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Abstract

Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to)
endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to
complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e.
‘‘mitochondrial dynamics’’) are linked to cellular (patho) physiology is currently the subject of intense study and requires
detailed quantitative information. During the last decade, various computational approaches have been developed for
automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these
strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which
require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated
image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in
human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were
visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method
and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various
mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent
when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically
stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial
fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved
without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification
are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an
integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells.
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Introduction

Mitochondria play diverse roles in eukaryotic cell physiology in

that they serve as producers of ATP and constitute essential hubs

of metabolism and signal transduction. The organelle is composed

of a mitochondrial outer membrane (MOM) that surrounds an

inner membrane (MIM), which is highly folded and encloses the

matrix compartment where metabolic enzymes and the mito-

chondrial genome reside. Mitochondria operate as main trandu-

cers of cellular energy and house enzyme systems for b-oxidation,
the TCA cycle, ketogenesis, and oxidative phosphorylation

(OXPHOS). The OXPHOS machinery is embedded in the

MIM, and consists of the electron transport complexes and the

ATP synthase. In this system, electron flow drives transmembrane

transport of protons, which generates the proton gradient utilized

for ATP production by ATP synthase [1]. Although mitochondria

are characterized by having some degree of genetic and metabolic

autonomy their function is intricately linked to that of the cell. In

this sense, evidence has been provided that bidirectional

mitochondria-cell communication through major signaling path-

ways occurs in cellular homeostasis, growth, survival and death.

Hence, exogenous and endogenous factors including nutritional

status, pharmacological modulation, cytosolic signal transduction

and the presence of pathological mutations may (in) directly affect

mitochondrial function [2–7].

In living cells, mitochondria can form a large tubular assembly

(‘‘a reticulum’’) extending throughout the cytosol, which is often

close to other cellular compartments like the nucleus, endoplas-

matic reticulum (ER) and cytoskeleton [8–10]. The cellular

volume fraction occupied by mitochondria varies between cell

types and with metabolic condition [11,12]. Mitochondrial

morphology is very dynamic and can shift between fragmented

structures and filamentous networks, via mitochondrial fission and

fusion events [13]. Mitochondrial morphology is directly con-

trolled by the balanced action of fission and fusion proteins

including the optic atrophy 1 (OPA1) protein, mitofusins (Mfn1
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and 2), dynamin-related protein 1 (Drp1) and the fission 1 (Fis1)

protein [6,14–16].

Impairments in the regulation and function of mitochondria

may severely affect cellular homeostasis, and such defects have

been associated with aging and disease, including metabolic

disorders, cancer and neurodegeneration [17,18]. For example,

mitochondrial morphological aberrations have been observed in

muscle and skin cells of patients with inherited mitochondrial

disease [19,20]. Moreover, chronic (72 h) inhibition of the first

OXPHOS complex (complex I or CI) by rotenone (ROT),

stimulated mitochondrial filamentation (i.e. length and degree of

branching) in primary human fibroblasts [21]. In endothelial cells,

bioenergetic stress induced by OXPHOS inhibitors triggered

specific changes in mitochondrial morphology, possibly indicative

of the cellular stress level and thereby cell survival [22]. This

suggests that mitochondrial dynamics and spatial localization are

linked to mitochondrial and cellular (dys) function

[5,6,14,16,21,23,24].

A proper understanding of the relationships between mitochon-

drial morphology and physiology demands automated quantitative

methods to analyze mitochondrial shape. Mitochondrial shape

parameters can be obtained using fluorescent cations that

specifically accumulate within mitochondria (e.g. TMRE, TMRM,

rhodamine 123, JC-1) or by genetically introducing mitochondria-

targeted fluorescent proteins [25,26]. At present, mitochondrial

shape analysis is primarily performed by automated computer-

assisted analysis of 2-dimensional (2D) fluorescence microscopy

images, employing suitable types of software and (custom)

algorithms [6,27]. These strategies work best on cultured cells

with a relatively flat morphology. For cells displaying a substantial

‘‘thickness’’ in the axial (z) direction, three-dimensional (3D) image

acquisition and analysis are required. In principle, confocal

microscopy allows acquisition of axial image sequences (‘‘z-stacks’’)

for 3D quantification. However, relatively few strategies optimized

for mitochondrial analysis have been reported [6]. One such

strategy involves creation of a semi-3D image by collapsing

multiple image-sections from a wide-field or confocal z-stack into a

single 2D projection [28,29]. A more advanced method is to

generate a 3D representation of the mitochondria from the z-stack

and performing a 3D analysis of the mitochondrial objects.

Although technically more demanding than 2D procedures,

attempts to analyze mitochondria in 3D appeared promising in

studies of mitochondrial shape and network properties

[6,22,25,30–32]. However, to the best of our knowledge, none

of the published 3D strategies involves combined and integrative

assessment of mitochondrial shape and network properties. In this

study, we established and validated such analysis in z-stacks of

human endothelial cells (HUVECs) expressing a mitochondria-

targeted green fluorescence protein (mitoGFP). The performance

of this 3D approach was compared with our previously described

2D algorithm [6,20,24,27,33–40] in healthy cells and during

ROT-induced metabolic stress conditions. Our results demon-

strate that 3D imaging and quantification are of crucial

importance for proper analysis of mitochondrial dynamics in cells

displaying a non-flat morphology. Hopefully, the strategy provided

in this study may contribute to clarify new relationships between

mitochondrial morphology and physiology.

Materials and Methods

Cell culture
Phoenix A retroviral packaging cells were used for virus

production [41]. The cells were maintained in DMEM with

4.5 g/l glucose (Gibco) supplemented with 10% fetal bovine serum

(FBS), 2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml

streptomycin (all from Sigma-Aldrich). Human Umbilical Vein

Endothelial Cells (HUVECs) were purchased from Lonza, Basel,

Switzerland (C2517A). The cells were cultured in EGM-2 (Lonza),

and kept at 37uC and 5% CO2. The growth medium was changed

every second or third day and the cells were passaged prior to

reaching confluence. The maximum passage number used for

experiments was 8.

