 Bergen, Norway. Tel.: +47 55975000;

ax: +47 55972046.
E-mail address: per.lonning@helse-bergen.no (P.E. Lønning).

ttp://dx.doi.org/10.1016/j.jsbmb.2014.02.003
960-0760/© 2014 The Authors. Published by Elsevier Ltd. This is an open access article un
the 17�-position of the steroid backbone [2,3]. Multiple members
of this enzyme family exist, and to date 14 different 17�-HSDs have
been identified (reviewed in [4]). 17�-HSD type 1, 5, 7 and 12 catal-
yse the reduction of E1 to E2 [5–7], while 17�-HSD type 2, 10 and
14 inactivate E2 by oxidising it to E1 [8–10]. Although the 17�-
HSDs reveal high structural similarity at the protein level, they are
encoded by different genes, with a low degree of sequence identity.

One exception is 17ˇ-HSD7 [6], located on chromosome 1q23,
for which a pseudogene (referred to here as 17ˇ-HSD7 II) located
on chromosome 10p11.2 exists [11]. These two genes (illustrated
in Fig. S1) share 95.6% sequence identity, including strong sim-
ilarity across the promoter region [12]. While the pseudogene

is transcribed, nucleotide differences cause alternative splicing,
and the 17ˇ-HSD7 II transcript lack the entire exon 6. In addition,
insertions cause a shift in the open reading frame, resulting in a
premature stop codon [11,12]. This shorter mRNA may encode

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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hypothetical protein, but the C-terminal truncation seems to
emove the membrane-associated helix, which may cause mislo-
alization of the protein to the cytosol and nucleus [13]. Still, the
iological significance of 17ˇ-HSD7 II is uncertain, and conflicting
esults regarding enzyme activity in vitro has been reported [11,12].

Tumour tissue E2 levels are often elevated compared to plasma
14] due to protein binding, but also local modulation. Recently,
n a collaborative project [15], we demonstrated 17ˇ-HSD7 and
7ˇ-HSD2 expression to be up-regulated in breast tumour tissue.
he fact that expression levels of 17ˇ-HSD7 (favouring reduction
f E1 into E2) showed a positive correlation and expression levels
f 17ˇ-HSD2 (favouring oxidation of E2 into E1) showed a negative
orrelation with E2 level in breast cancers [15] indicated 17�-HSD
nzymes to be involved in tumour tissue E2 up-regulation.

The aim of this study was to explore the potential impact of
enetic variants of 17ˇ-HSD7 and 17ˇ-HSD2 on intra-tumour gene
xpression as well as E2-levels.

. Materials and methods

.1. Patients

The breast cancer patients included in this study have been
escribed previously (see [16] for details). In brief, normal breast
nd breast cancer tissue specimens were collected from 46 breast
ancer patients (13 pre- and 33 postmenopausal women) undergo-
ng mastectomy at Haukeland University Hospital, Bergen, Norway.

omen using oral hormone replacement therapy or contraceptives
ere excluded. The samples were snap-frozen in liquid nitrogen

mmediately upon removal in the operating theatre, and stored in
iquid nitrogen until processing.

Some of the molecular analyses and statistical calculations pre-
ented were not performed in all 46 patients; premenopausal
atients were excluded from all statistical calculations related to
estrogen levels, and complete oestrogen data were not available
or the entire cohort. In addition, due to a limited amount of RNA
e were not able to measure 17�-HSD2 mRNA-levels in the entire

ohort of 46 patients. 17�-HSD2-mRNA levels for 34 of the 46
atients described in this study have been reported elsewhere [15].
able S1 provides a detailed overview of the number of patients
vailable for each parameter.

Supplementary material related to this article can be found,
n the online version, at http://dx.doi.org/10.1016/j.jsbmb.2014.
2.003.

.2. Plasma and breast tissue oestrogen levels

Plasma and tissue oestrogen levels in these breast cancer
atients have been reported previously [16]. The samples were
nalysed by highly sensitive and specific radioimmuno-assays
nvolving sample pre-purification steps described in detail else-

here [17–19].

