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Abstract 

 

The ALICE detector at CERN is a promising tool for the study of the Quark-Gluon Plasma 

(QGP), an exotic state of matter thought to be present in the early Universe. The study of 

partonic energy loss reveals vital information about the interaction between quarks and 

gluons in the QGP. Heavy quarks are used as probes since they are created in initial hard 

scattering processes and consequently undergo the entire evolution of the created 

medium. 

 Recent studies of hadrons originating from fast light quarks show a suppressed 

particle yield in events where the QGP is present. For light quarks, the preeminent energy 

loss is due to radiative energy loss. Heavier quarks are not as sensitive as light quarks to 

this suppression, but experiments indicates a particle suppression originating from heavy 

quarks to the same yield as light quarks, implying radiative energy loss is not the only 

contributor to the partonic energy loss. A study of this energy loss can be performed by 

utilizing angular correlations of heavy flavor mesons. Alongside yielding important input 

on energy loss models, the angular correlations also provide a base-line for Pb-Pb 

collisions and crucial pQCD tests.  

 In this thesis, the azimuthal correlations of electrons originating from heavy-

flavored hadrons and neutral 𝐷 mesons of PYTHIA simulated proton-proton collisions at 

several momentum cuts are analyzed. In particular, a new method of obtaining the 

azimuthal correlations is presented with the aim of both increasing the number of 

statistics as well as check if there are any significant changes compared to the 

distributions obtained through the current means. Azimuthal correlations of charm and 

beauty quarks at different momentum cuts are also analyzed. Due to the low statistics 

regarding the production of heavy quarks, the analysis will be performed on both a 

minimum bias run as well as an enhanced sample. 

 In the 1st chapter, a brief introduction on quarks and matter will be presented 

alongside some important properties regarding Quark Gluon Plasma. The following 

chapter will emphasize on the experimental setup at CERN and an outlay of the ALICE 

detector. Chapter 3 will cover the some important topics regarding the object oriented 

software AliRoot as well as some fundamental event generators and the main ingredients 

of an AliAnalysisTask, which is the actual analysis macro. Various heavy flavor production 

mechanisms and the corresponding Feynman topologies are discussed in Chapter 4. In 

the succeeding chapter, PYTHIA will be presented with an emphasis on particle 

production and some  examples of generated  distributions. Chapter 6  contains  the main 
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analysis of this thesis, namely heavy flavor azimuthal correlations. The various steps of 

the analysis macro will be introduced, as well as the results from this analysis. A 

conclusion is given in the final chapter. 
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Chapter 1 

Introduction 

 

1.1 A Brief History of Matter 

The first scientifically concept of matter has its roots in the ancient Greek natural 

philosophy known as atomism. Around the 5th century BC, natural philosophers were split 

into two sides regarding the lore of reality; Heraclitus of Ephesus, who believed that 

change was the fundamental constituent of all of reality, opposing Parmenides of Elea, 

instead claiming that change is merely an illusion [1]. Parmenides refused the concept of 

change and motion, denying the sensorial illusions and instead claiming that reason was 

the only path to comprehending the apex of the natural sciences.  

Democritus was the first natural philosopher to propose the theory of atoms in 

order to reconcile the two views of nature; all matter is composed of something 

fundamentally undividable, thus one could have a change of motion, size and position, but 

not on the cost of the never-changing atoms. The philosophical nature of the atoms 

changed considerably over time, but the basic concept stood the test of time because of 

its remarkable elegancy when explaining chemistry. The Greek word for undividable, 

atomos, is still used today although the atoms have been found to contain smaller 

constituents.  

In 1897, Sir Joseph John Thompson forced a paradigm shift upon the natural 

sciences when he discovered the electron during one of his cathode ray experiments, 

consequently annihilating the undividable atom theory [2]. Thompson instead proposed 

a model where the negatively charged electrons were distributed inside the atom with 

positive charges to balance out the total charge, a model better known as the plum 

pudding model. 12 years later, Ernest Rutherford, later known as the father of nuclear 

physics, conducted an experiment at the University of Manchester where his initiates 

Hans Geiger and Ernest Marsden bombarded a thin sheet of gold foil in a vacuum chamber 

with alpha particles generated by a radon source, using a zinc sulfide screen at the base 

of a microscope as a detector. According to Thompson’s model, the incoming alpha 

particles should experience zero to a few degrees deflection. Although most of the 

particles behaved according to the pudding model, surprise was imminent when a few 

number of the deflected particles were scattered at angles even above 90 degrees, 

completely disobeying the predictions of the prevailing model. The results of the 

experiment implied that the plum pudding model was incorrect. Instead, Rutherford draw 

the conclusion that the atom consisted of a positively charged, concentrated mass center, 

forcing the alpha particles to deflect whenever they directly hit the center or were close 
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Figure 1.1: The Standard Model of particle physics. Due to the QCD confinement 

principle, only an approximate measurement of the light quark masses are given.  

 

enough to get deflected. The fact that the majority of the alpha particles traversed the 

atoms with no deflection implied that the center had to be very small compared to the 

extent of the atom itself, meaning that the majority of the atom was empty space. In 1911, 

Rutherford rejected the plum pudding model in a paper and proposed a new model of the 

atom, where the charge and mass of the atom was mainly concentrated at the center, 

surrounded by mostly empty space. Two years later, famous physicist Niels Bohr 

improved Rutherford’s model by explaining the distributions of electrons, soon to be 

replaced by quantum mechanics and the Schrödinger equation which successfully were 

able to describe and explain the structure of the Hydrogen atom. With the birth of 

quantum field theory in the 1950s and the discovery of the quarks in the following decade, 

the Standard Model finally arose, depicting the fundamental particles and how they 

interact.  

According to the Standard Model (see Figure 1.1), all matter consists of leptons, 

quarks and gauge bosons mediating the respectable interactions [3]. Photons and the 

massive 𝑊±- and Z-bosons are responsible for propagating the electroweak interaction 

whilst the massless gluons propagate the strong interaction. The field theory describing 

photon interactions is known as Quantum Electro Dynamics (QED), whilst Quantum 

Chromo Dynamics (QCD) depicts the strong field regarding the quarks. The Higgs 

mechanism, utilizing the infamous Higgs boson, is the process responsible for 

spontaneously symmetry breaking which in return forces mass upon fermions.
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Figure 1.2: Picture of the cosmic microwave background derived from nine 

years of data from Wilkinson Microwave Anisotropy Probe (WMAP). The color 

differences represents temperature variations of the left-over radiation from 

The Big Bang with an average of 2,726 K [4]. 

 

 

1.2 Quark Gluon Plasma 

When looking for remnants from the creation of the Universe, few observables can match 

the cosmic microwave background (CMB). The CMB (see Figure 1.2) is a snapshot of left-

over radiation from an early stage of the Universe, long before planets, stars and 

constellations were to be found in the empty void of space and time, dating to roughly 

380.000 years after the Big Bang [5]. Although the observable studies of the old Universe 

stops here, experimentally one is able to recreate conditions even further back in time by 

using high-energy particle colliders. Before the first hadrons emerged, a soup of free 

gluons and quarks existed before confining each other in bags of particles. This particle 

soup is better known as Quark-Gluon Plasma (QGP), an exotic and intriguing phase of 

matter where quarks are free from the strong interaction. By using super colliders, such 

as the Large Hadron Collider (LHC) located in Geneva, QGP matter can be recreated by 

smashing nuclei together at high energies due to the asymptotic freedom of quarks.  

 Once the confined quarks are “free” from the strong interaction, the QGP can be 

studied by introducing the nuclear modification factor 𝑅𝐴𝐴(𝑝𝑇), given by 

𝑅𝐴𝐴(𝑝𝑇) =
𝑑2𝑁𝑐ℎ

𝐴𝐴𝑑𝑝𝑇𝑑𝜂

〈𝑇𝐴𝐴〉𝑑2𝜎𝑐ℎ
𝑁𝑁𝑑𝑝𝑇𝑑𝜂

 , 

where 𝑁𝑐ℎ
𝐴𝐴 is the particle yield in the nucleus-nucleus (𝐴𝐴) collision, 𝜎𝑐ℎ

𝑁𝑁 is the nucleon-

nucleon (𝑁𝑁) collision cross section and 〈𝑇𝐴𝐴〉 is the nuclear overlap function which is the

(1.1) 



1.2 Quark Gluon Plasma 
 

4 
 

 

Figure 1.3: The nuclear modification factor from Pb-Pb collisions at √𝑠 = 2,76 

TeV with different centralities [6]. 

 

ratio of the number of binary NN collisions [7]. At high momentum transfer 𝑝𝑇 , there is a 

suppression of particle production which can be expressed in terms of the 𝑅𝐴𝐴(𝑝𝑇).  The 

hadron production suppression is due to energy loss as the hadrons transverse the QGP.  

By studying particle yields, like scaling 𝑁𝑁 collisions, for instance proton-proton 

collisions, by the number of nucleons corresponding to 𝐴𝐴 collisions and assuming there 

are no effects from the QGP, one would expect a unity in the ratio of the two particle yields. 

A reduced ratio however indicates a suppression. The 𝑅𝐴𝐴 spectra measured at ALICE 

from a Pb-Pb collision at √𝑠 = 2,76 TeV are shown in Figure 1.3 where one clearly can see 

a suppression at 𝑝𝑇 ≈ 7 TeV followed by a rise as the 𝑝𝑇 increases. This increase however 

is consistent with the expected behavior of the parton energy loss where the relative 

energy loss decreases as the 𝑝𝑇 increases.  

 When comparing the 𝑅𝐴𝐴 distribution at high 𝑝𝑇 for different hadrons and mesons, 

they all show the same suppressing behavior (see Figure 1.4 for the case of D mesons). 

This implies that the dominating energy loss process is identified at a partonic level. If the 

hadronic energy loss were to be dominant, the different hadrons would have different 

corresponding cross sections depicting the different energy loss processes. The study of 

heavy flavor quark production in heavy ion collisions provides important information 

regarding energy loss at a partonic scale which in turn can provide information about the 

produced QCD matter. Heavy quarks are primarily produced in initial hard scattering 

processes, making them ideal probes since they undergo the entire evolution of the 

created QCD matter.  
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Figure 1.4: The 𝑅𝐴𝐴 from Pb-Pb collisions at √𝑠 = 2,76 TeV for D mesons at 0-

7.5% centrality [8]. 
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Chapter 2 

LHC and ALICE 

 

The Large Hadron Collider (LHC), located near Geneva, is CERN’s (the European 

Organization for Nuclear Research) flagship when it comes to experimental particle and 

nuclear research. The LHC is a dual-ring hadron accelerator and collider built between 

1998 and 2008. The 26.7 km tunnel in which it is installed was pre-existing and built 

between 1984 and 1989 for the LEP machine. The tunnel consists of eight straight 

sections as well as eight arcs, and lies roughly 100 m beneath the surface. There are 

currently seven detectors installed at the LHC, located in caverns at the intersection points 

of the accelerator. These are known as ATLAS, CMS, LHCb, TOTEM, MoEDAL, LHCf and 

ALICE. ATLAS and CMS are large multi-purpose detectors, while ALICE and LHCb are more 

specifically. TOTEM, MoEDAL and LHCf are for very special research purposes [9].  

A particle collider where the particle beams counter-circulate and collide are far 

more superior to ordinary accelerators where a particle beam hits a stationary target 

when regarding particle production. The available energy used to produce particles in 

collisions is the center-of-mass (CMS) energy. For two colliding beams of particles, the 

CMS is the sum of the energies corresponding to the incoming beams. In the case of a 

collision with a fixed target, the CMS energy is proportional to the square root of the beam 

energy, meaning a beam collision is preferable regarding particle production. 

 The choice of hadrons as particle beams in collisions at the LHC is not random. In 

order to accelerate and collide the particles, the particle beams must be charged since 

magnets are the main contributor regarding beam manipulation. Also, unless needed, the 

particles can’t decay which reduces the most prominent probes to be electrons, protons 

and ions as well as the corresponding anti-particles. However, as a result of synchrotron 

radiation, heavier particles have far less energy loss per orbit in accelerators compared to 

lighter particles. Therefore, in case of circular accelerators such as the LHC, heavy 

particles should be utilized in collisions in order to obtain the highest amount of energy. 

Characterizing particles and determining their corresponding trajectories in order 

to reconstruct collisions is a major task for physicists. The track itself contains a great deal 

of information as the curvature of the tracks indicates the charge, momentum is directly 

proportional to the radius of curvature and the sudden appearance of two particles 

indicates a decay of a neutral particle just to name a few observable attributes. However, 

in order to detect these observables one is in dire need of some sort of detector. 
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Figure 2.1: Schematic layout of the ALICE detector [10]. 

 

Particle detectors often consists of several layers of different detectors, where each sub-

detector are specialized to specific observables. For instance, tracking detectors recreate 

particle trajectories, calorimeters measure energy deposits and particle identification 

devices combine several detectors and techniques in order to determine the identity of 

the particles. 

 

2.1 The ALICE Detector 

ALICE (A Large Ion Collider Experiment) is a heavy ion detector installed at the LHC with 

the general purpose of studying effects of strongly interacting quarks and gluons under 

extreme densities and temperatures originating from heavy nuclei collisions [11]. ALICE 

also enables the study of hadrons, muons, photons and electrons as well created in 

nucleus-nucleus collisions. Proton-proton collisions acts as reference modules for several 

heavy-ion collisions and QCD predictions.
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The ALICE detector was built by a collaboration of over a thousand physicists and 

engineers from 30 different countries. The detector itself weighs approximately 10 000 

tons with a dimension of 16 × 16 × 26 m3. The detector focuses on physics at mid-

rapidity, i.e., at low baryon and high energy densities and detects hadrons, leptons and 

photons. 

 

2.2 ALICE Layout 

The ALICE detector is located at Point 2 in the LHC. The detector is accessed by the PX24 

shaft underneath the service building SX2 [12]. This, and the nearby buildings, acts as 

suppliers of gas, ventilation, cooling and electricity as well as other maintenance services. 

Equipment between the surface and the detector is transferred by a crane, capable of 

lifting 65 tons, located in the SX2 hall, where all detector operations are supervised as 

well. The particle beam pipe is located 44 m beneath SX2 in the cavern UX25, where ALICE 

is implemented.  

