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Preface

The thesis is structured in three parts.
Part I is an introduction into the main topics of the thesis with a brief historical overview
and a summary of the main research results and possible future research. Furthermore,
we present a preliminary section which introduces the main mathematical definitions
which are required to understand the results in Part II and III.
In Part II, we study the Lie algebra geometry of pseudo H-type algebras. A pseudo
H-type algebra nr,s = vr,s⊕ zr,s is a nilpotent Lie algebra of step two, where vr,s is a
Clr,s-module of minimal dimension satisfying an admissibility condition, and zr,s is a
generating vector space of the Clifford algebra Clr,s. In Chapter 4, we present a partial
classification of the pseudo H-type algebras with minimal admissible Clifford modules.
Furthermore, we prove that the subspace vr,s of nr,s is strongly bracket generating if
and only if r = 0 or s = 0. Additionally, we discuss the classification of pseudo H-type
algebras related to non-equivalent irreducible Clifford modules. Chapter 5 generalizes
certain ideas of Eberlein [41, 42, 43]. In particular, we study standard metric Lie al-
gebras, which arise from indefinite metric spaces. We demonstrate the main results
on pseudo H-type algebras. In Chapter 6, we study the octonionic H type group and
present a characterization of the critical points of the natural sub-Riemannian length
functional via a differential equation, similar to the geodesic equation in Riemannian
geometry.
In Part III, we study the sub-Riemannian cut locus in several different manifolds with
different sub-Riemannian structures. In Chapter 7, we present a proof of the fact that
the sub-Riemannian cut locus of H-type groups, starting from the origin of the group
corresponds to the center of the group. In Chapter 8, we consider the Stiefel manifold
Vn,k as a principal U(k)-bundle over the Grassmann manifold and study the cut locus
from the unit element. We give the complete description of this cut locus on Vn,1 and
present a sufficient condition on the general case. At the end, we study the complement
to the cut locus of V2k,k and give several examples in lower dimensional cases.
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0.1 Historical background and general ideas 11

The purpose of Part I of this PhD-thesis is to give a general overview of the tools
and questions needed to put the obtained results into context. We achieve this by first
presenting a brief historical background, with a view towards the recent developments
that have paved the way to the modern picture we have of sub-Riemannian geometry and
its generalizations. Afterward, we introduce the reader to some of the preliminaries in
algebra and differential geometry that are fundamental for a complete understanding of
the problems dealt with in this thesis. We conclude Part I by presenting, in abbreviated
form, the main results of this work, which are explained at length in the forthcoming
parts.

0.1 Historical background and general ideas

The Heisenberg group has played, and still plays, a fundamental role in the development
of differential geometry. Many analytic and geometric questions related to it are still
unsolved and are the subject of deep research. An important part of this PhD-thesis
deals with the Heisenberg type and pseudo Heisenberg-type groups, which are natural
generalizations of the classical Heisenberg group. In order to understand why are these
generalizations significant and useful, we first discuss the context in which they were
introduced, and then relate their construction to special kinds of Clifford modules.

The Heisenberg-type groups, which are nilpotent Lie groups of step two, were first
introduced by Kaplan [59], when studying the relation between compositions of positive
definite quadratic forms and the fundamental solutions of certain sub-elliptic operators.
In particular, he shows that this class of Lie groups have explicit fundamental solutions
in elementary form for their sub-Laplacians, analogous to the known results in the
case of the Heisenberg group due to Folland [45]. Kaplan continued his studies on the
Riemannian geometry of Heisenberg-type groups, particularly their curvature invariants,
geodesics and isometries, in the two interesting papers [60, 61].

The contribution by Kaplan which is most relevant for our work, is the fact that
he established a natural connection between the Lie algebras of Heisenberg-type groups
and some special actions of Clifford algebras induced by sums of squares. This was later
generalized by Ciatti [37] by allowing the quadratic forms to be indefinite. These new
objects are called pseudo (or generalized) H-type algebras. Some of the main references
dealing with geometric, algebraic and analytic aspects of Heisenberg and pseudo H-type
groups are [20, 28, 29, 46, 50, 51, 79, 80, 81].

The main source of interest in the geometry of Heisenberg-type groups comes from
their natural sub-Riemannian structure. Sub-Riemannian geometry is a generalization of
Riemannian geometry which has attracted much attention from the mathematical com-
munity in the last three decades. An intuitive explanation of the basic sub-Riemannian
problem is that we can only measure the length of curves whose velocity vectors belong
to a given set of directions, which changes from point to point. These curves are usually
referred to as horizontal or admissible, and the set of allowed motions is known as the
horizontal distribution. Classical examples outside of pure mathematics are related to
certain problems in control theory, for example parking a car or landing a plane, and
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thus give evidence that sub-Riemannian geometry is a research field of interest not only
in pure, but also in applied mathematics. The problem of finding shortest horizon-
tal curves is of great interest especially in robotics, classical mechanics (nonholonomy),
neurobiology, financial mathematics, quantum physics and diverse physical theories.

There exist different opinions regarding the initial moment of sub-Riemannian ge-
ometry. It is fair to say that the first theorem in sub-Riemannian geometry is due
to Carathéodory and is related to Carnot’s thermodynamics, but sources related to
nonholonomic mechanics can be traced as far back as Hertz in the late 19th century.
A generalization of Carathéodory’s theorem, developed independently Chow and Ra-
shevskĭı [34, 78] in 1939 and 1938, respectively, introduces what is nowadays known as a
bracket generating distribution. A horizontal distribution is bracket generating if at each
point the space of all Lie brackets of sections of the distribution span the whole tangent
space. The Chow-Rashevskĭı theorem assures that if a distribution is bracket generat-
ing, then any two points can be connected by a horizontal path. This is of importance
as it implies the existence of horizontal curves of smallest length connecting any two
points. On the other hand, Strichartz [84, 85] established sub-Riemannian geometry as
a mathematical area on its own right within differential geometry. He was the first who
introduced the concepts of sub-Riemannian geometry, the sub-Riemannian co-metric
and the sub-Riemannian Christoffel symbols. Nowadays, sub-Riemannian geometry is
a fully fledged, busy and constantly developing mathematical branch. It is not possible
to summarize all interesting research directions in this field. For a deeper understand-
ing of present day research we recommend reading Montgomery, Gromov, Belläıche and
Risler: [19, 53, 70, 71]. We also would like to mention the great impact of Agrachev in
this field by referring to his works [2, 3, 4, 5, 6], and his book in progress together with
Barilari and Boscain [1], which gives particular attention to the Hamiltonian point of
view of sub-Riemannian geometry. Finally, we would like to call to the attention of the
reader the book [57] of Jurdjevic, in which control theory is presented from a geometric
point of view, having the sub-Riemannian problem as a fundamental example in optimal
control theory.



Chapter 1

Preliminaries

In this chapter we introduce the main mathematical objects and tools to set the context
for Part II and III.

1.1 Preliminaries of H-type algebras

1.1.1 2-step nilpotent Lie algebras

One of the main objects studied in this thesis are 2-step nilpotent Lie algebras. We
introduce them and state the most important properties. For more details see [62].

Definition 1.1.1. A Lie algebra n is nilpotent of step 2 if [n , [n , n]] = {0} and [n , n] �=
{0}.
A connected Lie group is called nilpotent of step 2 if its corresponding Lie algebra is
nilpotent of step 2.

Remark 1.1.2. If n is a 2-step nilpotent Lie algebra, then its commutator ideal [n , n]
is a subset of the center Z(n) := {v ∈ n|[v , n] = {0}} of n.

We remind that if the Lie group N of the Lie algebra n is simply connected and
nilpotent of step 2, then the Lie group exponential map exp: n → N is a diffeomorphism
and we let log : N → n denote its inverse.

Proposition 1.1.3 (Campbell-Baker-Hausdorff Formula). If n is a 2-step nilpotent Lie
algebra, then

exp(v) exp(w) = exp
(
v + w + 1

2
[v , w]
)

for all v, w ∈ n,
log(gg̃) = log(g) + log(g̃) + 1

2
[log(g) , log(g̃)] for all g, g̃ ∈ N.

1.1.2 Standard metric 2-step nilpotent Lie algebras

In this subsection we present shortly the ideas from [41, 42], showing that any 2-step
nilpotent Lie algebra can be endowed with a canonical positively definite scalar product.
The choice of such kind scalar product is unique up to the Lie algebra isomorphism.
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Through the present subsection we assume that a 2-step nilpotent Lie algebra g has
a commutator ideal [g , g] of dimension n and its complement is of dimension m. A basis
B = {v1, . . . , vm, z1, . . . , zn} of the Lie algebra g is called adapted if {z1, . . . , zn} is the
basis of [g , g]. Define the skew-symmetric (m ×m)-matrices C1 := (C1

αβ)αβ, . . . , C
n :=

(Cn
αβ)αβ by

[vα , vβ] =
n∑

k=1

Ck
αβzk.

Matrices Ck are elements of the group so(m) and they are linearly independent in
so(m), see [42]. Then the n-dimensional subspace Cn = span{C1, . . . , Cn} ⊂ so(m) is
isomorphic to [g , g] = span{z1, . . . , zn} and is called the structure space determined by
the adapted basis B. The vector space span{v1, . . . , vm}⊕ span{z1, . . . , zn} of the 2-step
nilpotent Lie algebra g is isomorphic to the direct sum Rm ⊕ Cn. The n-dimensional
subspace Cn ⊂ so(m) depends on the choice of the adapted basis, nevertheless all possible
subspaces defined by an arbitrary choice of an adapted bases form the set {ACnAt | A ∈
GL(m)}, where At is the transpose matrix of A.

The spaces Rm and Cn ⊂ so(m) have a natural choice of inner products that will
determinate the Lie algebra product on G = Rm ⊕ Cn. Denote by 〈· , ·〉so(m) the positive
definite product on so(m) defined by

〈Z ,Z ′〉so(m) = − tr(ZZ ′),

and 〈· , ·〉m the standard Euclidean inner product in Rm. The notation 〈· , ·〉so(m) is also
used for the restriction of this inner product on Cn ⊂ so(m). Then the inner product
(· , ·) = 〈· , ·〉m + 〈· , ·〉so(m) makes the direct sum G = Rm ⊕ Cn orthogonal. Let [· , ·] be
the unique Lie product on G such that Cn belongs to the center of G and

〈Z(V ) ,W 〉m = 〈Z , [V ,W ]〉so(m) for arbitrary V,W ∈ Rm, Z ∈ Cn,

where Z(V ) simply denotes the action of Z ∈ Cn ⊂ so(m) on a vector V ∈ Rm defined
by matrix multiplication. It is easy to see that (G, [· , ·]) is a 2-step nilpotent Lie algebra,
such that [G ,G] = Cn and it is called a standard metric 2-step nilpotent Lie algebra. It
was shown in [41] that any 2-step nilpotent Lie algebra g is isomorphic to a standard
metric 2-step nilpotent Lie algebra G =

(
Rm ⊕ Cn, [· , ·], (· , ·)).

1.1.3 Pseudo H-type algebras

Throughout this thesis we assume all scalar products to be non-degenerate unless oth-
erwise stated. We denote by n a nilpotent 2-step Lie algebra endowed with a scalar
product 〈· , ·〉n of signature (p, q), p, q ∈ N, p+ q = dim(n): that means that there exists
a basis {U1, . . . , Up+q} of n which satisfies

〈Ui , Uj〉n = εi(p, q)δij, where εi(p, q) =

{
1, for i = 1, . . . , p,

−1, for i = p+ 1, . . . , p+ q.
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Let z be the center of the 2-step nilpotent Lie algebra n and 〈· , ·〉z the restriction of the
scalar product 〈· , ·〉n to z. We assume that 〈· , ·〉z is non-degenerate. Then the orthogonal
complement v := z⊥ is also a non-degenerate scalar product space, where we use the
symbol 〈· , ·〉v to denote the restriction of 〈· , ·〉n on v. Thus n = z⊕⊥ v is an orthogonal
decomposition with respect to the scalar product 〈· , ·〉n = 〈· , ·〉z + 〈· , ·〉v. Since z is the
center of n, the commutator is a skew-symmetric bi-linear map [· , ·] : v× v → z.

Definition 1.1.4. Let n = (z⊕⊥ v, [· , ·], 〈· , ·〉n) be a Lie algebra described above. We
define the map J : z → End(v) by

〈JZv , w〉v = 〈Z , [v , w]〉z, for all v, w ∈ v . (1.1)

Definition 1.1.5. [37] We call a 2-step nilpotent Lie algebra n = (z⊕⊥ v, [· , ·], 〈· , ·〉n)
with J : z → End(v) from Definition 1.1.4 a pseudo H-type algebra if

〈JZv , JZv〉v = 〈Z ,Z〉z〈v , v〉v for all Z ∈ z and v ∈ v . (1.2)

In the following we write nr,s to emphasize that 〈 · , · 〉z has signature (r, s).

It follows directly from Definition 1.1.4 that JZ is skew-adjoint with respect to the
scalar product 〈· , ·〉v:

〈JZv , w〉v = −〈v , JZw〉v for all Z ∈ z, v, w ∈ v . (1.3)

Using polarization in (1.2) we obtain

〈JZv , JZ′v〉v = 〈Z ,Z ′〉z〈v , v〉v, and 〈JZv , JZv′〉v = 〈Z ,Z〉z〈v , v′〉v. (1.4)

Applying the skew-adjoint property (1.3) one also obtains

JZ ◦ JZ := JZJZ = J2
Z = −〈Z ,Z〉z Idv, or JZ′JZ + JZJZ′ = −2〈Z ,Z ′〉z Idv, (1.5)

for all Z,Z ′ ∈ z. Equalities (1.5) imply that J : z → End(v) defines a representation of
the Clifford algebra Cl(z, 〈· , ·〉z).

We note that there exists an equivalent concept of pseudo H-type algebras, the so
called general H-type algebras. Let n =

(
v⊕⊥ z, [· , ·], 〈· , ·〉n = 〈· , ·〉v + 〈· , ·〉z

)
be an

arbitrary 2-step nilpotent Lie algebra with center z and a non-degenerate scalar product
〈· , ·〉n. We write adv : v → z for the linear map given by adv w = [v , w]. We assume
that the restriction of the scalar product 〈· , ·〉v onto the subspace ker(adv) ⊂ v is non-
degenerate and denote its orthogonal complement with respect to 〈· , ·〉v by Vv, which
is also non-degenerate. Thus the restricted map adv : Vv → z is injective.

Definition 1.1.6. [51] A two-step nilpotent Lie algebra n =
(
v⊕⊥ z, [· , ·], 〈· , ·〉n =

〈· , ·〉v + 〈· , ·〉z
)
is of general H-type if adv : Vv → z is a surjective isometry for all

v ∈ v with 〈v , v〉v = 1 and a surjective anti-isometry for all v ∈ v with 〈v , v〉v = −1.

We are showing in Subsection 4.6.1, that pseudo H-type algebras and general H-type
algebras are equivalent.
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1.1.4 Clifford algebras and representations

Definition 1.1.7. A Clifford algebra Cl(z, 〈· , ·〉z) generated by a scalar product space
(z, 〈· , ·〉z) is the unital associative algebra generated by z subject to the relation:

Z ⊗ Z = −〈Z ,Z〉zICl(z,〈· ,·〉z),

for all Z ∈ z and the unit ICl(z,〈· ,·〉z) of the Clifford algebra.

Thus, z can be considered as a subset of Cl(z, 〈· , ·〉z) and
Z ⊗W +W ⊗ Z = −2〈Z ,W 〉zICl(z,〈· ,·〉z) for all Z,W ∈ z.

Proposition 1.1.8. [56, 64] Let J : z → A be a linear map into an associative algebra
A with an identity element IdA and product ” ·A ”, such that

J(Z) ·A J(Z) = −〈Z ,Z〉z IdA for all Z ∈ z.

Then J extends uniquely to an algebra homomorphism J̃ : Cl(z, 〈· , ·〉z) → A. Moreover,
Cl(z, 〈· , ·〉z) is the unique associative algebra with this property.

Definition 1.1.9. A representation of a Clifford algebra Cl(z, 〈· , ·〉z) is an algebra ho-
momorphism J : Cl(z, 〈· , ·〉z) → End(v) into the algebra of linear transformations of a
finite dimensional vector space v. The space v is called a Cl(z, 〈· , ·〉z)-module.

Remark 1.1.10. We note that we can refer to J : z → End(v) as the Clifford represen-
tation J : Cl(z, 〈· , ·〉z) → End(v) by Proposition 1.1.8.

Since J is an algebra homomorphism we obtain that

J2
Z := JZ ◦ JZ = JZ⊗Z = J−〈Z ,Z〉zICl(z,〈· ,·〉z) = −〈Z ,Z〉z Idv .

We assume without loss of generality that (z, 〈· , ·〉z) is given by (Rr,s := Rr+s, 〈· , ·〉r,s),
r+s = n, where the scalar product 〈· , ·〉r,s of signature (r, s) is defined for all Z,W ∈ Rr+s

by 〈Z ,W 〉r,s :=
∑r

i=1 ZiWi −
∑r+s

j=r+1 ZjWj. The Clifford algebra Cl(Rr,s, 〈· , ·〉r,s) is
denoted by Clr,s, where (Z1, . . . , Zr+s) is the standard orthonormal basis of Rr,s with
〈Zi , Zj〉r,s = εi(r, s)δij.

1.1.5 Admissible Clifford modules and pseudo H-type algebras

In this subsection we explain when a representation space v of a Clifford algebra can be
endowed with a scalar product 〈· , ·〉v such that the representation map J satisfies (1.3).
We call a positive definite scalar product an inner product, and in any case we work with
only non-degenerate scalar products.

Proposition 1.1.11. [56] Let J : Clr,0 → End(v) be a representation of a Clifford
algebra Clr,0. Then there exists an inner product 〈· , ·〉v on v, such that for all Z ∈ Rr,0

with 〈Z ,Z〉r,0 = 1 the following holds:

〈JZw , JZv〉v = 〈w , v〉v for all w, v ∈ v. (1.6)
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Corollary 1.1.12. Any representation J : Clr,0 → End(v) satisfies property (1.3) with
respect to the inner product 〈· , ·〉v from Proposition 1.1.11.

Corollary 1.1.12 follows by replacing w by JZw in (1.6) and applying J2
Z = − Idv.

Thus the Clifford algebras Clr,0 always possess an inner product on v such that JZ is
skew-adjoint for all Z ∈ Rr,0. A. Kaplan used inner products on z in [59, 61] and, as a
consequence, the H-type algebras correspond to Clr,0-modules. For Clr,s-modules with
s ≥ 1 equation (1.6) is only true for orthonormal bases and in general not true for an
arbitrary element of Rr,s, see [56].

Definition 1.1.13. [37] A pair (v, 〈· , ·〉v), where v is a Clr,s-module is said to be an
admissible Clr,s-module if the representation operators JZ : v → v are skew-adjoint with
respect to 〈· , ·〉v, i.e. satisfies (1.3) for all Z ∈ Rr,s.

The following proposition guarantees the existence of admissible Clr,s-modules.

Proposition 1.1.14. [37] For any given Clr,s-module v the vector space v itself (or
v⊕ v) can be equipped with a scalar product 〈· , ·〉v (or 〈· , ·〉v⊕v), such that

〈JZw , v〉v = −〈w , JZv〉v, (or 〈J ′
Zw , v〉v⊕v = −〈w , J ′

Zv〉v⊕v)

for all Z ∈ Rr,s and all w, v ∈ v (or w, v ∈ v ⊕ v, where the operator J ′ : Clr,s →
End(v⊕ v) should be redefined correspondingly ).

The relation between Lie algebras of Definition 1.1.5 and admissible Clifford modules
is summarized in the following proposition.

Proposition 1.1.15. [37] Let v be a Clr,s-module. Then n = v⊕Rr,s can be supplied
with the structure of the pseudo H-type (r, s)-algebra if and only if there exists a scalar
product 〈· , ·〉v making the Clr,s-module v into an admissible Clifford module (v, 〈· , ·〉v).
The bracket [· , ·] : v× v → Rr,s on n is given by Definition 1.1.4 and the scalar product
is 〈· , ·〉n := 〈· , ·〉v + 〈· , ·〉r,s. The decomposition n = v⊕Rr,s is orthogonal and Rr,s is the
center of n.

Proposition 1.1.16. [37] Let n be a pseudo H-type algebra. Then the corresponding
admissible Clr,s-module (v, 〈· , ·〉v) is a neutral scalar product space for s ≥ 1, i.e. the
signature of 〈· , ·〉v is (l, l), with l ∈ N.

1.1.6 Existence of the integral structure on pseudo H-type al-
gebras

In this subsection we state some necessary facts about the latest research on pseudo
H-type algebras based on the work [46]. The principal result of [46] states that pseudo
H-type algebras admit a special choice of basis giving integer structure constants.

Theorem 1.1.17. [46] Let n =
(
v⊕⊥ z, [· , ·], 〈· , ·〉n = 〈· , ·〉v + 〈· , ·〉z

)
be a pseudo H-

type algebra. Then for any orthonormal basis {Z1, . . . , Zn} for z there is an orthonormal
basis {v1, . . . , vm} for v such that [vα , vβ] =

∑n
k=1 C

k
αβZk, where Ck

αβ = 0,±1.
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Corollary 1.1.18. [46] There exists an orthonormal basis {v1, . . . , vm, Z1, . . . , Zn} for
any pseudo H-type algebra such that [vα , vβ] = ±Zkα,β

or [vα , vβ] = 0. In particular, for
every Zk and vα in B there exists exactly one β ∈ {1, . . . ,m} such that [vα , vβ] = ±Zk.

Definition 1.1.19. We call an orthonormal basis {v1, . . . , vm, Z1, . . . , Zn} of a pseudo
H-type algebra with the form of Corollary 1.1.18 an integral basis. The corresponding
Clifford module v = span{v1, . . . , vm} from Corollary 1.1.18 is called an integral module,
and if it is of minimal possible dimension we call it a minimal integral module.

Let {v1, . . . , vm, Z1, . . . , Zn} be an adapted orthonormal basis of n. Denote by εvα
and εzk the indices corresponding to scalar product spaces (v, 〈· , ·〉v) and (z, 〈· , ·〉z). The
structure constants and the coefficients of the representation operator J : z → End(v)
are

[vα , vβ] =
n∑

k=1

Ck
αβZk and JZk

vα =
m∑

β=1

Bk
αβvβ. (1.7)

Then we obtain the relation

εvβB
k
αβ = εzkC

k
αβ (1.8)

from 〈JZk
vα , vβ〉v = 〈Zk , [vα , vβ]〉z by [46]. Equality (1.8) allows to relate the structure

constants Ck
αβ of pseudo H-type algebras and coefficients Bk

αβ of the representation
operator. Recall that we denote the pseudo H-type algebra induced by Clr,s by nr,s =
vr,s ⊕ zr,s, where vr,s is the minimal admissible integral module vr,s of Clr,s and zr,s = Rr,s

the generator space of the Clifford algebra Clr,s and the center of the Lie algebra nr,s.

1.1.7 Lattices on Lie groups

In Chapter 5 we discuss the question when certain two step nilpotent Lie algebras
admit bases with rational structural constants. This is equivalent to the fact that the
corresponding Lie groups admit lattices. We explain this relation.

Definition 1.1.20. A subgroup K of G is called a (co-compact) lattice if K is discrete
and the right quotient K\G is compact. The space K\G is called a compact nilmanifold
or compact 2-step nilmanifold if G is a 2-step nilpotent Lie group.

Theorem 1.1.21 (Mal’cev criterion [66]). The group G admits a lattice K if and only
if the Lie algebra g admits a basis B = {b1, . . . , bn} with rational structural constants
[bi , bj] =

∑n
k=1 C

k
ijbk, C

k
ij ∈ Q.

We denote the Lie exponent and logarithm by exp: g → G and log : G → g. Given a
lattice K, one can construct the corresponding basis B as follows. Set gQ = spanQ logK,
which is a Lie algebra over the field Q. Denote by BQ a Q-basis in gQ. Then it is also
an R-basis B in g.

Reciprocally, given a basis B defined as in Theorem 1.1.21, let Λ be a vector lattice
in g, such that Λ ⊂ spanQ B. Then the lattice K is generated by elements expΛ and
spanQ(logK) = spanQ B.
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1.2 Preliminaries of sub-Riemannian geometry

Sub-Riemannian geometry is an abstract setting to study geometry with non-holonomic
constraints. A sub-Riemannian manifold is a triplet (Q,H, gH), where Q is a smooth
manifold, H is a smooth subbundle of the tangent bundle TQ of the manifold Q (or a
smooth distribution) and gH is a smoothly varying with respect to q ∈ Q inner product
gH(q) : Hq × Hq → R. The topic is actively developed during the last decades and as,
now classical, sources we refer to [4, 29, 65, 71, 84]. We remind the necessary definitions
and propositions based on [71] if not otherwise stated.

Definition 1.2.1. A sub-Riemannian manifold is a triplet (Q,H, 〈· , ·〉), where Q is a
C∞-manifold, H is a vector subbundle of the tangent bundle TQ, and 〈· , ·〉 is a fibre
inner-product. The subbundle H is called horizontal and Hq is a horizontal space at a
point q ∈ Q. The metric 〈· , ·〉q : Hq×Hq → R, q ∈ Q is called a sub-Riemannian metric,
and the couple (H, 〈· , ·〉) is a sub-Riemannian structure on Q.

Definition 1.2.2. An absolutely continuous curve γ : [0, T ] → Q is called horizontal if
γ̇(t) ∈ Hγ(t) almost everywhere.

Definition 1.2.3. We define the length l := l(γ) of an absolutely continuous horizontal
curve γ : [0, T ] → Q as in Riemannian geometry:

l(γ) :=

∫ T

0

‖γ̇‖dt =
∫ T

0

√
〈γ̇(t) , γ̇(t)〉 dt.

We introduce the function d(q0, q) for q0, q ∈ Q by d(q0, q) := infγ{l(γ)}, where the
infimum is taken over all absolutely continuous horizontal curves that connect q0 and q.
If there is no horizontal curve joining q0 to q, then we declare d(q0, q) = ∞.

Definition 1.2.4. A horizontal subbundle H is called bracket generating if for every
q ∈ Q there exists r(q) ∈ Z+ such that Hr(q) = TqQ, where H1 := H and Hr+1 :=
[Hr ,H] +Hr, r ≥ 1.

The following proposition, known as the Chow-Rashevskĭı theorem [34, 78], gives a
sufficient condition of the existence of horizontal curves.

Proposition 1.2.5. Let Q be a connected manifold. If the horizontal subbundle H ⊂ TQ
is bracket generating, then any two points in Q can be joined by a horizontal curve.

It follows that if H is bracket generating on a connected manifold, then the function
d introduced in Definition 1.2.3 is finite and defines the distance between two points on
the manifold, called the Carnot-Carathéodory distance.

Definition 1.2.6. An absolutely continuous horizontal curve that realizes the distance
between two points is called a minimizing geodesic.

The existence of local and global minimizers is stated in the following sub-Riemannian
analogue of the Hopf-Rinow theorem.
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Proposition 1.2.7. [19, Theorem 2.7, p. 19 and Remark 2, p. 20] Suppose a horizontal
distribution on a manifold M is bracket generating. Then

1. Sufficiently near points can be joined by a minimizing geodesic;

2. If (M, d) is a complete metric space for a Carnot-Carathéodory metric d, then any
two points can be joined by a minimizing geodesic. In particular, this is true for
compact M .

For example the compactness of the Stiefel manifold guarantees the existence of
global minimizing geodesics, for details see Chapter 8.

In the end of this subsection we define one of the main objects of Part III.

Definition 1.2.8. The cut locus of a point q0 ∈ Q in a sub-Riemannian manifold
(Q,H, gH) is the set

Kq0 =
{
q ∈ Q| there exist T > 0, γ1, γ2 : [0, T ] → Q, γ1 �= γ2,minimizing horizontal

geodesics, such that γ1(0) = γ2(0) = q0 and γ1(T ) = γ2(T ) = q
}
.

1.2.1 Ehresmann connection and horizontal lifts

In this subsection we want to introduce principal bundles, which allows us to relate
geodesics of Riemmanian geometry to sub-Riemannian geodesics. For that purpose we
first define submersions.

Definition 1.2.9. Let Q and M be two smooth manifolds. Then a smooth map π : Q →
M is called a submersion if the differential dqπ : TqQ → Tπ(q)M is a surjective map at
any point q ∈ Q.

Suppose two differentiable manifoldsQ, M , and the submersion π : Q → M are given.
The fibre through q ∈ Q is the set Qm := π−1(m), m = π(q), which is a submanifold
according to the implicit function theorem. The differential dqπ : TqQ → Tπ(q)M of π
defines the vertical space Vq ⊂ TqQ which is the tangent space to the fibre Qπ(q) and it
is written as Vq := ker(dqπ) = Tq(Qm), where ker(dqπ) denotes the kernel of the linear
map dqπ. It can be shown that V =

⋃
q∈Q Vq is a smooth subbundle of TQ which is

called vertical subbundle [71].

Definition 1.2.10. An Ehresmann connection (or connection) for a submersion π : Q →
M is a subbundle H ⊂ TQ that is everywhere transverse and of complementary dimen-
sion to the vertical: Vq ⊕Hq = TqQ. The space Hq is called the horizontal subspace of
TqQ.

We describe now the model of a sub-Riemannian manifold that is used in forthcoming
sections. Let π : Q → M be a submersion of a Riemannian manifold (Q, g) onto a
manifold M and Vq a vertical space at some point q ∈ Q. We define Hq to be the
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orthogonal complement to Vq with respect to the Riemannian metric g. Then, the
subbundle H is clearly the Ehresmann connection. If 〈· , ·〉 denote the restriction of
the metric g on the subbundle H, then the triplet (Q,H, 〈· , ·〉) is a sub-Riemannian
manifold. In Chapter 8 the manifold Q will be the Stiefel manifold, M will be the
Grassmann manifold and the metric will be induced by the trace metric from the groups
U(n) or SO(n).

The induced sub-Riemannian structure has certain related properties to its underly-
ing Riemannian structure. To state these properties we require one more definition.

Definition 1.2.11. Let π : Q → M be a submersion with connection H and let c : I → M
be a curve starting at m ∈ M . A curve γ : I → Q is called a horizontal lift of the curve
c if γ is tangent to H and projects to c, i.e. γ̇(t) ∈ Hγ(t) and π ◦γ(t) = c(t) for all t ∈ I.

