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Abstract

This master’s thesis is about controlled drug release, which is a relatively
new area of mathematical modelling. In this thesis there have been two
major focuses. The first is to further understand the model for drug release
from collagen matrices developed in [14], by solving it with a different nu-
merical scheme, and the second to develop a new model based on a different
geometry. Both models are based on mass conservation and Fick’s law, and
are therefore possible to compare. The two models have been discretized
and implemented, and the results compared to experimental data.
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Introduction

There are several different ways to insert a drug into the body. The best
way depends not only on the drug itself, but also whether we want it to
be released fast or slowly. For a fast drug release there are pills and tablets
available if the drug can be absorbed in the digestive system and transported
in the blood stream. If not, there are lotions that transport drugs through
the skin. However, in order to have a controlled drug release, or sometimes
to reach deep tissues, we need implants to be inserted into the body, remain
stationary and release drugs gradually. These implants are known as drug
deliver systems. They consist of a skeleton, known as the matrix, which traps
the drug, and the drug itself. Figure 1 shows a matrix, its fiber structures
and the trapped drug as red dots.

There are two kinds of drug delivery systems; degradable, made for instance
of collagen, and non-degradable, made for instance of polymer nanocom-
posites [4]. Non-degradable drug delivery systems will need to be removed
after the drug is released, because they do not naturally occur in the body,
and they may therefore cause side-effects or be repelled. The degradable
ones will not need removal as they will be broken down. For a degradable
drug delivery system the risk associated with the matrix itself is small be-
cause the matter making the matrix is known to the body. However, it will

Figure 1: Collagen matrix with trapped drugs [14]
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be more difficult to predict the release, which requires a more complicated
mathematical model. In a non-degradable matrix the drug-release mostly
happens due to diffusion, but in the degradable ones, the process is more
complicated.

As the matrix is inserted into the body, it will absorb fluids from its sur-
roundings. During this process the drug is released by diffusion. Simulta-
neously, the enzyme collagenase starts to break down the collagen. This
enzyme is found everywhere collagen is found, which implies that the ma-
trix should be inserted somewhere collagen naturally occurs. Collagenase
continues to break down the collagen, which in turn releases more of the
drug. This is the main cause of the drug release. When modelling this
release, it can be argued that the two processes happen on a very different
timescale. When the implant swells, only very small amounts of collagen
is broken down, and after the matrix is fully swollen, there is hardly any
diffusion.

Collagen matrices are a good degradable drug delivery system, because col-
lagen is the main component in our connective tissue. This is the tissue
that supports, connects or separates different kinds of tissues and organs
in the body [9]. The body can also use the added collagen as it has pos-
itive effects on tissue regeneration. This is for instance good in the case
of tumours, infections or formation of new tissue [12]. Collagen is a well-
known and common substance, which has the added benefit that there has
already been done a lot of research on it. Therefore a lot of its properties
are known, and experiments will only be needed on the drug delivery itself.
It is also cheap and easily accessible, since it is a leftover from the leather
industry.

However, considering that experiments, both in the laboratory and on hu-
mans, are time-consuming and can be expensive, mathematical modelling
of the release saves both time and money. Both the swelling and the degra-
dation of the matrix can be modelled, but as they are on very different time
scales, they may be modelled separately. There were many attempts to
model drug release from collagen matrices, see e.g. [9, 12, 18, 17], but most
of the papers so far do not properly include the effects of the evolving mi-
croscale. This was done for the first time in [14] for a grain geometry. This
thesis continues the work in [14] by considering a channel geometry.

In this thesis we develop a new mathematical model for drug release from
enzymatically degradable collagen matrices, which properly includes the ef-
fects of the evolving microstructure. The model is done for a simplified
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geometry, e.g. a thin channel geometry. The model consists of a system
of coupled partial and ordinary differential equations. Due to its complex-
ity, the system has no known analytical solutions and therefore a numerical
solution is needed. We will use the multipoint flux approximation method
(MPFA) for the discretization in space and Euler’s method for the temporal
discretization. Numerical results based on the new mathematical model will
be presented and compared with real data. A good correlation between the
numerical and experimental results is observed, which sustain the developed
model.

This thesis is structured as follows.

Chapter 1 concerns collagen and its properties giving some background in-
formation about collagen itself and why we want to use collagen implants
for controlled drug release.

In the second chapter we focus on the mathematical modelling. The grain
model, based on [14] will be described, and the new channel model will
be derived from microscale and upscaled. There is also a comparison be-
tween the equations in the two models, where we look at how changing the
geometry changed the sets of equations.

The third chapter is about the implementation of the equations. This also
includes background theory on the methods used to discretize the equations.
The implementations have been done in MATLAB, and there will be a de-
scription of how the sets of equations were adapted to be implemented.

Chapter 4 contains the results. These include convergence analysis from
developing the programs, some stability tests and comparison between the
numerical solutions and experimental data. Some of the experimental data is
from [10, 9] and some from experiments we performed in October 2013.

The last chapter is devoted to conclusions and future work.



Chapter 1

Collagen based drug delivery
systems

This chapter will be about drug delivery systems based on collagen for con-
trolled release. We will look at the properties of collagen, and what makes is
a good system for controlled drug release, as well as the devices themselves
and the challenges connected to the research. Finally, we will give a quick
overview of the experiments that we performed in October 2013.

1.1 Collagen

Collagen is the most common protein in the human body. At least 30 % of
the protein is collagen and it is proposed to be a key structural component of
load-bearing tissues, which includes bones, tendons and ligaments. Collagen
is also found in the skin [5]. It is predominantly located in the extracellular
matrix, which is the fluid between the cells. In the skin, more than 50 %
of the extracellular protein consists of collagen, and for tendon and bone, it
is more than 90 % [5, 7, 15]. The collagen spectrum ranges from tendons
to placental membranes to the cornea. Hence, different collagen types with
different properties, like mechanical strength and elasticity, are necessary in
the various types of connective tissue [6, 7].

There is no proper definition of collagen, but it comprises a family of ge-
netically distinct molecules. These have a unique triple-helix configuration
in common. These helices consist consist of long chains of different amino

4
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acids. Disparities of collagen types can be due to variation in the length of
the helix, as well as the size of non-helical areas within it [6, 7, 15]. These
areas vary from almost none (4 % for collagen I) to more than 90 % (for
collagen XII). The helix is made of three polypeptide chains, referred to as α-
chains, and it is the composition of these chains that determine the collagen
type. Currently, at least 28 different types of collagen are known [15]. The
predominant type of collagen is the type 1-collagen, which amongst others
is found in skin, tendon, bone and large vessels. It consists of two identical
α1(I)-chains and one α2(I)-chain with a different amino acid composition,
or in some rare cases three α1(I)-chains [7]. Because it is the most common
type, it is the type mostly used for research, and the one used here.

Collagen is insoluble in organic solvents, and only a few percent of the total
collagen is soluble in water [6]. This is why the implants need to be inserted
into the body somewhere collagen naturally occurs. As we have seen, this
includes a lot of different tissues, which makes collagen well suited for these
kinds of implants.

1.1.1 Cross-linking

Cross-links in collagen are links between the α-chains, which makes the
molecule more stable and difficult to degrade. These occur naturally both
intra- and intermolecularly and are assembled within the non-helical areas
of the molecules. They can dwindle away by acidic reactions, but new cross-
links can be introduced in different ways [6]. Cross-linking a collagen matrix
has the purpose of slowing the degradation, so the matrix will not crumble
as fast. Because collagen-implants are used for controlled drug release, the
ability to slow the process down can be useful. Changing the molecular
structure of the collagen does, however, mean that there needs to be done
new experiments, and the mathematical model needs to be altered, as this
is very new with regards to drug release.

There are two ways to cross-link a collagen molecule; chemically or enzy-
matically. Chemical cross-linking will be badly solvant in water, and will
therefore need to be solved in something else to react. This raises toxico-
logical concerns, and both the chemicals and their solvents will need to be
removed from the body [7]. Enzymatic cross-linking have very few toxicolog-
ical concerns, because the cross-linking products are activated by enzymes
that will be washed away before the implants are inserted. The cross-linked
collagen used for the experiments in this thesis has been cross-linked by a
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group of enzymes called tyrosinases. These catalyse the oxidation of tyrosine
residues to dopaquinones, which makes the matrix stronger. The tyrosinases
exist in higher plants, animals and microorganisms and were recognised for
their ability to cross-link proteins, and specifically collagen, already in the
1960‘s. This work was recently confirmed and specified with data obtained
from modern techniques, [6], which makes it a good choice for our enzymat-
ical cross-linking.

1.2 The device

The collagen implant, often called a minirod, is made by homogenizing col-
lagen and the drug we want to trap. Higher weight drugs, such as proteins
or polysaccharides, are commonly used [10]. This mix is made into the
minirod, formed as a cylinder, which is then inserted into the body. There
are many uses for controlled drug delivery, ranging from treatment of cancer
and diabetes to contraception and vaccination [10].

The challenges arise when we want to optimize the drug release. There
are many factors that influence the process, both the shape of the minirod,
whether the collagen is cross-linked or not and how much drug it contains.
From a mathematical point of view, we want to model how quickly the
collagen is degraded, and how fast the drug is released. However, due to
concurring processes, this is difficult. There are also a lot of parameters,
and although some can be determined experimentally, some will have to be
fitted. The goal is to have as few parameters as possible fitted, and we hope
that our new model will have fewer parameters that need fitting than the
model from [14].

1.3 Experiments

During my stay with the Ludwig-Maximilians University of Munich, we did
new experiments on the minirods. These were performed both with non-
cross-linked collagen and cross-linked collagen. We did some short-term
measuring of the collagen degradation that was used to help determine a
new set of reaction rate constants. After I left, Madeleine Witting contin-
ued experimenting, and in combination with the experiments we performed
together was able to give me a set of new parameters to use for my simula-
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tions. There are still some experimenting to do, as we did no experiments
on the release of drug, only the collagen degradation. However, earlier ex-
periments suggest that the drug release as well as the collagen degradation
is slowed down when the collagen is cross-linked.

These systems are very promising and their optimization is the subject of
current research. As applied mathematicians we try to contribute through
mathematical modelling and numerical simulation to the understanding and
eventually the optimization of these systems.



Chapter 2

Mathematical model

This chapter will provide the mathematical background for the model, as
well as explain the mathematical equations we will use to model the con-
trolled drug release. The background consists of the equations for flow
in a porous media on a small scale and the model for the chemical reac-
tions. As this thesis uses two different mathematical models, they will be
explained separately at the end of the chapter and then be compared to each
other.

2.1 Flow in porous media

A porous medium is a material that contains pores, also known as voids. At
least some of the pores are connected, which allows a fluid to flow through
them. The skeletal part is often called a matrix, but we will avoid using
that term in this thesis. This is due to the way the word matrix is used
in controlled drug release research. The drug deliver matrix is the whole
system, both the skeletal part and the fluid. However, since the collagen
skeleton is a porous medium, we can use the equations associated with this.
In our case, we will use mass conservation and Fick’s law to find the diffusion
and transport equations.

The equations for a single-phase flow in a porous media is based on the
principle that the flow is conserved. In this section we will assume that the
fluid, either liquid or gas, is in one homogeneous phase. This allows us to
consider the fluid as only one component.

8
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2.1.1 Mass conservation

The main principle for modeling flow and transport in porous media, and
thus also in the minirod, is the principle of mass conservation. It comes from
the conservation laws, which states that a physical quantity, in our case mass,
is preserved in a closed system. That is, the change of mass inside a volume
has to be equal to the amount of mass that enters or leaves the volume. We
will derive the mass conservation equation based on [1].

For the conservation equation we will need four properties. The first is the
porosity, φ, of the solid phase, which is given by

φ =
pore volume

total volume
. (2.1)

For the fluid there are three properties to be considered, density, ρ, volume
flux, u, and source density, Q. The density is given by

ρ =
mass

volume
= [kg/m3]. (2.2)

A flux measures how much of something that flows through an area during
a certain time interval. That is, a flux is any quantity that is defined on a
“per area” and “per time” basis. The volume flux is therefore

u =
volume

time · area
= [m3/(s ·m2) = m/s], (2.3)

which is the volume that flows through an area per time interval. The last
quantity to be defined is the source density which is mass per volume per
second

Q =
mass

time · volume
= [kg/(s ·m3)]. (2.4)

To derive the mass conservation equation, we start with an arbitrary domain
as shown in fig. 2.1. Inside this volume we can have different substances,
such as collagen, drug or enzyme. The concentration, or volume density, of
a matter is given by its density times the porosity of the solid. Then∫

Ω
φρ dV, (2.5)

gives the mass inside Ω. Furthermore,

∂

∂t

∫
Ω
φρ dV, (2.6)
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Ω ∂Ω

n

Figure 2.1: A domain Ω with boundary ∂Ω and outward unit normal n.

gives the change in mass over time. For this derivative to be something else
than zero there has to be a flux in to or out of the domain Ω, or a source or
sink inside it.