 The ALICE detector consists of 18 sub-detectors, each with a corresponding power 

supply, cooling system and data acquisition system. The central barrel of ALICE is 

surrounded by a solenoid magnet, named L3, with a length of 12.1 m and a diameter of 

11.5 m. Enclosed inside L3 are the sub-detectors ITS, TPC, TOF, TRD, PHOS and EMCal. A 

dipole magnet, located 7 m from the interaction point, creates a magnetic field 

perpendicular to the particle beam and is an important part of the muon spectrometer. In 

the following sections, some of the sub-detectors will be discussed in more detail.  

 

2.2.1 The Inner Tracking System (ITS) 

The ITS is a sub-detector enclosing the particle beam pipe, consisting of cylindrical silicon 

detectors engulfed within a radius between 4.0 cm and 43.0 cm. The layers and their 

corresponding positioning are optimized for track determination and high impact-

parameter resolutions, allowing the ITS to locate primary vertices with a resolution 

smaller than 100 μm.  

 In high-energy heavy nuclei collisions, one expects a very high particle density. In 

order to obtain a high resolution, six layers of silicon detectors are placed around the 

beam pipe. For the two inner-most layers, Silicon Pixel Detectors (SPD) are chosen, 

whereas Silicon Drift Detectors (SDD) contribute to the two following layers. The two 

outer-most layers are Silicon micro-Strip Detectors (SSD). The four outer-most silicon 

detectors provide energy loss measurements for low-momentum ionizing particles due 

to its analogue output in the non-relativistic region, turning the ITS into a low-pT 

spectrometer.  
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The SPDs primary task is to determine vertex positions as well as measuring the impact 

parameter of tracks originating from decays of heavy quarks (charm, strange and beauty) 

and operates with a track density of 50 tracks/cm2. The four next layers, consisting of the 

SDD and SSDs, are essential in particle identification by measuring energy deposits. The 

two outer-most layers are also in charge of matching the tracks between the ITS and the 

next sub-detector, the TPC.  

 

2.2.2 The Time-Projection Chamber (TPC) 

The main task of the TPC is to measure particle momentum distributions, provide particle 

identification and determine vertices. The TPC spans the entire azimuthal range, and 

covers a phase space of |𝜂| = 1.5 for reduced tracks lengths and |𝜂| < 0.9 for full track 

lengths. The transverse momentum range is covered from 10−1 GeV to 102 GeV. Inside the 

field cage, electrons are transported up to 2.50 m to one of the end plates. At each end 

plate, 18 separate trapezoidal units contains multi-wire proportional chambers, where 

each chamber are equipped with cathode pad readouts.  

 The TPC is a cylindrical in geometry with an inner radius of 0.85 m, an outer radius 

of 2.50 m and a length of 5.00 m. The field cage contains a central high-voltage electrode 

and two diagonally potential dividers which induce a uniform electrostatic field in the 

detector gas. The electrode is a 22 μm thick Mylar foil, placed approximately 

perpendicular to the beam axis. Aluminized Mylar strips, woven 18 times around support 

rods define the electric potential. 

 The field cage is filled with 90 m3 of some detector gas, usually Ne, CO2 or N2. This 

choice of drift gas is not random, as they all have suitable properties regarding drift speed, 

radiation length as well as ageing and stability. In the case of Ne and CO2 however, there 

is a very high dependence between the drift velocity and temperature which has led the 

TPC to keep a thermal stability with a maximum fluctuation of ∆𝑇 ≤ 0.1 K. The TPC also 

utilizes a gas envelope of CO2 as insulation in vessels around the field cage.  

As mentioned, the TPC uses multi-wire proportional chambers with cathode pad 

readout. The readout chambers are installed at the end plates of the TPC, which covers an 

area of 32.5 m2. Due to the readout dependency of track density, the readout is radially 

segmented into sectors in two chambers with a slightly different geometry. In order to 

obtain the necessary energy deposit and track separation resolution, the TPC uses 

approximately 5.6 × 105 cathode pads in total.  
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2.2.3 The Time-Of-Flight (TOF) detector 

The TOF detector operates in the central pseudo-rapidity region where its main priority 

is particle identification. The momentum range covers up to 4 GeV for protons and 2.5 

GeV for kaons and pions, and combined with data from ITS and TPC the TOF is able to 

identify large particle samples as well as contribute invariant mass studies of kaons.  

 The detector is installed in a cylindrical frame with an internal radius of 3.70 m 

and an external radius of 3.99 m. The basic elements of the TOF detector are 1.22 m long 

and 0.13 m wide strips placed inside modules installed transversely to the particle beam 

axis. In total, the TOF detector consists of 90 modules, where the central modules contain 

15 MRPC strips while the external modules consists of 19 strips.  

 

2.2.4 The Photon Spectrometer (PHOS) 

The PHOS is a single-arm high-resolution electromagnetic spectrometer with the main 

task of testing thermal properties from direct low 𝑝𝑇 photon measurements as well as 

investigating jet quenching. The PHOS is installed at the very bottom of the ALICE 

detector, 4.60 m away from the center point of interaction and covers the entire azimuthal 

spectrum. 

 Each spectrometer module consists of 3.584 cells arranged in 56 rows containing 

64 detection cells. The cells consists of lead-tungstate crystals coupled to an Avalanche 

Photo-Diode (APD). The APD and a preamplifier is glued to the end of a crystal, which are 

arranged in two rows of eight detection cells. The analog signals from this strip are 

connected to triggers through a T-shaped connector. 

 In order to increase the light yield from the tungstate crystals, the PHOS modules 

are kept at a steady temperature of −25°C. The temperature is monitored by temperature 

sensors installed between the crystals, with a thickness ranging from 30 to 50 μm. The 

PHOS detection cells are monitored by stable current generators and a system of Light 

Emitting Diodes.  

 

2.2.5 The ElectroMagnetic Calorimeter (EMCal) 

EMCal is a cylindrical Pb-scintillator calorimeter placed in opposite azimuth to the PHOS 

calorimeter and adjacent to the ALICE magnet coil. The positioning is due to the 

installation of PHOS below the TPC combined with the implementation of HMPID above 

the TPC, which renders EMCal to a region of 107° in azimuth above TPC. 

 Due to the large acceptance, which covers |𝜂| ≤ 0.7, EMCal provides a substantial 

increase to the electromagnetic calorimeter coverage in ALICE as well as fast triggers for 

hard jets, electrons and photons. Since EMCal measures neutral jet energies, full jet 

reconstructions are available for all collision systems. 
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EMCal is divided into 12.288 module towers, where each tower is grouped into two 

different super modules corresponding to the azimuthal acceptance. The super modules 

consists of 288 modules arranged in 24 strips, where each module are made up from 

alternating layers of 1.44 mm Pb and 1.76 mm polystyrene molded scintillators. 

 

2.2.6 The Muon Spectrometer 

The muon spectrometer operates in the pseudo-rapidity region −4.0 <  η <  −2.5, 

which corresponds to the polar angular range 171° − 178°, with the main task of mapping 

vector-meson resonances in muon decays. At LHC energy scales, muons originating from 

semi-leptonic open charm and beauty decays dominate the particle yield, thus enabling a 

study of open heavy flavor production. The muon spectrometer consists of a front 

absorber, a tracking system, a dipole magnet, a muon-filter, trigger chambers and a beam 

shield.  

 The absorber’s main task is to absorb hadrons and photons emerging from the 

interaction point. The absorber is installed inside the solenoid magnet with a length of 

4.13 m. In order to limit the energy loss of the measured muons, the absorber is 

preponderantly made of carbon and concrete. A dense absorber, or tube shield, made of 

tungsten and stainless steel surrounds the beam pipe and acts as a shielding for the 

spectrometer. Finally, a muon filter, which is basically an iron wall with a thickness 

of 1.2 m, is placed in front of the trigger chambers for additional shielding.  

 The tracking chambers need a spatial resolution of 100 μm in order to cope with 

the invariant mass resolution of the Υ mass. In total, the tracking chambers of the muon 

spectrometer covers an area of 100 m2 with a maximum hit density of 5 × 10−2 cm−2. In 

order to meet these requirements, the spectrometer utilizes cathode pad chambers 

arranged in five stations. Two stations are installed in front of the dipole magnet, one is 

installed inside the dipole and two are placed behind the dipole. The stations consists of 

cathode planes which provides two-dimensional hit information. 

 

2.2.7 The Zero Degree Calorimeter (ZDC) 

By measuring the energy of non-interacting nucleons in the forward direction, that is, at 

0° relative to the beam axis, an estimate of the number of participant nucleons can be 

determined.  These spectator nucleons can be detected by ZDCs, which also provides 

centrality information and reaction plane estimates. There are two ZDCs installed in 

ALICE, both located 116 m on each side of the vertex point.  

 Non-interacting protons and neutrons are spatially separated by magnetic devices 

of the LHC beam pipe. The ZDCs therefore consists of two detectors; one for non-

interacting protons and one for the neutrons. Both detectors are installed on lifts, enabling 

them to be lowered out of the beam plane when they are not used.  
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The ZDCs are quartz fiber Cherenkov calorimeters. When produced particle showers 

transverse dense absorbers, they emit Cherenkov radiation in the quartz fibers. Due to 

the innate velocity of the Cherenkov radiation emission, these calorimeters provides very 

fast signals. The absorbers consists of layers of 40 lead plates, each with a thickness of 

3.0 mm, with quartz fibers placed between the plates. The fibers have a diameter with a 

thickness  of 550 μm. 

 

2.2.8 The Photon Multiplicity Detector (PMD) 

The PMD measures photon multiplicity and spatial distribution in the pseudo-rapidity 

region 2.3 ≤ η ≤ 3.7. By measuring photon multiplicity, one can establish important 

information regarding phase transitions, state of matter and chiral condensates.  The PMD 

also yields information regarding the reaction plane. 

  

 2.2.9 The Forward Multiplicity Detector (FMD) 

The FMD operates in the pseudo-rapidity range −3.4 < η < −1.7 and 1.7 < η < 5.0 and 

provides charged-particle multiplicity information. There is an overlap between the 

FMD’s silicon rings and ITS’ inner pixel layer which acts as a cross check of measurements. 

The FMD also provides multiplicity fluctuation information on an even-by-event basis 

within the pseudo-rapidity range. 

 There are in total three FMD rings installed in ALICE. FMD2 and FMD3 consists of 

an inner ring and an outer ring of silicon sensors, located on each side of ITS. FMD1 is 

placed located further away from the vertex point in order to expand the charged particle 

multiplicity range.  

 

2.2.10 The V0 Detector 

The V0 detector consists of two arrays of scintillator counters placed on each side of the 

vertex point. The detector provides luminosity measurements in pp collisions as well as 

minimum-bias triggers. 

 The two scintillator counters are called V0A and V0C. The V0A is located 3.4 m 

away from the vertex opposite to the muon spectrometer while V0C is placed 0.9 m from 

the vertex point in front of the hadronic absorber. V0A covers the pseudo-rapidity range 

2.8 < η < 5.1 while V0C covers the range −3.7 < η < −1.7. The counters consists of a 

BC404 scintillating material and Wave-Length Shifting fibers with a diameter of 1 mm.  
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2.2.11 The T0 Detector 

The T0 detector’s main task is to provide trigger and timing signals. T0 has a detector 

dead time of 25 ns, corresponding to the order of the bunch crossing period in pp 

collisions. The detector also measures vertex positions for each interaction, yields 

centralities and delivers a “wake up” signal to TRD. 

 The detector contains two arrays, T0-A and T0-C, containing 12 Cherenkov 

counters. The counters are photomultipliers with a diameter of 30 mm and a diameter of 

45 mm. The T0-A covers the pseudo-rapidity range 4.61 <  η < 4.92 while the T0-C 

covers the range −3.28 <  η <  −2.97. In order to maximize the trigger efficiency, the 

arrays are placed very close to the beam pipe. At 14 TeV, the trigger efficiency of T0 for 

minimum bias pp collisions is roughly 40%. However, due to the large multiplicities, the 

trigger efficiency in heavy-ion collisions is basically 100%.  

 

2.2.12 The ALICE Cosmic Ray Detector (ACORDE) 

ACORDE is an array of plastic scintillator modules installed on the surface of the L3 

magnet in ALICE. Each module contains two scintillator counters and two PMTs at the end 

of the scintillators installed in an aluminum 40 kg structure. The modules provides fast 

trigger signals for calibration for different tracking detectors, but the main task is 

detecting atmospheric muons and muon bundles which allows for a study of high-

energetic cosmic radiation.  

 In total, ACORDE contails 60 scintillator counters. Each time atmospheric muon 

interacts with the detector, ACORDE sends a fast trigger signal to the Central Trigger 

Processor. This signal is also used by TPC, ITS, TOF and HMPID as performance tests. The 

rate at which a single atmospheric muon hits ACORDE is around 4.5 Hz/m2 at the very top 

of L3 and need at least an energy of 17 GeV in order to reach the detector barrel. However, 

since the upper limit for reconstructing muon tracks in TPC is around 2 TeV, this will allow 

measurements of muon momentum spectra in a very wide range.  
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Chapter 3 

The ALICE Offline Framework 

 

The main task of the ALICE offline framework is to finalize the experimental activity by 

interpreting the actual results. This includes reconstruction, calibration, analysis and 

simulation of data. In this chapter, the ALICE offline framework, AliRoot, will be discussed 

in detail, followed by a section describing the constituents of an ALICE analysis task. 

 

3.1 The AliRoot Framework 

AliRoot is an Object-Oriented software framework based on the ROOT system [13]. The 

AliRoot framework contains several different event generators, particle transport 

packages and when supplemented by AliEn enabled access to Grid computing. The main 

task of the AliRoot framework is analysis, simulation and reconstruction of the 

experimental data. A schematic view of how the framework is constructed can be seen in 

Figure 3.1.  

The main interactions in an event are simulated using event generators. The event 

generator creates particles with different momenta, which is used in the study of the 

production history, i.e. the production vertex and decay. This is the base for the Kinetic 

tree, which is used in transport packages such as GEANT3 and FLUKA. The transport 

packages, as the name implies, transports the simulated particles through the different 

detectors and produces hits. Hits are energy deposits at a given point in space and time, 

and also contains track labels from the particles which created the hits. The hits can be 

viewed as the energy deposit in the whole volume of the active detector, as in the case of 

calorimeters, or merely as a matter of comparison in detectors like TOF. 