If a horizontal lift of c starting at a given point q ∈ Qm exists, the horizontal lift is
unique.

Proposition 1.2.12. The induced sub-Riemannian structure fulfills the following prop-
erties:

• The sub-Riemannian length of a horizontal path in Q equals the Riemannian length
of its projection to M .

• The horizontal lift of a Riemannian geodesic in M is a sub-Riemannian geodesic in
Q. If the Riemannian geodesic minimizes between its endpoints, then its horizontal
lift minimizes between the corresponding fibers.

• The projection π is distance decreasing, i.e. for any q1, q2 ∈ Q

dQ(q1 , q2) ≥ dM(π(q1) , π(q2)).

1.2.2 Metrics on Principal bundles

We are now specializing to the case of principal G-bundles. To relate Riemannian to
sub-Riemannian geodesics we are interested in metrics for which the group G acts by
isometries.

Definition 1.2.13. A fibre bundle π : Q → M is a principal G-bundle if its fibre F ⊂ Q
is a Lie group G that acts freely and transitively on each fibre F , i. e.

• if g ∈ G and there exists an x ∈ F with gx = x, then g is the identity element,

• if for any x, y ∈ F there exists a g ∈ G such that gx = y.

We assume that the group G acts on F on the right q �→ qg, q ∈ F ⊂ Q, g ∈ G. As
a consequence of free and transitive action we can identify M with the quotient Q/G of
Q by the group action of G. Furthermore, π corresponds to the canonical projection of
Q to the quotient set Q/G.
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Definition 1.2.14. A connection on π : Q → M is a principal G-bundle connection if
the action of G preserves the connection.

Definition 1.2.15. Let π : Q → M be a principal G-bundle with a connection H. A
sub-Riemannian metric on (Q,H), which is invariant under the action of G, is called a
metric of bundle type.

A sub-Riemannian metric which is induced from a G-invariant metric on Q is an
example of a metric of bundle type.

Definition 1.2.16. A bi-invariant Riemannian metric 〈· , ·〉 on a differentiable manifold
Q with the Lie group G acting on it is said to be of constant bi-invariant type if its inertia
tensor Iq : g× g → R defined by Iq(ξ, η) := 〈σqξ , σqη〉 is independent of q ∈ Q. Here

σq : g → TqQ,

ξ �→ d

dε

∣∣∣∣
ε=0

q exp(εξ),

and g is the Lie algebra of the Lie group G.

Definition 1.2.17. Let π : Q → M be a principal G-bundle with a Riemannian metric
of constant bi-invariant type and H be the induced connection. We define the g-valued
connection one-form Aq uniquely as the linear operator Aq : TqQ → g which satisfies the
following properties:

ker(Aq) = Hq, Aq ◦ σq = Idg,

where Idg is the identity map on g.

The map A : TQ → g defines a g-valued connection one-form on Q.

Theorem 1.2.18. [71] Let π : Q → M be a principal G-bundle with a Riemannian
metric of constant bi-invariant type. Let H be the induced connection, with g-valued
connection one-form A. Let expR be the Riemannian exponential map, so that γR(t) =
expR(tv) is the Riemannian geodesic through q with initial velocity v ∈ TqQ. Then any
horizontal lift γ of the projection π ◦ γR is a normal sub-Riemannian geodesic and is
given by

γv(t) = expR(tv) expG(−tA(v)), (1.9)

where expG : g → G is the group G exponential map. Moreover, all normal sub-Riemannian
geodesics can be obtained in this way.

Remark 1.2.19. We emphasize that the constant vector v ∈ TqQ is not the initial vector
of the sub-Riemannian geodesic γ(t), this is the initial vector of the Riemannian geodesic
expR(tv), which is not necessarily horizontal. Note that v ∈ TqQ can be decomposed into
the horizontal component and the vertical one. The horizontal component is the initial
vector of the sub-Riemannian geodesic γ. The image A(v) of the vertical component in
g gives rise to the one parametric subgroup expG(−tA(v)) ⊂ G that “corrects” the Rie-
mannian geodesic expR(tv) to the sub-Riemannian geodesic γ. More details concerning
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Theorem 1.2.18, exponential map for sub-Riemannian manifolds and normal geodesics
can be found in [71, Chapter 11]. We continue to call the vector v the “initial vector”,
since it is one of the initial data to create the normal sub-Riemannian geodesic γ of the
form (1.9), even if it does not uniquely define the sub-Riemannian geodesic.

1.2.3 The sub-Riemannian Hamiltonian

Let Q be an n-dimensional smooth manifold and H be a smooth horizontal subbundle
such that dimHq = k ≤ n for all q ∈ Q. Considering a neighborhood Oq around
q ∈ Q such that the subbundle H is trivialized in Oq, one can find a local orthonormal
basis X1, . . . , Xk with respect to the sub-Riemannian metric 〈· , ·〉. The associated sub-
Riemannian metric Hamiltonian is given by

H(p, λ) =
1

2

k∑
m=1

λ(Xm(p))
2,

where (p, λ) ∈ T ∗Oq, with T ∗Oq being the dual space of TOq. A normal geodesic is
defined as the projection to Oq ⊂ Q of the solution to the Hamiltonian system

ṗi =
∂H

∂λi

, λ̇i = −∂H

∂pi
,

where (pi, λi) are the coordinates in T ∗Oq. We note that the word “normal” appears
due to the fact that in sub-Riemannian geometry exists another type of geodesics, called
“abnormal” arising from a different type of Hamiltonian functions. For a more detailed
study of abnormal geodesics we refer to [5, 21, 22, 23, 35, 36, 54, 65]. In this thesis
abnormal geodesics appear in the discussion of the cut locus of Vn,k with k > 1 and even
there just play a minor role.

1.2.4 Bracket generating vs. strongly bracket generating

In this subsection we want to introduce the reader to a stronger concept of a bracket
generating distribution. One of the main differences between these two concepts is
that strongly bracket generating distributions imply the absence of strictly abnormal
minimizers.

Definition 1.2.20. A horizontal subbundle H on a manifold is strongly bracket gener-
ating if for any non-zero section Z of H, the tangent bundle of the manifold is generated
by H and [Z ,H].

We note that strongly bracket generating implies bracket generating, nevertheless
the following statement is just true for strongly bracket generating distributions.

Proposition 1.2.21. On a strongly bracket generating horizontal subbundle H all
geodesics are normal.
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The present work is mostly concerned with normal geodesics. The absence of abnor-
mal ones in the most of the objects studied in this thesis follows from Proposition 1.2.21.
Furthermore, there exist certain necessary conditions for strongly bracket generating dis-
tributions.

Proposition 1.2.22. Let Q be an m-dimensional manifold and H an l-dimensional
strongly bracket generating distribution of co-dimension 2 or greater. Then the following
conditions

(1) l is a multiple of 4, (2) l ≥ (m− l) + 1.

have to be fulfilled.

The contact manifolds are one of the most important examples for manifolds with a
strongly bracket generating distribution.

Definition 1.2.23. A sub-Riemannian manifold (Q,H, gH) is a contact manifold if there
exists a single one-form θ such that

• kern(θq) = Hq for all q ∈ Q,

• for all X ∈ H: If dθ|(X , v) = 0 for all v ∈ H, then X = 0.

The main reason we state contact manifolds is their appearance in Section 8.3 and
their following property.

Proposition 1.2.24. If (Q,H, gH) is a contact manifold, then is the horizontal distri-
bution H strongly bracket generating.



Chapter 2

Main results

In this chapter we summarize the main results of the research Chapters 4 - 8. Each of
them, except Chapter 5, represents one project, which is summarized in a submitted or
published paper. Details can be found in the chapters itself.

2.1 Classification of pseudo H-type algebras

We mainly focus on the classification of pseudo H-type algebras nr,s given as the direct
sum of a minimal admissible Clifford module vr,s and the generator space zr,s of the
Clifford algebra Clr,s. For details about the construction of nr,s see Subsection 1.1.5.
In the following we discover that even we are just interested in the classification of Lie
algebras, the metric structure of the center zr,s plays a critical role. In detail, a pseudo
H-type algebra nr,s can only be isomorphic to ns,r, i.e. this condition is based on the
signature of the scalar product of the center.

As a consequence of the proof of the necessary condition we obtain that if two different
pseudo H-type algebras nr,s and ns,r are isomorphic, then there exists an isomorphism
f : nr,s → ns,r such that the restriction f |zr,s : zr,s → zs,r is an anti-isometry, i.e.

〈f |zr,s(Z) , f |zr,s(Z)〉zs,r = −〈Z ,Z〉zr,s , for all Z ∈ zr,s .

Based on this condition for the isomorphism we classify all pseudo H-type algebras
of the form nr,0 and n0,r.

Theorem. The pseudo H-type algebras nr,0 and n0,r are isomorphic if and only if r
mod (8) ∈ {0, 1, 2, 4}.

The proof for the non-isomorphisms follows directly from different dimensions of the
minimal admissible Clifford modules vr,0 and v0,r for r = 3, 5, 6, 7 and the fact that
dim(vp,0) = 16k dim(vr,0) for p = 8k + r for r = 3, 5, 6, 7.

To prove the isomorphisms we construct the isomorphisms for the cases nr,0 and n0,r
for r = 1, 2, 4, 8. Then we use a relation between the structural constants of nr+8,0 and
the structural constants of nr,0 and n8,0 based on the Bott-periodicity of Clifford algebras.
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This relation is a cornerstone of the classification. It is based on a construction of integral
bases for pseudo H-type algebras with higher dimensional centers (dim(zr,s) > 8) given
in [46].

The classification of the pseudoH-type algebras nr,s with r, s �= 0 is significantly more
complicated. Nevertheless, we present a partial classification of them. The status quo
is that there are isomorphic and non-isomorphic pseudo H type algebras nr,s of equal
dimension. Both are presented in Chapter 4. A summary of the known isomorphic
pseudo H-type algebras is given in the following theorem.

Theorem. The H-type algebras nr+8t1+4t2,8t3+4t2 and n8t3+4t2,r+8t1+4t2 are integral iso-
morphic for r ∈ {0, 1, 2, 4} and t1, t2, t3 ∈ N0.

The H-type algebras nr+8t1+4t2,r+8t3+4t2 and nr+8t3+4t2,r+8t1+4t2 are integral isomorphic
for r ∈ {0, 1, 2} and t1, t2, t3 ∈ N0.

The proof is based on a decomposition of the module space vr,s. We decompose vr,s
into two disjoint maximal abelian metrically neutral algebras. In particular, we choose
a basis of each of the two disjoint maximal abelian metrically neutral algebras and call
the union of them a block type basis of vr,s. If there exists an isomorphism between nr,s
and ns,r, then the decomposition of the block type basis is preserved.

The example of two pseudo H-type algebras with equal dimension, which are not
isomorphic, is given by the two pseudo H-type algebras n3,2 and n2,3. These algebras
have the seldom property that the adjoint operator adX : vr,s → zr,s is surjective if and
only if 〈X ,X 〉vr,s �= 0 for all (r, s) ∈ {(3, 2), (2, 3)} .

Furthermore, we stress that the results of the previous paragraph represent a quite
exceptional case. We note that the definition of the general H-type algebras is often
misinterpreted and does not imply that adX is not surjective for any X ∈ vr,s with
〈X ,X 〉vr,s = 0. In Chapter 4, we state a couple of lemmas illustrating that in the

majority of the cases there exist X ∈ vr,s with 〈X ,X 〉vr,s = 0 such that adX is not
surjective.

As a final remark to the classification we would like to mention that the status quo
is, that it is not clear how to use Bott-periodicity for non-isomorphic pseudo H-type
algebras of equal dimension.

In the end of the chapter we are studying the strongly bracket generating property
of the pseudo H-type algebras nr,s.

Definition. Let nr,s = vr,s ⊕ zr,s be a pseudo H-type algebra. We call a vector space vr,s
strongly bracket generating if for any non-zero v ∈ vr,s the linear map adv = [v , ·] : vr,s →
zr,s is surjective, i.e. span{vr,s, [v , vr,s]} = nr,s for all v ∈ vr,s \{0}. We say in this case
that the pseudo H-type algebra nr,s has the strongly bracket generating property.

Let Nr,s be the Lie group, corresponding to the pseudo H-type algebra nr,s and let
H be the left translation of the vector space vr,s. If vr,s is strongly bracket generating,
then the left invariant distribution H is strongly bracket generating in a sense that
span{H, [X ,H]} = TNr,s for any smooth non-zero section X of the distribution H, see
Definiton 1.2.20. We obtain the following theorem.
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Theorem. The pseudo H-type algebras nr,s do not have the strongly bracket generating
property if and only if r, s �= 0.

In the beginning of our classification we restricted ourselves to the pseudo H-type
algebras constructed by minimal admissible modules. If we release this constraint and
allow non-minimal admissible Clifford modules, then we have to deal with new challenges
and obtain more cases to consider in our classification. We note that any non-minimal
admissible module v is equivalent to the direct sum of minimal admissible modules.
If r − s �= 3( mod (4)), then there exists only one minimal admissible module up
to equivalence, but if r − s = 3( mod (4)), then there exist two minimal admissible
modules, which are non-equivalent. This leads to the question: are pseudo H-type
algebras nr,s(μ1, μ2) constructed by non-equivalent modules, but with identical center
isomorphic to each other or not. This question is answered.

Theorem. Pseudo H-type algebras nr,s(μ1, 0) and nr,s(μ2, 0) for r− s �= 3( mod 4) are
isomorphic if and only if μ1 = μ2.

Two pseudo H-type algebras nr,s(μ1, ν1) and nr,s(μ2, ν2) for r − s = 3( mod 4) are
isomorphic if and only if μ1 = μ2 and ν1 = ν2 or μ1 = ν2 and ν1 = μ2.

2.2 Pseudo-metric 2-step nilpotent Lie algebras

Although, as we have mentioned before in subsection 1.1.2, every 2-step nilpotent Lie
algebra is isomorphic to a standard metric Lie algebra in the sense of Eberlein [42],
it is of interest to generalize or specify these isomorphisms under certain conditions.
The identification of Eberlein is interesting on its own, but looses certain interesting
properties when it comes to pseudo H-type algebras. Therefore, we developed a theory
under which a 2-step nilpotent Lie algebra can be isomorphically represented by an
indefinite standard metric Lie algebra G = Rp,q ⊕⊥ D with D ⊂ so(p, q). The general
theorem is formulated as follows.

Theorem. Let g be a 2-step nilpotent Lie algebra such that dim([g , g]g) = n and the
complement V to [g , g]g has dimension m. Then there exists an n-dimensional subspace

D of so(p, q), p + q = m, n ≤ m(m−1)
2

, such that if D is a non-degenerate subspace
of so(p, q), then g is isomorphic as a Lie algebra to the standard pseudo-metric 2-step
nilpotent Lie algebra G = Rp,q ⊕⊥ D.

Further we turn our attention to the freely generated 2-step nilpotent Lie algebra
F2(p, q) = Rp,q ⊕ so(p, q). Consider Rp,q, p+ q = m with the indefinite metric 〈x , y〉p,q =
xtηp,qy. We construct the Lie algebra F2(p, q) = Rp,q ⊕ so(p, q), where the commutator
on Rp,q is defined by

[w , v]F2(p,q) = −1

2
(wvt − vwt)ηp,q.

For the standard basis {ei} of Rp,q we get [ei , ej]F2(p,q) = −1
2
(Eij − Eji)ηp,q, where Eij

denote the (m×m) matrix with zero entries except of 1 at the position ij. Since F2(p, q)
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is a 2-step nilpotent Lie algebra, we obtain that so(p, q) forms the center. Particularly,
if q = 0 we get the free Lie algebra F2(m) studied in [42]. We show that all 2-step
nilpotent free algebras F2(p, q) with p+ q = m are isomorphic.

This result together with the previously presented theorem allows to give a more
detailed understanding of isomorphic Lie algebras of step two represented by indefinite
standard metric Lie algebras.

Proposition. Let d be an integer with 1 ≤ d ≤ dim(so(p, q)). Let W1,W2 ⊂ so(p, q)
be two d-dimensional non-degenerate subspaces with respect to 〈 · , · 〉so(p,q). Then the
following statements are equivalent:

1) The Lie algebra F2(p, q)/W1 is isomorphic to F2(p, q)/W2;

2) There exists an element A ∈ GL(m), m = p+ q such that AW1A
ηp,q = W2;

3) The Lie algebra F2(p, q)/W
⊥
1 is isomorphic to F2(p, q)/W

⊥
2 .

4) The Lie algebra g1 = Rp,q ⊕W1 is isomorphic to g2 = Rp,q ⊕W2

In the following we focus on the relation between Lie triple systems in so(p, q) and
pseudo H-type algebras.

Definition. Let W be a subspace of so(p, q) such that [a , [b , c]] ∈ W for all a, b, c ∈ W .
The subspace W is called a Lie triple system in so(p, q).

The Lie triple systems associated with a representation of Clifford algebras form a
subalgebra of so(l, l) respectively so(2l), which are reductive. Let Clr,s be a Clifford
algebra generated by Rr,s and J : Rr,s → so(l, l) ⊂ End(Rl,l) for s �= 0 and J : Rr,s →
so(2l) ⊂ End(R2l,0) for s = 0 be its representation. Denote W = J(Rr,s) ⊂ so(l, l)
respectively W = J(Rr,0) ⊂ so(2l) and L = W + [W ,W ]. Then we obtain that the
Lie algebra L is simple, hence L is reductive. Now we can relate Lie triple systems of
so(p, q) with rational subspaces, which are defined as follows.

Definition. Let g be a Lie algebra such that with respect to a basis Bg the Lie algebra g
has rational structure constants. Then the set spanQ{Bg} is called the rational structure
of the Lie algebra g. A subspace U of g is called rational subspace with respect to the
rational structure spanQ{Bg} if there is a basis BU such that BU ⊂ spanQ{Bg}.

The final results of Chapter 5 are obtained by the use of the recent results of Kam-
meyer [58], who constructed an explicit basis CL with integer structure constants for
any real semisimple Lie algebra L. This basis CL is a real Chevalley basis. We obtain:

• If W is a Lie triple system of so(p, q), and L = W ⊕ [W ,W ] = [L ,L] is semisim-
ple, then W is a rational subspace of L with respect to the rational structure
spanQ{CL}.

• The Lie triple system W of so(p, q) is a rational subspace of L = W + [W ,W ] =
[L ,L] with respect to the rational structure spanQ{CL1} ⊕ spanQ{CL2}, where
L1 = W ∩ [W ,W ] �= 0 and L2 := L⊥

1 with respect to any ad-invariant inner
product (· , ·)L on L.
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2.3 The sub-Riemannian geodesic equation in the

octonionic H-type group

The octonionic Lie algebra g is the algebra, which is spanned by the vector fields
X1, . . . , X8,Z1, . . . , Z7 with a given commutator of vector fields in R15, see Table 6.1.
The octonionic H-type group G is the nilpotent Lie group structure on R15 of step 2
induced by the Lie algebra g via the Baker-Campbell-Hausdorff formula. An explicit
expression for the product rule can be found in [28, Equation (3.7)].
We define an inner product 〈· , ·〉 on g such that the vector fields X1, . . . , X8, Z1, . . . , Z7

form an orthonormal frame. The left-invariant distribution

H := span{X1, . . . , X8},

and the restriction of 〈· , ·〉 to H give us the sub-Riemannian structure on G we study
further. We define the almost complex structures Jr : H → H, r ∈ {1, . . . , 7}, on H by

Jr(X) := 2∇XZr, r ∈ {1, . . . , 7},

for any section X of H. The class of curves we are interested in are horizontal with re-
spect to H and, most importantly, critical points of the natural sub-Riemannian length
functional. We present a characterization of these critical points via a differential equa-
tion, similar to the geodesic equation in Riemannian geometry, which states that for
critical points of the length functional the intrinsic acceleration ∇γ̇ γ̇ is a linear combi-
nation with constant coefficients of some special rotations of the velocity γ̇. This result
is summarized in the following main theorem.

Theorem. Let γ : [a, b] → G be a horizontal curve of class C2, parametrized by arc
length. Then γ is a critical point of the length functional (with respect to admissible
variations) if, and only if, there exist constants λ1, . . . , λ7 ∈ R such that γ satisfies the
second order differential equation

∇γ̇ γ̇ − 2
7∑

r=1

λrJr(γ̇) = 0.

This theorem can be seen as an extension of the techniques and results obtained by
many authors, among others [14, 50, 71, 81, 82].

2.4 The sub-Riemannian cut locus of H-type groups

The H-type group Nr,0 is the unique (up to isomorphism) connected and simply con-
nected Lie group with Lie algebra nr,0 = vr,0 ⊕ zr,0, where the Lie algebra structure is
defined by the corresponding Clifford representation J : zr,0 → End(vr,0) and the relation

〈JZv , w〉vr,0 = 〈Z , [v , w]〉zr,0 , for all v, w ∈ vr,0 .
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Observe that in this context we are not requiring that the admissible Clifford module vr,0
is of minimal dimension, cf. Section 1.1.5. The subspace vr,0 defines a strongly bracket
generating distribution of step 2 over Nr,0 by left-translation, and the translations of the
inner product 〈 · , · 〉vr,0 makes Nr,0 into a sub-Riemannian manifold.

Recall that for a simply connected nilpotent Lie group, the exponential map is a
diffeomorphism, see for example [40], allowing to identify Nr,0 with vr,0 ⊕ zr,0. Under
this identification, we denote by Vr,0 and Zr,0 the image of vr,0 and zr,0 respectively and
identify any element p ∈ Nr,0 uniquely with (xp, zp) with xp ∈ Vr,0 and zp ∈ Zr,0.

It is possible to show that the normal sub-Riemannian geodesics starting from (0, 0) ∈
Nr,0 can be written, in general, in the following form

x(t) =
sin(t|θ|)

|θ| ẋ(0) +
(1− cos(t|θ|))

|θ|2 Ωẋ(0),

z(t) =
|ẋ(0)|2
2|θ|2
(
t− sin(t|θ|)

|θ|
)
θ,

which is based on results given in [51].
Furthermore, we can specify how many of these geodesics reach a given point (x, z) ∈

Nr,0 in time t = 1, by means of the following theorem.

Theorem. We distinguish the following three cases:

• Given a point (0, z) ∈ Nr,0 with z �= 0, there are infinitely many sub-Riemannian
geodesics joining the origin (0, 0) with (0, z).

• Given a point (x, z) ∈ Nr,0 with x �= 0, z �= 0, there are finitely many sub-
Riemannian geodesics joining the origin (0, 0) with (x, z).

• Given a point (x, 0) ∈ Nr,0 with x �= 0, there is a unique sub-Riemannian geodesic
joining the origin (0, 0) with (x, 0).

By carefully sharpening the results of the previous theorem to the case of minimizing
geodesics, we can deduce the main result of Chapter 7.

Theorem. The cut locus K(0,0) of the H-type group Nr,0 is given by the points of the
form (0, z).

2.5 The sub-Riemannian geometry of Stiefel mani-

folds

We consider the Stiefel manifold Vn,k, which is the set of all k-tuples (q1, . . . , qk) of
vectors qi ∈ Cn, i ∈ {1, . . . , k}, which are orthonormal with respect to the standard
Hermitian metric. This is a compact real analytic manifold which can be equivalently
defined as

Vn,k := {X ∈ Cn×k| X̄TX = Ik}.
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We can also realize the Stiefel manifold as a quotient space of U(n) by the closed sub-
group U(n − k), which is a more convenient representation for our purposes. For that
we define the equivalence class

[q]Vn,k
=

{
q

(
Ik 0
0 Un−k

)
,
∣∣∣Un−k ∈ U(n− k)

}
∈ U(n)/U(n− k),

for q ∈ U(n) and note that we can identify it with a point in the Stiefel manifold. So,
practically, an element of Vn,k is thought of as an element in U(n) whose first k columns
from the left are of interest and the last n− k columns are not.

The sub-Riemannian structure on Vn,k, which will be relevant in Chapter 8, is induced
by the Grassmann manifolds. The Grassmann manifold Gn,k is defined as the collection
of all k-dimensional subspaces Λ of Cn. We are interested in the representation of Gn,k

as a quotient of U(n) by some closed subgroup. As in the case of the Stiefel manifolds,
we factor U(n) by U(n− k), but moreover, we also factor U(n) by U(k). Therefore, we
can identify any point in the Grassmann manifold with a unique equivalence class of the
form

[m]Gn,k
=

{
m

(
Uk 0
0 Un−k

) ∣∣∣ Uk ∈ U(k), Un−k ∈ U(n− k)

}
⊂ U(n), m ∈ U(n).

We define a sub-Riemannian structure on the Stiefel manifold Vn,k over the Grass-
mann manifold Gn,k by means of the natural submersion. A precise formula for the
normal sub-Riemannian geodesics in that case are given by Theorem 1.2.18.

We have to be aware of the fact that we do not have any formula for abnormal
geodesics, so that we mainly consider cases in which the sub-Riemannian structure is
strongly bracket generating, which implies the absence of strictly abnormal minimizers.

We note that we write Id for the equivalence class [In]Vn,k
∈ Vn,k. The main theorem

is stated as follows.

Theorem. The cut locus KId on Vn,1 is given by

Ln,1 :=

{[(
C 0
0 D

)]
Vn,1

∣∣∣ C ∈ U(1), D ∈ U(n− 1)

}
\ {Id} .

In particular, there are infinitely many minimizing geodesics connecting Id with any
point q ∈ Ln,1.

In the general case Vn,k we cannot rule out the presence of abnormal minimizers.
Nevertheless, we are able to describe the cut locus partially.

Theorem. The set

Ln,k =

{[(
C 0
0 D

)]
Vn,k

∣∣∣ C ∈ U(k), D ∈ U(n− k)} \ Id
}

belongs to the cut locus KId on Vn,k. In particular, there are infinitely many minimizing
geodesics connecting Id with any point q ∈ Ln,k.
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The cardinality of minimizing geodesics is of particular interest in the study of small
time heat kernel asymptotics [12].

In the particular case V2k,k it is possible to specify the previous result by studying
the Riemannian geodesics in the Grassmann manifold.

Lemma. The points

[(
0 D
C 0

)]
G2k,k

∈ G2k,k are reached by Riemannian geodesics start-

ing from [In]G2k,k
only if the initial velocity vector v has the form v =

(
0 B

−B̄T 0

)
,

B ∈ U(k). If we assume that tr(BB̄T ) = 1 the condition B ∈ U(k) is changed to√
kB ∈ U(k).

The horizontal lift of a Riemannian geodesic which minimizes between its endpoints
minimizes between its corresponding fibers. This leads to the following sharpened result.

Theorem. For any point s =

[(
0 D
C 0

)]
V2k,k

with C,D ∈ U(k) there is a unique

minimizing geodesic connecting Id with s.

All the mentioned results in this section can actually be stated analogously if we
consider real Stiefel and Grassmann manifolds. We would like to emphasize that we
do not input different sub-Riemannian structures on the same Stiefel manifold here.
We consider different Stiefel manifolds. One of them arise from U(n) factorized by a
subgroup of U(n) and others from SO(n), factorized by a subgroup of SO(n). For
example all manifolds Vn,1, related to U(n) possess the CR structure, but Vn,1 related
to SO(n) does not possess any sub-Riemannian structure.

2.6 Appendix

We present a list of works, where the most of the content of this thesis can be found.

• The main results of Chapter 4 are summarized in the submitted paper [8].

• The paper presenting the main results of Chapter 5 is in preparation.

• The main results of Chapter 6 is summarized in the accepted paper [10].

• The main results of Chapter 7 are summarized in the submitted paper [11].

• The main results of Chapter 8 are summarized and published in the paper [9].



Chapter 3

Future research

The purpose of this thesis is not just to illuminate some of the dark spots in the study of
H-type algebras and related sub-Riemannian cut locus topics, but also to develop basic
principles and theorems for future research. We would like to note that there are many
interesting and challenging open problems in the area of H-type algebras and their sub-
Riemannian cut locus. In the following we would like to give some ideas for forthcoming
research in the areas discussed in this thesis. Some of the suggested topics should be
solvable by results and techniques obtained here, whereas others are of general curiosity
in the area.

• Answer to the question of whether Bott periodicity applied to non-isomorphic
pseudo H-type algebras leads to non-isomorphic algebras.

• Complete classification of pseudo H-type algebras including the cases constructed
by non-minimal admissible modules.

• A new (non-constructive) proof of the existence of lattices in pseudo H-type alge-
bras, following the ideas of Eberlein [42].

• Study of geodesic equations for normal geodesics in 3-step nilpotent Lie groups,
generalizing the ideas in the manuscript [14].

• Consider the sub-Riemannian cut locus in manifolds admitting strictly abnormal
minimizers. We propose to study the Engel groups and Goursat distributions as
model examples.

• Determine small-time heat kernel asymptotics of second order at the sub-Riemannian
cut locus of the H-type groups Nr,0.
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Part II

Pseudo H-type algebras





Chapter 4

Classification of pseudo H-type
algebras

4.1 Introduction

A. Kaplan introduced the Lie groups of Heisenberg type or shortly H-type groups in
1980 [59] and studied them in detail, for instance in [60, 61]. The H-type algebras of
the H-type groups, constructed in [59], used the presence of an inner product on the
Lie algebra. Later this approach was extended by exploiting an arbitrary indefinite
non-degenerate scalar product in [37, 51] and the introduced Lie algebras received the
name pseudo H-type algebras. This construction is closely related to the existence of
a special scalar product on the representation space of Clifford algebras. Namely the
Clifford algebras Clr,0 generated by a positive definite scalar product space (Rr,0, 〈· , ·〉r,0),
which lead to the H-type algebras nr,0 introduced by A. Kaplan and the Clifford algebras
Clr,s generated by indefinite non-degenerate scalar product spaces (Rr,s, 〈· , ·〉r,s) creating
pseudo H-type algebras nr,s.