The net flux of the species over the boundary ∂Ω is given by∫
∂Ω

(ρu) · n dS. (2.7)

By letting Q denote the inner source density, the total production (or de-
struction) is given by ∫

Ω
QdV. (2.8)

From the mass conservation principle, the integral form of the mass conser-
vation equation becomes

∂

∂t

∫
Ω
φρ dV +

∫
∂Ω

(ρu) · n dS =

∫
Ω
QdV. (2.9)

By using the divergence theorem [2], the second term can be changed to∫
∂Ω

(ρu) · n dV =

∫
Ω
∇ · (ρu) dV, (2.10)

where ∇ · (ρv) is the divergence of the flux density ρv. In the first term,
we can differentiate through the integral, that is taking the derivative inside
the integral [2], to get

∂

∂t

∫
Ω
φρ dV =

∫
Ω

∂

∂t
(φρ) dV. (2.11)

Equation (2.9) can then be rewritten as∫
Ω

(
∂

∂t
(φρ) +∇ · (ρu)−Q

)
dV = 0. (2.12)
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The domain Ω is arbitrary, that is eq. (2.12) has to hold for all possible
choices of domain. Thus, it can not be Ω that is making the integral 0, and
the integrand can be removed such that the equation becomes

∂

∂t
(φρ) +∇ · (ρu) = Q. (2.13)

This is the general form of the mass conservation equation.

2.1.2 Diffusion equations

We will also have mass conservation equations for species in the different
phases in the pores. In this section we will find the diffusion equations based
on [3, 16]. Letting u = u(x, t) define their concentration at position x and
time t, their mass conservation equation can be given as

∂u

∂t
+∇ · J = Q, (2.14)

where J = J(x, t) denotes the flux over the boundary of the domain. This
flow can either be due to diffusion, transport, or a mixture of both.

Diffusion is the spreading due to molecular movements. On a molecular
level, this is a continuous process. Physically, it can be considered a result
of the random walk of the diffusing particles. It can be illustrated by a cup
of tea. Initially all the colour and flavour of the tea exist inside the tea bag.
However, as the particles diffuse in the water, they will be randomly and
uniformly distributed in the cup.

On a higher level than the molecular, the diffusion happens from areas of
high concentration to areas of lower concentration. Fick’s first law states
that the diffusion is proportional to the negative gradient of concentration.
In equation form, this can be written as

J = −D∇u, (2.15)

with D as diffusion coefficient.

If the flux only happens due to diffusion, eq. (2.14) becomes

∂u

∂t
−∇ · (D∇u) = Q. (2.16)

This equation is called the diffusion equation for concentrations. For the
homogeneous case, that is Q = 0, the equation is called Fick’s second
law.
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2.2 Chemical reactions

Our model is based around the interaction between the collagen and colla-
genase, which is a chemical reaction. These reactions will provide a sink or
source term, depending on whether the species is produced or bound in the
reaction. Thus, they have to be put into the mass conservation equation in
our model.

A chemical reaction can be written as a chemical equation by

reactants −→ products. (2.17)

In our case, there are two processes that need to be modelled. The first
is the binding of the enzyme collagenase to the substrate collagen, which
creates the enzyme-substrate complex. The collagenase will then destroy
the collagen molecule, resulting in the separation of the enzyme and a rest
product of hydrolized collagen. This is illustrated in fig. 2.2.

Figure 2.2: The degradation of the collagen matrix [13].

The reaction scheme used to describe the degradation of the matrix is the
common reaction scheme for an enzymatically catalyzed degradation of a
substrate. This was first proposed by Michaelis and Menten in 1913 [11],
and consists of the equations

E + S
k1−→ ES (2.18)
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and
ES

k2−→ E + P. (2.19)

Here E is the enzyme, S the substrate, ES the enzyme-substrate complex
and P the product. In our case of drug delivery systems, the enzyme is
collagenase and the substrate is collagen. They form the enzyme-substrate
complex, which in turn results in the product hydrolized collagen. The
rate parameters k1 and k2 describe the absorption of enzyme to the active
binding site of the collagen fibre and the cleavage process respectively [13].
We see that we have four unknowns, and the processes also result in four
differential equations.

2.3 The mathematical models

There are two mathematical models used in this thesis. One, the model
based on grain geometry, is the same as in [14], and will not be derived here,
only explained. In [14], the model is two-dimensional, so what we will refer
to as the grain model is a one-dimensional version of this. The second one
has a channel geometry and will be derived as it is new in this thesis. Both
models only describe the degradation of the matrix, that is, a fully swollen
matrix and a homogeneous degradation is assumed.

2.3.1 A mathematical model for drug release and collagen
degradation in a grain geometry

Figure 2.3 shows the domain on which the equations are valid. The circles
represent bundles of collagen fibers with trapped drug as in fig. 2.2, and
between them is the fluid that contains the enzymes. On the boundary be-
tween the collagen and the fluid, collagenase will attach itself to the collagen
to break it down, and then form an enzyme-substrate complex. This species
will only exist on this boundary. The model is based on four main equations.
Two partial differential equations (PDE’s) that are transport equations for
the macroscopical concentrations, one ordinary differential equation (ODE)
that describes the concentration of enzyme substrate and the surface con-
centration of the substrate, and one ODE that describes the geometry of
the implant.

There are two transport equations for macroscopic concentrations - one for
the enzyme concentration, CE , and one for the concentration of the mo-
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Ω

R

(0, 0) (L, 0)

(0, l)

Figure 2.3: Schematic representation of the domain.

bile drug, CA. Both are upscaled diffusion equations, with CE described
by

∂t(θ(R)CE)−∇x · (D0
ED̄(R)∇xCE)

+ 2πR(k1(N − CES)CE − k2CES) + θ(R)kactCE = 0
(2.20)

and CA by

∂t(θ(R)CA)−∇x · (D0
AD̄(R)∇xCA)− 2πR

C0
A,im

C0
C

k(CESR)γ = 0. (2.21)

The equations are similar in form, as the first two terms describe the diffusion
process and the rest describes the reaction. They both have a diffusion
coefficient, D0

E and D0
A respectively. The function D̄(R) is assumed to be

the linear relation D̄(R) = 1−2R
1−2R0 , where R is the radius of the collagen fibre

and R0 is the initial radius. One more concentration is used, and that is
the enzyme-substrate complex, CES . The constant N is a representation of
CmaxES , which means that (N − CES) represents how many places that are
available for collagenase to attach. The porosity is θ(R) = 1 − πR2. All
the k’s are constant rate parameters, with k1 and k2 as in the Michaelis-
Menten model. Finally, C0

A,im and C0
C are initial values of the concentration

of immobile drug and collagen, respectively.
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In eq. (2.20), the term θ(R)kactCE describes the death of the enzyme. The
final term in this equation describes the process of enzymes attaching to the
collagen, and the process where the collagen is broken down, such that they
are released again. They are multiplied with the length of the boundary,
2πR. The final term in eq. (2.21) has a fraction, CA,im0/C0

C , which is the
same as ρC/ρA, with ρC as the density of collagen and ρA as the drug density.
Again 2πR describes the length of the border. The final part of the reaction,
k(CESR)γ is a term also found in the description on how R changes.

The ODE for the enzyme-substrate complex and the surface concentration
of the substrate is

∂tCES = k1(N − CES)CE − k2CES . (2.22)

Simply said, the equation tells us that the change in enzyme-substrate com-
plex concentration is equal to how many enzymes that attaches to collagen,
and subtracted by how many enzymes that are released again. We see that
this equals the term from eq. (2.20) exactly, except that it is multiplied with
the length of the boundary in eq. (2.20), and the sign is different. This
is natural, because the subtraction in eq. (2.22) is the amount of enzymes
becoming enzyme-substrate complexes minus the amount going back, and
should be subtracted from the total amount of enzymes available.

The geometry of the substrate is described by

∂tR = −1− θ(R0)

C0
C

k2(CESR)γ . (2.23)

The fraction is the same as 1
ρC

, and tells us that the change in radius is
inversely proportional to the density of the collagen.

2.3.2 A new mathematical model for drug release and colla-
gen degradation in a channel geometry

To make a new model can be interesting, as it gives us an opportunity to
compare two models. In turn, this could give more insight to the processes
that are modelled. Our new model is based on channel geometry. Its up-
scaled version will be easier to compute, as it will be 1D. This geometry also
makes it easier to look into the moving boundary, and it will be interesting
to compare the equation sets.
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line of symmetry

n

Flow

d

0 L

l

Collagen

Collagen
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Figure 2.4: Schematic representation of the media.

Figure 2.4 is a schematic representation of the model at microscale, with
collagen at the top and the bottom, and a fluid containing collagenase be-
tween them. Assuming symmetry along the dashed line allows us to only
model half, and we will derive the model from the bottom half, which will
then look as in fig. 2.5

Flow

n
d

(0,0) (L,0)

(0,l)
Ω

ρC

ρA

Γ(t)

Ω(t)CE
CA
CP CES

Figure 2.5: Schematic representation of the model.

This new domain is called Ω and defined as Ω = {(x, y)|x ∈ (0, L), y ∈ (0, l)}.
The part of the domain that contains the fluid with enzymes is called
Ω(t) with Ω(t) = {(x, y)|x ∈ (0, L), d(x(t)) < y < l)}, where d is the thick-
ness of the collagen at point x at time t. All boundaries are denoted by
Γ. The top boundary as Γsym = {(x, l)|x ∈ (0, L)}, the bottom boundary
as Γ0 = {(x, 0)|x ∈ (0, L)}, the right one by ΓR = {(0, y)|y ∈ (0, l)} and left
by ΓL = {(L, y)|y ∈ (0, l)}. The boundary between the fluid and the col-
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lagen is a moving boundary that depends on time, and it is defined by
Γ(t) = {(x, d(x, t))|x ∈ (0, L)}.

In Ω(t) there are two species that need to be modelled, and we will model
their concentrations. The first is the enzyme collagenase, denoted by CE ,
and the second is the drug that is released, CA. In the fluid there is also
hydrolized collagen CP , but we will assume that this is unnecessary to model.
Sufficient assumptions for this is that the drug is evenly distributed both in
the collagen and afterwards as released into the fluid. That is, they exist
in fixed proportions. We also assume that the diffusion coefficients DA and
DP are similar enough that it is enough to only model CA. As CP does not
influence the processes, it is only modelled to see how much collagenase is
released back into the fluid. However, the proportionality with CA makes it
possible to model the change in collagenase from CA. The amount of drug
still trapped within the collagen can be described by d and ρA, as ρA is the
density of the drug. Likewise, by using d and ρC , with ρC as the density of
collagen, it is possible to model the amount of collagen left. However, we
will not use this in our final model. There is one more species to model;
the enzyme-substrate complex CES . This complex will only exist where
the collagenase can meet the collagen, that is on Γ(t). It will result in the
reactions described earlier

E + S
k1−→ ES,

ES
k2−→ E + P.

(2.24)

For deriving the mathematical model, we start by writing the equations on
a dimensional microscale. We start by using mass balance in combination
with Fick’s law of diffusion for the species in Ω(t). This will in turn result
in three diffusion equations, which are

∂tCE = DE∆CE − kactCE , (2.25)

∂tCA = DA∆CA, (2.26)

∂tCP = CP∆CP , (2.27)

where Di, i = A,E, P is the diffusion coefficient for each of the three species.
The term kactCE , with kact as a constant, describes the death of the en-
zymes.

On Γ(t) we have a mass balance equation for CES . This describes the
process from eq. (2.24), where the change in CES over time depends both
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on how much collagenase that attaches to the collagen, as well as how much
of the collagen that is broken down, and thereby released into the fluid. The
equation becomes

∂tCES = H(ρd)[k1CE(N −CES)− k2CES ] + (1−H(ρd))[−k3CES ]. (2.28)

The function H(ρd) is the Heaviside function, which is defined as

H(u) =

{
1, u > 0
0, u ≤ 0.