.3. DNA extraction

Genomic DNA was extracted using the QIAamp DNA Mini Kit
Qiagen) according to the manufacturer’s protocol.

.4. RNA extraction and cDNA synthesis

Total RNA was extracted from snap-frozen biopsies using Trizol
eagent (Life technologies) according to the manufacturer’s proto-

ol, and dissolved in DEPC-treated deionised water as described
y Knappskog et al. [20]. The RNA-concentrations were deter-
ined in all samples using a Nanodrop ND1000 spectrophotometer

nd adjusted to 25 ng/�L. Single strand cDNA was synthesised
y & Molecular Biology 143 (2014) 192–198 193

from 200 ng total RNA in a 20 �L reaction mix, using the Tran-
scriptor reverse transcriptase system (Roche) according to the
manufacturer’s protocol. Both oligoT (16-mers) and random hex-
amers were used as primers in the cDNA-synthesis reaction
mix.

2.5. Quantitative PCR (qPCR)

17�-HSD2 and 17�-HSD7 – mRNA levels for 34 of the 46
patients described in this study have been reported elsewhere [15].
To ensure a uniform protocol for samples to be compared with
respect to mRNA expression levels, we re-synthesised cDNA from
these 34 patients along with the cDNA synthesis for the remaining
12 patients. 17�-HSD7 and 17�-HSD7 II mRNA levels from the
entire cohort (n = 46) were analysed using qPCR-primers specif-
ically designed to distinguish between these two variants (Fig.
S2). The quantification was performed using BlackBerry-quenched
hydrolysis probes on a LightCycler 480 instrument (Roche). Expres-
sion level of the ribosomal protein P2 (RPLP2) was used as reference.
The amplification primers and hydrolysis probes (TIB MOLBIOL) are
listed in Table S2. Amplification was performed using the LC480
Probes Master (Roche) reaction mix, with 0.5 �M of each primer,
0.125 �M of each hydrolysis probe and 0.5 �L cDNA synthesised
from 200 ng total RNA. The following thermo-cycling conditions
were used: initial denaturation at 95 ◦C for 5 min, 50 cycles of
denaturation at 95 ◦C for 10 s, annealing/elongation at 55 ◦C for
30 s, and a final cooling step at 40 ◦C for 10 s. Water were used
as a negative control in each run. For each analysis, the results
were converted into relative concentrations using an in run stan-
dard curve, and the observed relative concentrations for 17�-HSD7
and 17�-HSD7 II mRNA were normalised by the RPLP2 mRNA lev-
els.

Supplementary material related to this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.jsbmb.
2014.02.003.

2.6. Mutation screening

Screening for mutations and small insertions/deletions was per-
formed by PCR-amplification and subsequent sequencing of the
promoter regions and coding regions of 17�-HSD2 and 17�-HSD7.
The 5′-upstream region of 17ˇ-HSD2 was covered from position
-2274 to +429, and 17ˇ-HSD7 from position -1452 to +154, rel-
ative to the transcription start sites. The 17ˇ-HSD7 PCR-primers
(Table S2) were designed specifically to avoid amplification of
17�-HSD7 II. All amplifications were performed using either the
KodXL (Novagen), or the DyNazyme EXT (Finnzymes) polymerase
system. The KodXL amplifications were performed in a 50 �L reac-
tion mix containing 1× PCR buffer, 0.2 mM of each deoxynucleotide
triphosphate, 0.2 �M of each primer, 1.25 U Kod XL DNA poly-
merase and 1 �L gDNA/cDNA. The DyNazyme amplifications were
performed in a 50 �L reaction mix containing 1× PCR buffer,
1.5 mM MgCl2, 0.5 mM of each deoxynucleotide triphosphate, 5%
DMSO, 0.2 �M of each primer, 0.5 U DyNazyme polymerase and
1 �L gDNA or cDNA. Following amplification, the PCR product
was treated with ExoSAP-IT® (USB® Products, Affymetrix, Inc.)
at 37 ◦C for 30 min and 80 ◦C for 15 min according to the man-
ufacturer’s protocol. DNA sequencing was performed in a 10 �L
reaction mix containing 1× sequencing buffer, 1 �M primer and 1×
BigDye v.1.1. (Applied Biosystems). Capillary electrophoresis was
performed on an automated DNA sequencer (ABI 3730), and the

sequences were analysed using the Sequence Scanner v. 1.0 soft-
ware (Applied Biosystems). When analysing 17ˇ-HSD7 sequences,
we carefully made sure that there was no contribution from 17ˇ-
HSD7 II.