In the present chapter we study the isomorphism properties of the Lie algebras
nr,s, that were constructed as pseudo H-type algebras. Thus, we neglect the presence
of the scalar product 〈· , ·〉r,s on the Lie algebra nr,s and study isomorphisms of Lie
algebras as themselves. The isomorphism of Lie algebras defines the isomorphism of
the corresponding Lie groups. We are mostly concentrated on the minimal admissible
modules. We showed that the Lie algebras nr,s can not be isomorphic to nt,u unless r = t
and s = u or r = u and s = t. The question of existence of isomorphisms between
nr,s and ns,r is much more complicated. We proved that if s = 0, then the Lie algebras
nr,0 and n0,r are isomorphic if the dimensions of the centers coincide. If r, s �= 0, then
we present examples of both cases, isomorphic pairs and non isomorphic pairs, having
equal dimensions. Some of the Lie algebras, that we call of block type, allow to use the
Bott periodicity of underlying Clifford algebras and obtain more isomorphic pairs, see
Theorems 4.4.10 and 4.4.11.

We stress an interesting feature, that there are no direct relations between the iso-
morphisms of Clifford algebras and the isomorphisms of related Lie algebras. In some
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cases the isomorphic Clifford algebras lead to isomorphic Lie algebras, in other cases
not. For instance, in spite of the isomorphism of the Clifford algebras Cl8,0, Cl0,8, and
Cl4,4, the corresponding Lie algebras n8,0, n0,8 are isomorphic, but not isomorphic to the
Lie algebra n4,4.

The structure of the chapter is the following. After this Introduction in Section 4.2,
we discuss a necessary condition for isomorphisms of pseudo H-type algebras nr,s, which
shows that the only possible algebra which is isomorphic to nr,s, besides itself, is the
pseudo H-type algebra ns,r. Section 4.3 is devoted to the complete classification of
pseudo H-type algebras nr,0 and n0,r. Sections 4.4 and 4.5 study two different situations
revealing that the Lie algebras nr,s and ns,r with r, s �= 0 can be both isomorphic and non-
isomorphic. In Section 4.6, we exhibit the strongly bracket generating property of the
pseudoH-type algebras nr,0 and n0,s and the non-existence of this property for pseudoH-
type algebras nr,s with both r, s �= 0. Furthermore, we introduce an equivalent definition
for pseudo H-type algebras, that was introduced in [51], and explain the equivalence
of these definitions in details in subsection 4.6.1. In Section 4.7, we briefly discuss the
isomorphism of pseudo H-type algebras related to non-equivalent irreducible Clifford
modules. Finally the Appendix in Section 4.8 gives the commutator tables of n8,0, n0,8,
n4,4 and a table of permutations for a basis of n8,0.

4.2 Necessary condition for isomorphisms of pseudo

H-type algebras

In the present section we identify the admissible module vr,s, s �= 0 with Rl,l equipped

with the neutral scalar product 〈x , y〉l,l =
∑l

i=1 xiyi −
∑2l

j=l+1 xjyj for x, y ∈ Rl,l. In

the case vr,0 we use the identification of vr,0 with R2l endowed with the inner product

〈x , y〉2l =
∑2l

i=1 xiyi for x, y ∈ R2l. Thus a pseudo H-type algebra nr,s is isometric to
Rl,l ⊕ Rr,s respectively R2l ⊕ Rr,s. Let A ∈ GL(R2l). We denote by Aτ the adjoint map
with respect to the neutral scalar product 〈· , ·〉l,l

〈Aw , v〉l,l = 〈w ,Aτv〉l,l.
We use the same symbol to write the adjoint map 〈Aw , v〉2l,0 = 〈w ,Aτv〉l,l with respect
to scalar products 〈· , ·〉2l,0 and 〈· , ·〉l,l.

The adjoint map Cτ for the map C : Rt,u → Rr,s with t + u = r + s with respect to
corresponding scalar products is given by

〈C(Z) , ζ〉r,s = 〈Z ,Cτ (ζ)〉t,u.
Assume that two pseudo H-type algebras nt,u and nr,s are isomorphic and f : nt,u → nr,s
is an isomorphism. Then t + u = r + s and since the center of nt,u is mapped to the
center of nr,s, the matrix of the map f takes the form

Mf =

(
A 0
B C

)
, A ∈ GL(R2l), C ∈ GL(Rr+s) (4.1)
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and B being a
(
(r + s) × 2l

)
-matrix. Checking the commutation relations, we get

[Aw ,Av] = C([w , v]) for all w, v ∈ R2l. With this notation we prove our first classifica-
tion theorem.

Lemma 4.2.1. Under the above notation for the isomorphism f : nt,u → nr,s the matrices
A and C in (4.1) satisfy

Aτ ◦ JZ ◦ A = JCτ (Z), for all Z ∈ Rr,s. (4.2)

Proof. Formula (4.2) follows for s �= 0 from the calculations

〈Aτ ◦ JZ ◦ Aw , v〉l,l = 〈JZAw ,Av〉l,l = 〈Z , [Aw ,Av]〉r,s
= 〈Z ,C([w , v])〉r,s = 〈Cτ (Z) , [w , v]〉t,u = 〈JCτ (Z)w , v〉l,l

for all Z ∈ Rr,s and for all w, v ∈ R2l. If s = 0 we use the same arguments applied for
scalar products 〈· , ·〉2l,0 and 〈· , ·〉l,l.
Theorem 4.2.2. A pseudo H-type algebra nr,0 can only be isomorphic to n0,r.

Proof. Formula (4.2) implies that the action JCτ (Z) is singular if and only if JZ is singular
for Z ∈ Rr,s and this happens only if Z is a null vector in Rr,s. Since the space Rr,0

has no null vectors, the isomorphic Lie algebra can only have the center isomorphic to
R0,r.

Theorem 4.2.3. A pseudo H-type algebra nr,s can only be isomorphic to ns,r for r, s �= 0.

Proof. Let Z+, Z− ∈ Rt,u with 〈Z+ , Z+〉t,u > 0 and 〈Z− , Z−〉t,u < 0. We consider the
line segment γ(ζ) = (1−ζ)Z++ζZ− for ζ ∈ [0, 1]. Then there exists ζ0 ∈ (0, 1) such that
〈γ(ζ0) , γ(ζ0)〉t,u = 0 by the continuity of the scalar product and as 〈γ(0) , γ(0)〉t,u > 0,
〈γ(1) , γ(1)〉t,u < 0.

Furthermore, if we assume that (Z1, . . . , Zt+u) ∈ Rt,u is an orthonormal system such
that 〈Zi , Zj〉t,u = εi(t, u)δij and we use the notation

ϕij(ζ) = 〈(1− ζ)Zi + ζZj , (1− ζ)Zi + ζZj〉t,u = (1− ζ)2〈Zi , Zi〉t,u + ζ2〈Zj , Zj〉t,u,

for i �= j, then

ϕij(ζ) > 0 if i, j = 1, . . . , t, and ϕij(ζ) < 0 if i, j = t+ 1, . . . , t+ u (4.3)

for all ζ ∈ [0, 1].
Let f : nr,s → nt,u be the isomorphism represented by (4.1). Consider an orthonormal

basis {Z1, . . . , Zt+u} of Rt,u with 〈Zi , Zj〉t,u = εi(t, u)δij and the image

{Cτ (Z1), . . . , C
τ (Zt+u)} ⊂ Rr,s

under the map Cτ . We note that 〈Cτ (Zi) , C
τ (Zi)〉r,s �= 0 by Lemma 4.2.1.
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We claim that for basis vectors Zi, i = 1, . . . , t, one gets 〈Cτ (Zi) , C
τ (Zi)〉r,s > 0 or

〈Cτ (Zi) , C
τ (Zi)〉r,s < 0 for all indices i = 1, . . . , t, simultaneously.

Indeed, assume that there are Cτ (Zi) and Cτ (Zj) for i, j = 1, . . . , t such that products
〈Cτ (Zi) , C

τ (Zi)〉r,s and 〈Cτ (Zj) , C
τ (Zj)〉r,s have opposite sign. Then there exists ζ0 ∈

(0, 1) such that

〈(1− ζ0)C
τ (Zi) + ζ0C

τ (Zj) , (1− ζ0)C
τ (Zi) + ζ0C

τ (Zj)〉r,s = 0,

which implies that J(1−ζ0)Zi+ζ0Zj
is singular by Lemma 4.2.1, which contradicts (4.3). The

same arguments are valid for the basis vectors Zi with i = t+1, . . . , t+u. Thus we con-
clude that the scalar product 〈· , ·〉r,s restricted to subspaces span{Cτ (Z1), . . . , C

τ (Zt)}
and span{Cτ (Zt+1), . . . , C

τ (Zt+u)} is sign definite. As {Cτ (Z1), . . . , C
τ (Zt+u)} is a basis

of Rr,s it follows that

r = t and s = u, or r = u and s = t.

This implies, that the only possible isomorphic pseudo H-type algebra for nr,s is ns,r.

Theorem 4.2.4. If nr,s and ns,r, r �= s, are isomorphic, then there exists a Lie alge-

bra isomorphism ϕr,s : nr,s → ns,r given by the matrix

(
A 0
B C

)
with CCτ = − IdRs,r .

Moreover CτC = − IdRr,s and C, Cτ are anti-isometries.

Proof. Theorem 4.2.3 implies that for any Z ∈ Rs,r: 〈Z ,Z〉s,r = −λ〈Cτ (Z) , Cτ (Z)〉r,s
for some λ > 0. To determine λ we pick an arbitrary Z ∈ Rs,r and calculate(

det(AτJZA)
)2

=
(
det(AτA)

)2(〈Z ,Z〉s,r
)2l

.

On the other hand(
det(AτJZA)

)2
=
(
det(JCτ (Z))

)2
=
(〈Cτ (Z) , Cτ (Z)〉r,s

)2l
,

which is equivalent to | det(AτA)|1/l〈Z ,Z〉s,r = −〈Cτ (Z) , Cτ (Z)〉r,s = −〈Z ,CCτ (Z)〉s,r.
It follows that CCτ = −| det(AτA)| 1l IdRr,s .

If ϕr,s : nr,s → ns,r is a Lie algebra isomorphism, then ϕ̃r,s =

(
μA 0
B μ2C

)
for μ �= 0

is also a Lie algebra isomorphism as

ϕ̃r,s([w , v]r,s) = (μ2C)([w , v]r,s) = μ2(C([w , v]r,s) = μ2 ([Aw ,Av]s,r)

= [μAw , μAv]s,r = [ϕ̃r,s(w) , ϕ̃r,s(v)]s,r

for all w, v ∈ vr,s. Hence, without loss of generality, we can assume that | det(AτA)| = 1,
which implies that CCτ = − IdRs,r .

To show that C and Cτ are anti-isometries we choose an arbitrary Z ∈ Rs,r and
obtain

〈Cτ (Z) , Cτ (Z)〉r,s = 〈CCτ (Z) , Z〉s,r = −〈Z ,Z〉s,r.
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As Cτ is an isomorphism for any Y ∈ Rr,s there exists a unique ZY ∈ Rs,r such that
Cτ (ZY ) = Y . It follows that for any Y ∈ Rr,s we have the equality 〈Y , Y 〉r,s =
〈Cτ (ZY ) , C

τ (ZY )〉r,s = −〈ZY , ZY 〉s,r. Thus

〈CτC(Y ) , Y 〉r,s = 〈C(Y ) , C(Y )〉s,r = 〈CCτ (ZY ) , CCτ (ZY )〉s,r = 〈ZY , ZY 〉s,r
= −〈Y , Y 〉r,s.

Hence CτC = − IdRr,s and C is an anti-isometry.

Theorem 4.2.5. For any nr,s, r �= s there exists a Lie algebra automorphism f : nr,s →
nr,s given by the matrix

(
A 0
B C

)
with CCτ = IdRr,s. Moreover CτC = IdRr,s and C, Cτ

are isometries.

Proof. The proof follows analogously to the proof of Theorem 4.2.4 for r �= s. For r = s
one of the possible automorphisms is the identity map.

Remark 4.2.6. If r = s, then there can be cases when there exist two automorphisms:
one with CCτ = IdRr,r and one with CCτ = − IdRr,r , see for instance Theorem 4.4.7.
But there also exist cases where there are only automorphisms with CCτ = IdRr,r , see
for instance Theorem 4.5.6.

4.3 Classification of nr,0 and n0,r

Note that since the isomorphisms have to preserve the dimensions of Lie algebras and
their centers, we only need to check algebras nr,s and nt,u with r + s = t+ u.

4.3.1 Classification of nr,0 and n0,r with r = 1, 2, 4, 8

Definition 4.3.1. Let {v1, . . . , vm, Z1, . . . , Zn} be an integral basis of a pseudo H-type
algebra n and {ṽ1, . . . , ṽm, Z̃1, . . . , Z̃n} an integral basis of a pseudo H-type algebra ñ.
If a Lie algebra isomorphism f : n → ñ satisfies f(vi) = ṽi and f(Zl) = Z̃l, then f is
called an integral isomorphism and we say that n is integral isomorphic to ñ.

Notation 4.3.2. For a given orthonormal basis {Z1, . . . , Zr+s} of the center zr,s of the
pseudo H-type algebra nr,s we simplify the notation of the operator JZi

: vr,s → vr,s to
JZi

:= Ji for all Zi ∈ {Z1, . . . , Zr+s}.
Theorem 4.3.3. The Lie algebras nr,0 and n0,r with r = 1, 2, 4, 8 are integral isomorphic.

Proof. For all cases we assume the orthonormal basis {Z1, . . . , Zr+s} of the center zr,s of
the pseudo H-type algebra nr,s with 〈Zk , Zk 〉zr,s = εk(r, s). Furthermore, all admissible

modules are assumed to be minimal and all structural constants are obtained by the use
of relation (1.8). For more details on how to obtain integral bases for general pseudo
H-type algebras see [46].
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Isomorphism on n1,0 and n0,1. Let (v1,0, 〈· , ·〉v1,0) be a minimal admissible module
and w ∈ v1,0 be such that 〈w ,w〉v1,0 = 1. Then the basis w1 := w, w2 := J1w is integral
and 〈wi , wi〉v1,0 = 1, i = 1, 2.

Let (v0,1, 〈· , ·〉v0,1) be a minimal admissible module and w̃ ∈ v0,1 such that 〈w̃ , w̃〉v0,1 =
1. Then the basis w̃1 := w̃, w̃2 := J̃1w̃, is integral and 〈w̃i , w̃i〉v0,1 = εi(1, 1), i = 1, 2.

Calculating the commutators with respect to both integral bases, presented in Ta-
ble 4.1, we conclude that they coincide. It follows that n1,0 is integral isomorphic to n0,1
under the isomorphism ϕ1,0 : n1,0 → n0,1 defined by w1 �→ w̃1, w2 �→ w̃2, Z1 �→ Z̃1.

Table 4.1: Commutation relations for n1,0 and n0,1

[row , col.] w1 w2

w1 0 Z1

w2 −Z1 0

Isomorphism of n2,0 and n0,2. In the minimal admissible module (v2,0, 〈· , ·〉v2,0) we
pick w ∈ v2,0 such that 〈w ,w〉v2,0 = 1. Then the basis w1 := w, w2 := J2J1w, w3 := J1w,
and w4 := J2w is integral and 〈wi , wi〉v2,0 = 1, i = 1, . . . , 4.

In the minimal admissible module (v0,2, 〈· , ·〉v0,2) we choose w̃ ∈ v0,2 with 〈w̃ , w̃〉v0,2 =
1 and construct the integral basis w̄1 := w̃, w̄2 := J1J2w̃, w̄3 := J1w̃, and w̄4 := J2w̃
with 〈w̄i , w̄i〉v0,2 = εi(2, 2).

The commutation relations with respect to both bases are equal, see Table 4.2, and
this leads to the integral isomorphism. ϕ2,0 : n2,0 → n0,2 defined by

w1 �→ w̄1, w2 �→ w̄2, w3 �→ w̄3, w4 �→ w̄4, Z1 �→ Z̃1, Z2 �→ Z̃2.

Table 4.2: Commutation relations on n2,0 and n0,2

[row , col.] w1 w2 w3 w4

w1 0 0 Z1 Z2

w2 0 0 −Z2 Z1

w3 −Z1 Z2 0 0
w4 −Z2 −Z1 0 0

Isomorphism of n4,0 and n0,4. Let (v4,0, 〈· , ·〉v4,0) be a minimal admissible module
with w ∈ v4,0 such that J1J2J3J4w = w and 〈w ,w〉v4,0 = 1. Then the basis

w1 := w, w2 := J1J2w, w3 := J1J3w, w4 := J1J4w,
w5 := J1w, w6 := J2w, w7 := J3w, w8 := J4w,

with 〈wi , wi〉v4,0 = εi(8, 0) = 1 is integral, with commutation relations in Table 4.3.



4.3 Classification of nr,0 and n0,r 43

Table 4.3: Commutation relations on n4,0

[row , col.] w1 w2 w3 w4 w5 w6 w7 w8

w1 0 0 0 0 Z1 Z2 Z3 Z4

w2 0 0 0 0 Z2 −Z1 −Z4 Z3

w3 0 0 0 0 Z3 Z4 −Z1 −Z2

w4 0 0 0 0 Z4 −Z3 Z2 −Z1

w5 −Z1 −Z2 −Z3 −Z4 0 0 0 0
w6 −Z2 Z1 −Z4 Z3 0 0 0 0
w7 −Z3 Z4 Z1 −Z2 0 0 0 0
w8 −Z4 −Z3 Z2 Z1 0 0 0 0

Let (v0,4, 〈· , ·〉v0,4) be a minimal admissible module and w ∈ v0,4 be such that
J1J2J3J4w = w and 〈w ,w〉v0,4 = 1. Then the basis

w̃1 := w, w̃2 := J1J2w, w̃3 := J1J3w, w̃4 := J1J4w,
w̃5 := J1w, w̃6 := J2w, w̃7 := J3w, w̃8 := J4w,

with 〈w̃i , w̃i〉v0,4 = εi(4, 4) is integral with commutation relations listed in Table 4.4.

Table 4.4: Commutation relations on n0,4

[row , col.] w̃1 w̃2 w̃3 w̃4 w̃5 w̃6 w̃7 w̃8

w̃1 0 0 0 0 Z̃1 Z̃2 Z̃3 Z̃4

w̃2 0 0 0 0 −Z̃2 Z̃1 Z̃4 −Z̃3

w̃3 0 0 0 0 −Z̃3 −Z̃4 Z̃1 Z̃2

w̃4 0 0 0 0 −Z̃4 Z̃3 −Z̃2 Z̃1

w̃5 −Z̃1 Z̃2 Z̃3 Z̃4 0 0 0 0

w̃6 −Z̃2 −Z̃1 Z̃4 −Z̃3 0 0 0 0

w̃7 −Z̃3 −Z̃4 −Z̃1 Z̃2 0 0 0 0

w̃8 −Z̃4 Z̃3 −Z̃2 −Z̃1 0 0 0 0

We see from Tables 4.3 and 4.4 that the linear map ϕ4,0 : n4,0 → n0,4 defined by

wi �→ w̃i if i = 1, 5, 6, 7, 8,
wi �→ −w̃i if i = 2, 3, 4,

Zk �→ Z̃k if k = 1, 2, 3, 4,

is an integral isomorphism.
Isomorphism of n8,0 and n0,8. Let {Z1, . . . , Z8} be an orthonormal basis for R8,0. Take

a minimal admissible module (v8,0, 〈· , ·〉v8,0) and choose w ∈ v8,0 with 〈w ,w〉v8,0 = 1 such
that

J1J2J3J4w = J1J2J5J6w = J2J3J5J7w = J1J2J7J8w = w.
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A method presented in [46] shows that the basis

u1 := w, u2 := J1J2w, u3 := J1J3w, u4 := J1J4w,
u5 := J1J5w, u6 := J1J6w, u7 := J1J7w, u8 := J1J8w,
u9 := J1w, u10 := J2w, u11 := J3w, u12 := J4w,
u13 := J5w, u14 := J6w, u15 := J7w, u16 := J8w,

(4.4)

is orthonormal and satisfies 〈ui , ui〉v8,0 = εi(16, 0) = 1. Thus the minimal admissible
module (v8,0, 〈· , ·〉v8,0) receives the integral basis (4.4).

Let {Z̃1, . . . , Z̃8} be an orthonormal basis for R0,8. Given a minimal admissible
module (v0,8, 〈· , ·〉v0,8), we choose a vector w1 ∈ v0,8 with 〈w1 , w1〉v0,8 = 1 such that

J̃1J̃2J̃3J̃4w
1 = J̃1J̃2J̃5J̃6w

1 = J̃2J̃3J̃5J̃7w
1 = J̃1J̃2J̃7J̃8w

1 = w1.

Then the orthonormal basis

v1 := w1, v2 := J̃1J̃2w
1, v3 := J̃1J̃3w

1, v4 := J̃1J̃4w
1,

v5 := J̃1J̃5w
1, v6 := J̃1J̃6w

1, v7 := J̃1J̃7w
1, v8 := J̃1J̃8w

1,

v9 := J̃1w
1, v10 := J̃2w

1, v11 := J̃3w
1, v12 := J̃4w

1,

v13 := J̃5w
1, v14 := J̃6w

1, v15 := J̃7w
1, v16 := J̃8w

1,

(4.5)

with 〈vi , vi〉v0,8 = εi(8, 8) is integral, see [46]. Tables 4.10 and 4.11 in the Appendix show
the non-vanishing commutation relations on the pseudo H-type algebras n8,0 and n0,8.
It allows us to construct the Lie algebra integral isomorphism

ϕ8,0 :

⎧⎪⎨⎪⎩
ui �→ vi if i = 1, 9, 10, . . . , 16,

ui �→ −vi if i = 2, . . . , 8,

Zk �→ Z̃k if k = 1, . . . , 8.

(4.6)

4.3.2 Structure constants for nr+8,s, nr,s+8 and nr+4,s+4

This subsection is purely technical and auxiliary for the upcoming classification. A result
of [46] gives an integral basis which satisfies Theorem 1.1.17 for all admissible Clifford
modules vr,s. Furthermore, we proved that it is possible to obtain any minimal admissible
integral module vt,u by taking the tensor product of minimal admissible integral vr,s-
modules 0 ≤ r, s ≤ 8 by the minimal admissible integral modules v8,0, v0,8 or v4,4.

Proposition 4.3.4. [46] Consider two minimal admissible integral modules (vr,s, 〈· , ·〉vr,s)
and (v0,8, 〈· , ·〉v0,8), where the representations JZ̄j

: v0,8 → v0,8 permute the integral basis

of v0,8 up to sign for all orthonormal generators Z̄j ∈ R0,8. Then the scalar product vector
space given by the tensor product (vr,s ⊗ v0,8, 〈· , ·〉vr,s · 〈· , ·〉v0,8) is a minimal admissible
integral module (vr,s+8, 〈· , ·〉vr,s+8).
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Remark 4.3.5. In Proposition 4.3.4 one can change the minimal admissible integral
module (v0,8, 〈· , ·〉v0,8) to the minimal admissible integral module (v8,0, 〈· , ·〉v8,0) or the
minimal admissible integral module (v4,4, 〈· , ·〉v4,4) and, taking the tensor product, to
obtain the modules

(vr+8,s, 〈· , ·〉vr+8,s) = (vr,s ⊗ v8,0, 〈· , ·〉vr,s · 〈· , ·〉v8,0)
and

(vr+4,s+4, 〈· , ·〉vr+4,s+4) = (vr,s ⊗ v4,4, 〈· , ·〉vr,s · 〈· , ·〉v4,4)
respectively, which are minimal admissible integral. Details can be found in [46].

We call a pseudo H-type algebra nr,s extended if its minimal admissible integral
module vr,s was constructed as in Proposition 4.3.4 or in Remark 4.3.5. The tensor
products can be taken several times and with different spaces. Before we show how
the structure constants for the Lie algebras nr+8,s, nr+4,s+4 and nr,s+8 depend on the
structure constants of nr,s, n8,0, n4,4 and n0,8, we state the notation that will be used in
the forthcoming sections. We write BV for an integral basis of the space V . Thus

Bzr,s = {Zr,s
1 , . . . , Zr,s

r+s}, 〈Zr+s
k , Zr+s

m 〉zr,s = εk(r, s)δkm,

Bvr,s = {w1, . . . , w2l}, 〈wi , wj〉vr,s =
{
εi(l, l)δij for s �= 0,

δij for s = 0,

and define Bnr,s := Bvr,s ∪Bzr,s .
We fix the letters u, v, and y for the following bases given by (4.4), a modified version

of (4.6) and (4.12)

Bv8,0 = {u1, . . . , u16}, Bv0,8 = {v1, . . . , v16}, Bv4,4 = {y1, . . . , y16},
Bz8,0 = {Z8,0

1 , . . . , Z8,0
8 }, Bz0,8 = {Z0,8

1 , . . . , Z0,8
8 }, Bz4,4 = {Z4,4

1 , . . . , Z4,4
8 }

with

〈ui , uj〉v8,0 = δij, 〈vi , vj〉v0,8 = εi(8, 8)δij, 〈yi , yj〉v4,4 = εi(8, 8)δij,

〈Z8,0
k , Z8,0

m 〉z8,0 = δkm, 〈Z0,8
k , Z0,8

m 〉z0,8 = −δkm, 〈Z4,4
k , Z4,4

m 〉z4,4 = εk(4, 4)δkm,

such that Bn8,0 and Bn0,8 have the same structural constants by Theorem 4.3.3, i.e.

ϕ8,0(ui) = vi, for all i = 1, . . . , 16,

ϕ8,0(Z
8,0
k ) = Z0,8

k , for all k = 1, . . . , 8.

If vt,u is obtained by taking the tensor product of vr,s by one of the v8,0, v0,8 or v4,4,
we write for the basis

Bnt,u = {wi ⊗ αj, Z
t,u
m | i = 1, . . . , 2l, j = 1, . . . , 16, m = 1, . . . , r + s+ 8},

where wi ∈ Bvr,s , the vectors αj are from the corresponding integral bases Bv8,0 , Bv0,8 or
Bv4,4 , and Zt,u

m ∈ Bzr+p,s+q
= Bzt,u , with (p, q) equal to one of the pairs (8, 0), (0, 8), (4, 4).

For practical reasons we preserve the order of the elements in Bzt,u and we write first
those which have positive squares of the scalar product and then those with negative
squares of the scalar product.
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Lemma 4.3.6. Let nr,s = vr,s⊕ zr,s be a pseudo H-type algebra and Am
ij the structure

constants with respect to the integral basis Bnr,s. Let n8,0 = v8,0 ⊕ z8,0 has the integral
basis Bn8,0 with the corresponding structure constants Ām

ij . Then the Lie algebra nr+8,s =

(vr,s⊗ v8,0)⊕zr+8,s has the following structure constants Ã
m
ij,pq with respect to the integral

basis Bnr+8,s.
If s = 0, then

Ãm
ij,pq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Am

ip if m = 1, . . . , r and j = q = 1, . . . , 8,

Am
ip if m = 1, . . . , r and j = q = 9, . . . , 16,

Ām−r
jq if m = r + 1, . . . , r + 8 and i = p = 1, . . . , 2l,

0 otherwise.

(4.7)

If s > 0, then

Ãm
ij,pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Am
ip if m = 1, . . . , r and j = q = 1, . . . , 8,

−Am−8
ip if m = r + 8 + 1, . . . , r + 8 + s and j = q = 1, . . . , 8,

Am
ip if m = 1, . . . , r and j = q = 9, . . . , 16,

Am−8
ip if m = r + 8 + 1, . . . , r + 8 + s and j = q = 9, . . . , 16,

Ām−r
jq if m = r + 1, . . . , r + 8 and i = p = 1, . . . , l,

−Ām−r
jq if m = r + 1, . . . , r + 8 and i = p = l + 1, . . . , 2l,

0 otherwise.

(4.8)

Proof. We recall that the scalar product 〈· , ·〉vr+8,s of vr+8,s is given by the product
〈· , ·〉vr,s · 〈· , ·〉v8,0 . To shorten the notation we write

JZr,s
m

= JZm : vr,s → vr,s, JZ8,0
m

= J̄Z̄m
: v8,0 → v8,0, JZr+8,s

m
= J̃Z̃m

: vr+8,s → vr+8,s

and the operator E := J̄Z̄1
· · · J̄Z̄8

: v8,0 → v8,0 with the properties

E2 = Idv8,0 , EJ̄Z̄j
= −J̄Z̄j

E, j = 1, . . . , 8, 〈Eu , u∗〉v8,0 = 〈u ,Eu∗〉v8,0 , u, u∗ ∈ v8,0 .

It leads to the following equalities:

〈J̃Z̃m
w̃i,j , w̃p,q〉vr+8,s = 〈JZmwi , wp〉vr,s〈Euj , uq〉v8,0 , m = 1, . . . , r, (4.9)

〈J̃Z̃m
w̃i,j , w̃p,q〉vr+8,s = 〈wi , wp〉vr,s〈J̄Z̄m−r

uj , uq〉v8,0 , m = r + 1, . . . , r + 8,

〈J̃Z̃m
w̃i,j , w̃p,q〉vr+8,s = 〈JZm−8wi , wp〉vr,s〈Euj , uq〉v8,0 , m = r + 9, . . . , r + s+ 8,

with the integral basis {w̃i,j = wi⊗uj, Z̃m|i = 1, . . . , 2l, j = 1, . . . , 16,m = 1, . . . , r+s+8}
by [46]. Similar equations for the cases n0,8 and n4,4 can be found in [46].

Let m = 1, . . . , r and note that the mapping E acts on the integral basis Bv8,0 by
Euj = −ujεj(8, 8), which follows from the permutation Table 4.13 in the Appendix.
That leads to 〈Euj , uq〉v8,0 = −εj(8, 8)δjq. Then the first equation in (4.9) gives

B̃m
ij,pqε

vr+8,s
pq = −Bm

i,pε
vr,s
p εj(8, 8)δjq
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by (1.7). Making use of formula (1.8) we obtain the following equations for structure
constants

Ãm
ij,pq

(
εvr+8,s
pq

)2
ε
zr+8,s
m = −Am

i,p

(
εvr,sp

)2
ε
zr,s
m εj(8, 8)δjq

that yields to the first two lines in formula (4.7) and corresponding lines in (4.8). Arguing
in a similar way for the rest of the formulas in (4.9) we obtain

ε
zr+8,s
m Ãm

ij,pq = −Am
i,pε

zr,s
m εj(8, 8)δjq, m = 1, . . . , r,

ε
zr+8,s
m Ãm

ij,pq = Ām−r
jq ε

z8,0
m−rε

vr,s
i δip, m = r + 1, . . . , r + 8,

ε
zr+8,s
m Ãm

ij,pq = −Am−8
ip ε

zr,s
m−8εj(8, 8)δjq, m = r + 9, . . . , r + s+ 8.