(2.29)

There are again constants, k1, k2 and k3 that are rate parameters, and there
is a constant N which describes the number of places available for the col-
lagenase to attach to the collagen. The term k1CE(N − CES) describes
the process where collagenase attaches to the collagen, whereas the terms
−kiCES , i = 2, 3 describes the release of collagenase, hydrolized collagen,
and thereby drugs, back into the fluid. We see that as long as there is col-
lagen left, the Heaviside function is 1, that is, both processes are present.
When there is no more collagen left under the collagen-enzyme substrate,
the Heaviside function will be 0. This assures that the binding process
stops, so nothing will happen when the remaining substrate is released. We
do not know whether the remaining collagen is influencing the cleavage pro-
cess, which is the reason for the possibly different rate parameters k2 and
k3.

We can also describe the speed of the boundary in the normal direction.
This requires the normal vector into the collagen which will be

n = (∂xd(x, t),−1) · 1√
1 + (∂xd)2

. (2.30)

The speed with which the boundary moves is given by

v = (x′(t), y′(t)) = (x′(t), ∂td+ x′∂xd). (2.31)

These two equations can be used to find that the speed of the boundary in
the normal direction is

vn = v·n =
1√

1 + (∂xd)2
(x′∂xd−x′∂xd−∂td) = −∂td·

1√
1 + (∂xd)2

. (2.32)

Using this we can find an equation for how the boundary moves,

vnρ = H(ρd)k4CE [N − CES ]. (2.33)
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The Heaviside function is used again to make sure that the boundary stops
moving as it reaches the bottom of the domain, and k4 is just another rate
parameter.

Mass balance gives us the final three equations

−DE∇CE · n = ∂tCES + vnCE , (2.34)

−DA∇CA · n = vn(CA − ρA), (2.35)

−DP∇CP · n = vn(CP − ρP ). (2.36)

This introduces ρA and ρP as the mass density of the drug and the collagen
respectively. Equation (2.34) shows that the speed of the moving boundary
gives the rate of the degradation of collagen. This is proportional to the
available enzyme, CE and the number of available places for it to attach,
(N − CES). Boundary and initial conditions completes the model.

Adimensionalization

So far, all quantities have had dimensions. We will now make the model
dimensionless, and we will then denote the quantities with dimensions as ·̂.
For example ĈE will be the concentration of collagenase with dimensions,
whereas CE is dimensionless. We will also introduce a new quantity, ε, which
is defined as ε = l̂/L̂. This is a dimensionless constant, as l̂ and L̂ have the
same dimension. By assuming that L̂ >> l̂, it is clear that ε is very small.
This will be used later, in the upscaling process.

We will now define the dimensionless quantities. We start by defining the
variables x and y. By defining x as x = x̂/L̂ and y as y = ŷ/l̂, Ω will be
the area with 0 < x < 1 and 0 < y < 1. This also allows us to find their
dimensionless derivatives

∂

∂x̂
=

∂

∂x
· 1

L̂
and

∂

∂ŷ
=

∂

∂y
· 1

l̂
. (2.37)

Because d̂ measures length in the y-direction, we define that the same way
as y, which gives us d = d̂/l̂. The new variable to measure time will be t,
defined as t = t̂/T̂R, where T̂R is a reference time. We can then find the
derivative with respect to time

∂

∂t̂
=

∂

∂t
· 1

T̂R
. (2.38)
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The diffusion coefficients will be divided by a reference diffusion coefficient
defined as D̂R = L̂2/T̂R, giving DE = D̂E/D̂R and DA = D̂A/D̂R. These
are both assumed to be of order O(1).

Finally, we need to make the concentrations adimensional. This will be done
by dividing each of them with a reference concentration CRi , i = E, A, ES.

This will define them as CE = ĈE/Ĉ
R
E , CA = ĈA/ĈRA and CES = ĈES/Ĉ

R
ES .

Finally, ρ is defined such that ρ = ρ̂A/Ĉ
R
A . The necessary constants will be

defined later.

The first equation we will adimensionalize is eq. (2.25) which will become

1

T̂R
ĈRE

∂CE
∂t

= DED̂RĈ
R
E

(
1

L̂2

∂2CE
∂x2

+
1

l̂2
∂CE
∂x2

)
− k̂actĈRECE . (2.39)

Taking 1/L̂2 out of the parenthesis and multiplying with T̂R yields

∂CE
∂t

=
D̂RT̂R

L̂2
DE

(
∂2CE
∂x2

+
1

ε̂2

∂CE
∂x2

)
, (2.40)

where
D̂RT̂R

L̂2
= 1. (2.41)

The equations for CA and CES will be found similarly.

To make eq. (2.33) dimensionless we first need to make eq. (2.32) dimen-
sionless. To do this, we start with finding ∂t̂d̂ which will be

∂d̂

∂t̂
=

1

T̂R

∂(l̂d)

∂t
. (2.42)

This gives us

v̂n = − l̂

T̂R
∂td

1√
1 + ε2(∂xd)2

, (2.43)

as an expression for v̂n.

This can be substituted into eq. (2.33) to find

ρĈRA
l̂

T̂R

1√
1 + ε2(∂xd)2

∂td = H(ρ̂l̂d)k̂4Ĉ
R
E Ĉ

R
ESCE

(
N̂

ĈRES
− CES

)
, (2.44)
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which is the same as

ρ∂td =
√

1 + ε2(∂xd)2
T̂Rk̂4Ĉ

R
E Ĉ

R
ES

l̂ĈRA
H(ρ̂l̂d)CE

(
N̂

ĈRES
− CES

)
. (2.45)

Finally, we want to adimsionalize eqs. (2.34) and (2.35). We start with
eq. (2.35) which becomes

1√
1 + ε2(∂xd)2

(ε∂xd,−1)
D̂R

L̂
DAĈ

R
A

(
∂CA
∂x

,
1

ε

∂CA
∂y

)
=

l̂

T̂R

1√
1 + ε2(∂xd)2

∂tdĈ
R
A (CA − ρ).

(2.46)

This can be rewritten as

−DA

(
ε∂xd∂xCA −

1

ε
∂yCA

)
= − L̂2

D̂RT̂R

l̂

L̂
∂td(CA − ρ). (2.47)

Finally, eq. (2.34) will become

− 1√
1 + ε2(∂xd)2

(ε∂xd,−1)
D̂R

L̂
ĈREDE

(
∂CE
∂x

,
1

ε

∂CE
∂y

)
=

1

T̂R
ĈRES∂tCES −

l̂

T̂R

1√
1 + ε2(∂xd)2

∂tdĈ
R
ECE ,

(2.48)

which is the same as

−DE

(
ε∂xd∂xCE −

1

ε
∂yCE

)
=
√

1 + ε2(∂xd)2
L̂

D̂RT̂R

ĈRES
ĈRE

∂tCES −
l̂L̂

T̂RD̂R

∂tdCE .

(2.49)

Because CES only exists on Γ(t) and CE exists in Ω(t) the fraction ĈRES/Ĉ
R
E

is of order l̂. This can be used to find that

L̂

D̂RT̂R

ĈRES
ĈRE

=
L̂2

D̂RT̂R

k5 l̂

L̂
= k5ε, (2.50)

with k5 such that ĈRES = k5 l̂Ĉ
R
E .
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Equations (2.40), (2.45), (2.47) and (2.49) with the adimensionalized equa-
tions for CA and CES result in an adimensionalized system of six equa-
tions

∂tCE = DE

(
∂xxCE + ε−2∂yyCE

)
− k0CE , (2.51)

∂tCA = DA

(
∂xxCA + ε−2∂yyCA

)
, (2.52)

∂tCES = H(ρl̂d)[k1CE(η − CES)− k2CES ]− (1−H(ρl̂d))k3CES , (2.53)

−∂td =
k4

ρ
H(ρl̂d)

√
1 + ε2(∂td)2CE(η − CES) (2.54)

−DE

(
ε∂xd∂xCE −

1

ε
∂yCE

)
= −ε∂tdCE + εk5

√
1 + ε2(∂td)2 ∂tCES ,

(2.55)

−DA

(
ε∂xd∂xCA −

1

ε
∂yCA

)
= ε∂td(ρ− CP ). (2.56)

The first two equations are valid in Ω(t), whereas the last four are valid on
Γ(t). We also assume that ∂yCE = ∂yCA = 0 on Γ(t). Again, the system
is completed with boundary conditions at ΓR and ΓL, and initial condi-
tions.

The constant k0 is defined as k̂actT̂R and is assumed to be of order O(1).
Notice that this means that k0/k̂act = [s], which can be seen as an activity
timescale assumed here to be of order O(T̂R). Both k2 and k3 are defined
similarly, with k2 = k̂2T̂R and k3 = k̂3T̂R. The fractions 1/k̂2 and 1/k̂3

can be seen as time scales for the consumption of collagen if there is more
collagen underneath Γ(t) and if collagen is absent respectively. The final
k-constant is k1, defined as k1 = k̂1T̂RĈ

R
E . There is one remaining constant,

η, which is defined as η = N̂/ĈRES . As ĈES is a reference value for the

concentration, it is natural to assume that ĈRES ≤ ĈmaxES . However, CmaxES is
represented by N , which gives us that η ≥ 1.

Upscaling

From this porescale dimensionless model, we want to find an upscaled di-
mensionless model. An upscaled model allows us to compare our results with
experimental results, as experiments can not be performed at the pore scale.
The upscaling is done by assuming that all the variables admit a representa-
tion as an expansion series in ε. In the upscaling process, we would also like
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to eliminate the y-dependence, which will be done by an integration with re-
spect to y. Doing this, the two-dimensional model becomes one-dimensional,
which is a huge advantage from a computational point of view. By assuming
that l << L, this is done without losing too much accuracy. Expansions are
made for CE , CA, CES and d making them

CE = CεE(x, y, t) = C0
E(x, y, t) + εC1

E(x, y, t) + ε2C2
E(x, y, t) + · · · ,

(2.57)

CA = CεA(x, y, t) = C0
A(x, y, t) + εC1

A(x, y, t) + ε2C2
A(x, y, t) + · · · , (2.58)

CES = CεES(x, y, t) = C0
ES(x, y, t) + εC1

ES(x, y, t) + ε2C2
ES(x, y, t) + · · · ,

(2.59)

d = dε(x, y, t) = d0(x, y, t) + εd1(x, y, t) + ε2d2(x, y, t) + · · · . (2.60)

We start the upscaling with CE by substituting eq. (2.57) in eq. (2.51) which
yields

∂t(C
0
E + εC1

E + · · · ) =DE [∂xx(C0
E + εC1

E + · · · )

+
1

ε2
∂yy(C

0
E + εC1

E + ε2C2
E + · · · )]

− k0(C0
E + εC1

E).

(2.61)

This can be rearranged to

ε0(∂tC
0
E) + ε1(∂tC

1
E) + · · ·

= ε−2(DE∂yyC
0
E) + ε−1(DE∂yyC

1
E) + ε0(DE∂xxC

0
E +DE∂yyC

2
E − k0C

0
E)

+ ε1(DE∂xxC
1
E +DE∂yyC

3
E − k0C

1
E) + · · · .

(2.62)

Because ε is a very small number, we will look at the terms with different
powers of ε separately. The idea is that ε is so small that two terms with
different powers of ε never will be equal, and that terms of order εi, i =
1, 2, · · · will be so small that they do not matter.

We start by looking at the terms including ε−2. This gives us

DE∂yyC
0
E(x, y, t) = 0, y ∈ (d0, 1). (2.63)

as the only term in eq. (2.62) that includes ε−2 is ε−2(DE∂yyC
0
E) and we

know that ε 6= 0. The diffusion coefficient DE can be neglected as it is a
nonzero constant, and thereby not the reason the expression is zero. The
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limitation in the y-direction is due to CE only existing in the fluid. The
terms multiplied with ε−1 gives us

DE∂yyC
1
E = 0, y ∈ (d0, 1), (2.64)

with DE again nonzero. Finally, we look at the terms of order O(1). They
result in a longer equation, namely

∂tC
0
E = DE [∂xxC

0
E + ∂yyC

2
E ]− k0C

0
E , y ∈ (d0, 1). (2.65)

As ∂yC
ε
E = 0 on Γsym, it follows that ∂yC

0
E = ∂yC

1
E = ∂yC

2
E = 0 also on

Γsym. On Γ(t) we can expand eq. (2.55) to

−DE [ε∂x(d0 + εd1 + · · · )∂x(C0
E + εC1

E + · · · )

− 1

ε
∂y(C

0
E + εC1

E + ε2C2
E + · · · )]

=− ε∂t(d0 + εd1 + · · · )(C0
E + εC1

E + · · · )

+ εk5

√
1 + ε2(∂td0 + ε∂td1 + · · · )2 ∂t(C

0
ES + εC1

ES + · · · ).