http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
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Supplementary material related to this article can be found,
n the online version, at http://dx.doi.org/10.1016/j.jsbmb.2014.
2.003.

.7. Gene copy number analysis

We explored potential gene copy number changes in 17�-HSD7
y quantifying genomic DNA in duplex reactions with the refer-
nce gene Beta-2-Microglobulin (B2M), using the LightCycler 480
nstrument (Roche). We used primers designed specifically for
7�-HSD7 (Fig. S3), and the qPCR-products were sequenced aim-
ng at excluding any contribution from 17�-HSD7 II. Primers and
lackBerry-quenched hydrolysis probes (TIB MOLBIOL) are listed

n Table S2. Amplification was performed in a 20 �L reaction solu-
ion using the LC480 Probes Master (Roche) reaction mix, 0.5 �M of
ach primer, 0.125 �M of each hydrolysis probe and 2 �L gDNA as
emplate. Negative controls (water) were included in each run. The
ata obtained through quantification were normalised by adjus-
ing for B2M levels. These normalised values were divided by the
orresponding values from a reference sample (pooled DNA from
healthy donors). As previously described for this type of anal-

sis [21], the concentration of the reference was set to 1.0, and
amples were considered to have reduced copy number if the sam-
le/reference ratio was <0.65 (corresponding to 1.3 gene copies),
nd to have increased copy number if the ratio was >1.35 (corre-
ponding to 2.7 gene copies).

Supplementary material related to this article can be found,
n the online version, at http://dx.doi.org/10.1016/j.jsbmb.2014.
2.003.

.8. In silico predictions

Putative transcription factor (TF) binding sites and bind-
ng affinity in the promoter areas of 17�-HSD7 and 17�-HSD2

ere predicted both for wild-type sequence and observed vari-
nt haplotypes. The predictions were performed using JASPAR
http://jaspar.genereg.net), an open-access database of annotated

atrix-based eukaryotic TF binding site profiles [22]. The predic-
ions were restricted to ±12 nucleotides relative to the observed
NPs, using an 80% profile score threshold (default settings).

.9. Cell culture and transfection

For in vitro testing of the effects of 17�-HSD7 and 17�-HSD7 II

xpression on each other, vectors containing the entire coding
egion as well as the 3′-UTR region of each variant were generated.
ach vector (pCMV-cytoEGFP) expressed EGFP from an indepen-
ent promoter. MCF-7 cells were cultured in RPMI 1640 medium

able 1
utation screening of 17ˇ-HSD2 and 17ˇ-HSD7. A summary of the SNP identities, positio

lterations detected in promoter and coding regions of 17ˇ-HSD2 and 17ˇ-HSD7.

Gene dbSNP Nucleotide position N

17ˇ-HSD2 N/A −1960a C
N/A −1540a C
N/A −1120a C
rs4445895 +34a C
N/A Exon 2 codon 106 G
rs117437228 Exon 4 codon 226 A

17ˇ-
HSD7

rs1704754 +56a T
rs12563263 Exon 8 codon 296 C
rs2684875 Exon 9 codon 321 A
17ˇ-HSD7 splice variants
Exon 3 missing N
Exon 4 nucleotide 1–26 missing N

/A: information not available.
a Nucleotide position relative to transcription start.
y & Molecular Biology 143 (2014) 192–198