This implies (4.7) and (4.8).

Lemma 4.3.7. Let nr,s = vr,s⊕ zr,s be a pseudo H-type algebra with the structure con-
stants Am

ij written with respect to Bnr,s and n0,8 = v0,8 ⊕ z0,8 with the integral basis
Bn0,8, and the corresponding structure constants Ām

ij . Then the Lie algebra nr,s+8 =

(vr,s⊗ v0,8) ⊕ zr,s+8 has the following structure constants Ãm
ij,pq with respect to the inte-

gral basis Bnr,s+8.

If s = 0, then

Ãm
ij,pq =

⎧⎪⎨⎪⎩
−Am

ip if m = 1, . . . , r and j = q = 1, . . . , 16,

Ām−r
jq if m = r + 1, . . . , r + 8 and i = p = 1, . . . , 2l,

0 otherwise.

(4.10)

If s > 0, then

Ãm
ij,pq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Am

ip if m = 1, . . . , r + s and j = q = 1, . . . , 16,

Ām−r−s
jq if m = r + s+ 1, . . . , r + s+ 8 and i = p = 1, . . . , l,

−Ām−r−s
jq if m = r + s+ 1, . . . , r + s+ 8 and i = p = l + 1, ...., 2l,

0 otherwise.

(4.11)

The proof of Lemma 4.3.7 is analogous to the proof of Lemma 4.3.6.
Before we present the structure constants for the Lie algebra nr+4,s+4 we write the

integral basis for the pseudo H-type algebra n4,4.

y1 = w, y2 = J1w, y3 = J2w, y4 = J3w,
y5 = J4w, y6 = J1J2w, y7 = J1J3w, y8 = J1J4w,
y9 = J5w, y10 = J6w, y11 = J7w, y12 = J8w,
y13 = J1J5w, y14 = J1J6w, y15 = J1J7w, y16 = J1J8w,

(4.12)

for J1J2J3J4w = J1J2J5J6w = J2J3J5J7w = J1J2J7J8w = w with

〈wi , wi〉v4,4 = εi(8, 8), 〈Zk , Zk 〉z4,4 = εk(4, 4).
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Lemma 4.3.8. Let nr,s = vr,s⊕ zr,s has the structure constants Am
ij with respect to Bnr,s

and n4,4 = v4,4 ⊕ z4,4 has the structure constants Ām
ij with respect to the integral basis

Bn4,4. Then the Lie algebra nr+4,s+4 = (vr,s ⊗ v4,4)⊕ zr+4,s+4 has the following structure

constants Ãm
ij,pq with respect to the integral basis Bnr+4,s+4.

If s = 0, then

Ãm
ij,pq =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Am

ip if m = 1, . . . , r and j = q = 2, . . . , 5, 13, . . . , 16,

−Am
ip if m = 1, . . . , r and j = q = 1, 6, . . . , 12,

Ām−r
jq if m = r + 1, . . . , r + 8 and i = p = 1, . . . , 2l,

0 otherwise.

(4.13)

If s > 0, then

Ãm
ij,pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am
ip if m = 1, . . . , r and j = q = 2, . . . , 5, 13, . . . , 16,

−Am
ip if m = 1, . . . , r and j = q = 1, 6, . . . , 12,

Am−8
ip if m = r + 9, . . . , r + s+ 8 and j = q = 2, . . . , 5, 13, . . . , 16,

−Am−8
ip if m = r + 5, . . . , r + s+ 4 and j = q = 1, 6, . . . , 12,

Ām−r
jq if m = r + 1, . . . , r + 4 and i = p = 1, . . . , l,

Ām−r
jq if m = r + 5, . . . , r + 8 and i = p = 1, . . . , l,

−Ām−r
jq if m = r + 1, . . . , r + 4 and i = p = l + 1, . . . , 2l,

−Ām−r
jq if m = r + 5, . . . , r + 8 and i = p = l + 1, . . . , 2l,

0 otherwise.

(4.14)

The proof of Lemma 4.3.8 is analogous to the proof of Lemma 4.3.6.

4.3.3 Classification of nr,0 and n0,r for r > 8

We observe an interesting property of some of the H-type algebras nr,0 and n0,r that will
be used in the proof of Theorem 4.3.11.

Definition 4.3.9. We say that an orthonormal basis {w1, . . . , w2l, Z1, . . . , Zn} of a
pseudo H-type algebra is of block-type if [wi , wj] = 0 for both indices i, j = 1, . . . , l and
i, j = l + 1, . . . , 2l. We call a pseudo H-type algebra of block-type if it has a block-type
basis.

Lemma 4.3.10. The pseudo H-type algebras nr,0 with r mod (8) ∈ {0, 1, 2, 4} and n0,s
with s ∈ N are of block-type.

Proof. We prove by induction that nr,0 with r mod (8) ∈ {0, 1, 2, 4} is of block-type.
The base of induction follows from Tables 4.1, 4.2, 4.3, 4.10 of non-vanishing commu-
tators on n1,0, n2,0, n4,0 and n8,0. For the induction step we assume that nr,0 with r
mod (8) ∈ {0, 1, 2, 4} has a block-type basis {w1, . . . , w2l, Z

r,0
1 , . . . , Zr,0

r } with [wi , wj] =
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0 for both indices i, j = 1, . . . , l and i, j = l + 1, . . . , 2l. By extension we construct
the Lie algebra nr+8,0 of dimension 32l + r + 8 with the basis {w1 ⊗ u1, . . . , w2l ⊗
u16, Z

r+8,0
1 , . . . , Zr+8,0

r+8 }. Equations (4.9) imply that [wi ⊗ uj , wp ⊗ uq] = 0 for the fol-
lowing cases:

• i = p and both j, q = 1, . . . , 8 and j, q = 9, . . . , 16,

• j = q and both i, p = 1, . . . , l and i, p = l + 1, . . . , 2l,

• i �= p and j �= q or i = p and j = q.

We define a decomposition of the basis vectors of vr+8,0 by

A1
r,0 := {wi ⊗ uj | i = 1, . . . , l, j = 1, . . . , 8},

A2
r,0 := {wi ⊗ uj | i = l + 1, . . . , 2l, j = 9, . . . , 16},

B1
r,0 := {wi ⊗ uj | i = 1, . . . , l, j = 9, . . . , 16},

B2
r,0 := {wi ⊗ uj | i = l + 1, . . . , 2l, j = 1, . . . , 8},

Ar,0 := A1
r,0 ∪A2

r,0, Br,0 := B1
r,0 ∪B2

r,0 .

(4.15)

It follows that for any w̃, ṽ ∈ Ar,0 and for any x̃, ỹ ∈ Br,0 we obtain that [w̃ , ṽ] = 0 =
[x̃ , ỹ]. As the cardinality of the basis of vr+8,s is 32l and the cardinality of each of the
sets Ar,0 and Br,0 is 16l we proved that nr,0 with r mod (8) ∈ {0, 1, 2, 4} is of block-type.

Now we consider the H-type algebras n0,s. The space v0,s is neutral with an integral
basis {w1, . . . , w2l} satisfying 〈wi , wj〉l,l = εi(l, l)δij. Let Bz0,s = {Z0,s

1 , . . . , Z0,s
s }. The

map JZ0,s
k

is an anti-isometry and permutes the basis {w1, . . . , w2l} for all k = 1, . . . , s.

It follows that Bk
ij = 0 for i, j = 1, . . . , l and i, j = l+1, . . . , 2l. Then by εvβB

k
αβ = εzkA

k
αβ

we obtain that Ak
ij = 0 when both indices i, j = 1, . . . , l and i, j = l + 1, . . . , 2l. Hence

n0,s is a block-type Lie algebra for all s ∈ N.

Theorem 4.3.11. The Lie algebras nr,0 and n0,r are integral isomorphic if and only if
r mod (8) ∈ {0, 1, 2, 4}.
Proof. First we claim that the pseudo H-type algebra nr+8t,0 is not isomorphic to n0,r+8t

for r = 3, 5, 6, 7 and a non-negative integer t.
We prove the claim by counting the dimensions of the Lie algebras. The dimensions

of the minimal admissible modules are given by

dim(v3+8t,0) = 4 · 16t �= 8 · 16t = dim(v0,3+8t),

dim(vr+8t,0) = 8 · 16t �= 16 · 16t = dim(v0,r+8t), for r = 5, 6, 7.

The H-type algebras nr,0 are integral isomorphic to n0,r for r = 1, 2, 4, 8 by The-
orem 4.3.3. Thus it remains to show that the Lie algebras nr,0 and n0,r are integral
isomorphic if r mod (8) ∈ {0, 1, 2, 4}.

By induction we assume that nr,0 and n0,r are integral isomorphic for r mod (8) ∈
{0, 1, 2, 4} with the integral block-type bases

Bnr,0 = {w1, . . . , w2l, Z
r,0
1 , . . . , Zr,0

r }, Bn0,r = {x1, . . . , x2l, Z
0,r
1 , . . . , Z0,r

r },
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with equal structure constants Am
ij , i.e. ϕr,0(wi) = xi for all i = 1, . . . , 2l and ϕr,0(Z

r,0
k ) =

Z0,r
k for all k = 1, . . . , r. Furthermore, we recall that in the integral block-type bases

Bn8,0 and Bn0,8 the structure constants denoted by Ām
ij are equal for both Lie algebras,

i.e. ϕ8,0(ui) = vi for all i = 1, . . . , 16 and ϕ8,0(Z
8,0
k ) = Z0,8

k for all k = 1, . . . , 8.
We exploit Proposition 4.3.4 and Remark 4.3.5 and obtain the integral bases

Bnr+8,0 = {wi ⊗ uj, Z
r+8,0
m }, Bn0,r+8 = {xi ⊗ vj, Z

0,r+8
m }.

We define the bijective linear map ϕr+8,0 : nr+8,0 → n0,r+8 by

wi ⊗ uj �→ xi ⊗ vj if i ∈ {1, . . . , l}, j ∈ {1, . . . , 16},
wi ⊗ uj �→ xi ⊗ vj if i ∈ {l + 1, . . . , 2l}, j ∈ {1, . . . , 8},
wi ⊗ uj �→ −xi ⊗ vj if i ∈ {l + 1, . . . , 2l}, j ∈ {9, . . . , 16},
Zr+8,0

m �→ Z0,r+8
m if m ∈ {1, . . . , r + 8}.

It remains to prove that ϕr+8,0 is a Lie algebra isomorphism, i.e.

ϕr+8,0([wi ⊗ uj , wp ⊗ uq]) = [ϕr+8,0(wi ⊗ uj) , ϕr+8,0(wp ⊗ uq)].

We know that the structural constants Ãm
ij,pq of [wi⊗uj , wp⊗uq] are given by formula (4.7)

and that the structural constants Cm
ij,pq for [xi ⊗ vj , xp ⊗ vq] are given by formula (4.11),

where we have to put the index r instead of r + s. It follows that if i �= p and j �= q or
i = p and j = q, the commutators vanish:

ϕr+8,0([wi ⊗ uj , wp ⊗ uq]) = ϕr+8,0(0) = 0 = ±[xi ⊗ vj , xp ⊗ vq].

Let us consider the case i = p and j �= q.
• if i = p = 1, . . . , l, then:

ϕr+8,0([wi ⊗ uj , wi ⊗ uq]) = Ām−r
jq ϕr+8,0(Z

r+8,0
m ) = Ām−r

jq Z0,r+8
m ,

[ϕr+8,0(wi ⊗ uj) , ϕr+8,0(wi ⊗ uq)] = [xi ⊗ vj , xi ⊗ vq] = Ām−r
jq Z0,r+8

m

with m = r + 1, . . . , r + 8 by formulas (4.7) and (4.11).
• if i = p = l + 1, . . . , 2l, then we use Lemma 4.3.10.

ϕr+8,0([wi ⊗ uj , wi ⊗ uq]) = Ām−r
jq ϕr+8,0(Z

r+8,0
m ) = Ām−r

jq Z0,r+8
m ,

[ϕr+8,0(wi ⊗ uj) , ϕr+8,0(wi ⊗ uq)]

=

{
[xi ⊗ vj , xi ⊗ vq] if j, q = 1, . . . , 8 or j, q = 9, . . . , 16,

−[xi ⊗ vj , xi ⊗ vq] otherwise,

=

{
−Ām−r

jq Z0,r+8
m = 0 if j, q = 1, . . . , 8 or j, q = 9, . . . , 16,

Ām−r
jq Z0,r+8

m otherwise,



4.4 Isomorphism of Lie algebras nr,s with r, s �= 0 51

with m = r + 1, . . . , r + 8 by formulas (4.7), (4.11), and the definition of ϕr+8,0. We
observe that Ām−r

jq = 0 when for both indices j, q simultaneously either j, q = 1, . . . , 8
or j, q = 9, . . . , 16, since the Lie algebras n8,0 and n0,8 are of block type, see Table 4.10.
Thus the map ϕr+8,0 satisfies the Lie algebra isomorphism properties in this case.

We turn to consider the case i �= p and j = q

• if j = q = 1, . . . , 8, then

ϕr+8,0([wi ⊗ uj , wp ⊗ uj]) = −Am
ipϕr+8,0(Z

r+8,0
m ) = −Am

ipZ
0,r+8
m ,

[ϕr+8,0(wi ⊗ uj) , ϕr+8,0(wp ⊗ uj)] = [xi ⊗ vj , xp ⊗ vj] = −Am
ipZ

0,r+8
m ,

with m = 1, . . . , r by formulas (4.7) and (4.11).

• if j = q = 9, . . . , 16 then we use the block form of Lie algebras nr,0 and n0,r. We
calculate as above

ϕr+8,0([wi ⊗ uj , wp ⊗ uj]) = Am
ipϕr+8,0(Z

r+8,0
m ) = Am

ipZ
0,r+8
m .

On the other side

[ϕr+8,0(wi ⊗ uj) , ϕr+8,0(wp ⊗ uj)]

=

{
[xi ⊗ vj , xp ⊗ vq] if i, p = 1, . . . , l or i, p = l + 1, . . . , 2l,

−[xi ⊗ vj , xp ⊗ vq] otherwise,

=

{
−Am

ipZ
0,r+8
m = 0 if i, p = 1, . . . , l or i, p = l + 1, . . . , 2l,

Am
ipZ

0,r+8
m otherwise,

with m = 1, . . . , r by formulas (4.7) and (4.11). This finishes the proof of the theorem.

4.4 Isomorphism of Lie algebras nr,s with r, s �= 0

In this section we show, making use of the ideas developed in the previous section, that
the Bott-periodicity is inherited in isomorphism properties of Lie algebras.

4.4.1 Decompositions of integral bases r, s �= 0

We recall the notation of the bases Bnr,s and state the result that extends the notion of
the block type algebras.

Lemma 4.4.1. Let us assume that the integral basis Bvr,s, r, s �= 0, for the pseudo
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H-type algebra nr,s with dim(vr,s) = 2l satisfies the following decomposition

Bvr,s = Ar,s ∪Br,s, card(Ar,s) = card(Br,s) = l,

[Ar,s ,Ar,s] = [Br,s ,Br,s] = 0,

Ar,s = A+
r,s ∪A−

r,s, Br,s = B+
r,s ∪B−

r,s, card(A±
r,s) = card(B±

r,s) =
l

2
,

where 〈wi , wi 〉vr,s =
{
1 if wi ∈ A+

r,s ∪B+
r,s,

−1 if wi ∈ A−
r,s ∪B−

r,s .

(4.16)

Then the extended pseudo H-type algebras nr+8,s, nr,s+8, and nr+4,s+4 admit a decompo-
sition of type (4.16).

Remark 4.4.2. We would like to stress that for r, s �= 0 the dimensions of the minimal
admissible modules vr,s are a multiple of 4, such that the fraction l

2
of the previous lemma

is an integer.

Proof. Define the following sets

A8,0 = {u1, . . . , u8}, B8,0 = {u9, . . . , u16}, for ui ∈ Bv8,0

A0,8 = {v1, . . . , v8}, B0,8 = {v9, . . . , v16}, for vi ∈ Bv0,8

(4.17)

A+
4,4 = {y1, y6, y7, y8}, A−

4,4 = {y13, y14, y15, y16},
B+

4,4 = {y2, y3, y4, y5}, B−
4,4 = {y9, y10, y11, y12}.

(4.18)

for yi ∈ Bv4,4 given by (4.12).
Now, making use of Ar,s, Br,s and (4.17), (4.18), we define the decompositions for

the bases of the extended algebras.

A+
r+8,s := A+

r,s ⊗A8,0 ∪B+
r,s ⊗B8,0, A−

r+8,s := A−
r,s⊗A8,0 ∪B−

r,s ⊗B8,0,

B+
r+8,s := A+

r,s ⊗B8,0 ∪B+
r,s ⊗A8,0, B−

r+8,s := A−
r,s⊗B8,0 ∪B−

r,s ⊗A8,0,

A+
r,s+8 := A+

r,s ⊗A0,8 ∪B−
r,s ⊗B0,8, A−

r,s+8 := A−
r,s ⊗A0,8 ∪B+

r,s ⊗B0,8,

B+
r,s+8 := A−

r,s⊗B0,8 ∪B+
r,s ⊗A0,8, B−

r,s+8 := A+
r,s⊗B0,8 ∪B−

r,s ⊗A0,8,

A+
r+4,s+4 := B+

r,s⊗B+
4,4 ∪B−

r,s ⊗B−
4,4 ∪A+

r,s⊗A+
4,4 ∪A−

r,s⊗A−
4,4,

A−
r+4,s+4 := B−

r,s⊗B+
4,4 ∪B+

r,s ⊗B−
4,4 ∪A−

r,s⊗A+
4,4 ∪A+

r,s⊗A−
4,4,

B+
r+4,s+4 := A+

r,s ⊗B+
4,4 ∪A−

r,s ⊗B−
4,4 ∪B+

r,s⊗A+
4,4 ∪B−

r,s⊗A−
4,4,

B−
r+4,s+4 := A+

r,s ⊗B−
4,4 ∪A−

r,s ⊗B+
4,4 ∪B−

r,s⊗A+
4,4 ∪B+

r,s ⊗A−
4,4 .

All the necessary properties follows directly from the definition of the basis for the
extended Lie algebras and Lemmas 4.3.6, 4.3.7, and 4.3.8. We only illustrate the proof
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of the following property [Ar+8,s ,Ar+8,s] = 0, considering several cases. To show that
[A+

r,s⊗A8,0 ,A
+
r,s⊗A8,0] = 0 we choose wi, wj ∈ A+

r,s and up, uq ∈ A8,0 Then

[wi ⊗ up , wj ⊗ uq] =

⎧⎪⎨⎪⎩
0 if i �= j, p �= q, or i = j, p = q,

[up , uq] = 0 if i = j, p �= q, since [up , uq] ∈ [A8,0 ,A8,0] = 0,

−[wi , wj] = 0 if i �= j, p = q, since [wi , wj] ∈ [A+
r,s ,A

+
r,s] = 0.

Analogously we show

[A±
r,s⊗A8,0 ,A

±
r,s⊗A8,0] = [B±

r,s ⊗B8,0 ,B
±
r,s ⊗B8,0] = 0

for any combinations of + and −. Any term of the type [A±
r,s ⊗A8,0 ,B

±
r,s ⊗B8,0] vanishes

since A±
r,s ∩B±

r,s = ∅ and A8,0 ∩B8,0 = ∅ and as if both i �= j, p �= q we obtain that
[wi ⊗ up , wj ⊗ uq] = 0 for any wi ∈ A±

r,s, wj ∈ B±
r,s, up ∈ A8,0, uq ∈ B8,0.

In the following lemma we present a list of pseudo H-type algebras nr,s satisfy-
ing (4.16), which can be used as a base for the successive extensions.

Lemma 4.4.3. The pseudo H-type algebras nr,8, n8,r, nr+4,4, n4,r+4 for r mod (8) ∈
{0, 1, 2, 4} and n11, n2,2, n4,4 admit decomposition (4.16) of their bases.

Proof. Decompositions for nr,8, n8,r, r mod (8) ∈ {0, 1, 2, 4}.
A+

r,8 := {wi ⊗ vj | i = 1, . . . , l, j = 1, . . . , 8},
A−

r,8 := {wi ⊗ vj | i = l + 1, . . . , 2l, j = 9, . . . , 16},
B−

r,8 := {wi ⊗ vj | i = 1, . . . , l, j = 9, . . . , 16},
B+

r,8 := {wi ⊗ vj | i = l + 1, . . . , 2l, j = 1, . . . , 8},
for wi ∈ Bvr,0 , vj ∈ Bv0,8 .

A+
8,r := {wi ⊗ uj | i = 1, . . . , l, j = 1, . . . , 8},

A−
8,r := {wi ⊗ uj | i = l + 1, . . . , 2l, j = 9, . . . , 16},

B+
8,r := {wi ⊗ uj | i = 1, . . . , l, j = 9, . . . , 16},

B−
8,r := {wi ⊗ uj | i = l + 1, . . . , 2l, j = 1, . . . , 8},

for wi ∈ Bv0,r , uj ∈ Bv8,0 . For the proof we use Tables (4.1)-(4.4), Tables (4.10), (4.11)
and the block structure of the corresponding algebras.

Decompositions for nr+4,4, n4,r+4 for r mod (8) ∈ {0, 1, 2, 4}. Recall decom-
positions (4.15) and (4.18) and define

A+
r+4,4 := Br,0 ⊗B+

4,4 ∪Ar,0 ⊗A+
4,4, A−

r+4,4 := Br,0 ⊗B−
4,4 ∪Ar,0 ⊗A−

4,4,
B+

r+4,4 := Br,0 ⊗A+
4,4 ∪Ar,0 ⊗B+

4,4, B−
r+4,4 := Br,0 ⊗A−

4,4 ∪Ar,0 ⊗B−
4,4,

A+
4,r+4 := B0,r ⊗B−

4,4 ∪A0,r ⊗A+
4,4, A−

4,r+4 := B0,r ⊗B+
4,4 ∪A0,r ⊗A−

4,4,
B+

4,r+4 := B0,r ⊗A−
4,4 ∪A0,r ⊗B+

4,4, B−
4,r+4 := B0,r ⊗A+

4,4 ∪A0,r ⊗B−
4,4 .
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For the proof we use Tables (4.1)-(4.4), Tables (4.10), (4.11), (4.12), the block structure
of the corresponding algebras, and Lemma 4.3.8.

Decompositions for n1,1, n2,2, and n4,4.
We define an orthonormal basis of n1,1 by

Bv1,1 = {w1 := w, w2 := J1w, w3 := J2w, w4 := J2J1w}, Bz1,1 = {Z1, Z2}, (4.19)

with 〈wi , wi〉v1,1 = εi(2, 2), 〈Zk , Zk 〉z1,1 = εk(1, 1). The commutators are given by

Table 4.5.

Table 4.5: Commutation relations on n1,1

[row , col.] w1 w4 w2 w3

w1 0 0 Z1 Z2

w4 0 0 −Z2 −Z1

w2 −Z1 Z2 0 0
w3 −Z2 Z1 0 0

The sets A1,1 and B1,1 are given by

A1,1 = A+
1,1 ∪A−

1,1 = {w1} ∪ {w4}, B1,1 = B+
1,1 ∪B−

1,1 = {w2} ∪ {w3}.
We define an orthonormal basis of Bz2,2 = {Z1, Z2, Z3, Z4} and

Bv2,2 =
{ w1 := w, w2 := J1w, w3 := J2w, w4 := J1J2w,

w5 := J3w, w6 := J4w, w7 := J1J3w, w8 := J1J4w,

}
, (4.20)

for J1J2J3J4w = w with 〈wi , wi〉v2,2 = εi(4, 4), 〈Zk , Zk 〉z2,2 = εk(2, 2). The sets A2,2 and

B2,2 are given by

A2,2 = A+
2,2 ∪A−

2,2 = {w1, w4} ∪ {w7, w8}, B2,2 = B+
2,2 ∪B−

2,2 = {w2, w3} ∪ {w5, w6}
according to Table 4.6.

The integral basis Bn4,4 of n4,4 is given in (4.12) and the decomposition is given
in (4.18) according to Table 4.12.

4.4.2 Inductive construction of isomorphisms of the Lie alge-
bras of block type

In this subsection we prove that if two pseudo H-type algebras possess decomposi-
tion (4.16) and they are isomorphic under a map satisfying some special conditions,
then the extensions of them are also isomorphic and the corresponding isomorphism
map satisfies the same properties. It allows us to perform an induction proof. Before we
state the base of induction we formulate the properties we require from the isomorphism.
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Table 4.6: Commutation relations on n2,2

[row , col.] w1 w4 w7 w8 w2 w3 w5 w6

w1 0 0 0 0 Z1 Z2 Z3 Z4

w4 0 0 0 0 Z2 −Z1 Z4 −Z3

w7 0 0 0 0 Z3 −Z4 Z1 −Z2

w8 0 0 0 0 Z4 Z3 Z2 Z1

w2 −Z1 −Z2 −Z3 −Z4 0 0 0 0
w3 −Z2 Z1 Z4 −Z3 0 0 0 0
w5 −Z3 −Z4 −Z1 −Z2 0 0 0 0
w6 −Z4 Z3 Z2 −Z1 0 0 0 0

Remark 4.4.4. Properties of the isomorphism ϕr,s : nr,s → ns,r. Let the integral
bases Bnr,s, Bns,r of the pseudo H-type algebras nr,s, ns,r admit decomposition (4.16).
Assume there exists a Lie algebra isomorphism ϕr,s : nr,s → ns,r such that

ϕr,s(A
±
r,s) = A±

s,r and ϕr,s(B
±
r,s) = B∓

s,r .

Furthermore, the restriction ϕr,s|zr,s is an anti-isometry and is a permutation of the
set {Z1, . . . , Zr+s}, i.e. ϕr,s(Zk) = Zπr,s(k) with the permutation πr,s : {1, . . . , r + s} →
{1, . . . , r+s} such that πr,s({1, . . . , r}) = {s+1, . . . , s+r} and πr,s({r+1, . . . , r+s}) =
{1, . . . , s}.

Theorem 4.4.5. The Lie algebras nr,8 and n8,r are integral isomorphic if and only
if r mod (8) ∈ {0, 1, 2, 4} and the Lie algebra isomorphism ϕr,8 : nr,8 → n8,r satisfies
Remark 4.4.4 with s = 8.

Proof. TheH-type algebras nr,0 are integral isomorphic to n0,r for r mod (8) ∈ {0, 1, 2, 4}
by Theorem 4.3.11. Recall that we used the following integral block-type bases

Bnr,0 = {w1, . . . , w2l, Z
r,0
1 , . . . , Zr,0

r } Bn0,r = {x1, . . . , x2l, Z
0,r
1 , . . . , Z0,r

r },

with 〈wi , wi〉vr,0 = 1 for i = 1, . . . , 2l, 〈xi , xi〉v0,r = εi(l, l), 〈Zr,0
k , Zr,0

k 〉zr,0 = 1, and

〈Z0,r
k , Z0,r

k 〉zr,0 = −1 for all k = 1, . . . , r, where ϕr,0(wi) = xi for all i = 1, . . . , 2l and

ϕr,0(Z
r,0
k ) = Z0,r

k for all k = 1, . . . , r. The equal structure constants are denoted by Am
ij .

We write ϕ8,0(ui) = vi, for ui ∈ Bv8,0 , vi ∈ Bv0,8 , i = 1, . . . , 16 and ϕ8,0(Z
8,0
k ) = Z0,8

k ,
k = 1, . . . , 8. The equal structure constants are denoted by Ām

ij for both Lie algebras.

We exploit Proposition 4.3.4 and Remark 4.3.5 to obtain the integral bases

{w1 ⊗ v1, . . . , w2l ⊗ v16, Z
r,8
1 , . . . , Zr,8

r+8} for nr,8,

{x1 ⊗ u1, . . . , x2l ⊗ u16, Z
8,r
1 , . . . , Z8,r

r+8} for n8,r.
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We define the bijective linear map ϕr,8 : nr,8 → n8,r by

wi ⊗ vj �→ xi ⊗ uj if i ∈ {1, . . . , l}, j ∈ {1, . . . , 16},
wi ⊗ vj �→ xi ⊗ uj if i ∈ {l + 1, . . . , 2l}, j ∈ {1, . . . , 8},
wi ⊗ vj �→ −xi ⊗ uj if i ∈ {l + 1, . . . , 2l}, j ∈ {9, . . . , 16},
Zr,8

m �→ Z8,r
m+8 if m ∈ {1, . . . , r},

Zr,8
m �→ Z8,r

m−r if m ∈ {r + 1, . . . , r + 8}.
It remains to prove that ϕr,8 is a Lie algebra isomorphism, i.e.

ϕr,8([wi ⊗ vj , wp ⊗ vq]) = [ϕr,8(wi ⊗ vj) , ϕr,8(wp ⊗ vq)].

The structural constants Ãm
ij,pq of the commutators [wi ⊗ vj , wp ⊗ vq] of nr,8 are given by

formula (4.10), and the structural constants Cm
ij,pq for [xi⊗uj , xp⊗uq] of the Lie algebra

n8,r are given by formula (4.8). It follows that if i �= p and j �= q or i = p and j = q the
commutators vanish:

ϕr,8([wi ⊗ vj , wp ⊗ vq]) = ϕr,8(0) = 0 = ±[xi ⊗ uj , xp ⊗ uq].

It is left to consider the following two remaining cases.

Case i = p and j �= q. If, additionally, both indices simultaneously satisfy either
j, q = 1, . . . , 8 or j, q = 9, . . . , 16, then

ϕr,8([wi ⊗ vj , wi ⊗ vq]) = ϕr,8(0) = 0 = ±[xi ⊗ uj , xi ⊗ uq],

because of the block form of the Lie algebras n8,0, n0,8. Thus, we can assume without
loss of generality that j = 1, . . . , 8 and q = 9, . . . , 16.

