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Outline

The thesis consists of two parts. Part I is devoted to background theory required for
the collection of research papers given in Part II, and is structured as follows. Chapter
1 give an introduction to reservoir modelling and history matching, and motivates the
use of stochastic methods.
In Chapter 2, we provide a brief introduction to inverse problems from a Bayesian

point of view. Here the filter and smoother approaches are introduced.
Chapter 3 is devoted to parameter estimation problems, considering both the classi-

cal and the stochastic approach.
Various sampling method are considered in Chapter 4, and a special emphasis is

given to the Markov chain Monte Carlo (MCMC) methods.
In Chapter 5, we introduce ensemble-based methods that either assimilate data se-

quentially or simultaneously, and we discuss how these methods can be used for pa-
rameter estimation problems.
In Chapter 6, we discuss several methods for evaluating sampling performance.

Here, it is assumed that the MCMC methods provide exact samples, and that the
ensemble-based methods generate approximate samples from some high-dimensional
probability distribution function.
The ensemble-based methods depend on the non-linearity of the forward model, in

Chapter 7 we introduce two different measures for the degree of non-linearity in the
forward model.
In Chapter 8, we provide a brief introduction to mathematical and numerical models

for two-phase flow in a porous media.
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Abstract

The ensemble Kalman filter (EnKF) has, since its introduction in 1994, gained much
attention as a tool for sequential data assimilation in many scientific areas. In recent
years, the EnKF has been utilized for estimating the poorly known petrophysical pa-
rameters in petroleum reservoir models. The ensemble based methodology has inspired
several related methods, utilized both in data assimilation and for parameter estima-
tion. All these methods, including the EnKF, can be shown to converge to the correct
solution in the case of a Gaussian prior model, Gaussian data error, and linear model
dynamics. However, for many problems, where the methods are applied, this is not
satisfied. Moreover, several numerical studies have shown that, for such cases, the dif-
ferent methods have different approximation error.
Considering parameter estimation for problems where the model depends on the

parameters in a non-linear fashion, this thesis explore the similarities and differences
between the EnKF and the alternative methods. Several characteristics are established,
and it is shown that each method represents a specific combination of these characteris-
tics. By numerical comparison, it is further shown that a variation of the characteristics
produce a variation of the approximation error.
A special emphasis is put on the effect of one characteristic, whether data are as-

similated sequentially or simultaneously. Typically, several data types are utilized in
the parameter estimation problem. In this thesis, we assume that each data depends
on the parameters in a specific non-linear fashion. Considering the assimilation of two
weakly non-linear data with different degree of non-linearity, we show, through an-
alytical studies, that the difference between sequential and simultaneous assimilation
depends on the combination of data.
Via numerical modelling, we investigate the difference between sequential and si-

multaneous assimilation on toy models and simplified reservoir problems. Utilizing
realistic reservoir data, we show that the assumption of difference in non-linearity for
different data holds. Moreover, we demonstrate that, for favourable degree of non-
linearity, it is beneficial to assimilate the data ordered after ascending degree of non-
linearity.
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"We should not be ashamed to acknowledge truth from whatever source it
comes to us, even if it is brought to us by former generations and foreign
people. For him who seeks the truth there is nothing of higher value than

truth itself."

Abu Yussuf Yaakoub Ibn Ishaq as-Sabbah Al-Kindi (801–873)
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Chapter 1

Introduction

A steady and reliable supply of energy is essential for the global community. Ideally,
this supply should come from renewable sources such as wind or solar power. How-
ever, non-renewable sources, such as hydrocarbons, will, for the foreseeable future,
continue to play a fundamental role in the global energy mix. Hydrocarbons have, for
the last century, been one of the worlds most important sources of energy. The chemical
composition of hydrocarbons, allowing safe transportation and storage, makes them an
ideal energy carrier. This ensures that hydrocarbons will keep their role as an elemen-
tal part of the gradually more renewable energy mix, and that they will continue to be
one of the most sought after commodities worldwide. Exploration after and production
of hydrocarbons is, therefore, still an important activity for a wide range of companies
and countries.
Hydrocarbons, in the form of oil and gas, have been produced from underground

reservoirs for more than 150 years. During these years, increased industry competence
has made production from off-shore reservoirs, such as the oil and gas fields on the
Norwegian continental shelf, possible. The increased complexity associated with the
production from off-shore oil and gas fields induce higher costs, especially related to
drilling of wells. In order to be economically feasible, a typical off-shore reservoir has
to contain a minimum number of wells which must produce a maximum amount or
hydrocarbons. Unfortunately, the success of any well depends on the properties of the
subsurface, which are, generally, poorly known.
There is a large risk associated with exploration and production of hydrocarbons,

and methods for predicting future production with associated uncertainty are needed to
mitigate this risk. In this regard, reservoir modelling plays a vital part in the petroleum
industry work-flow. Reservoir modelling consists of representing multiphase fluid-flow
in the porous media (the reservoir) via mathematical formulae. Solving these formu-
lae with correct initial and boundary conditions enables, in principle, the prediction of
any dynamic quantities, such as pressures and fluid saturations, in both space and time.
Moreover, this framework enables the reservoir engineer to assess the effects of dif-
ferent production strategies, e.g., different well positions, production rates, etc., with a
minimum cost.
With the exception of the simplest cases, the mathematical formulae cannot be

solved analytically; they need to be solved numerically. The reservoir model is then
represented by a 3D grid consisting of cells, where each cell is associated with a num-
ber of constant parameters and dynamical states. By discretizing the mathematical
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equations, the numerical solution consists of estimating the time evolution of the dy-
namical states, e.g., the pressure and saturation, in each cell.
There are many sources of uncertainty in this setup. Several simplifications are

needed to derive the mathematical formulae; hence, the formulae never represent the
real world exactly. Moreover, the numerical schemes utilized for solving the equations
involve approximations, and the solution always contain some numerical error. Finally,
the grid will only approximate the subsurface, especially the petrophysical quantities,
assumed to be constant within the cells, are only known approximately. The error
caused by the final approximation is the main concern in this thesis.
Production of hydrocarbons is a dynamic process. Hence, as time evolves, one can

observe the true values of the dynamic process. Such observations can, for example,
consist of pressure measurements made in the wells. These observations, or data, can
then be compared with the predictions made by the numerical model. One can then
adjust the model such that the error between predictions and data is minimized; this
process is referred to as history matching or data assimilation. Since data contain in-
formation about the real world, it is reasonable to assume that history matching will
reduce the uncertainty in the numerical model, and, thus, reduce the error in the predic-
tions made by the model.
The process of collecting data is never exact. We must always assume that the data

contain error, arising from several sources. Firstly, no observation apparatus is able to
measure the dynamical state in an exact manner, which introduces error. Secondly, in-
direct measurements are often utilized. That is, the measured quantities are connected
to the dynamic state via a functional relationship. Extraction of the correct informa-
tion relies on correct modelling of this functional relationship. Error in the data can be
introduced by this modelling step for the same reasons as above. Thirdly, the measure-
ment and the grid cell are represented on different scales in the computational model.
Compared to the size of the grid cell, the measurement can be considered as a point
measurement. Moreover, this point may or may not be centred in the grid cell, and ex-
trapolation methods may be needed to properly represent the measurement in the cell.
This process is never exact and will also introduce error in the data.
Since both the numerical model and the data contain error, it is advantageous to con-

sider them as stochastic variables. In this framework, the history matching problem can
be solved by Bayes’ theorem. Under some general assumptions, this procedure con-
sists of estimating the conditional probability density function (PDF) of the unknown
quantities in the numerical model – denoted the posterior – given the PDF of the data
– denoted the likelihood – and the PDF of predicted numerical quantities – denoted the
prior. Typically, this procedure, referred to as the analysis step, is expressed as

Posterior = Const × Prior × Likelihood, (1.1)

where Const denotes a normalizing constant. The numerical reservoir model will then,
when considered as a stochastic model, be used for modelling the temporal evolution of
the PDF of model quantities, mapping the posterior PDF at the current data-assimilation
time to the prior PDF at the next data-assimilation time. This procedure is referred to as
the forecast step. Note that the initial PDF must contain all prior information regarding
the subsurface. (This PDF is often referred to as the initial prior PDF.)
Even though Bayes’ theorem provides the correct solution to the history matching

problem, it is generally impossible to calculate the posterior PDF without extra assump-
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tions. The computational complexity is mainly caused by the normalizing constant,
which, for any realistic reservoir case, involves the solution of a high-dimensional inte-
gral. As an alternative to a full evaluation of the posterior PDF, one can rely on methods
that draw samples from the PDF. Utilizing such methods, one can obtain estimates of
statistical quantities, such as mean and variance, via Monte Carlo (MC) methods (see,
Chapter 4). Unfortunately, methods that sample exactly from a general PDF are com-
putationally demanding and difficult to utilize for realistic cases.
The Bayesian approach can be significantly simplified by making assumptions on

the structure of the prior model, the likelihood model, and the numerical model. If
the prior model for the unknown quantities is Gaussian, the data errors are Gaussian,
and the forward model is linear in the unknown quantities (preserving Gaussianity), all
PDFs involved in the forecast and analysis steps are Gaussian. This is denoted a Gauss-
linear problem. If these assumptions hold, the history matching problem is solved by
the well known Kalman filter (KF) equations [54]. Since a Gaussian PDF is completely
described by its mean and covariance matrix, the KF provides equations for the forecast
and analysis of the mean and covariance.
For many interesting problems the assumptions made by the KF are not valid. Typ-

ically, the forward model depends non-linearly on the unknown quantities, and Gaus-
sianity is not preserved. For such problems, the KF cannot be utilized directly. A
common solution is to linearize the model. This allows calculation of linearized fore-
casts of the covariance, and it enables a linearized analysis step. This approach is
generally known as the extended Kalman Filter (ExKF). However, the linearization
will introduce additional error in the model, and for highly non-linear problems the ap-
proximation error is high. For realistic models there are typically a large number of
unknown quantities, e.g. reservoir models that contain a high number of grid cell with
corresponding values for the petrophysical and dynamic quantities. Both the KF and
the ExKF require the storage and update of the covariance matrix, and for large models
the covariance matrices cannot be stored in the computer memory.
As a solution to the storage problem, the ensemble Kalman Filter (EnKF) was intro-

duced by Evensen in [27]. Here, the PDF is approximated by an ensemble of models.
Each ensemble member is evolved in time, approximating the forecast step. Following
this, each ensemble member is analysed utilizing an approximation to the KF equa-
tions. Throughout, the mean and covariance are approximated via an MC approach.
The EnKF avoids formulating the full covariance matrices, and the method only needs
to store the ensemble of models. Since one usually apply much fewer ensemble mem-
bers than unknown quantities, the computational savings are significant. If the KF
assumptions of Gaussianity are satisfied, the EnKF estimate of mean and covariance
converge to the KF solution when the number of ensemble members goes to infinity.
Hence, for Gauss-linear problems the EnKF has well defined asymptotic properties.
The EnKF forecast does not make any assumptions on the forward model, and it can
therefore be directly implemented, without derivatives, even if the forward model is
non-linear. For this reason, the EnKF is well suited as an alternative to the ExKF for
data assimilation of large scale problems such as atmospheric and oceanographic mod-
els or petroleum reservoirs. However, for non-linear forward models the asymptotic
property of the EnKF is not known, and it is reasonable to assume that the EnKF only
provides an approximation to the posterior PDF, for such cases. Unfortunately, for
non-linear models one does not know how large this approximation error is.
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The EnKF is only one of several methods that can be utilized for solving the
Bayesian history matching problem. If one (in addition) restrain the problem to only
estimating the petrophysical quantities, which are constant in time, the number of alter-
native ensemble-based algorithms becomes even higher. All these methods are based
on the Bayesian approach, and they are designed to solve the same problem. If the
KF assumptions of Gaussianity are valid all the methods considered in this thesis have
well-defined asymptotic behaviour, but for non-linear forward models the methods only
provide approximations. Similar to the EnKF, one does not know the size of the ap-
proximation error, but numerical experiments have shown that different methods pro-
vide different degrees of error.
Since all methods seek the solution to the same problem, there are some clear sim-

ilarities between the methods. Nevertheless, they all differ with regards to some key
characteristics, which can be considered as defining for the individual methods. The
emphasis of this thesis is to investigate the effects of these characteristics with regards
to the approximation error. Analytical and numerical investigations are conducted to
explore if some characteristics lead to a reduction of the approximation error. There is
a special emphasis on the characteristic of whether data are assimilated sequentially or
simultaneously, and Papers B–E are only concerned with this characteristic.



Chapter 2

Inverse problem

Modelling of natural phenomenons constitute the basis of natural science, and success-
ful models are essential for understanding and describing the behaviour of any physical
system. Generally, the derivation of such models follow three main steps with related
uncertainties [96]. The first step, typically referred to as parametrisation, is to iden-
tify a minimal set of model quantities, y ∈ R

ny , that completely defines the natural
phenomenon. The model quantities can typically be split into two according to the fol-
lowing principle. If the quantity varies as the model evolves through time it is defines
as a model state. If, on the other hand, the quantity stays constant in time it is defined as
a model parameter. In the following, all model quantities y are considered jointly. One
can, unfortunately, not guarantee that y properly represents the natural phenomenon.
For this reason, it is reasonable to assume that the parametrisation contains some rep-
resentation error.
The second step, referred to as forward modelling, is to define mathematical mod-

els such that, for given values of y, observable quantities, d ∈ R
nd , can be predicted

by solving the mathematical equations. For most problems, it would be impossible to
solve the mathematical models without making additional simplifications or assump-
tions. In addition, the equations must often be solved via numerical methods. For
these reasons, one must assume that, in addition to the representation error, the forward
model contains modelling errors.
The final step, referred to as inverse modelling, consists of utilizing actual observa-

tions of the natural phenomenon, d, to infer the values of y. However, observations are
never generated without some error, either caused by the instruments or by the repre-
sentation of observations in the numerical model. Thus, one must always assume that
the observations contain measurement errors. These three steps are closely related, as
the inverse modelling relies on both parametrisation and forward modelling. For this
reason, inverse modelling depends on a correct inclusion of the uncertainties.
Considering the definition of a well-posed problem in the terms of [46], that is,

• the problem has a solution,
• the solution is unique, and
• the solution is a continuous function of the data,

it is well-known that most inverse-modelling problems, when no assumptions are made
with regards to the various error terms, are ill-posed problems. The current chapter pro-
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vides the reader with a brief overview of probabilistic methods for solving the inverse
problem, focussing on the Bayesian framework.

2.1 Bayesian formulation

Mathematically, the relationship between the observations, d, and the model quantities,
y, can be defined as

d = G (y) . (2.1)

Here, G (·) can be thought of as the combination of two operators, H (F (·)), where
H (·) is the measurement operator, and F (·) is the forward-model operator, defined
by the discretized mathematical model. The inverse problem consists of estimating y
given observations d. From the above discussion, it is clear that this system contains
several sources of error. A more appropriate relation between d and y is therefore

d = G (y) + ξ, (2.2)

where ξ is an unknown error term, and it is assumed that the error is additive. If one
considers ξ as a random variable with zero mean and known statistical properties, we
can derive a well-defined solution to the inverse problem (2.2) by posing it in a Bayesian
framework.
Random variables are defined by their probability measure μ, defined on a measur-

able space by the pair (Ω, F), where Ω is the sample space, and F is a sigma-algebra.
For our applications we consider the cases where Ω is a separable finite dimensional
Banach space, F is a Borel sigma-algebra generated by the open sets, and μ is ab-
solutely continuous with respect to the Lebesque measure. The measure can then be
defined via the well known PDF, p,

μ (X) =
∫
X

p (x)dx, (2.3)

for X ∈ F. For more details regarding probability measures, see, e.g., [68, 94].
Solving the inverse problem using the Bayesian framework consists of finding the

posterior PDF, i.e., the conditional PDF of y given d, written as p (y |d). This is easily
formulated via Bayes’ theorem

p (y |d) = p (d |y) p (y)∫
R
ny p (d |y) p (y)dy

. (2.4)

By defining a suitable data likelihood,

p (d |y) = p (ξ = d − G (y)) , (2.5)

and incorporating all prior information into p (y) it is, conceptually, possible to calcu-
late the posterior PDF.
With the Bayesian approach it is possible to show that for some cases where the

inverse problem (2.1) is ill-posed, the inverse problem (2.2) might be well posed in a
probabilistic setting [94].
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2.2 Smoothing

For many cases, the model quantities and the data vary in time, and G (·) represents
a dynamical system. For such cases, the inverse problem consists of estimating y (t)
conditioned to d (t), where t denotes time. In the dynamical system, it is beneficial to
separateG (·) into a prediction model and an observation model. Let us assume that the
observations are available at na discrete points in time, dtk , for k = 1, . . . ,na, and let
us, for simplicity, assume that the model equations are solved at the same time as data
are available. Throughout, we will, for notational convenience, write k as short for the
discretized time step tk . The system evolution from the (k − 1)’th time step to the k’th
time step is then given as

yk = F
(
yk−1
)
+ ηk , (2.6)

and the observations at the k’th time step are given as

dk = H
(
yk
)
+ εk . (2.7)

Here η denotes a combination of the modelling error and the representation error, and
ε denotes the measurement error.
In this setting, the inverse problem consists of finding the PDF of yk conditioned to

dk for k = 1, . . . ,na. This is easy to formulate utilizing Bayes’ theorem, omitting the
normalizing constant,

p
(
y1:na |d1:na

)
∝ p
(
d1:na |y1:na

)
p
(
y1:na

)
, (2.8)

where the subscripts are shorthand notation for the joint distribution, i.e.,

p
(
y1:na |d1:na

)
= p
(
y1,y2, . . . ,yna |d1,d2, . . . ,dna

)
. (2.9)

For some problems, one may only be interested in the model quantities at a specific
time. Utilizing (2.8) one can easily find the expression for y at the k’th time step by
integrating (2.8) with respect to y1, . . . ,yk−1,yk+1, . . . ,yna . This is generally referred
to as the smoother solution of the inverse problem. A special feature of the smoother
solution is that yk will be calculated utilizing data from both previous, current, and
subsequent time steps.
The smoother expression can either be calculated by all data simultaneously as

in (2.8), or by utilizing data as they become available [30]. This last approach is shown
by rewriting (2.8) as

p
(
y1:na |d1:na

)
∝ p
(
dna |y1:na

)
p
(
yna |y1:na−1

)
p
(
y1:na−1 |d1:na−1

)
. (2.10)

By assuming that p
(
y1:na−1 |d1:na−1

)
is obtained at the previous time step, it is clear

that p
(
y1:na |d1:na

)
can be obtained by calculating the transition PDF, p

(
yna |y1:na−1

)
,

and the data PDF, p
(
dna |y1:na

)
, when dna become available.