From the hits we can create digits. The transition from hits to digits are given by a 

disintegrated response, meaning we strip, or disintegrate, the tracks and only let the 

labels contain the Monte Carlo simulation information. The digits can also be split into the 

categories summable digits and digits. The summable digits makes use of low thresholds 

and carries an additive result, whereas the digits uses real thresholds similar to the actual 

data. There are however a few differences between the digits and the raw data produced 

by the detectors. For instance, the raw data is stored in a ROOT structure whilst the digits 

are stored in a class. With the digits, one can use reconstruction chains to study both the 

software and detector performance, making use of either real or simulated data.
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Figure 3.1: A schematic view of AliRoot and its constituents [14]. 

 

3.1.1 Simulation 

The tremendous amount of particles created in heavy ion collisions at GeV energy scales 

gives birth to a series of problems when dealing with reconstruction and analysis. The 

accuracy of the detectors are dependent on simulation algorithms of the detector 

response, therefore simulation is a crucial step regarding calibration of detectors.  

Simulation processes include the generation of the initial particle packages, 

production and decay from the interactions and the particle transport through the 

detectors. The AliROOT framework is capable of simulating collisions, generate particles 

created in the collisions and simulate hits as the particles traversing detectors. The 

particles created in collisions are produced by generators, such as AliGenerator. The class 

AliDecayerPythia is responsible for the decay simulation of particles. The simulation is 

prepared using the macro Config.C, a C++ macro which configures the Monte Carlo 

simulation, magnetic fields and detectors etc.  

The class TVirtualMC is the foundation regarding how the particles traverse the 

detectors, while TGeo defines different geometry properties of the detectors, alongside 

the functions CreateMaterials, BuildGeometry and CreateGeometry. AliDetector, a 

subclass of AliModule, is responsible for the active modules, and AliModule and 

AliDetector  creates  the  foundation  for  an  interface  to  the  simulation  software.  High- 
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energy proton-proton collisions, interactions, fragmentations and jets are simulated using 

Pythia. The PHOJET generator implements the Dual parton model in pp collisions, 

combining Regge theory and pQCD in order to describe hard scattering processes [15]. 

The jet fragmentation simulations are created using HIJING (Heavy-Ion Jet Interaction 

Generator). This model is basically a hybrid of QCD-jet fragmentation theory and the Lund 

model, and is exceptionally accurate when dealing with small fragmentation ratios at 

intermediate energies. One of the more outstanding properties of the HIJING model is the 

prediction of nuclear shadowing. Nuclear shadowing is a model depicting how the 

eigenstates of free partons distributed in the nucleus changes. Due to nuclear shadowing, 

the multiplicity decreases at low parton momentum fractions.  

MevSim is a simulation software, originally written in FORTRAN and later built 

into the AliROOT framework, created in order to produce nucleus-nucleus collisions in 

specific cases. The software run simulations according to the user’s choice of number of 

particles, multiplicity fluctuations, number of events etc. MevSim is the base for GevSim, 

an event Monte Carlo generator used in testing algorithms and performance of detectors. 

GevSim uses distribution functions when generating particles, again based upon input the 

user chooses. However, GevSim is also capable of simulating event-by-event fluctuations, 

which provides an additional option for user defined distribution fluctuations alongside 

the distributions from MevSim.  

 

3.1.2 Reconstruction 

The reconstruction framework uses digits, often in ROOT tree format, inherited from the 

simulation framework as input. From the digits, clusters are reconstructed for each 

detector from which tracks and vertexes are determined. Each detector contributes a 

reconstructor class. The class AliReconstructor points AliReconstruction to the proper 

detector reconstruction class, which reconstructs detectors via plug-ins.  

Local reconstruction is the first part of the reconstruction process. Each detector 

independently creates clusters, hence this process is often called clusterization. Using 

Reconstruct on the object that is to be reconstructed starts the local reconstruction, where 

all detectors run the local reconstruction. It is however possible to convert the raw data 

digits to a tree and use this digits tree as input instead of invoking the local reconstruction 

on the actual raw data. Reconstructions of vertexes in ALICE are based upon information 

given by the silicon pixel detectors. The algorithm from which the reconstruction of the 

vertexes are done begins with determining the distribution of space points in the 𝑧-

direction in the first of the silicon pixel layers. A symmetric distribution implies the vertex 

having the z-coordinate 𝑧 = 0, and an increased number of hits vanishes as the vertex 

position differs from the centroid. If the primary vertex location don’t stray too far away 

from 𝑧 = 0, usually up to ~12 cm, the centroid is still reciprocally related to the actual 

vertex space point. The primary vertex is reconstructed by an object derived from 

AliVertexer. When all the local reconstructions are done for each separate detector, the 

method FindVertexForCurrentEvent is invoked, returning AliESDVertex.
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Since each detector creates a separate set of information, one could easily see the need to 

combine all track reconstructions in order to achieve a single, optimal reconstruction 

track. The class AliESDTrack grants the detectors the ability to exchange data without 

neglecting the independencies of the different detectors. In order to achieve this 

possibility, AliESDTrack transform the information into a set of pointers, consisting 

merely of integers, to the tracks, thus allowing reconstruction of the needed tracks. Every 

section of the reconstruction framework for the tracking detectors utilize the same 

coordination set-up; 

- Right handed coordinate system 

- Cartesian coordinate system 

- The detectors sensory plane is perpendicular to the x-plane 

- The origin and z-axis coincide with a universal ALICE coordinate system 

By choosing this set-up, the reconstruction calculations are greatly improved regarding 

simplicity. Transformations from local to global coordinate systems become way less 

tedious since these transformations merely become rotations around the z-axis. The final 

product output of the reconstruction framework is the Event Summary Data, or ESD. 

 

3.1.3 Tracking 

The actual tracking process consists of several steps. First, the tracking starts at the best 

tracking detector, where also the track density is at its minimum, namely the outer-most 

area of the TPC. The seeds, or the tracking objects, consists of a few number of clusters, 

therefore an extrapolation of the tracks to other detectors will contain a relatively large 

uncertainty. In order to minimalize the uncertainties, the tracking process is constrained 

within the TPC towards the inner-most part of the TPC. Each time new clusters are 

recognized as a part of a track, they are added making the tracking process more and more 

accurate. This process is done throughout the entire registry of the TPC, and is followed 

by a similar process in ITS. However, in addition to adding seed parameters, a unique ITS 

tracking system is available for the ITS clusters, enabling the ITS tracking system to detect 

tracks not found by the TPC due to decays etc.  

When the tracking process reaches the inner-most part of the ITS, the tracking 

process starts all over again, back to the outer-most part of ITS and then again through 

the TPC. Using the potential tracks, time-of-flight hypotheses are made which the TOF 

uses  for  particle  identification,  PID.  At  this  point,  the  parameters  should  contain  an 

acceptable certainty and thus making extrapolation to the TOF, PHOS and TRD detectors 

available. In the TRD, the tracking process is quite similar to that of TPC. Track parameters 

are added as the track goes from the outer-most wall to the inner-most, saving clusters 

and improving the parameters until the information is sufficient for further extrapolation 

to TOF and PHOS. The tracking process finishes by a final refitting using the Kalman filter, 

yielding a remarkable accurate series of track parameters. The finalized series of 

reconstructed tracks, along with the particle information, are stored in the ESD. The Event 

Summary Data is analyzed using the class AliESD. The ESD contains information regarding 

event identification parameters (such as event number, time stamp, trigger cluster etc.), 
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ZDC energies, vertex positions, track multiplicity, interaction time, tracks and clusters. 

The ESDs are essential for analysis due to all the information stored in these files.  

 

3.2 The ALICE Analysis Framework 

The ALICE analysis framework enables an efficient way of processing ALICE data by 

utilizing parallel computing and providing data to different analysis modules 

simultaneously [26]. An analysis task, which is a ROOT macro, must be created in order 

to run an analysis algorithm using the ALICE analysis framework.  

 Usually, an analysis task derives from the class AliAnalysisTaskSE which 

implements a compliant communication between the analysis manager object and the 

data handlers. The mandatory objects needed in an analysis task are: 

 

 UserCreateOutputObjects( ) 

This method calls the output objects which are to be written of the analysis, 

i.e.  histograms, trees etc.  

 

 UserExec( ) 

The UserExec( ) is where the user defines the actual analysis algorithm 

which is to be implemented. Input data usually consists of the type 

AliVEvent which is accessed via the fInputEvent member. For ESD analysis, 

the pointer must be directed to AliESDEvent, while MC information is 

accessed by the fMCEvent. Following is an example of a UserExec( ) which 

plots the pT distribution of charmed particles.  

 

 Constructors( ) 

The constructors are needed in order to initialize the data members of the 

analysis task. The tasks must also contain a non-default constructor which 

defines the input and output slots of the analysis.  

 

 Data containers 

Within the analysis task there exists predefined objects which define the 

different data types included in the analysis known as data containers. The 

data containers are never created within the analysis, but rather created by 

the means of a handling manager which puts together the analysis task. The 

main task of containers is to state the input and output data types. Usually, 

the input and output containers are created by connecting the input and 

output event handlers to managers.  
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Alongside the mandatory objects needed in order to successfully run an analysis task, 

there are several optional methods that can be added by the users for further simplicity. 

These include, but by far not limited to, LocalInit( ), Notify( ) and Terminate( ). The latter 

is where the user usually chooses to draw the output.  
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Chapter 4 

Heavy Flavor Quark Production 

 

The study of particle energy loss is an essential means when determining properties of 

matter. At a partonic scale, quarks acts as brilliant probes due to their small extension as 

well as their wide range in mass, where the lightest quark, the up quark, has a mass of a 

few MeV whilst the most massive, the top quark, has a mass of approximately 173 GeV. 

Since quark flavor is conserved in hard interactions, the energy needed to produce a quark 

pair equals twice the mass of the quark of interest [16]. 

 Quark pairs are produced in high-energy particle collisions, for instance proton-

proton collisions, using large particle accelerators such as the LHC. However, by colliding 

heavy nuclei one can alongside the actual quark production obtain information regarding 

the energy loss of quark probes in the created QGP matter [17]. We can thus use the 

proton-proton collision as a reference and study the scaling to nucleus-nucleus collisions. 

Any suppression of created hadrons could thus be connected to energy loss due to the 

interaction between the quarks and the QGP. By studying heavy flavor electrons, one can 

map energy loss distributions and also distinguish charm and beauty flavors using 

electron-𝐷0 correlations.  

There are three leading order heavy flavor quark production processes which 

arises in proton-proton collisions, known as flavor creation, flavor excitation and gluon 

splitting. Albeit we differ between these main production channels, the names could be 

somewhat misleading since all topologies accommodate the 𝑔 → 𝑄�̅� vertex. In the 

following sections, a brief summary of some results of QCD will be presented as well as a 

deliberation of each production topology. 

 

4.1 Quantum ChromoDynamics 

Quantum ChromoDynamics, or QCD, is the gauge theory inferring color charge 

interactions. All hadrons are bound states of fermions known as quarks, where each quark 

is characterized by different masses and a fractional electric charge. Baryons are bound 

states of three so-called valence quarks, while mesons are assumed to be a bound quark-

antiquark state. Although this hadron model can yield a remarkable description of the 

spectra  of  hadrons,  there  are  two  fundamental  issues. First off there have  yet to been 
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observed free quarks.  Quarks always come in bound states due to the confinement 

principle. Secondly, there is a violation of the Pauli principle when looking at baryons like 

the 𝛺−-baryon, which apparently consist of three identical quarks with symmetric wave 

functions.  

 However, both phenomena can be explained by introducing gauge color theory, as 

proposed by Nambu and Greenberg in 1964. By introducing a new attribute to quarks, 

known as color, we assume that all quarks can exist in three different color states. Quark 

wave functions can thus be expressed as a product of a spin term and a color wave 

function, i.e. 

Ψ = 𝜓𝜒𝑐,  

where 𝜓 denotes spin and 𝜒𝑐 corresponds to the color wave function [18]. The QCD 

Lagriangian density is given by 

ℒ𝑄𝐶𝐷(𝑥) = ∑ �̅�𝑓𝑙
(𝑥)[𝑖𝛾𝜇𝐷𝜇 − 𝑚𝑓𝑙]𝜓𝑓𝑙

(𝑥) −
1

4
∑ 𝐹𝜇𝑣

𝑎 (𝑥)𝐹𝑎𝜇𝑣(𝑥) ,

8

𝑎=1𝑓𝑙

 

where the sum runs over all quark flavors and 𝐹𝜇𝑣
𝑎 (𝑥) is the gluon field tensor. The 

covariant derivative is given by 

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔𝐴𝜇(𝑥) = 𝜕𝜇 + 𝑖𝑔 ∑ 𝑇𝑎𝐴𝜇
𝑎(𝑥)

8

𝑎=1

 . 

𝑎 corresponds to the eight gluon charges, 𝑔 is the QCD coupling constant and 𝑇𝑎 is an 

SU(3) generator satisfying the commutation relation 

[𝑇𝑎, 𝑇𝑏] = 𝑖𝑓𝑎𝑏𝑐𝑇𝑐 

where 𝑓𝑎𝑏𝑐 are QCD structure constants. The gluon field tensor is given by 

𝐹𝑎
𝜇𝑣

= 𝜕𝑣𝐴𝑎
𝜇

− 𝜕𝜇𝐴𝑎
𝑣 + 𝑔𝑓𝑎𝑏𝑐𝐴𝑏

𝜇
𝐴𝑐

𝑣 . 

According to first-order QCD perturbation theory, the interaction Lagrangian consists of 

various combinations of quark and gluon fields. This property infer different vertex 

factors corresponding to the different interaction terms. For instance, a quark-gluon 

vertex (see Figure 4.1) yields the contribution 

−𝑖𝑔𝛾𝜇(𝑇𝑘)𝑙𝑚 . 