• if i = p = 1, . . . , l, j = 1, . . . , 8 and q = 9, . . . , 16, then:

ϕr,8([wi ⊗ vj , wi ⊗ vq]) = Ām−r
jq ϕr,8(Z

r,8
m ) = Ām−r

jq Z8,r
m−r,

[ϕr,8(wi ⊗ vj) , ϕr,8(wi ⊗ vq)] = [xi ⊗ uj , xi ⊗ uq] = Ām−r
jq Z8,r

m−r

with m = r + 1, . . . , r + 8 by formulas (4.10) and (4.8).
• if i = p = l + 1, . . . , 2l, j = 1, . . . , 8 and q = 9, . . . , 16, then

ϕr,8([wi ⊗ vj , wi ⊗ vq]) = Ām−r
jq ϕr,8(Z

r,8
m ) = Ām−r

jq Z8,r
m−r,

[ϕr,8(wi ⊗ vj) , ϕr,8(wi ⊗ vq)] = [xi ⊗ uj ,−xi ⊗ uq] = −(−Ām−r
jq Z8,r

m−r)

with m = r+1, . . . , r+8 by formulas (4.10) and (4.8). We see that the map ϕr,8 satisfies
the Lie algebra isomorphism properties in this case.

Case i �= p and j = q. If in addition i, p = 1, . . . , l or i, p = l + 1, . . . , 2l, then the
block form of the Lie algebras nr,0, n0,r implies

ϕr,8([wi ⊗ vj , wp ⊗ vj]) = ϕr,8(0) = 0 = ±[xi ⊗ uj , xp ⊗ uj],
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such that we can assume that i = 1, . . . , l and p = l + 1, . . . , 2l.
• if j = q = 1, . . . , 8, i = 1, . . . , l and p = l + 1, . . . , 2l, then

ϕr,8([wi ⊗ vj , wp ⊗ vj]) = −Am
ipϕr,8(Z

r,8
m ) = −Am

ipZ
8,r
m+8,

[ϕr,8(wi ⊗ vj) , ϕr,8(wp ⊗ vj)] = [xi ⊗ uj , xp ⊗ uj] = −Am
ipZ

8,r
m+8.

• if j = q = 9, . . . , 16, i = 1, . . . , l and p = l + 1, . . . , 2l then

ϕr,8([wi ⊗ vj , wp ⊗ vj]) = −Am
ipϕr,8(Z

r,8
m ) = −Am

ipZ
8,r
m+8,

[ϕr,8(wi ⊗ vj) , ϕr,8(wp ⊗ vj)] = [xi ⊗ uj ,−xp ⊗ uj] = −Am
ipZ

8,r
m+8,

with m = 1, . . . , r by formulas (4.10) and (4.8). This shows that ϕr,8 is a Lie algebra
isomorphism. The map ϕr,8 satisfies Remark 4.4.4 by its definition.

Theorem 4.4.6. Assume that the Lie algebras nr,s and ns,r, r, s �= 0, satisfy Re-
mark 4.4.4. Then there exists a Lie algebra isomorphism ϕr+8,s : nr+8,s → ns,r+8 and
two integral bases Br+8,s and Br,s+8 satisfying Remark 4.4.4.

Proof. Let ϕr,s : nr,s → ns,r be the assumed Lie algebra isomorphism. By extension we
construct the Lie algebra nr+8,s of dimension 32l+r+s+8 with the basis Br+8,s = {x1⊗
u1, . . . , x2l⊗u16, Z

r+8,s
1 , . . . , Zr+8,s

r+s+8}. The assumptions imply that [xi⊗uj , xp⊗uq] = 0
for the following cases:

• xi = xp and both uj, uq ∈ A8,0 or uj, uq ∈ B8,0,

• uj = uq and both xi, xp ∈ Ar,s or xi, xp ∈ Br,s,

• xi �= xp and uj �= uq or xi = xp and uj = uq,

by formula (4.8), where A8,0,B8,0 are defined in (4.17). We also recall A0,8,B0,8 from
the same formula.

Then we define the bijective linear map ϕr+8,s : nr+8,s → ns,r+8 by

xi ⊗ uα �→ −ϕr,s(xi)⊗ ϕ8,0(uα) if xi ∈ Br,s, and uα ∈ B8,0,
xi ⊗ uα �→ ϕr,s(xi)⊗ ϕ8,0(uα) if otherwise ,

Zr+8,s
m �→ Zs,r+8

πr,s(m) if m ∈ {1, . . . , r},
Zr+8,s

m �→ Zs,r+8
π8,0(m−r)+r+s if m ∈ {r + 1, . . . , r + 8},

Zr+8,s
m �→ Zs,r+8

πr,s(m−8) if m ∈ {r + 9, . . . , r + s+ 8},

where ϕ8,0 : n8,0 → n0,8 is the Lie algebra isomorphism given by (4.6). We see that the
restriction of ϕr+8,s to zr+8,s is an anti-isometry, so it remains to prove that ϕr+8,s is a
Lie algebra homomorphism.

Before we continue, we draw the readers attention to the following. By Lemma 4.3.6
we know that [xi ⊗ uj , xi ⊗ uq] = ±[uj , uq]r+8,s ∈ span{Zr+8,s

k |k = r + 1, . . . , r + 8}.
Since the index k belongs to the set {r + 1, . . . , r + 8}, the structure constants [uj , uq]
in nr+8,s coincide with the structure constants [uj , uq] in n8,0. Analogously we write
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[xi ⊗ uj , xp ⊗ uj] = ±[xi , xp]r+8,s ∈ span{Zk|k = 1, . . . , r, r + 9, . . . , r + s + 8} and
observe that [xi , xp]r+8,s = [xi , xp]r,s. Thus

ϕ8,0([uj , uq]r+8,s) = [ϕ8,0(uj) , ϕ8,0(uq)]r+8,s, ϕr,s([xi , xp]r+8,s) = [ϕr,s(xi) , ϕr,s(xp)]r+8,s

as ϕ8,0 and ϕr,s are Lie algebra isomorphisms. Now, we consider the following cases by
using formulas (4.8) and (4.11).

• If xi = xp ∈ B+
r,s, uj ∈ A8,0 and uq ∈ B8,0, then:

ϕr+8,s([xi ⊗ uj , xi ⊗ uq]) = ϕr+8,s([uj , uq]r+8,s) = ϕ8,0([uj , uq]r+8,s),

[ϕr+8,s(xi ⊗ uj) , ϕr+8,s(xi ⊗ uq)] = [ϕr,s(xi)⊗ ϕ8,0(uj) ,−ϕr,s(xi)⊗ ϕ8,0(uq)]

= [ϕ8,0(uj) , ϕ8,0(uq)]r+8,s

as ϕr,s(xi) ∈ ±B−
s,r.

• If xi = xp ∈ B−
r,s, uj ∈ A8,0 and uq ∈ B8,0, then:

ϕr+8,s([xi ⊗ uj , xi ⊗ uq]) = ϕr+8,s(−[uj , uq]r+8,s) = −ϕ8,0([uj , uq]r+8,s),

[ϕr+8,s(xi ⊗ uj) , ϕr+8,s(xi ⊗ uq)] = [ϕr,s(xi)⊗ ϕ8,0(uj) ,−ϕr,s(xi)⊗ ϕ8,0(uq)]

= −[ϕ8,0(uj) , ϕ8,0(uq)]r+8,s

as ϕr,s(xi) ∈ ±B+
s,r.

• If xi = xp ∈ A+
r,s, uj ∈ A8,0 and uq ∈ B8,0, then:

ϕr+8,s([xi ⊗ uj , xi ⊗ uq]) = ϕr+8,s([uj , uq]r+8,s) = ϕ8,0([uj , uq]r+8,s),

[ϕr+8,s(xi ⊗ uj) , ϕr+8,s(xi ⊗ uq)] = [ϕr,s(xi)⊗ ϕ8,0(uj) , ϕr,s(xi)⊗ ϕ8,0(uq)]

= [ϕ8,0(uj) , ϕ8,0(uq)]r+8,s

as ϕr,s(xi) ∈ ±A+
s,r.

• If xi = xp ∈ A−
r,s, uj ∈ A8,0 and uq ∈ B8,0, then:

ϕr+8,s([xi ⊗ uj , xi ⊗ uq]) = ϕr+8,s(−[uj , uq]r+8,s) = −ϕ8,0([uj , uq]r+8,s),

[ϕr+8,s(xi ⊗ uj) , ϕr+8,s(xi ⊗ uq)] = [ϕr,s(xi)⊗ ϕ8,0(uj) , ϕr,s(xi)⊗ ϕ8,0(uq)]

= −[ϕ8,0(uj) , ϕ8,0(uq)]r+8,s

as ϕr,s(xi) ∈ ±A−
s,r.

• If uj = uq ∈ B8,0, xi ∈ Ar,s and xp ∈ Br,s, then:

ϕr+8,s([xi ⊗ uj , xp ⊗ uj]) = ϕr+8,s([xi , xp]r+8,s) = ϕr,s([xi , xp]r+8,s),
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[ϕr+8,s(xi ⊗ uj) , ϕr+8,s(xp ⊗ uj)] = [ϕr,s(xi)⊗ ϕ8,0(uj) ,−ϕr,s(xp)⊗ ϕ8,0(uj)]

= [ϕr,s(xi) , ϕr,s(xp)]r+8,s

as ϕ8,0(uj) ∈ ±B0,8.
• If uj = uq ∈ A8,0, xi ∈ Ar,s and xp ∈ Br,s, then:

ϕr+8,s([xi ⊗ uj , xp ⊗ uj]) = ϕr+8,s(−[xi , xp]r+8,s) = −ϕr,s([xi , xp]r+8,s),

[ϕr+8,s(xi ⊗ uj) , ϕr+8,s(xp ⊗ uj)] = [ϕr,s(xi)⊗ ϕ8,0(uj) , ϕr,s(xp)⊗ ϕ8,0(uj)]

= −[ϕr,s(xi) , ϕr,s(xp)]r+8,s

as ϕ8,0(uj) ∈ ±A0,8.
Hence ϕr+8,s is a Lie algebra isomorphism satisfying Remark 4.4.4.

Now we turn to consider the extension obtained by making use of the tensor product
with v4,4.

Theorem 4.4.7. For any nr,r with r = 1, 2, 4 there exists an automorphism ϕr,r : nr,r →
nr,r and an integral basis Br,r satisfying Remark 4.4.4.

Proof. In this proof we explicitly state the automorphisms.
The basis of n1,1 is given in (4.19) and the commutations in Table 4.5. The automor-

phism ϕ1,1 : n1,1 → n1,1 with anti-isometry on the center is given by

Z1,1
1 �→ Z1,1

2 , Z1,1
2 �→ Z1,1

1 ,
w1 �→ w1, w2 �→ w3, w3 �→ w2, w4 �→ w4.

(4.21)

We defined an orthonormal basis of n2,2 in (4.20) with commutators in Table 4.6.
The automorphism ϕ2,2 : n2,2 → n2,2 with anti-isometry on the center is given by

Z2,2
1 �→ Z2,2

3 , Z2,2
2 �→ Z2,2

4 , Z2,2
3 �→ Z2,2

1 , Z2,2
4 �→ Z2,2

2 ,
w1 �→ w1, w2 �→ w5, w3 �→ w6, w4 �→ w4,
w5 �→ w2, w6 �→ w3, w7 �→ w7, w8 �→ w8.

(4.22)

Recalling the basis (4.12) and Table 4.12 we define the automorphism ϕ4,4 : n4,4 →
n4,4 with anti-isometry on the center by

Z4,4
1 �→ Z4,4

5 , Z4,4
2 �→ Z4,4

6 , Z4,4
3 �→ Z4,4

8 , Z4,4
4 �→ Z4,4

7 ,

Z4,4
5 �→ Z4,4

1 , Z4,4
6 �→ Z4,4

2 , Z4,4
7 �→ Z4,4

4 , Z4,4
8 �→ Z4,4

3 ,
y1 �→ y1, y2 �→ y9, y3 �→ y10, y4 �→ y12,
y5 �→ y11, y6 �→ y6, y7 �→ y7, y8 �→ −y8,
y9 �→ y2, y10 �→ y3, y11 �→ y5, y12 �→ y4,
y13 �→ y13, y14 �→ y14, y15 �→ −y15, y16 �→ y16.

(4.23)
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Theorem 4.4.8. The Lie algebras nr+4,4 and n4,r+4 are integral isomorphic if and only
if r mod (8) ∈ {0, 1, 2, 4}. Furthermore, for r mod (8) ∈ {0, 1, 2, 4} there exists a Lie
algebra isomorphism ϕr+4,4 : nr+4,4 → n4,r+4 and two integral bases Br+4,4 and B4,r+4

satisfying Remark 4.4.4.

Proof. By extension we construct the Lie algebra nr+4,4 of dimension 32l+r+8 with the
integral basis {x1 ⊗ y1, . . . , x2l ⊗ y16, Z

r+4,4
1 , . . . , Zr+4,4

r+8 }, where {x1, . . . , x2l} = Bvr,0 .
Lemma 4.3.8 implies that [xi ⊗ yj , xp ⊗ yq] = 0 for the following cases:

• xi = xp and both yj, yq ∈ A4,4 or yj, yq ∈ B4,4,

• yj = yq and both xi, xp ∈ Ar,0 or xi, xp ∈ Br,0,

• xi �= xp and yj �= yq or xi = xp and yj = yq,

where Ar,0,Br,0 are defined in (4.15) and A4,4,B4,4 are defined in (4.18). We define the
bijective linear map ϕr+4,4 : nr+4,4 → n4,r+4 by

xi ⊗ yα �→ −ϕr,0(xi)⊗ ϕ4,4(yα) if xi ∈ Br,0, and yα ∈ B4,4,
xi ⊗ yα �→ ϕr,0(xi)⊗ ϕ4,4(yα) if otherwise ,

Zr+4,4
m �→ Z4,r+4

πr,0(m)+8 if m ∈ {1, . . . , r},
Zr+4,4

m �→ Z4,r+4
π4,4(m−r) if m ∈ {r + 1, . . . , r + 8}.

We see that the restriction of ϕr+4,4 to zr+4,4 is an anti-isometry, such that it remains to
prove that ϕr+4,4 is a Lie algebra homomorphism.

As in Theorem 4.4.6 we make the following observation. By Lemma 4.3.8 we know
that [xi ⊗ yj , xi ⊗ yq] = ±[yj , yq]r+4,4 ∈ span{Zk|k = r + 1, . . . , r + 8} and therefore
[yj , yq]r+4,4 = [yj , yq]4,4. Analogously, because of [xi ⊗ yj , xp ⊗ yj] = ±[xi , xp]r+4,4 ∈
span{Zk|k = 1, . . . , r} we obtain [xi , xp]r+4,4 = [xi , xp]r,0. Thus ϕ4,4([yj , yq]r+4,4) =
[ϕ4,4(yj) , ϕ4,4(yq)]r+4,4 and ϕr,0([xi , xp]r+4,4) = [ϕr,0(xi) , ϕr,0(xp)]r+4,4, respectively, as
ϕ4,4 and ϕr,0 are Lie algebra isomorphisms. We turn to consider several cases, where we
use formulas (4.13) and (4.14).

• If xi = xp ∈ Br,0, yj ∈ A4,4 and yq ∈ B4,4, then:

ϕr+4,4([xi ⊗ yj , xi ⊗ yq]) = ϕr+4,4([yj , yq]r+4,4) = ϕ4,4([yj , yq]r+4,4),

[ϕr+4,4(xi ⊗ yj) , ϕr+4,4(xi ⊗ yq)] = [ϕr,0(xi)⊗ ϕ4,4(yj) ,−ϕr,0(xi)⊗ ϕ4,4(yq)]

= [ϕ4,4(yj) , ϕ4,4(yq)]r+4,4

as ϕr,0(xi) ∈ ±B0,r.
• If xi = xp ∈ Ar,0, yj ∈ A4,4 and yq ∈ B4,4, then:

ϕr+4,4([xi ⊗ yj , xi ⊗ yq]) = ϕr+4,4([yj , yq]r+4,s+4) = ϕ4,4([yj , yq]r+4,4),

[ϕr+4,4(xi ⊗ yj) , ϕr+4,4(xi ⊗ yq)] = [ϕr,0(xi)⊗ ϕ4,4(yj) , ϕr,0(xi)⊗ ϕ4,4(yq)]

= [ϕ4,4(yj) , ϕ4,4(yq)]r+4,4
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as ϕr,0(xi) ∈ ±A0,r.
• If yj = yq ∈ B+

4,4, xi ∈ Ar,0 and xp ∈ Br,0, then:

ϕr+4,4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,4([xi , xp]r+4,4) = ϕr,0([xi , xp]r+4,4),

[ϕr+4,4(xi ⊗ yj) , ϕr+4,4(xp ⊗ yj)] = [ϕr,0(xi)⊗ ϕ4,4(yj) ,−ϕr,0(xp)⊗ ϕ4,4(yj)]

= [ϕr,0(xi) , ϕr,0(xp)]r+4,4

as ϕ4,4(yj) ∈ ±B−
4,4.

• If yj = yq ∈ B−
4,4, xi ∈ Ar,0 and xp ∈ Br,0, then:

ϕr+4,4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,4(−[xi , xp]r+4,4) = −ϕr,0([xi , xp]r+4,4),

[ϕr+4,4(xi ⊗ yj) , ϕr+4,4(xp ⊗ yj)] = [ϕr,0(xi)⊗ ϕ4,4(yj) ,−ϕr,0(xp)⊗ ϕ4,4(yj)]

= −[ϕr,0(xi) , ϕr,0(xp)]r+4,4

as ϕ4,4(yj) ∈ ±B+
4,4.

• If yj = yq ∈ A+
4,4, xi ∈ Ar,0 and xp ∈ Br,0, then:

ϕr+4,4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,4(−[xi , xp]r+4,4) = −ϕr,0([xi , xp]r+4,4),

[ϕr+4,4(xi ⊗ yj) , ϕr+4,4(xp ⊗ yj)] = [ϕr,0(xi)⊗ ϕ4,4(yj) , ϕr,0(xp)⊗ ϕ4,4(yj)]

= −[ϕr,0(xi) , ϕr,0(xp)]r+4,4

as ϕ4,4(yj) ∈ ±A+
4,4.

• If yj = yq ∈ A−
4,4, xi ∈ Ar,0 and xp ∈ Br,0, then:

ϕr+4,4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,4([xi , xp]r+4,4) = ϕr,0([xi , xp]r+4,4),

[ϕr+4,4(xi ⊗ yj) , ϕr+4,4(xp ⊗ yj)] = [ϕr,0(xi)⊗ ϕ4,4(yj) , ϕr,0(xp)⊗ ϕ4,4(yj)]

= [ϕr,0(xi) , ϕr,0(xp)]r+4,s+4

as ϕ4,4(yj) ∈ ±A−
4,4. Hence ϕr+4,4 is a Lie algebra isomorphism satisfying Remark 4.4.4.

Before we start with the generalization of these results we recall the technical Lemma 4.3.8,
which plays a key role in the upcoming classification.

Theorem 4.4.9. Assume that the pseudo H-type algebras nr,s and ns,r, r, s �= 0 are
isomorphic and satisfy Remark 4.4.4. Then there exists a Lie algebra isomorphism
ϕr+4,s+4 : nr+4,s+4 → ns+4,r+4 satisfying Remark 4.4.4.
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Proof. By extension we construct the Lie algebra nr+4,s+4 of dimension 32l + r + s + 8
with the basis {x1⊗y1, . . . , x2l⊗y16, Z

r+4,s+4
1 , . . . , Zr+4,s+4

r+s+8 }, where {x1, . . . , x2l} = Bvr,s .
The assumptions imply that [xi ⊗ yj , xp ⊗ yq] = 0 for the following cases:

• xi = xp and both yj, yq ∈ A4,4 or yj, yq ∈ B4,4,

• yj = yq and both xi, xp ∈ Ar,s or xi, xp ∈ Br,s,

• xi �= xp and yj �= yq or xi = xp and yj = yq,

by formula (4.14). We define the bijective linear map ϕr+4,s+4 : nr+4,s+4 → ns+4,r+4 by

xi ⊗ yα �→ −ϕr,s(xi)⊗ ϕ4,4(yα) if xi ∈ Br,s, and yα ∈ B4,4,
xi ⊗ yα �→ ϕr,s(xi)⊗ ϕ4,4(yα) if otherwise ,

Zr+4,s+4
m �→ Zr+4,s+4

πr,s(m)+8 if m ∈ {1, . . . , r},
Zr+4,s+4

m �→ Zr+4,s+4
π4,4(m−r)+s if m ∈ {r + 1, . . . , r + 8},

Zr+4,s+4
m �→ Zr+4,s+4

πr,s(m−8) if m ∈ {r + 9, . . . , r + s+ 8}.

We see that the restriction of ϕr+4,s+4 to zr+4,s+4 is an anti-isometry. Let us show that
ϕr+4,s+4 is a Lie algebra homomorphism.

Observe that Lemma 4.3.8 implyis that [xi⊗yj , xi⊗yq] = ±[yj , yq]r+4,s+4 ∈ span{Zk|k =
r + 1, . . . , r + 8} and [xi ⊗ yj , xp ⊗ yj] = ±[xi , xp]r+4,s+4 ∈ span{Zk|k = 1, . . . r, r +
9, . . . , r+ s+8}. Thus [yj , yq]r+4,s+4 = [yj , yq]4,4 and [xi , xp]r+4,s+4 = [xi , xp]r,s. There-
fore,

ϕ4,4([yj , yq]r+4,s+4) = [ϕ4,4(yj) , ϕ4,4(yq)]r+4,s+4,

ϕr,s([xi , xp]r+4,s+4) = [ϕr,s(xi) , ϕr,s(xp)]r+4,s+4,

respectively, as ϕ4,4 and ϕr,s are Lie algebra isomorphisms. The remaining cases follow
from formula (4.14).

• If xi = xp ∈ B+
r,s, yj ∈ A4,4 and yq ∈ B4,4, then:

ϕr+4,s+4([xi ⊗ yj , xi ⊗ yq]) = ϕr+4,s+4([yj , yq]r+4,s+4) = ϕ4,4([yj , yq]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xi ⊗ yq)] = [ϕr,s(xi)⊗ ϕ4,4(yj) ,−ϕr,s(xi)⊗ ϕ4,4(yq)]

= [ϕ4,4(yj) , ϕ4,4(yq)]r+4,s+4

as ϕr,s(xi) ∈ ±B−
s,r.

• If xi = xp ∈ B−
r,s, yj ∈ A4,4 and yq ∈ B4,4, then:

ϕr+4,s+4([xi ⊗ yj , xi ⊗ yq]) = ϕr+4,s+4(−[yj , yq]r+4,s+4) = −ϕ4,4([yj , yq]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xi ⊗ yq)] = [ϕr,s(xi)⊗ ϕ4,4(yj) ,−ϕr,s(xi)⊗ ϕ4,4(yq)]

= −[ϕ4,4(yj) , ϕ4,4(yq)]r+4,s+4
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as ϕr,s(xi) ∈ ±B+
s,r.

• If xi = xp ∈ A+
r,s, yj ∈ A4,4 and yq ∈ B4,4, then:

ϕr+4,s+4([xi ⊗ yj , xi ⊗ yq]) = ϕr+4,s+4([yj , yq]r+4,s+4) = ϕ4,4([yj , yq]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xi ⊗ yq)] = [ϕr,s(xi)⊗ ϕ4,4(yj) , ϕr,s(xi)⊗ ϕ4,4(yq)]

= [ϕ4,4(yj) , ϕ4,4(yq)]r+4,s+4

as ϕr,s(xi) ∈ ±A+
s,r.

• If xi = xp ∈ A−
r,s, yj ∈ A4,4 and yq ∈ B4,4, then:

ϕr+4,s+4([xi ⊗ yj , xi ⊗ yq]) = ϕr+4,s+4(−[yj , yq]r+4,s+4) = −ϕ4,4([yj , yq]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xi ⊗ yq)] = [ϕr,s(xi)⊗ ϕ4,4(yj) , ϕr,s(xi)⊗ ϕ4,4(yq)]

= −[ϕ4,4(yj) , ϕ4,4(yq)]r+4,s+4

as ϕr,s(xi) ∈ ±A−
s,r.

• If yj = yq ∈ B+
4,4, xi ∈ Ar,s and xp ∈ Br,s, then:

ϕr+4,s+4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,s+4([xi , xp]r+4,s+4) = ϕr,s([xi , xp]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xp ⊗ yj)] = [ϕr,s(xi)⊗ ϕ4,4(yj) ,−ϕr,s(xp)⊗ ϕ4,4(yj)]

= [ϕr,s(xi) , ϕr,s(xp)]r+4,s+4

as ϕ4,4(yj) ∈ ±B−
4,4.

• If yj = yq ∈ B−
4,4, xi ∈ Ar,s and xp ∈ Br,s, then:

ϕr+4,s+4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,s+4(−[xi , xp]r+4,s+4) = −ϕr,s([xi , xp]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xp ⊗ yj)] = [ϕr,s(xi)⊗ ϕ4,4(yj) ,−ϕr,s(xp)⊗ ϕ4,4(yj)]

= −[ϕr,s(xi) , ϕr,s(xp)]r+4,s+4

as ϕ4,4(yj) ∈ ±B+
4,4.

• If yj = yq ∈ A+
4,4, xi ∈ Ar,s and xp ∈ Br,s, then:

ϕr+4,s+4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,s+4([xi , xp]r+4,s+4) = ϕr,s([xi , xp]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xp ⊗ yj)] = [ϕr,s(xi)⊗ ϕ4,4(yj) , ϕr,s(xp)⊗ ϕ4,4(yj)]

= [ϕr,s(xi) , ϕr,s(xp)]r+4,s+4

as ϕ4,4(yj) ∈ ±A+
4,4.

• If yj = yq ∈ A−
4,4, xi ∈ Ar,s and xp ∈ Br,s, then:

ϕr+4,s+4([xi ⊗ yj , xp ⊗ yj]) = ϕr+4,s+4(−[xi , xp]r+4,s+4) = −ϕr,s([xi , xp]r+4,s+4),

[ϕr+4,s+4(xi ⊗ yj) , ϕr+4,s+4(xp ⊗ yj)] = [ϕr,s(xi)⊗ ϕ4,4(yj) , ϕr,s(xp)⊗ ϕ4,4(yj)]

= −[ϕr,s(xi) , ϕr,s(xp)]r+4,s+4

as ϕ4,4(yj) ∈ ±A−
4,4.

Hence ϕr+4,s+4 is a Lie algebra isomorphism which satisfies Remark 4.4.4.
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4.4.3 Main results of Section 4.4

Theorem 4.4.10. The H-type algebras nr+8t1+4t2,8t3+4t2 and n8t3+4t2,r+8t1+4t2 are integral
isomorphic for r ∈ {0, 1, 2, 4} and t1, t2, t3 ∈ N0.

Proof. We prove by induction. The beginning of the induction is stated in Theorem 4.4.5
and Theorem 4.4.8. Then the induction step is given by Theorem 4.4.6 and Theo-
rem 4.4.9.

Theorem 4.4.11. The H-type algebras nr+8t1+4t2,r+8t3+4t2 and nr+8t3+4t2,r+8t1+4t2 are
integral isomorphic for r ∈ {0, 1, 2} and t1, t2, t3 ∈ N0.

Proof. We prove by induction. The beginning of the induction is stated in Theorem 4.4.7.
Then the induction step is given by Theorem 4.4.6 and Theorem 4.4.9.

4.5 Some non-isomorphic Lie algebras nr,s and ns,r

The behaviour of the Lie algebras of block type, or those that admit the decomposi-
tion (4.16) are very special, and as we saw in the previous section that it is preserved
under extension. The situation is much less predictable if the Lie algebra is not of block
type, then different situations can occur. In the present section we show one example
of non isomorphic algebras and show also that, in contrast to algebras nr,r, r = 1, 2, 4
mod 4, the pseudo H-type algebra n3,3 does not admit an automorphism which restric-
tion to the center is an anti-isometry. We also observe that our method does not allow
to give any outlook if for instance, n7,7, with v7,7 = v3,3 ⊗ v4,4, admit or do not admit an
automorphism which restriction to the center is an anti-isometry.

4.5.1 Non-isomorphism of n3,2 and n2,3

First we introduce the integral basis of n3,2 and n2,3 which is essential for the proof of
Theorem 4.5.4.

We define an orthonormal basis of n3,2 by Bz3,2 = {Z0, Z1, Z2, Z3, Z4} and

Bv3,2 =
{ w1 := w, w2 := J1w, w3 := J2w, w4 := J1J2w,

w5 := J3w, w6 := J4w, w7 := J1J3w, w8 := J1J4w,

}
for J1J2J3J4w = w and J0J1J2w = w with 〈wi , wi〉v3,2 = εi(4, 4), 〈Zk , Zk 〉z3,2 =

εk+1(3, 2).
We define an orthonormal basis of n2,3 by Bz2,3 = {Z̄1, Z̄2, Z̄3, Z̄4, Z̄5} and

Bv2,3 =
{ w̄1 := w̄, w̄2 := J1w̄, w̄3 := J2w̄, w̄4 := J1J2w̄,

w̄5 := J3w̄, w̄6 := J4w̄, w̄7 := J1J3w̄, w̄8 := J1J4w̄,

}
for J1J2J3J4w̄ = w̄ and J1J4J5w̄ = w̄ with 〈w̄i , w̄i〉v2,3 = εi(4, 4), 〈 Z̄k , Z̄k 〉z2,3 = εk(2, 3).
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Table 4.7: Commutation relations on n3,2

[row , col.] w1 w4 w7 w8 w2 w3 w5 w6

w1 0 −Z0 0 0 Z1 Z2 Z3 Z4

w4 Z0 0 0 0 Z2 −Z1 Z4 −Z3

w7 0 0 0 −Z0 Z3 −Z4 Z1 −Z2

w8 0 0 Z0 0 Z4 Z3 Z2 Z1

w2 −Z1 −Z2 −Z3 −Z4 0 −Z0 0 0
w3 −Z2 Z1 Z4 −Z3 Z0 0 0 0
w5 −Z3 −Z4 −Z1 −Z2 0 0 0 Z0

w6 −Z4 Z3 Z2 −Z1 0 0 −Z0 0

Table 4.8: Commutation relations on n2,3

[row , col.] w̄1 w̄4 w̄7 w̄8 w̄2 w̄3 w̄5 w̄6

w̄1 0 0 0 Z̄5 Z̄1 Z̄2 Z̄3 Z̄4

w̄4 0 0 −Z̄5 0 Z̄2 −Z̄1 Z̄4 −Z̄3

w̄7 0 Z̄5 0 0 Z̄3 −Z̄4 Z̄1 −Z̄2

w̄8 −Z̄5 0 0 0 Z̄4 Z̄3 Z̄2 Z̄1

w̄2 −Z̄1 −Z̄2 −Z̄3 −Z̄4 0 0 0 Z̄5

w̄3 −Z̄2 Z̄1 Z̄4 −Z̄3 0 0 Z̄5 0
w̄5 −Z̄3 −Z̄4 −Z̄1 −Z̄2 0 −Z̄5 0 0
w̄6 −Z̄4 Z̄3 Z̄2 −Z̄1 −Z̄5 0 0 0

Proposition 4.5.1. The following is true.