(ATCC) supplemented with 10% FBS. Transfection was performed in
6-well plates using 1.85 �g plasmid and 4.4 �L Lipofectamin 2000
reagent (Invitrogen). The cells were harvested after 48 h, total RNA
was extracted using Illustra triple prep kit (GE Healthcare), and
cDNA was prepared from 1 �g total RNA using qScript cDNA Super-
Mix (Quanta Biosciences). Each experiment setup contained (1)
cells transfected with pCMV 17�-HSD7, (2) cells transfected with
pCMV 17�-HSD7 II, (3) cells transfected with pCMV-vectors con-
taining no insert, (4) cells receiving only Lipofectamin 2000, and
(5) untreated cells. A minimum of three parallels were used in
each setup, and the experiment was repeated three times. When
calculating fold change in mRNA-levels, the cells transfected with
pCMV-vectors containing no insert was used as reference samples,
and qPCR was otherwise performed as described in Section 2.5.

2.10. Statistical analysis

Statistical analyses (Kruskal–Wallis, Mann–Whitney and Spear-
man tests) were performed using the PASW Statistics 18.0 software
package (IBM). Multivariate analysis was done using linear regres-
sion with both forward and backward selection methods. Factors
predicting oestrogen levels with a p-value < 0.10 were considered
as potential dependents in multivariate analysis. All p-values are
given as two-sided.

3. Results

3.1. Screening for 17ˇ-HSD2 and 17ˇ-HSD7 variants

The promoters and coding regions of 17�-HSD2 and 17�-HSD7
were screened for mutations, single nucleotide polymorphisms
(SNPs), insertions and/or deletions. The nucleotide changes are
summarised in Table 1. We detected 5 SNPs previously described
by others; rs4445895 [23] and rs117437228 [24] in 17�-HSD2, and
rs1704754, rs12563263 and rs2684875 in 17�-HSD7 [25]. In addi-
tion, we observed 4 novel sequence variants in 17�-HSD2, and two
17�-HSD7 splice variants.

3.2. In silico predictions

The SNPs 17�-HSD2 rs4445895 (C → T) and 17�-HSD7
rs1704754 (T → C) were located 34 and 56 nucleotides down-
stream of the transcription start sites of 17�-HSD2 and 17�-HSD7,
respectively. Due to the proximity to the transcription start sites,

these two variants were considered to be of particular interest
with respect to a potential influence on gene expression levels. In
silico predictions indicated these SNPs to create potential novel
transcription factor (TF) binding sites and/or to influence the

ns, nucleotide changes, amino acid changes and genotypes of the identified genetic

ucleotide change Aa-change Genotypes (n total = 46)

> T – CC: n = 39 TC: n = 5 TT: n = 2
> T – CC: n = 44 TC: n = 2 TT: n = 0
> T – CC: n = 43 TC: n = 3 TT: n = 0
> T – CC: n = 19 TC: n = 20 TT: n = 7
> T Gly > Val GG: n = 44 GT: n = 2 TT: n = 0
> G Met > Val AA: n = 45 AG: n = 1 GG: n = 0

> C – TT: n = 31 TC: n = 13 CC: n = 2
> T No CC: n = 24 CT: n = 17 TT: n = 5
> G Lys > Glu AA: n = 45 AG: n = 1 GG: n = 0

Total Wild-type Splice-variant
/A – n = 46 n = 45 n = 1
/A Frameshift n = 46 n = 39 n = 7

http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://jaspar.genereg.net/
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Fig. 1. Genetic alterations in 17ˇ-HSD2 and 17ˇ-HSD7 are associated with mRNA and E2-levels. 17ˇ-HSD2 SNP rs4445895 (C > T) is associated with a lower intra-tumour
17�-HSD2 mRNA level (Kruskal–Wallis p = 0.039) (A), and an elevated intra-tumour E2-level (Kruskal–Wallis p = 0.006) (B). Analysing 17ˇ-HSD7 SNP rs1704754 (T > C), we
only detected two individuals harbouring the CC-genotype. When combining the individuals harbouring TC and CC-genotypes, we found this SNP to be associated with
an elevated intra-tumour 17�-HSD7 mRNA level (Mann–Whitney p = 0.050) (C). Analysing the association between 17ˇ-HSD7 SNP rs1704754 (T > C) and E2-level, both
individuals harbouring the CC-genotype had to be excluded, as one was premenopausal and E2-data was not available for the other. Comparing the individuals harbouring
TT- with CT-genotypes, no association between this variant and intra-tumour E2-level was recorded (Mann–Whitney p = 0.839) (D). Elevated 17ˇ-HSD7 gene copy number
i = 0.01

b
(

i
0

s associated with elevated intra-tumour 17�-HSD7 mRNA-level (Mann–Whitney p

inding strength between TFs and already existing binding sites

Table S3).