(2.66)

The square root will be of order O(1), which gives us that the only terms
of order less than ε are the terms from −1

ε∂y(C
0
E + εC1

E). This yields that
∂yC

0
E = 0 and ∂yC

1
E = 0 at y = d0. For the terms of order O(ε) we find the

equation
−DE [∂xd

0∂xC
0
E − ∂yC2

E ] = −∂td0C0
E + k5∂tC

0
ES , (2.67)

where k5 now also includes the square root. This can be rearranged to

DE∂yC
2
E = DE∂xd

0∂xC
0
E − ∂td0C0

E + k5∂tC
0
ES , (2.68)

which holds on Γ(t).

From eq. (2.63) we know that ∂yC
0
E has to be constant everywhere on

y ∈ (d0, 1), and since ∂yC
0
E = 0 on y = 1 and y = d0 it is 0 everywhere.

This gives us that C0
E is independent of y, and we can write C0

E = C0
E(x, t),

which is the upscaled CE . Similarly, by starting with eq. (2.64) and using
the same arguments, C1

E = C1
E(x, t). The final variable we need to address

is C2
E , which will be eliminated by integrating eq. (2.65) in the y-direction,

from d0(x, t) to 1. This yields

∂tC
0
E(1− d0) = DE∂xxC

0
E(1− d0)− k0C

0
E(1− d0) +DE∂yC

2
E

∣∣1
d0

=DE∂xxC
0
E(1− d0)− k0C

0
E(1− d0)

+ (0−DE∂xd
0∂xC

0
E + ∂td

0C0
E − k5∂tC

0
ES).

(2.69)
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The expression for DE∂yC
2
E

∣∣
d0

comes from eq. (2.68). Rearranging the terms
result in the first of four upscaled equations

∂t[(1− d0)C0
E + k5C

0
ES ] = DE∂x[(1− d0)∂xC

0
E ]− k0(1− d0)C0

E , (2.70)

which is valid on x ∈ (0, L), t > 0.

Now we proceed by deriving the upscaled equation for the drug. This is
done by using the expansion eq. (2.58) on eq. (2.52) which gives us

∂t(C
0
A + εC1

A + · · · )

=DA

[
∂xx(C0

A + εC1
A + · · · ) +

1

ε2
∂yy(C

0
A + εC1

A + ε2C2
A + · · · )

]
,

(2.71)

and expanding eq. (2.56) by eqs. (2.58) and (2.60) to

−DA

[
ε∂x(d0 + εd1 + · · · )∂x(C0

AεC
1
A + · · · )− 1

ε
∂y(C

0
A + εC1

A + · · · )
]

= ε∂t(d
0 + εd1 + · · · )[ρ− (C0

A + εC1
A + · · · )].

(2.72)

It can then be shown in a similar way as for CE that the upscaled equation
for CA becomes

∂t[d
0ρ+ (1− d0)C0

A] = DA∂x[(1− d0)∂xC
0
A], (2.73)

in Ω(t).

As CES only exists on y = d0, it is clear that it does not depend on the
variable y. Its upscaled equation can then be found by using the terms of
order less than O(ε). The expansion is

∂t(C
0
ES + εC1

ES + · · · )
=H(ρl̂d0)[k1(C0

E + εC1
E + · · · )(η − [C0

ES + εC1
ES + · · · ])

− k2(C0
ES + εC1

ES + · · · )]− (1−H(ρl̂d0))k3(C0
ES + εC1

ES + · · · ).
(2.74)

This gives us that the upscaled equation will be

∂tC
0
ES = H(ρl̂d0)[k1C

0
E(η − C0

ES)− k2C
0
ES ]− (1−H(ρl̂d0))k3C

0
ES (2.75)

on Γ(t).



26 CHAPTER 2. MATHEMATICAL MODEL

The final equation that needs upscaling is eq. (2.54). Its expansion is

−∂t(d0 + εd1 + · · · ) =
k4

ρ
H(ρl̂d0)

√
1 + ε2(∂t(d0 + εd1 + · · · ))2

· (C0
E + εC1

E + · · · )(η − C0
ES + εC1

ES + · · · )).
(2.76)

The square root is again of order O(1) and will be combined with k4 to
another constant, still called k4. Because d is independent of the variable y,
we can find the upscaled equation by choosing the terms the same way we
did for CES . That is, our fourth upscaled equation will be

−∂td0 =
k4

ρ
H(ρl̂d0)C0

E(η − C0
ES) (2.77)

on Γ(t). For simplicity, the zeros will not be written from now on.

The final step in developing this model, is going back to the dimensions
again. This will be done by substituting back for all the variables and
constants we used to make the porescale model dimensionless. We will then
find an upscaled dimensional system of four equations, based on eqs. (2.70),
(2.73), (2.75) and (2.77). By abuse of notation we drop the hats, making
them

∂

∂t
[(l − d)CE + CES ] =DE

∂

∂x
[(l − d)

∂

∂x
CE ]− kact(l − d)CE , (2.78)

∂

∂t
[(l − d)CA + dρ] =DA

∂

∂x
[(l − d)

∂

∂x
CA], (2.79)

∂

∂t
CES =H(ρd)[k1CE(N − CES)− k2CES ]

− (1−H(ρd))k3CES , (2.80)

∂

∂t
(ρd) =− k4H(ρd)CE(N − CES). (2.81)

The model is again completed by boundary and initial conditions.

2.4 Comparison of the two sets of equations

The two models give us two sets of equations that seem very different at first
glance. However, as the geometry is different, this is expected. We would
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therefore like to take a closer look at the equations to find their similarities
and differences. We start with the equations for CE . The grain geometry
has the equation

∂t(θ(R)CE)−∇x ·(D0
ED̄(R)∇xCE)+2πR(∂tCES)+θ(R)kactCE = 0, (2.82)

and the channel geometry

∂t((l − d)CE)−DE∂x[(l − d)∂xCE ] + ∂tCES + (l − d)kactCE = 0. (2.83)

Remembering that θ(R) = 1 − πR2, it is clear that the first term in both
equations is the time derivative of porosity times concentration. The second
term contains a constant diffusion coefficient and a term that depends on
the geometry. Both equations depend on the change in enzyme-substrate
complex, but in the grain geometry, the term is multiplied with the length
of the border. This difference is due to the differences in geometry. The
grain geometry is based on two dimensions, with one calculation for each
square, that is, enzymes may attach around the whole cylinder of collagen.
Calculations on the channel model is done in the x-direction only, which
means that the calculations on each node is independent of the geometry.
The final term is again the same, with porosity times a death rate parameter
times the concentration.

We saw that the equations for CE have a very similar structure. However,
they both depend on CES , so it is natural to look at the equations for that
before concluding that the equations for CE are built the same way. For the
grain model, the equation is

∂tCES = k1(N − CES)CE − k2CES , (2.84)

and for the channel model

∂tCES = H(ρd)[k1(N − CES)CE − k2CES ]− (1−H(ρd))k3CES . (2.85)

These seem quite different on the surface, but this is again due to geometric
differences between the models. We see that as long as the Heaviside function
is 1, they are both containing the terms k1(N − CES)CE − k2CES . However,
the new model uses the Heaviside function to stop the process as explained
earlier. The grain model does not stop naturally, which needs to be taken
into consideration when implementing it. This will be explained further in
section 3.7
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Both models also include an equation for the concentration of released drug.
The equation in the grain model is

∂t(θ(R)CA)−∇x · (D0
AD̄(R)∇xCA)− 2πR

C0
A,im

C0
C

k(CESR)γ = 0, (2.86)

and in the new model

∂t[(l − d)CA]−DA∂x[(l − d)∂xCA] + ∂t(dρ) = 0. (2.87)

From the comparison of the CE-equations, we know that the differences
in the first two terms can be explained by the different geometries. This
leaves one term in each of the equations. For the grain model we know
that CA, im0 = ρA/(1− θ) and C0

C = ρS/(1− θ). The term (CESR)γ is
proportional to −∂tR, and by adjusting k the term can be rewritten as

−2πR
C0
A,im

C0
C

k(CESR)γ = 2πRρAkadj∂tR, (2.88)

with kadj as the adjusted proportionality constant. This constant is also
adjusted to contain ρS , which is possible because all densities are assumed
to be constant. Apart from the geometric part 2πR, this expression is
exactly the same as the term ∂t(dρ) from the channel model, apart from
the proportionality constant. However, from eq. (2.81) we know that ∂t(dρ)
contains a proportionality constant, making the terms equal when ignoring
the geometric difference.

The equations for R and d respectively, are depending a lot on the geometry,
but they still have some similarities. They are both inversely proportional
to ρS and depend on CES . This is seen clearly by using C0

C = ρS/(1− θ) to
rewrite eq. (2.23) as

∂tR = − k2

ρS
(CESR)γ , (2.89)

and rewriting eq. (2.81) to

∂td = − k4

ρS
H(dρ)CE(N − CES). (2.90)

It is easy to see that ∂tR = 0 when R = 0, which means that the pro-
cess stops when there is no more collagen. For the channel geometry, this
is achieved by using the Heaviside function. That is, the only differences
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between the equations are the terms depending on CES , which is to be
expected from the geometric differences.

In this chapter we have derived a new mathematical model for controlled
drug release from collagen minirods, which is based on diffusion and mass
conservation. Comparisons shows that the new model is consistent to the
model in [14]. The new model assumes a thin channel geometry, making the
upscaled model one-dimensional. The two models will form the basis of the
numerical simulations presented in the next chapters.



Chapter 3

Numerical modelling

We have developed a one-dimensional model, but as this has no known
analytical solutions we need numerical approximations. For this, we will
use MPFA for the spatial discretization and forward Euler for the tempo-
ral. We will start this chapter by looking at different grids, and what will
be used in our modelling. Afterwards we will derive the finite difference
approximation, which forms the basis for the Euler method. For the space
discretization, there will be a short introduction to the control volume meth-
ods, and a derivation of MPFA in one dimension. We will also look at two
different kinds of boundary conditions before showing how the equations
are discretized. The equations are both ODE’s and PDE’s. Some of them
are coupled, and for those we will also show the coupling. The last section
explains more about how the implementations were done.

3.1 Grid

To make a numerical representation of a function, we need to know which
point to use for the calculation. The same procedure applies for solving a
mathematical problem numerically. This is done by defining points Xi where
the calculations are done. Defining these points is the same as defining a
grid on the function domain.

Fundamentally, a grid is made by laying out some points and defining a
neighbourhood around each point. The neighbourhood must be chosen so
that lines between pairs of points are not crossing. Each element surrounded

30
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by these lines, is called a cell, and the lines are called cell walls. Then we have
to decide whether we want a grid that is point distributed or cell centred. A
point distributed grid is based on the corner points, whereas a cell centred
grid is based on the points in the centre of the cells, see figs. 3.1 and 3.2
[1].

Figure 3.1: Point distributed grid. Figure 3.2: Cell centered grid.

Note that for a cell centred grid, one must choose the grid first, and then
use the midpoints generated - opposed to choosing the nodes first, and then
constructing a grid around them.

In the one-dimensional case, all nodes will be on the same line. If the
distance between the nodes is the same for all cells, we call it equidistant.
An example is shown in fig. 3.3.

0 x1 xi xn Lh

x1/2 x3/2 xi−1/2 xi+1/2 xn−1/2 xn+1/2

x

Figure 3.3: Cell centered equidistant grid in 1D.

Figure 3.3 shows a domain, the interval [0, L], and its grid. As the grid is
cell centred, we start by defining the cell walls, and then place the points at
their midpoints.

3.2 Finite difference approximation

The finite difference approximation is based on Taylor series, and is the most
elementary discretization method. It can be used in both space and time
discretization, and to approximate derivatives of several orders. The finite
difference methods are defined by the Taylor series for u(x + h) = u(xi+1)
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and u(x− h) = u(xi−1). The series for u(xi+1) is

u(xi+1) = u(xi) + hu′(xi) +
h2

2
u′′(xi) +

h3

3!
u′′′(xi) + · · · . (3.1)

This gives us the forward difference approximation for the first deriva-
tive:

u′(xi) =
u(xi+1)− u(xi)

h
+O(h). (3.2)

The term O(h) gives the order of the method, which comes from the terms
truncated from the series. In this case, they are of order h.