Cloning and retroviral transduction
HUVECs stably expressing mitochondrial targeted GFP

(mitoGFP) were produced by retroviral transduction [41].

Generation of a retroviral vector carrying mitoGFP was initiated

by exchanging EYFP in the commercial available pEYFP-mito

vector (BD Biosciences, Clontech) with EGFP. GFP from pEGFP-

N1 and YFP from pEYFP-mito were excised using the restriction

enzymes BamHI and BsrGI. The products were separated by gel

electrophoresis and the pEGFP insert and the vector with the

mitotargeting sequence were gel-purified using GFX columns (GE

Healthcare). EGFP was then cloned into the vector fragment,

generating the pEGFP-mito vector. Further, pEGFP-mito was cut

with NheI before converting overhangs to blunt ends followed by

further cutting with NotI. The resultant fragment was cloned into

the retroviral vector pCGFP [42] previously cut with BamHI,

blunt-ended, and cut again with NotI to remove the existing GFP

fragment. The fragments were separated by gel electrophoresis

and gel-purified using GFX columns prior to ligation. This

resulted in generation of the pCEGFP-mito vector. Correct

orientation of the inserts was controlled using restriction enzymes

XbaI and NotI, and plasmids with correct promoter orientation

were sequenced. All enzymes and buffers used during cloning

procedures were from New England Biolabs. Phoenix A packaging

cells were transfected by CaCl2 precipitation in presence of

chloroquine (Sigma-Aldrich) with the pCEGFP-mito retroviral

vector. At 6 h post-transfection, the medium was replaced with

fresh DMEM containing 10% FBS and cells were grown for 12

hours. The medium was then replaced with EGM-2 medium and

the cells were grown for additionally 24 hours to produce

retroviruses. Conditioned media was collected, filtered through

0.45 mm-pore-size polysulfonic filters and added to the HUVEC

culture together with protamine sulfate (5 mg/ml) (Sigma-Aldrich).

Fresh EGM-2 medium was again added to the Phoenix A

packaging cells, and after additional 24 hours virus were harvested

and added to the HUVECs for a second round with virus

infection. After the first overnight incubation with virus-containing

medium, the cells were incubated in fresh EGM-2 for 8 hours,

prior to an additional overnight incubation in the presence of the

virus vector. After infection, HUVECs were cultured before GFP-

positive cells were sorted on a FACSAria Cell Sorter (BD

Biosciences).

Confocal microscopy
12,000 HUVECs were seeded onto 18 mm coverslips and were

allowed to adhere under routine culturing conditions for 2–4 hours

before treatments were added. The cells were then incubated for

72 hours before they were fixed with cold (4uC) 3.7% parafor-

maldehyde at room temperature for 30 minutes. The coverslips

were rinsed in PBS and water before they were dried and mounted

onto a cover glass using Vectashield mounting medium with DAPI

(Vector Laboratories, California, US). The z-stack images of

mitoGFP were acquired on a Zeiss LSM 510 Meta confocal

microscope (Carl Zeiss, Oberkochen, Germany) using a Plan-

Apochromat 6361.40 NA oil objective. Excitation wavelength was

488 nm and emission was detected using a long pass filter from
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505 nm. Image pixel size was 0.0845 mm (x and y) and bit depth 8,

z-step size 0.364 mm, and pinhole diameter 96 mm.

Image processing and analysis
All image processing and analysis were performed using the

Image-Pro Plus software (version 7.0) with the SharpStack Total

deconvolution and 3D Constructor modules (Media Cybernetics,

Inc., Washington, USA). The blind deconvolution algorithm of

this software is the same found in the AutoQuant software (Media

Cybernetics, personal communication). The datasets were first

calibrated using the acquisition system parameters, and cropped to

exclude unnecessary regions, before processing by 3D blind

deconvolution. For comparative purposes, the images were

processed using spatial filtering and analyzed as described in

[27]. For the Fast Fourier Transform (FFT) processing, a circular

area of interest (AOI; radius setting 2, 5 or 10, as specified) was

defined in the center of the spectrum in the frequency domain.

Projections of multiple z-stack sections into one image were

performed either by averaging or by generating a maximum

intensity composite (MIC). For 3D analysis, the z-stacks were

loaded into the 3D Constructor module using no sub-sampling. A

3D iso-surface was created without further filtering or simplifica-

tion prior to volumetric shape measurements. Regions of interest

(ROIs) were selected stochastically in mitochondria-rich parts of

the cytoplasm. With respect to mitochondrial network analysis, the

objects were skeletonized using standard processing operations

(medial axis transform), which involved an intensity threshold,

followed by thinning and then pruning of the objects. The

threshold intensity corresponded with the respective threshold

used in the parallel shape analysis, as indicated in the individual

Figure 1. Shape and network analysis of synthetic objects in 2D and 3D. (A) The image (upper panel) shows the binary (black and white) 2D
test image with synthetic objects. The lower panel shows the vectorized skeletons produced as part of the network analysis. Object shape and
network properties were analyzed in two separate operations. (B) A 3D test z-stack was made by combining three copies of the 2D test image,
flanked by an empty (black) image on the top and bottom. The upper panel shows 3D volumetric models made by iso-surface rendering (voxel size
x = y = z=1), and the lower panel display the 3D vectorized skeletons. Shape (C) and network (D) data of descriptors with a correspondent meaning in
2D and 3D are shown. The descriptor variables are further explained in Table 1.
doi:10.1371/journal.pone.0101365.g001

Table 1. Parameters of mitochondrial morphology.

Analysis modality Descriptor Comment

2D Shape analysis Count NROI Number of mitochondria in the ROI.

Area Am Area of mitochondrion (per object).

Am,ROI Total mitochondrial area in the ROI.

Perimeter Pm Length of the mitochondrial outline (per object).

Pm,ROI Total length of the mitochondrial outline in the ROI.

Formfactor (Roundness) F Calculated as (Pm
2)/(4?p?Am). Circular objects will have an F-value close to 1, other

shapes will have F.1.