Equation (2.10) is simplified significantly by assuming that the PDFs at time step
k only depend on the PDF at k − 1. Models that have this property are called Markov
processes [68]. If one additionally assumes that measurements collected at different
time steps are independent from each other, and that dk only depends on yk for k =
1, . . . ,na, (2.10) reduces to

p
(
y1:na |d1:na

)
∝ p
(
dna |yna

)
p
(
yna |yna−1

)
p
(
y1:na−1 |d1:na−1

)
. (2.11)
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2.3 Filtering

Contrary to the smoother solution, the filter solution is defined as the conditional den-
sity of the model quantities at the final time step given all data up to and including that
time step. Hence, when solving the filter problem one seeks the conditional density
p
(
yna |d1:na

)
. Assuming that the smoother PDF is known up to a normalizing constant,

the filter solution is written as

p
(
yk |d1:k

) ∝ ∫
y1:k−1

p
(
y1:k |d1:k

)
dy1:k−1,

∝
∫
y1:k−1

p
(
y1:k−1 |d1:k−1

)
p
(
yk |yk−1

)
dy1:k−1p

(
dk |yk

)
,

∝
∫
y1:k−1

p
(
y1:k |d1:k−1

)
dy1:k−1p

(
dk |yk

)
,

= c p
(
yk |d1:k−1

)
p
(
dk |yk

)
. (2.12)

If we assume that η is a vector Brownian motion with E
[
dηtdηTt

]
= Qy (t)dt, the time

evolution of the prior PDF, p
(
yk |d1:k−1

)
, satisfies Kolmogorov’s forward equation and

can be written as [53]

dp
(
yk |d1:k−1

)
= l (p) dt, k − 1 ≤ t < k, (2.13)

where

l (p) = −
R
ny∑
j=1

∂pF
∂y j
+
1
2

R
ny∑

i, j=1

∂2
(
pQy

)
i, j

∂yi∂y j
. (2.14)

Hence, solving the filter at time step k is a two-step process. Firstly, the prior PDF,
p
(
yk |dk−1:1

)
, is calculated utilizing Kolmogorov’s forward equation; this corresponds

to the prediction step. Secondly, the filter solution is calculated by (2.12); this corre-
sponds to the analysis step.
Since the filter solution is defined as the marginal of the smoother, one can in prin-

ciple calculate the filter solution by assimilating all data simultaneously. However,
the filter solution usually assimilated data sequentially, calculating the prediction and
analysis each time data becomes available. Note that the filter and smoother solution
defined at the final data assimilation step are identical.

2.4 Filtering for Gauss-linear problems

As shown in the previous section, it is easy to derive the filter equations. Unfortunately,
the filter solution is not easy to evaluate since it involves the evaluation of several high-
dimensional integrals, both in (2.12) and in the normalizing constant.
However, for a special case, there exists a closed-form solution to the filter problem.

The solution procedure, known as the Kalman filter (KF), can be derived by numerous
approaches. In the following, we outline the version provided in [53]. Let us assume
that the model is described by a linear stochastic differential equation

d yt = Fytd t + dηt , t ≥ t0, (2.15)
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where F represents a linear function, and
{
ηt , t ≥ t0

}
is a vector Brownian motion

process with E
[
dηtdηTt

]
= Qη (t) d t. Furthermore, let the observations be given by

dk = Hyk + ε k , t = 1, · · · ,na (2.16)

where H represents a linear function, and the sequence {εn}nan=1 is a white Gaussian
sequence with εk ∼ N

(
0,Qd

k

)
. In addition, let us assume that the prior PDF of yt0 is

Gaussian yt0 ∼ N
(
μ
yt0
,Qyt0

)
, and that yt0, {ηt }, and {ε k } are independent.

With these assumptions all the densities in (2.12) are Gaussian, and to find
p
(
yk |d1:k−1

)
we only need to consider the time evolution of the mean and covariance

matrix, given as
d μ

yt

d t
= Fμ

yt
,

dQyt

d t
= FQyt

+Qyt
FT +Qη , (2.17)

where the solution to (2.17), the forecast mean and covariance at time k, are denoted
μ
y
∗

k
andQy

∗

k
. Throughout this introduction, we will, to differentiate between the predic-

tion and the analysis, denote the prediction with a superscripted ∗. Since the observation
error is Gaussian, the PDF for p

(
dk |yk

)
is given as

p
(
dk |yk

) ∝ exp (−1
2
(
dk − Hyk

)T Q−1d
k

(
dk − Hyk

))
. (2.18)

If one in addition notes that the normalizing constant in (2.12) is given as

p (dk |dk:1) = N
(
Hμ

y
∗

k
,HQy

∗

k
HT +Qd

k

)
, (2.19)

it is possible to derive the PDF for the filter analysis. Inserting the above expressions
into (2.12) gives

p
(
yk |dk:1

) ∝ exp (−1
2
[·]
)

(2.20)

where

[·] = (dk − Hyk )T Q−1d
k

(
dk − Hyk

)
+
(
yk − μ

y
∗

k

)T
Q−1

y
∗

k

(
yk − μ

y
∗

k

)
−
(
dk − Hμ

y
∗

k

)T (
HQy

∗

k
HT +Qd

k

)−1 (
dk − Hμ

y
∗

k

)
. (2.21)

Since all PDFs in (2.12) are Gaussian, we must have

p
(
yk |dk:1

) ∼ N (μ
yk
,Qy

k

)
, (2.22)

and (2.21) must have the form

[·] =
(
yk − μ

yk

)T
Q−1

y
k

(
yk − μ

yk

)
. (2.23)

As shown in [53], it is possible to rewrite (2.21) in the form of (2.23) by completing
the square. The equation for the analyzed mean and covariance are then given as

μ
yk
=

(
HTQ−1d

k
H +Q−1

y
∗

k

)−1 (
HTQ−1d

k
dk +Q−1y∗

k
μ
y
∗

k

)
, (2.24)

Q−1
y
k
=Q−1

y
∗

k
+ HTQ−1d

k
H. (2.25)
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The equations for the analysed mean and covariance require the inversion of the
ny × ny matrix in (2.24). In a filter, data are assimilated sequentially and usually ny>nd .
For such cases one can, utilizing the Woodburry formula (see, e.g., [47]) rewrite (2.24)
and (2.25) such that it is only necessary to invert a nd × nd matrix. This version of the
analysis equations corresponds to the well known Kalman filter equations [54]

μ
yk
=μ

y
∗

k
+ K
(
dk − Hμ

y
∗

k

)
, (2.26)

Qy
k
=Qy

∗

k
− KHQy

∗

k
, (2.27)

where
K = Qy

∗

k
HT
(
HQy

∗

k
HT +Qd

k

)−1
, (2.28)

is denoted the Kalman gain.

2.5 Smoothing for Gauss-linear problems

As discussed in Section 2.2, the smoothing estimate is concerned with finding the con-
ditional PDF of y at any time step given data at all na observation points. Compared
to the filter solution, which only contains information from previous time steps, the
smoother improves the estimate of yk for k < na by including information available at
subsequent time steps in the analysis.
Smoothing can be performed in several ways depending on the problem and, espe-

cially, on the operational setting, see, e.g., [65, 90]. To discuss the various smoothing
methods, let us consider a satellite that is gathering measurements at discrete time steps.
Post-processing of a measurement requires accurate estimates of the satellites position
at the time when the measurement was obtained. For this reason, one observes the tra-
jectory of the satellite and gathers observations of the trajectory at the same discrete
times as the satellite is taking measurements.
Let us assume that, for some operational reason, after the measurement is gath-

ered there is a fixed lag of n time steps before the measurement can be transmitted.
Since accurate post-processing of the satellite measurement requires high accuracy of
the satellite trajectory, it is possible to improve this results by including the n extra ob-
servations of the satellite trajectory that are available due to the lag. In formal terms,
one seeks the estimate of yk−n given d1:k , where n is fixed. This estimation procedure
is referred to as fixed lag smoothing.
Alternatively, one might be interested in a certain point fixed in time, e.g., a special

measurement made by a satellite at time step k. As observations of the satellite trajec-
tory are made at k + j, where j = 1,2, . . . , one seeks to improve post-processing of the
measurement made at time step k by updating the estimate of the satellite position yk .
This smoothing procedure is referred to as fixed point smoothing.
The final smoothing procedure we consider is fixed interval smoothing. Here it is

assumed that we are only able to observe the satellite within a limited time interval. The
fixed interval smoother then utilizes all these observations simultaneously to estimate
the PDF of y at every time step within the interval. This smoothing procedure is well
suited for weather prediction scenarios. Here a weather system is being observed in a
fixed time window. At the end of the time window one can utilize all the observations
to find the most accurate description of the weather system. This estimate is then used
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as the initial conditions in the next weather forecasts. (The 4D-Var algorithm, currently
utilized in several meteorological centres [22, 101], is formulated as a fixed interval
smoother.)
For each smoothing scenario there exists at least one algorithm, see, e.g., [65, 90].

For completeness we describe the Rauch-Tung-Striebel (RTS) smoother [76], which is
a fixed interval smoother. Let us, for simplicity, assume that the forward model, F, is
discretized in both time and space, and that the solution of the forward-model equations
and the observations occur at the same, discrete, time steps. Contrary to (2.15), the
forward model is now described by the difference equation

yk+1 = Fyk + ηk+1, (2.29)

where the model error, {ηn}nan=1, is a white Gaussian sequence, ηk ∼ N
(
0,Qη

k

)
. With

these assumptions, the forward evolution of the model and covariance are given by

μ
yk+1
= Fμ

yk
, Qy

k+1
= FQy

k
FT +Qη

k+1
. (2.30)

The RTS smoother is calculated in two stages. Firstly, one calculates the analysed
mean, μ

y
KF
k
, and covariance, Q

y
KF
k
, via the standard Kalman filter as defined in Sec-

tion 2.4, for k = 1, · · · ,na. Secondly, one update the mean and covariance by the RTS
smoother equations for k = na − 1, . . . ,1 given as

μ
yk
= μ

y
KF
k
+ Bk

(
μ
yk+1 − Fμy

KF
k

)
, (2.31)

Qy
k
= Q

y
KF
k
+ Bk

(
Qyk+1 − FQy

KF
k
FT +Qη

k+1

)
Bk , (2.32)

where
Bk = Qy

KF
k
FT
(
FQ

y
KF
k
FT +Qη

k+1

)−1
. (2.33)

Hence, when estimating the sequence of model quantities the smoother represents an
extension of the KF.

2.6 Filter approximation for non-linear problems

When deriving both (2.15) and (2.29) it was assumed that the forward model was linear.
However, this assumption does not hold for a wide range of practical problems, and for
such problems one cannot utilize the filter or smoother algorithms shown in the two
preceding sections. In this section, we provide a brief introduction to the ExKF, which
is an approximate algorithm for non-linear problems [19, 53, 65]. Let us assume that
the forward model and observation model provided in (2.6) and (2.7) are differentiable
non-linear functions, and let us, further, assume that the model and observation error
are distributed as in section 2.4.
The update equation for the ExKF is, similar to the KF, performed in two steps. Let

us assume that the previous analysis of the mean, μ
yk−1
, and the covariance, Qy

k−1
, are

known. The predicted mean is obtained by direct application of the non-linear model
operator

μ
y
∗

k
= F
(
μ
yk−1

)
, (2.34)
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and the predicted covariance is given by the linearized approximation

Qy
∗

k
= FQy

k−1
FT +Qη

k
, (2.35)

where

F =
∂F
(
μ
yk−1

)
∂μ

yk−1

. (2.36)

The analysed mean and covariance are then given as

μ
yk
= μ

y
∗

k
+K
(
dk − H

(
μ
y
∗

k

))
(2.37)

Qy
k
= Qy

∗

k
−KHQy

∗

k
, (2.38)

where

H =
∂H
(
μ
y
∗

k

)
∂μ

y
∗

k

, (2.39)

and
K = Qy

∗

k
HT
(
HQy

∗

k
HT +Qd

k

)−1
. (2.40)

The ExKF works by relinearizing the system at each assimilation step where linearized
measurements are incorporated. For moderately non-linear systems, this procedure
ensures that the deviation from the true solution remains small enough to allow for lin-
earization. However, in the presence of significant non-linearities the procedure might
fail. For such systems the estimate can be improved by incorporating iterations [53].
Note that the ExKF is not an optimal filter, that is, the mean and covariance will not
provide a valid estimate of the true posterior mean and covariance, and since the true
posterior density is not guaranteed to be Gaussian, it cannot be fully described using
only the mean and covariance.



Chapter 3

Parameter estimation

The previous chapter introduced the general inverse problem, where we considered the
estimation of the model quantity y given a time sequence of data. By assuming that all
the error terms were clearly defined, we could pose the inverse problem in a stochastic
framework and utilize the powerful methods that are available for dynamical stochastic
systems. As briefly discussed in the previous chapter, the model quantity y can be split
into two groups

y =

(
z

m

)
, (3.1)

where the states, z, represent quantities that vary in time according to the system equa-
tions, and the parameters, m, represent coefficients in the system equations, which are
constant in time.
The methods considered in the previous chapter are designed for state estimation

problems. However, for many problems, estimating the poorly known parameters is
of much higher importance than the estimation of the dynamic states. Examples of
such problems are models for multiphase fluid flow in porous media, where important
parameters, such as permeability and porosity, are poorly known. Contrary to, e.g.,
atmospheric models, such problems have (approximately) static initial conditions, and
the model equations describing the fluid flow do not show chaotic behaviour. If the
initial conditions are known, the dynamic quantities can be estimated at any point in
time. The quality of this estimation, for non-chaotic problems, will mainly depend
on the unknown parameters. However, the forward model equations can still contain
large approximation errors. Typically, such errors are poorly understood, and their
contribution is, therefore, often neglected.
In this section, we provide solution strategies for the parameter estimation problem

considering both the classical and the stochastic approach. In addition, we will discuss
two different formulations of the parameter estimation problem.

3.1 Classical approach

Even though the statistical approach is very powerful for solving inverse problems, it
is still possible to find solutions where no assumptions are made regarding the nature
of the error term in (2.2). Let us assume that we have some noisy measurements, d, of
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a physical problem, modelled as

d = G (m) + ξ. (3.2)

Contrary to (2.2), this model only depends on the unknown parameters, and we do not
know if the error term arise from the forward-model operator or the measurement oper-
ator. The parameter estimation problem consists of estimating m from the noisy mea-
surements, d. This problem is generally ill-posed in the manner described in Chapter 2.
Hence, a direct inversion of G might be impossible; if the inversion is possible, there
may be more than one solution; and, in addition, the inversion methods themselves can
be highly sensitive to small perturbations in d.
The classical approach for solving the problem is to minimize the least-squares

misfit between data and model predictions, see, e.g., [98]

m∗ = argmin
m
‖G (m) − d‖2 , (3.3)

in the Euclidean norm. For a general forward model, the minimization is performed
by some suitable optimization procedure. Unfortunately, this problem might still be
ill-posed as the minimization can have multiple minima; the minimizing sequence may
not converge; and the solution could still be highly sensitive to perturbations in the
data. To circumvent these problems, regularization in the form of Tikhonov [98] can
be introduced. One then seek the solution to the regularized minimization problem

m∗ = argmin
m
‖G (m) − d‖2 + ���Γ

(
m − m0

)���2 , (3.4)

for some suitably chosen Tikhonov matrix Γ, centring parameter m0, and norm. These
choices reflect which solution one is seeking, and there exists a vast amount of literature
dedicated to this subject, see, e.g., [4, 26].
Let us consider the regularized parameter estimation problem where the parameters

are related to the data through a linear forward model. For such problems it is possible
to provide an expression for the solution. Let us assume that we are seeking a solution
close to some prior value, i.e., m0 = mprior , weighted by a suitably chosen Γ. Inserting
this into (3.4) gives

m∗ = argmin
m
‖Gm − d‖2 + ���Γ

(
m − mprior

)���2 . (3.5)

The solution to this problem is given by the normal equations, see, e.g., [4]

m∗ =
(
GTG + Γ̂

)−1 (
GTd + Γ̂mprior

)
, (3.6)

where the matrix Γ̂ is given as Γ̂ = ΓTΓ.

3.2 Stochastic approach

We now consider the stochastic approach to parameter estimation. This method is
similar to the classical approach. However, contrary to the classical approach, all error
terms are now expressed as stochastic variables with well defined statistics.
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Similar to the classical approach, the forward model is defined as (3.2). However,
we now assume that ξ ∼ N (0,Qd ) represents the error caused by the joint effect of
the forward-model operator and the measurement operator. Given a series of na inde-
pendent observations, we seek the most likely parameter vector corresponding to the
observations. Since the data are assumed to be stochastic, the conditional PDF of the
data given a parameter vector m is

p (d |m) = p (d1 |m) . . . p
(
dna |m

)
. (3.7)

However, in our problems, the data are measured and we seek the parameter values that
most likely produced the data values. For this reason, it is more suitable to consider the
likelihood function, L (m |d). It is well known that

L (m |d) = p (d |m) = p (d1 |m) . . . p
(
dna |m

)
. (3.8)

Hence, one should find the parameter values m that maximizes the likelihood function.
Since the observations have Gaussian errors, where σi is the standard deviation for
observation i, the likelihood function can be written as

L (m |d) ∝
na∏
i=1
exp
(
− (di − (G (m))i)

2

2σi

)
. (3.9)

The maximum likelihood (ML) estimate is given by the parameter vector maximiz-
ing (3.9). Hence, we seek the model

m∗ = argmin
m

����Q−
1
2

d (G (m) − d)
����
2
, (3.10)

in the Euclidean norm, where Qd is a diagonal matrix consisting of the elements σ2i .
If σi = 1, for i = 1, . . . ,na, this is identical to the least-squared misfit in the classical
approach (3.3). Clearly, weights different from 1 could have been included in the clas-
sical case. However, the values of such weights would have to be based on some notion
of the problem. Contrary to this, for the stochastic approach all weights are defined
based on well-defined statistics.
Similar to the classical approach, the stochastic approach might be ill-posed, and to

deal with this problem one needs to include some sort of regularization. In the stochas-
tic framework, regularization is provided through Bayes’ theorem which incorporates
prior information regarding the parameters m. Let us, for simplicity, assume that the
prior PDF for the unknown parameters can be written as the Gaussian

p (m) ∝ exp
(
−1
2
(
m − μmpr ior

)T Q−1mpr ior

(
m − μmpr ior

))
. (3.11)

Following Bayes’ formula, (2.4), the posterior PDF is given as

p (m |d) ∝ exp
(
−1
2
(d − G (m))T Q−1d (d − G (m))

−1
2
(
m − μmpr ior

)T Q−1mpr ior

(
m − μmpr ior

))
. (3.12)
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The posterior PDF will completely characterize the solution to the parameter esti-
mation problem. However, for some applications, one is only interested in the most
likely model. This model is denoted as the maximum a posteriori (MAP) solution.
Defining the penalty function

J (m) =
1
2
(
(d − G (m))T Q−1d (d − G (m))

+
(
m − μmpr ior

)T Q−1mpr ior

(
m − μmpr ior

))
, (3.13)

the MAP solution is provided by

m∗ = argmax
m

p (m |d) = argmin
m

J (m) . (3.14)

Note that covariance matrices are always symmetric positive definite matrices, hence
Q−1/2 will always exist. Now define the norm

‖·‖Q = ���Q−1/2·��� , (3.15)

where the Euclidean norm is used on the right hand side. Inserting this into (3.14), the
MAP solution can be given as

m∗ = argmin
m
‖d − G (m)‖2Qd

+ ��m − μmpr ior
��2Q

mprior
. (3.16)

There are strong similarities between the MAP solution and the classical parameter
estimation problem (3.5). The two are in-fact identical if we let mprior = μmpr ior ,
Qd = I, and Q−1mpr ior = Γ̂. Similar to the ML, the weights on the data term in the MAP
solution are chosen based on statistical information regarding the data error. Moreover,
the MAP solution incorporates regularization naturally as prior information via Bayes’
theorem. There are, therefore, fundamental differences between the stochastic and the
classical approach.