Similarly, from

u(xi−1) = u(xi)− hu′(xi) +
h2

2
u′′(xi)−

h3

3!
u′′′(xi) + · · · , (3.3)

we can find the backward difference approximation for the first deriva-
tive:

u′(xi) =
u(xi)− u(xi−1)

h
+O(h). (3.4)

To find the second order derivative we use

u(xi+1)− u(xi)

h
= u′(xi) +

h

2
u′′(xi) +

h2

3!
u′′′(xi) +

h3

4!
u′′′(xi) + · · · (3.5)

and

u(xi)− u(xi−1)

h
= u′(xi)−

h

2
u′′(xi) +

h2

3!
u′′′(xi)−

h3

4!
u′′′(xi) + · · · . (3.6)

By subtracting eq. (3.6) from eq. (3.5) we get

u′′(xi) =
u(xi+1)− 2u(xi) + u(xi−1)

h2
+O(h2). (3.7)

This is the central difference formula for the second derivative u′′(xi).

3.3 Temporal discretization

We start with an ordinary differential equation

u′(t) = f(t, u(t)). (3.8)
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If we use eq. (3.2) to approximate u′(t), we get the forward Euler scheme.
The numerical method will then be

uj = uj−1 + τf(tj−1, u
j−1). (3.9)

If we instead use eq. (3.4), we get the backward Euler scheme,

uj = uj−1 + τf(tj , u
j). (3.10)

Here uj denotes the approximated value of the exact solution at time tj .
The index j denotes the time steps for 1 to T , j = 1, . . . , T and τ = tj− tj−1

is the size of the time step. For equidistant grid this will be ∆t.

In this case, the lowest order term truncated is h2

2 u
′′(xi). The term is the

local trunction error, which is the error made in each step, and of order h2.
The global trunction error is the cumulative effect of all the local truncation
errors. Because h = L/n, it is easy to see that n ∼ 1/h. This means that
the global truncation error is proportional to h, and hence the method is of
order h [8].

3.4 Discretization in space

The space discretization is based on the central difference formula for the
second derivative, that is, eq. (3.7), because the only spatial derivatives in
or models are second order. It includes the point where we want to make
the calculation as well as the points on both sides. For the differential
equation

u′′(x) = f(x, u(x)), (3.11)

the scheme will be

u(xi) =
1

2
h2f(xi, u(xi)) +

1

2
u(xi+1) +

1

2
u(xi−1). (3.12)

3.4.1 Control volume methods

The starting point for the control volume methods, is to define a grid over
the domain of the differential equation. This divides the domain into cells,
like we did in fig. 3.3 for the 1D case. These cells are called control volumes,
hence the name of the method. On each of these cells, the mass conservation
principle will be applied, which holds when the fluxes on each side of a cell
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wall are equal. The integral form of the mass conservation equation is the
applied to each cell. The flux is given across the cell walls, averaging the
permeability. The theory in this chapter is based on [1].

Two-point flux approximation

Two-point flux approximation (TPFA) is the one-dimensional version of
MPFA. Both models used in this thesis are one-dimensional, so we will only
derive the TPFA. We start with the ordinary differential equation

−(Kux)x = Q, (3.13)

where K = K(x) > 0 can denote the permeability and Q the source term,
which depends on x and may depend on t. The index denotes the partial
derivative with respect to x, such that ux = ∂u/∂x. If we let the flux q be
denoted by

q = −Kux, (3.14)

the equation becomes
qx = Q, (3.15)

which we want to solve for q.

To do this, we have to discretize the domain. The grid used will be cell
centred, as shown in fig. 3.4.

∆xi−1 ∆xi ∆xi+1 ∆xi+2

xi−3/2 xi−1 xi−1/2 xi xi+1/2 xi+1 xi+3/2 xi+2 xi+5/2

Figure 3.4: Cell centered grid in 1D.

This means that the grid points xi for i = 0, . . . , n are the middle points of
the cells. For the cell with midpoint xi, the walls are given by xi−1/2 and
xi+1/2. The distance between the walls of cell i is denoted by ∆xi that is
∆xi = xi+1/2 − xi−1/2.

Integrating eq. (3.15) over the i-th cell yields

qi+1/2 − qi−1/2 =

∫ x1+1/2

xi−1/2

Q(x) dx, (3.16)
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with qi+1/2 as the flux between cells i and i+ 1 and qi−1/2 the flux between
the cells i − 1 and i. To find an expression for qi+1/2 in terms of K and u,
we rewrite eq. (3.14) as

ux = − q

K
. (3.17)

We then integrate from middle point xi to middle point xi+1 to get

ui+1 − ui = −qi+1/2

∫ xi+1

xi

1

K(x)
dx, (3.18)

for u. Rearranging this gives us the following expression for qi+1/2 in terms
of ui and ui+1,

qi+1/2 = − ui+1 − ui∫ xi+1

xi
1

K(x) dx
. (3.19)

We now need an approximation of the integral∫ xi+1

xi

1

K(x)
dx. (3.20)

The integral starts at xi and ends at xi+1. These are the midpoints in two
neighbouring cells, which means that we integrate over two cells. We assume
that K(x) is almost constant at each interval, and thus can be denoted by
its value in the cell centre, that is Ki ≈ K(xi). We can then approximate
the integral in eq. (3.20) by taking the average over the two cells involving
xi and xi+1 ∫ xi+1

xi

1

K(x)
dx =

1

2

(
∆xi+1

Ki+1
+

∆xi
Ki

)
. (3.21)

This gives us the expression

qi+1/2 = − ui+1 − ui
1
2

(
∆xi+1

Ki+1
+ ∆xi

Ki

) , (3.22)

for qi+1/2. By defining an ai as

ai =
1

1
2

(
∆xi
Ki

+ ∆xi−1

Ki−1

) , (3.23)

eq. (3.22) can be written as

qi+1/2 = −ai+1(ui+1 − ui). (3.24)
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If the grid is equidistant, and still cell centred, this expression can be sim-
plified. As ∆xi = h for all i = 1, . . . , n, eq. (3.23) can be written as

ai =
1

h
2

(
1
Ki

+ 1
Ki−1

) , (3.25)

In the rest of this thesis, an equidistant, cell centred grid will be used.

Now, using the expression for q for an equidistant, cell centred grid, eq. (3.16)
becomes

ui − ui−1

h
2

(
1
ki

+ 1
Ki−1

) − ui+1 − ui
h
2

(
1

ki+1
+ 1

Ki

) =

∫ xi+1/2

xi−1/2

Q(x) dx. (3.26)

For simplicity we define bi such that

bi =

∫ xi+1/2

xi−1/2

Q(x) dx, (3.27)

and eq. (3.26) can be written as

ai(ui − ui−1)− ai+1(ui+1 − ui) = bi. (3.28)

Rearranging the terms give

−aiui−1 + (ai + ai+1)ui − ai+1ui+1 = bi. (3.29)

Remembering that i = 1, . . . , n, the result is a system with n equations and
[u0, u1, . . . , un, un+1] as n + 2 unknowns. Thus, in order to get a unique
solution we need to add two more equations. These will be determined
through the boundary conditions. The equations can be written as a matrix
system, Au = b. The matrix A is an n× n+ 2-matrix that will be

A =
1

h



−a1 a1 + a2 −a2

0−a2 a2 + a3 −a3

. . .
. . .

. . .

−an−1 an−1 + an −an0 −an an + an+1 −an+1


(3.30)
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This is multiplied with the n + 2 long u-vector, and the right hand side
b-vector is n long and given as

b =


b1
b2
...

bn−1

bn

 (3.31)

Before we look at how to cope with the boundary conditions, we want to
compare this discretization scheme, eq. (3.29), with the one obtained by the
finite difference approximation, eq. (3.7). If we let Ki = K, a constant for all
i, then the finite difference discretization of eq. (3.13) by eq. (3.7) is

−Kui+1 − 2ui + ui−1

2h
= Q(xi). (3.32)

If K 6= K(x), eq. (3.25) becomes ai = K/h. Using this and approximating
bi by the midpoint rule, that is bi ≈ hQ(xi), eq. (3.29) will be the same as
eq. (3.32). From eq. (3.7) we then know that this is a second order method,
so the error is of order O(h2).

3.5 Boundary conditions

In order to find u0 and un+1, we need to know what kind of boundary
conditions we have. The most common are Dirichlet, where the function
value is given at the boundary, and Neumann, where the value of the function
derivative is given at the boundary. There may also be mixed boundary
conditions, with Dirichlet at one boundary, and Neumann at the other.
We will show how to incorporate both Dirichlet and Neumann boundary
conditions both at the beginning and the end.

3.5.1 Dirichlet boundary conditions

For Dirichlet boundary conditions we know the function value at the end
points. Because the grid is cell centred, these points will be located on x1/2

and xn+1/2, see fig. 3.5. This means that the boundary conditions

u(0) = u0, (3.33)
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and

u(L) = uL, (3.34)

will be discretized to

u1/2 = u0, (3.35)

and

un+1/2 = uL. (3.36)

0

x(0)x1 xi xn

L

x(L)h

x1/2

x3/2 xi−1/2 xi+1/2 xn−1/2
xn+1/2

x

Figure 3.5: Cell centred equidistant grid with boundary conditions.

This poses a problem. To solve it, we add ghost cells on the ends of the
interval, assume that u is constant on these cells and use the points x0 and
xn+1. An equidistant 1D grid with boundary conditions is shown in fig. 3.5,
and the same grid with added ghost cells can be seen in fig. 3.6.

0

x0 x1 xi xn

L

xn+1h

x1/2

x3/2 xi−1/2 xi+1/2 xn−1/2
xn+1/2

x−1/2 xn+3/2

x

Figure 3.6: Cell centred equidistant grid with ghost cells.

By adding the ghost cells, the boundary conditions are basically handled
the same way they would have been if the grid had been vortex centred.
The new points in the middle of the new cells will be two additional points,
called x0 and xn+1. The assumption that u is constant on the ghost cells
gives us that

u0 = u0, (3.37)

and

un+1 = uL, (3.38)

when the problem is discretized.
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In the system Au = b, we can implement this as the first and last row
of the matrix, by setting A(0, 0) = A(n + 2, n + 2) = 1, A(0, j) = 0 for
j = 1, · · · , n+ 2 and A(n+ 2, k) = 0 for k = 0, · · · , n+ 1. The first and last
entries in b will then be b(0) = u0 and b(n + 2) = uL. The matrix A, now
an n+ 2× n+ 2-matrix, and right hand side vector b, now n+ 2 long, will
be

A =
1

h



1

0−a1 a1 + a2 −a2

−a2 a2 + a3 −a3

. . .
. . .

. . .

−an−1 an−1 + an −an
−an an + an+1 −an+10 1


(3.39)

and

b =


u0

b1
...
bn
uL

 (3.40)

respectively. As all entries ai, i = 1, . . . , n+1 are positive, this is a diagonally
dominant matrix, that is, the equation system Au = b has only one solution
by the invertible matrix theorem, and our system is complete.

3.5.2 Neumann boundary conditions

When we have Neumann boundary conditions, we know the value of the
first derivative on the boundary. For the 1D case this is the value at the end
points, which will be

ux(0) = uα, (3.41)

and
ux(L) = uβ. (3.42)

Again, we have the situation from fig. 3.5 with x1/2 = 0 and xn+1/2 = L.
Adding ghost cells, as shown in fig. 3.6, allows us to treat it as we would
have on a point distributed grid. The first boundary condition, ux(0) can
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be approximated by u1−u0
∆x = α. To fit this into our matrix, we multiply by

∆x on both sides, which results in u1 − u0 = α∆x. This can be written
as u0 − u1 = −α∆x. Similarly, for the last term we write un+1−un

∆x = β as
un+1 − un = β∆x. This makes A and b

A =
1

h



1 −1

0−a1 a1 + a2 −a2

−a2 a2 + a3 −a3

. . .
. . .

. . .

−an−1 an−1 + an −an
−an an + an+1 −an+10 −1 1


(3.43)

and

b =


−α∆x
b1
...
bn
β∆x

 (3.44)

respectively. We see that once again the matrix is diagonally dominant
which ensures a unique solution for our equation.

3.6 Discretizing the equations

The equations used to simulate controlled drug release contain a combination
of components than the ones described earlier in this chapter. In this section
we will look at how they are discretized and implemented for each of the
two models.