A second term depicting a three-gluon vertex arises from second order field tensor terms, 

contributing a vertex factor given by 

𝑔𝑓𝑏𝑐𝑑[𝑔𝑣𝜏(𝑘3 − 𝑘2)𝜎 + 𝑔𝜏𝜎(𝑘2 − 𝑘1) + 𝑔𝜎𝑣(𝑘1 − 𝑘3)𝜏] , 

where 𝜏 and 𝑣 are some dummy indices. The third term from the interaction Lagrangian 

depicts a four-gluon vertex, contributing a vertex factor of 

−𝑖𝑔2𝐺𝛼𝛽𝛾𝛿  , 

(4.1) 

(4.3) 

(4.4) 

(4.5) 

(4.2) 

(4.6) 

(4.7) 

(4.8) 
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Figure 4.1: The QCD vertex factors, where a) – d) corresponds to Eqs. (4.6), (4.7), 

(4.8) and (4.10). 

 

where 

𝐺𝛼𝛽𝛾𝛿 = 𝑓𝑘𝑎𝑏𝑓𝑘𝑐𝑑(𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛽𝛾𝑔𝛼𝛿) + 𝑓𝑘𝑐𝑏𝑓𝑘𝑎𝑑(𝑔𝛾𝛼𝑔𝛽𝛿 − 𝑔𝛽𝛼𝑔𝛾𝛿)

+ 𝑓𝑘𝑎𝑐𝑓𝑘𝑏𝑑(𝑔𝛼𝛽𝑔𝛾𝛿 − 𝑔𝛾𝛽𝑔𝛼𝛿) . 

The final term represents the ghost-gluon vertex, and contributes the factor 

𝑔𝑓𝑎𝑏𝑐𝑘2 . 

One of the more intriguing aspects of QCD arises when studying higher-order radiative 

corrections. By inducing renormalization, a renormalization of the coupling constant also 

emerges. From these corrections it can be shown that the renormalized coupling can be 

written as [19] 

𝑔𝑟 = 𝑔0𝜇−𝜂2 [1 +
𝑔𝑟

2

32𝜋2
(11 −

2𝑛𝑓

3
) [

2

𝜂
− 𝛾 + ln 4𝜋] + 𝒪(𝑔𝑟

4)] . 

(4.9) 

(4.10) 

(4.11) 



  4.2 Flavor Creation 
 

23 
 

An interesting feature is how 𝑔𝑟 decreases as 𝜇 increases. This particular property is 

usually expressed as 

𝛼𝑠(𝜇) ≡ 𝑔𝑟
2/4𝜋 , 

defined in strict analogy to the fine-structure constant 𝛼 ≈ 137−1. The dependence of 𝜇 is 

usually expressed as 

𝛼𝑠(𝜇) =
𝛼𝑠(𝜇0)

1 + (𝛽0/4𝜋)𝛼𝑠(𝜇0) ln(𝜇2/𝜇0
2)

 , 

where we have defined 

𝛽0 ≡ 11 − 2𝑛𝑓/3 . 

𝛼𝑠(𝜇0) is a parameter determined experimentally. Current experiments suggests that the 

most precise value obtained so far is 

𝛼𝑠(𝜇0 = 𝑚𝑍 = 91.21 𝐺𝑒𝑉) = 0.118 ± 0.002 . 

Note that as 𝜇 decreases, 𝛼𝑠 becomes larger. This is a very important result in QCD known 

as asymptotic freedom [20], a feature which plays a vital role in particle production 

mechanics.  

 

4.2 Flavor Creation 

The flavor creation process, or pair creation, occurs when two light quarks originating 

from two different hadrons collide, annihilate and produce a heavy quark pair. This can 

also however occur by gluon fusion, where two incoming gluons create the heavy quark 

pair [21]. The light quark annihilation process dominates for 2𝑀𝑄/√𝑠 ≫ 10−1, whilst the 

gluon fusion process dominates for 2𝑀𝑄/√𝑠 ≪ 10−1. Different Feynman topologies are 

shown in Figure 4.2. Referring to the Feynman diagram in Figure 4.2 a), the Feynman 

amplitude is given by 

ℳ =
𝑖𝑔2

4�̂�
(𝛾𝜇)𝛽𝛼(𝛾𝜇)

𝛾𝛿
(𝜆𝑘)𝑏𝑎(𝜆𝑘)𝑐𝑑,  

where (𝜆𝑘)𝑖𝑗 are the Gell-Mann matrices, Greek subscripts denote spin, Latin subscripts 

denote color charge and �̂� = 𝑄2. Squaring the matrix element, summing over all spin and 

color and integrating over �̂� = (𝑝1 − 𝑝3)2 we find  

𝜎𝑞�̅�→𝑄�̅�(�̂�) =
8𝜋𝛼2(𝑄2)

27�̂�2
(�̂� + 2𝑀𝑄

2)√1 −
4𝑀𝑄

2

�̂�
 . 

 

 

 

 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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Figure 4.2: Feynman topologies for the flavor creation processes. a) refers to 
 𝑞�̅� → 𝑄�̅�, b) – d) refers to 𝑔𝑔 → 𝑄�̅�. 

 

In the gluon fusion processes, referring to Figure 4.2 b) – d), the Feynman amplitude is 

given by 

ℳ =
𝑖𝑔2

4
{

1

2
[𝜆𝑎, 𝜆𝑏]𝑐𝑑(𝑔𝛼𝛽(𝑝2 − 𝑝1) + 2𝛾𝛼𝑝1 − 2𝛾𝛽𝑝2)

𝛾𝛿

+
1

𝑀𝑄
2 − �̂�

(𝜆𝑎𝜆𝑏)𝑐𝑑(𝛾𝛼(𝑝3 − 𝑝1 + 𝑀𝑄)𝛾𝛽)
𝛾𝛿

+
1

𝑀𝑄
2 − �̂�

(𝜆𝑏𝜆𝑎)𝑐𝑑(𝛾𝛽(𝑝3 − 𝑝2 + 𝑀𝑄)𝛾𝛼)
𝛾𝛿

} , 

where �̂� = (𝑝1 − 𝑝3)2 and �̂� = (𝑝1 − 𝑝4)2. Squaring the amplitude and summing over spin 

and color finally yields the cross section given by 

 

 

 

(4.18) 
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𝜎𝑔𝑔→𝑄�̅�(�̂�) =
𝜋𝛼2(𝑄2)

3�̂�
[− (7 +

31𝑀𝑄
2

�̂�
)

1

4
𝛤 + (1 +

4𝑀𝑄
2

�̂�
+

𝑀𝑄
4

�̂�2
) log

1 + 𝛤

1 − 𝛤
 ] , 

where  

𝛤 = √1 −
4𝑀𝑄

2

�̂�
 . 

It should be noted that in the case of flavor creation, the created parton showers do not 

alter any cross sections regarding production yield. The only modification is purely 

kinematic as the produced heavy quark pair must emerge in azimuth in order to avoid 

violation of momentum. 

  

4.3 Flavor Excitation 

In the flavor excitation process, a heavy sea quark belonging to an incoming hadron 

scatters off a quark or a gluon from the other hadron. Referring to Figure 4.3 a), the 

Feynman amplitude for the excitation process 𝑞𝑄 → 𝑞𝑄 squared and summarized over all 

spin and momenta is given by 

 

∑|ℳ𝑞𝑄→𝑞𝑄|
2

=
64

9
𝜋2𝛼2(𝑄2)

(𝑀𝑄
2 − �̂�2)

2
+ (�̂� − 𝑀𝑄

2)
2

+ 2𝑀𝑄
2 �̂�

�̂�2
 . 

 

In the case of the topologies given by Figure 4.3 b) – d), the Feynman amplitude can be 

expressed as 

∑|ℳ𝑔𝑄→𝑔𝑄|
2

= 𝜋2𝛼2(𝑄2) {
32(�̂� − 𝑀𝑄

2)(𝑀𝑄
2 − �̂�)

�̂�2

+
64

9

(�̂� − 𝑀𝑄
2)(𝑀𝑄

2 − �̂�) + 2𝑀𝑄
2(�̂� + 𝑀𝑄

2)

(�̂� − 𝑀𝑄
2)

2

+
64

9

(�̂� − 𝑀𝑄
2)(𝑀𝑄

2 − �̂�) + 2𝑀𝑄
2(𝑀𝑄

2 + �̂�)

(𝑀𝑄
2 − �̂�)

2 +
16

9

𝑀𝑄
2(4𝑀𝑄

2 − �̂�)

(�̂� − 𝑀𝑄
2)(𝑀𝑄

2 − �̂�)

+ 16
(�̂� − 𝑀𝑄

2)(𝑀𝑄
2 − �̂�) + 𝑀𝑄

2(�̂� − �̂�)

�̂�(�̂� − 𝑀𝑄
2)

− 16
(�̂� − 𝑀𝑄

2)(𝑀𝑄
2 − �̂�) − 𝑀𝑄

2(�̂� − �̂�)

�̂�(𝑀𝑄
2 − �̂�)

} . 

(4.21) 

(4.19) 

(4.20) 

(4.22) 
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Figure 4.3: Different Feynman diagrams depicting the flavor excitation process. a) 

refers to 𝑞𝑄 → 𝑞𝑄, b) – d) refers to the process 𝑔𝑄 → 𝑔𝑄. 

 

The production cross section is given by 

�̂� =
1

16𝜋(𝑠 − 𝑀𝑄
2)

2 ∫ 𝑑𝑡 ∑|ℳ|2   , 

 

which upon very intricate and tedious integration yields 

 

�̂�𝑞𝑄→𝑞𝑄(�̂�) =
4𝜋𝛼2(𝑄2)

9(�̂� − 𝑀𝑄
2)

2 [(1 +
2�̂�

𝑄0
2) (

(�̂� − 𝑀𝑄
2)

2

�̂�
− 𝑄0

2) − 2�̂� log
(�̂� − 𝑀𝑄

2)
2

𝑄0
2�̂�

]   , ,, 

 

 

(4.24) 

(4.23) 
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where we have chosen 𝑄0
2 = −𝑡. Likewise, we find 

 

�̂�𝑔𝑄→𝑔𝑄(�̂�) =
𝜋𝛼2(𝑄2)

(�̂� − 𝑀𝑄
2)

2 [(1 +
4

9
{

�̂� + 𝑀𝑄
2

�̂� − 𝑀𝑄
2}

2

) (𝐿 − 𝑄0
2) +

2

9

(𝑄0
4 − 𝐿2)

(�̂� − 𝑀𝑄
2)

+ 2(�̂� + 𝑀𝑄
2) log

𝑄0
2

𝐿

+
4

9

�̂�2 − 6𝑀𝑄
2�̂� + 6𝑀𝑄

4

�̂� − 𝑀𝑄
2 log

�̂� − 𝑀𝑄
2 − 𝑄0

2

�̂� − 𝑀𝑄
2 − 𝐿

+ 2(�̂� − 𝑀𝑄
2)

2
(

1

𝑄0
2 −

1

𝐿
)

+
16

9
𝑀𝑄

4 (
1

�̂� − 𝑀𝑄
2 − 𝐿

−
1

�̂� − 𝑀𝑄
2 − 𝑄0

2)] , 

 

with the term 𝐿 given by 

𝐿 = min (�̂� − 𝑀𝑄
2 − 𝑄0

2 ,   
(�̂� − 𝑀𝑄

2)
2

�̂�
) . 

 

It should be mentioned that if the heavy quark is not a valence quark, it originates from a 

gluon splitting branching along the parton distribution time-line. According to parton 

distribution parameterizations, heavy flavor production yields vanishes at 𝑄2 < 𝑚𝑞
2. This 

implies that hard scattering processes has a virtuality above the threshold 𝑚𝑞
2, meaning a 

reconstruction of any initial state parton shower will contain the branching 𝑔 → 𝑄�̅� given 

𝑄0
2 < 𝑚𝑄

2 , where 𝑄0 denotes the lower parton shower cut-off. As a consequence, the 

production mechanism instead becomes 𝑔𝑞 → 𝑄�̅�𝑔 or 𝑔𝑔 → 𝑄�̅�𝑞 [22]. 

 

4.4 Gluon Splitting 

Gluon splitting refers to the vertex branch g → 𝑄�̅� , as seen in Figure 4.4 a), in either the 

initial state or final state parton shower where no heavy flavor quarks attend any hard 

scattering processes. Most initial state gluon splitting topologies abates to the previously-

covered flavor excitation mechanism. An equivocation can be seen in the topology given 

by Figure 4.4 b) where a gluon first branches to a 𝑄�̅�-pair and the emerging 𝑄 later emits 

another gluon which is to enter a hard scattering process. Although this technically can be 

considered as a flavor excitation mechanism, it is custom to accredit this process gluon 

splitting since the hard scattering process don’t encompass heavy flavors. 

 

 

 

(4.25) 

(4.26) 
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Figure 4.4: Examples of gluon splitting heavy flavor production topologies. 

 

4.5 Succinct 

All three production mechanisms, i.e. creation, excitation and splitting, can be 

distinguished by having 2, 1 or 0 heavy flavors in the final state of the hard scattering 

process. At small energies, the flavor creation mechanism is the dominating process, 

followed by a small contribution from flavor excitation and a negligible gluon splitting 

contribution. Increasing the energy enhances excitation and splitting contribution until 

the excitation process overtakes the flavor creation mechanism. It should be noted that 

the decay of heavy resonances, such as 𝑍0 → 𝑏�̅� or 𝑊+ → 𝑐�̅�, contributes to the 

production of heavy flavors. However, these processes will not be covered in this thesis.  

 One should keep in mind that total cross sections are rarely measured, but instead 

determined by extrapolation of measurements, a feature which could infer a potential 

bias. The differential cross sections however are a lot harder to predict since quantities at 

different scales in QCD induce large perturbative expansion logarithms, implying the need 

of resummations. In principle, one could write the measured differential cross section as 

𝑑𝜎𝐻

𝑑𝑝𝑇
=

𝑑𝜎𝑄

𝑑𝑝𝑇
⊗ 𝐹𝑚 , 

where the first constituent represent NLO and NLL calculations and the second term 

correspond to a non-perturbative fragmentation 𝐹𝑚 which can be determined 

experimentally. Figure 4.5 depicts beauty production from electron-positron annihilation. 

The non-perturbative contribution 𝐹𝑚 can be written as 

𝐹𝑚 =
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑝𝑄𝐶𝐷 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 . 