3.3 Weak and strong constraint formulation

In the two previous sections, we discussed the classical and the stochastic approach to
parameter estimation. It was shown that, given correct weights, both approaches could
provide the same solution. As discussed, the stochastic approach is advantageous as it
provides a good foundation for selecting the weights. Recall that we assumed that the
term ξ represented both the error in the forward-model operator and the observation
error. However, as seen in Chapter 2 it can often be advantageous to separate these two
terms. In the parameter estimation setting, the data is given as

d = H (z) + ε, (3.17)

while the forward model is given as

z = F (m) + η, (3.18)
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where ε ∼ N (0,Qd ), and η ∼ N (0,Qz ). Utilizing the least-squares estimator one can
define the following objective function [29]

J (m) = (d − H (z))T Q−1d (d − H (z)) + (z − F (m))T Q−1z (z − F (m))
+
(
m − μmpr ior

)T Q−1mpr ior

(
m − μmpr ior

)
. (3.19)

Finding the unknown parameter vector that minimize (3.19) is generally known as a
weakly constrained problem. This is similar to the formulation utilized in Section 2.2,
and the error both in the forward model and in the observation model are honoured.
This formulation does not require the model equations to be matched exactly, which
can be a great advantage for many problems.
Alternatively, one might assume that the forward model is exact, i.e., z = F (m).

Hence, removing the second term in (3.19). This is generally known as the strong con-
straint formulation. The solution to a parameter estimation problem, formulated with
the strong constraint, must satisfy the model equations exactly. However, as discussed
in Chapter 2, natural phenomenon can seldom be modelled exactly. Approximations,
introduced by neglected physics or computational simplifications, are usually present in
the forward model. If one utilize the strong constraint formulation for problems where
the size of the model error is significant, one get estimates of m that attempt to correct
for error not caused by the parameter value [29].
It is important to note the fundamental difference between the weak and strong

formulation. With the classical and stochastic approach to parameter estimation, as
introduced above, one does not separate between the two sources of error. When little
is known regarding the nature of the error in the forward model, this term might be
underestimated. Hence, for such cases, the strong formulation is utilized, both with the
classic and the stochastic approach.
The error in the forward model is, however, always considered for the state esti-

mation problems discussed in Chapter 2. Both in the filter and the smoother solution,
the propagation of the model error is determined by the error in the forward-model op-
erator. In Chapter 5, we will consider some methods that utilize the state estimation
strategy for estimation of the parameters.
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Chapter 4

Sampling from the posterior PDF

Utilizing the Bayesian formulation, it is (conceptually) simple to formulate the poste-
rior PDF. Unfortunately, for most realistic problems this PDF cannot be evaluated due
to its complex high-dimensional integrals (see, Section 2). For such problems, infor-
mation regarding the posterior PDF can only be obtained by sampling.
In this chapter, we consider several methods that sample from the posterior PDF.

A special emphasis is placed on various MCMC methods, which provide a robust, but
computationally expensive, way of sampling from the posterior PDF.

4.1 MCMC

The MCMC methods relate to the general framework of methods introduced by
Metropolis et al. [66], and Hastings [48] for MC integration. The concept of theMCMC
method is simple. One designs a Markov chain with the property that a sequence of
outputs from the chain are distributed according to a specified PDF. These outputs are
then utilized for MC estimation. Clearly, with such a broad definition, there is room for
significant innovation in the design of methods. However, they all share some common
features.
Consider a stochastic process, that is, a sequence of random elements, m1,m2, . . . ,

and assume that the conditional PDF of mn+1 given m1, . . . ,mn only depends on mn.
This stochastic process is referred to as a Markov chain, and the set in which m j takes
values is referred to as the state space of the Markov chain. The marginal PDF of m1 is
referred to as the initial PDF, while the conditional PDF of mn+1 given mn is referred
to as the transition PDF.
The main kind of Markov chains of interest in MCMC have stationary transition

PDFs, that is, the conditional PDF ofmn+1 givenmn does not depend on n. A stochastic
process is stationary if the joint PDF of mn+1, . . . ,mn+k does not depend on n. The
Markov chain is stationary if it is a stationary stochastic process. Moreover, the Markov
chain is stationary, if and only if, the marginal PDF of mn does not depend on n. A
stationary process implies stationary transition probability, but not vice versa.
An initial PDF is defined as the stationary PDF, for some transition PDF, if the

Markov chain specified by the combination of the specific initial PDF and transition
PDF is stationary. Hence, the transition PDF preserves the initial PDF.
Consider a Markov chain with a given initial PDF. If the PDF of a pair in the

sequence (mn,mn+1) is exchangeable, the transition PDF of the Markov chain is re-
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versible with respect to the initial PDF. A Markov chain with reversible transition PDF
is referred to as a reversible Markov chain. Reversibility implies that the sequence is
stationary. Most MCMC algorithms rely on reversible transition probabilities.
A Markov chain is irreducible if there is a positive probability that the chain can

go from element mi to element m j in finite time. The element m j is recurrent if the
chain returns to m j with probability 1. If the expected time until the chain returns
to m j is finite the element is positive recurrent, with period defined as the greatest
common divisor of the lengths of all paths starting and ending in the element m j . In
an irreducible chain, all elements have equal periods, and the chain is aperiodic if this
period is equal to 1. Positive recurrent, aperiodic elements are ergodic.
Since we are unable to sample from the desired stationary PDF (the posterior), we

can never generate a Markov chain where the initial PDF is the stationary PDF. Hence,
we never utilize stationary Markov chains in MCMC. Fortunately, an ergodic Markov
chain eventually reach a unique stationary PDF, regardless of the initial element [77].
Therefore, if the transition PDF is defined in a suitable manner one is guaranteed, inde-
pendent of the initial PDF, that the Markov chain generates samples from the stationary
PDF, after some time. In the following, we introduce some MCMC algorithms that,
when allowed to run for sufficiently long time, converge to the correct stationary PDF.

4.1.1 Metropolis-Hastings

The first method we consider is the well known Metropolis-Hastings (M-H), proposed
in [48] as an extension of the method introduced in [66]. Suppose that we want samples
from a stationary PDF that has unnormalized PDF a. This is the general situation
when utilizing the Bayesian methods (see Section 2.1) where the normalizing factor
is often impossible to calculate. Assume that the current element of the chain is mn,
the M-H algorithm proposes a move to m∗n+1 having conditional probability density
q
(
m∗n+1 |mn

)
. This Markov-chain performs this move with probability

b
(
mn,m

∗
n+1

)
= min

(
1,r
(
mn,m

∗
n+1

))
, (4.1)

where the Hastings ratio r is defined as

r
(
mn,m

∗
n+1

)
=
a
(
m∗n+1

)
q
(
mn |m∗n+1

)
a (mn) q

(
m∗n+1 |mn

) . (4.2)

If the move is not made mn+1 = mn. Note that r is not defined for a (mn) = 0, and
no candidate moves are made where a

(
m∗n+1

)
= 0. Hence, by ensuring that the initial

element has a (m1) > 0 we are guaranteed that r is defined for all possible steps. The
success of the method, therefore, relies on the definition of a suitable proposal PDF.
It is possible to show that the M-H update is reversible with respect to a. That is,

the transition probability density that describes the update is reversible with respect to
the PDF that has unnormalized density a [11]. Hence, the resulting Markov chain is
ergodic, and the M-H algorithm samples from the stationary PDF.
A special case of theM-H, known as theMetropolis update, arises when q

(
mn |m∗n+1

)
=
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q
(
m∗n+1 |mn

)
for all mn and m∗n+1. For this special case, the Hastings ratio is given as

r
(
mn,m

∗
n+1

)
=
a
(
m∗n+1

)
a (mn)

. (4.3)

This choice only simplifies the evaluation of the Hastings ratio.

4.1.2 Gibbs sampler

The M-H algorithm requires the user to define a suitable proposal PDF. In the Gibbs
sampler, this is not necessary. Here, the candidates are drawn from the conditional
stationary PDF, and they are always accepted. Typically, the Gibbs sampler draws
from the conditional PDF of a single element, this is, however, not necessary and the
candidates can be drawn from the conditional PDF of several elements.
One can easily observe that all candidates are accepted if one considers the Gibbs

sampler as a special case of the M-H algorithm. Let us decompose the vector mn
into
(
xn,yn

)
, and let us factor the unnormalized PDF as a

(
xn,yn

)
= g
(
yn
)
q
(
xn |yn

)
,

where g
(
yn
)
is the unnormalized marginal PDF of yn, and q

(
xn |yn

)
is the properly

normalized PDF of xn given yn. For the Gibbs sampler the proposed element is m∗n+1 =(
x∗n+1,yn

)
with proposal PDF q

(
x∗n |yn

)
. (Note that x is a vector, hence, we consider

candidate given as the conditional PDF of several elements.) Inserting this into the
Hastings ratio (4.2), we get

r
(
mn,m

∗
n+1

)
=
a
(
x∗n+1,yn

)
q
(
xn |yn

)
a
(
xn,yn

)
q
(
x∗n+1 |yn

)
=

g
(
yn
)
q
(
x∗n+1 |yn

)
q
(
xn |yn

)
g
(
yn
)
q
(
xn |yn

)
q
(
x∗n+1 |yn

)
= 1 (4.4)

The Gibbs sampler is very easy to use, and if one utilize the Gibbs sampler, no
other algorithmic choices are needed. However, the Gibbs sampler requires a method
of sampling from the conditional PDF and it may require a large number of iterations
to converge.

4.1.3 Variable-at-a-time M-H

The most obvious difference between the original M-H algorithm and the Gibbs sam-
pler is that the latter only alters a part of the element vector, drawing candidates from
the conditional of the stationary PDF. However, there exist alternative versions of the
M-H algorithm, utilizing different proposal PDFs, updating only parts of the element
vector. Similar to the Gibbs sampler, let us decompose the element vector mn into
two parts

(
xn,yn

)
. We can now generate candidates where xn is altered and yn is left

unchanged. The candidate sample is then m∗n+1 =
(
x∗n+1,yn

)
, where, contrary to the
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Gibbs samples, the candidate m∗n+1 is drawn from the conditional probability density
q
(
x∗n+1 |xn,yn

)
. The Hastings ratio for the Variable-at-a-Time M-H is then

r
(
mn,m

∗
n+1

)
=
a
(
x∗n+1,yn

)
q
(
xn |x∗n+1,yn

)
a
(
xn,yn

)
q
(
x∗n+1 |xn,yn

) , (4.5)

where a is, as in the previous cases, the unnormalized density for the desired stationary
PDF.
An example of a variable-at-a-time MCMC algorithm was introduced in [71]. Here

the candidates were drawn from the prior PDF via a standard Cholesky decomposition
method, that is

m∗n+1 = μm + Lln+1, (4.6)
where l ∼ N (0, I), and Qm = LLT . The proposal PDF is then

q
(
m∗n+1 |mn

)
= c exp

(
−1
2
(
m∗n+1 − μm

)T
Q−1m
(
m∗n+1 − μm

))
= c exp

(
−1
2
lTn+1ln+1

)
. (4.7)

Utilizing the fact that the candidate were fully characterized by the random vector,
ln+1, [71] suggested a proposal PDF where a single element, k, of the random vec-
tor (lk )n+1, drawn uniformly from the nm available elements, was perturbed in each
candidate. Hence, the variable-at-a-time proposal PDF was given as [71]

q
(
x∗n+1 |xn,yn

)
=

1
nm
√
2π
exp
(
−1
2
(
l∗k
)2
n+1

)
. (4.8)

This MCMC algorithm was utilized in a Bayesian estimation problem in [71], with
unnormalized stationary PDF given by (3.12). For this specific problem, the Hastings
ratio reduced to

r
(
mn,m

∗
n+1

)
=

exp
(
− 12
(
d − G

(
m∗n+1

))T
Q−1d
(
d − G

(
m∗n+1

)))
exp
(
− 12 (d − G (mn))T Q−1d (d − G (mn))

) . (4.9)

This MCMC algorithm was also utilized in paper A.

4.1.4 Adaptive MCMC

The M-H algorithm requires a choice of proposal PDF, and it is well known that some
proposal PDFs work better than others. Intuitively, the most efficient way of running
the MCMCwould be to draw the candidates directly from the stationary PDF. However,
the whole point of MCMC is that we cannot sample from the stationary PDF, and other
approaches are needed. To highlight some issues related to the choice of proposal PDF
let us consider one of the simplest methods, the scaled random walk (RW). Here, the
candidate is given as

m∗n+1 = mn + ln+1, (4.10)
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where
ln ∼ N

(
0,σ2Id

)
, (4.11)

and σ is a scaling factor. Any MCMC algorithm needs to converge fast, that is, the
chain should sample from the stationary PDF in few iterations. Moreover, a good
MCMC algorithm allows for rapid exploration of the state space, that is, the chain
should mix fast. A successful algorithm should, therefore, have few rejected moves (as
this will not contribute to explore the state space) and few accepted moves that are small
(as one needs a high number of small iterations to sample from the stationary PDF). In
summary, one seeks an algorithm that proposes relatively large steps that have a high
acceptance rate (fraction of proposed moves that are accepted). Our goal is therefore to
choose σ in (4.11) such that the proposed steps are relatively large, while maintaining
a relatively high acceptance rate. Clearly, if σ is chosen to large, most candidates
are rejected, and if σ is chosen to small, the chain will not mix properly. However,
the selection of σ is highly problem dependent. Clearly, the size of σ determines the
acceptance rate. Under some assumptions on the stationary PDF, it has been shown
that an acceptance rate of 0.234 is optimal for problems as nm → ∞ [79]. Numerical
studies indicates that this choice is optimal even for nm=5 [11, 33, 80], while for nm=
1 the optimal acceptance rate is approximately 0.44 [11].
Finding an optimal σ, such that the acceptance rate is approximately 0.234, is not

trivial. However, theoretical evidence suggest that σ should be selected such that the
proposal covariance is approximately proportional to the stationary covariance [11].
Unfortunately, we do not know the stationary covariance. Two different approaches
can be considered for tuning σ. The first approach is using trial and error, which can
be difficult and time demanding for high-dimensional systems. Trial and error can be
the best choice if the problem is low dimensional and one has some intuitive notion
of the value σ. The second approach is based on an adaptive tuning of σ, and is
therefore denoted adaptive MCMC. If the problem is high-dimensional and little is
known regarding σ one can benefit from an adaptive MCMC algorithm.
Similarly to ordinary MCMC, there exist numerous adaptive MCMC algorithms.

One can consider the adaptiveMCMC algorithms as consisting of a family of individual
Markov chains having the same stationary PDF, and where each adaptation corresponds
to a member of the family. This mixture of chains does not necessarily converge to the
stationary PDF for all cases as was exemplified in [81]. However, as shown in [82], the
adaptive MCMC is ergodic under some assumptions, most importantly if the amount
of adaptation is diminishing with the number of iterations.
A simple Metropolis algorithm that satisfies the diminishing adaptation condition

was proposed in [83] as a variation of the adaptive Metropolis algorithm introduced
in [45]. Here, the proposal PDF is a mixture of the form

m∗n+1 ∼ (1 − β) N
(
mn,

(
2.382

nm

)
Cmn

)
+ βN

(
mn,Qm0

)
, (4.12)

where Cmn
is the empirical covariance matrix calculated using all the preceding itera-

tions, Qm0 is some fixed nonsingular matrix, and 0 < β < 1. Note that for the first it-
erations (until the empirical covariance is well established) one must set β=1. In [83],
numerical experiments illustrated good results utilizing this algorithm for problems
with nm=100. This method was utilized in Paper C-E.
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4.1.5 Preconditioned Crank-Nicolson MCMC

All the previous MCMC algorithms assume that the unknown, m, is discretized in nm
dimensions and the methods are therefore exploring a finite dimensional space. With
this assumption, the methods described above sample from the correct stationary PDF.
However, this may not be the case if m is a continuous function, that is, before any
discretization is performed. Moreover, the convergence properties of the algorithms
defined previously depend heavily on the dimension of the state space. Considering
MCMC methods defined for functions, [17] designed several algorithms that main-
tained robust convergence properties when applied to discrete models, independent of
the dimension of the system.
To introduce these methods, the prior must be defined as a dominating measure, μ0,

and Bayes’ theorem is given by the Radon-Nikodyn derivative

d μ
d μ0

(m) ∝ exp (−Φ (m)) , (4.13)

where Φ is defined as some real-valued potential, and μ is the posterior measure. The
key algorithmic idea introduced in [17] was to consider stochastic differential equations
(SDEs) that preserved μ or μ0, and to utilize a Crank-Nicolson (CN) discretization of
the SDEs, which preserved the Gaussian reference measure μ0 when Φ ≡ 0, as propos-
als in Metropolis-Hastings methods. Several modifications of standard MCMC meth-
ods were proposed in [17], but, in the following, we only present the preconditioned
CN (pCN) method, which was proposed as a modification of the standard random walk
algorithm.
As discussed for the finite-dimensional adaptive MCMC algorithms it is advisable

that the proposal variance is approximately a scalar multiple of the target covariance
(or at least the prior covariance). This is not the case with the CN proposal, and precon-
ditioning was included to make the proposal covariance equal to the prior covariance.
The resulting pCN-MCMC algorithm generates candidates by

m∗n+1 =
√(
1 − σ2)mn + σln, (4.14)

where l ∼ N
(
0,Qprior

)
. The candidates are then accepted with probability

b
(
mn,m

∗
n+1

)
= min

{
1,exp

(
Φ (mn) − Φ

(
m∗n+1

))}
. (4.15)

This algorithm is very similar to the RW algorithm discussed above, however, the
pCN-MCMC is independent of the dimension of the problem [17]. Unfortunately, the
algorithm still depends on a scaling variable σ. Similar to the RW algorithm, selecting
σ too large gives high rejection rates, while selecting a low value of σ does not provide
sufficient mixing in the chain. Hence, both the RW and the pCN-MCMC algorithms
require test runs to establish a good value for σ.