3.6.1 Implementation of the grain model

As the main equations are partly coupled, the implementation has to solve
them together. However, they are not fully coupled, and by solving them in
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the right order, they can be solved separately on each time step. The first
equation to be solved is

∂tCES = k1(N − CES)CE − k2CES . (3.45)

Although CES = CES(x, t), it is only differentiated with respect to time.
The space discretization will happen naturally by solving it for each spatial
grid point. To discretize it in time we will use forward Euler, that is, the
scheme will be

Cj+1
ES,i = ∆t[k1(N − CjES,i)C

j
E,i − k2C

j
ES,i] + CjES,i. (3.46)

The second equation is the equation for the radius of the implant. As the
previous equation, the equation for R only contains time differentiation, and
will also be solved by Euler’s method. The scheme will then be

Rj+1
i = ∆t

[
−1− θ(Rj0)

C0
C

k2(CjES,iR
j
i )
γ

]
+Rji . (3.47)

It uses CES,i from the previous time step, because forward Euler is used.
Later, it would however be nice to use backward Euler on one or both of
these equations. In order to do that on the last equation, we will need
Cj+1
ES,i. If we solve for CES first, they are still not fully coupled. If however,

we want to solve for CES,i implicitly, they become fully coupled as it will

depend on Cj+1
E,i . Note that although both CES and R may vary in the

spatial direction, their discretizations are not dependent on x. The reason
is that each element xi is independent of the other elements, xk, k 6= i.
Because the spatial discretization solves the equations on each element, the
new value for both CES and R only depends on the previous value at the
same interval. Writing them as vectors with one entry for each element then
eliminates their dependence on x.

The PDE’s will be solved implicitly, and they will therefore need both Cj+1
ES,i

and Rj+1
i . However, the two PDE’s are independent of each other. For the

time discretization backward Euler is used, and for the space discretization
the two point flux approximation for equidistant grid eq. (3.29). This results
in a matrix system Au = b with a tridiagonal matrix. The discretization of
the equation for the enzyme will be

θ(Rn+1
i )Cn+1

E,i − θ(Rni )CnE,i
∆t

−
ai−1C

n+1
E,i−1 − (ai−1 + ai)C

n+1
E,i − aiC

n+1
E,i+1

(∆x)2

=− 2πRn+1
i (k1(N − Cn+1

ES,i)C
n+1
E,i − k2C

n+1
ES,i)− θ(R

n+1
i )kactC

n+1
E,i .

(3.48)
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The coefficients a are computed as in section 3.4.1, that is, the equation for
ai will be

ai =
2

∆x

(
1

D0
ED̄(Rn+1

i )
+ 1

D0
ED̄(Rn+1

i−1 )

) . (3.49)

This can be written with the terms for the different CE ’s separated. It will
then look like

Cn+1
E,i−1

[
− ai−1

(∆x)2

]
+Cn+1

E,i

[
θ(Rn+1

i )

∆t
+
ai−1 + ai

(∆x)2
+ 2πRn+1

i k1(N − Cn+1
ES,i) + θ(Rn+1

i )kact

]
+Cn+1

E,i+1

[
− ai

(∆x)2

]
= 2πRn+1

i k2C
n+1
ES,i +

θ(Rni )CnE,i
∆t

.

(3.50)

Similarly the equation for the drug release is discretized to

θ(Rn+1
i )Cn+1

A,i − θ(Rni )CnA,i
∆t

−
ai−1C

n+1
A,i−1 − (ai−1 + ai)C

n+1
A,i + aiC

n+1
A,i+1

(∆x)2

= 2πRn+1
i

C0
A,im

C0
C

k(Cn+1
ES,iR

n+1
i )γ ,

(3.51)

with

ai =
2

∆x

(
1

D0
AD̄(Rn+1

i )
+ 1

D0
AD̄(Rn+1

i−1 )

) . (3.52)

Grouping the terms together as we did for CE yields

Cn+1
A,i−1

[
− ai−1

(∆x)2

]
+ Cn+1

A,i

[
θ(Rn+1

i )

∆t
+
ai−1 + ai

(∆x)2

]
+ Cn+1

A,i+1

[
− ai

(∆x)2

]
= 2πRn+1

i

C0
A,im

C0
C

k(Cn+1
ES,iR

n+1
i )γ + θ(Rni )CnA,i.

(3.53)
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It is easy to see that both matrices will still be diagonally dominant. In
absolute value, the diagonal elements contain the sum of the off-diagonal
elements, with the addition of other positive terms.

3.6.2 Implementation of the channel geometry model

As for the grain model, the equations for the new model need to be dis-
cretized. The new model also consists of four partially coupled equations.
The equations for d and CES will be solved explicitly, and CE and CA will
be solved implicitly. This allows us to solve the equations separately on each
time step. However, this is complicated slightly by the introduction of the
Heaviside function. We start by discretizing the equation for d to solve it
explicitly

ρ
dn+1
i − dni

∆t
= −k4H(ρdni )CnE,i(N − CnES,i). (3.54)

This results in the scheme

dn+1
i = ∆t

[
−k4

ρ
H(ρdni )CnE,i(N − CnES,i)

]
+ dni . (3.55)

Although CES will be solved explicitly, it makes more sense to use the
Heaviside function for time step n+ 1, because this tells us whether or not
there is collagen present at the time we want to calculate. This is possible, as
dn+1 already is found on each element, and ρ is constant. The discretization
then becomes

Cn+1
ES,i − CnES,i

∆t
=H(ρdn+1

i )[k1C
n
E,i(N − CnES,i)− k2C

n
ES,i]

− (1−H(ρdn+1
i ))k3CES ,

(3.56)

with the scheme

Cn+1
ES,i =∆t

[
H(ρdn+1

i )[k1C
n
E,i(N − CnES,i)− k2C

n
ES,i]

− (1−H(ρdn+1
i ))k3CES ]

]
+ CnES,i,

(3.57)

The equations for CE and CA are again independent of each other, so it does
not matter which is solved first. We will here go through the scheme for CE
first. It is important to make sure that mass is conserved, which is done by
choosing the right points for the fluxes. If we look at eq. (2.78), the term
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that determines the flux is DE∂x[(l − d)∂xCE ], which can be rewritten as
DE∂x(F ), with F as the flux. For point i, this can be discretized to

1

∆x
[Fi+1/2 − Fi−1/2], (3.58)

where Fi+1/2 is the flux over cell wall xi+1/2. There are no sources or sinks
inside the domain, so all mass changes are due to the flux. We see that
for each interval the mass change is equal to flux in minus flux out, which
means that mass is conserved on each interval. We want to be sure that this
is the case for the whole domain as well. Summing the fluxes over all the
boundaries, that is i = 1, . . . , n gives

[���F3/2 − F1/2]

+[���F5/2 −�
��F3/2]

+[���F7/2 −�
��F5/2]

...

+[����Fn−1/2 −����Fn−3/2]

+[Fn+1/2 −����Fn−1/2].

(3.59)

This is reduced to Fn+1/2−F1/2, that is the change in mass for the whole do-
main is the change in flux over the edges. This means that mass is conserved
over the whole domain.

When we want to implement this, we need the value of d on the cell walls.
However, as the TPFA method uses mid points, we do not know this value
of d. We will approximate it by the values of the two adjoining mid points,
so that the implementation for Fi+1/2 is

Fi+1/2 = [(l − d)∂xCE ]i+1/2 ≈
(
l − di+1 + di

2

)
CE,i+1 − CE,i

∆x
. (3.60)

Using this and taking into account the time discretization the implemented
equation for CE is

(l − dn+1
i )Cn+1

E,i − (l − dni )CnE,i
∆t

+ ∂tCES |n+1
i

=
DE

(∆x)2

[(
l −

dn+1
i−1 + dn+1

i

2

)
Cn+1
E,i−1 −

(
2l −

dn+1
i−1 + 2dn+1

i + dn+1
i+1

2

)
Cn+1
E,i

+

(
l −

dn+1
i + dn+1

i+1

2

)
Cn+1
E,i+1

]
+ kact(l − dn+1

i )Cn+1
E,i .

(3.61)
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This has the scheme

Cn+1
E,i−1

[
− DE

(∆x)2

(
l −

dn+1
i−1 + dn+1

i

2

)]

+Cn+1
E,i

[
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i

∆t
+

DE

(∆x)2

(
2l −

dn+1
i−1 + 2dn+1

i + dn+1
i+1

2

)
− kact(l − dn+1

i )

]

+Cn+1
E,i+1

[
− DE

(∆x)2

(
l −

dn+1
i−1 + dn+1

i

2

)]

=
l − dni

∆t
CnE,i − ∂tCES |n+1

i .

(3.62)

Similarly the discretized equation for CA will be

(l − dn+1
i )Cn+1

A,i − (l − dni )CnA,i
∆t

+ ∂tρd|n+1
i

=
DA

(∆x)2

[(
l −

dn+1
i−1 + dn+1

i

2

)
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(
2l −
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i−1 + 2dn+1

i + dn+1
i+1

2

)
Cn+1
A,i

+

(
l −
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i + dn+1

i+1

2

)
Cn+1
A,i+1

]
.

(3.63)
The implemented scheme is

Cn+1
A,i−1

[
− DA

(∆x)2

(
l −

dn+1
i−1 + dn+1

i

2
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+Cn+1
A,i

[
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∆t
+

DA

(∆x)2

(
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i + dn+1
i+1

2
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+Cn+1
A,i+1

[
− DA

(∆x)2

(
l −

dn+1
i−1 + dn+1

i

2

)]

=
l − dni

∆t
CnA,i − ∂tρd|n+1

i .

(3.64)

It is easy to see that the matrix for CA will still be diagonally dominant,
as the diagonal element is the sum of the absolute value of the off-diagonal
elements and another positive term. The matrix for CE will be diagonally
dominant as long as

l − dn+1
i

∆t
> kact(l − dn+1

i ). (3.65)
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3.7 Implementation

For the implementation of the grain model, we treated DE , DA, θ and the
right hand side functions for CE and CA as functions by using MATLAB’s
function handle. For each time step, forward Euler was used to find CES
and R, and a combination of forward Euler and MPFA was used to solve the
equations for CE and CA. The matrices used for this are adapted depending
on the boundary conditions, and can be used for both Dirichlet and Neu-
mann boundary conditions, as well as a combination of the two. To make
sure that the radius would not become negative, we used the maximum value
of the computed R and 0 for each interval.

In the channel model, bothD’s were treated as constants. However, the right
hand sides were still treated as function handles. For this implementation,
we first used forward Euler to solve for d, then found the new H and used
this in the forward Euler calculation of CES . Note that if we choose a small
enough time step the Heaviside function ensures that the minimum value of
d is 0. A combination of MPFA and forward Euler was again used on CE
and CA, with the matrices depending on type of boundary condition.

We chose the MPFA method do discretize our equations in space, because
it conserves mass. This along with the forward Euler method was adapted
to our discretized equations, and the implementations are possible to use
for both Neumann and Dirichlet boundary conditions, even though the cur-
rent models only have Dirichlet boundary conditions. To make sure the
implementations were correct, they were tested for both accuracy and con-
vergence. The results of this, as well as a sensitivity analysis will be found
in the next chapter.

When the models were fully tested, we used them on two sets of data. The
boundary conditions from the data in [14] are Dirichlet conditions, but they
are not constant. In the experiments, the solution containing collagenase is
changed at times. This makes the boundary conditions change between 1.4×
10−6µmol/cm3 and 0. At the time the solution is changed, the boundary
condition will be 1.4× 10−6µmol/cm3 and then descend linearly towards 0
before the next change. This is due to the collagenase becoming inactive
after a certain period of time. This period is not known, as has to be fitted.
The new data from October 2013 has similar boundary conditions, but with
the concentration of collagenase in the solution 1.25×10−6µmol/cm3.

There are other constants that we do not have experimental values for, and
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they will be fitted as well. In the grain model we have γ, and in the channel
model there is k4. When implementing, we discovered that the fully linear
channel model would not fit the data, and added a non-linearity. This was
done in the equation for d. This seemed most reasonable considering the
non-linear term in the grain model is in the equation for R. This made the
equation for d

∂td = − k4

ρS
H(dρ)(CE(N − CES))γ2 , (3.66)

and its discretization

dn+1
i = ∆t

[
−k4

ρ
H(ρdni )(CnE,i(N − CnES,i))γ2

]
+ dni . (3.67)



Chapter 4

Results

This chapter concerns the numerical results and their analysis. We will start
with a comment about the experimental results, before moving on to the
implementations. Here we will first show how the methods were tested, and
look at convergence rates. A sensitivity analysis is performed to identify the
relevant parameters in the models. A mathematical fitting of two parameters
in the grain model and three in the channel model has also been performed.
These parameters could not be fitted experimentally. Finally, the final fit-
ting was done in comparison with the experimental results. The sensitivity
analyses and final fittings are done for three different sets of data, the first
one from [14] and the second and third from the new experiments.