Supplementary material related to this article can be found,
n the online version, at http://dx.doi.org/10.1016/j.jsbmb.2014.
2.003.
3) (E), and elevated intra-tumour E2-level (Mann–Whitney p = 0.025) (F).

3.3. 17ˇ-HSD2 rs4445895 and 17ˇ-HSD7 rs1704754:

associations to intra-tumour mRNA and oestrogen levels

Assessing 17�-HSD2 mRNA levels in relation to 17�-HSD2
rs4445895 status, we performed a Kruskal–Wallis test comparing

http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
http://dx.doi.org/10.1016/j.jsbmb.2014.02.003
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Fig. 2. 17ˇ-HSD7 gene copy number is correlated with intra-tumour mRNA- and E2.
Spearman correlation between 17ˇ-HSD7 gene copy number and intra-tumour 17�-
HSD7-mRNA level (n = 46; r = 0.377, p = 0.010) (A). Spearman correlation between
17ˇ-HSD7 gene copy number and intra-tumour E2-level (n = 30, r = 0.330, p = 0.075)
(B). *The data obtained through quantification were normalised by adjusting for B2M
levels. These normalised values were divided by the corresponding values from a
reference sample (pooled DNA from 6 healthy donors). As previously described [21],
96 A.H. Straume et al. / Journal of Steroid Bioch

ll three genotypes (CC, CT and TT; p = 0.039, Fig. 1A). Paired com-
arison revealed homozygosity for the minor allele (genotype TT vs.
C + CT) to be associated with a significantly lower mRNA expres-
ion level (p = 0.014). Similarly, we performed a Kruskal–Wallis test
o compare all three genotypes in relation to E2-levels (p = 0.006,
ig. 1B). Again, paired comparison (TT vs. CT + CC) revealed signif-
cantly higher E2 levels among individuals homozygous for the T
ariant allele (p = 0.002). These findings are in concordance with
he known catalytic ability of the 17�-HSD2-enzyme favouring
xidation of E2 into E1.

Regarding 17ˇ-HSD7 rs1704754 (T → C), we only observed
omozygosity for the C-allele in two individuals (1 pre- and 1
ostmenopausal) only. Thus, we combined homo- and heterozy-
ous individuals (TC and CC), and compared this group with
ild-type individuals (TT). We found elevated 17�-HSD7 mRNA

evel in tumour tissue from individuals carrying the TT genotype
p = 0.050, Fig. 1C). When analysing the association between this
NP and intra-tumour E2, both individuals harbouring the CC-
enotype had to be excluded, as one individual was premenopausal,
hile tumour E2-data was not available for the other individual.
omparing individuals harbouring the TT- to those carrying the
C-genotype (Mann–Whitney test), no difference in E2-levels was
bserved (Fig. 1D). Exploring different multivariate models includ-
ng ER expression levels and either SNP status or expression levels
or 17�-HSD2/17�-HSD7, we found 17�-HSD7 mRNA level to be
he only significant determinant of tumour E2 (p < 0.001) while
non-significant association for rs4445895 SNP-status (p = 0.077)
as recorded.

In addition to 17ˇ-HSD2 rs4445895 and 17ˇ-HSD7 rs1704754,
ach of the nucleotide changes listed in Table 1 were analysed for
otential associations to gene expression and E2-levels. No associ-
tions were detected (data not shown).