4.1.6 Evaluation of MCMC convergence

The start value for all MCMC algorithms is drawn from some initial PDF, which is
different from the stationary PDF. For a general MCMC method, one does not know
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how many iterations the chain needs before the samples are from the stationary PDF.
The convergence of the chain must therefore be monitored. This is especially important
for problems where parts of the state space is poorly connected, e.g., for a multimodal
PDF. For such cases, the chain may appear to have converged when it is only stuck in
parts of the state space. This problem is denoted pseudo-convergence, and can only be
avoided by running the chain for sufficiently many iterations to ensure that the chain has
explored the full space. There exists several methods for evaluating the convergence
of an MCMC algorithm, see, e.g., [18]. In the following, we consider a method that is
based on monitoring several parallel chains. This procedure is well suited for modern
computers that easily allow for parallel runs.
Prior to the discussion of the convergence measure, we make some notes regarding

the standard practice of discarding the initial iterations. Since the initial value of the
MCMC algorithm is never a sample from the stationary PDF, any empirical estimation
that includes all samples will be erroneous. To avoid this error, the initial iterations,
denoted the burn-in, are discarded. The question is, however, howmany samples should
be discarded? In the following convergence measure, we discard the first half of the
total iterations, which is a conservative choice.
A standard method for assessing MCMC convergence is to calculate the potential

scale reduction factor [12, 34, 78]. This method is based on examining several parallel
chains started from a set of initial values that are overdispersed with respect to the
stationary PDF. From each of the parallel chains, one calculates the empirical mean and
(co)variance of the chain output (either the parameters or some summary statistic). The
chain convergence is then calculated by comparing these within chain estimates, to the
approximation obtained by combining all the samples together, denoted the between-
sequence estimate. It is assumed that the chain has converged if the two estimates are
similar. This method is used both for assessing scalar quantities, denoted potential scale
reduction factor (PSRF), and for assessing multivariate quantities, denoted multivariate
PSRF (MPSRF).
Consider the output of nc parallel MCMC chains, each of length nmcmc, and let this

be stored in the tensor {M j, i, l : j = 1, . . . ,nm, i = 1, . . . ,nc, l = 1, . . . ,nmcmc}. The
matrix containing the mean of each chain is then calculated as

M j, i =
1

nmcmc

nmcmc∑
l=1

M j, i, l (4.16)

and the vector containing the mean of all chain combined is calculated as

m =
1
nc

nc∑
i=1
M j, i (4.17)

By calculating the between-sequence covariance, B, as

B =
nmcmc
nc − 1

nc∑
i=1

(
M ·, i − m

) (
M ·, i − m

)T
, (4.18)

and the within-sequence covariance,W , as

W =
1

nc (nmcmc − 1)
nc∑
j=1

nmcmc∑
i=1

(
M j, i, · − M j, i

) (
M j, i, · − M j, i

)T
, (4.19)
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it is possible to estimate the total posterior covariance matrix by

V =
nmcmc − 1
nmcmc

W +
(
1 +

1
nc

)
B

nmcmc
. (4.20)

The MPSRF is based on a summarizing measure of the distance between V and B.
There exist several such measures but [12] suggested to utilize the maximum root statis-
tic

r =
nmcmc − 1
nmcmc

+

(
nc + 1
nc

)
λ1, (4.21)

where λ1 is the largest eigenvalue of the symmetric, positive definite matrixW−1 (B/nmcmc).
Paper C, D, and E utilize the MPSRF for evaluating the convergence of the MCMC
methods.

4.2 Importance sampling and sequential MC

The traditional MCMCmethods, as described in the previous section, will sample from
the stationary PDF. These samples can then be utilized to approximate some statis-
tic, e.g., the empirical mean or (co)variance. An alternative approach is given by the
importance sampling methods. Instead of generating a Markov chain that gradually
converges towards its stationary PDF, importance sampling methods are based on the
idea that any sample can be generated from any PDF [100]. Suppose that we have a se-
quence of independent identically distributed (i.i.d.) samples m1,m2, . . . that have an
unnormalized stationary PDF (one can also consider samples from a normalized sta-
tionary PDF). Using these samples it is possible to calculate inference from any other
PDF (as long as it is absolutely continuous with respect to the original PDF) applying
only the original samples and some suitable weights. This simple observation is the
basis of the importance sampling technique. Here the stationary PDF of the original se-
quence is called the importance function, and one often referrers to the, finite, sequence
of samples as a swarm of particles.
Consider a swarm of ne particles, m1,m2, . . . ,mne , distributed following the unnor-

malized importance function g. We wish to estimate the mean value of the parameter
m∗ distributed according to the unnormalized PDF g

∗. We will now demonstrate how
the importance sampling technique can be utilized to approximate this value. As men-
tioned above, to estimate the mean we need to define some suitable weights, referred
to as the normalized importance weights. These weights are given as [35]

w (m) =
g
∗ (m)
g(m)∑ne

n=1
g∗ (mn )
g(mn )

. (4.22)

Utilizing the importance weights, the empirical mean of the parameters m∗ can be
calculated as

m∗ =
ne∑
n=1

w (mn)mn. (4.23)
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The quality of the empirical mean improves as ne increase, and it is possible to show
that, given some assumptions on the relationship between g and g

∗, m∗ → μm∗ as
ne → ∞, see, e.g., [11].
Recall the Bayesian filter problem discussed in Section 2.3. Here, the estimation of

the posterior PDF was a dynamic process, and the posterior PDF was efficiently cal-
culated by including data in a recursive manner whenever they were available. In Sec-
tion 2.4, it was shown that, for Gauss-linear problems, the filter problem could be
solved by the KF equations. However, for non-linear problems this method failed,
and the solution could only be approximated by methods such as the ExKF, discussed
in Section 2.6. To sample exactly from the filter solution, one would need to utilize
either MCMC or importance sampler methods. Unfortunately, neither the importance
sampler nor the MCMC methods can utilize the recursive nature of the filter problem.
They are both designed to generate samples from a fixed posterior PDF, and it is only
computationally efficient to sample from the posterior PDF when all data are available.
To mitigate this problem, sequential MC (particle filter) methods have been introduced.
Here, the evolution of the PDF (the solution to Kolmogorov’s equation (2.13)) is ap-
proximated by a swarm of particles. When data are assimilated, the filter solution is
calculated applying an importance sampling technique. Hence, one assigns weights to
the particles so that they represent samples from the correct posterior PDF.
The first successful application of the sequential MC technique to a non-linear fil-

tering problem was the bootstrap filter [38]. Even though many other sequential MC
algorithms have been introduced (see, e.g., [3]) we only discuss two basic version, the
sequential importance sampling (SIS) method, and the related sequential importance
resampling (SIR) method, often, referred to as the standard particle filter.
Recall from Chapter 2 that the posterior PDF for the Markov process is easily for-

mulated in a recursive form:

p
(
y1:na |d1:na

)
∝ p
(
dna |yna

)
p
(
yna |yna−1

)
p
(
y1:na−1 |d1:na−1

)
. (4.24)

This formulation is now utilized to generate the SIS method. Let us assume that the
importance function has the recursive form

g
(
y1:k |d1:k

)
= g
(
yk |y1:k−1,d1:k

)
g
(
y1:k−1,d1:k−1

)
. (4.25)

We can then calculate the importance weights sequentially as

w1:k
(
yn
)
=
p
(
y1:na |d1:na

)
g
(
y1:k |d1:k

)
∝
p
(
dna |yna

)
p
(
yna |yna−1

)
p
(
y1:na−1 |d1:na−1

)
g
(
yk |y1:k−1,d1:k

)
g
(
y1:k−1,d1:k−1

)
=
p
(
dna |yna

)
p
(
yna |yna−1

)
g
(
yk |y1:k−1,d1:k

) w1:k−1
(
yn
)
. (4.26)

If the evolution of the PDF has been approximated by the swarm of particles, it is
natural to select an importance function equal to the prediction PDF, i.e., we select
g
(
yk |y1:k−1,d1:k

)
= p
(
yna |yna−1

)
. With this choice we get the following update for

the weights
w1:k = p

(
dna |yna

)
w1:k−1

(
yn
)
. (4.27)
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If we assume that it is possible to sample from the transition PDF, and if we know the
observation operator with some known error, we can calculate the value for the weights.
Unfortunately, the weights in the SIS are known to degenerate rapidly with increas-

ing time, and after the weights are normalized there will be a large difference between
the highest and smallest values of the weights. Hence, after a while, most particles have
weights that are almost zero, reducing the number of samples that are contributing to
the estimation. To avoid this, [38] introduced a resampling step in the SIS algorithm,
generating the SIR algorithm. Here, ne independent samples are draw from the SIS es-
timate. The resamling step does not need to be performed at every assimilation step,
and it is possible to measure the degeneracy of the weights, and perform resampling
only when it is necessary. There exist numerous methods to perform the resampling
step [21], all designed to avoid weight degeneration. The simplest approach is to draw,
with replacement, ne new samples with probability equal to the weights. Unfortunately,
it is difficult to resample from high-dimensional PDFs, and the SIR method is therefore
not suited for high-dimensional filter problems.

4.3 Randomized maximum likelihood

The randomized maximum likelihood (RML) is a non-recursive method for sampling
from the posterior PDF. The method was introduced independently by Kitanidis [55]
and Oliver et al. [72]. If the dynamic problem is linear, the prior model is Gaussian,
and the observation errors are Gaussian, the RML samples exactly from the posterior
PDF. For non-linear or non-Gaussian problems the method is approximate [69]. The
approximation error is, however, low compared to other approximate methods, and it
has been shown that the RML method can produce reliable samples from a multimodal
PDF [107].
The RML method is based on two steps. Unconditional realizations are drawn from

both the prior model and the data PDFs, then, via an optimization process, these real-
izations are used to generate samples that are conditioned to the data. That is, for the
unconditional realizations mprior

uc and duc, the model minimizing

J (m) =
(
m − m

prior
uc
)T
Q−1mpr ior

(
m − m

prior
uc
)

+ (G (m) − duc)T Q−1d (G (m) − duc) (4.28)

is an approximate sample from the posterior PDF. (For Gauss-linear problems the
model is an exact sample from the posterior)
The RML method is significantly less expensive than MCMC methods, but for non-

linear problems the method relies on sensitivities, which might be computationally de-
manding to calculate. The optimization step in the RML method is equivalent to find-
ing the MAP solution in (3.16), and for non-linear problems this step requires a suitable
optimization algorithm. The specific type of optimization is not given by the RML al-
gorithm. Hence, even though any RML method follow the two steps given above, there
exist as many implementations of the RML algorithm as there are optimization algo-
rithms. In the following, we will discuss some general optimization algorithms.
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4.3.1 Numerical optimization

Let us assume, that we are seeking the minimum of an objective function J : Rnm → R,
with no restriction on the input variable m. Mathematically this is formulated as

min
m
J (m) . (4.29)

This problem can be solved by a range of methods, and in the following, we present
some basic optimization methods. Note that the algorithms introduced here will only
find local minima, and problems such as multiple local minima or non-unique global
minima are present for all the different methods. Moreover, the following methods are
deterministic optimization methods, i.e., the methods always produce the same result
for a given starting location.
One usually differentiate between two types of optimization methods [67]. The

first type is denoted line search methods. These methods are designed to search for
a new iterate, given as a step υ in the direction p from the current iterate. The step is
successful if the new iterate has a lower objective function value than the current iterate,
i.e., if J (mq + υp) < J (mq), where q denotes the iteration number. The second type
of optimization methods are denoted the trust-region methods. These are based on
optimizing a local approximation to the objective function J̃ (mq). The approximation
is generated by utilizing information from J, and the approximation error is assumed
to be low around iteration mq. Hence, the trust-region methods seek the update step
mq+1 = mq + p that minimize J̃ in some (trusted) region around mq. If the minimum
does not provide a sufficient reduction of J, we select a smaller trust region and find a
new minimizer of J̃.
Both the line search and the trust-region methods generate iteration steps with the

help of a quadratic approximation to the objective function, and the methods will there-
fore have some clear similarities. The two methods will, however, utilize the quadratic
approximation in different ways. Line search methods will find an approximate search
direction, and then focus on finding a suitable step length. Trust-region methods choose
a step that minimize the quadratic approximation within the trusted region. Hence, in
general, a new direction if found whenever the size of the trust region is altered. In the
following, we focus on finding the optimal update direction p, and we will not provide
details for finding either the step length or the trust region. For information related to
this topics, see, e.g., [67, 73].

Steepest-descent method. The simplest choice of search direction is the direction where
J decrease most rapidly, i.e., pSD = −∇J. Here∇J denotes the gradient of the objective
function with respect to m. This search direction is often referred to as the steepest
descent direction. Since we do not approximate J, this search direction leads to a
line search method denoted the steepest descent method. Provided with some suitable
stopping criteria, the algorithm is easy to implement and it only requires the gradients
of J. However, the method converges relatively slowly (linear convergence).

Newton method. The usual choice of search direction for non-linear optimization prob-
lems is given by the Newton search direction. Let us consider the second order Taylor
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series approximation to J (mq + p), defined as the quadratic

J
(
mq + p

) ≈ J (mq) + ∇J (mq)T p + 1
2
pTHN p. (4.30)

where HN denotes the Hessian evaluated at mq

HN = ∇
(
∇J (mq)T ) . (4.31)

(The subscript N denotes that this is the Newton Hessian.) Now, setting the gradient
(with respect to p) of the approximation (4.30) equal to zero we obtain the Newton
search direction

pN = −H−1N ∇J
(
mq
)
. (4.32)

Clearly, this method requires that the inverse of HN exist, and to ensure that p is a
descent direction, it is required that the Hessian is positive definite. Note that the ap-
proximation is only used to find a search direction. The Newton search direction is
then applied in a line search algorithm. This method converges faster (quadratic con-
vergence) than the steepest descent, with an additional cost of calculating the Hessian
matrix. To mitigate this cost while retaining some of the convergence properties, one
typically tries to approximate the Hessian.

Quasi-Newton approximations. The quasi-Newton methods represent one strategy for ap-
proximating the Newton Hessian. Starting with some initial guess, the methods will
iteratively generate an improved approximation of the Hessian, H̃QN , by incorporat-
ing information from each iteration. (Here the subscript QN denotes the quasi-Newton
approximation.) The search direction in the quasi-Newton method is then found as

pQN = −H̃−1QN∇J
(
mq
)
. (4.33)

At each iterate, mq+1, the quasi-Newton method updates the approximate Hessian such
that is satisfies the secant equation [67]

H̃QN
(
mq+1 − mq

)
= ∇J

(
mq+1

)
− ∇J (mq) . (4.34)

Hence, the updates only require the gradient of J. This condition is satisfied by nu-
merous algorithms, but one of the most reliable quasi-Newton method is the Broyden-
Fletcher-Goldfarb-Shanno (BFGS), or the limited memory BFGS (LBFGS) [67, 73].
The BFGS method converges superlinearly.

Gauss-Newton approximation. Let us now consider a problem where the objective func-
tion, J, is given by (4.28). For this objective function the Newton Hessian matrix is
given as

HN = Q−1m + G
TQ−1d G + ∇GTQ−1d (G (m) − d) , (4.35)

where G is the sensitivity matrix defined by

G =

⎛
⎜⎜⎜⎝
(∇G1 (m))T

...(∇GnD (m))T
⎞
⎟⎟⎟⎠ . (4.36)
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With this objective function, significant computational savings can be achieved by ig-
noring the terms involving the second order derivatives of G, resulting in the Gauss-
Newton Hessian matrix

H̃GN = Q−1m + G
TQ−1d G. (4.37)

(The subscript GN indicated that this is the Gauss-Newton Hessian.) Noting that for
the objective function (4.28) the gradient is

∇J (mq) = Q−1m (mq − mprior
)
+ GTQ−1d

(
G
(
mq
) − d

)
, (4.38)

the Gauss-Newton search direction is therefore given by

pGN = −
(
Q−1m + G

TQ−1d G
)−1 (

Q−1m
(
mq − mprior

)
+ GTQ−1d

(
G
(
mq
) − d

))
. (4.39)

Close to the minimum the value of the residuals, (G (m) − d), is small and the ne-
glected term in (4.35) is small. Hence, in a neighbourhood of the minimum, the Gauss-
Newton Hessian is a good approximation to the Newton Hessian. The Gauss-Newton
convergence is quadratic if the residual is zero, while the convergence is quotient-linear
when the residual is non-zero [73].

Levenberg-Marquardt method. An alternative modification of the Newton algorithm is
provided by the Levenberg-Marquardt algorithm. Here, an extra term is added to the
Newton Hessian

HLM = αI + HN . (4.40)
This algorithm is a trust region method and, for this reason, no line search is performed.
The value α controls both the step size and the search direction. If α has a low value,
the method is similar to the Newton method, and if α has a high value, the method is
similar to taking a small step in the steepest descent direction. Typically α change from
one iteration to the next, and the Levenberg-Marquardt algorithm is, therefore, more
flexible than the Newton or Gauss-Newton methods. A standard strategy for tuning α
is to start with a high value and gradually decrease the value if J (mq) > J

(
mq+1

)
[73].

For most high-dimensional problems where J is given by (4.28), it is computationally
demanding to calculate the full Newton Hessian. For this reason, the Gauss-Newton
Hessian is often utilized in the Levenberg-Marquardt algorithm. The convergence of
the Levenberg-Marquardt algorithm is quotient-linear [73].