4.1 Experimental results

There are two sets of data that are used in this thesis. One is from [14],
and one, shich is referred to as the new one, from October 2013. The new
experimental results seem to have some inaccuracies, as k1 and k2 are of a
different order than the constants found in [14]. This may be due to different
measuring units, as scaling them made the fitting of the data easy, but it
is not clear if this really is the case. The collagen degradation measured in
the new data set is much slower than the one from [14]. It may be due to
differences in how often the solution that contains collagenase was changed,
and how much collagenase it contained, but there may also be mistakes in
one or both sets of data. This should be explored in future research. The
contents of collagenase in the solution will be implemented as boundary

48
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conditions, and the longer the solution is used unchanged, the more collagen
becomes inactive, which in turn slows the process down.

4.2 Testing the implementations

The implementation of both models was tested with the help of known
functions to minimize the chance of errors in the code. This was done by
computing the right hand side so that the equation admitted the analytical
solution. We then plotted the calculated solution over the analytical one,
and checked the convergence rate. Throughout the testing, we used an
equidistant grid with both t and x on the interval [0, 1], and the same number
of steps in both spatial and temporal direction. At T = 1, the plot was made
and convergence tested for the computational domain x ∈ [0, 1]. The error
that is used, is the L2-error, which is given by

E =

√∫ 1

0
(uanalytical − unumerical)2dx. (4.1)

On the testing of the models, the step sizes have been halved between each
test. That is, the error should approximate 2 for small step sizes, as shown
in section 3.4.1.

4.2.1 Grain geometry

The grain model used f(x, t) = tx(1− x) + C as the main analytical solu-
tion, with C as a constant. Changing the C was important to check that
the boundary conditions were handled properly. We used f(x, t) to check
convergence of both CE and CA. However, as the equations are very sim-
ilar, their implementations are almost identical. In the development of the
program, we have tested convergence and analytical solution with CE , and
in the end checked for CA. Before each convergence calculation, we also
changed some of the constants, to make sure they had been implemented
correctly.

The first test was done with constant R, CES and D. Keeping R constant,
meant that θ could also be treated as a constant, which made it easier
to test just the implementation of CE . Figure 4.1 shows the computed
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Figure 4.1: Solution of CE with step length 0.00625 and C = 0.

Table 4.1: Error for CE with constant R and CES
Step length (∆x) Error Convergence

0.1 0.035284557528755 1.861680616927416

0.05 0.018953067034124 1.927626317353635

0.025 0.009832334650911 1.963120830007375

0.0125 0.005008522399955 1.981400817217011

0.00625 0.002527768413354

solution compared with the analytical, and the error and convergence rate
is in table 4.1.

We see that there is very small error between the computed and analytical
solutions, even on rather big steps. The convergence rate in table 4.1 is
calculated from the error on the same row, as well as the row below. It is
approaching 2 as the steps become smaller, and already when the step size
is reduced from 0.025 to 0.0125 it can be rounded off to 2.0. These results
are in agreement with the expected convergence rate.

In the next test R was found through forward Euler, which meant that
both D and θ changed for each time step. The results are given in fig. 4.2
and table 4.2.
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Figure 4.2: Solution of CE with step length 0.00625 and C = 0.

Table 4.2: Error for CE with constant CES
Step length (∆x) Error Convergence

0.1 0.035293454479411 1.861881753115380

0.05 0.018955798036237 1.927757263895274

0.025 0.009833083444300 1.963192411937406

0.0125 0.005008721195390 1.981437945934715

0.00625 0.002527821376221

The results are again very good, with a small error and a convergence rate
that approximates 2, which suggests a correct implementation. The analyt-
ical and computed solutions are almost identical, and the convergence rate
is almost the same as in the previous test, as expected.

As it is difficult to test the results for R, θ, D and CES against analytical
solutions, we chose to just test for CE . To be sure that all calculations were
correct, we therefore changed R back to being a constant when testing with
CES as a function. This resulted in fig. 4.3 and table 4.3.

Once more, the results are good with a small error and the convergence rate
that quickly approaches 2.



52 CHAPTER 4. RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Plotting C
E
 and its analytical solution x(1−x)

x

C
E

 

 

Analytical

Calculated

Figure 4.3: Solution of CE with step length 0.00625 and C = 0.

Table 4.3: Error for CE with constant R
Step length (∆x) Error Convergence

0.1 0.035296865086005 1.861928766771014

0.05 0.018957151162779 1.927812044021062

0.025 0.009833505927911 1.963228699155667

0.0125 0.005008843815364 1.981458428020343

0.00625 0.002527857130148

The last test was done with both R and CES as functions, which meant that
D and θ also were varying. This was tested for CA as well to make sure that
this method was working. Figure 4.4 shows the computed solution for CE
against the analytical solution f(x, t), with Neumann boundary conditions
f(0, t) = f(1, t) = t. At the end time t = 1, when the plot is made, the
function is f(x, t) = tx(1− x) + 1.

Although the computed solution of CE differs a little from the analytical in
the middle, as seen in fig. 4.4, table 4.4 shows that the convergence rate is
right, that is the solution is quickly approaching the right one. We see that
the convergence rate is even better than for the previous tests, with it being
2.0 from the beginning and 2.00 when the step size changes from 0.0125 to
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Figure 4.4: Solution of CE with step length 0.00625 and Neumann boundary
conditions.

Table 4.4: Error for CE with calculated R and CES
Step length (∆x) Error Convergence

0.1 0.060801185635915 1.974156143422392

0.05 0.030798569727372 1.986976269955451

0.025 0.015500220205480 1.993430671771861

0.0125 0.007775650502910 1.996697114951157

0.00625 0.003894256392062

0.00625.

The implementation of CA was tested with Dirichlet boundary conditions,
and C = 0. The results are shown in fig. 4.5 and table 4.5.

Figure 4.5 shows that the computed solution is very similar to the analytical
one. This is confirmed by table 4.5, which additionally shows that the
convergence rate is approaching 2 for CA as well as the error being very
small.
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Figure 4.5: Solution of CA with step length 0.00625 and C = 0.

Table 4.5: Error for CA with calculated R and CES
Step length (∆x) Error Convergence

0.1 0.035278485658167 1.861562212163140

0.05 0.018951010837921 1.927530312242646

0.025 0.009831757621426 1.963064253573082

0.0125 0.005008372804675 1.981370443329528

0.00625 0.002527731662464

4.2.2 Channel geometry

We defined CE(x, t) = tx(1−x) and compared the analytical and computed
solutions to test the method. Additionally, the error between the solutions,
as well as the convergence rate was calculated, and the results are in ta-
ble 4.6. The plot for CE is given in fig. 4.6.

To test the implementation for solving d, we kept CES constant and solved
d analytically by using the same function for CE as before. When calcu-
lating d as in eq. (2.81) from this, we found its analytical solution to be
d = −x(1− x)/2 + 0.3. The plot for the computed d compared to its ana-
lytical solution is given if fig. 4.7.
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Table 4.6: Error for CE with computed CES and d
Step length Error Convergence

0.1 0.035383430465186 1.864094179248415

0.05 0.018981568023270 1.928980047580153

0.025 0.009840209621184 1.963791501754844

0.0125 0.005010821980027 1.981728685157167

0.00625 0.002528510596611
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Figure 4.6: Solution of CE with step length 0.00625.

We see that the plots have good accuracy, and that the error for CE is
small. From fig. 4.7 it is clear that although we have no convergence rate
for d, the computation is becoming accurate very quickly. The error rate for
CE is approximately 2, and getting closer to 2 as the number of steps are
increased. This is to be expected, and we see that already for the increase
of step size from 0.025 to 0.0125, the error can be rounded to 2.0.
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Figure 4.7: Solution of d with step length 0.00625.

4.3 Sensitivity analyses

We did a sensitivity analysis on all the parameters that need fitting. This is
to see if small changes in the parameters that are uncertain make a big dif-
ference in the output and thereby identifying the relevant parameters.

We did sensitivity analyses with the data set from [14] as well as the new
data sets for both models. This was done by systematically changing one
of the parameters that need fitting, while not changing anything else. The
sensitivity analyses was performed with the changing boundary conditions
described in section 3.7.

4.3.1 Data from the paper of Ray et. al.

The first experimental data we used to test our models is the data from [14].
The sensitivity analysis was performed for the collagen degradation.



4.3. SENSITIVITY ANALYSES 57

Grain geometry

For the model with grain geometry we did a sensitivity analysis for the two
constants we needed to fit. That is, γ and how long the collagenase is active,
which will be shortened to AC and measured in parts of an hour. We started
with γ, while keeping AC = 1/16, and the results are in fig. 4.8.

Figure 4.8: Sensitivity analysis for collagen degradation with different γ.

We see that small changes in γ have a big impact on how fast the collagen
is degrading. In fig. 4.8, the smallest value of γ is still 80 % of the biggest,
but the curves are still very different, especially in the beginning. The
curves has some “jumps” where the degradation happens quickly before
it slows down. This is due to the boundary conditions, where the jumps
represent the changing of solution, thereby adding new, active collagenase
to the system. In turn, this results in a quicker degradation of the collagen
matrix. How quickly the curve flattens is due to how fast we set the enzyme
to become inactive. This is AC , the second parameter that needs to be
fitted. We performed a sensitivity analysis for AC as well, and this can be
seen in fig. 4.9, with γ = 0.6.

We see that changing AC has less influence than changing γ. Although the
collagenase is active five times as long for AC = 1/4 as for AC = 1/20,
the shape of the curve does not change much. The jumps are higher, but
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Figure 4.9: Sensitivity analysis with different AC .

the processes stop quickly after the solution is changed for all AC ’s. We
have no good explanation for this, as we would have expected the time the
collagenase is active to have a bigger impact, and this is something that will
need more exploration in the future.

Channel geometry

In the model based on channel geometry, there are three constants that need
fitting. These are γ2 and AC , which is similar to the grain geometric model,
and the rate parameter k4. We started with the sensitivity analysis for γ2,
shown in fig. 4.10. This was done with k4 = 200 and AC = 1/100.

We see that smaller γ2 makes the curve steeper. Note also that as γ2 gets
bigger, the change in curves becomes more rapid. We think that γ2 = 1/3
looks like a good fit, if it is slowed down towards the end.

The next parameter we fitted was AC . We varied it between 1/10-th of an
hour to 1/150-th of an hour, but it did not make a big difference as seen in
fig. 4.11.

Here, γ2 = 1/3 and k4 = 200 were kept constant. We were expecting to
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Figure 4.10: Sensitivity analysis with different γ2.

Figure 4.11: Sensitivity analysis with different time for active collagenase.

see jumps in the curve, as we did for the grain geometry, whenever new
collagenase is added, but this effect is not visible, even when we set the
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time the collagenase is active to be very small. With bigger γ2 however, the
jumps can be seen, if not as clear as we had thought. Figure 4.12 shows the
collagen degradation with very big k4, γ2 = 2/3 and AC = 1/100.

Figure 4.12: Sensitivity analysis with different k4.

There are visible jumps, but the processes seem to not slow down as quickly
as we anticipated. From the curve for k4 = 73 264, it is clear that even
though the jumps become more distinct with higher γ2, the computed curve
still does not fit with the experimental data. Up to about 40 hours the
computed concentration is too small, and then it gets too big, which means
that the shape of the curve needs to be altered.

The final fitting was done for k4. These results are in fig. 4.13.

We see that although the process slows down as k4 decreases, the shape
is not altered much. There seems to be something that our model is not
considering properly that slows the process down with time. It is natural
to think that the model allows the processes to happen too quickly, because
we do not see the jumps. Especially towards the end, when collagenase is
added infrequently, they should be visible. There are however some uncer-
tainties regarding the boundary conditions. We do not know how long the
enzyme is active, and it was not completely clear how often the solution was
changed.
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Figure 4.13: Sensitivity analysis with different k4.

4.3.2 New data set (October 2013), non-cross-linked colla-
gen

The first data set from October 2013 contains collagen that has not been
cross-linked. These sets have much fewer data points than the set from
[14].

Grain geometry

The sensitivity analysis for the data set with non-cross-linked collagen for
the grain geometry can be seen in figs. 4.14 and 4.15. In fig. 4.14 AC was
kept constant at 2, while γ = 0.375 in fig. 4.15.

From the figures we see that γ has a bigger influence on the result than AC .
Another result worth noticing is that as γ increases or AC decreases, the
distance between the curves increases.
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Figure 4.14: Sensitivity analysis with different γ.

Figure 4.15: Sensitivity analysis with different AC .