 

(4.28) 

(4.27) 
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Figure 4.5: Beauty production from electron-positron annihilation as a function of 

the Bjorken 𝑥. The colored indices indicate measurements, the line corresponds to 

pQCD predictions [23].  

 

 

 

 Figure 4.6: Beauty differential cross section from p-�̅� collisions at Tevatron [Ibid]. 
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Figure 4.7: Fraction of b->e to total c->e + b->e as a function of electron 𝑝𝑇  for pp 

collisions at √𝑠 = 200 GeV compared to FONLL [24]. 

 

At low and intermediate 𝑝𝑇 , the non-perturbative correction is experimentally observed 

to be very small, 𝒪(𝛬/𝑚). This corrections however increases rapidly at very large 𝑝𝑇 . A 

comparison between beauty differential cross section data from a 𝑝�̅� collision at Tevatron 

and the non-perturbative correction prediction is shown in Figure 4.6. As can be seen, 

there is a good agreement with experimental data. Furthermore, it is apparent that NLO 

predictions is sufficient in order to predict the differential cross section.  

 Figure 4.7 shows the beauty to electron fraction relative to the total beauty and 

charm to electron yield as a function of the electron 𝑝𝑇 compared to FONLL (Fixed-Order-

plus-Next-to-Leading-Log) perturbative QCD calculations. As can be seen, there is a fairly 

good agreement between the data and the FONLL calculations. The ratio can be 

substituted into the 𝑅𝐴𝐴, yielding a nuclear modification factor for charm and beauty 

separately. Figure 4.8 depicts the charm and beauty decay to leptons from pp collisions at 

√𝑠 = 2.76 TeV. The separation of electrons emerging from either charm or beauty 

provide essential information to energy loss models. 
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Figure 4.8: Charm (left) and beauty (right) to electron cross section as function of the 

electron 𝑝𝑇 from pp collisions at √𝑠 = 2.76 TeV [25]. 
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Chapter 5 

PYTHIA 

 

PYTHIA is a high-energy collision event generator encompassing assorted physical 

models depicting the evolution of particles and the corresponding interactions [26]. 

PYTHIA incorporates a vast repository of hard scattering processes, several parton 

shower models, particle decays and various interactions. The physics covered by PYTHIA 

originates from theoretical models as well as parameterized empirical models 

determined from data fits. Since PYTHIA covers tasks such as theoretical 

implementations, experimental interpretations and detector performance tests, it covers 

the entire cycle of an experiment.  

PYTHIA focuses on high-energy events, where the collisions have centre-of-mass  

energies 𝐸𝐶𝑜𝑀 > 10 𝐺𝑒𝑉. This boundary arises from the hadron-hadron cross section 

approximations given by PYTHIA, which breaks down below 10 𝐺𝑒𝑉 due to hadronic 

resonances not covered by any PYTHIA implementations. As of today, PYTHIA does not 

cover any hadron-lepton events, neither incoming photon beam collisions. The generated 

particles produced in the events are produced in vacuum, and PYTHIA does not include 

any models for the interaction with any detector elements. 

 

5.1 PYTHIA Physics Overview 

In order to describe a typical high-energy collision, an event generator should be able to 

accumulate several physics topics in the simulation. Simplified [27], one can characterize 

the evolution of an event and the corresponding physics topics as 

1) Two initial particle beams approach each other with corresponding parton 

distributions  

2) Partons from each beam branches, i.e. 𝑞 → 𝑞𝑔, building up initial-state showers 

3) A parton originating from each beam enter the hard scattering process, producing 

outgoing partons 

4) The hard process might create gauge bosons which decays to partons 

5) The outgoing partons branches, much like the incoming, building up final-state 

parton showers 

6) Alongside the hard processes, partons of two incoming hadrons can also interact 

7) Color confinement in hard scattering processes ensures that the quarks and gluons 

fragments to color neutral hadrons 

8) Several produced hadrons are unstable and decay again
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5.2 Hard Processes and Parton Showers in PYTHIA 

PYTHIA currently contains roughly 300 various hard scattering interactions, and is 

optimized for 2 → 1 and 2 → 2 processes. Some of the major physics groups can be 

characterized by; 

 Hard QCD processes, such as 𝑞𝑔 → 𝑞𝑔 

 Soft QCD processes, such as inelastic scattering and minimum bias events 

 Production of heavy flavors 

 Prompt-photon production, such as 𝑞𝑔 → 𝑞𝛾 

 Deep inelastic scattering, such as 𝑞𝑙 → 𝑞𝑙 

 Higgs production 

 Leptoquarks 

 SUSY 

The cross section for some process 𝑖𝑗 → 𝑘 can be written as 

𝜎𝑖𝑗→𝑘 = ∫ 𝑑𝑥1 ∫ 𝑑𝑥2 𝑓𝑖
1(𝑥1)𝑓𝑗

2(𝑥2)�̂�𝑖𝑗→𝑘 , 

where �̂�𝑖𝑗→𝑘  is the hard partonic cross section and 𝑓𝑖
𝑎(𝑥) are the parton-distribution 

functions. Due to the current lack of understanding regarding QCD, it is as of today not 

possible to derive hadronic parton distributions from first principles. Parameterizations 

based on experimental data at some momentum scale 𝑄2 is therefore vital in order to 

define parton distributions.  

 Either initial or final state processes containing color could yield a large gluon 

bremsstrahlung correction to the event topology. As the energy increases, these 

corrections also start contributing more to the fragmentations. There are currently two 

ways of dealing with these perturbative corrections. The first is the matrix-element 

method, where Feynman diagrams are computed from lowest to highest possible order. 

This would be the ideal solution as it incorporates the necessary kinematics, but the 

calculations become difficult at higher orders. The other approach is known as the parton-

shower approach. In this case, an arbitrary number of branchings is chosen, giving a 

depiction of multi-jets with no clear upper limit regarding the number of embroiled 

partons. Due to the simplicity of the parton-shower approach, it is used more often than 

the matrix-element method, but the latter however is used in coupling calculations, 

angular distributions and other more specialized fields of studies.  

 

5.3 Hadronization in PYTHIA 

Hadronization is a QCD process where color charged partons are converted into color 

neutral hadrons in the presence of the confinement principle. However, since the 

fragmentation process has as of today yet not been derived from first principles, PYTHIA 

makes use of different models in order to describe the fragmentations. The three main 

categories are known as string fragmentation, independent fragmentation and cluster 

fragmentation. Although these are the main contributing models, there also exist slight 

variations of these as well as  hybrid  models. Since some of  these  fragmentation models 

(5.1) 
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are better at certain areas of interest, the model which yields a good experimental match 

is usually chosen for the specific field of study when generating events. 

The theoretical background for the string fragmentation model is based on the 

Lund model. The model itself is iterative, implying that the hadronization can be depicted 

as a sum of underlying branches, such as 𝑗𝑒𝑡 → ℎ𝑎𝑑𝑟𝑜𝑛 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 − 𝑗𝑒𝑡, 𝑠𝑡𝑟𝑖𝑛𝑔 →

ℎ𝑎𝑑𝑟𝑜𝑛 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 − 𝑠𝑡𝑟𝑖𝑛𝑔 etc. For each underlying branching, the energy 

distributions, flavor creation and so on of the end product is based on statistics.  

The main foundation of the string model is based on linear confinement of a color-

singlet 𝑞�̅� jet. Linear confinement implies a linear increase in the energy within the color 

field between a 𝑞�̅� pair as the distance increases. In order to keep Lorentz covariance, the 

energy flow can be described using the kinetics of a massless, one-dimensional string. As 

the distance between the quark pairs increases, the potential energy in the string also 

increases to the point where it breaks and produces a new 𝑞�̅� pair. According to the Lund 

model, this string breaking occurs again if the invariant mass of the string pieces is 

sufficiently large. In order to utilize this string fragmentation, the Lund model resort to 

quantum tunneling. It should be noted that this tunneling entail a suppression of heavy 

quarks as 𝑢: 𝑑: 𝑐~1: 1: 10−12.  

 If there are several partons present with the same origin, the string interpretation 

becomes a lot more complicated. For instance, in a 𝑞�̅�𝑔 event the string span from the q 

to the �̅� end via a gluon kink along the string. The hadronization of the 𝑞�̅�𝑔 will occur 

along the string length, implying there is one fragmentation string between both the 𝑞𝑔 

and the �̅�𝑔. Events containing even more partons, such as 𝑞�̅�𝑔𝑔, invokes approximations 

of the matrix elements extracted from perturbation theory due to a non-well-defined 

color flow.  

 

5.4 Monte Carlo in PYTHIA 

Due to the nature of quantum mechanics, a means of randomness must be implemented 

in the event generators. This randomness is simulated by utilizing Monte Carlo methods 

in order to simulate probability distributions. The baseline of this randomness originates 

from a random number generator which yields a function capable of returning some 

number in a given range such that a distribution depicts a flat line in the given range. 

One of the most common situations involves a real function 𝑓(𝑥) defined in some 

range 𝑥 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥] where one desires to choose a random 𝑥 such that in an 

infinitesimal range 𝑑𝑥 close to 𝑥, some probability of interest is proportional to 𝑓(𝑥)𝑑𝑥. 

The function 𝑓(𝑥) can be a cross section, a means of describing hadronization or other 

distributions. 

 One of the intriguing features offered by Monte Carlo methods is the fact that 

choosing some specific well-defined value of 𝑥 yields a normalized result. Integration over 

𝑓(𝑥) can also sometimes contain information on an overall sum as well as specific 

constituents, such as the case where 𝑥 represents phase-space and 𝑓(𝑥) denotes some 

differential cross section.  In  this case, integration is a  means of obtaining  the total cross 
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section. This means Monte Carlo simulations can generate events step-wise as well as 

approximate the total cross section. 

 

5.5 Particle Codes 

The Particle Data Group numbering scheme is used for particle identification, where each 

particle is assigned a specific KF particle code corresponding to the PDG standard [28]. 

Table 5.1 depicts an excerpt of some KF codes for quarks and leptons. The anti-particles, 

assuming they exist, are defined by the negative KF code of the corresponding particle. 

 

Table 5.1: Quark and lepton KF codes 

 

 

5.6 The Event Record 

The information regarding produced particles is stored in the event record. The event 

record contains information about flavors, charge, momentum, energy and vertices. The 

generated events are stocked in “storage blocks” known as PYJETS. In these blocks, each 

generated particle occupy a line in a matrix. The various matrix constituents 

corresponding to this line yield information on what kind of particle it is, the origin of the 

particle, current state, momentum, mass and the production vertex. As of today, a PYJETS 

block can contain 4000 entries.  

  

5.7 Parton Distributions 

The parton distribution function 𝑓𝑖
𝑎(𝑥, 𝑄2) depicts the probability of finding a specific 

parton i with fractional beam energy 𝑥 where the particle 𝑎 is exposed to a hard scattering 

at some scale 𝑄2. In the case of protons, there exist many distribution sets obtained from 

experimental data where the 𝑄2 dependence is in conformity with QCD equations. The 

default in PYTHIA is the leading-order set CTEQ 5L, although there are several other sets 
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available of choice. Meson parton distributions however are rare, and the only sets 

available are for the 𝜋±.  

5.8 Cross Sections in PYTHIA 

In the 1 + 2 → 3 + 4 event generation, PYTHIA makes use of the variables 

�̂� = 𝑥1𝑥2𝑠 

𝜏 ≡ 𝑥1𝑥2 =
�̂�

𝑠
 

𝑦 =
1

2
ln

𝑥1

𝑥2
 

𝑧 = cos 𝜃 

𝛽34 = {(1 −
𝑚3

2

�̂�
−

𝑚4
2

�̂�
)

2

− 4
𝑚3

2

�̂�

𝑚4
2

�̂�
}

1/2

 

�̂� = −
�̂�

2
(1 − 𝑐𝑜𝑠𝜃) , 

where 𝑠 is the total squared centre-of-mass energy, 𝑚3 and 𝑚4 are the masses of the 

outgoing particles and 𝜃 is the polar angle of the 3rd parton in the centre-of-mass frame. 

The cross section for the process 1 + 2 → 3 + 4 can be written as 

𝜎 = ∭
𝑑𝜏

𝜏
𝑑𝑦 𝑑�̂�𝑥1𝑓1(𝑥1, 𝑄2)𝑥2𝑓2(𝑥2, 𝑄2)

𝑑�̂�

𝑑�̂�
 , 

where 𝑑�̂�/𝑑�̂� denotes the differential cross section. However, in order to achieve an 

equitable efficiency regarding Monte Carlo, kinematic peaks should ideally be depicted by 

separate terms to avoid fluctuations. By introducing the distributions ℎ𝜏(𝜏), ℎ𝑦(𝑦) and 

ℎ𝑧(𝑧) according to the variables can be generated separately. For 𝜏, the allowed span is 

given by 𝜏 ∈ [𝜏𝑚𝑖𝑛, 𝜏𝑚𝑎𝑥] which is predefined by the user. Mass cuts for instance directly 

restricts 𝜏. For 𝑦 the range is constrained by |𝑦| ≤ −1/2 ln 𝜏 and other user-defined 

boundaries, and 𝑧 is usually defined in the range 𝑧 ∈ [−1, 1]. One should however note 

that some cross sections diverge as 𝑧 → ±1, implying a need of regularization.  

 After an initial choice for the variables, the cross section can be written as 

𝜎 = 〈 
𝜋

𝑠

𝛽34

𝜏2ℎ𝜏(𝜏)ℎ𝑦(𝑦)2ℎ𝑧(𝑧)
𝑥1𝑓1(𝑥1, 𝑄2)𝑥2𝑓2(𝑥2, 𝑄2)

�̂�2

𝜋

𝑑�̂�

𝑑�̂�
 〉 . 

It is obvious that the cross section for the Monte Carlo generated event can be interpreted 

as a product of four terms; 

1) The factor 𝜋/𝑠 which yields the dimension of the cross section in units of 𝐺𝑒𝑉−2. 

2) The second term describes the Jacobian, atoning any changes in phase-space. 

3) The parton distribution functions obtained from the available libraries in PYTHIA 

4) The term (�̂�2/𝜋) 𝑑�̂�/𝑑�̂�, a dimensionless number which has to be manually coded 

depending on the process depicting the actual physics content.

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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In PYTHIA, the cross section is determined as the average over all generated phase-space. 