.4. 17ˇ-HSD7 gene copy number in relation to mRNA- and
estrogen levels

19 out of 46 breast tumours revealed an elevated 17ˇ-HSD7
ene copy number. The arithmetic mean gene copy number across
his group was 3.12. The average of the gene copy numbers in the
emaining patients was 2.36. Based on the gene copy number sta-
us (elevated or normal), we analysed the associations between
ene copy number and intra-tumour 17�-HSD7-mRNA and E2-
evel. We detected a higher level of 17�-HSD7-mRNA (p = 0.013,
ig. 1E), as well as E2 level (p = 0.025, Fig. 1F) in breast tumours
isplaying an elevated 17ˇ-HSD7 gene copy number (defined as
2.7 copies, as described in Section 2.7). To elucidate these results
urther, we performed a Spearman correlation test comparing 17�-
SD7 mRNA levels to the exact 17ˇ-HSD7 gene copy number across

he tumour samples (n = 46, r = 0.377, p = 0.010, Fig. 2A). Similarly,
e detected a positive correlation between gene copy number and

ntra-tumour E2-levels (n = 30, r = 0.330, p = 0.075, Fig. 2B), sup-
orting the results from the Mann–Whitney test (Fig. 1E and F).
urprisingly, we also observed elevated 17�-HSD7 II mRNA lev-
ls in individuals harbouring an increased 17ˇ-HSD7 tumour gene
opy number (p = 0.019).

The promoter regions of 17ˇ-HSD7 and 17ˇ-HSD7 II reveal high
tructural similarity. Notably, we observed a strong correlation
etween the expression levels of these two genes in tumour (n = 46;
= 0.457, p = 0.001, Fig. 3A) as well as in normal tissue (n = 46;
= 0.453, p = 0.002, Fig. 3B). Aiming to elucidate the unexpected
nding of elevated 17�-HSD7 II mRNA levels in individuals har-
ouring an increased 17ˇ-HSD7 gene copy number (p = 0.019),

e calculated the Spearman correlation between 17�-HSD7 and

7�-HSD7 II mRNA levels in the tumours harbouring elevated and
ormal gene copy number separately. Contrary to our expectations,
significant correlation was recorded in the tumours harbouring an
the concentration of the reference was set to 1.0, and samples were considered to
have reduced copy number if the sample/reference ratio was <0.65, and to have
increased copy number if the ratio was >1.35.

elevated copy number (n = 19, r = 0.468, p = 0.043, Fig. 3C), while this
correlation was non-significant in tumours harbouring a normal
gene copy number (n = 27, r = 0.298, p = 0.132; Fig. 3D).

Recent evidence has suggested some pseudogenes may have
biological functions at the RNA level. Taking the pseudogene for
PTEN (PTENP1) as an example, Pandolfi’s group suggested that this
pseudogene may regulate PTEN expression levels by acting as a
decoy for miRNAs targeting the PTEN transcript [26]. Based on these
findings, we hypothesised that the correlations described above
could be explained by a common miRNA targeting 17ˇ-HSD7 and
17ˇ-HSD7 II in a competitive manner. To explore this hypothesis,
we overexpressed each gene separately in MCF-7-cells with sub-
sequent assessment of mRNA levels. The results (based on three
individual experiments, with each experiment containing a mini-
mum of three parallels) revealed that overexpression of one of the
17ˇ-HSD7 variants did not significantly affect the mRNA levels of
the other (Fig. 4).

4. Discussion
While contemporary evidence (reviewed in [27]) indicates
plasma oestrogen levels to be the main determinator of local
breast estrogens due to rapid equilibration between these two
compartments, intra-tumour oestrogen levels are subject to local
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ig. 3. The expression of 17ˇ-HSD7 (wildtype) and 17ˇ-HSD7 II (pseudogene) is co
reast tissue (r = 0.457, p = 0.001) (A), and normal breast tissue (r = 0.453, p = 0.002) (B
xpression in breast tumour tissue among the individuals with an elevated 17ˇ-HS
ormal 17ˇ-HSD7 gene copy number (n = 27, r = 0.298, p = 0.132) (D).