Sensitivity calculations. All the algorithms depend on reliable methods for obtaining the
gradients of the objective function, and the Gauss-Newton method also requires the full
sensitivity matrix G. If the forward model equations are known, there are several meth-
ods available for establishing the sensitivity matrix, such as the direct (gradient simu-
lation) method [99], and the adjoint method [73]. While for cases where the forward
model equations is unknown or inaccessible, the sensitivity matrix must be approxi-
mated numerically by a suitable finite difference methods. The computational cost of
the direct and the finite difference methods are proportional to the number of param-
eters, nm, while the computational cost of the adjoint method is proportional to the
number of data, nd . For reservoir cases, nm is typically much higher than nd , favouring
the adjoint method. Unfortunately, numerical implementation of the ajoint system can
be very time consuming. This is especially true if one does not have access to the full
numerical schemes utilized by the numerical solver.
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Chapter 5

Ensemble-based methods

The ensemble-based methods are closely related to the importance sampling and se-
quential MC methods, discussed in Section 4.2. The methods are all based on a MC
estimation of the smoother or filter PDF, utilizing an ensemble of models (denoted
swarm of particles in Section 4.2). There is, however, one important difference. Con-
trary to the sequential MC methods, the ensemble-based methods will assign the same
weight to each ensemble member, thus removing the resampling step. This avoids
degeneration of the weights, making the ensemble-based methods more suitable for
high-dimensional problems. Unfortunately, this robustness comes at a cost, and the
ensemble-based methods can only be shown to have well defined asymptotic behaviour
when the posterior PDF is Gaussian. In the following chapter, we introduce some
widely used ensemble-based methods. The assumption of a Gaussian PDF was not
needed for the sequential MC methods discussed in the previous chapter. For a method
that combines the ensemble-based methods and the sequential MC in an adaptive man-
ner, see [93].
Before we introduce the ensemble-based methods, we provide some notation which

are utilized by all the methods. Throughout this chapter, we let

M =
(
m1, . . . ,mne

) ∈ Rnm×ne , (5.1)

denote an ensemble matrix containing the ne ensemble members as column vectors.
We let 1nm ∈ R

nm×nm be a matrix where all elements are 1/nm. We can then define
ensemble mean matrix, M ∈ Rnm×ne , as

M = M1nm , (5.2)

the ensemble perturbation matrix, ΔM ∈ Rnm×ne , as
ΔM = M − M = M (I − 1nm ) , (5.3)

and the empirical covariance matrix, Cm ∈ Rnm×nm , as

Cm =
1

nm − 1
ΔMΔMT . (5.4)

5.1 EnKF

The EnKF was briefly introduced in Chapter 1 as an MC approximation to the KF equa-
tions. In the following, we will discuss the method in more detail. Since the EnKF is
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based on the KF, it is assumed that the posterior PDF is Gaussian. The method will,
therefore, only generate correct samples for problems where the prior model is Gaus-
sian and where both the forward model and observation operator are linear. Despite
this, the EnKF has been used for a wide range of high-dimensional problems that have
non-linear forward and observation models, such as, atmospheric [50] and oceano-
graphic systems [10], as well as porous-media flow problems [1]. For such cases, the
ExKF can also be utilized. However, one can easily show (see, e.g. [28]) that the EnKF
only needs to store the ny × ne ensemble matrix, and not the ny × ny covariance ma-
trix. Moreover, the EnKF does not require any sensitivity calculation. For typical cases
where the method is applied, ny � ne and compared to the ExKF the EnKF represent
significant computational savings.
Assume that we have a time series of data, collected at na time steps {di}nai=1. Similar

to the KF, the EnKF seeks to estimate the posterior filter PDF, p
(
yna |d1, · · · ,dna

)
, by

sequentially assimilating the data. This is performed by estimating the forecast and
analysis of the mean and covariance via an ensemble of models.
Even thought the KF is based on state estimation, where all stochastic variables

evolve in time, it is convenient to consider a combination of the state and parameter
vectors

(
zT ,mT

)T ∈ Rnz+nm . Let the time evolution of the dynamic states be given as
zk = G (zk−1,mk−1) + ηk , (5.5)

and let us assume that the observation are given as

dk = H (zk ) + εk , (5.6)

where ηk ∼ N
(
0,Qz

k

)
and εk ∼ N

(
0,Qd

k

)
. To ensure that there is a linear relation-

ship between the joint state-parameter vector and the observations one combines the
observations with the joint state-parameter vector, generating y ∈ Rny defined as

yk =

⎛
⎜⎜⎝
dk
zk
mk

⎞
⎟⎟⎠ . (5.7)

Note that the time index on the constant parameter vector m is included to indicate that
the parameter estimate can change as data are assimilated.
With this notation the forward model is given by

yk = G
(
yk−1
)
+ ηk , (5.8)

and the observations are given by

dk = Hyk + εk , (5.9)

where the matrix Hk picks the correct data, ensuring that there is a linear relationship
between the vector yk and the data.
The EnKF algorithm starts by sampling an ensemble of ne models from the initial

prior PDF. Utilizing the ensemble notation provided above this is given as

Y0 =
(
y1, . . . ,yne

)
. (5.10)
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Kolmogorov’s forward equation (2.13) for the PDF is now approximated by running
the entire ensemble forward in time. For a general time step, the MC approximation to
the forecast mean is given as

Y ∗k = G (Yk−1) 1ny = Y
∗
k 1ny , (5.11)

and the MC approximation of the forecast covariance is

Cy
∗

k
=

1
ne − 1

ΔY ∗k
(
ΔY ∗k
)T
, (5.12)

where, in similar fashion as for the KF, the superscripted star denotes the predicted
quantity. At this time-step, the vector of data (d)k is available for assimilation. To
ensure that the EnKF samples correctly, we must add a realization of the data error to
the observed data (dn)k = (d)k + (εn)k . The ensemble of perturbed data can then be
gathered in a suitable ensemble matrix

Dk =
(
(d1)k , . . . ,

(
dne
)
k

)
. (5.13)

The EnKF will now update the ensemble of forward models by the empirical approxi-
mation to the KF,

Yk = Y ∗k + Cy
∗

k
HT
(
HCy

∗

k
HT +Qd

k

)−1 (
Dk − HY ∗k

)
. (5.14)

The analysed mean and covariance can now be estimated by their corresponding MC
estimates

Y k = Yk1ne , Cy
k
=

1
ne − 1

ΔYkΔYTk . (5.15)

In the limit ne → ∞, it can be shown that the empirical estimates of the analyzed
mean (one column of Y k) and analyzed covariance converge to the KF equations for
analyzed mean and covariance given by (2.26) and (2.27), see, e.g., [13, 63].
As mentioned, the EnKF typically utilize a moderately sized ensemble. This is

one of the main computational advantages with the method. There are, however, some
problems related to the estimation of a high-dimensional covariance matrices applying
a small ensemble. One such problem is spurious correlations, that is, artificial corre-
lations in the empirical covariance that, when utilized in the update, causes changes to
variables or parameters in regions of no real influence [1]. Considering a linear case
with negligible observation error, [56, 57] derived an analytic error bound for the error
caused by a small ensemble in the analysis step.
Another problem is caused by the rank of the approximate covariance matrix. Since

this matrix is calculated from the ensemble, the number of ensemble members provides
a limit for the degrees of freedom available for updating the vector y. Moreover, after
the analysis step, each ensemble member is a linear combination of the ne initial en-
semble member. For this reason, there are only ne coefficients that can be adjusted to
match the data. This can cause problems if one assimilate large amounts of indepen-
dent data, such as time-lapse seismic data [92]. For such cases, it is possible to utilize
sub-space approximations, see, e.g., [28].
The EnKF is commonly used for problems where the Gaussian assumptions are

violated, e.g., fluid flow in porous media. For such problems, the EnKF provides a
linear update to elements of the vector y when the relationship to the measurements
are highly non-linear. The error caused by this approximation can be significant, and is
independent of the number of ensemble members.
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5.1.1 EnKF for parameter estimation

As mentioned in Chapter 3, for some problems, e.g., parameter estimation in porous
media, one are mainly interested in the estimation of the constant parameters and not
the states. Due to the formulation of y, it is possible to utilize the EnKF as a method
for parameter estimation.
Recall that the KF assumes that the forward model is stochastic, hence, the parame-

ter estimation problems are formulated as weakly constrained problems. Unfortunately,
for problems where the EnKF is applied, one generally have no information regarding
the errors in the forward model. Although this error might be significant, one, typically,
neglects the error completely [1]. Hence, the EnKF parameter estimation problem is
typically formulated as a strong constrained problem.
As mentioned above, the linear observation operator H selects the correct data when

applied to the vector y. Hence, it is clear that

H =
(
I 0
)
, (5.16)

where I ∈ Rnd×nd is an identity matrix, and 0 is a suitably sized zero-matrix. Inserting
this into (5.14), one obtains

Mk = Cmkd∗k

(
Cd∗

k
+Qd

k

)−1 (
Dk − HY ∗k

)
, (5.17)

where Cmkd∗k denotes the cross-covariance matrix between the predictions and the pa-
rameters, and Cd∗

k
denotes the auto-covariance matrix of the predicted data. Note that,

since the full analysis of y is needed to restart the forward model, a pure parameter
update will not work in the sequential estimation procedure.

5.1.2 HIEnKF

For a single EnKF update step, both the state and parameters are updated. The en-
semble of updated states and parameters are then inserted into the forward model to
predict the dynamic states at the next assimilation time. If the forward-model opera-
tor represents a non-linear relationship between the states and parameters, the analysis
produce inconsistencies between the updated states and parameters. That is, the states
estimated by rerunning the forward model from initial time, utilizing the updated pa-
rameters, would not correspond to the updated states, see, e.g., [97]. When the EnKF
is utilized for estimation of both states and parameters, e.g., in a porous-media applica-
tion, this inconsistency can make it computationally demanding to restart the numerical
models [91]. Hence, in addition to the error caused in the future predictions, the incon-
sistency removes some of the computational advantages of the sequential scheme.
To remove the consistency problem, while retaining the advantages of a sequential

approach, the half-iteration EnKF (HIEnKF) was introduced in [105]. Here, each pre-
diction is generated by restarting the forward model from initial time. The parameter
update equation for the HIEnKF is obtained by replacing HkY ∗k with G

(
M∗k
)
in (5.17).
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5.2 Ensemble Smoother

The ensemble smoother (ES) was proposed in [102] as an ensemble approximation
to the fixed interval smoother (discussed in Section 2.5). Similar to the EnKF, the
ES approximates Kolmogorov’s equation by evolving the ensemble of prior models
forward in time via the model dynamics. However, contrary to the EnKF, the ES is
non-sequential, and predicts the data for all time-steps using the prior ensemble. The
full state trajectory is then updated when all available data are assimilated into the
system in a simultaneous manner.
Since the ES assimilates all data simultaneously, we have the prediction ensemble

matrix

Ŷ ∗ =

⎛
⎜⎜⎜⎝
D̂
Ẑ
M

⎞
⎟⎟⎟⎠ ∈ Rnŷ×ne , (5.18)

where a single column of D̂ and Ẑ are given as (omitting the ensemble index)

d̂ =

⎛
⎜⎜⎜⎜⎜⎝
d1
dt2
...

dtna

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

nD , ẑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Gt1
(
yprior

)
Gt2
(
yprior

)
...

Gtna
(
yprior

)
⎞
⎟⎟⎟⎟⎟⎟⎟⎠
∈ RnD , (5.19)

and nD =
(∑na

k=1 ndk
)
. The ES analysis equation is given as

Ŷ = Ŷ ∗ + Cŷ∗ ĤT
(
ĤCŷ∗ ĤT +Qd̂

)−1 (
D̂ − ĤŶ ∗

)
, (5.20)

where the observation operator Ĥ ∈ R
nD×nŷ selects the correct data from the vector ŷ

(one column of Ŷ ), the empirical covariance matrixCŷ∗ ∈ Rnŷ×nŷ is calculated based on
the ensemble of predictions, and the data covariance matrixQd̂ ∈ RnD×nD is a diagonal
matrix.
For state estimation problems, considering any time step apart from the last (where

the smoother and filter estimate are identical), smoothers generally produce superior
results when compared with the filter [90]. This difference is caused by the fact that
smoothers can adjust a model state utilizing both past, present, and future data. How-
ever, for non-linear dynamical models, particularly with chaotic dynamics, the EnKF
was shown to perform better than the ES [30, 102]. This was contributed to the sequen-
tial assimilation scheme in the EnKF, which prevented strongly non-Gaussian contri-
butions, arising from chaotic models with long unconstrained integration time, in the
ensemble of predictions. For non-chaotic models, e.g., fluid flow in porous-media,
numerical experiments produce similar results from EnKF and ES when considering
data-match [91]. But as shown by numerical experiments in Paper A, C, D, and E, this
is not always the case when comparing the approximate posterior PDFs of the parame-
ters.
The ES can be derived with simultaneous or sequential assimilation of the data [30],

and an alternative smoother algorithm denoted the ensemble Kalman smoother (EnKS),
based on sequential assimilation of data, was derived in [30]. Numerical experiments
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showed that this algorithm performed even better than the EnKF, suggesting that a
combination of smoothing and sequential assimilation of data provides optimal results.
Fixed-point or fixed-lag smoothers, as discussed in Section 2.5, can easily be imple-
mented in the ES or EnKS framework [30].

5.2.1 ES for parameter estimation

As mentioned above, there exist several problems where the primary interest is in the
static parameter vector. In similar fashion as for the EnKF, it is relatively easy to derive
the parameter update for the ES. This is given as

M = Cmd̂∗
(
Cd̂∗ +Qd̂

)−1 (
D̂ − ĤŶ ∗

)
, (5.21)

where Cmd̂∗ denotes the empirical cross-covariance matrix between the parameters and
all predicted data, while Cd̂∗ denotes the auto-covariance matrix for all predicted data.
Note that all available data are assimilated simultaneously and the algorithm contains
no restart step. Since one typically ignores the error in the forward model for reservoir
problems, the ES parameter estimation problem is typically formulated as a strong
constrained problem.

5.3 Ensemble Randomized Maximum Likelihood

The ensemble randomized maximum likelihood (EnRML) method was introduced as
an iterative EnKF algorithm in [44]. The algorithm is formulated in a similar manner as
the RML method. That is, one seeks the parameter vector that minimize (4.28). While
the main computational cost of the RML algorithm is the calculation of the sensitiv-
ity matrix, the EnRML utilizes the ensemble to calculate an approximate sensitivity
matrix. Contrary to the approach utilized by the EnKF and ES methods, the EnRML
only updates the unknown parameters. However, there is strong similarity between the
EnRML and the EnKF/ES methods, which is discussed in Paper B.
Since the EnRML only updates the parameters, we cannot consider the update of y,

which is incorporated in the EnKF and ES. Hence all data are given as

d = H
(
G
(
z0,m

prior
)
+ η
)
+ ε, (5.22)

where, generally, H and G are non-linear operators. To simplify the notation, we incor-
porate the observation operator into the forward model; we incorporate the model error
into the data error; and we remove the explicit dependence on initial value, z0, from the
forward model. The data are then given as

d = G
(
mprior

)
+ ξ. (5.23)

In similar fashion as for the EnKF, the method generates an initial ensemble of
parameter models by sampling from the initial prior PDF m ∼ N

(
μ
prior
m ,Qmpr ior

)
.

An ensemble of predictions is then generated by the forward model utilizing the prior
ensemble of parameters as input. Utilizing the ensemble perturbation matrices, we can
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define the ensemble average sensitivity matrix, F̃, as the coefficient matrix relating the
changes in model parameters to the changes in computed data [44]

ΔG
(
Mprior

)
= F̃ΔM. (5.24)

However, the matrix ΔM is not generally invertible and we must therefore utilize the
pseudo-inverse (see, e.g. [37]) to calculate the sensitivity matrix. The pseudo-inverse
will throughout be denoted by a superscripted †, and the ensemble-based sensitivity
matrix is then F̃ = ΔG

(
Mprior

)
ΔM†.

After one has obtained the ensemble-based sensitivity matrix, the EnRML and RML
are similar since the algorithms do not depend on a specific minimization algorithm.
Any of the optimization methods discussed in Section 4.3.1 can be utilized, and espe-
cially the Levenberg-Marquardt method has been successfully applied to porous-media
flow problems [14].

5.4 Multiple data assimilation

When considering techniques for history matching petroleum reservoirs that are based
on optimization, several authors have demonstrated that taking a full iteration step
might lead to a significant overcorrection of the petrophysical values [31, 32, 60]. In
optimization algorithms this problem can be avoided by restricting the step length or
the trust region for the first couple of iterations. Neither the EnKF nor the ES algo-
rithms can adjust the step length, and for non-linear problems the analysis step might
overcorrect the parameters. Seeking the same effect as for the optimization algorithms,
the multiple data assimilation (MDA) algorithm was introduced as an extension of the
EnKF and ES methods. This extension allows the algorithms to divide the full analysis
step into several smaller steps in a statistically consistent way [23, 24].
In the following we discuss a single EnKF analysis step with the MDA algorithm.

Consider the available data at a given time step, dk . Following the standard EnKF
assumptions, these data have zero-mean Gaussian error with covariance Qd

k
. Instead

of assimilating the data in a single step, the MDA algorithm assimilates the same data
nmda times. The new data are defined as di for i = 1, . . . ,nmda, and the error in each data
is generated utilizing an inflated data covariance matrix, Qdmda

i
= �iQd . To guarantee

that the MDA method samples correctly for the Gauss-linear case, the inflation factors
for the data covariance matrix must satisfy

nmda∑
i=1

1
�i
= 1. (5.25)

The MDA can be considered as a discrete approximation to continuous analysis step
applied in the mollified EnKF [8].
Recall that the Bayesian estimation problem can be formulated as finding the min-

imizer of (3.12). Similar to the RML objective function (4.28), the Gaussian objective
function contains two terms, one quadratic corresponding to the Gaussian prior term,
and one non-quadratic corresponding to the non-Gaussian likelihood. If � is selected
as a large value, it is clear that the objective function is dominated by the quadratic
term. Hence, the MDA can be seen as a method for making the total objective function
more quadratic by adding weight to the quadratic term.
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Chapter 6

Evaluating sampling performance

For many problems, the posterior PDF is intractable, and we can only extract informa-
tion by drawing samples. The methods described in Chapter 4 are designed to generate
exact samples from any PDF, while the methods described in Chapter 5 are designed
to generate an ensemble which for all cases, apart from one important exception, only
represent approximate samples from the posterior PDF. The exception is in the Gauss-
linear case, when the number of ensemble members goes towards infinity. For all other
cases, when utilizing the methods of Chapter 5, we do not know the exact size of the
error in the approximation, or if there is a similar error for the various approximate
methods.
In this chapter, we will discuss some methods that allow us to gauge this approx-

imation error. Since, as mentioned, we cannot calculate the exact posterior, all these
methods are based on comparing the ensemble of approximate samples to exact sam-
ples from the posterior PDF.

6.1 Stochastic distance measures

Let us assume that the posterior ensemble represents samples from an approximation to
the posterior PDF, denoted q, and let us assume that we have an analytical expression
for both q and the true posterior p. A fair assessment of the approximate method would
be obtained by comparing q to p. The comparison can be performed by calculating
the distance between the PDFs in some norm, by the integrated mean squared error, or
by some measures based on information theory, see, e.g., [86]. In the following, we
consider the latter group of distance measures.
A standard method for evaluating the distance between two PDFs is the Kullback-

Leibler (KL) divergence introduced by [58], which is defined as

IKL (p| |q) =
∫
p (m) log

(
p (m)
q (m)

)
dm. (6.1)

This measure of dissimilarity between the PDFs is non-symmetric and does not satisfy
the triangle inequality, hence it is denoted the divergence instead of the distance [106]
(this is denoted by the double bar separating the arguments in (6.1)). This measure
arises from information theory, and the units depend on which logarithm that is uti-
lized. The divergence is expressed in bits if the base-2 logarithm is utilized, while it is
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expressed in nats if the base-e logarithm is utilized. It is assumed that 0 log 0/q = 0 and
p log p/0 = ∞, hence the KL divergence takes values between 0 and∞.
An alternative to the KL divergence is the Hellinger (or Bhattacharyya) distance,

defined as

IH (p,q) =
(
1
2

∫ (√
p (m) −

√
q (m)

)2
dm
)1/2
,

=

(
1 −
∫ √

p (m) q (m)dm
)1/2
. (6.2)

When the Hellinger distance is written in this form it takes values between 0 and 1.
There exist numerous other metrics for quantifying the distance between probabil-

ity measures, see, e.g., [36] for an introduction and comparison of some metrics. Both
the KL divergence and the Hellinger distance can be calculated by closed-form expres-
sions if p and q are Gaussian PDFs. However, for problems where one does not know
the shape of the PDFs, or when the analytical expressions cannot be evaluated, these
measures must be approximated.