The total hadronic cross section 𝜎𝑡𝑜𝑡
𝐴𝐵 for 𝐴 + 𝐵 → anything is determined using a 

parameterization. This method involves writing the cross section as 

𝜎𝑡𝑜𝑡
𝐴𝐵(𝑠) = 𝑋𝐴𝐵𝑠𝜖 + 𝑌𝐴𝐵𝑠−𝜂 , 

where 𝑠 = 𝐸𝐶𝑜𝑀
2 , 𝜖 = 0.081 and 𝜂 = 0.453. The coefficients 𝑋𝐴𝐵 and 𝑌𝐴𝐵 are specified by 

the initial state.  

 

5.9 Particle Decays 

Initiating a decay in PYTHIA involves one or two present resonances, for instance 𝑞�̂�′ →

𝑊+ or 𝑞𝑔 → 𝑊+𝑞′. The decay channel of the corresponding resonance is chosen based on 

relative weights assessed at the resonance mass. The angular distribution of the decay 

resonances are selected in the corresponding rest frame, and can be user specified if 

needed. Based on these angular distributions, PYTHIA constructs the four-momenta of the 

decay particles in the correct reference frame. At this point, PYTHIA evaluates the various 

matrix elements and adds constraints based on underlying cross sections. If the angles fall 

in an acceptable range, PYTHIA includes fermion masses and allows quarks and leptons 

to radiate. Restrictions of decay channels are already implemented in the hard-scattering 

cross sections, which greatly simplifies mixing of different events.  

 

5.10 Quark Flavors in PYTHIA 

PYTHIA enables the selection of various production sub-processes by letting the user 

combine and choose events according to a numbering scheme known as ISUB codes. For 

instance, some events and their corresponding ISUB codes are 

 11 𝑞𝑖𝑞𝑗 → 𝑞𝑖𝑞𝑗 

 12 𝑞𝑖�̅�𝑖 → 𝑞𝑗�̅�𝑗 

 13 𝑞𝑖�̅�𝑖 → 𝑔𝑔 

 28 𝑞𝑖𝑔 → 𝑞𝑖𝑔 

 53 𝑔𝑔 → 𝑞𝑖�̅�𝑖 

 68 𝑔𝑔 → 𝑔𝑔 

All these topologies are 2 → 2 events with cross sections proportional to 𝛼𝑠
2. The 

corresponding Matrix elements and Feynman amplitudes are for mass-less quarks, 

implying divergent cross sections as the 𝑝⊥ → 0, thus enforcing regularization.  

 All new produced flavor, referring to the annihilation processes given by ISUB 12 

and 53, are delineated by the conservation of flavor regarding gluon splitting processes. 

For the production of heavy flavors, the dominant QCD production processes are

(5.10) 
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 81 𝑞𝑖�̅�𝑖 → 𝑄𝑗�̅�𝑗 

 82 𝑔𝑔 → 𝑄𝑗�̅�𝑗 

Heavy flavors can also be present in parton distributions of hard scatterings at the 

corresponding 𝑄2 scale. Examples are flavor excitation and gluon splittings during the 

evolution of the parton shower. These processes start contributing as the centre-of-mass 

energy increases. For instance, at LHC energies only ~15% of the production of beauty 

quarks are due to lowest-order topologies. 

 For Monte Carlo studies of charm and beauty production, it can be of interest to 

simulate the full evolution of some experiment and only keep the events containing charm 

or beauty originating from either flavor creation, excitation or gluon splitting. Referring 

to ISUB 12 and 53, note that the production of charm and beauty is equivalent to ISUB 81 

and 82. The conversion from ISUB 12 to 81 is pretty straight forward since the exchange 

of s-channel gluons is the only contribution. In the case of ISUB 53 however, a new 

evaluation of the matrix elements of charm and beauty is required. This is done by keeping 

both the �̂� and 𝜃 values already user-defined and adjust �̂� with the massive masses.  

 As previously mentioned, PYTHIA utilizes an iterative method to describe 

hadronization. By default, PYTHIA gives an initial quark 𝑞0 such that a newly created 𝑞1�̅�1 

pair form a meson as 𝑞0�̅�1, whereas the remaining 𝑞1 is left behind to pair with another 

quark. In order to produce the various mesons, the relative probabilities for the 

production of the various 𝑞�̅� pairs is needed. In order to generate 𝑞�̅� pairs, PYTHIA uses 

the Lund model to predict the probability of a quantum tunneling effect where the quarks 

are created at some specific point and then tunnel out in a valid, classic region. As a 

function of the common transverse mass 𝑚𝑇 , the quantum tunneling probability is given 

by 

exp (−
𝜋𝑚𝑇

2

𝜅
) = exp (−

𝜋𝑚2

𝜅
) exp (−

𝜋𝑝𝑇
2

𝜅
) , 

where we have introduced the string tension constant 𝜅~1𝐺𝑒𝑉/𝑓𝑚 . By introducing this 

factorization it is possible to create independent momentum component spectrums for 

the created quark pairs.  

 

5.10.1 Fragmentation Functions in PYTHIA 

Assuming a 𝑞�̅� jet where the 𝑞 moves along the +𝑧 direction and the �̅� along −𝑧, it can be 

shown that the momentum component distributions indicate a Gaussian distribution. 

PYTHIA regulates these momentum distributions by a single parameter, yielding the root-

mean square 𝑝𝑇 of the quarks. The hadron 𝑝𝑇 is then constructed as the sum of the 

transverse momentum of the quarks. In order to determine the energy and the 

longitudinal momentum of the created hadron, PYTHIA is forced to only use one variable 

since the  hadron momentum  is restrained  by the transverse  mass of  the  hadron.  This 

(5.11) 
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leads to the option of defining 𝑧 as a fraction of the sum of the energy and 𝑝𝑧 carried by 

the hadron. 

The probability of choosing a given 𝑧 is given by the fragmentation function 𝑓(𝑧). 

However, the choice of 𝑓(𝑧) is selected by PYTHIA. For instance, if one requires a 

fragmentation in which the fragmentation process is symmetric, the fragmentation 

function is given by 

𝑓(𝑧) ∝
1

𝑧
𝑧𝑎𝛼 (

1 − 𝑧

𝑧
)

𝑎𝛽

exp (−
𝑏𝑚𝑇

2

𝑧
) ,  

where the parameter 𝑎 is a factor denoting flavor, 𝛼 corresponds to the previous flavor in 

the iteration procedure and 𝛽 is the new flavor. The parameter 𝑏 is defined by PYTHIA. 

There are other fragmentation functions available as well, such as the Field-Feynman 

parameterization given by 

𝑓(𝑧) = 1 − 𝑎 + 3𝑎(1 − 𝑧)2 , 

where 𝑎 this time is given by 𝑎 = 0.77. This fragmentation function is primordially used 

for hadrons consisting of either up, down or strange quarks. In the case of heavy flavors 

such as charm and beauty, the best representation is given by the Peterson formula 

𝑓(𝑧) ∝
1

𝑧 (1 −
1
𝑧 −

𝜖
1 − 𝑧)

2 , 

where 𝜖 ∝ 1/𝑚𝑄
2  .  

 

5.11 Data Analysis 

In Monte Carlo simulations, one is able to study particles on two levels known as the 

kinematic level and the reconstruction level. The kinematic level is where the particles 

are generated by event generators as discussed in Chapter 3.1.1. The reconstruction level 

depicts the particle propagation through the detectors. The analysis in this thesis is based 

on two Monte Carlo simulations, LHC10f6a and LHC10f7a. Both runs are PYTHIA 

generated proton-proton events at √𝑠 = 7 𝑇𝑒𝑉. The run LHC10f6a is a minimum bias run, 

with ≈ 172 × 106 events. The run LHC10f7a is an enhanced sample regarding charm and 

beauty flavors with ≈ 31 × 106  events.  

 Figure 5.1 and 5.2 depicts the rapidity distribution for generated charm and beauty 

quarks for the two data sets normalized to the simulated number of events 𝑁. Comparing 

the two distributions, it is apparent that the enhanced sample show a more defined peak 

at 𝑦~0. For the analysis task, a rapidity cut given by |𝑦| < 1 is applied in order to focus 

the analysis on mid-rapidity physics.  

 The transverse momentum distribution 𝑝𝑇 for charm and beauty quarks from the 

enhanced sample and the minimum bias run are given in Figure 5.3 – 5.4. The two 

distributions are very similar in shape, the only major difference that can be witnessed is 

the difference in the number of statistics.  

(5.12) 

(5.13) 

(5.14) 
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Figure 5.1: Rapidity distributions for charm and beauty quarks from the enhanced 

PYTHIA sample. 

 

 

 

Figure 5.2: Rapidity distributions for charm and beauty quarks from the minimum 

bias sample. 
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Figure 5.3: Transverse momentum distribution of charm and beauty quarks from 

the enhanced sample.  

 

 

 Figure 5.4: Transverse momentum distribution of charm and beauty quarks from 

the minimum bias sample. 
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Figure 5.5: The azimuthal distribution of charm and anti-charm quarks from the 

enhanced sample.  

 

 

 

Figure 5.6: The azimuthal distribution of beauty and anti-beauty quarks from the 

enhanced sample. 
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Figure 5.7: The azimuthal distribution of charm and anti-charm quarks from the 

minimum bias sample.  

 

 

 

Figure 5.8: The azimuthal distribution of beauty and anti-beauty quarks from the 

minimum bias sample. 
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Figures 5.5 – 5.8 depicts the azimuthal distributions for charm and beauty quarks as well 

as the azimuthal distributions of the corresponding anti-particles. As expected, all quarks 

are pretty much evenly distributed in the 𝜑 space. The study of azimuthal correlations 

will be elaborated in greater detail in the following chapter.  

 The rapidity distributions of electrons originating from heavy flavor 

particles is given in Figure 5.9. Comparing the two samples clearly show that the 

distributions deviate from each other, a feature which also is witnessed when comparing 

the rapidity distributions of 𝐷0 mesons for the two samples as seen in Figure 5.10. In both 

cases, the enhanced sample show a more pronounced peak as 𝑦 → 0. The transverse 

momentum distribution of both heavy flavor electrons and 𝐷0 mesons can be seen in 

Figures 5.11 – 5.12. 
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Figure 5.9: The rapidity distributions of heavy flavored electrons obtained from 

both the enhanced sample and the minimum bias sample.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.10: The rapidity distributions of 𝐷0 mesons obtained from both the 

enhanced sample and the minimum bias sample.
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Figure 5.11: The 𝑝𝑇  distribution of heavy flavored electrons obtained from both the 

enhanced sample as well as the minimum bias sample.  

 

 

 

         

Figure 5.12: The 𝑝𝑇  distribution of neutral 𝐷 mesons obtained from the enhanced sample 

and the minimum bias sample.  
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Chapter 6 

Azimuthal Correlations 

 

As briefly mentioned in Chapter 1, various properties of matter can be divulged through 

the study of energy loss of particles traversing it. For instance, partonic energy loss 

models expounding the 𝑅𝐴𝐴 convey information regarding the interaction between heavy 

quarks and the medium. Electrons originating from heavy flavor particles (which 

henceforth will be denoted HFE) is a great asset for determining energy loss mechanisms 

in QGP. Moreover, the separation of HFEs emerging from either beauty or charmed 

particles is an important attribute to energy loss models [29].  

However, the 𝑅𝐴𝐴 does not yield much information regarding heavy flavor 

production mechanisms. Therefore, azimuthal correlations of heavy flavor particles are 

introduced as observables. Referring to Chapter 4.2, the produced heavy quarks fragment 

into particle showers in azimuth. A valid assumption is therefore the observation of two 

distributions, one on the near-side, i.e. ∆𝜑 = 0, and one on the away side, i.e. ∆𝜑 = 𝜋, 

when measuring the relative angle between the heavy flavored particles.  

As partons traverse a QCD medium, they experience an energy loss depending on 

the path length, the QCD medium and the parton mass. In particular, partons lose energy 

due to gluon bremsstrahlung as the partons scatter inelastic from the constituents of the 

medium. It can be shown that this radiative energy loss can be expressed as  

∆𝐸𝑟𝑎𝑑 ∝ 𝛼𝑆𝐿2 , 

where 𝐿 is the path length in the medium. Theoretical predictions based on perturbative 

QCD (pQCD) suggests that heavy quarks should experience less energy loss as they 

traverse the QGP compared to lighter quarks due to the dead-cone effect. However, 

experiments reveal a suppression of high-𝑝𝑇 electron yields from semi-leptonic heavy 

flavor decays [30] to the same yield of light flavor hadrons. Distinguishing charm and 

beauty could contain valuable insight into the energy loss mechanisms as the 

corresponding contributions can be studied separately. This separation can be achieved 

through the study of heavy flavor azimuthal correlations. 

 

 

 

(6.1) 
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Figure 6.1: Schematic overview of the various quark masses in the Higgs vacuum 

[31]. 

 

6.1 Heavy Flavor Azimuthal Correlations 

According to Quantum Field Theory (QFT), all “bare” quark masses outlined in the 

Lagrangian diverge to infinity, but divergent propagator loop contributions abrogate 

them, creating finite masses. For instance in the case of electrons, QFT predicts an infinite 

bare electron mass that’s actually well-defined if the mass “runs” from infinity at small 

length scales to some convergent constant at large scales. In the case of quarks however, 
the mass diverges at some energy scale 𝛬𝑄𝐶𝐷 instead of converging. This is an interesting 

result of QCD as it implies the meaninglessness of the concept of the mass of the quarks 

relative to a “macroscopic” observer since the masses diverge at way smaller scales. The 

latter gives rise to the principle of quark confinement and the fact that bare quarks are 

not observable. That being said, one can define quark masses by utilizing renormalization 

schemes. One can successfully convert different scales by renormalization groups, which 

is neatly covered by perturbation theory. Videlicet, different quark masses can all be 

“true” but are covered by different renormalization scales. There is however another 

interpretation of the quark mass known as the constituent quark, or valence quark, mass. 

Valence quarks can be interpreted as bare quarks enclosed within a sea of virtual gluons 

and quarks, i.e. they are not directly related to the mass parameters of the Lagrangian but 

more of a representation of chiral symmetry breaking.  
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The heavy flavors charm and beauty are suited probes since their large masses are 

engendered by dint of their coupling to the Higgs field in disparity to the light quark 

masses which are dominated by spontaneous chiral symmetry breaking (see Figure 5.1). 