3D Shape analysis Count NROI Number of mitochondria in the ROI.

Volume Vm Volume of mitochondrion (per object).

Vm,ROI Total mitochondrial volume in the ROI.

Surface area Sm Surface area of mitochondrion (per object).

Sm,ROI Total mitochondrial surface area in the ROI.

Sphericity factor SF Calculated as SF= (6?Vm)/(Dm?Sm), where Dm is the equivalent diameter. For a spherical
object SF is close to 1, all other shapes have an SF,1.

2/3D Network analysis Branch count NBR Number mitochondrial branches, i.e. detached filaments and filaments attached to
branch points.

Branch points NBP Number of points wherein three or more mitochondrial branches are attached.

Branch length LBR Length of the mitochondrial branch when unfolded to its maximal length (per object).

LBR,ROI Total length of the mitochondrial branches in the ROI.

Branch diameter DBR Mean diameter of the mitochondrial branch.

Branch volume VBR Volume of the mitochondrial branch (per object). Calculated as VBR = (p?DBR
2/4) ?LBR.

VBR,ROI Total volume of mitochondrial branches in the ROI.

End points NEP Number of branch endpoints (all objects)

2/3D Network - Shape Branch (filament) length per mitochondrion LBR,ROI/NROI

Integrative analysis Branch (filament) length per biomass LBR,ROI/Am,ROI (2D); LBR,ROI/Vm,ROI (3D)

Branch number per mitochondrion NBR/NROI

Branch number per biomass NBR/Am,ROI (2D); NBR/Vm,ROI (3D)

Branching point frequency - branch length NBP/LBR,ROI

Branching point frequency - biomass NBP/Am,ROI (2D); NBP/Vm,ROI (3D)

Legend: ROI, region of interest.
doi:10.1371/journal.pone.0101365.t001
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experiments. We used 2 thinning iterations to create the

topological skeleton, and 2 pruning iterations to remove small

extensions due to irregularities in the objects (i.e. noise such as

single-pixel bumps) but not significant parts of the structures. The

resulting mitochondrial skeleton was vectorized to identify and

count/measure branches (skeletal backbone), end points and

branch points as graphic vectors/points. This was also used to

measure distance map values (i.e. how far from the edge of the

object any pixel/voxel lies) in order to determine branch diameter

and volume. All these image operations are conventional and can

be applied in suitable image processing software. In Image-Pro

Plus, these operations have been integrated in a consecutive

manner in the built-in ‘‘NeuronAnalyzing’’ macro, which we

employed in this study.

Figure 2. Image optimization for mitochondrial segmentation in 3D z-stacks. (A) The images show all sections of an unprocessed (‘‘RAW’’)
z-stack of a HUVECexpressing mitoGFP. (B) The histogram shows the cumulative pixel fluorescence intensity in the individual z-stack sections (RAW).
The highest intensity column (section 8) is highlighted in white. (C) The effect of 3D blind deconvolution (‘‘Deconv’’) on the S/N ratio. Fluorescence
intensity was measured across the indicated line (upper panel) before and after 2, 4, 6, 8 or 10 deconvolution cycles. The figure shows z-stack section
8 (upper panel) and the associated line intensity diagrams (middle panel) derived after 0 (‘‘RAW’’), 4 (‘‘4*Deconv’’) and 10 (‘‘10*Deconv’’)
deconvolution cycles. The line intensity peaks and valleys identify mitochondrial objects/filaments and background, respectively. The intensities of
five selected peak and background pixels (numbered 1–5, middle panel), before and after 2–10 deconvolution cycles are displayed in the column
diagram (bottom panel). (D) Usefulness of Fast Fourier Transform (FFT) filtering following deconvolution. The images (upper panel) show z-stack
section 8 after FFT filtering using frequency domain area of interest (AOI) radius setting 10, 5 and 2 (including Hi-Pass filtering). The intensity profiles
across the same line (see above) are shown (middle panel), and the selected peak/background pixel intensities are plotted in the column diagram
(bottom panel) for comparison with the non-FFT filtered image (n, identical to ‘‘10*Deconv’’ in (C)).
doi:10.1371/journal.pone.0101365.g002
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Results

Analysis of the shape of synthetic objects in 2D and 3D
Our first objectives were to determine: (i) if the previously

described principles of 2D analysis [21,27] could be translated into

3D analysis, and (ii) if mitochondrial filament properties could be

quantified analogous to neuronal networks (see Materials and

Methods). To allow proper interpretation of the parameters

describing mitochondrial shape and network properties (‘‘descrip-

tors’’) a 2D test image was used. This image contained

mitochondria-like synthetic objects of relevant size (Fig. 1A). A
5-section z-stack was generated by layering of 3 copies of the 2D

image between an empty (black) image on the top and bottom of

the series (Fig. 1B). For the 2D image, descriptors of mitochon-

drial shape were quantified as previously described in detail [27].