• The linear map adX : v3,2 → z3,2 is surjective if and only if 〈X ,X 〉v3,2 �= 0 for
X ∈ v3,2.

• The linear map adX : v2,3 → z2,3 is surjective if and only if 〈X ,X 〉v2,3 �= 0 for
X ∈ v2,3.

Proof. First we note that adX is surjective for all X ∈ vr,s with 〈X ,X 〉vr,s �= 0 by Defi-

nition 1.1.6, so it suffices to prove that for 〈X ,X 〉v3,2 = 0, 〈X ,X 〉v2,3 = 0, respectively,
the map adX is not surjective.

We write X =
∑8

i=1 λiwi for X ∈ v3,2 and define the representation matrix MX of
adX with respect to the orthonormal basis Bn3,2 by(

V X
1 V X

4 V X
7 V X

8 V X
2 V X

3 V X
5 V X

6

)
,

where V X
i is the vector representation

⎛⎜⎝μ
X
0i
...
μX
4i

⎞⎟⎠ of [X ,wi] =
∑4

k=0 μ
X
kiZk. The matrix MX

for n3,2 is given by
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⎛⎜⎜⎜⎜⎝
λ4 −λ1 λ8 −λ7 λ3 −λ2 −λ6 λ5

−λ2 λ3 −λ5 −λ6 λ1 −λ4 λ7 λ8

−λ3 −λ2 λ6 −λ5 λ4 λ1 λ8 −λ7

−λ5 λ6 −λ2 −λ3 λ7 λ8 λ1 −λ4

−λ6 −λ5 λ3 −λ2 λ8 −λ7 λ4 λ1

⎞⎟⎟⎟⎟⎠ .

Note that MX is surjective if and only if det(MXM
T
X) �= 0 as rank(MXM

T
X) = rank(MX).

The determinant of MXM
T
X is

(λ2
1 + λ2

4 − λ2
7 − λ2

8 + λ2
2 + λ2

3 − λ2
5 − λ2

6)
2(λ2

1 + λ2
4 + λ2

7 + λ2
8 + λ2

2 + λ2
3 + λ2

5 + λ2
6)

×
[
λ4
1 + λ4

4 + λ4
7 + 2λ2

7λ
2
8 + λ4

8 + 2λ2
7λ

2
2 + 2λ2

8λ
2
2 + λ4

2 + 2λ2
7λ

2
3 + 2λ2

8λ
2
3 + 2λ2

2λ
2
3

+ λ4
3 + 2λ2

7λ
2
5 + 2λ2

8λ
2
5 − 2λ2

2λ
2
5 − 2λ2

3λ
2
5 + λ4

5 + 2(λ2
7 + λ2

8 − λ2
2 − λ2

3 + λ2
5)λ

2
6

+ λ4
6 − 8λ1(λ7λ2λ5 + λ8λ3λ5 + λ8λ2λ6 − λ7λ3λ6) + 8λ4(−λ8λ2λ5 + λ7λ3λ5

+ λ7λ2λ6 + λ8λ3λ6) + 2λ2
4(−λ2

7 − λ2
8 + λ2

2 + λ2
3 + λ2

5 + λ2
6)

+ 2λ2
1(λ

2
4 − λ2

7 − λ2
8 + λ2

2 + λ2
3 + λ2

5 + λ2
6)
]
.

It follows that for all X ∈ v3,2 with

〈X ,X 〉v3,2 = λ2
1 + λ2

2 + λ2
3 + λ2

4 − λ2
5 − λ2

6 − λ2
7 − λ2

8 = 0

the determinant det(MXM
T
X) vanishes. This finishes the proof for n3,2.

For n2,3 the matrix MX is given by⎛⎜⎜⎜⎜⎝
−λ2 λ3 −λ5 −λ6 λ1 −λ4 λ7 λ8

−λ3 −λ2 λ6 −λ5 λ4 λ1 λ8 −λ7

−λ5 λ6 −λ2 −λ3 λ7 λ8 λ1 −λ4

−λ6 −λ5 λ3 −λ2 λ8 −λ7 λ4 λ1

−λ8 λ7 −λ4 λ1 −λ6 −λ5 λ3 λ2

⎞⎟⎟⎟⎟⎠ ,

and the determinant of MXM
T
X is given by

(λ2
1 + λ2

4 − λ2
7 − λ2

8 + λ2
2 + λ2

3 − λ2
5 − λ2

6)
2(λ2

1 + λ2
4 + λ2

7 + λ2
8 + λ2

2 + λ2
3 + λ2

5 + λ2
6)

×
[
λ4
1 + λ4

2 + λ4
3 + 2λ2

3λ
2
4 + λ4

4 − 2λ2
3λ

2
5 + 2λ2

4λ
2
5 + λ4

5 − 2λ2
3λ

2
6 + 2λ2

4λ
2
6 + 2λ2

5λ
2
6 + λ4

6

− 8λ3λ4λ5λ7 + 2λ2
3λ

2
7 − 2λ2

4λ
2
7 + 2λ2

5λ
2
7 + 2λ2

6λ
2
7 + λ4

7 + 8λ3λ4λ6λ8 + 2λ2
3λ

2
8 − 2λ2

4λ
2
8

+ 2λ2
5λ

2
8 + 2λ2

6λ
2
8 + 2λ2

7λ
2
8 + λ4

8 − 8λ2λ4(λ6λ7 + λ5λ8)

+ 2λ1
1(λ

2
2 + λ2

3 + λ2
4 + λ2

5λ
2
6 − λ2

7 − λ2
8) + 2λ2

2(λ
2
3 + λ2

4 − λ2
5 − λ2

6 + λ2
7 + λ2

8)

+ 8λ1(λ3(λ6λ7 + λ6λ8) + λ2(−λ5λ7 + λ6λ8))
]
.

Thus if X ∈ v2,3 and 〈X ,X 〉v2,3 = λ2
1 + λ2

2 + λ2
3 + λ2

4 − λ2
5 − λ2

6 − λ2
7 − λ2

8 = 0, then

det(MXM
T
X) = 0. This finishes the proof for n2,3.
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We stress that the results of Proposition 4.5.1 and Proposition 4.5.5 represent quite
exceptional cases. Definition 1.1.6 does not imply that adX is not surjective for any
X ∈ vr,s with 〈X ,X 〉vr,s = 0. In the following we state a couple of lemmas illustrating
this possibility.

Lemma 4.5.2. For any of the pseudo H-type algebras n11,2, n7,6,n6,7 and n2,11 there
exists X in the corresponding space vr,s such that 〈X ,X 〉vr,s = 0 but, nevertheless, the
map adX is surjective.

Proof. Recall that the pseudo H-type algebras n11,2, n7,6,n6,7 and n2,11 are obtained from
n3,2 and n2,3 by extensions. We define X = w1⊗u1+w7⊗u2 ∈ n11,2 where w1, w7 ∈ Bv3,2

and u1, u2 ∈ Bv8,0 and note that 〈X ,X 〉v11,2 = 0. Then

[X ,wi ⊗ u1] = [w1 ⊗ u1 , wi ⊗ u1] + [w7 ⊗ u2 , wi ⊗ u1]

=

{
−[w1 , wi]n11,2 for i = 1, . . . , 6, 8,

−[w1 , wi]n11,2 − [u2 , u1]n11,2 for i = 7,

= −[w1 , wi]n11,2 , for i = 1, . . . , 8.

Hence span{Z1, Z2, Z3, Z12, Z13} ⊂ Image(adX). Furthermore,

[X ,w1 ⊗ uj] = [w1 ⊗ u1 , w1 ⊗ uj] + [w7 ⊗ u2 , w1 ⊗ uj]

=

{
[u1 , uj]n11,2 for j = 1, 3, . . . , 16,

[u1 , uj]n11,2 − [w7 , w1]n11,2 for j = 2,

= [u1 , uj]n11,2 , for j = 1, . . . , 16.

Hence span{Z4, . . . , Z11} ⊂ Image(adX), i.e. the map adX is surjective.
The proof for n7,6 and n6,7 is obtained analogously by replacing u1 and u2 by y1 and

y6. For the proof for n2,11 we replace u1 and u2 by v1 and v2, respectively.

Lemma 4.5.3. For any pseudo H-type algebra nr,s with r, s �= 0, satisfying (4.16), there
exists at least one X ∈ vr,s with 〈X ,X 〉vr,s = 0 such that the map adX is surjective.

Proof. We choose the basis vectors wi ∈ A+
r,s and wj ∈ B−

r,s and define X = wi+wj such
that 〈X ,X 〉vr,s = 0. We note that the map adwi

: Vwi
→ zr,s and adwj

: Vwj
→ zr,s are

surjective, where we denote by Vwi
the orthogonal complement to the kernel of adwi

.
Therefore Vwi

⊂ span{Br,s} and Vwj
⊂ span{Ar,s} as [wi ,Ar,s] = 0 and [wj ,Br,s] = 0.

It follows that

span{[X ,Ar,s]} = span{[wi ,Ar,s] + [wj ,Ar,s]} = span{[wj ,Ar,s]} ⊃ [wj ,Vwj
] = zr,s,

span{[X ,Br,s]} = span{[wi ,Br,s] + [wj ,Br,s]} = span{[wi ,Br,s]} ⊃ [wi ,Vwi
] = zr,s .

Hence the map adX is surjective.

Theorem 4.5.4. The H-type algebras n3,2 and n2,3 are not isomorphic.
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Proof. We assume that there exists an isomorphism ϕ3,2 : n3,2 → n2,3 where the restric-
tion ϕ3,2|z3,2 : z3,2 → z2,3 is an anti-isometry. The adjoint operator adwi

: Vwi
→ z3,2 is

an isometry or anti-isometry by Definition 1.1.6 for any wi ∈ Bv3,2 , i.e.

〈 adwi
(X) , adwi

(X) 〉z3,2 = 〈wi , wi 〉v3,2 〈X ,X 〉v3,2
for all X ∈ Vwi

, where Vwi
is the orthogonal complement to the kernel of adwi

. As the
map ϕ3,2|z3,2 is an anti-isometry, it follows that the composition ϕ3,2 ◦ adwi

: Vwi
→ z2,3

is an anti-isometry for 〈wi , wi 〉v3,2 = 1 and is an isometry for 〈wi , wi 〉v3,2 = −1, hence

−〈wi , wi 〉v3,2 〈wj , wj 〉v3,2 = 〈ϕ3,2 ◦ adwi
(wj) , ϕ3,2 ◦ adwi

(wj) 〉z2,3
= 〈[ϕ3,2(wi) , ϕ3,2(wj)] , [ϕ3,2(wi) , ϕ3,2(wj)] 〉z2,3 .

As the map ϕ3,2 ◦ adwi
is surjective and ϕ3,2 ◦ adwi

(wj) = [ϕ3,2(wi) , ϕ3,2(wj)] it follows
by Proposition 4.5.1 that 〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3 �= 0 for all i = 1, . . . , 8.

We recall that from Definition 1.1.6 it follows that for all X ∈ vr,s with 〈X ,X 〉vr,s �=
0 and Y ∈ VX :

〈 adX(Y ) , adX(Y ) 〉zr,s = 〈X ,X 〉vr,s 〈Y , Y 〉vr,s ,

hence

− 〈wi , wi 〉v3,2 〈wj , wj 〉v3,2 (4.24)

= 〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3 〈ϕ3,2(wj) , ϕ3,2(wj) 〉v2,3 .
We obtain the following relations for w1 and w4:

sign(〈ϕ3,2(w1) , ϕ3,2(w1) 〉v2,3) = − sign(〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3), for i = 2, 3, 4,

sign(〈ϕ3,2(w1) , ϕ3,2(w1) 〉v2,3) = sign(〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3), for i = 5, 6,

sign(〈ϕ3,2(w4) , ϕ3,2(w4) 〉v2,3) = − sign(〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3), for i = 1, 2, 3,

sign(〈ϕ3,2(w4) , ϕ3,2(w4) 〉v2,3) = sign(〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3), for i = 5, 6.

It implies that for i = 2, 3

− sign(〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3) = sign(〈ϕ3,2(w1) , ϕ3,2(w1) 〉v2,3)
= − sign(〈ϕ3,2(w4) , ϕ3,2(w4) 〉v2,3)
= sign(〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3).

Hence 〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3 = 0 for i = 2, 3. This contradicts

〈ϕ3,2(wi) , ϕ3,2(wi) 〉v2,3 �= 0, for i = 1, . . . , 8,

as the map adϕ3,2(wi) is surjective.
Hence n3,2 is not isomorphic to n2,3.
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4.5.2 Special features of the Lie algebra n3,3

We introduce an integral basis of n3,3 by Bz3,3 = {Z1, Z2, Z3, Z4, Z5, Z6} and

Bv3,3 =
{ w1 := w, w2 := J1w, w3 := J2w, w4 := J3w,

w5 := J1J6w, w6 := J6w, w7 := J4w, w8 := J5w,

}
,

for J2J3J4J5w = J1J2J5J6w = J1J2J3w = w,

and 〈wi , wi〉v3,3 = εi(4, 4), 〈Zk , Zk 〉z3,3 = εk(3, 3).

Table 4.9: Commutation relations on n3,3

[row , col.] w1 w2 w5 w6 w3 w4 w7 w8

w1 0 Z1 0 Z6 Z2 Z3 Z4 Z5

w2 −Z1 0 −Z6 0 −Z3 Z2 −Z5 Z4

w5 0 Z6 0 Z1 Z5 Z4 Z3 Z2

w6 −Z6 0 −Z1 0 Z4 −Z5 Z2 −Z3

w3 −Z2 Z3 −Z5 −Z4 0 −Z1 Z6 0
w4 −Z3 −Z2 −Z4 Z5 Z1 0 0 −Z6

w7 −Z4 Z5 −Z3 −Z2 −Z6 0 0 Z1

w8 −Z5 −Z4 −Z2 Z3 0 Z6 −Z1 0

Proposition 4.5.5. The linear map adX : v3,3 → z3,3 is surjective if and only if 〈X ,X 〉v3,3 �=
0 for X ∈ v3,3.

Proof. We use similar arguments as in the proof of Proposition 4.5.1. The matrix MX

that we calculate by using Table 4.9 is given by⎛⎜⎜⎜⎜⎜⎜⎝

−λ2 λ1 −λ6 λ5 λ4 −λ3 −λ8 λ7

−λ3 −λ4 −λ8 −λ7 λ1 λ2 λ6 λ5

−λ4 λ3 −λ7 λ8 −λ2 λ1 λ5 −λ6

−λ7 −λ8 −λ4 −λ3 λ6 λ5 λ1 λ2

−λ8 λ7 −λ3 λ4 λ5 −λ6 −λ2 λ1

−λ6 λ5 −λ2 λ1 −λ7 λ8 λ3 −λ4

⎞⎟⎟⎟⎟⎟⎟⎠ .

The determinant of MXM
T
X has the form

(λ2
1 + λ2

2 + λ2
3 + λ2

4 − λ2
5 − λ2

6 − λ2
7 − λ2

8)
4

× ((λ1 − λ5)
2 + (λ2 − λ6)

2 + (λ4 − λ7)
2 + (λ3 − λ8)

2)

× ((λ1 + λ5)
2 + (λ2 + λ6)

2 + (λ4 + λ7)
2 + (λ3 + λ8)

2).

Thus the map adX is surjective if and only if 〈X ,X 〉v3,3 �= 0.

Theorem 4.5.6. There does not exist an automorphism ϕ3,3 of n3,3 such that the re-
striction to the center ϕ|z3,3 is an anti-isometry.
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Proof. By repeating the arguments of the proof of Theorem 4.5.4, we obtain equa-
tion (4.24). This implies the relations

sign(〈ϕ3,3(w1) , ϕ3,3(w1) 〉v3,3) = − sign(〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3), for i = 2, 3, 4,

sign(〈ϕ3,3(w1) , ϕ3,3(w1) 〉v3,3) = sign(〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3), for i = 6, 7, 8,

sign(〈ϕ3,3(w2) , ϕ3,3(w2) 〉v3,3) = − sign(〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3), for i = 1, 3, 4,

sign(〈ϕ3,3(w2) , ϕ3,3(w2) 〉v3,3) = sign(〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3), for i = 5, 7, 8.

Thus, for i = 3, 4

− sign(〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3) = sign(〈ϕ3,3(w1) , ϕ3,3(w1) 〉v3,3)
= − sign(〈ϕ3,3(w2) , ϕ3,3(w2) 〉v3,3)
= sign(〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3).

Hence 〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3 = 0 for i = 3, 4. This contradicts to the fact that

〈ϕ3,3(wi) , ϕ3,3(wi) 〉v3,3 �= 0 for i = 1, . . . , 8, as the map adϕ3,3(wi) is surjective. Hence

there does not exist an automorphism ϕ3,3 of n3,3 such that ϕ|z3,3 is an anti-isometry.

Proposition 4.5.7. For the pseudo H-type algebras n11,3, n7,7 and n3,11 there exists X
in respective vr,s such that adX is surjective.

Proof. We repeat the proof of Lemma 4.5.2 by replacing w1, w7 ∈ v2,3 by w1, w5 ∈
v3,3.

4.6 Strongly bracket generating property

In this section we study the bracket generating property of the pseudo H-type algebras.
For that purpose we use the equivalent Definition 1.1.6 of the pseudo H-type algebras
nr,s, which is related to the definition of the strongly bracket generating property.

Definition 4.6.1. Let nr,s = vr,s⊕ zr,s be a pseudo H-type algebra. We call a vector
space vr,s strongly bracket generating if for any non-zero v ∈ vr,s the linear map adv =
[v , ·] : vr,s → zr,s is surjective, i.e. span{vr,s, [v , vr,s]} = nr,s for all v ∈ vr,s \{0}. We
say in this case that the pseudo H-type algebra nr,s has the strongly bracket generating
property.

Let Nr,s be the Lie group, corresponding to the pseudo H-type algebra nr,s and let
H be the left translation of the vector space vr,s. If vr,s is strongly bracket generating,
then the left invariant distribution H is strongly bracket generating in a sense that
span{H, [X ,H]} = TNr,s for any smooth non-zero section X of the distribution H.

Even the strongly bracket generating property seems to be just of interest from a
geometrical point of view, it actually has a close relation to the equivalent Definition 1.1.6
of pseudo H-type algebras, which can be seen in the following subsection.
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4.6.1 An equivalent definition of pseudo H-type algebras

In this subsection we prove that the general H-type algebras [51] are equivalent to the
pseudo H-type algebras. But first we discuss the related topic of the composition of
scalar products.

Let (U, 〈· , ·〉U), (V, 〈· , ·〉V ) be two vector spaces with corresponding non-degenerate
quadratic forms, written as bi-linear symmetric forms, or scalar products.

Definition 4.6.2. A bilinear map μ : U × V → V is called a composition of the scalar
products 〈· , ·〉U of U and 〈· , ·〉V of V if the equality

〈μ(u, v) , μ(u, v)〉V = 〈u , u〉U〈v , v〉V (4.25)

holds for any u ∈ U and v ∈ V .

We assume that there is u0 ∈ U such that 〈u0 , u0〉U = 1 and μ(u0, v) = v. This
can always be done by normalization procedure of quadratic forms, see [63]. Let us
denote by Z the orthogonal complement of the non-degenerate space span{u0} and by
J the restriction of μ to Z, thus J : Z × V → V . The map J is skew-adjoint in the
sense that 〈J(Z, v) , v′〉V = −〈v , J(Z, v′)〉V for any Z ∈ Z and v, v′ ∈ V . Therefore, the
map J can be used to define a Lie algebra structure on n = Z ⊕ V by 〈J(Z, v) , v′〉V =
〈Z , [v , v′]〉Z . The obtained Lie algebra is a general H-type algebra, see [51, Theorem 1].
Now, rephrasing Definition 1.1.5 of a pseudo H-type algebra, we can say that a two-step
nilpotent Lie algebra is a pseudo H-type algebra if the map J defined by (1.1.4) is the
restriction to the center Z = z of a composition of corresponding quadratic forms for
vector spaces V = v, U = span{u0} ⊕⊥ Z.

Theorem 4.6.3. Definitions 1.1.5 and 1.1.6 are equivalent.

Proof. Let us prove that Definition 1.1.6 implies Definition 1.1.5. It was shown in [51,
Theorem 1] that any general H-type algebra n =

(
v⊕⊥ z, [· , ·], 〈· , ·〉n = 〈· , ·〉v + 〈· , ·〉z

)
defines a composition of the quadratic form 〈· , ·〉v and another quadratic form whose
restriction to z coincides with 〈· , ·〉z. Particularly, it implies (1.2) and therefore a general
H-type algebra is a pseudo H-type algebra.

Now we assume that we are given a pseudoH-type algebra n =
(
v⊕⊥ z, [· , ·], 〈· , ·〉n =

〈· , ·〉v + 〈· , ·〉z
)
with center z. Let us fix v ∈ v with 〈v , v〉v = ±1. We need to show that

adv : v → z is a surjective (anti-)isometry. The following equation is true

〈Z , adv(JZ′v)〉z = 〈Z , [v , JZ′v]〉z = 〈JZv , JZ′v〉v = 〈Z ,Z ′〉z〈v , v〉v = ±〈Z ,Z ′〉z,

for all Z,Z ′ ∈ z by formula (1.4). We use both notation J(Z, v) and JZv. This implies
adv(JZ′v) = ±Z ′ for all Z ′ ∈ z by the non-degenerate property of the scalar product
〈· , ·〉z. Since 〈JZ′v , w〉v = 〈Z ′ , [v , w]〉z = 〈Z ′ , 0〉z = 0, for all w ∈ ker(adv), it follows
that JZ′v ∈ Vv = (ker(adv))

⊥. We showed that adv is surjective.
To prove that adv is an isometry for 〈v , v〉v = 1 and an anti-isometry for 〈v , v〉v =

−1, we exhibit that the maps adv : Vv → z and J(·)v : z → Vv are inverse and then
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equality (1.2) implies the isometry and anti-isometry properties. Let us assume that
〈v , v〉v = 1. We proved that adv : Vv → z is bijective, thus the image of J(·)v belongs to
Vv, and adv(J(·)v) = Idz, where Idz is the identity map on z.

We claim that the map J(·)v : z → Vv is bijective. Indeed if we assume that J(·)v is
not surjective, then there is w ∈ Vv which is not in the image of J(·)v. Let adv(w) =
Z ∈ z, then adv(JZv) = Z which implies w = JZv by injectivity of adv and leads to
contradiction.

If we now assume that J(·)v is not injective, then we find Z ′, Z ′′ ∈ z, Z ′ �= Z ′′,
such that J(Z ′, v) = J(Z ′′, v). But in this case Z ′ = adX(JZ′v) = adv(JZ′′v) = Z ′′

by bijectivity of adv and we again get a contradiction. The proof for 〈v , v〉v = −1
is analogous and we conclude that adv and J(·)v are inverse maps to each other. The
equality (1.2) becomes

〈JZv , JZv〉v = 〈Z ,Z〉z for 〈v , v〉v = 1, and 〈JZv , JZv〉v = −〈Z ,Z〉z for 〈v , v〉v = −1,

which shows the (anti-)isometry property of the map J(·)v : z → Vv and its inverse
adv : Vv → z.

4.6.2 Bracket generating property of pseudo H-type algebras

Theorem 4.6.4. The pseudo H-type algebras nr,s with r = 0 or s = 0 have the strongly
bracket generating property.

Proof. Let s = 0. This implies that 〈v , v〉vr,0 > 0 for all v ∈ vr,0 with v �= 0. Defini-
tion 1.1.6 yields that adv is surjective, i.e. vr,0 is strongly bracket generating.

Let r = 0. Recall that v0,s is a neutral space, i.e. 〈· , ·〉v0,s has index (l, l) and we
can identify v0,s with Rl,l. This implies that there exists elements v ∈ v0,s, v �= 0, with
〈v , v〉l,l = 0. According to Definition 1.1.6 we only need to show that adv : vr,s → zr,s
is surjective for vectors with 〈v , v〉l,l = 0, since for all other vectors the adjoint map is
surjective.

We define the orthonormal basis {w1, . . . , w2l} of v0,s with 〈wi , wi 〉v0,s = εi(l, l) and

fix an arbitrary v ∈ v0,s with 〈v , v〉l,l = 0 and v =
∑2l

i=1 λiwi. We split v in the form

v = v+ + v−, with v+ =
∑l

i=1 λiwi, v
− =
∑2l

i=l+1 λiwi and 〈v+ , v+〉l,l = −〈v− , v−〉l,l > 0
and 〈v+ , v−〉l,l = 0. We note that [wi , wj] = 0 if i, j = 1, . . . , l or i, j = l + 1, . . . , 2l as

〈[wi , wj] , [wi , wj] 〉z0,s ≥ 0, for i, j = 1, . . . , l, or i, j = l + 1, . . . , 2l.

Hence z0,s = adwi
(v0,s) = adwi

(span{w1, . . . , wl}) for i = l + 1, . . . , 2l. It follows that

[v , span{w1, . . . , wl}] = [v− , span{w1, . . . , wl}] = z0,s .

Hence adv is surjective, i.e. the pseudo H-type algebras n0,s = v0,s ⊕ z0,s, where s > 0,
have the strongly bracket generating property.
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Theorem 4.6.5. The pseudo H-type algebras nr,s with r, s �= 0 do not have the strongly
bracket generating property.

Proof. We assume that nr,s = vr,s⊕ zr,s with r, s �= 0 has the strongly bracket generating
property, i.e. for all v ∈ vr,s: [v , vr,s] = zr,s and we show that it contradicts the presence
of nullvectors in the scalar product space (zr,s, 〈 · , · 〉r,s). The non-degenerate property
of the indefinite scalar-product 〈 · , · 〉r,s implies that for all v ∈ vr,s and for all Z ∈ zr,s
there exists vZ ∈ vr,s such that

〈[v , vZ ] , Z 〉r,s �= 0
(1.1)⇐⇒ 〈 JZ(v) , vZ 〉vr,s �= 0.

It follows that JZ(v) �= 0 for all v ∈ vr,s and for all Z ∈ zr,s, i.e. ker{JZ} = {0} for all
Z ∈ zr,s. But there exist elements Z0 ∈ zr,s such that 〈Z0 , Z0 〉r,s = 0 as r, s �= 0. This

implies that J2
Z0

= 0 which is equivalent to ker{JZ0} �= {0}. This is a contradiction,
hence the pseudo H-type algebras nr,s with r, s �= 0 do not have the strongly bracket
generating property.

We shortly want to degrade the widely misconception that 2-step nilpotent Lie al-
gebras are in general strongly bracket generating by giving one more counterexample
besides Theorem 4.6.5. The example is known in the community of sub-Riemannian
geometry.

Example 4.6.6. We consider the free Lie algebra Fr,2 of step 2, i.e.

Fr,2 = span{Xi, [Xk , Xl] | 1 ≤ i ≤ r, 1 ≤ k < l ≤ r},

where Xi and [Xk , Xl] are linear independent for all 1 ≤ i ≤ r, 1 ≤ k < l ≤ r. The
dimension of Fr,2 is

(
r
2

)
+ r.

We claim that the subbundle span{Xi|1 ≤ i ≤ r} is not strongly bracket generating
for r ≥ 3.

We know that the rank of adX1 is r − 1. It follows that if

r − 1 <

(
r

2

)
=

r(r − 1)

2
⇔ 1 <

r

2
,

then the subbundle span{Xi|1 ≤ i ≤ r} cannot be strongly bracket generating. This
inequality is fulfilled for r ≥ 3.

4.7 Non-isomorphism properties for pseudo H-type

groups in general position

In this section we discuss the possible extension of our results to pseudo H-type algebras,
constructed from non-minimal admissible Clifford modules. Here we need to distinguish
two essentially different situations. The first one when the irreducible module is unique
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(up to equivalence) and other one when there are two non-equivalent irreducible modules.
We introduce some new notation.

1. Let the Clifford algebras Clr,s admit only one (up to equivalence) irreducible
module and we write vr,s for the minimal admissible module, that could be a direct
sum of two irreducible modules. This situation occurs when r − s �= 3 mod (4). Any
non-minimal admissible Clr,s-module v is isomorphic (and isometric) to the direct sum
of minimal admissible modules vr,s, see [46, 64]:

v = vr,s(μ) ∼= ⊕μ vr,s .

Here and further on we use the notation vr,s(μ) for the μ-fold direct sum of minimal
admissible modules vr,s. Thus the argument μ shows how many equivalent (in the sense
of representation theory) minimal admissible modules contains the sum. The lower
index, as previously, indicates the index of the metric of the generating space for the
Clifford algebra.

2. If r − s = 3 mod (4), then the Clifford algebra Clr,s admits two non-equivalent
Clifford modules. We write v1r,s and v2r,s for the minimal admissible modules. Recall,
that in this case each of the admissible modules vlr,s, l = 1, 2 is either irreducible, or
the direct sum of two equivalent irreducible modules, where the representation map is
changed appropriately [37]. We emphasize that a minimal admissible module vkr,s can not
be a direct sum of two non-equivalent irreducible modules. In this case a non-minimal
admissible Clr,s-module v is isomorphic to

v = vr,s(μ, ν) ∼= (⊕μ v1r,s)
⊕

(⊕ν v2r,s)

for some positive integers μ, ν which show the number of equivalent and non-equivalent
minimal admissible modules contained in the admissible module vr,s(μ, ν). To unify the
notation we always write vr,s(μ, ν), where ν = 0 if r − s �= 3 mod (4) and ν can be
different from zero in the case r − s = 3 mod (4). According to this new notation we
also write nr,s(μ, ν) for a pseudo H-type algebra in the case that it is isomorphic to the
direct sum vr,s(μ, ν)⊕ zr,s.