In other words, the light quarks are rendered with the corresponding bare current masses 

in a QGP while the masses of the heavy flavors stay massive. Alongside the fact that the 

heavy flavors are produced early in the pQCD processes, the number of heavy flavor 

particles is in general conserved since the temperature of the QGP is smaller than the 

masses of charm and beauty, minimizing risks of secondary pair production mechanisms.  

Figures 6.2 – 6.6 depict the azimuthal correlations for charm and beauty quarks 

from the enhanced and the minimum bias sample at various momentum cuts. Referring 

to Figure 6.2, with no 𝑝𝑇 cuts applied, we clearly see the back-to-back scattering peak at 

∆𝜑 = 𝜋. This is due to the LO process flavor creation as well as the NLO flavor excitation 

process where the particles are correlated in azimuth in order to not violate momentum 

conservation. In the area ∆𝜑 = 0, the gluon splitting process dominates. Note the 

difference of the charm ∆𝜙 distributions when comparing the enhanced and the minimum 

bias sample on the near-side. While the minimum bias set shows a clear and defined peak, 

the enhanced sample is much less pronounced. A very subtle double-peak is also 

apparent. 

Referring to Figure 6.3, which depict the charm and beauty azimuthal correlations 

at 0 𝐺𝑒𝑉 < 𝑝𝑇 < 1 𝐺𝑒𝑉, the distribution is completely dominated by a same-side 

orientation, implying that gluon splitting is the main contributor at this 𝑝𝑇 range. Note 

also how the distributions from the two runs deviate considerably, where the enhanced 

sample now clearly shows a double-peak feature on the near-side compared to the 

minimum bias run for the charmed case. The lack of statistics regarding the minimum bias 

run for the beauty case makes it hard at this point to draw any conclusions however. By 

increasing the momentum cut to 1 𝐺𝑒𝑉 < 𝑝𝑇 < 4 𝐺𝑒𝑉, referring to Figure 6.4, the away-

side starts contributing to the distribution. This feature is apparent in both simulations, 

implying the presence of all heavy flavor production processes. It should be noted that in 

this 𝑝𝑇 range, both simulations are in agreement in the case of the beauty ∆𝜙 distribution. 

For the charm case, both runs seem to accommodate the same away-side distribution, 

whilst the near-side is again dominated by a double-peak for the enhanced sample.  

 Increasing the momentum cut further to 4 𝐺𝑒𝑉 < 𝑝𝑇 < 10 𝐺𝑒𝑉, referring to Figure 

6.5, clearly shows how the distribution is completely dominated by back-to-back 

processes with a very distinct peak on the away-side. At this 𝑝𝑇 range, both the enhanced 

sample and the minimum bias run seem to be in agreement.  
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Figure 6.2:  Azimuthal correlations of charm and beauty quarks from PYTHIA 

generated p-p collisions at √s = 7 TeV.  

 

 

 

Figure 6.3:  Azimuthal correlations of charm and beauty quarks from PYTHIA 

generated p-p collisions at √s = 7 TeV with 0 𝐺𝑒𝑉 < 𝑝𝑇 < 1 𝐺𝑒𝑉.  
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Figure 6.4:  Azimuthal correlations of charm and beauty quarks from PYTHIA 

generated pp collisions at √s = 7 TeV with 1 𝐺𝑒𝑉 < 𝑝𝑇 < 4 𝐺𝑒𝑉.  

 

 

 

 

Figure 6.5:  Azimuthal correlations of charm and beauty quarks from PYTHIA 

generated pp collisions at √s = 7 TeV with 4 𝐺𝑒𝑉 < 𝑝𝑇 < 10 𝐺𝑒𝑉.  
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Figure 6.6: Feynman diagram of a typical charm decay.  

 

 

6.2 The 𝑫𝟎 Meson 

As the heavy flavors decay, there appears to be a correlation between the charge parity 

(CP) of the original flavor and the CP of the emerging constituents. When studying the 

decay channels of charmed particles, charm decays in plethora to positrons instead of 

electrons. The anti-charm results similarly in an abundance of electrons. In the case of 

beauty, the decay channels show an affluence of electrons and analogous to the charm 

case an abundance of positrons for anti-beauty. This however can be explained by the 

properties of CP. Quarks can change flavor via the electroweak interaction, i.e. through 

the emission of a 𝑊± boson. For instance, charm, with electric charge +2/3, can change 

flavor into strange, with electric charge −1/3, by emitting a 𝑊+ boson (see Figure 6.6). 

  The 𝐷0 meson contains a charm quark and an anti-up quark, and is the lightest 

charmed meson with a mass of approximately 1.87 GeV. The 𝐷0 meson can be 

reconstructed through its hadronic decay 𝐷0 → 𝐾−𝜋+ (see Figure 6.7) with a branching 

ratio 𝐵𝑅 = 3,89% [32]. Figure 6.8 shows the invariant mass distribution of kaons and 

pions from the run LHC10f7a which shows a pronounced peak around the expected mass 

of the 𝐷0. One should however be aware of running into 𝐷0s due to the fact that the 𝐷0 

meson also could decay through reactions like 𝐷0 → 𝐾−𝜋+𝜋−𝜋+ [33]. It should however 

be mentioned that the major source of background radiation however is the 

combinatorial background of kaons and pions emanating from light flavors. The 𝐷0 cross 

section from a 7 TeV pp collision compared to FONLL calculations can be seen in Figure 

6.9, showing a fairly good agreement between the predictions and data. 
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Figure 6.7: Feynman diagram depicting the hadronic decay 𝐷0 → 𝐾−𝜋+.  

 

 

 

 

 

 

Figure 6.8: Invariant mass plot for 𝐾−𝜋+ pairs from the enhanced sample.  

 

 

 

 

𝑊+ 
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Figure 6.9: Differential cross section of 𝐷0 from p-p collisions at √𝑠 = 7 TeV 

compared to pQCD predictions [34]. 
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6.3 Heavy Flavor Electron-𝑫𝟎 Azimuthal Correlations 

The angular correlations of 𝐷 mesons can provide pivotal information on energy loss 

models of heavy quarks traversing the QGP created in heavy-ion collisions. Studies of light 

di-hadron angular correlations show that the relative energy loss for light quarks is 

𝒪(10−1) [35] achieved through comparing pQCD predictions and the 𝐼𝐴𝐴 as a function of 

𝜑. A similar approach for heavy flavors should yield imperative information expounding 

𝐼𝐴𝐴 models. Due to the hard fragmentation of charm, it is reasonable to expect that the 𝐷 

mesons will carry a substantial fraction of the initial heavy flavor momentum. This implies 

that a study of 𝐷𝐷 angular correlations should give a good insight into the energy loss of 

heavy flavors in the QGP. However, experimental constraints such as low reconstruction 

efficiency requires a somewhat different approach on the study of heavy flavor azimuthal 

correlations. Another approach is the study of HFE-𝐷0 azimuthal correlations. In this case, 

the angular correlations of electrons emerging from heavy flavors and 𝐷0 mesons are of 

interest. Not only does this imply the ubiquitous of a heavy flavor partonic structure, but 

also yields the potential of separating charm and beauty contributions since a fraction of 

𝐷 mesons originates from beauty quarks.  

 The algorithm for the HFE-𝐷0 analysis can be summarized by (see App. II for an 

excerpt of the actual code) 

 Trigger on electrons 

 Check if the electron mother is a heavy flavor particle 

 Find a 𝐷0 

 Calculate the ∆𝜙 = 𝜙𝑒 − 𝜙𝐷0 

All trigger electrons originating from heavy flavor particles, either by means of decaying 

mesons or a result of the collisions, are known as primary electrons, meaning electrons 

originating from gamma conversions are not included. However, the 𝐷0 also decays 

through channels like 𝐷0 → 𝐾−𝑒+𝑣𝑒. This causes an enhanced near-side peak since the 

correlation of the trigger electron and the mother 𝐷0 will have a same-side orientation as 

seen in Figure 6.10. A temporal solution to exclude these “false” trigger electrons is to 

exclude the 𝐷0 mesons decaying electrons. However, this solution will also exclude the 

valid trigger case where one correlates an electron originating from a 𝐷0 with a different 

𝐷0 meson. To increase the statistics and against any changes in the shape of the 

distribution, a more appropriate method will be presented. In this method against 

autocorrelation of the electron and the mother 𝐷0, the macro checks the stack position of 

the particles and excludes the 𝐷0 if the 𝐷0 is the actual mother of the electron.  

Figure 6.11 shows the HFE-𝐷0 correlations for the enhanced sample and the 

minimum bias simulation with no 𝑝𝑇 cuts. It is apparent that in both the temporal solution, 

where one excludes all 𝐷0 → 𝑒 +anything, and the new solution, where the stack position 

check is used, the artificially enhanced nearside peak due to the autocorrelation effect is 

corrected. As expected, the number of entries is increased for the new solution, but the 

distribution in general is pretty much unchanged. However, there is a clear difference on 

the near-side when comparing the two sets. The enhanced sample depicts a pronounced
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Figure 6.10: HFE-𝐷0 azimuthal correlations with the autocorrelation in effect from 

the enhanced sample.  

 

 

 

Figure 6.11: HFE-𝐷0 azimuthal correlation plot from PYTHIA generated proton-

proton collisions at √𝑠 = 7 TeV for the runs enhanced sample and the minimum bias 

set. 

Enhanced sample 
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Figure 6.12: HFE-𝐷0 azimuthal correlation plot from PYTHIA generated proton-

proton collisions at √𝑠 = 7 TeV for the runs enhanced sample, where the only 𝐷0 

mesons correlated with electrons decay according to 𝐷0 → 𝐾−𝜋+.  

 

peak, whilst the minimum bias set only indicates a small bump. This can be a consequence 

of the fact that the enhanced sample also is enhanced regarding 𝐷 meson production 

ratios along with an intervention of the 𝐷0 decay modes. It should be noted that 

experimentally, one does not observe this artificial auto-correlation peak on the near-

side. This is due to the fact that the electrons are correlated with 𝐷0 mesons which are 

reconstructed through the decay 𝐷0 → 𝐾−𝜋+, omitting any chance of auto-correlations. 

Figure 6.12 depicts the azimuthal correlations of electrons and 𝐷0 mesons where the 

decay mode is used as a secondary condition. As seen, the distribution is the same as given 

in Figure 6.11, but with much less statistics. 

 Adding a momentum cut of 1 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 < 5 𝐺𝑒𝑉 for the 𝐷0 and an electron 𝑝𝑇 cut 

given by 𝑒𝑝𝑇
> 0.5 𝐺𝑒𝑉, referring to Figure 6.13, reveal some interesting properties 

regarding the correction to the auto-correlation effect. In both the enhanced and the 

minimum bias sample, there is a perfect overlap on the away side for the auto-correlated 

distribution and the new stack position distribution. This is to be expected since there 

shouldn’t be any autocorrelation effects on the away-side since a mother and daughter 

particle predominantly will have a same-side orientation. However, with the introduced 

momentum cut there appears to be a small change in the azimuthal distributions when 

comparing the current solution and the new proposal on both the near side and the away 

side, a feature which is apparent in both data sets. When excluding only the 𝐷0s which are 

the mother of the trigger electron, there is a suppression in the number of entries 

compared to the case where one exclude all 𝐷0 decays including the emission of electrons.

Enhanced sample 

|𝑦| < 1 
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Figure 6.13: HFE-𝐷0 azimuthal correlation plot from PYTHIA generated pp collisions 

at √𝑠 = 7 TeV for the enhanced and the minimum bias sample, where 1 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 <

5 𝐺𝑒𝑉 and 𝑒𝑝𝑇
> 0.5 𝐺𝑒𝑉.  

 

Increasing the momentum cut to 5 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 < 10 𝐺𝑒𝑉 for the 𝐷0 and 𝑒𝑝𝑇

> 1.5 𝐺𝑒𝑉 for 

the electron further increases the disparity of the two auto-correlation fixes as can be seen 

in Figure 6.14. In this 𝑝𝑇  range, the stack position check is a factor of 3 times the current 

auto-correlation fix on the away side for the minimum bias sample. By adding a very high 

momentum cut, 𝐷𝑝𝑇
0 > 10 𝐺𝑒𝑉 and 𝑒𝑝𝑇

> 1.5 𝐺𝑒𝑉, the two distributions representing the 

auto-correlation fixes are pretty much unchanged when looking at the shape of the 

distribution, but the number of entries really start to deviate on the away side for both 

simulation as can be seen in Figure 6.15. Not only is there a significant change in the 

number of statistics, but the shapes of the distributions as well start to deviate. The new 

approach implies a wider distribution on the away-side, and the ratio between the peaks 

on the near-side and the away-side decreases.  

It is also of great interest to see how the distributions change from quark level, that 

is, charm and beauty quark ∆𝜙 distributions, to the hadronic HFE-𝐷0 distribution level. 

Again, since the data sets are PYTHIA generated, the azimuthal correlations of charmed 

electron-𝐷0 pairs and beauty electron-𝐷0 pairs can be investigated in detail. Figure 6.16 

depict the azimuthal correlations of charmed electrons and charmed 𝐷0 mesons 

compared to the 𝑐𝑐̅ ∆𝜙 distribution for the enhanced sample and the minimum bias 

sample. It is of interest to note that in the minium bias sample, the charmed electron-

charmed 𝐷0distribution is pretty much constant except for on the away-side, where one 

can observe a statistically significant deviation. In the enhanced sample on the other hand, 

one can observe a peak both on the near-side and the away-side. 

Enhanced sample Minimum bias sample 

|𝑦| < 1 
|𝑦| < 1 
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Figure 6.14: HFE-𝐷0 azimuthal correlation plot from PYTHIA generated pp collisions 

at √𝑠 = 7 TeV for the enhanced and the minimum bias sample, where 5 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 <

10 𝐺𝑒𝑉 and 𝑒𝑝𝑇
> 1.5 𝐺𝑒𝑉.  

 

 

Figure 6.15: HFE-𝐷0 azimuthal correlation plot from PYTHIA generated pp collisions 

at √𝑠 = 7 TeV for the enhanced and the minimum bias sample, where 𝐷𝑝𝑇
0 > 10 𝐺𝑒𝑉 

and 𝑒𝑝𝑇
> 1.5 𝐺𝑒𝑉. 