For analysis of the 3D image, an iso-surface 3D (volumetric) model

was generated from the z-stack. In addition to the shape analysis,

the network analysis algorithm was used to skeletonize objects (in

2D and 3D), to perform vectorization, and to identify and quantify

branch properties, branching points and endpoints. To allow

faithful quantitative comparison of objects in the 2D and 3D test

images, we selected descriptors with a correspondent meaning in

2D and 3D (Table 1). Plotting the numerical value for each shape

descriptor and each object in the 2D and 3D image gave similar

results (Fig. 1C and D). In this sense, the area of each 2D object

(Am) was virtually identical with the volume (Vm) of the

corresponding 3D object (Fig. 1C; left panel). The 2D object

perimeter (Pm) and 3D object surface area (Sm) also gave similar

profiles (Fig. 1C; middle panel). Of note, an increase in length and

degree of branching of the test objects induced a greater increase

in Pm than in Sm. To assess the ‘‘complexity’’ of 2D objects we

analyzed the 2D formfactor (F), which is a measure of

mitochondrial length and degree of branching [27,33]. In the

3D image, the sphericity factor (SF) was used as an equivalent

measure of object complexity (Fig. 1C; right panel). F and SF gave

similar profiles when plotted with inverse scaling in the same

diagram (Fig. 1C; right panel). This is expected since there is an

inverse relationship between F and SF as descriptors of circular

Figure 3. Evaluation of FFT filtering for improving mitochondrial segmentation in z-stacks. A sample z-stack was acquired from a HUVEC
expressing mitoGFP (same as in Fig. 2). (A) The large image shows the highest intensity z-stack section (section 8) after 3D blind deconvolution, and
a selected region of interest (ROI) is indicated. The smaller images are magnifications of the ROI before (‘‘Deconv’’) and after FFT filtering (including
Hi-Pass filtering) with spectrum AOI radius set to 2, 5 or 10, as indicated (e.g. ‘‘FFT10’’). Each FFT filtered ROI-version was binarized (BIN) by selecting
the 20% brightest pixels (the corresponding grey tone threshold values are shown in parenthesis). (B) 3D volume models of the z-stack ROI were
generated and analyzed before and after FFT processing (spectrum AOI radius = 2, 5 or 10). The result after FFT filtering with AOI radius = 5 (‘‘FFT5’’) is
shown together with the non-FFT processed version (‘‘Deconv’’). Shape and network analysis was performed employing the same threshold values as
in (A). (C) Quantitative data from shape and network analysis in (B). Descriptor variables are explained in Table 1.
doi:10.1371/journal.pone.0101365.g003
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(2D)/spherical (3D) object properties (Table 1). Taken together,

the above results demonstrate that the shape/volume descriptors

can be used to discriminate between objects of different width,

objects with simple vs. complex morphologies, and circular (2D) vs.

spherical (3D) objects.

Analysis of the network properties of synthetic objects in
2D and 3D
To obtain topological information, network analysis was

performed on both the 2D and 3D test datasets (Fig. 1D &

Table 1). In case of filamentous objects the profiles of branch

length (LBR), number of branching points (NBP) and branch

diameter (DBR) were similar in the 2D and 3D case. Numerical

data for spherical/non-filamentous objects were only generated by

the 2D analysis protocol but not by the 3D analysis algorithm. The

latter was caused by the property of the 2D network rendering

procedure to generate small and branched structures that did not

properly reflect the original objects. Although unrepresentative

structures can be easily removed from the analysis using an object

filtering strategy (e.g. by discarding objects with a short branch

length), they were included here for comparative purposes. We

observed that the LBR and DBR descriptors allowed a logical

discrimination between objects of different filament length and

diameter, respectively (Fig. 1D; left and right panels). Quantifi-

cation of the NBP parameter yielded similar results for 2D and 3D

objects (Fig. 1D; middle panel).

Blind deconvolution improves the quality of quantitative
mitochondrial analysis
Confocal microscopy is widely used to acquire 3D image stacks

(z-stacks) of cells with fluorescently labeled constituents, including

mitochondria. The shape of the fluorescent objects in such images

will be blurred due to the point spread function (PSF) of the optics

(convolution), leading to difficulties separating nearby mitochon-

dria and their networks. In this sense, ‘‘deconvolution’’ is often

applied to remove systemic disturbances including haze, in order

to improve image contrast and object segmentation [43]. In this

study we performed blind deconvolution with an iterative and

constrained algorithm (SharpStack/AutoQuant) which repeats the

same computational operations in order to adapt itself to the real

PSF of the microscope system. Hence, this method is able to adjust

to the specific conditions and specimens, and is designed to

perform the best possible deconvolution without exceeding the

information available. Due to these capabilities, blind deconvolu-

tion (including the algorithm used in this study) has been

increasingly employed in cell imaging, and has proven useful in

studies of subcellular structures in various contexts [44,45]. Others

have confirmed that this blind deconvolution algorithm maintains

the linear relationship in object intensities and their relative

intensity changes, which validates the use in quantitative analysis

[46]. Here we investigated whether 3D blind deconvolution was

suited to optimize mitochondrial shape and network analysis. For

this purpose we imaged HUVECs that were retrovirally

transduced with a mitochondria-targeted variant of the green

fluorescent protein (mitoGFP), by confocal microscopy (Fig. 2A).
To prevent interference of mitochondrial movement during z-

stack acquisition cells were fixed using paraformaldehyde treat-

ment, which preserves well both cellular and mitochondrial

structure [32]. The signal-to-noise (S/N) ratio was evaluated

using the z-stack section displaying the maximal fluorescence

intensity (i.e. section 8; Fig. 2B). Repeated deconvolution cycles

increased the intensity difference between mitochondrial objects

and the background, as shown by the intensity plotted across the

indicated line profile (Fig. 2C; top and middle panel). Accord-

ingly, increasing the number of deconvolution cycles reduced the

background (non-mitochondrial) fluorescence intensity and in-

creased the peak (mitochondria-specific) signal intensities (Fig. 2C;
bottom panel with intensities of selected peak and background

pixels). Based upon the above analysis we used at least 8 cycles to

produce a deconvolved version of the image.

Fast Fourier transform filtering does not improve
mitochondrial analysis
FFT filtering has been employed to optimize fluorescence

images for segmentation of mitochondria [28]. Therefore we

determined how FFT filtering of the deconvolved z-stack (see

above) affected the S/N ratio. Frequency selection in the FFT

transformed image (frequency domain) was performed by defining

a circular AOI in the center of the spectrum. It was confirmed that

FFT filtering highlighted high-intensity (mitochondrial) objects

and flattened the non-mitochondrial (background) signal (Fig. 2D;

top and middle panel). Reducing the AOI radius from 10 to 5 to 2

resulted in a progressive increase in image contrast (Fig. 2D;

bottom panel). Next, we determined how FFT filtering affected the

quantitation of 3D mitochondrial structure by analysis of a region

of interest (ROI) within a deconvolved z-stack with and without

FFT filtering (Fig. 3A and B). The analysis revealed that although

FFT filtering apparently increased image contrast, its effects on

quantitative mitochondrial shape and network parameters were

only minor (Fig. 3C). However, careful inspection revealed that

FFT filtering somewhat affected the localization of branch points

in the mitochondrial network. Given the above results, we decided

not to include an FFT filtering step in the image quantification

algorithm.