6.2 Density estimation

In the discussion above, it was assumed that both p and q were known and could be
evaluated. However, for many problems this is not the case. Typically, we only have
samples from p and samples from q. Hence, we need methods that allow for evaluation
of the densities based on the available samples. Following the theory provided in [89],
we give a short introduction to density estimation.
Let us assume that we have ne samples from the nu dimensional PDF p, stored

as columns in the ensemble matrix U =
(
u1, . . . ,une

)
. Based on these samples we

seek to estimate the PDF p. (The estimation of the PDF q will be performed in a
similar manner.) The simplest approach for estimating the PDF is by the well known
histogram. This method is simple and works well for univariate PDFs. However, for
high-dimensional cases the histogram encounters several problems rendering it difficult
to use as a density estimator.
For more complex PDFs, alternative methods must be applied. These methods,

known as kernel density estimators, can all be described utilizing the same framework.
The methods approximate the PDF as a sum of ‘bumps’ centred at each sample. The
kernel density estimator of p can formally be written as

p̃ (u) =
1

nehnu

ne∑
j=1
K
(
1
h
(
u − u j

))
, (6.3)

where h is the widow width, defining the width of the ‘bumps’, and k is the kernel,
a function defining the shape of the ‘bumps’. Both the window width and the kernel
must be selected by the user, and this choice can affect the quality of the estimate. If, for
example, h is too small the estimate will be dominated by spikes at each sample, and if
h is too large the estimate will contain none of the details provided by the samples. The



6.3 KL with r-nearest neighbour estimator 45

choice of kernel function is also important, and one can choose among a large number
of kernels satisfying ∫

Rnu

K (u) du = 1. (6.4)

Hence, provided that K is everywhere non-negative and Borel measurable, the kernel
can be chosen as any PDF, and the estimation will also be a PDF. This fact ensures
that the approximation inherits all the continuity and differentiability properties of the
kernel. Thus, if one seeks a smooth estimate one need to utilize a smooth kernel. A
typical kernel function is the multivariate Epanechnikov kernel

K (u) =
⎧⎪⎨⎪⎩
1
2cnu (nu + 2)

(
1 − uTu

)
if uTu < 1,

0 otherwise,
(6.5)

where cnu is the volume of the unit nu-dimensional sphere.
An alternative density estimator is provided by the nearest neighbour estimator.

Consider the samples stored in the matrix U , one can calculate the Euclidean distance,
ψn (u), from a fixed u to each sample un. For each u, one can then sort the distances
according to ascending size. The distance to the r’th nearest sample (i.e., r’th nearest
neighbour), ζr (u), is then denoted ψr (u). In a nu-dimensional case, this distance can
be utilized to calculate the volume of a nu-dimensional sphere, vr (u), of radius ψr (u)
centred at u. This is given as vr (u) = cnuψr (u)nu . With these definitions, the nearest
neighbour estimator is given as

p̃ (u) =
r/ne

cnuψr (u)nu
. (6.6)

The nearest neighbour density estimator can be motivated by the observation that,
for a sample of ne members, one would expect about nep (u) vr (u) samples to fall in
the sphere of radius ψr (u) centred at u. The estimate is then obtained by setting this
number equal to the number of nearest neighbours, r , which, by definition, is the the
number of observed samples inside the sphere.
Note that the nearest neighbour estimator at u can also be given as the kernel esti-

mator on the form (6.3), by defining the kernel

K (u) =
⎧⎪⎨⎪⎩
c−1nu if |u | ≤ 1
0 otherwise,

(6.7)

and window width h = ψr (u). Hence, for the estimate at a fixed point u there is no
difference between the kernel methods and the nearest neighbour methods. There will,
however, due to the discontinuity in the derivative of the functions ψr (u), be differences
between the methods when approximating the full PDFs.

6.3 KL with r-nearest neighbour estimator

In the following, we discuss two approximations to the KL divergence based on the
r-nearest neighbour estimator. These approximations were proposed in [103, 104], and
we refer the reader to these papers for details regarding asymptotic behaviour of the



46 Evaluating sampling performance

methods. Let us assume that U =
(
u1, . . . ,une

)
are nu-dimensional samples drawn

from p, and V =
(
v1, . . . ,vne

)
are nu-dimensional samples from q. (Note that it is not

necessary to have an identical number of samples from p and q)̇ By the law of large
numbers, the KL divergence (6.1) is approximated by

ĨKL (p| |q) =
1
ne

ne∑
j=1
log

p̃
(
u j
)

q̃
(
u j
) . (6.8)

Inserting the r-nearest neighbour estimate for both densities, p̃ and q̃, estimated around
the samples inU provides the following empirical estimate for the KL divergence

ĨKL (p| |q) =
nu
ne

ne∑
j=1
log
ψvr
(
u j
)

ψur
(
u j
) + log ne

ne − 1
, (6.9)

where the superscripts u and v indicate whether the distance, ψr
(
u j
)
, is calculated

from the fixed point u j to the r-nearest neighbour in U or in V . This estimator was
shown, under certain mild regularity assumptions, to be asymptotically unbiased and
mean-square consistent [104].
An alternative estimator was proposed in [104]. Here, instead of choosing a fixed

number of nearest neighbours, the estimator allowed a different choice of neighbours,
r j , for each evaluation of ψr j

(
u j
)
. This estimator was also shown to be asymptotically

unbiased and mean-square consistent.
For any density estimator, it is, as mentioned above, important to select a suitable

window width. For the r-nearest neighbour estimator this corresponds to selecting a
suitable number of nearest neighbours. To this end, [104] suggested that r j should
be found by fixing the nearest neighbour distance instead of the number of nearest
neighbours. One then selects a distance ε

(
u j
)
and, for each point u j , one counts the

number of samples from U and V that are within the ball, c, centred at u j , with radius
ε
(
u j
)
. Let us denote the number of samples from U as l j , and denote the number of

samples from V as k j . If one selects the fixed distance as

ε
(
u j
)
= min

(
ψu
(
u j
)
,ψv
(
u j
))
, (6.10)

where the distances are defined as

ψu
(
u j
)
= min
i=1,...,ne ,i� j

���u j − ui��� , (6.11)

ψv
(
u j
)
= min
i=1,...,ne

���u j − vi
��� , (6.12)

(where, since this is not the distance to any specified neighbour, there are no subscripts).
The biased reduced KL divergence estimator can be defined as

ĨKL (p| |q) =
nu
ne

ne∑
j=1
log
ψvl j

(
u j
)

ψuk j

(
u j
) + 1

ne

ne∑
j=1
Γ

(
k j
)
− Γ
(
l j
)
+ log

ne
ne − 1

, (6.13)

where Γ is the Digamma function, added to guarantee consistency [104]. The biased
reduced KL divergence estimator was utilized to evaluate sample performance in Paper
C.
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6.4 Nearest neighbour test for equal PDFs

All the methods described above try to estimate the distance between two high-
dimensional PDFs. As an alternative, we will now briefly discuss a multivariate empir-
ical test for equal PDFs, where the test statistic is based on nearest neighbour calcula-
tions. This discussion follows the theory outlined in [77].
Let us again consider the ensemble matrixU containing ne samples from p, and the

matrix V containing ne samples from q. Now, for each element un and vn, one finds the
r-nearest neighbours, ζr (un) and ζr (vn). Based on these calculations, one can define
the indicator functions

Tun (r) =
⎧⎪⎨⎪⎩
1 if ζr (un) is fromU,
0 if ζr (un) is from V,

(6.14)

andTvn (r), defined in similar manner. The 1-nearest neighbour statistics is then defined
as

A1 =
1
ne

ne∑
j=1
Tu j (1) +

1
ne

ne∑
j=1
Tv j (1). (6.15)

With this method, the higher order statistics are based on the lower order. Thus, the
2-nearest neighbour statics is defined as

A2 =
1
2ne

ne∑
j=1
Tu j (1) + Tu j (2) +

1
2ne

ne∑
j=1
Tv j (1) + Tv j (2), (6.16)

and the r-nearest neighbour statics is

Ar =
1
rne

ne∑
j=1

r∑
i=1
Tu j (i) +

1
rne

ne∑
j=1

r∑
i=1
Tv j (i). (6.17)

This test statistic can now be utilized in a test for equal PDFs. Under the hypothesis
of equal PDFs, H0, there are on average less nearest neighbours from the same sample
than under hypothesis of unequal PDFs, H1. Hence, the test is designed to reject H0
for large values of Ar . A non-parametric bound on this statistic can then be estimated
via an approximative permutation test, see, e.g. [20, 77]. The test of equal PDFs was
utilized in Paper A.

6.5 Statistics in a Reproducing kernel Hilbert space

In the current section, we provide necessary theoretical foundations for the reproducing
kernel Hilbert space (RKHS), introduce kernels associated with such methods, and
consider several methods that compare statistical quantities in RKHS. We will keep the
discussion brief and omit most theoretical results; for a more detailed introduction, see,
e.g., [9, 85, 88].
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6.5.1 Theory on RKHS

Let us consider a non-linear mapping, denoted the feature map,

φ : Rnm �→ H, (6.18)

which maps samples from the parameter space,m ∈ Rnm , into a nh-dimensional feature
space, φ (m) ∈ H. The purpose of the mapping (6.18) is to enable calculations in the
feature space that would have been difficult or impossible in the original space. Hence,
we seek to convert features that are non-linear in the original space into linear features
in the feature space. There are, however, some difficulties related to this approach.
Firstly, to ensure that non-linear features are convert to linear features, the space H
must be high-dimensional, or even infinite dimensional (this can be demonstrated by
the mapping of monomials into a polynomial feature space [85]). Secondly, we cannot,
in general, provide an explicit expression for the feature map φ.
Instead of an explicit evaluation in H via φ, we can use the inner product defined as

〈·, ·〉H : H × H �→ R, (6.19)

as an indirect measure. The inner product induces a norm on H given as ‖φ (m)‖H =
〈φ (m) , φ (m)〉H. Hence, the inner product also provides information regarding the
length of an element in H, and it can be used to measure the distance between two
elements.
Unfortunately, we still need the feature map to calculate the inner product. To this

end, we introduce the kernel function, k : Rnm × R
nm �→ R, such that

k (u,v) = 〈φ (u) , φ (v)〉H , (6.20)

where u,v ∈ Rnm . Assuming that the kernel is defined in a correct manner, it is possible
to evaluate any inner product involving φ without explicit knowledge of φ. Algorithms
defined in terms of inner products can now be expressed in terms of kernels, which
greatly simplifies calculations in feature space. The substitution of inner products by
kernels is typically referred to as the kernel trick [85].
We will now describe a space H where (6.20) is valid. Firstly, we require that k is

a symmetric positive-definite function, and Rnm a nonempty set. Moreover, the inner
product in H must be defined such that the the following holds

〈 f , k (v, ·)〉H = f (v) , (6.21)

for all functions f in H, in particular

〈k (v, ·) , k (u, ·)〉H = k (v,u) . (6.22)

This is known as the reproducing property of the kernel function k. Now, if we define
the feature map as

φ (u) = k (u, ·) ∈ H ∀u ∈ Rnm , (6.23)

and insert in (6.22), we see that (6.20) holds. H is thus a Hilbert space of symmetric
positive-definite functions with the reproducing property, denoted RKHS. This is given
by the Moore-Aronszajn theorem; for more details and a rigorous proof see, e.g., [9].
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Note that, every symmetric positive-definite function is a reproducing kernel. Thus,
for every function k, there exists a unique corresponding RKHS, H, for which k is
a reproducing kernel. Given a symmetric positive-definite function k, there exists a
function φ such that the evaluation of the kernel at points u and v is equivalent to
taking the inner product between φ (u) and φ (v) in some Hilbert space.
By defining the kernel as a symmetric positive-definite function it is possible to per-

form computations in RKHS via the kernel trick. However, there are still a vast number
of kernels to choose from, and there is generally no restrictions on which kernels to use
for a given application. Since the kernel will implicitly define the RKHS and the map-
ping φ, it is important to choose the kernel wisely. However, for many applications the
kernel must be chosen based on trial-and-error. A widely used kernel function is the
radial-basis-function kernel

k (u,v) = exp
(
− 1
2a2
‖u − v‖2

)
. (6.24)

6.5.2 Maximum mean discrepancy in RKHS

The maximum mean discrepancy (MMD) in RKHS was introduced in [40] as a non-
parametric test of whether two set of samples are drawn from the same PDF or not. The
test is based on mapping the samples using smooth functions from a function space F.
The functions should return different values if the samples are drawn from different
PDFs. The difference between the samples is then gauged by calculating the difference
between the mean function values on the two samples. When this value is large, it is
likely that the samples are drawn from different PDFs.
The MMD is defined by the space of smooth functions F utilized in the test, and this

choice will affect the quality of the test. In [40], it was shown that an optimal choice
of function space was the unit ball in a RKHS, with associated kernel k (·, ·). With
this choice, the MMD value was shown to be zero if and only if the two PDFs were
identical. Consider two samples U =

(
u1, . . . ,unu

)
and V =

(
v1, . . . ,vnv

)
drawn from

the PDFs p and q, respectively, the MMD test statistic, utilizing the unit ball in RKHS
as function class F, is given as

I2mmd = E
[
k
(
u,u′
)] − E [k (u,v)] + E

[
k
(
v,v′
)]
, (6.25)

where the expectation is taken over both arguments in the kernel, k. The unbiased
empirical estimate of the MMD is given as [39, 40]

I2mmd =
1

nu (nu − 1)
nu∑
j=1

nu∑
i� j
k
(
u j ,ui

)
+

1
nv (nv − 1)

nv∑
j=1

nv∑
i� j
k
(
v j ,vi
)

1
nunv

nu∑
j=1

nv∑
i=1
k
(
u j ,vi

)
. (6.26)

If the same number of samples have been drawn from the different PDFs, i.e., nu=nv,
the empirical, and unbiased estimate can be given as

I2mmd =
1

nu (nu − 1)
nu∑
j�i
h
(
z j ,zi
)
, (6.27)
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where h
(
z j ,zi
)
= k
(
u j ,ui

)
+ k
(
v j ,vi
)
− k
(
u j ,vi

)
− k
(
ui,v j

)
.

As mentioned, the MMD was designed as a test of similarity between PDFs. The
test statistic can therefore be utilized to differentiate between the null hypothesis, H0,
that the samples are drawn from the same PDF and the alternative hypothesis, H1, that
the samples are drawn from two different PDFs. Similar to other statistical hypothesis
tests, given some upper limit α on the probability of a Type I error, one needs to cal-
culate a limit value for the test where H0 is rejected for MMD values higher than the
limit.
This limit value for the test statistic under H0 can be approximated in several ways.

By calculating the asymptotic behaviour of I2mmd under both hypothesis, it was showed
that this limit can be found by approximating the (1 − α) quantiles of the I2mmd under
the H0 hypothesis [40]. Alternatively, based on the original samples the limit can be
found using bootstrap or by fitting Pearson curves to the first moments. For more details
regarding the asymptotic behaviour of I2mmd and the different approximation methods
for the limit value we refer to [40].
The approximate methods, such as the EnKF, will only sample exactly in the Gauss-

linear case when ne → ∞. Hence, if one seeks to compare samples from the approxi-
mate methods to exact samples for cases where these aforementioned assumptions are
not met, the two samples will never be from the same PDF. The MMD can still be uti-
lized as a measure of the distance between the PDFs, but it is not necessary to calculate
the bound on the H0 hypothesis. The MMD was used in this manner, with the radial
basis function kernel (6.24), in Paper C, D and E.

6.5.3 Statistical distance measures in RKHS

For two high-dimensional PDFs p and q, one cannot, due to the high-dimensional in-
tegral, evaluate the stochastic distance measures discussed in Section 6.1. Moreover,
if we only have samples from these PDFs, calculating the distance measures are even
more involved, since it involves two approximations. Firstly, the density must be ap-
proximated via some estimation procedure. Secondly, the integral must be approxi-
mated via some numerical method. If, however, the PDFs p and q are Gaussian, the
calculation of the distance measures are simplified significantly. This simplification
arises from the fact that for Gaussian PDFs there exist closed-form expressions for the
stochastic distances. By transforming the samples into a RKHS, where they are Gaus-
sian, [108] derived closed-form expressions for a wide range of stochastic measures,
including the two defined in Section 6.1. Following [108], we now discuss how an
empirical estimate of the KL divergence can be formulated in RKHS.
For the special case where p=N

(
μu,Qu

)
and q=N

(
μ
v
,Qv

)
, the KL divergence is

given in closed form as

IKL (p| |q) =
1
2
(
μu − μ

v

)T Qv
−1 (μu − μ

v

)
+
1
2
log
|Qv |
|Qu |

+
1
2
tr
(
QuQ−1v − I

)
, (6.28)

where | · | denotes the matrix determinant. If samples from p and q were available,
one could easily calculate an empirical estimate, ĨKL, of (6.28) via the standard MC
estimates of mean and covariance. In the following, we investigate a similar approach.
Here, ĨKL is estimated in the RKHS utilizing samples from two general PDFs.



6.6 Alternative methods for evaluating sampling performance 51

Let us assume that we have available U =
(
u1, . . . ,unu

)
and V =

(
v1, . . . ,vnv

)
,

which are not samples from Gaussian PDFs. By applying the feature map to every
sample we can represent the two samples in RKHS as

Bu = (φ (u1) , . . . , φ (u)) , Bv = (φ (v1) , . . . , φ (v)) , (6.29)

where the samples are Gaussian by construction. The KL divergence in the RKHS can
then be estimated by

Ĩ RKHSKL (p| |q) =1
2
(
φ (u) − φ (v)

)T
Q−1φ(v)

(
φ (u) − φ (v)

)
+
1
2
log
|Cφ(v) |
|Cφ(u) |

+
1
2
tr
(
Cφ(u)C−1φ(v) − I

)
. (6.30)

Where the calculation of the empirical mean and the empirical covariance is formulated
such that we never need to evaluate φ. Hence, it incorporates the kernel trick. For more
details regarding this calculation we refer to [108]. This measure was utilized in Paper
C.

6.6 Alternative methods for evaluating sampling performance

In the previous sections, one sought to estimate the distance between the full densities
p and q based on samples from these PDFs. This was either performed by a standard
kernel estimator method or by transforming the samples into a RKHS. These methods
were non-parametric, that is, no assumptions were made regarding the PDFs p and
q. Since we generally do not know the form of the posterior PDF, these methods are
preferable. However, the methods are often associated with a high computational cost,
and, for this reason, methods that do not estimate the full PDF may be more suitable.
For some cases, the densities p and q resemble some parametric PDF. This might be

the case for a Bayesian problem if the prior model is Gaussian and the forward model
is almost linear. For such cases, it is reasonable to assume that the posterior PDF is
approximately Gaussian. Hence, the distance in mean and variance might be sufficient
to gauge the distance between p and q. In [52], empirical estimates, calculated from
samples u from p and v from q, of the relative distance in the mean with respect to
the prior mean, and the relative distance in the variance were utilized to estimate the
distance between p and q. These measures were defined as

Ĩμ (p,q) =
���
(
v − μprior

)
−
(
u − μprior

)������u − μprior
���

, (6.31)

and
Ĩvar (p,q) =

��ṽar v − ṽar u����ṽar u�� , (6.32)

using the Euclidean norm. These measures were utilized to evaluate sampling perfor-
mance in Paper C, D, and E.
As an alternative to the previous methods, which rely on the comparison of p and q,

we now consider a method that only rely on the parametric form of the posterior PDF, p.
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For a linear forward model, it can be shown that 2J (mMAP) has a χ2 distribution with
nD degrees of freedom, where J is defined in (3.13), and mMAP is defined in (3.16),
see, e.g., [96]. By the properties of the χ2 distribution, 2J (mMAP) has mean equal to
nD and variance equal to 2nD.
Now, the quality of approximate samples v can be gauged by comparing the sample

approximation of J to the parametric value. If the samples are close to the parametric
values, they are assumed to be close to the exact MAP solution. The test is performed
by calculating the objective function for all approximate samples 2J (v). These values
should be close to nD, and typically not more than five standard deviations away from
the mean, i.e.,

nD − 5
√
2nD ≤ 2J (v) ≤ nD + 5

√
2nD . (6.33)

This test, which only assess the approximate samples, is fundamentally different from
the previous tests. Moreover, for problems with a non-linear forward model, the as-
sumptions of this test do not hold. Despite this problem, one can utilize this measure to
approximately evaluate sampling performance for cases with non-linear forward mod-
els [25], and the measure can also be utilized for convergence control when sampling
the posterior via the RML method [73]. In addition, since the measure only relies on
the parametric values of p, this method only require samples from q. Hence, this test is
significantly less expensive that the other tests discussed in this chapter.