Enhanced sample 

Minimum bias sample 
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Figure 6.16: Charmed electron-𝐷0 azimuthal correlation plot from PYTHIA 

generated p-p collisions at √𝑠 = 7 TeV for the enhanced and minimum bias sample.  

 

 

 

Figure 6.17: Charmed electron-𝐷0 azimuthal correlation plot from PYTHIA 

generated pp collisions at √𝑠 = 7 TeV for the enhanced and minimum bias sample, 

where 1 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 < 5 𝐺𝑒𝑉, and 𝑒𝑝𝑇

> 0.5 𝐺𝑒𝑉 and 1 𝐺𝑒𝑉 < 𝑐ℎ𝑎𝑟𝑚𝑝𝑇
< 4 𝐺𝑒𝑉. 

Enhanced sample Minimum bias sample 

Enhanced sample Minimum bias sample 
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|𝑦| < 1 |𝑦| < 1 



6.3 Heavy Flavor Electron-𝐷0 Azimuthal Correlations 

 

61 
 

 

 

Figure 6.18: Charmed electron-𝐷0 azimuthal correlation plot from PYTHIA 

generated pp collisions at √𝑠 = 7 TeV for the enhanced and the minimum bias sample, 

where 5 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 < 10 𝐺𝑒𝑉, and 𝑒𝑝𝑇

> 1.5 𝐺𝑒𝑉 and 4 𝐺𝑒𝑉 < 𝑐ℎ𝑎𝑟𝑚𝑝𝑇
<

10 𝐺𝑒𝑉.  

 

 

Figure 6.19: Charmed electron-𝐷0 azimuthal correlation plot from PYTHIA 

generated pp collisions at √𝑠 = 7 TeV for the enhanced and the minimum bias sample, 

where 𝐷𝑝𝑇
0 > 10 𝐺𝑒𝑉, and 𝑒𝑝𝑇

> 1.5 𝐺𝑒𝑉 and 𝑐ℎ𝑎𝑟𝑚𝑝𝑇
> 10 𝐺𝑒𝑉. 

Enhanced sample Minimum bias sample 
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Figure 6.20: Beauty electron-𝐷0 azimuthal correlation plot from PYTHIA generated 

pp collisions at √𝑠 = 7 TeV for the the enhanced and the minimum bias sample.  

 

Applying a momentum cut given by 1 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 < 5 𝐺𝑒𝑉 for the 𝐷0 and 𝑒𝑝𝑇

> 0.5 𝐺𝑒𝑉 

doesn’t really change the charmed electron-𝐷0 distributions extensively (see Figure 6.17), 

but increasing the cuts further, as given in Figure 6.18, corrects the double-peak feature 

on the near-side. Further increasing the momentum cuts does not drastically change the 

distributions, as given by Figure 6.19. The behaviour of these distributions can also be 

observed in the beauty electron-beauty 𝐷0 azimuthal correlations given by Figures 6.20-

6.23, albeit far more subtle. The only main difference is an enhanced peak on the near-

side at higher 𝑝𝑇 cuts. However, it becomes hard to draw any conclusion on the minimum 

bias set due to lack of statistics.  

 Compared to the charm ∆𝜑 distribution, the charmed electron−𝐷0 ∆𝜑 distribution 

appears to be “smeared”, refering again to Figure 6.16. This feature is apparent in both 

samples. As seen, the ratio between the peaks on the away-side and the near-side for the 

charm ∆𝜑 ~𝒪(10), while the charmed electron−𝐷0 ~𝒪(1). The width of the charmed 

electron−𝐷0 ∆𝜑 distribution is also wider, both on the near-side and the away-side. This 

trend is even more apparent when comparing beauty ∆𝜑 distributions and beauty 

electron−beauty 𝐷0 ∆𝜑 distributions. In both samples, there is a major difference on the 

away-side, where the peak-to-peak ratio differ by almost an order of magnitude. 
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Figure 6.21: Beautyd electron-𝐷0 azimuthal correlation plot from PYTHIA generated 

pp collisions at √𝑠 = 7 TeV for the the enhanced and the minimum bias sample, where 

1 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 < 5 𝐺𝑒𝑉, and 𝑒𝑝𝑇

> 0.5 𝐺𝑒𝑉 and 1 𝐺𝑒𝑉 < 𝑏𝑒𝑎𝑢𝑡𝑦𝑝𝑇
< 4 𝐺𝑒𝑉.  

 

 

 

Figure 6.22: Beauty electron-𝐷0 azimuthal correlation plot from PYTHIA generated 

pp collisions at √𝑠 = 7 TeV for the the enhanced and the minimum bias sample, where 

5 𝐺𝑒𝑉 < 𝐷𝑝𝑇
0 < 10 𝐺𝑒𝑉, and 𝑒𝑝𝑇

> 1.5 𝐺𝑒𝑉 and 4 𝐺𝑒𝑉 < 𝑏𝑒𝑎𝑢𝑡𝑦𝑝𝑇
< 10 𝐺𝑒𝑉. 

Enhanced sample Minimum bias sample 
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Figure 6.23: Beauty electron-𝐷0 azimuthal correlation plot from PYTHIA generated 

pp collisions at √𝑠 = 7 TeV for the the enhanced and the minimum bias sample, where 

𝐷𝑝𝑇
0 > 10 𝐺𝑒𝑉, and 𝑒𝑝𝑇

> 1.5 𝐺𝑒𝑉 and 𝑏𝑒𝑎𝑢𝑡𝑦𝑝𝑇
> 10 𝐺𝑒𝑉.  
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Chapter 7 

Conclusion and Outlook 

 

The main cynosure of this thesis was addressed to the study of the azimuthal correlations 

of 𝐷0 mesons and heavy flavor electrons from PYTHIA generated proton-proton 

collisions.  The most time consuming part was setting up the analysis software, getting 

access to GRID, writing the actual analysis code and getting everything to work 

contemporaneously. A new correction to the auto-correlation effect in HFE-𝐷0 

correlations has been presented with the outcome of both increasing the number of 

statistics as well as changing the actual distributions. 

 Two PYTHIA generated Monte Carlo simulations were utilized in this analysis; 

LHC10f7a and LHC10f6a. The run LHC10f7a is an enhanced sample regarding heavy 

quarks, while LHC10f6a is a minimum bias run. Although the enhanced sample yields a 

lot more statistical data, there appear to be some issues with the HFE-𝐷0 azimuthal 

correlations compared to the minimum bias sample, especially on the near-side. This 

feature could be a consequence of the interposing of the decay modes of the 𝐷0 meson. 

Although the data seem to coincide distribution-wise with the minimum bias run for high 

𝑝𝑇 cuts, this brings to question the validity of studying azimuthal correlations at low 𝑝𝑇 

ranges using the enhanced sample, particularly on the near-side.  

 When comparing the charm ∆𝜑 distributions to the electron−𝐷0 ∆𝜑 plots, the 

electron−𝐷0 ∆𝜑 distribution seem to keep the orientation of the charm ∆𝜑 plots. At both 

the partonic scale and the hadronic scale, distributions can be seen both on the near-side, 

i.e. ∆𝜑 = 0, and the away-side, i.e. ∆𝜑 = 𝜋. However, the electron-𝐷0 ∆𝜑 plots seem to be 

more “smudged” out. The peak-to-peak ratio when comparing the charm ∆𝜑 distribution 

to the electron-𝐷0 ∆𝜑 distribution differs in some cases by almost an order of magnitude, 

depending on the selected momentum cuts. 

 The study of other collision systems such as p-p collisions at higher energies, p-Pb 

collisions or Pb-Pb collisions should yield an even further insight into this matter as the 

production cross section of the heavy quarks consequently increase, implying a statistical 

increment. Although there are experimental constraints, it is still of great interest to see 

if there would be any fundamental changes to the azimuthal correlations according to the 

simulated data, both on a partonic scale as well as the hadronic. As of today, the ALICE 

detector is undergoing upgrades, including the improvement of the TPC as well as the TRD 

which entails better electron selection. The LHC is scheduled to start conduct experiments 

again in 2015.  



66 
 

 

 

 

 

Bibliography 

 

[1]  S. Hawking, “On the Shoulders of Giants”, First Edition, Penguin Books Ltd, London 

2002 

 

[2] J. Jewett & R. Serway, “Physics for Scientists and engineers with modern physics”, Eight 

Edition, Cengage 2010 

 

[3] S. Chandra & M. Sharm, “Nuclear and Particle Physics”, Alpha Science International Ltd., 

Oxford, UK, 2012 

 

[4] E. Gates, “Einstein’s Telescope”, W.W. Norton & Company, New York 2009 

 

[5] P. Tipler & R. Llewellyn, “Modern Physics”, Fifth Edition, W. H. Freeman and Company, New 

York 2008 

 

[6] M. van Leeuwen , “High-pT results from ALICE”, arXiv:1201.5205 January 2012 
 
[7] A.S. Yoon, “Centrality and pT dependence of charged particle RAA in PbPb collisions at 

psNN = 2.76 “, arXiv:1107.1862v2 2011 
 

[8] E. Bruna, “D-meson nuclear modication factor and v2 in Pb-Pb collisions at the LHC”, 

arXiv:1401.1698v1 2014 

 
[9] “The Cern Large Hadron Collider: Accelerator and Experiments”, Volume 1: LHC Machine, 

ALICE and ATLAS, Copyright CERN, Geneva 2009, first published electronically as 2008 

JINST 3 S08001 

 

[10] ALICE: https://aliceinfo.cern.ch/Figure/sites/aliceinfo.cern.ch.Figure/ 

files/Figures/General/jthaeder/2012-Aug-02-ALICE_3D_v0_with_Text.jpg 

 

[11] Cern-Brochure - 2009 – 003 - Eng  

 

[12] “The Cern Large Hadron Collider: Accelerator and Experiments”, Volume 1: LHC Machine, 

ALICE and ATLAS, Copyright CERN, Geneva 2009, first published electronically as 2008 

JINST 3 S08003 

 

[13] AliRoot: http://aliweb.cern.ch/Offline/ Activities/ Analysis/ AnalysisFramework/ 

index.html

http://arxiv.org/abs/1201.5205
https://aliceinfo.cern.ch/Figure/sites/aliceinfo.cern.ch.Figure/
http://aliweb.cern.ch/Offline/%20Activities/%20Analysis/%20AnalysisFramework/%20index.html
http://aliweb.cern.ch/Offline/%20Activities/%20Analysis/%20AnalysisFramework/%20index.html


67 
 

[14] The ALICE Offline Bible: http://aliweb.cern.ch/secure/Offline/ sites/ 

aliweb.cern.ch.Offline/files/uploads/ OfflineBible.pdf 

 

[15] F.W. Bopp, “RAPIDITY GAPS AND THE Phojet MONTE CARLO”, arXiv:hep-

ph/9803437v1 1998 

[16] P. Tipler & R. Llewellyn, “Modern Physics”, Fifth Edition, W. H. Freeman and Company, New 

York 2008 

 

[17] R. Odorico, “Hadronic Production of Charm via Flavor Excitation”, Nuclear Physics B209 

1982 

 

[18] F. Mandl, & G. Shaw, “Quantum Field Theory”, 2nd Edition, School of Physics & Astronomy, 

The University of Manchester, Manchester, UK, WILEY 2010 

 

[19] V. Devanathan, “Relativistic Quantum Mechanics and Quantum Field Theory”, Alpha 

Science International LTD., Oxford, UK, 2011 

 

[20] M. Peskin, “An Introduction to Quantum Field Theory”, Westview Press, 1st Edition, 1995 

 

[21] B. Combridge, “Associated Production of Heavy Flavour States in pp Interactions”, Nuclear 

Physics B181 1978 

 

[22] E. Norrbin & T. Sjöstrand, Production and Hadronization of Heavy Quarks, arXiv:hep-

ph/0005110v1 11 May 2000 

 

[23] M. Cacciari et al., “Charm and Bottom Production in PQCD, Characterization of the 

Quark Gluon Plasma with Heavy Quarks”, Physikzentrum Bad Honnef, June 2008 

 

[24] R. Nouicer, “Probing Hot and Dense Matter with Charm and Bottom Measurements 

with PHENIX VTX Tracker”, arXiv:1212.3291v1 Dec 2012 

 

[25] ALICE: https://aliceinfo.cern.ch/Figure/sites/aliceinfo.cern.ch.Figure/files/ 

Figures/dthomas/2012-Jul-29-CcrossSection.pdf 

 

[26] T. Sjöstrand et al., “An Introduction to PYTHIA 8.2”, arXiv: 1410.3012 Oct 2014 

 

[27] PYTHIA: http://home.thep.lu.se/~torbjorn/Pythia.html 

 

[28] T. Sjöstrand et al., “PYTHIA 6.2 Physics and Manual”, arXiv:hep-ph/0603175v2 12 

May 2006 

 

[29] A. Mischke, “Heavy-flavor correlation measurements via electron azimuthal 
correlations with open charm mesons”, arXiv:0710.2599v1 Oct 2007 

 
[30] A. Mischke, “Heavy-flavor particle correlations in STAR via electron azimuthal 

correlations with D0 mesons”, J. Phys. G: Nucl. Part. Phys. 35 2008 
 

http://aliweb.cern.ch/secure/Offline/
https://aliceinfo.cern.ch/Figure/sites/aliceinfo.cern.ch.Figure/files/
http://home.thep.lu.se/~torbjorn/Pythia.html


68 
 

[31] X. Zhu, “DD correlations as a sensitive probe for thermalization in high energy 
nuclear collisions”, Physics Letters B 647 2007  

 
[32] Particle Data Group: http://pdg.lbl.gov 
 
[33] A. Geromitsos, “Non Photonic e−D0 correlations in p+p and Au+Au collisions at 

psNN = 200 GeV”, arXiv:0911.2490v1 2009 
 
[34] R. Grajcarek, “Measurement of heavy- avor production in PbPb collisions at the 

LHC with ALICE”, arXiv:1209.1925v1 2012 

 

[35] T. Renk, “Using Hard Dihadron Correlations to constrain Elastic Energy Loss”, 
arXiv:1110.2313v1 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://pdg.lbl.gov/