Extracting 2D mitochondrial shape and network
parameters from confocal z-stacks
Next, we determined whether image deconvolution affected

quantification of mitochondrial shape and network properties. For

this purpose quantification was carried out on all signal-containing

sections in a ROI from a typical z-stack of mitoGFP expressing

HUVECs (Fig. 4A; ‘‘unprocessed (RAW)’’). Additionally, repre-

Figure 4. 2D and semi-3D analysis of mitochondrial shape and network properties in HUVEC z-stack. A sample z-stack was acquired
from a HUVEC expressing mitoGFP, and a region of interest (ROI) was selected (identical to the sample z-stack and the ROI shown in Fig. 3). (A) The
uppermost row shows the ROI sections from the unprocessed z-stack (‘‘RAW’’). Further, the ROI was analyzed after spatial filtering (‘‘Spatially filtered’’;
blue panels), as previously established for 2D mitochondrial analysis [27], or after 3D blind deconvolution as described in the current article
(‘‘Deconvolution’’; orange panels). 2D projections were made by averaging the three sections of highest intensity (‘‘Avg7–9’’), and by creating a
maximum intensity composite (MIC) of the three highest intensity sections (‘‘MIC7–9’’) or the entire z-stack (‘‘MICall’’). These are shown in the right
hand panels. Shape analysis (‘‘SHAPE’’; yellow panels) was performed after binarization and size filtering. The binarization threshold was fixed to
include the 20% brightest pixels in the highest intensity section (section 8). For the 2D projections, the threshold was set to include the 35% brightest
pixels in the Avg7–9 and MIC7–9 versions, and 40% for the MICall version. Network analysis (‘‘NETWORK’’; pink panels) was performed after
skeletonization and vectorization, using the same intensity thresholds as for binarization. (B) Section intensity profiles of the unprocessed (‘‘RAW’’),
spatially filtered and deconvolution processed z-stack ROIs, and the corresponding 2D projections. The resulting quantitative data of mitochondrial
shape (C) and network (D) parameters are shown (see Table 1 for explanations).
doi:10.1371/journal.pone.0101365.g004
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sentative 2D projections of the z-stack ROI were obtained by: (i)
averaging of the three sections of highest intensity (Fig. 4; ‘‘Avg7–
9’’), (ii) generating a MIC image of the three sections of highest

intensity (‘‘MIC7–9’’) and, (iii) calculating a MIC image using all

sections (‘‘MICall’’). For comparison, all images were processed in

two ways using: (i) the established spatial filtering 2D technique

(Fig. 4; ‘‘Spatially filtered’’; blue panels) developed for flat cells

with fluorescently labeled mitochondria [6,20,21,24,27,33,34,36–

40,47], and (ii) the deconvolution approach presented in the

current paper (Fig. 4; ‘‘Deconvolution’’; orange panels). Following

processing, mitochondrial objects were segmented/binarized (see

also the next section) and size-filtered (Fig. 4; ‘‘SHAPE’’; yellow

panels). Similarly, mitochondrial network properties were ana-

lyzed by skeletonization and vectorization (Fig. 4; ‘‘NET-

WORK’’; pink panels). Relative to the unprocessed situation,

the average object pixel intensity in each section was increased by

spatial filtering but not by deconvolution (Fig. 4B). However, this

differential effect on intensity did not significantly influence the

quantified shape (Fig. 4C) and network properties (Fig. 4D).

Visual inspection of the average (Avg7–9), MIC and MICall

images revealed that these contained a higher amount of

mitochondrial pixels, and thus more 2D details, compared to the

single highest intensity section within the z-stack (section 8).

Mitochondrial objects in these three 2D projections also displayed

a higher connectivity as indicated by the relatively low NROI value,

the relatively high value of Am,ROI, and the increased values of the

network parameters (LBR,ROI, NBR, and NBP). These results confirm

(i) that deconvolution yields similar results as the established 2D

spatial filtering method when analyzing mitochondrial properties

in 2D image sections from confocal z-stacks, and (ii) that

mitochondrial network characteristics are better displayed and

analyzed in representative 2D projections of the z-stack, compared

to single z-stack sections.

Influence of threshold settings in mitochondrial 3D
analysis
To highlight mitochondrial objects, microscopy images were

binarized using an intensity-based threshold operation. Obviously,

setting a certain threshold intensity value can influence subsequent

3D analysis of mitochondrial shape and volume properties. The

impact of threshold intensity was therefore evaluated on a z-stack

with mitoGFP expressing HUVECs that was processed using

spatial filtering (see previous section) or by deconvolution and

subsequently analyzed (Fig. 5A). To allow proper comparison,

intensity thresholds were set in such a way that they included a

specific fraction (10–35%) of the brightest pixels in the highest

intensity section of the z-stack (i.e. section 8). Lowering the

threshold intensity level (equivalent to including a higher fraction

of pixels), reduced the value of the object count parameter (NROI),

increased object-size parameters (Vm,ROI, DBR), and increased

filament connectivity parameters (LBR,ROI, NBR) (Fig. 5B and C).
It was also observed that threshold adjustments affected mito-

chondrial segmentation and shape/network parameters less

dramatically in the deconvolved z-stack than in the spatially

filtered z-stack. For instance, NROI remained relatively stable

(maximum 2 fold change) in the deconvolved z-stack when using a

threshold between 20%–35%, whereas this parameter changed

more than 20 fold for the spatially filtered z-stack in the same

threshold intensity range. Similarly, LBR,ROI increased almost 5

fold in the spatially filtered dataset in the 20%–35% threshold

range, compared to 1.4 in the deconvolved data. In the spatially

filtered z-stack, inclusion of more pixels did not affect DBR, as after

deconvolution; but low thresholds (30% and 35%) introduced a

significant amount of noise and thereby an increase in NROI. When

a 20% threshold setting was applied, similar mitochondrial shape/

network data were obtained for the spatially filtered and

deconvolved z-stack.