Results of [46] imply that a non-minimal admissible module (vr,s(μ, ν), 〈· , ·〉vr,s(μ,ν)) of
the Clifford algebra Clr,s is given as an orthogonal sum of n-dimensional minimal admis-
sible modules vr,s = (vr,s, 〈· , ·〉vr,s), where each scalar product 〈· , ·〉vr,s is the restriction
of 〈· , ·〉vr,s(μ,ν) on the corresponding copy of the vector space vr,s. To describe the Lie
bracket on nr,s(μ, ν) we proceed as follows. Let {Z1, . . . , Zm} be an orthonormal basis of
zr,s. We denote a basis of the j-term in the sum ⊕μ

j=1 v
l
r,s, l = 1, 2 by {vl1j, . . . , vlnj} with

structure constants (Ak
ip)

l
j. For the sum nr,s(μ, ν) =

(
(⊕μ

j=1(v
1
r,s)j)
⊕

(⊕ν
q=1(v

2
r,s)q)
)⊕ zr,s

we choose the basis

{v1ij, v2pq, Zk

∣∣ i, p = 1, . . . , n, k = 1, . . . , r + s, j = 1, . . . , μ, q = 1, . . . , ν}. (4.26)

The Lie bracket on nr,s(μ, ν) with respect to this basis is given by

[wl1
ij , w

l2
pq] = δl1l2δjq

r+s∑
k=1

(Ak
ip)

lt
j Zk, t = 1, 2. (4.27)



4.7 Non-isomorphism properties for pseudo H-type groups in general
position 75

The bilinear maps J l
j : zr,s×(vlr,s)j → (vlr,s)j, l = 1, 2 are defined by a representation

of Clr,s over (v
l
r,s)j and are extended to J̃ : zr,s× vr,s(μ, ν) → vr,s(μ, ν) by

J̃ :=

⎛⎜⎜⎜⎝
J1
1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 J2

ν

⎞⎟⎟⎟⎠ .

Then the operator J̃ : zr,s → End(vr,s(μ, ν)) satisfies 〈 J̃Zv , w 〉vr,s(μ,ν) = 〈Z , [v , w] 〉zr,s ,
for all Z ∈ zr,s, v, w ∈ vr,s(μ, ν) and can be extended to the representation of Clr,s over
vr,s(μ, ν). We can assume, by a change of coordinates, without loss of generality, that
J1
1 = . . . = J1

μ and J2
1 = . . . = J2

ν . If a Clifford algebra Clr,s admits only one irreducible
representation, then the notation simplifies due to the absence of upper indices lt.

We start from general observations where the first one follows easily from the dimen-
sion argument.

Proposition 4.7.1. Two pseudo H-type algebras nr,s(μ1, 0) and nr,s(μ2, 0) for r− s �= 3
mod (4) are isomorphic if and only if μ1 = μ2.

Theorem 4.7.2. Two pseudo H-type algebras nr,s(μ1, ν1) and nr,s(μ2, ν2) for r − s = 3
mod (4) are isomorphic if and only if μ1 = μ2 and ν1 = ν2 or μ1 = ν2 and ν1 = μ2.

Proof. In the first step we show that nr,s(μ, 0) and nr,s(0, μ) are isomorphic for r− s = 3
mod (4). Let J1 : v1r,s ⊕ zr,s → v1r,s and J2 : v2r,s ⊕ zr,s → v2r,s be two non-equivalent
representations over two minimal admissible modules. Let nr,s(1, 0) = (v1r,s⊕ zr,s, [· , ·]1)
and nr,s(0, 1) = (v2r,s⊕ zr,s, [· , ·]2) be the pseudo H-type algebras, where we used the
maps J1 and J2 to define the corresponding brackets by (1.1.4). We can assume that
the vector spaces v1r,s and v2r,s are isomorphic under an isomorphism A : v1r,s → v2r,s. We
define a map C : zr,s → zr,s by

J1(v, C(Z)) = Aτ ◦ J2(A(v), Z), for any v ∈ v1r,s, Z ∈ zr,s, (4.28)

where 〈Av , u〉v2r,s = 〈v , Aτu〉v1r,s . We claim that the map F = A ⊕ Cτ : v1r,s ⊕ zr,s →
v2r,s ⊕ zr,s is a Lie algebra isomorphism F : nr,s(1, 0) → nr,s(0, 1), where C

τ is the adjoint
map to C with respect to the scalar product 〈· , ·〉zr,s . Indeed, the chain of equalities

〈Z ,Cτ ([v , w]1)〉zr,s = 〈C(Z) , [v , w]1〉zr,s = 〈J1
C(Z)v , w〉v1r,s = 〈Aτ ◦ J2

Z(Av) , w〉v1r,s
= 〈J2

Z(Av) , Aw〉v2r,s = 〈Z , [Av ,Aw]2〉zr,s
for any v, w ∈ v1r,s, Z ∈ zr,s shows that F ([v , w]1) = Cτ ([v , w]1) = [Av ,Aw]2 =
[Fv , Fw]2.

To show that the Lie algebras nr,s(μ, ν) and nr,s(ν, μ) are isomorphic, we choose the
map A : v1r,s → v2r,s to be not only the isomorphism of vector spaces, but also an isom-
etry between the admissible modules. It, particularly, implies that Aτ = A−1. The
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corresponding map C : zr,s → zr,s will also be an isometry by Theorem 4.2.5. We fix
an orthonormal basis Z1, . . . , Zr+s of zr,s, then the set C(Z1), . . . , C(Zr+s) also forms an
orthonormal basis. We construct an integral basis v211, . . . , v

2
n1 of v2r,s by using the map

J2 : zr,s ⊕ v2r,s → v2r,s and the orthonormal basis Z1, . . . , Zr+s as it was done in [46]. Then,
by making use of the same method, we obtain the integral basis v111, . . . , v

1
n1 constructed

from the orthonormal basis C(Z1), . . . , C(Zr+s) and the map J1 : zr,s⊕ v1r,s → v1r,s. By

the choice of the map A we get
∏l

k=1 J
1
C(Zik

) = A−1◦
(∏l

k=1 J
2
Zik

)
◦A for any choice of or-

thonormal generators Zi1 , . . . , Zil in zr,s. It guarantees that there is a vector v ∈ v1r,s such

that 〈v , v〉v1r,s = 〈Av ,Av〉v2r,s and
∏l

k=1 J
1
C(Zik

)v = v implies
∏l

k=1 J
2
Zik

(Av) = Av. The

method of the construction of the integral basis in [46] implies that v2ij = Av1ij. Hence the
structural constants with respect to the basis {v211, . . . , v2n1, Z1, . . . , Zr+s} are identical
to the structural constants with respect to the basis {v111, . . . , v11n, C(Z1), . . . , C(Zr+s)}.
More precise, if we write (Ak

ip)
1
1 = (Ak

ip)
2
1 = Ak

ip in the notation (4.27), then

[v1i1 , v
1
p1] =

r+s∑
k=1

Ak
ipC(Zk) and [v2i1 , v

2
p1] =

r+s∑
k=1

Ak
ipZk.

We can find the exact form of the map C : zr,s → zr,s. Let Z = {Z1, . . . , Zr+s} be an
orthonormal basis for zr,s. Then the volume elements have different actions on their

modules, namely ω1(Z) =
∏r+s

k=1 J
1
Zk

= Id on v1rs and ω2(Z) =
∏r+s

k=1 J
2
Zk

= − Id on v2rs,
see [64]. Let A : v1r,s → v2r,s be an isometry and C : zr,s → zr,s be the mapping induced
by (4.28). Then

ω1(C(Z))v =
r+s∏
k=1

J1
C(Zk)

v = A−1 ◦
r+s∏
k=1

J2
Zk

◦ Av = A−1ω2(Z)Av = A−1(−Av) = −v

for v ∈ v1r,s. Since for r − s = 3 mod (4) we have r + s = 2(s + 2k + 1) + 1, k ∈ Z, we
conclude that r + s is an odd number. Then from

r+s∏
k=1

J1
Zk

= ω1(Z) = Idv1r,s
= −ω1(C(Z)) = −

r+s∏
k=1

J1
C(Zk)

=
r+s∏
k=1

J1
−C(Zk)

we can assume that the map C : zr,s → zr,s maps the basis Z = {Z1, . . . , Zr+s} to the
basis −Z = {−Z1, . . . ,−Zr+s}. We write

{v1ij, v2iq, Zk|i = 1, . . . , n, j = 1, . . . , μ, q = 1, . . . , ν, k = 1, . . . , r + s}

for an integral basis of nr,s(μ, ν) where v1ij is the i-th coordinate in the j’s copy of the
module v1r,s and v2iq is the i-th coordinate in the q’s copy of the n-dimensional admissible
module v2r,s. Analogously,

{v2iq, v1ij, Zk|i = 1, . . . , n, q = 1, . . . , μ, j = 1, . . . , ν, k = 1, . . . , r + s}
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is an integral basis of nr,s(ν, μ). Recall that in both Lie algebras nr,s(μ, ν) and nr,s(ν, μ)
the following relations hold: [v1ij , v

1
pq] = [v1ij , v

2
pr] = [v2ij , v

2
pq] = 0 for j �= q and for any

i, p, r. Moreover

[v1ij , v
1
pj] = [v1i1 , v

1
p1] = −

r+s∑
k=1

Ak
ipZk, [v2ij , v

2
pj] = [v2i1 , v

2
p1] =

r+s∑
k=1

Ak
ipZk (4.29)

for the above chosen C : zr,s → zr,s. The bijective linear map f : nr,s(μ, ν) → nr,s(ν, μ)
defined by

v1ij �→ v2ij = A(v1ij), for j = 1, . . . , μ,
v2ip �→ v1ip = A−1(v2ip), for p = 1, . . . , ν,
Zk �→ −Zk, for k = 1, . . . , r + s,

and i, p = 1, . . . , n induces a Lie algebra homomorphism. Indeed, by (4.29)

f([v1ij , v
1
pj]) = f([v1i1 , v

1
p1]) = f(−

r+s∑
k=1

Ak
ipZk) = −

r+s∑
k=1

Ak
ipf(Zk)

=
r+s∑
k=1

Ak
ipZk = [v2ij , v

2
pj] = [A(v1ij) , A(v

1
pj)] = [f(v1ij) , f(v

1
pj)],

and, analogously,

f([v2ij , v
2
pj]) = f([v2i1 , v

2
p1]) = f(

r+s∑
k=1

Ak
ipZk) =

r+s∑
k=1

Ak
ipf(Zk)

= −
r+s∑
k=1

Ak
ipZk = [v1ij , v

1
pj] = [A−1(v2ij) , A

−1(v2pj)] = [f(v2ij) , f(v
2
pj)].

To show the reverse statement we assume that Lie algebras nr,s(μ1, ν1) and nr,s(μ2, ν2)
are isomorphic for some μ1 > μ2 and μ1 > ν2. Then there are bijective maps A12 : v1r,s →
v2r,s and A11 : v1r,s → v1r,s of minimal dimensional modules where the map A12 induces
C by (4.28) and C induces A11 by (4.2). Then we obtain J1

C(Z) = Aτ
12 ◦ J2

Z ◦ A12 =

Aτ
11 ◦ J1

Z ◦ A11, that contradicts to the assumption that modules v1r,s and v2r,s are non
equivalent.

4.7.1 Open problems on classification of H-type algebras nr,s(μ, ν).

The problem of the isomorphism of the pseudo H-type algebras nr,s(μ, ν) with different
signatures (r, s) turns out to be not so simple. Increasing the dimension of admissible
modules allows more freedom for action of the representation maps and some isomorphic
Lie algebras can appear. For instance, it is possible to show, in the above notation, that
the Lie algebras n2,1 and n1,2(1, 1) are isomorphic, but the Lie algebras n2,1 and n1,2(2, 0)
are not isomorphic. Thus we leave the full description of classification of pseudo H-type
algebras for forthcoming papers.
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4.7.2 Bracket generating properties

Theorem 4.7.3. The pseudo H-type algebras nr,s(μ, ν) possesses the strongly bracket
generating property if only if r = 0 or s = 0.

Proof. First we prove that nr,0(μ, ν) is strongly bracket generating, i.e. [w , vr,0(μ, ν)] =
zr,0 for all w ∈ nr,0(μ, ν), w �= 0. We recall that vr,0(μ, ν) = ⊕μ

j=1(v
1
r,0)j⊕ν

j=1(v
2
r,0)j. Recall

that nr,0 has the strongly bracket generating property for any r ∈ N by Theorem 4.6.4.
Thus, we obtain that [v , (vlr,0)j] = zr,0 for all v ∈ (vlr,0)j \ {0}, l = 1, 2, j = 1, . . . , μ+ ν.

Let w ∈ vr,0(μ, ν), w �= 0. There is an index j ∈ {1, . . . , μ + ν} such that the
orthogonal projection of w to (vlr,0)j =: v, l = 1 or l = 2 is not vanishing. We obtain

zr,0 ⊃ [w , vr,0(μ, ν)] ⊃ [w , v] = zr,0 .

Hence [w , vr,0(μ, ν)] = zr,0, i.e. nr,0(μ, ν) is strongly bracket generating.
The proof for n0,r(μ, ν) follows analogously.
We consider the case r, s �= 0 and recall that nr,s does not have the strongly bracket

generating property by Theorem 4.6.5, i.e. there is v ∈ v1r,s \{0} such that [v , vr,s] � zr,s.
Then the vector w := v ⊕ 0⊕ · · · ⊕ 0︸ ︷︷ ︸

μ+ν−1 times

∈ vr,0(μ, ν) satisfies [w , vr,0(μ, ν)] = [v , (v1r,s)1] �

zr,s . Hence nr,0(μ, ν) do not have the strongly bracket generating property.

4.8 Appendix

In the tables we indicate by [r , c] that the commutators are calculated as [row , column].

Table 4.10: Commutation relations on n8,0

[r , c] u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16
u1 0 0 0 0 0 0 0 0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8
u2 0 0 0 0 0 0 0 0 Z2 −Z1 −Z4 Z3 −Z6 Z5 −Z8 Z7
u3 0 0 0 0 0 0 0 0 Z3 Z4 −Z1 −Z2 Z8 Z7 −Z6 −Z5
u4 0 0 0 0 0 0 0 0 Z4 −Z3 Z2 −Z1 Z7 −Z8 −Z5 Z6
u5 0 0 0 0 0 0 0 0 Z5 Z6 −Z8 −Z7 −Z1 −Z2 Z4 Z3
u6 0 0 0 0 0 0 0 0 Z6 −Z5 −Z7 Z8 Z2 −Z1 Z3 −Z4
u7 0 0 0 0 0 0 0 0 Z7 Z8 Z6 Z5 −Z4 −Z3 −Z1 −Z2
u8 0 0 0 0 0 0 0 0 Z8 −Z7 Z5 −Z6 −Z3 Z4 Z2 −Z1
u9 −Z1 −Z2 −Z3 −Z4 −Z5 −Z6 −Z7 −Z8 0 0 0 0 0 0 0 0
u10 −Z2 Z1 −Z4 Z3 −Z6 Z5 −Z8 Z7 0 0 0 0 0 0 0 0
u11 −Z3 Z4 Z1 −Z2 Z8 Z7 −Z6 −Z5 0 0 0 0 0 0 0 0
u12 −Z4 −Z3 Z2 Z1 Z7 −Z8 −Z5 Z6 0 0 0 0 0 0 0 0
u13 −Z5 Z6 −Z8 −Z7 Z1 −Z2 Z4 Z3 0 0 0 0 0 0 0 0
u14 −Z6 −Z5 −Z7 Z8 Z2 Z1 Z3 −Z4 0 0 0 0 0 0 0 0
u15 −Z7 Z8 Z6 Z5 −Z4 −Z3 Z1 −Z2 0 0 0 0 0 0 0 0
u16 −Z8 −Z7 Z5 −Z6 −Z3 Z4 Z2 Z1 0 0 0 0 0 0 0 0
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Table 4.11: Commutation relations on n0,8

[r , c] v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16
v1 0 0 0 0 0 0 0 0 Z̃1 Z̃2 Z̃3 Z̃4 Z̃5 Z̃6 Z̃7 Z̃8

v2 0 0 0 0 0 0 0 0 −Z̃2 Z̃1 Z̃4 −Z̃3 Z̃6 −Z̃5 Z̃8 −Z̃7

v3 0 0 0 0 0 0 0 0 −Z̃3 −Z̃4 Z̃1 Z̃2 −Z̃8 −Z̃7 Z̃6 Z̃5

v4 0 0 0 0 0 0 0 0 −Z̃4 Z̃3 −Z̃2 Z̃1 −Z̃7 Z̃8 Z̃5 −Z̃6

v5 0 0 0 0 0 0 0 0 −Z̃5 −Z̃6 Z̃8 Z̃7 Z̃1 Z̃2 −Z̃4 −Z̃3

v6 0 0 0 0 0 0 0 0 −Z̃6 Z̃5 Z̃7 −Z̃8 −Z̃2 Z̃1 −Z̃3 Z̃4

v7 0 0 0 0 0 0 0 0 −Z̃7 −Z̃8 −Z̃6 −Z̃5 Z̃4 Z̃3 Z̃1 Z̃2

v8 0 0 0 0 0 0 0 0 −Z̃8 Z̃7 −Z̃5 Z̃6 Z̃3 −Z̃4 −Z̃2 Z̃1

v9 −Z̃1 Z̃2 Z̃3 Z̃4 Z̃5 Z̃6 Z̃7 Z̃8 0 0 0 0 0 0 0 0

v10 −Z̃2 −Z̃1 Z̃4 −Z̃3 Z̃6 −Z̃5 Z̃8 −Z̃7 0 0 0 0 0 0 0 0

v11 −Z̃3 −Z̃4 −Z̃1 Z̃2 −Z̃8 −Z̃7 Z̃6 Z̃5 0 0 0 0 0 0 0 0

v12 −Z̃4 Z̃3 −Z̃2 −Z̃1 −Z̃7 Z̃8 Z̃5 −Z̃6 0 0 0 0 0 0 0 0

v13 −Z̃5 −Z̃6 Z̃8 Z̃7 −Z̃1 Z̃2 −Z̃4 −Z̃3 0 0 0 0 0 0 0 0

v14 −Z̃6 Z̃5 Z̃7 −Z̃8 −Z̃2 −Z̃1 −Z̃3 Z̃4 0 0 0 0 0 0 0 0

v15 −Z̃7 −Z̃8 −Z̃6 −Z̃5 Z̃4 Z̃3 −Z̃1 Z̃2 0 0 0 0 0 0 0 0

v16 −Z̃8 Z̃7 −Z̃5 Z̃6 Z̃3 −Z̃4 −Z̃2 −Z̃1 0 0 0 0 0 0 0 0

Table 4.12: Commutation relations on n4,4

[r , c] y1 y6 y7 y8 y13 y14 y15 y16 y2 y3 y4 y5 y9 y10 y11 y12
y1 0 0 0 0 0 0 0 0 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8
y6 0 0 0 0 0 0 0 0 Z2 −Z1 −Z4 Z3 Z6 −Z5 Z8 −Z7
y7 0 0 0 0 0 0 0 0 Z3 Z4 −Z1 −Z2 Z8 Z7 −Z6 −Z5
y8 0 0 0 0 0 0 0 0 Z4 −Z3 Z2 −Z1 −Z7 Z8 Z5 −Z6
y13 0 0 0 0 0 0 0 0 Z5 −Z6 −Z8 Z7 Z1 −Z2 Z4 −Z3
y14 0 0 0 0 0 0 0 0 Z6 Z5 −Z7 −Z8 Z2 Z1 −Z3 −Z4
y15 0 0 0 0 0 0 0 0 Z7 −Z8 Z6 −Z5 −Z4 Z3 Z1 −Z2
y16 0 0 0 0 0 0 0 0 Z8 Z7 Z5 Z6 Z3 Z4 Z2 Z1
y2 −Z1 −Z2 −Z3 −Z4 −Z5 −Z6 −Z7 −Z8 0 0 0 0 0 0 0 0
y3 −Z2 Z1 −Z4 Z3 Z6 −Z5 Z8 −Z7 0 0 0 0 0 0 0 0
y4 −Z3 Z4 Z1 −Z2 Z8 Z7 −Z6 −Z5 0 0 0 0 0 0 0 0
y5 −Z4 −Z3 Z2 Z1 −Z7 Z8 Z5 −Z6 0 0 0 0 0 0 0 0
y9 −Z5 −Z6 −Z8 Z7 −Z1 −Z2 Z4 −Z3 0 0 0 0 0 0 0 0
y10 −Z6 Z5 −Z7 −Z8 Z2 −Z1 −Z3 −Z4 0 0 0 0 0 0 0 0
y11 −Z7 −Z8 Z6 −Z5 −Z4 Z3 −Z1 −Z2 0 0 0 0 0 0 0 0
y12 −Z8 Z7 Z5 Z6 Z3 Z4 Z2 −Z1 0 0 0 0 0 0 0 0

Table 4.13: Permutations of the basis of n8,0 by Ji

Jiuj J1 J2 J3 J4 J5 J6 J7 J8
u1 u9 u10 u11 u12 u13 u14 u15 u16

u2 −u10 u9 u12 −u11 u14 −u13 u16 −u15

u3 −u11 −u12 u9 u10 −u16 −u15 u14 u13

u4 −u12 u11 −u10 u9 −u15 u16 u13 −u14

u5 −u13 −u14 u16 u15 u9 u10 −u12 −u11

u6 −u14 u13 u15 −u16 −u10 u9 −u11 u12

u7 −u15 −u16 −u14 −u13 u12 u11 u9 u10

u8 −u16 u15 −u13 u14 u11 −u12 −u10 u9

u9 −u1 −u2 −u3 −u4 −u5 −u6 −u7 −u8

u10 u2 −u1 u4 −u3 u6 −u5 u8 −u7

u11 u3 −u4 −u1 u2 −u8 −u7 u6 u5

u12 u4 u3 −u2 −u1 −u7 u8 u5 −u6

u13 u5 −u6 u8 u7 −u1 u2 −u4 −u3

u14 u6 u5 u7 −u8 −u2 −u1 −u3 u4

u15 u7 −u8 −u6 −u5 u4 u3 −u1 u2

u16 u8 u7 −u5 u6 u3 −u4 −u2 −u1
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Chapter 5

Pseudo-metric 2-step nilpotent Lie
algebras

5.1 Introduction

The 2-step nilpotent Lie algebras and its diffeomorphic equivalent the 2-step nilpotent
Lie group are of general interest in the area of sub-Riemannian geometry. Eberlein
introduced and studied an isomorphic standard metric form Rn ⊕W with W ⊂ so(m)
for these particular interesting Lie groups [41, 42]. Furthermore, he showed the existence
of lattices in simply connected, 2-step nilpotent Lie groups N that arise from Lie triple
systems with compact center in so(n). These results are closely related to Clifford
algebras and modules. In particular, finite dimensional Clifford modules imply subspaces
of so(m,R) which are in the compact center of Lie triple systems. The center of the Lie
triple system is trivial for representations of Clifford algebras or semisimple Lie groups.

In the present chapter we concentrate in Section 5.2 on pseudo-metric 2-step nilpo-
tent Lie algebras, i.e. we prove that any 2-step nilpotent Lie algebra can be identified
with a standard pseudo-metric Lie algebra Rp,q ⊕ W with W ⊂ so(p, q), which arises
from a non-positive definite metric on Rp,q. Furthermore, we study these results fur-
ther to accomplish a deeper understanding of the newly constructed algebras and the
problems in indefinite spaces. The main results are illustrated on the example of pseudo
H-type algebras, which are induced by Clifford algebras, representations and modules.
In Section 5.3, we prove that all indefinite free algebras F2(p, q) with p+ q = m are iso-
morphic. Furthermore, we combine the theory of the in Section 5.2 introduced standard
pseudo-metric Lie algebras with indefinite free algebras. Additionally, we introduce Lie
triple systems and study them in detail closely related to pseudo H-type algebras in the
space so(l, l). For further interest are the Lie algebras constructed by Lie triple systems,
which are a topic in the end of this chapter.

This chapter is the result of a productive cooperation between Prof. Furutani, Prof.
Vasiliev, Prof. Markina and me and is planned to be published as a paper.
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5.2 Pseudo-metric on 2-step nilpotent Lie algebras

In this section we continue to develop the approach proposed in Subsection 1.1.2, i.e. any
two step nilpotent Lie algebra is isomorphic to a standard metric Lie algebra Rm ⊕W ,
with W ⊂ so(m). The choice of the Euclidean product in Rm is very natural, but it
is also possible to choose a metric of arbitrary index (p, q), p + q = m, as for example
〈V ,W 〉p,q =

∑p
i=1 ViWi −

∑p+q
i=p+1 ViWi. It leads to a change of the structural space C ∈

so(m) to the space D ⊂ so(p, q) and the positive definite metrics to indefinite metrics.
The main motivation is that the pseudo H-type algebras, introduced in Subsection 1.1.3
are much more natural to consider as standard pseudo-metric Lie algebras with indefinite
metric than with positive definite metric. We also aim to show that any 2-step nilpotent
Lie algebra is isomorphic to some standard pseudo-metric Lie algebra with an indefinite
metric.

5.2.1 Pseudo-orthogonal groups

We start by recalling the structure of the pseudo-orthogonal group and its Lie algebra.
We use the notation ηp,q = diag(Ip,−Iq) for the diagonal (m ×m)-matrix, m = p + q,
having the first p entries on the main diagonal 1 and the last q equal to −1. Further
we continue to use Ip to denote the (p× p) unit matrix. Let 〈· , ·〉p,q be a scalar product
in Rm, defined by the matrix ηp,q, i.e. 〈x , y〉p,q = xtηp,qy for x, y ∈ Rm, where xt is the
transpose vector of x. We use the following notation established in Subsection 1.1.3

εi = εi(p, q) =

{
1, if 1 ≤ i ≤ p,

−1, if p+ 1 ≤ i ≤ p+ q = m,
(5.1)

to indicate the sign in the scalar product of the vectors from an orthonormal basis for
Rp,q. A vector x ∈ Rp,q is called

• spacelike if 〈x , x〉p,q > 0 or x = 0,

• timelike if 〈x , x〉p,q < 0,

• null if x �= 0 and 〈x , x〉p,q = 0.

We denote by O(p, q) the pseudo-orthogonal group

O(p, q) = {X ∈ GL(m)| Xtηp,qX = ηp,q},
where Xt is the matrix transposed to X. The pseudo-orthogonal group preserves the
scalar product 〈· , ·〉p,q in the following sense

〈Xx ,Xy〉p,q = xtXtηp,qXy = xtηp,qy = 〈x , y〉p,q.
The inverse of X is given by X−1 = ηp,qX

tηp,q. For any matrix A define the matrix Aηp,q

by Aηp,q := ηp,qA
tηp,q. Thus, if X ∈ O(p, q), then Xηp,qX = XXηp,q = Im.
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If we replace ηp,q by any symmetric matrix η̃ with p positive and q negative eigen-
values, then we get a group isomorphic to O(p, q). Diagonalizing the matrix η̃ gives a
conjugation of this group with the standard group O(p, q). It follows from the definition
that all matrices in O(p, q) have determinant equal to ±1. A matrix X ∈ O(p, q) can be
written in block form as

X =

[
XS B
C XT

]
,

where XS and XT are invertible (p× p) and (q × q) matrices, respectively. An element
X ∈ O(p, q) preserves (reverses) time orientation provided that det(XT ) > 0 (< 0),
and preserves (reverses) space orientation provided that det(XS) > 0 (< 0). O(p, q)
can then be split into four disjoint sets O++(p, q), O+−(p, q), O−+(p, q), and O−−(p, q),
indexed by the signs of the determinants of XS and XT , in this order. The following
three disconnected subgroups of O(p, q) define the orientation on Rp,q:

O++(p, q) ∪O−−(p, q), O++(p, q) ∪O+−(p, q), O++(p, q) ∪O−+(p, q). (5.2)

According to [75, p. 237], we call the first group orientation preserving, the second one
space-orientation preserving and the last one time-orientation preserving. The connected
component O++(p, q) contains the identity, preserves time orientation, space orientation,
and the orientation of Rp,q. The component O++(p, q) is, in some sense, an analogue of
the special orthogonal subgroup SO(m) of the orthogonal group O(m) and therefore we
use the notation SO(p, q) = O++(p, q). The group O(p, q) is not compact, but contains
the compact subgroups O(p) and O(q) acting on the subspaces on which the scalar
product 〈· , ·〉p,q is sign definite. In fact, O(p)×O(q) is a maximal compact subgroup of
O(p, q), while S(O(p)×O(q)) is a maximal compact subgroup of O++(p, q)∪O−−(p, q).
Likewise, SO(p) × SO(q) is a maximal compact subgroup of the component SO(p, q).
Thus up to homotopy, the spaces S(O(p) × O(q)) and SO(p) × SO(q) are products of
(special) orthogonal groups, from which algebra-topological invariants can be computed.

The Lie algebra of O(p, q) and thus of SO(p, q), equipped with the Lie bracket defined
by the commutator [A ,B] = AB − BA, is the set

so(p, q) = {A ∈ gl(m)| ηp,qAtηp,q = −A}.
Thus, an element X ∈ so(p, q) satisfies X ηp,q = −X and one has X ηp,qX = XX ηp,q =
−X 2. In general for an arbitrary A ∈ gl(m) the following is true: (Aηp,q)ηp,q = A and
(AB)ηp,q = Bηp,qAηp,q .

The Lie algebra so(p, q) can be equipped with the scalar product 〈 · , · 〉so(p,q) defined
by 〈 X ,Y 〉so(p,q) = tr (X ηp,qY) = − tr(XY). The scalar product is positive definite only
for q = 0. Analogously to the causal structure in Rp,q, we say that a non-zero element
X ∈ so(p, q) is timelike if 〈 X ,X 〉so(p,q) < 0, it is spacelike if 〈 X ,X 〉so(p,q) > 0 and it
is null if 〈 X ,X 〉so(p,q) = 0. The zero element is declared to be spacelike. Matrices in
so(p, q) can be written as

X =

(
ap b
bt aq

)
, ap ∈ so(p), aq ∈ so(q), b ∈ Rp×q.
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So, for X ∈ so(p, q) one has

〈 X ,X 〉so(p,q) = tr(X ηp,qX ) = − tr(X 2) = − tr(a2p + a2q)− 2 tr(bbt).

As we see, the first term involving the skew-symmetric matrices ap and aq is always
positive and represents the spacelike part. The matrix b is responsible for the timelike
character of elements of the Lie algebra. The metric defined by the trace has index(
p(p−1)+q(q−1)

2
, pq
)
as one can see from the dimensions of so(p) and so(q).