Channel geometry

The channel geometry again has three parameters to be fitted, as shown in
figs. 4.16 to 4.18. The first analysis is for γ in fig. 4.16 with AC = 1/20 and
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k4 = 50.

Figure 4.16: Sensitivity analysis with different γ.

It seems that γ = 0.33 would be a good fit, again if it would slow down
towards the end.

To do the analysis on AC , fig. 4.17, γ = 1/3 and k4 = 50 were kept con-
stant.

Although AC varies a lot, with its biggest value being 60 times its smallest
value, the curves are very similar. The clearest difference is towards the end
of the increase. This is to be expected, because the new solution is added
less frequent there, which means that the process depends a lot more on
how long the collagenase is active.

Finally, the analysis of k4 was done with constants γ = 1/3 and AC = 1/20
as shown in fig. 4.18.

We see that changing the value of k4 slightly changes the shape of the curve.
Higher k4 makes it slow down more towards the end of its ascendance, but
we could not get it to slow down as much as the experimental results showed
without loosing accuracy at the beginning.
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Figure 4.17: Sensitivity analysis with different AC .

Figure 4.18: Sensitivity analysis with different k4.

4.3.3 New data set (October 2013), cross-linked

The data set for the enzymatically cross-linked collagen matrices has a much
slower degradation than the other data sets. This is to be expected because
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the collagen matrices have more links that the collagenase have to break in
order for the matrix to be broken down.

Grain geometry

The computations for the collagen degradation with cross-linked collagen
can be found in figs. 4.19 and 4.20. In the analysis of γ, CA was kept constant
at 3, whereas γ was kept constant at 0.45 for the analysis of AC .

Figure 4.19: Sensitivity analysis with different γ.

There are still clearly visible jumps in the plots, and as earlier changes in γ
has a big impact on the computations. The smallest γ is 80 % of the biggest,
but calculates a degradation that is more than twice the slowest degradation
after only a few hours.

The influence of AC is still a lot smaller, even though it is bigger than for
the non-cross-linked collagen from the previous section. From fig. 4.20 we
see that although AC is changed, the process slows down very quickly after
each time the solution is changed. Note also that the scale of AC differs
between the data set from [14] and the data sets from October 2013. In the
first, AC is in parts of an hour, whereas the new data sets have AC as bigger
than an hour.
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Figure 4.20: Sensitivity analysis with different AC .

Channel geometry

We started with the sensitivity analysis of γ2, with AC = 1/10 and k4 = 50.
This is shown in fig. 4.21.

Figure 4.21 shows that bigger γ2 slows the process down, but it is slowed
down too much in the beginning, which makes the shape of the curve wrong
in the beginning before it is correct towards the end. Again it seems that the
new model misses an element that slows the process down as the solution
with collagenase is changed with less frequency.

The next parameter to be analysed was AC . Here, γ2 = 0.35 and k4 = 25,
which resulted in fig. 4.22.

There is quite a big jump from AC = 1 to AC = 1/10, but apart from that,
the choice of AC does not influence the result greatly. This is consistent
with the sensitivity analyses for the other data sets.

Finally, k4 was analysed in fig. 4.23 with γ2 = 1/3 and AC = 1/10.

The fitting of k4 has the same problem as the fitting of γ2. That is, we
are able to slow down the process, but then it slows down in the beginning
as well. Even though it is slowed down more towards the end than in the
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Figure 4.21: Sensitivity analysis with different γ2.

Figure 4.22: Sensitivity analysis with different AC .

beginning, we see that already for k4 = 12.5, the computation is too slow
in the beginning. This means that changing k4 is not the right approach to
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Figure 4.23: Sensitivity analysis with different k4.

get the process to slow down towards the end, which supports our theory
that an element is missing from the model.

4.4 Comparison with experimental data

We compared our computations with different data sets. The first is the
one from [14], whereas the other two are the sets from October 2013. Based
on the sensitivity analyses for the parameters that can not be determined
experimentally, we found what we believe is the best fitting curve.

4.4.1 Data set from the paper by Ray et. al.

The first data set we adapted our implementation to is the data set from
[9, 10] used in [14].
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Grain model

For the first set of data, we had a hard time fitting the grain model. Somehow
the fit is not the same for the collagen degradation and the drug release. For
the collagen degradation, γ = 0.45 and AC = 1/16 seemed to be the best fit,
but for the drug release γ = 0.475 and AC = 1/20 is the best fit. These plots
are shown in figs. 4.24 and 4.25. This may not seem like a big difference,
but as we have seen in the sensitivity analysis for γ, small changes in γ have
a big impact on the degradation of the collagen matrix. The same is true
for the drug release, so we were unable to find a good fit where both the
collagen degradation and drug release had the same parameters.

Figure 4.24: Computed degradation compared to experimentally measured
degradation.

The plot for the collagen degradation fits well in the beginning, but is too
small towards the end. The reason seems to be that the process stops too
quickly after a new solution is added. However, changing AC had very little
impact as seen earlier, so it is not clear why this is happening.

Figure 4.25 shows that with the right parameters, the fit for the drug release
is very good. Opposed to the computation for the degradation of the matrix,
it does not slow down too much towards the end.
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Figure 4.25: Computed drug release compared to experimentally measured
drug release.

Channel model

For the channel model the best fit for the degradation of the collagen matrix
seems to be with γ2 = 1/3, k4 = 200 and AC = 1/100. The very small AC
is also indicating that there is something in the model is stopping it from
slowing down as quickly as it should. The computed solution is plotted with
the experimental data in fig. 4.26.

To find a good fit for the drug release was very difficult. The computed
drug release was much to small compared to the experimental whenever the
parameters were comparable with the parameters used to fit the curve for
the degradation. However, with γ2 = 1/10, AC = 1/100 and k4 = 5503, we
got the plot in fig. 4.27.

We could not find a good fit with the same parameters for the collagen
degradation and the drug release, which may be due to the non-linearity in
d. This theory is supported by the differences between the equations for CA
and CE . While the equation for CA contains ∂td as well as d, the equation
for CE depends only on d, and not its derivative. This means that changing
the equation for d will have a bigger impact on AC than on CE . Considering
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Figure 4.26: Computed degradation compared to experimentally measured
degradation.

Figure 4.27: Computed drug release compared to experimentally measured
drug release.
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the extremely big k4 and small γ2 that was needed to fit the drug release,
this seems reasonable.

4.4.2 New data set (October 2013), non-cross linked colla-
gen

Both data sets from October 2013 only contains data for the collagen degra-
dation. The first mathematical modelling of a collagen implant with an
evolving microstructure was done in [14]. Because this are of research is so
new, this is the first opportunity to compare the fitted parameters for more
than one set of data. They should not depend on the data, so it will be
interesting to compare them.

Grain geometry

In the grain geometry we found the best fit to be for γ = 0.375 and AC = 1.5.
The plot for the computed solution is in fig. 4.28.

Figure 4.28: Computed degradation compared to experimentally measured
degradation.
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This fit is better than the fit we got with the data from [14]. The exper-
imental data shows a much slower degradation towards the end than the
previous data, which makes the model have a better fit.

Channel geometry

The best fit in the channel geometry has γ = 1/3, AC = 1/10 and k4 = 50,
which can be seen in fig. 4.29.

Figure 4.29: Computed degradation compared to experimentally measured
degradation.

Again, we see that the model does not slow down quickly enough, but that
the fit is pretty good in the beginning.

4.4.3 New data set (October 2013), cross-linked collagen

Collagen matrices are used for slow drug release, so anything that can slow
the degradation down, is welcome. Enzymatic cross-linking is very promis-
ing, which makes it important that our models fit these experimental data
as well.
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Grain geometry

In the grain geometry, the best fit was found with γ = 0.45 and AC = 2.
This is shown in fig. 4.30.

Figure 4.30: Computed degradation compared to experimentally measured
degradation.

We see that this is a really good fit, with only small inaccuracies at the very
beginning.

Channel geometry

The best fit for the experimental data with cross-linked collagen is shown in
fig. 4.31.

Like all the plots from the model with channel geometry, it fits quite well in
the beginning, but then continues to grow too rapidly.

For the new data set, there are no data for the drug release. This means
that we could not compare the parameters for the degradation of the matrix
with the drug release the way we could from the older data set. Considering
the differences we found there, it would be very interesting to look at this
in future research.
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Figure 4.31: Computed degradation compared to experimentally measured
degradation.

In this chapter we have seen how the implementations were tested to make
sure they were correct, and how they were fitted to the experimental data.
For the grain model we found that γ = 0.45 and AC = 1/16 was the best
fit for the data set from [14]. For the new data sets the fitted parameters
were γ = 0.375 and AC = 1.5, and γ = 0.45 and AC = 2 respectively. We
see that although they have some similarities, they are not identical enough
to be certain of what the value should be. The channel model has three
parameters that were γ = 1/3, k4 = 200 and AC = 1/100 for the first set of
data. For the other two they were γ = 1/3, k4 = 50 and AC = 1/10, and
γ = 0.35, k4 = 25 and AC = 1/10. These are rather similar, which is a good
sign. For the first part of the collagen degradation at least, it looks like
the model is a good fit, and the fact that the fitted parameters are almost
constant for the two new data sets may indicate that they are correct.



Chapter 5

Conclusions and future
work

This thesis looks at the mathematical modelling of slow drug release from
collagen matrices, with a special focus on the degradation of the collagen
matrix. This is a difficult, but mathematically very interesting problem.
The collagen minirods show great potential in treating different diseases,
and a good mathematical model can help to optimize the preparation of the
minirods. Because it is a relatively new field of research, there is still much
to explore. In this thesis we have tried to shed light both on an existing
model, as well as creating a new model with different geometry.

We started with the grain model from [14], made it one-dimensional and
chose a new method to implement it. This method was the TPFA, which
is a control volume method, and thus has the advantage that it conserves
mass. Afterwards we developed the channel model. We hoped that this
would have fewer parameters to be fitted than the grain model, but this
turned out not to be the case. If developed further, it would still be good
to have this model, as it was developed in 1D, as opposed to the grain
model. This would probably make it a better one dimensional model than
the 1D version of the grain model, considering this was developed for two
dimensions.

Both models were discretized and implemented in MATLAB. During the
computations we discovered that the channel model is more stable than
the grain model with the use of forward Euler for the equations with only
temporal derivatives. The implementation of the grain model needed the
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steps to be about three times shorter than the implementation of the channel
model. Forward Euler has the advantage that the equations can be solved
as only partially coupled, which allows for a much simpler implementation
and fast calculations.

The implementations were tested theoretically as well as compared to exper-
imental data. The first set of data we used was used previously in [14], but
we also did some experiments to have a new set of data. The experiments
were done for two types of collagen - both non-cross-linked and cross-linked.
There is a clear difference in the time it takes to break down the two matri-
ces, which is what we expected.

The solutions computed with the grain model in this thesis are not as good
fits as the solutions from [14]. This is to be expected, as a two-dimensional
model is better, and especially when the model was developed for a two-
dimensional geometry. There are still some advantages with a 1D-model.
It allows quicker computations and is easier to implement, which could be
good for analyses. The change in method should not make a big difference,
but it seems like we should have made some changes in the model when
we changed dimensions. The natural place to start would be the porosity,
as that depends heavily on the geometry, and therefore the number of di-
mensions. This may make the fit better. However, the model fits better
for the new data, so it may be that there is an error in the data from [14].
Unfortunately, we have no new data for the drug release. In future research
it would be good to look at how the parameters look like for this as well. If
they are the same as for the collagen degradation, it could suggest an error
in the data set. However, if they are very different again, it suggests am
error in the model.

Generally, we see that the channel model has good fits at the beginning, but
there is a problem with slowing it down towards the end. This may be due
to too many simplifications, so a next step could be a 2D-model or more
channels. After discovering that the model needed a non-linearity it seemed
natural to have in the equation for d because the non-linearity in the grain
model is in the equation for R. This should however be explored further,
to find a mathematical explanation. It is also possible that there should
be a non-linearity somewhere else, which may help the process slow down
towards the end.

For future work it would be nice to have a new set of experimental data.
Since the rate parameters k1 and k2 are so different in the sets we have,
it would be useful to see which is right. That would also make it possible
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to have more testing points, which would be good to know how well our
model fits the experimental data. A new set of data should also consider
the release of the drug. This is especially important for the cross-linked
collagen matrices as there has been no modelling of this.

The new model with channel geometry needs more theoretical exploration.
Both with the non-linear term, as mentioned before, and to find out why
the process does not slow down. It would also be good to see it is possible
to determine k4 experimentally, as the fewer parameters that need fitting,
the better.
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