Chapter 7

Calculating model non-linearity

In Chapter 2, the Bayesian formulation of the inverse problem was discussed. For
Gauss-linear problems the posterior PDF (the solution to the inverse problem) is Gaus-
sian and given, in closed form, by the KF equations. However, for non-linear problems,
even though the prior PDF is Gaussian, the posterior PDF is non-Gaussian and, gen-
erally, analytically intractable. Hence, we can only obtain information regarding the
solution by sampling from the posterior PDF, utilizing the methods discussed in Chap-
ter 4.
Clearly, solving an inverse problem that has a non-linear forward model is consid-

erably more demanding than solving an inverse problem where the forward model is
linear. Unfortunately, the sampling methods discussed in Chapter 4 is computationally
expensive, and, for most problems, we must rely on ensemble-based methods, dis-
cussed in Chapter 5. However, these methods can only be shown to sample exactly
in the limit ne → ∞, for problems with a linear forward model. Thus, for non-linear
problems the ensemble-based methods will only provide approximations.
It is, however, unreasonable to only distinguish between problems based on whether

the forward model is linear or non-linear. A more reasonable approach would be to con-
sider a sliding transition from a linear forward model to a strongly non-linear forward
model. Utilizing the ensemble-based methods, it is reasonable to assume that problems
with weakly non-linear forward models have a lower approximation error compared to
problems with strongly non-linear forward models.
For simple cases, the degree of non-linearity can be determined by inspecting the

forward model, but for most cases the forward model represent a complex relationship
between a high-dimensional parameters space and the data space. For such cases, one
cannot determine the degree of non-linearity by inspecting the forward model. In this
chapter, we introduce two measures for evaluating the forward model non-linearity:
the relative curvature measure of non-linearity [6], and a stochastic measure introduced
in [61].

7.1 Relative curvature measure of non-linearity

In the following section, we discuss a measure of non-linearity arising from the theory
of non-linear regression. This measure, denoted the relative curvature, was introduced
by [6] as an extension of the measure introduced in [7]. Our discussion of the relative
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curvature measure of non-linearity will follow [87]. Consider data on the form

d = ω + ξ, (7.1)

where ω ∈ Ω is a subset of the data space Rnd , and ξ ∼ N (0,Qd ). Typically, the data
are given by (3.2), such thatΩ can be described in terms of a nm-dimensional parameter
m and a forward model G (m). This is written as

Ω =
{
ω : ω = G (m) , m ∈ Rnm } , (7.2)

and, for this formulation, Ω defines a nm-dimensional surface in the Rnd -dimensional
data space. Sinceω ∈ Ωwill satisfyω = G (m) for somem, the surface is known as the
solution locus [7]. Alternatively, the surface is known as the expectation surface [87],
since the surface contains all possible values of E [d]. (Note that the surface Ω is not
uniquely defined by the parametrization and forward model)
To formally define the curvature measure one must consider a local approximation

to ω. Assuming that δm = m − m′ is small, the quadratic Taylor approximation is

ω −ω′ ≈ Gδm +
1
2
δTmHδm, (7.3)

where one element of the nm × nm matrix G is

G j, i =
∂G (m) j
∂mi

|m′, (7.4)

and one "face" of the nD × nm × nm tensor H is

H ·, j, i =
∂2G (m)
∂mj∂mi

|m′ . (7.5)

In the above, |m′ denotes that the expressions are evaluated in m′.
A linear approximation toω is obtained by ignoring the quadratic term in (7.3)

ω −ω′ ≈ Gδm. (7.6)

This will approximate the expectation surface in the neighbourhood of m′ by a tangent
plane at m′, and it is clear that the validity of this approximation depends on the mag-
nitude of the quadratic term 1

2δ
T
mHδm relative to the linear term Gδm. There are two

aspects to curvature for non-linear models. The first is related to the bending of the
expectation surface (intrinsic effects), and the second is related to the parametrization
(parameter effects). When comparing the linear term and the quadratic term, these two
aspects are considered by splitting 12δ

T
mHδm into the projection onto the tangent plane

(denoted with a superscripted Tan) and normal to the tangent plane (denoted with a
superscripted Nor), i.e.

H = HTan + HNor, (7.7)

where the decomposition is obtained via the projection matrix P |m′ = G
(
GTG
)
GT |m′,

see, e.g., [87]. The degree of curvature in direction of δm with respect to parameter
effects and intrinsic effects where given in [6] as

Θ
Par
δm
=

���δTmHTanδm���
‖Gδm‖2

, ΘIntδm =

���δTmHNorδm���
‖Gδm‖2

. (7.8)
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Figure 7.1: Parametric curve on solution locus

The relative measure of non-linearity can also be derived by a geometric argument,
which justifies that the measures are curvatures [87]. This argument considers the
parametrized curve, κ (b), on the expectation surface Ω

κ (b) = G (m (b)) = G
(
m′ + bh

)
, (7.9)

where m′ is a point, h is an arbitrary vector, and b is a real number. If G is a linear
function, κ (b) is a straight line on the expectation surface. However, if G is a non-
linear function, the curve κ (b) will not be a straight line, as illustrated in Figure 7.1.
The tangent and acceleration at m′ in direction of h are now given as Gh and hTHh.
Decomposing the acceleration into its tangential and normal components provides the
parameter and intrinsic curvature in direction of h

Θ
Par
h
=

���hTHTanh���
‖Gh‖2

, Θ
Int
h
=

���hTHNorh���
‖Gh‖2

. (7.10)

Finally, the measure of non-linearity introduced by [6] is obtained by maximising the
scale-free curvature measures, ΘPar

h
ρ and ΘInt

h
ρ, with respect to h

γParh = max
h
Θ
Par
h ρ, γ

Int
h = max

h
Θ
Int
h ρ. (7.11)

Here the scale factor ρ is defined as ρ = σd
√nm, where σd is the data standard devia-

tion.
The intrinsic non-linearity, γInt

δm
, provides a measure for how well a tangent plane

can, locally, approximate Ω. It can be shown that this value is independent of
the parametrization [87]. The parameter effect non-linearity, γPar

δm
, measure whether

straight parallel equispaced lines in the parameter space map into straight parallel eq-
uispaced lines in the expectation surface. This non-linearity depends on the choice
of parametrization, and significant reduction of non-linearity can be achieved by re-
parametrizing the problem [6, 87].
The relative curvature measure of non-linearity has been utilized by several au-

thors for complex systems [16, 41, 42, 43, 51, 64, 95], but there are some drawbacks
to the method. Firstly, the method requires the evaluation of both the first-order and
the second-order derivatives in parameter space, which are infeasible for many high-
dimensional systems. Secondly, since the method arises from the study of non-linear
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regression, it is designed for overdetermined problems, i.e., problems where nD > nm.
It is, however, not clear how one should extend this analysis for underdetermined prob-
lems, i.e., problems where nm > nD.

7.2 Non-linearity measure for stochastic systems

A measure of non-linearity, defined for stochastic systems, was recently introduced
in [61]. Contrary to the relative curvature measure discussed in the previous section,
this measure assumes that all quantities are random. Hence, for this problem, it makes
sense to consider whether the parameter vector, m, is likely to be in a region where the
non-linearity in the forward-model is high, and the measure of non-linearity is designed
to mirror this.
In [61], the non-linearity in the forward model and the observation operator were

assessed simultaneously by considering the vector y defined in (5.8). Note that the
non-linearity in the forward-model with respect to the parameters can be assessed by
substituting y with m.
In similar manner as the measure discussed in the previous section, the non-linearity

measure for stochastic systems attempts to quantify the deviation of the non-linear
function, G, from its best linear approximation. However, the deviation from linearity
is now defined in a different manner. Let F denote the function space containing all
functions with a fixed dimension equal to G. F can be partitioned into two subspaces:
L containing all linear functions, and G containing all non-linear functions. Clearly,
the non-linear function G is contained in G and the measure of non-linearity is defined
as the greatest lower-bound of the distance from G to all function L in L.
The distance, Ψ (G,G′), between two function in Fwill be defined as the square root

of the mean-square error, and the measure of non-linearity can, formally, be defined as

IG = inf
L∈L
Ψ (L,G) = inf

L∈L

(
E

[
‖L (y) − G (y)‖2

] )1/2
, (7.12)

where the expectation is with regards to the random variable y, and the norm is the
Euclidean norm. It is possible to utilize IG directly as a measure of non-linearity. How-
ever, [61] proposed the following normalized version

γG =
IG√
tr
(
Qg

) , (7.13)

where Qg is the covariance matrix of G (y). The following description, regarding the
values of γG, was provided by [61]: if γG = 0 the function G is linear almost every-
where, while if γG = 1 the function G contains roughly no linear components.
Note that any function in L is on the form L (y) = Ay + b, and linear model solv-

ing (7.12), denoted L̂, can be derived from the first-order necessary conditions [67]

∂Ψ (L,G)
∂b

= 2E [Ay + b − G (y)] = 0, (7.14)

∂Ψ (L,G)
∂A

= 2E
[
(Ay + b − G (y)) yT

]
= 0. (7.15)
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The two equations have solutions Â = Q−1
gy
, and b̂ = μ

g
− Âμ

y
, where Qgy is the

cross-covariance between G and y. Hence, the model solving (7.12) is

L̂ = μ
g
+QgyQ−1y

(
y − μ

y

)
. (7.16)

Inserting L̂ into (7.12) gives the following expression for the measure of non-linearity

IG =
(
E

[(
L̂ − G (y)

)T (
L̂ − G (y)

)])1/2
,

=

(
tr
{
E

[(
L̂ − G (y)

) (
L̂ − G (y)

)T ]})1/2
,

=
(
tr
{
Qg − QgyQ−1y Q

T
gy

})1/2
, (7.17)

and the normalized measure of non-linearity is

γG =

√√√√
1 −

tr
{
QgyQ−1y QTgy

}
tr
{
Qg

} . (7.18)

The measure has range [0,1] since tr
{
Qg

}
≥ tr

{
QgyQ−1y QTgy

}
≥ 0 for all choices of

G and y.
The non-linearity measure for stochastic systems does not require any high-order

derivatives in parameter space, and it is therefore suited for large-scale problems.
Clearly, the computationally demanding part of this non-linearity measure is the cal-
culation of the covariance matrices, and, for most realistic problems, the covariance
matrices cannot be calculated analytically. For such problems, it is possible to use
empirical estimates of the covariance matrices.
The non-linearity measure for stochastic systems is highly suited for the ensemble-

based methods introduced in chapter 5, since these methods approximate the covariance
matrices in the forecast step. However, similar to the ensemble-based methods, both the
covariance approximation and the measure of non-linearity depend on the number of
ensemble members. A higher number of ensemble members provide a better estimate
of the non-linearity measure.
When the empirical covariance matrix is used in the non-linearity measure, there

is a requirement on the number of ensemble members. Let us consider the numerator
in the second term under the square root in (7.18), and insert the expression for the
empirical covariance matrices

tr
{
CgyC−1y C

T
gy

}
=

1
ne − 1

tr
{
ΔGΔYT

(
ΔYT
)−1
ΔY−1ΔYΔGT

}
. (7.19)

Recall that ΔY is, generally, not square and, for this reason, we need to utilize the
pseudo-inverse, ΔY †. To define the pseudo-inverse, we start by writing ΔY in terms of
the truncated singular value decomposition (SVD) expansion (see, e.g., [37])

ΔY = UpSpVTp . (7.20)

Here p ≤ min
(
ny,ne

)
is the number of positive singular values of ΔY , the diagonal

matrix Sp ∈ Rp×p holds the positive singular values, while the columns of Up ∈ Rny×p
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and Vp ∈ Rne×p contain the left- and right-singular vectors, respectively. The left- and
right-singular vectors are orthogonal and normalized

UTpUp = Ip, VTp Vp = Ip, (7.21)

where Ip ∈ Rp×p is the identity matrix, while, generally,

UpUTp � Ip, VpVTp � Ip. (7.22)

If p=ny, the first of the inequalities in (7.22) becomes an equality. Likewise, if p = ne,
the second inequality in (7.22) becomes an equality. Utilizing the SVD, the pseudo-
inverse is given as

ΔY † = VpS−1p U
T
p . (7.23)

Inserting ΔY †, and expanding all the ΔY terms in (7.19) gives

tr
{
CgyC−1y C

T
gy

}
=

1
ne − 1

tr
{
ΔGVpSpUTpUpS

−1
p V

T
p VpS

−1
p U

T
pUpSpV

T
p ΔG

T
}

(7.24)

=
1

ne − 1
tr
{
ΔGVpVTp ΔG

T
}
. (7.25)

Hence, for cases where the second inequality of (7.22) turns to an equality, the non-
linearity measure is useless since tr

{
CgyC−1y CTgy

}
= tr

{
Cg

}
and γG = 0 for all G.

Now, since ΔY is an ensemble perturbation matrix, its columns sum to zero, and ΔY
has at most p = min

(
ne − 1,ny

)
positive singular values [62]. Hence, at the outset

VpVTp � Ip. Unfortunately, for cases where ne ≤ ny + 1, it is possible to show that
ΔGΔGT = ΔGVpVTp ΔGT (see Appendix A in Paper B). For this reason, the measure of
non-linearity utilizing the empirical covariance matrices requires that ne > ny + 1.
The non-linearity measure for stochastic systems, utilizing the empirical covari-

ances, was applied in Paper C, D, and E.



Chapter 8

Two-phase flow in porous media

The investigation conducted in this thesis focuses on problems that have a non-chaotic
forward-model that depends, non-linearly, on a high-dimensional parameter vector.
One such type of problems, where the ensemble-based methods have been extensively
applied, is multiphase flow in porous media [1, 70]. In the following chapter, we in-
troduce the mathematical equations describing two-phase flow in a porous media; we
discuss how these equations can be solved via numerical models; and we discuss how
observations of flow in the wells can be predicted by the numerical models.

8.1 Mathematical model

Mathematical models describing the fluid flow in a porous media are based on the
conservation of mass, momentum and energy. In this section, we briefly introduce
the mathematical equations governing the simultaneous flow of two immiscible fluid
phases in an incompressible porous media. There exists a wide range of literature on
this topic, and for more details we refer the reader to, e.g., [5, 15, 74].
Assuming that both phases are present in the reservoir, one phase will wet the porous

medium more than the other. This phase is denoted the wetting phase and is indicated
by a subscript w. The other phase is denoted the non-wetting phase and is indicated
by a subscript nw. In a typical North-sea reservoir the wetting phase is water and the
non-wetting phase is oil.
Let us assume that the mass of each fluid phase is conserved. This is expressed in

differential form as

φ
∂ραSα
∂t

= −∇ · (ραuα) + qα, α = w, nw, (8.1)

where the saturation of each phase is denoted Sα, the density of each phase is denoted
ρα, the Darcy velocity of each phase is denoted uα, the source/sink terms for each
phase is denoted qα, and the porosity of the porous media is denoted as φ. Darcy’s law,
which is valid for single phase flow, can be extended directly to two-phase flow

uα = −
1
μα

kα (∇pα − ραϑ∇z) , α = w, nw, (8.2)

where kα, pα, and μα are the effective permeability, pressure, and viscosity for phase
α; ϑ denotes the magnitude of gravitational acceleration; and z denotes the vertical
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coordinate. Due to the simultaneous presences of two phases, the effective permeability
of either phase is lower than the absolute permeability, k . The effective permeability is,
therefore, represented via the relative permeability, krα,

kα = krαk, α = w, nw. (8.3)

Moreover, we assume that the two fluids jointly fill the void within the porous media,
hence,

Sw + Snw = 1. (8.4)
Also, due to forces working on the interface between the two phases, the pressure in the
wetting fluid is less than the pressure in the non-wetting fluid. This pressure difference
is given by the capillary pressure, assumed to be a function of the saturation,

pc (Sw) = pnw − pw . (8.5)

Finally, we define the constitutive relationships for the parameters

krα = krα (Sw) , (8.6)
ρα = ρα (pw) , (8.7)
μα = μα (pw) , (8.8)

and note that the number of sources and sinks are finite. Hence, by inserting (8.2)
into (8.1) and utilizing (8.4)–(8.8), we obtain a complete set of equations. This can be
solved for two of the four main unknowns: pα and Sα for α = w, nw.
It is possible to formulate the fluid equations in several forms. The choice of formu-

lation depends on the main variables, solution procedure, and the amount of coupling
between the variables. However, provided suitable boundary and initial conditions, the
equations can only be solved analytically if additional assumptions are made. For all
other cases, the solution must be found by numerical techniques.

8.2 Numerical model

The models for fluid flow in a porous media consist of a large coupled system of non-
linear, time-dependent partial differential equations. Designing a suitable numerical
scheme for such problems is not trivial. The equations must be discretized in both time
and space, and problems, such as coupling between the equations, must be handled by
the numerical method. In this section, we briefly discuss some issues regarding the
numerical solution strategies; for further details, see, e.g., [2, 5, 15].
The temporal discretization in the numerical model can be designed to evaluate the

different terms either implicitly or explicitly. Commercial simulators generally prefer
full implicit strategies due to their robustness [2]. The non-linear equations are typically
solved utilizing iterative methods, such as the Newton-Raphson scheme. These meth-
ods typically converges after a few iterations. However, for each iteration a large linear
system of equations needs to be solved. Hence, solving the flow equations requires the
solution of many linear systems, and can therefore be computationally expensive. For
realistic reservoir cases, as much as 80-90% of the computational time can be spent
solving linear systems [15]. A good linear solver is therefore crucial for an efficient



8.3 Well model 61

h3

rwre
�

���
q

(a)

01

2

3

4

h

(b)

Figure 8.1: Flow models near the well. (a): radial flow in analytical model. (b): five-point
stencil for numerical approximation.

numerical method, and methods utilized for realistic reservoir models favours iterative
Krylov subspace methods [84] like, e.g., the conjugate gradient method [49].
A less time consuming method is to decouple the equations and solve them se-

quentially. In this approach, the equation for the pressure and saturation are solved
separately, where one can utilize different methods for the different equations. One ex-
ample of such a method is IMPES (implicit pressure, explicit saturation). For these
methods smaller time-steps are often required to meet the time-step restrictions associ-
ated with the explicit solution method [59]. Moreover, a few extra iterations might be
needed to remove the error caused by decoupling the equations. Hence, even though
each time-step is in general much faster to solve, the time-step restrictions can remove
the efficiency of the IMPES method.