An automated algorithm for 2D and 3D analysis of
mitochondria in HUVECs expressing mitoGFP
Based on the results obtained so far, we designed an image

processing and analysis algorithm for 2D and 3D analysis of

mitochondrial shape and network properties using confocal z-

stacks (Fig. 6A). The algorithm applies several modules that need

to be tuned carefully based on the qualities of the dataset/

experiment, and combined to enable an automated sequence of

processing and analysis steps. In brief, confocal z-stacks (‘‘RAW’’)

are processed by 3D blind deconvolution (10 cycles; as described

in Materials and methods). Optionally, the contrast may be

stretched e.g. by employing a minimum intensity threshold to

remove low intensity background noise and a maximum intensity

limit, before the gray values of the pixels are reassigned to range

from 0 to 255 (true for a 8-bit image) (as performed in Fig. 6 and

Video S1–3). Further processing and analysis is twofold: (i) To
enable 2D analysis, the z-stack is projected into a representative

2D MIC image (see previous sections). 2D shape analysis is

performed subsequent to binarization of the MIC image, as

previously described [27]. For 2D network analysis, the MIC

image is skeletonized, vectorized and analyzed using the same

threshold level as for the binarization. (ii) To enable 3D analysis,

a volumetric model of the z-stack is created, and an iso-surface is

added to allow mitochondrial shape (3D) measurements. In

parallel, 3D network analysis is performed using the same

threshold intensity level as for the iso-surface.

Integrative shape and network analysis of filamentous
and non-filamentous HUVEC mitochondria
To test the performance of the method we analyzed mitochon-

dria displaying two characteristic phenotypes, i.e. filamentous vs.

non-filamentous mitochondria. The z-stacks were acquired from a

mitoGFP expressing control HUVEC with filamentous (‘‘Nor-

mal’’) mitochondria and a metabolically stressed HUVEC

(‘‘Stressed’’) exposed to the mitochondrial complex I inhibitor

rotenone (ROT; (250 nM, 3 days); Fig. 6B). The subsequent

analysis of 5 perinuclear ROIs (of equal size) from each condition

included comparison both of mitochondria with similar (i.e. in the

same cell) and non-similar morphology (i.e. normal vs. stressed

Figure 5. Threshold setting for mitochondrial segmentation in a HUVEC z-stack. A sample z-stack was acquired from a HUVEC expressing
mitoGFP, and a region of interest (ROI) was selected (identical to the sample z-stack and the ROI as shown in Fig. 3). (A) The images show maximum
intensity composites (MIC) of the entire unprocessed sample z-stack (‘‘RAW’’) and a magnification of the ROI. The figure also displays the comparative
strategy to evaluate effects of spatial filtering (‘‘Spatial filtering’’; blue panels) and deconvolution (‘‘Deconvolution’’; orange panels) for the purpose of
3D mitochondrial segmentation and analysis. (B) 3D models of the ROI were generated after spatial filtering, as previously established for 2D
mitochondrial analysis [27], and after deconvolution as described in the current paper. The percentages reflect the segmentation thresholds (grey
tone values) defining the 10%–35% (as indicated) brightest pixels in the highest intensity section (section 8). The smaller 2D images indicate the
effects of threshold setting (MICs created from the processed z-stacks). 3D volume and network models are shown for three of the studied intensity
thresholds (10%, 20% and 35%). (C) The diagrams show the quantified data from (B). Descriptor variables are explained in Table 1.
doi:10.1371/journal.pone.0101365.g005
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mitochondria), and allowed evaluation of the analytical outcome

relative to visual observation. The axial intensity profile revealed

that mitochondria were not similarly localized in the two different

cells (Fig. 6C). A higher number of z-sections were necessary to

cover the entire depth of the stressed cell, demonstrating that this

cell had rounded up and become ‘‘thicker’’. 2D analysis was

performed on the z-stack section with the highest intensity and the

z-stack MIC image (Fig. 6D). Data from the MIC image were

used for comparison with 3D data. For 3D analysis, volumetric

representations were generated for each ROI (e.g. Fig. 6E).

2D shape analysis (MIC images) demonstrated a 3-fold increase

in NROI in the stressed cell compared to the normal cell, whereas

3D analysis did not suggest a significant effect (Fig. 7A).
Furthermore, 2D shape analysis (MIC images) demonstrated a

significant decrease in Am,ROI and Am in the stressed cell. However,

3D analysis revealed no change in the corresponding volumetric

parameters (i.e. Vm,ROI and Vm) although the mean value of Vm

displayed a lower standard deviation (SD). The latter is compatible

with mitochondria having a more uniform size distribution in

stressed cells, supported by the smaller mean and SD value of Sm.

A similar reduction in mean value was also observed for Pm (2D

MIC image). Although the Pm,ROI calculated from the 2D MIC

image was unchanged in stressed cells its corresponding 3D

parameter (Sm,ROI) was reduced. Calculation of the Pm/Am and Sm/

Vm ratios supports the visual observation that mitochondrial shape

is changed in the stressed situation. Similarly, F and SF both

indicate that mitochondria were more circular (2D) or spherical

(3D) in the stressed cell.

The 2D and 3D quantification of mitochondrial network

properties discriminated well between the two mitochondrial

phenotypes in normal and stressed cells (Fig. 7B). In this sense,

NBR, NBP and LBR,ROI were all significantly reduced in the stressed

cell. However, the total branch length per ROI (LBR,ROI) was only

about one third in 2D MIC analysis compared with the 3D

analysis, in both cell types. The difference was significantly less for

the two branching descriptors (NBR, and NBP). The mean value of

LBR (2D MIC image and 3D) was not changed in the stressed cells.

Although the total mitochondrial branch volume (VBR,ROI) was

reduced in the stressed cell, the ‘‘thickness’’ (DBR) and size (VBR) of

the mitochondrial branches were increased. In summary, both the

2D and the 3D analysis clearly demonstrated significant reduction

in the number, length and branching points of mitochondrial

filaments in the stressed cell compared to the normal cell.