odulation through different dehydrogenases [15]. Here, we
xplored genetic variations in 17ˇ-HSD7 and 17ˇ-HSD2 aiming to
lucidate the mechanisms by which these two dehydrogenases
ay be linked to elevated tumour E2 levels [15].
Consistent with data from in silico predictions, we found

omozygosity for the 17ˇ-HSD2 rs4445895 T-allele to be associ-
ted with low 17�-HSD2 mRNA and elevated E2 levels in breast
umour tissue. This finding fits well with the catalytic activity of
7�-HSD2 (conversion of E to E ); a lower transcript level would
2 1

ntuitively cause a lower enzyme level, leading to congestion of
2.

ig. 4. In vitro testing of the effects of 17ˇ-HSD7 (wildtype) and 17ˇ-HSD7 II (pseu-
ogene) expression on each other. MCF7 cells were transfected with pCMV-vectors
ontaining either 17ˇ-HSD7 (wildtype) or 17ˇ-HSD7 II (pseudogene). Cells trans-
ected with pCMV-vectors containing no insert was used as a reference when
alculating fold change in mRNA-levels. Overexpression of the wildtype gene did not
ignificantly affect the endogenous expression level of the pseudogene, illustrated
n bar (1). Similarly, overexpression of the pseudogene did not significantly affect
he endogenous expression level of wildtype gene, illustrated in bar (2). The data
resented here is based on three individual experiments, where each experiment
ontained a minimum of three parallels.
d. The top panel displays the Spearman correlation in all 46 individuals in tumour
lower panel displays the Spearman correlation between 17ˇ-HSD7 and 17ˇ-HSD7 II
ne copy number (n = 19, r = 0.468, p = 0.043) (C), and among the individuals with a

The findings are less clear with respect to 17ˇ-HSD7 rs1704754
(T → C). In support of the in silico predictions, we found individuals
harbouring this SNP to display a higher 17�-HSD7 mRNA level in
breast tumour tissue. The 17�-HSD7 enzyme is known to have a
preference for reducing E1 to E2; thus, one would assume elevated
E2-levels in tumours expressing high 17�-HSD7 mRNA-levels. The
lack of such an association may be due to the fact that only two indi-
viduals showed homozygosity for this SNP; one of these individuals
was premenopausal, while tumour E2-data was not available for the
other individual.

In terms of gene copy number, elevated 17ˇ-HSD7 copy number
was associated with elevated mRNA as well as E2 levels. These data
indicate elevated gene copy number to potentially influence 17�-
HSD7 enzyme activity and oestrogen metabolism.

An unexpected discovery was the association between 17ˇ-
HSD7 gene copy number and 17ˇ-HSD7 II-expression. These two
genes have almost identical promoter regions, and may therefore
be regulated by common trans-acting factors. However, the asso-
ciation between 17ˇ-HSD7-gene copy number and the expression
level of 17ˇ-HSD7 II suggests other explanations may be involved
as well. Recently it has been described that the levels of mRNAs
with sequence similarities are balanced through their “competi-
tion” for the same miRNAs, elegantly shown for the PTEN gene and
its pseudogene, PTENP1 [26]. These findings have opened for new
and interesting biological functions of transcribed pseudogenes,
and made us hypothesise that the 17ˇ-HSD7 and 17ˇ-HSD7 II trans-
cripts may be targeted by common miRNAs. While the results from
the in vitro experiment overexpressing 17ˇ-HSD7 and 17ˇ-HSD7 II
in MCF7-cells argues against this hypothesis, co-regulation by other
trans-acting factors cannot be ruled out.

A weakness of this study relates to the limited number of sam-
ples available for analysis, and several of the associations may be

considered preliminary findings that need validation in indepen-
dent studies. Nevertheless, the observations indicate novel findings
with respect to the biological activity of enzymes playing an impor-
tant role to tissue oestrogen disposition.
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In summary, we have identified genetic variants of 17ˇ-HSD2
nd 17ˇ-HSD7 that may influence gene expression, as well as
ntra-tumour E2 in postmenopausal breast cancer patients. Local
estrogen disposition may be a potential therapeutic target in
ndocrine manipulation of malignant disease, and the data pre-
ented here may add further information to our understanding of
he mechanisms controlling breast cancer tissue E2 levels.
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