8.3 Well model

In the flow equations, the source and sink terms are included as qα for α = w, nw. These
terms represent the transfer of mass for all fluids entering or exiting the reservoir, and
they need to be included in the numerical model. Any well model must describe the
flow into the wellbore accurately, and the well equations must allow the computation
of bottom hole pressure (BHP) when the production or injection rate is given, and the
fluid rate when the BHP is known. The main difficulty when modelling wells is the
difference in scale between the large grid block and the small region surrounding the
well where there are large pressure gradients.
We will now illustrate how wells can be modelled in the computational grid. This

derivation is one of the approaches given in [75], and the approach is based on com-
bining the numerical and the analytical solution of the well flow. We start by deriving
an analytical model that approximate the fluid flow near the well. Here, we assume
single phase, incompressible, steady-state, horizontal flow, within a homogeneous and
isotropic reservoir where the fluid viscosity and density are constant. Moreover, we as-
sume that the flow is radial in a small neighbourhood around the well (see Figure 8.1a).
With these assumptions, the conservation equation is

∇ · (ρu) = qδ (x) , (8.9)
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where δ (x) is the Dirac delta function representing a well placed at the origin, and
Darcy’s law is given as

u = − 1
μ
k∇p. (8.10)

Since the fluid flow is radial around the well, it is possible to derive an analytical flow
model, given as [15]

p (r) = p
(
r0
)
− μq
2πρkh3

ln
( r
r0
)
. (8.11)

Here, r0 is a reference point (usually the well radius rw), and h3 is the height of the
reservoir (grid block) containing the well.
We now derive the numerical well equation utilizing a cell-centred finite difference

method on a square grid with a grid size h (see, Figure 8.1b). Let us start by solv-
ing (8.9) and (8.10) by a five-point stencil scheme [15]

ρkh3
μ

(4p0 − p1 − p2 − p3 − p4) = q. (8.12)

Because of the symmetry of the solution, i.e., p1 = p2 = p3 = p4, we obtain
ρkh3
μ

(p0 − p1) =
q
4
. (8.13)

Assuming that the pressure, p1, in the gridblock adjacent to the well block is computed
exactly by the analytical well model, and given a value for the BHP, pbhp, it follows
that

p1 = pbhp −
μq

2πρkh3
ln
(
h
rw

)
. (8.14)

Inserting (8.14) into (8.13) gives

p0 = pbhp −
μq

2πρkh3
ln
(
h
rw

)
+

qμ
4ρkh3

,

= pbhp +
μq

2πρkh3

(
ln
(rw
h

)
+
π

2

)
,

= pbhp +
μq

2πρkh3
ln
( rw
αh

)
, (8.15)

where α = exp
(
− π2
)
= 0.20788... . Rearranging (8.15) gives the well known as

Peaceman’s well model
q =

2πρkh3
μ ln (re/rw)

(
pbhp − p

)
, (8.16)

where the equivalent radius is given as re = αh and p = p0.
This well model is easily extended to account for anisotropic media, horizontal

wells and for flow containing multiple phases. For the latter case the well equations,
for phase α is given as

qα =
2πkh3
ln (re/rw)

ραkrα
μα

(
pbhp − pα

)
, α = w, nw. (8.17)

Note that this well model is derived utilizing a specific numerical method and a
specific grid. However, the same procedure, combining the analytical and numerical
solution, can be utilized to derive alternative well equations for alternative numerical
methods and grids, see, e.g., [15].
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8.4 Data

In this work, given realizations of the poorly known petrophysical parameters, the nu-
merical models are utilized to generate numerical predictions of the fluid flow. The
reservoir models are then history matched by comparing the predictions to real obser-
vations. Predictions of the pressure and saturation in every grid cell can be utilized
to match seismic, electromagnetic, and gravimetric observations. However, for most
reservoirs, the wells are the primary source of information regarding the subsurface.
All well-data, used for history matching the reservoir model, are given by (8.17), but
the explicit expressions for the different data types depend on the well controls. In the
following, we briefly summarize the different well controls and potential data types.
For some selected data types, we comment on the functional relationship between the
data and the petrophysical parameters. For simplicity we assume that the wetting phase
is water, denoted by a subscript w, and the non-wetting phase is oil, denoted by a sub-
script o.
Let us consider a well that injects water into the reservoir. This well can either

be controlled by BHP or water injection rate. If the injector is controlled by BHP,
and since only water is injected through the well, the water injection rate is the only
available data. The injection rate is given by (8.17) as

qw =
2πkh3
ln (re/rw)

ρwkrw
μw

(
pbhp − pw

)
. (8.18)

If the well is controlled by water injection rate the BHP is the only available data, given
by rearranging (8.18)

pbhp =
ln (re/rw)
2πkh3

μw

ρwkrw
qw + pw . (8.19)

A well block containing an injector will (with the exception of the first time steps) have
a constant saturation, and both data available for a injection well will depend on the
pressure of the water phase in the well block. Hence, with the exception of the direct
dependence on the absolute permeability in the well block, the data depends on the
fields petrophysical quantities through the pressure values.
Let us consider a well producing both oil and water from the reservoir. The produc-

tion well can either be controlled by BHP or total production rate, given as the sum of
oil and water production rate,

qt = qo + qw

qt =
2πkh3
ln (re/rw)

(
ρokro
μo
+
ρwkrw
μw

) (
pbhp − p

)
(8.20)

where we for simplicity have assumed no capillary pressure. If the well is controlled
by BHP, the available data are the water production rate, oil production rate, and the
total production rate given by (8.20). Since the well produce multiple phases, it is
also possible to measure the water cut (WCT) , that is, the water rate divided by the
total production rate. If the well is controlled by total production rate, the available
data is BHP, oil production rate, water production rate, and WCT. As an example, we
now give the expression for the water production rate for a well controlled by total
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production in the case with no capillary pressure. By comparing (8.18) and (8.20) the
water production rate is given as

qw =
ρw krw
μw(

ρo kro
μo
+
ρw krw
μw

) qt . (8.21)

An equivalent expression can be derived for the oil production rate. Generally, the
production data depend on the petrophysical quantities via both the pressure and the
saturation values. Moreover, for some data, such as the water production rate given
in (8.21), there is no dependence on the absolute permeability in the well block.



Chapter 9

Summaries of Papers

A number of scientific papers have been produced as a part of this work. In the follow-
ing chapter, we present summaries of the Papers A – E, including the main results and
future works.

9.1 Summary of Paper A

Title: Numerical Comparison of Ensemble Kalman Filter and Randomized Maxi-
mum Likelihood

Authors: K. Fossum, T. Mannseth, D. S. Oliver, and H. J. Skaug

In Paper A, we perform a numerical comparison of EnKF and RML type methods in
a petroleum reservoir model small enough to allow a reference MCMC run. For cases
where the forward model is non-linear the EnKF and RML methods sample differ-
ently. To understand this difference, three model characteristics, summarizing the main
features of the EnKF and the RML, were defined. The effect of each of these charac-
teristics were then assessed by a numerical investigation. Paper A was presenter at the
2012 ECMOR conference in Biarritz, France.
The comparison of EnKF and RML revealed the following difference in the three

characteristics: (i) whether or not gradients are used, (ii) whether data are assimi-
lated sequentially or simultaneously, and (iii) whether the method iterates or not. By
considering the EnKF (the HIEnKF was utilized in this study), the RML (using the
Levenberg-Marquardt optimization method), and two related methods, the ES and the
RML1 (RMLwith one Gauss-Newton iteration), the effect of each of the characteristics
could be assessed with respect to the sampling capabilities.
The numerical study was performed on the PUNQ-S3 case, a small-scale synthetic

reservoir model, and the vertical log permeability, the horizontal log permeability, and
the porosity were estimated by all four methods, applying a moderately sized ensemble.
The methods were evaluated by comparing the posterior ensemble to samples obtained
from an MCMC run. In this paper, we employed numerous parallel runs of a variable-
at-a-time M-H algorithm. However, no rigorous evaluation of the MCMC convergence
was performed. The assessment was based on comparing the data-match, the prediction
capabilities, and the parameter match obtained from the four approximate methods to
the corresponding MCMC values.
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The numerical investigation showed that the RML and the EnKF gave equally good
data-match, while the ES and RML1 obtained worse results. The result obtained by
comparing data-match indicated that sequential assimilation of data or iterations are
needed to obtain a good result.
All methods gave reasonable predictions of the cumulative oil recovery which cap-

tured the reference solution. The EnKF and the RML results were almost identical to
the MCMC result, the RML1 result was unbiased with a significant variance, and the
ES result was biased with less variance.
The comparison of the parameter values showed large differences between the meth-

ods. Generally, the RML gave parameter values that were closest to the MCMC solu-
tion. In the assessment of the parameter values, several effects caused by the moderate
ensemble size were observed.
Paper A showed that different methods could have large variation in the estimated

parameters even though the data-match and prediction of cumulative oil recovery were
similar. It was concluded that extended investigations, including studies on very simple
models, were needed to further assess the approximate methods.

9.2 Summary of Paper B

Title: Parameter sampling capabilities of sequential and simultaneous data assim-
ilation. Part I: analytical comparison

Authors: K. Fossum, and T. Mannseth

In Paper B, we perform an analytical comparison of the parameter sampling capabilities
for ensemble-based methods that only differ with respect to how data are assimilated.
This paper is strongly connected to its companion paper, Paper C, which assess the
difference between the parameter sampling capabilities of these methods numerically.
The investigation in this paper is focused on the difference between parameter esti-

mation utilizing comparable versions of the EnKF and ES, i.e., methods that only differ
with respect to how data are assimilated. However, it turns out that the RML type meth-
ods are more suitable for the analysis. For this reason, we also consider comparable
versions of the RML method. The comparable methods were found to be the HIEnKF,
ES, and the EnRML using one full step Gauss-Newton iteration. To establish if any re-
sults obtained from the RML type methods are valid for the EnKF type methods, the
different methods were compared thoroughly.
The comparison of the methods showed that, for non-linear models, the EnKF type

methods are identical to the EnRML type methods if the parameter ensemble perturba-
tion matrix ΔM has ne − 1 positive singular values. However, the difference between
the methods depend on the degree of non-linearity in the forward model, and for linear
forward models the methods are identical, independent of the matrix ΔM .
Utilizing the EnRML methods and considering the assimilation of one weakly non-

linear data group and one linear data group, it was shown that the parameter update
from the sequential assimilation scheme is identical to the parameter update from the
simultaneous scheme if the weakly non-linear data group is assimilated prior to the
linear data group. For the reverse case, the sequential and simultaneous schemes were
shown to produce different results.
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Following this, some theoretical considerations, related to the case where the meth-
ods differ, were presented. Considering the Bayesian objective function, we argue that
the sequential approach will gradually increase the weight on the quadratic term in the
objective function; hence, gradually linearizing the problem. This argument indicates
that the maximum effect of the linearization is obtained when the data group with the
highest degree of non-linearity is assimilated last. Assimilating the data sequentially
ordered after ascending degree of non-linearity should, by this argument, provide a
lower approximation error than simultaneous assimilation of the data or by sequential
assimilation with an alternative ordering of the data.
All results, obtained in paper B, were derived using the EnRMLwith one full Gauss-

Newton step and a high number of ensemble members. However, the investigation of
the difference between the EnRML methods and EnKF methods shows that the results
carry over to the EnKF methods for weakly non-linear problems. The results in this
paper are summarized by the following three claims, all assuming that a sufficiently
large number of ensemble members are utilized for estimating the unknown parameters.

• When assimilating one weakly non-linear data group prior to assimilating one
linear data group with HIEnKF, the sampling capability corresponds to that of
ES.

• When assimilating one linear data group prior to the assimilation of one weakly
non-linear data group with HIEnKF, HIEnKF will outperform ES.

• When assimilating two or more weakly non-linear data groups, HIEnKF will out-
perform ES, particularly if the data groups are ordered according to ascending
degree of non-linearity

9.3 Summary of Paper C

Title: Parameter sampling capabilities of sequential and simultaneous data assim-
ilation. Part II: statistical analysis of numerical results

Authors: K. Fossum, and T. Mannseth

In Paper C, we assess the sampling capabilities of the HIEnKF, a method that assimi-
lates the data sequentially, and the ES, a method that assimilate the data simultaneously.
This paper is strongly connected to its companion paper, Paper B, which compares the
two assimilation strategies analytically. The numerical investigation is specifically de-
signed to evaluate the three claims made in Paper B.
We only wish to assess the difference in sampling capabilities caused by the dif-

ferent assimilation strategies. The numerical study evaluates the comparable methods
HIEnKF and ES. This ensures that any difference in the sampling capabilities is caused
by the difference between sequential and simultaneous assimilation. Similar to Paper A,
the sampling performance of the methods are assessed by comparison with an MCMC
run. However, contrary to Paper A, we perform a statistical analysis of the parame-
ter estimation properties for all the methods. The methods are compared utilizing four
different sample based measures for the performance. The non-linearity, for all data
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in all experiments, was evaluated by an ensemble approximation to the non-linearity
measure for stochastic models.
Applying a large number of ensemble members, the two methods were compared

for both toy models and small-scale reservoir models. The toy models were all charac-
terized by low computational requirements and easily controllable data non-linearity.
To gradually increase the model complexity, the number of unknown parameters in
the toy models were increased, and for each degree of complexity two setups were
considered. The first setup considered the assimilation of one linear and one weakly
non-linear data group, while the second setup considered the assimilation of ten weakly
non-linear data groups with varying degree of non-linearity. With this flexible setup,
the toy models assessed all three claims made in Paper B.
Two reservoir models were considered, the first model allowed flow in one direction

while the second model allowed flow in two spatial directions. For each reservoir case
we considered the assimilation of two weakly non-linear data groups with a significant
difference in non-linearity. Thus, the reservoir model setup would only assess the third
claim made in Paper B.
The results of the toy model experiments clearly and consistently supported all the

three claims made in Paper B, while results for the reservoir models primarily showed
strong and consistent support of the last claim.

9.4 Summary of Paper D and E

Paper D
Title: Evaluation of ordered sequential assimilation for improved EnKF sampling
Authors: K. Fossum, and T. Mannseth

Paper E
Title: Assessment of ordered sequential data assimilation
Authors: K. Fossum, and T. Mannseth

For many problems, several different, non-linear, data types are assimilated utilizing the
ensemble-based methods. Each data group can be considered as a non-linear map from
parameter space to the data space, where each map has a unique degree of non-linearity.
In Paper D and E, we investigate sequential and simultaneous assimilation strategies
for numerous data types representing a large variation in the degree of non-linearity.
The numerical investigation considers both simple and complex forward models, with
adjustable and varying degree of non-linearity. There is a special emphasis on the
effect of sequential assimilation of weakly non-linear data groups ordered according
to ascending degree of non-linearity. The investigation is motivated by the third claim
made in Paper B, which states that there is a potential for reducing the sampling error
if weakly non-linear data are assimilated sequentially ordered after ascending degree
of non-linearity. A high number of ensemble members were applied in all numerical
experiments, and all experiments were assessed by a stochastic measure comparing the
approximate samples to samples from aMCMC run. Paper D was presented at the 2014
ECMOR conference in Catania, Italia. Paper E is an extension of Paper D and includes
several additional experiments with a greater variation of non-linear forward models.



9.5 Future work 69

However, some numerical experiments are included in both papers.
Both Paper D and Paper E divided the numerical investigation into two parts. In the

first part, Paper D and E evaluate the parameter sampling capabilities for the different
assimilation strategies applied to toy models. The design of the toy models allowed
a controllable variation in the degree of data non-linearity. This experimental setup
could therefore assess the various assimilation strategies for a high number of numerical
experiments, representing data with a wide range of non-linearity.
In the second part of the numerical study, both Paper D and Paper E investigated

multiple 2D synthetic reservoir models. Here, we could not vary the degree of non-
linearity in a controlled manned, but the experiments showed a large spread in the
non-linearity values for the various data types and production strategies. For each ex-
periment, a selection of data groups were assimilated using the different assimilations
strategies.
The experiments illustrated that, for weakly non-linear data groups with a signif-

icant difference in the degree of non-linearity between the data groups, assimilating
the data sequentially ordered after ascending degree of non-linearity provided the low-
est approximation error. For cases with a low difference in non-linearity between the
data groups, the various assimilation methods gave virtually identical results, and for
strongly non-linear cases the results produced no consistent ranking of the methods.
Two counter examples were included in Paper E. These illustrate that the optimal

assimilation strategy cannot be determined for all cases, especially if there is a signifi-
cant variation in the degree of non-linearity ranging from strongly non-linear to weakly
non-linear depending on the position in the parameter space.

9.5 Future work

The work presented in this thesis shows that for weakly non-linear parameter estimation
problems, using ensemble-based methods, it is beneficial to assimilate the data sequen-
tially ordered after ascending degree of non-linearity. Experiments illustrated this effect
for several toy models and small synthetic reservoir cases. However, some counter ex-
amples demonstrated that there exists cases where the optimal assimilation strategy
could not be determined. An interesting, but computationally demanding, follow-up of
this work would be to assess sequential assimilation of ordered data for a high num-
ber of reservoir cases with a wide range of potential data. The numerical experiments
could be extended to test more complex cases, this could, e.g., be cases with alternat-
ing well controls, or cases with infill well. Such investigations could, gradually, build a
data-base of results, and illuminate the difference between assimilation strategies for a
wide range of models and data types. A sufficiently large data-base of results could then
be used to indicate rules-of-thumb for the selection of an optimal assimilation strategy.
In all the experiments presented in this work, we have used a high number of en-

semble members. When ensemble-based methods are used for parameter estimation in
realistic reservoir models there are strict restrictions on the number of ensemble mem-
bers, and ne � nm. Hence, we cannot utilize the empirical approximation to the mea-
sure of non-linearity for stochastic systems. A potential follow-up of this work would
be to assess the sensitivity of the results with respect to the ensemble size. Such inves-
tigations could be performed in several manners. The most natural investigation would
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be an assessment of a dual experiment, using a high and a low number of ensemble
members. Here, the data must be ordered after the degree of non-linearity, calculated
from the case with a high number of ensemble members. Such investigation must be
preformed on a synthetic reservoir case small enough to allow a high number of en-
semble members. Alternatively one could select a subspace of important parameters
m′, such that ne > nm′ + 1, and calculate the measure of non-linearity of the data with
regards to these parameters. By applying this measure, sequential and simultaneous
assimilation can be assessed for realistic reservoir cases.
For realistic reservoir cases, simultaneous assimilation of the data provides the com-

putationally most robust and flexible approach. The essential drawback of the sequen-
tial assimilation strategy is caused by the restart step. For traditional EnKF schemes,
the restart is known to cause severe convergence problems in the reservoir model. For
the HIEnKF, which restarts from initial time, there are no convergence problems, but an
additional computational cost related to the restart of the reservoir model. To achieve
a sufficiently good result, the simultaneous assimilation algorithms usually includes
some sort of iteration, either via EnRML algorithms or ES with MDA. An interesting
topic for future work would be to combine sequential assimilation of ordered data with
an iterative simultaneous approach. One such combination could be to first assimilate
the data with a low degree of non-linearity in a sequential manner, and then assim-
ilate the data with a higher degree of non-linearity simultaneously using an iterative
approach.
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