In order to maximize the amount of information, we integrated

the data from mitochondrial shape and network analysis by

calculating the following derived parameters (Table 1): (i) the
branch length per mitochondrion (equaling LBR,ROI/NROI; calcu-

lation possible in 2D and 3D), (ii) the branch length per biomass

(equaling LBR,ROI/Am,ROI in 2D and LBR,ROI/Vm,ROI in 3D), (iii) the
number of branches per mitochondrion (equaling NBR/NROI), (iv)
number of branches per biomass (equaling NBR/Am,ROI in 2D and

NBR/Vm,ROI in 3D), (v) branching point frequency relative to

branch length (equaling NBP/LBR,ROI), (vi) branching point

frequency relative to biomass (equaling NBP/Am,ROI in 2D and

NBP/Vm,ROI in 3D) (Fig. 8).

The overall effects of stress on the derived parameters were

similar for 2D and 3D analyses. The ratios calculated relative to

biomass (Am,ROI in 2D and Vm,ROI in 3D) were found to be

particularly consistent and of relatively low variability both in 2D

and 3D analysis. In the 3D case, this was also true for the other

indexes. Taken together, calculation of ratios that combine

parameters of mitochondrial shape and network properties

revealed that (the) mitochondria (l) (network) consisted of fewer,

shorter and less branched filaments in the stressed cell. This

supports the conclusion that mitochondrial morphology changes

from a reticular state to circular/spherical organelles in the

stressed cell.

Discussion

Image-based 2D analysis of mitochondrial objects has proven to

be a valuable strategy in flat cells such as primary human skin

fibroblasts with an axial dimension #3 mm [6,20,24,27,33–40]. In

this study, we evaluated methods of 2D vs. 3D analysis in relatively

thick cells (HUVECs), and compared the quantitative outcome.

Furthermore, we established and validated a strategy for

integrated quantification of mitochondrial shape and network

properties in adherent cells with a non-flat morphology; for

applications both in 2D and 3D analysis. The method combines

well-established image processing operations to allow segmenta-

tion and detailed analysis of mitochondrial objects. Results from

intact cells demonstrated that this approach provided new

information about mitochondrial morphology and topology.

Performance of deconvolution and FFT filtering in 2D
and 3D analysis
The performance of deconvolution and/or FFT filtering was

evaluated in prototypic non-flat cells (HUVECs) expressing

mitoGFP targeted to the mitochondrial matrix of cells. Given

the time required for acquisition, cells were fixed to prevent

mitochondrial movement. We observed that 3D deconvolution

significantly improved the segmentation of mitochondrial objects

in the z-stack, and thereby the quality of the shape and network

analysis. The characteristics of the z-stack fluorescence intensity

histogram were less affected by deconvolution when compared to

the spatial filtering procedure. However, subsequent 2D quanti-

fication of mitochondrial parameters in the individual z-stack

sections yielded similar results for deconvolved and spatially

processed images. In the 3D case, deconvolution allowed a more

robust mitochondrial segmentation and analysis. These results

demonstrate that image optimization by deconvolution constitutes

a valid alternative to the 2D spatial filtering strategy prior to 2D

Figure 6. Comparative 2D/3D mitochondrial analysis to detect effects of metabolic stress in HUVECs. Mitochondrial morphology was
studied in normal and metabolically stressed (250 nM rotenone, 3 days) HUVECs expressing mitoGFP. (A) The figure shows a schematic overview over
the procedure established to analyze mitochondrial shape and network properties in 2D and 3D. The boxes represent image outcome, and the
arrows indicate mathematical operations. ‘‘RAW’’, unprocessed z-stack; ‘‘3D BD’’, z-stack 3D blind deconvolution (10 cycles); ‘‘2D BIN’’, binarized 2D
image (intensity threshold); ‘‘2D Network’’, skeleton based on the 2D image; ‘‘3D Surface’’, iso-suface model (intensity threshold); ‘‘3D Network’’,
skeletonized 3D model. The intensity thresholds were determined to give the best reflection of the source image. (B) The images are maximum
intensity composites (MICs) of the processed z-stacks from an untreated HUVEC (‘‘Normal (CTR)’’) and a ROT-treated stressed HUVEC (‘‘Stressed
(ROT)’’). The z-stacks were processed by deconvolution and a contrast stretch (as described in the current article). Five different regions of interest
(ROIs; numbered 1–5 in the images) were selected in each cell. (C) The histograms show the intensity profile of the two z-stacks. The highest intensity
sections are shown as white columns. (D) 2D analysis was performed on the highest intensity frame, and the z-stack MIC. The panels show shape and
network representations of one ROI selected from each cell. (E) 3D shape and network models were generated and analyzed from each of the ROIs in
both cells. Here, the 3D models of one ROI in each cell type are shown.
doi:10.1371/journal.pone.0101365.g006
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analysis. In contrast, our results revealed that 3D deconvolution is

the preferred strategy for z-stack processing prior to 3D analysis.

FFT filtering has been successfully applied in other studies that did

not use deconvolution [28]. However, we did not include FFT

filtering in our image processing scheme since it did not (further)

improve the analysis.

Figure 7. Shape and network analysis of normal vs. stressed HUVEC mitochondria. The images from the study in Fig. 6 were analyzed
with respect to 2/3D ‘‘SHAPE’’ (A) and ‘‘NETWORK’’ parameters (B). The positions of the different ROIs are shown in Fig. 6B. The data resulting from
2D analysis of the highest intensity frame (‘‘2D single sect.’’) and the z-stack MIC (‘‘2D MIC’’) where compared with the 3D data (‘‘3D volume’’). The
descriptor variables are explained in Table 1. *p,0.05 compared to CTR, Student’s t-test, two-tailed.
doi:10.1371/journal.pone.0101365.g007
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Integrative analysis of filamentous vs. non-filamentous
HUVEC mitochondria
The developed 3D protocol was benchmarked by comparing

mitochondrial shape and network parameters between z-stacks of

filamentous (‘‘Normal’’) and non-filamentous (‘‘Stressed’’) HU-

VEC mitochondria. We also tested several semi-3D strategies by

collapsing multiple z-stack sections into a representative 2D image.

Clearly, such an approach is technically less demanding and time-

consuming than full-scale z-stack 3D analysis. The difference

between the MIC projection of all the sections compared with the

two 3-sections projections (MIC and Avg) was relatively small. It

was, however, evident that some features were lost or rendered in

the projected images compared to the 3D analysis. Obviously,

projecting an entire z-stack into a single 2D image can lead to

excessive merging/shielding of objects, which is undesirable.

Analysis of the single highest intensity z-stack section was less

reliable compared to the MIC image when examining mitochon-

drial morphology in normal and stressed cells. This means that

although z-stack projection approaches may be employed to study

certain aspects of mitochondrial morphology, this analysis should

preferably be supported by complementary methods [6]. In this

study, we focused on comparing data from the 2D MIC image

with results from 3D volume analysis. Although the quantified

data were relatively consistent between the different ROIs of the

same cell, some variation was observed, such as for ROI 1 of the

normal cell (Fig. 7). For this particular ROI, the deviation may be

explained by its peripheral position near the border of the

mitochondrial reticulum, whereas the other ROIs included more

central parts and yielded more similar quantitative data (Fig. 6B).

When applicable, the internal variation within each ROI was also

evaluated.

Compatible with visual observations, both 2D and 3D analysis

indicated a shift from filamentous network morphology to circular

(in 2D) and spherical (in 3D) organelles. This effect was

particularly clear from the network analysis, since both 2D and

3D descriptors indicated a reduction in the number of mitochon-

drial branches (NBR), mitochondrial branching points (NBP), and

total mitochondrial branch length (LBR,ROI). 2D mitochondrial

shape analysis suggested that stressed cells contained a higher

number (NROI) of smaller (Am) and more circular (F) mitochondria,

accompanied with a loss in mitochondrial biomass (Am,ROI). This

indicates that mitochondrial fragmentation and removal occurred

in the stressed cells. In contrast, 3D mitochondrial shape analysis

revealed a morphological change towards more spherical organ-

elles (SF) without alterations in volume of individual mitochondria

(Vm) and total mitochondrial biomass (Vm,ROI). This suggests that

mitochondria are swollen but not fragmented in the stressed cell,

supported by the increase in mitochondrial branch volume (VBR).

The decrease in mitochondrial number (NROI) suggested by the

2D analysis, in contrast to 3D volume analysis, was most likely due

to axial branch/object crossing between individual optical z-

sections leading to artifactual object merging in the 2D MIC

projection (Fig. 7A). This phenomenon will predominantly affect

elongated filamentous mitochondria when the 2D projection (i.e.

MIC) is created from the z-stack, thereby leading to an erroneous

apparent reduction in NROI. Another reason why Am (2D), but not

Vm (3D), was affected, may relate to the fact that the stressed cell

was ‘‘rounding’’ up (i.e. became ‘‘thicker’’). The latter will alter the

Figure 8. Integrative network/shape analysis of normal vs. stressed HUVEC mitochondria. Based on the analysis performed in Fig. 6 and
Fig. 7, integrative ‘‘NETWORK/SHAPE’’ indexes were calculated as described in Table 1.
doi:10.1371/journal.pone.0101365.g008
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axial mitochondrial distribution, and thereby increase the merg-

ing/shielding of organelles in the collapsed 2D MIC image. Our

observation that VBR and VBR,ROI were differently affected is likely

explained by the fact that fewer mitochondrial branches were

detected and measured in the stressed cell, which reduces total

branch volume (VBR,ROI) but not necessarily branch mean value

(VBR). The same reason is valid for explaining the reduction in total

branch length (LBR,ROI), but not the branch mean value (LBR).

By comparing two characteristic mitochondrial phenotypes (i.e.

filamentous vs. non-filamentous mitochondria) we were able to

judge in detail the implications of the different processing steps for

the mitochondrial quantification. Of note, the effects of ROT on

mitochondrial morphology seem to depend on cell type, ROT

concentration and exposure time [21,22]. Hence, additional

systematic studies are required to characterize in detail the

biological effects of ROT in HUVECs, including statistical

analysis addressing heterogeneity in the cultures.

Summary and conclusions
This study demonstrates that both 2D and 3D analyses can be

employed to discriminate and characterize changes in mitochon-

drial shape and network properties. In this sense, both types of

analysis supported a change from a filamentous to a non-

filamentous mitochondrial morphology in normal vs. stressed

HUVECs, in agreement with visual observations. However, 2D

and 3D analysis led to contradictory conclusions regarding

mitochondrial fragmentation. The results confirmed that 3D

analysis is the preferred method in studies of mitochondria in non-

flat adhering cells. Integrative analysis of object shape and network

properties was found to provide new insight into important aspects

of mitochondrial dynamics. This strategy may potentially be

adapted to other biological contexts and imaging modalities in

order to gain new knowledge about mitochondrial (patho)

physiology.

Supporting Information

Video S1 3D volume model of endothelial mitochon-
dria. The video shows a 3D volume representation of

mitochondrial fluorescence in the z-stack analyzed in Figure 2, 3

and 4, which was acquired from a mitoGFP expressing HUVEC

by confocal microscopy. The z-stack was processed by 3D blind

deconvolution and a contrast stretch (as described in the article).

(WMV)

Video S2 3D surface (shape) model of endothelial
mitochondria. The video shows a 3D model of the mitochon-

drial surface in the same z-stack as Video S1 (i.e. a mitoGFP

expressing HUVEC). An intensity threshold value (surface value)

was applied to assign the surface.

(WMV)

Video S3 3D network model of endothelial mitochon-
dria. The video shows a 3D model of the mitochondrial network

in the same z-stack as Video S1 (i.e. a mitoGFP expressing

HUVEC). The mitochondrial filaments were skeletonized and

vectorized, and mitochondrial branches (green branches), branch-

ing points (purple dots, 3 branches; red dots, 4 branches) and

endpoints (green dots) were identified.

(WMV)
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