Notice that if X ∈ so(p, q) and x, y ∈ Rm, p+ q = m, then

〈Xx , y〉p,q = xtX tηp,qy = −xtηp,qX y = −〈x ,X y〉p,q.
Thus matrices from so(p, q) are skew-symmetric with respect to the scalar product
〈· , ·〉p,q.

At the end of the section we consider a generalization of the above constructions.
Let (V, 〈· , ·〉V ) be a scalar product vector space. We denote by o(V, 〈· , ·〉V ) or shortly
o(V ) the subspace of the space End(V ) of linear maps A : V → V such that

〈Av , w〉V = −〈v ,Aw〉V . (5.3)

We call o(V ) the space of skew-symmetric (with respect to 〈· , ·〉V ) maps and note that it
coincides with so(p, q) when V = Rp,q and 〈· , ·〉V = 〈· , ·〉p,q. In general, it can be shown
that o(V ) for any m-dimensional scalar product space (V, 〈· , ·〉V ) with a scalar product
of index (p, q), p+ q = m, is isomorphic to the space so(p, q). We can endow the space
o(V ) by the following scalar product

〈A ,B〉o(V ) = − tr(AB).

One can prove that the index of 〈· , ·〉o(V ) is
(
p(p−1)+q(q−1)

2
, pq
)
by the isomorphism prop-

erty with so(p, q).

5.2.2 Lie product and compatible scalar product

In Subsection 1.1.5 the relation between skew-symmetric representations of Clifford al-
gebras and some class of 2-step nilpotent Lie algebras, namely, pseudo H-type algebras
was described. This relation is actually more general and can be given for arbitrary
skew-symmetric maps and 2-step nilpotent Lie algebras endowed with some scalar prod-
uct.

From Lie algebras to skew-symmetric maps. Let (g, [· , ·], 〈· , ·〉g) be a 2-step Lie al-
gebra with center U and a scalar product 〈· , ·〉g on g. We write g = V ⊕⊥ U where
the decomposition is orthogonal with respect to 〈· , ·〉g and assume that the restriction
〈· , ·〉V of 〈· , ·〉g on V is non-degenerate. This leads to the non-degeneracy of the space
U with respect to the restriction 〈· , ·〉U of 〈· , ·〉g on U . As it was mentioned before, the
Lie product on g together with every z ∈ U defines a map Jz : V → V by

〈Jzv , w〉V = 〈z , [v , w]〉U for all v, w ∈ V. (5.4)
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It is clear that Jz satisfies (5.3) and is linear with respect to both variables: z ∈ U and
v ∈ V . Therefore, we conclude that a scalar product and a Lie product together define
a linear skew-symmetric map J : U → o(V ).

From skew-symmetric maps to Lie algebras. Let (V, 〈· , ·〉V ) and (U, 〈· , ·〉U) be two
scalar product spaces and J : U → o(V ). Then the sum g = V ⊕ U is orthogonal with
respect to the non-degenerate scalar product 〈· , ·〉g = 〈· , ·〉V + 〈· , ·〉U and we are able
to define the Lie bracket for g by making use of (5.4). Then g =

(
V ⊕ U, [· , ·], 〈· , ·〉g

)
becomes a Lie algebra endowed with a non-degenerate scalar product, where U belongs
to the center.

The discussions above rise the following question. Given two finite dimensional vector
spaces U and V and a linear map J : U → End(V ). When can one find a scalar product
on 〈· , ·〉V such that Jz satisfies (5.3) for all z ∈ U , i.e. J : U → o(V )? If such a scalar
product 〈· , ·〉V exists, we call it W -invariant, where W = J(U) ⊂ o(V ) ⊂ End(V ). If
moreover, a non-degenerate scalar product 〈· , ·〉U on U is given, then the decomposition
V ⊕ U is orthogonal with respect to 〈· , ·〉g = 〈· , ·〉V + 〈· , ·〉U and we are able to define a
Lie algebra structure on V ⊕ U by means of (5.4) as was described above.

5.2.3 Uniqueness properties

In this subsection we study the uniqueness of the choice of an invariant scalar product.
We start from a simple proposition.

Proposition 5.2.1. Let (V, 〈· , ·〉V ) and (U, 〈· , ·〉U) be scalar product spaces and J : U →
o(V ). The multiplication of both scalar products 〈· , ·〉V and 〈· , ·〉U by a non-zero number
c does not change the brackets defined by 〈Jzv , w〉V = 〈z , [v , w]〉U for all v, w ∈ V and
all z ∈ U .

Proof. We observe that the defining relation of the brackets is equivalent to original one
given by (5.4):

c〈Jzv , w〉V = c〈z , [v , w]〉U ⇔ 〈Jzv , w〉V = 〈z , [v , w]〉U .

Lemma 5.2.2. Let V and U be finite dimensional vector spaces and 〈· , ·〉U a non-
degenerate scalar product on U . Let 〈· , ·〉1V and 〈· , ·〉2V be two W -invariant scalar products
for a map J : U → End(V ), W = J(U). Suppose that the scalar products 〈· , ·〉1V and
〈· , ·〉2V have equal index and that the sets of spacelike (timelike and correspondingly null)
vectors coincide. Assume that [· , ·]1 and [· , ·]2 are Lie products defined by (5.4) with
respect to scalar products 〈· , ·〉1V and 〈· , ·〉2V on g = V ⊕⊥ U . Then the Lie algebras
(g, [· , ·]1) and (g, [· , ·]2) are isomorphic.

Proof. We define the linear map S : V → V by

〈v , w〉2V = 〈Sv , w〉1V . (5.5)
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We claim that S is injective. We prove by contradiction and assume that there exists
v ∈ V , v �= 0, such that Sv = 0. Then we get that 〈v , w〉2V = 0 by (5.5) for any w ∈ V ,
which implies that v = 0 by the non-degeneracy of the scalar product, that contradicts
the assumption. Hence S is injective.

The map S is symmetric with respect to both scalar products. Indeed

〈Sv , w〉1V = 〈v , w〉2V = 〈w , v〉2V = 〈Sw , v〉1V , (5.6)

〈Sv , w〉2V = 〈w , Sv〉2V = 〈Sw , Sv〉1V = 〈Sv , Sw〉1V = 〈v , Sw〉2V .
We claim that S has only positive eigenvalues. First we note that since S is injective,

it has only non-zero eigenvalues. Assume Su = λu. We have to distinguish the two cases
〈u , u〉iV �= 0, i = 1, 2, and 〈u , u〉iV = 0, i = 1, 2.

First let 〈u , u〉iV �= 0, i = 1, 2, then

λ〈u , u〉1V = 〈Su , u〉1V = 〈u , u〉2V .
Since 〈u , u〉1V and 〈u , u〉2V always have the same sign by the assumptions of the lemma,
we conclude λ > 0.

If 〈u , u〉iV = 0, i = 1, 2, then we change the arguments. Let {e1, . . . , em} be an
orthonormal basis with respect to 〈· , ·〉1V , that always exists since the scalar product is
non-degenerate. Choose one basis vector ek such that 〈ek , u〉1V �= 0. Such a vector ek
exists, since otherwise u would be the zero vector which contradicts the requirement
that u is an eigenvector. Then 〈cek − u , cek − u〉1V = 0 for c = 2〈ek , ek〉1V 〈ek , u〉1V . Write
v = cek, then 〈v − u , v − u〉iV = 0 for i=1,2. This implies

0 = 〈v − u , v − u〉iV = 〈v , v〉iV − 2〈v , u〉iV ,
and we conclude that non-vanishing values 〈v , u〉iV have the same sign in both vector
spaces. Thus

λ〈u , v〉1V = 〈Su , v〉1V = 〈u , v〉2V
leads to the conclusion that λ > 0.

The map S commutes with Jz for any z ∈ U by

〈JzSv , w〉1V = −〈Sv , Jzw〉1V = −〈v , Jzw〉2V = 〈Jzv , w〉2V = 〈SJzv , w〉1V . (5.7)

Let V1, . . . , VN be eigenspaces of the map S corresponding to different eigenvalues,
which we denote by λ2

1, . . . , λ
2
N . Then the vector spaces V1, . . . , VN are mutually orthog-

onal with respect to both scalar products since the map S is symmetric with respect
to both scalar products. We write V � v =

∑N
k=1 vk and V � w =

∑N
k=1 wk, where

vk, wk ∈ Vk, k = 1, . . . , N . We claim that

[vk , vj]
i = 0 for vk ∈ Vk, vj ∈ Vj, k �= j, i = 1, 2.

First we observe that the subspaces Vk, k = 1, . . . , N are invariant under Jz for any
z ∈ U since SJz = JzS. We calculate

〈z , [vk , vj]i〉U = 〈Jzvk , vj〉iV = 〈v′k , vj〉iV = 0, i = 1, 2, v′k ∈ Vk
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for any z ∈ U . The scalar product 〈· , ·〉U is non-degenerate and we conclude that
[vk , vj]

i = 0.
We are ready to define the Lie algebra isomorphism (V ⊕U, [· , ·]2) → (V ⊕U, [· , ·]1).

Set ϕ : V ⊕ U → V ⊕ U :

ϕ =

{
λk IdVk

, k = 1, . . . , N,

IdU .

It is left to prove that ϕ ([v , w]2) = [ϕ(v) , ϕ(w)]1. We obtain from one side

〈z , ϕ([v , w]2)〉U = 〈z , [v , w]2〉U =
N∑
k=1

〈z , [vk , wk]
2〉U =

N∑
k=1

〈Jzvk , wk〉2V

=
N∑
k=1

λ2
k〈Jzvk , wk〉1V ,

since 〈· , ·〉2Vk
= λ2

k〈· , ·〉1Vk
. From the other side

〈z , [ϕ(v) , ϕ(w)]1〉U =
N∑
k=1

λ2
k〈z , [vk , wk]

1〉U =
N∑
k=1

λ2
k〈Jzvk , wk〉1V ,

that finishes the proof.

2-step nilpotent Lie algebras with trivial abelian factor

The map J : U → o(V ) is not necessarily injective. Nevertheless, if it is so, the cor-
responding 2-step nilpotent Lie algebra has convenient properties. Let g be a 2-step
nilpotent Lie algebra, then in general the commutative ideal [g , g] and the center Z of
the Lie algebra g are related by [g , g] ⊂ Z. The case [g , g] = Z corresponds to the
injective map J : Z → o(V ). We recall some results for arbitrary 2-step nilpotent Lie
algebras in this direction.

Proposition 5.2.3. [42] Let g be a 2-step nilpotent Lie algebra with center Z. Then
there is an ideal g∗ and an abelian ideal a of g with a ⊆ Z such that

1. g = g∗ ⊕a and Z = [g , g]⊕ a;

2. g∗ is a 2-step nilpotent Lie algebra such that [g , g] = [g∗ , g∗] = Z∗, where Z∗ is the
center of g∗;

3. The ideals g∗ and a are uniquely defined up to isomorphism by item 1.

4. If g has a basis B with rational structure constants, then g∗ has a basis B∗ with
integer structure constants.
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The factor a in Proposition 5.2.3 is called the abelian factor. The proposition has
the following useful corollary.

Corollary 5.2.4. Let g be a 2-step nilpotent Lie algebra with center Z. Then g has a
trivial abelian factor if and only if [g , g] = Z.

Lemma 5.2.5. Let (g, [· , ·], 〈· , ·〉g) be a 2-step nilpotent Lie algebra with center Z and
a scalar product 〈· , ·〉g such that its restrictions to Z and [g , g] are non degenerate. Let
V = Z⊥ and J : Z → o(V ) be the linear map defined by (5.4). Then the following
statements are equivalent:

1. The commutative ideal [g , g] has co-dimension d ≥ 0 in Z;

2. The kernel of J has dimension d.

Proof. We write Z = [g , g]⊕ [g , g]⊥. Then 〈Jzv , w〉V = 〈z , [v , w]〉Z and non-degeneracy
of scalar products imply that Jz = 0 if and only if z ∈ [g , g]⊥, that proves the equivalence
of items 1 and 2.

Lemma 5.2.5 directly implies the following corollary.

Corollary 5.2.6. Let g be a 2-step nilpotent Lie algebra with center Z. Then the fol-
lowing statements are equivalent.

1. The Lie algebra g has a trivial abelian factor.

2. If there is a non-degenerate scalar product on g such that the restriction to Z is
non-degenerate, then the linear map J : Z → o(V ) for V = Z⊥ defined by (5.4) is
injective.

5.2.4 Examples

Now we give several examples of skew-symmetric maps and the Lie algebras related to
them.

Example 5.2.7. Consider Rp,q, p + q = m with the metric 〈x , y〉p,q = xtηp,qy. Let
W be a non-zero subspace of so(p, q). The inclusion map ι : W → so(p, q) defines a
skew-symmetric map in the following sense: if z ∈ W and ιz = ι(z) = Z ∈ so(p, q) then

〈 ιzx, y 〉p,q = 〈Zx , y 〉p,q = −〈 x , Zy 〉p,q = −〈 x , ιzy 〉p,q .
If the restriction of the metric, which is defined by the trace, from so(p, q) to W is non-
degenerate, then we can define a Lie algebra structure on Rp,q ⊕ W . If W = so(p, q),
then the constructed Lie algebra on Rp,q ⊕ so(p, q) is a free 2-step nilpotent Lie algebra,
which we denote by F2(p, q). Thus F2(p, q) = Rp,q ⊕ so(p, q), where the commutator on
Rp,q is defined by

[w , v]F2(p,q) = −1

2
(wvt − vwt)ηp,q. (5.8)
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For the standard basis {ei} of Rp,q we get [ei , ej]F2(p,q) = −1
2
(Eij − Eji)ηp,q, where Eij

denote the (m×m) matrix with zero entries except of 1 at the position ij. Since F2(p, q)
is a 2-step nilpotent Lie algebra, so(p, q) forms the center. Particularly, if q = 0 we get
the free Lie algebra F2(m) studied in [42].

The next example is closely related to Subsection 1.1.5.

Example 5.2.8. Let g be a pseudo H-type algebra. Then the linear map defined by (5.4)
is skew-symmetric and defines the representation of a Clifford algebra. Conversely, given
a representation J : Cl(U, 〈· , ·〉U) → V that is also skew-symmetric with respect to a
scalar product on V , we can construct a 2-step nilpotent Lie algebra that is a general
H-type algebra. All details are described in Subsection 1.1.5.

5.2.5 Standard pseudo-metric 2-step nilpotent Lie algebras

We describe the construction of 2-step nilpotent Lie algebras with some standard choice
of metrics.

Let (V, 〈· , ·〉V ) be an m-dimensional scalar product vector space and o(V ) a space
of skew-symmetric maps with respect to 〈· , ·〉V . Equip the space o(V ) with the metric
〈z , z′〉o(V ) = − tr(zz′), z ∈ o(V ). Observe that if the scalar product 〈· , ·〉V has index

(p, q), p + q = m, then the scalar product 〈· , ·〉o(V ) has index
(p(p−1)+q(q−1)

2
, pq
)
. Since

the Lie algebra o(V ) is simple, then any symmetric bi-linear form is a multiple of the
Killing form.

Let W be an n-dimensional subspace of o(V ) such that the restriction of 〈· , ·〉o(V ) to
W is non-degenerate. Let G = V ⊕W and 〈· , ·〉G = 〈· , ·〉V + 〈· , ·〉o(V ). The direct sum
G = V ⊕ W is orthogonal with respect to 〈· , ·〉G. Let [· , ·]G be the Lie product on G
defined as follows. If v, w ∈ V , then [v , w]G is the unique element of W such that

〈[v , w]G , z〉o(V ) = 〈z(v) , w〉V (5.9)

for every z ∈ W .

Definition 5.2.9. We call the Lie algebra G constructed above standard pseudo-metric
2-step nilpotent Lie algebra and write G = (V ⊕⊥ W, [· , ·]G, 〈· , ·〉G).

If V = Rp,q and 〈· , ·〉V = 〈· , ·〉p,q is the scalar product defined by the matrix ηp,q =
diag(Ip,−Iq), then we write so(p, q) for skew-symmetric maps and the standard pseudo-
metric 2-step nilpotent Lie algebra is G = (Rp,q⊕⊥W, [· , ·], 〈· , ·〉G) with 〈· , ·〉G = 〈· , ·〉p,q+
〈· , ·〉so(p,q).

We also say that the standard pseudo-metric 2-step nilpotent Lie algebra is involutive,
if W is a subalgebra in o(V, 〈· , ·〉V ). It is easy to see that [G ,G] = W and W = Z is the
center of G if and only if for any v �= 0, v ∈ V there is z ∈ W such that z(v) �= 0.

Example 5.2.10. Free standard pseudo-metric Lie algebra. Let us equip the 2-step free
Lie algebra F2(p, q) = Rp,q⊕so(p, q) with the scalar product 〈 · , · 〉 = 〈 · , · 〉so(p,q) + 〈 · , · 〉p,q.
Then

〈[w , v]F2(p,q) , Z 〉so(p,q) = 〈Zw , v 〉p,q
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for all w, v ∈ Rp,q and all Z ∈ so(p, q), where the Lie brackets are introduced in (5.8).
First we calculate 〈Zw , v 〉p,q and receive

〈Zw , v 〉p,q = wtZtηp,qv = −wtηp,qZv = − tr(wtηp,qZv) = − tr(vwtηp,qZ),

where tr(wtZηp,qv) = wtZηp,qv as wtZηp,qv ∈ R and we used Ztηp,q = −ηp,qZ for all
Z ∈ so(p, q). Moreover, since Z ∈ so(p, q) we also get

〈Zw , v 〉p,q = −〈w ,Zv 〉p,q = tr(wvtηp,qZ).

With these relations we calculate 〈[w , v] , Z 〉so(p,q) and obtain the desired equality

〈[w , v] , Z 〉so(p,q) = − tr

(
−1

2
(wvt − vwt)ηp,qZ

)
=

1

2

(
tr(wvtηp,qZ)− tr(vwtηp,qZ)

)
= 〈Zw , v 〉p,q .

Example 5.2.11. Representation of Clifford algebras. Let (Rr,s, 〈· , ·〉r,s) and let Clr,s
denote the Clifford algebra generated by Rr,s. Let J : Clr,s → End(V ) be a Clifford algebra
representation on the finite dimensional vector space V . We identify V (or V ⊕ V if
it is necessary) with Rp,p, 2p = m, equipped with the scalar product 〈· , ·〉p,p, such that
W = J(Rr,s) ⊆ so(p, p) if s > 0. If s = 0, then we identify V with the Euclidean space
Rm, and in this case W = J(Rr,0) ⊆ so(m). As it was observed in Proposition 1.1.16
the scalar product on V should be neutral in the case s > 0, that defines the choice of
the scalar product 〈· , ·〉p,p and the inclusion of W = J(Rr,s) into the space so(p, p).

5.2.6 Reduction of a 2-step nilpotent Lie algebra to the stan-
dard pseudo-metric form

We start with the following observation relating elements in so(m) and so(p, q), where
p + q = m. Let ηp,q = diag(Ip,−Iq), p + q = m and recall the definition of εi = εi(p, q)
given by (5.1). Then for any (m×m) matrix A = (aij)i,j=1,... ,m we have

(Aηp,q)ij = aijεj, (ηp,qA)ij = aijεi.

Let C ∈ so(m) and define D by D = Cηp,q (or equivalently Dij = εjCij) and claim
that D ∈ so(p, q). Indeed,

ηp,qD
tηp,q = ηp,q(Cηp,q)

tηp,q = ηp,qη
t
p,qC

tηp,q = −Cηp,q = −D.

Analogously we can show that D̃ = ηp,qC ∈ so(p, q) if C ∈ so(m), p+ q = m. We prove
the following technical lemma.

Lemma 5.2.12. Let g be a 2-step nilpotent Lie algebra such that dim([g , g]) = n and
the complement V to [g , g] has dimension m. Denote by z1, . . . , zn a basis of [g , g] and
v1, . . . , vm a basis of V . Let [vi , vj] =

∑n
k=1 C

k
ijzk for 1 ≤ i, j ≤ m. Then the matrices

Dk = Ckηp,q are linearly independent in any so(p, q), p+ q = m.
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Proof. It was proved in [42] that C1, . . . , Cn are linearly independent in so(m). Thus
for any real numbers α1, . . . , αn we have

n∑
k=1

αkC
k = 0 ⇐⇒ αk = 0, k = 1, . . . , n.

Then

0 =

(
n∑

k=1

αkC
k

)
ηp,q =

n∑
k=1

αkC
kηp,q =

n∑
k=1

αkD
k ⇐⇒ αk = 0, k = 1, . . . , n.

Any 2-step nilpotent Lie algebra g defines a subspace C ⊂ so(m) and moreover this
subspace is a non-degenerate vector space in so(m). This fact allowed the construction
of the isomorphism between g and the corresponding standard metric Lie algebra with
positive definite scalar product, see [42].

The space C also generates a space D in each so(p, q). Moreover, if D ⊂ so(p, q) is
non-degenerate with respect to the restriction of the indefinite trace metric in so(p, q),
then there exists a standard pseudo-metric Lie algebra, which is isomorphic to g, as it
is shown in the following theorem.

Theorem 5.2.13. Let g be a 2-step nilpotent Lie algebra such that dim([g , g]g) = n
and the complement V to [g , g]g has dimension m. Then there exists an n-dimensional

subspace D of so(p, q), p+q = m, n ≤ m(m−1)
2

such that if D is a non-degenerate subspace
of so(p, q), then g is isomorphic as a Lie algebra to the standard pseudo-metric 2-step
nilpotent Lie algebra G = Rp,q ⊕⊥ D.

Proof. Let g = V ⊕[g , g]g, v1, . . . , vm, be a basis of V , and z1, . . . , zn a basis of [g , g]g. Let
e1, . . . , ep+q be the standard orthonormal basis in Rp,q and 〈 · , · 〉p,q the scalar product.

Let [vi , vj]g =
∑n

k=1 C
k
ijzk for 1 ≤ i, j ≤ m and Dk = ηp,qC

k. Choose a pair
p, q ∈ N, p + q = m, such that the space D = span{D1, . . . , Dn} ⊂ so(p, q) is non-
degenerate with respect to the metric 〈· , ·〉so(p,q). Let ρ1, . . . , ρn be a basis of D such that
〈ρk , Dl〉so(p,q) = δkl for 1 ≤ k, l ≤ n.

Define the linear isomorphism T : g → G by

T (vi) = ei, i = 1, . . .m, T (zk) = −ρk, k = 1, . . . , n.

We claim that T is a Lie algebra isomorphism and for that it suffices to show that

T ([vi , vj]g) = [T (vi) , T (vj)]G.

Note that

〈[T (vi) , T (vj)]G , Dk〉so(p,q) = 〈[ei , ej]G , Dk〉so(p,q) = 〈Dk(ei) , ej〉p,q
= (ei)

t(Dk)tηp,qej = ((Dk)tηp,q)ij

= ((Ck)t)ij = −Ck
ij = Ck

ji.
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From the other side

〈T ([vi , vj]g) , Dk〉so(p,q) = 〈
n∑

r=1

Cr
ijT (zr) , D

k〉so(p,q) = −
n∑

r=1

Cr
ij〈ρr , Dk〉so(p,q)

= −
n∑

r=1

Cr
ijδrk = −Ck

ij = Ck
ji.

Theorem 5.2.14. If g admits a basis with rational structure constants, then we may
choose D to have a basis whose matrices only have entries in Z, relative to the standard
basis e1, . . . , em of Rp,q.

Proof. We assume that there exists a basis B = {v1, . . . , vm, z1, . . . , zn} of g = V ⊕⊥
[g , g], with v1, . . . , vm being a basis of V and z1, . . . , zn a basis of [g , g] such that

the structural constants Ck
ij with respect to B are in Q. We write Ck

ij =
akij
bkij

with

akij ∈ Z and bkij ∈ N \ {0}. We define the natural number d as the least common
multiple of the collection {bkij|i, j = 1, . . . ,m, k = 1, . . . , n} and define the basis

Bd = {√dv1, . . . ,
√
dvm, z1, . . . , zn}. It follows that the structural constants C̃k

ij with
respect of Bd are given by dCk

ij as

n∑
k=1

C̃k
ijzk = [

√
dvi ,

√
dvj] = d[vi , vj] = d

n∑
k=1

Ck
ijzk =

n∑
k=1

dCk
ijzk.

Hence C̃k
ij are natural numbers such that the matrix C̃k = dCk only has entries in Z. As

we know from the first part of this Theorem there exists p, q ∈ N, p + q = m such that
the n-dimensional subspace D = span{ηp,qC1, . . . , ηp,qC

n} is a non-degenerate subspace
of so(p, q) such that g ∼= Rp,q ⊕D. As ηp,qC̃

k = dηp,qC
k ∈ D and the entries of ηp,qC̃

k lie
obviously in Z, it follows that there exists a basis of D whose matrices only have entries
in Z, relative to the standard basis e1, . . . , em of Rp,q.

5.2.7 Examples of standard pseudo-metric algebras

Let us consider three pseudo H-type algebras n2,0, n1,1, and n0,2 and show that they can
be realized in a standard pseudo-metric algebra form for some choice of so(p, q).

Lie algebra n2,0 The center of n2,0 is isomorphic to R2 with standard Euclidean
metric and the complement to the center is isomorphic to R4 with the standard Euclidean
metric. Let (z1, z2) be the standard basis of R2 and let Jz1 , Jz2 ∈ so(4) be such that

J2
z1
= J2

z2
= − IdR4 , Jz1Jz2 = −Jz2Jz1 .

We choose the following orthonormal basis in R4

v1 = e1, v2 = Jz2Jz1v1, v3 = Jz1v1, v4 = Jz2v1.
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In the standard basis (e1, e2, e3, e4) the basis (v1, v2, v3, v4) and the matrices of maps
Jz1 , Jz2 take the following form:

v1 = e1, v2 = e2, v3 = e3, v4 = e4,

Jz1 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , Jz2 =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ .

Maps Jzi permute the basis of R4 by the following rule:

Jz1v1 = v3, Jz1v2 = v4, Jz1v3 = −v1, Jz1v4 = −v2,
Jz2v1 = v4, Jz2v2 = −v3, Jz2v3 = v2, Jz2v4 = −v1.

According to the rule 〈[vα , vβ], zi〉2,0 = 〈Jzivα , vβ〉4,0 we calculate the structural constants
in [vα , vβ] = C1

αβz1 + C2
αβz2 as follows

C1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , C2 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ . (5.10)

We see that C i = −Jzi . This also follows from the choice of the orthonormal basis by

C i
αβ = 〈[vα , vβ] , zi〉2,0 = 〈Jzivα , vβ〉4,0 = vtαJ

t
zi
vβ = (Jt

zi
)αβ = −(Jzi)αβ.

Lie algebra n1,1 ∼ R1,1 ⊕ R2,2
. We start with the standard basis (z1, z2) of the

center isomorphic to R1,1 and two skew-symmetric maps Jz1 , Jz2 ∈ so(2, 2), such that

J2
z1
= − IdR2,2 , J2

z2
= IdR2,2 , Jz1Jz2 = −Jz2Jz1 .

We choose the following orthonormal basis in R2,2

v1 = e1, v2 = Jz1v1, v3 = Jz2v1, v4 = Jz2Jz1v1.

In the standard basis (e1, e2, e3, e4) of R
2,2 the basis (v1, v2, v3, v4) and maps Jz1 , Jz2 take

the following form:
v1 = e1, v2 = e2, v3 = e3, v4 = e4,

Jz1 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , Jz2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ ,

and
Jz1v1 = v2, Jz1v2 = −v1, Jz1v3 = −v4, Jz1v4 = v3,
Jz2v1 = v3, Jz2v2 = v4, Jz2v3 = v1, Jz2v4 = v2.
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According to the rule 〈[vα , vβ] , zi〉1,1 = 〈Jzivα , vβ〉2,2 we calculate the structural con-
stants in [vα , vβ] = C1

αβz1 + C2
αβz2 as follows

C1 =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , C2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ . (5.11)

We see that C1 = −η2,2Jz1 and C2 = η2,2Jz2 . This is also defined by the choice of an
orthonormal basis as follows

εi(1, 1)C
i
αβ = 〈[vα , vβ] , zi〉1,1 = 〈Jzivα , vβ〉2,2 = −vtαη2,2Jzivβ = −(η2,2Jzi)αβ.

We recall the notation (5.1).
Lie algebra n0,2 ∼ R0,2 ⊕ R2,2

. We start from the standard basis (z1, z2) of the
center isomorphic to R0,2 and two skew-symmetric maps Jz1 , Jz2 ∈ so(2, 2):

J2
z1
= J2

z2
= IdR2,2 , Jz1Jz2 = −Jz2Jz1 .

We choose the following orthonormal basis in R2,2

v1 = e1, v2 = Jz1Jz2v1, v3 = Jz1v1, v4 = Jz2v1.

In the standard basis (e1, e2, e3, e4) of R
2,2 the basis (v1, v2, v3, v4) and maps Jz1 , Jz2 take

the following form:
v1 = e1, v2 = e2, v3 = e3, v4 = e4,

Jz1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , Jz2 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞⎟⎟⎠ ,

and
Jz1v1 = v3, Jz1v2 = v4, Jz1v3 = v1, Jz1v4 = v2,
Jz2v1 = v4, Jz2v2 = −v3, Jz2v3 = −v2, Jz2v4 = v1.

According to the rule 〈[vα , vβ] , zi〉0,2 = 〈Jzivα , vβ〉2,2 we calculate the structural con-
stants in [vα , vβ] = C1

αβz1 + C2
α,βz2 as follows

C1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , C2 =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ .

We see that Ci = η2,2Jzi . This also follows from the choice of an orthonormal basis by

εi(0, 2)C
i
αβ = 〈[vα , vβ] , zi〉0,2 = −〈vα , Jzivβ〉2,2 = −vtαη2,2Jzivβ = −(η2,2Jzi)αβ.
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Since εi(0, 2) = −1 for i = 1, 2, we get Ci = η2,2Jzi . We recall the notation (5.1).
We see that algebras n2,0 and n0,2 coincide as Lie algebras. It can be interpreted

as the following illustration of Theorem 5.2.13. The Lie algebra n2,0 is isomorphic to
the standard metric Lie algebra m = R4 ⊕ C with C = span{C1, C2} ⊂ so(4) and
C1, C2 given by (5.10). This standard metric Lie algebra is the H-type algebra since
the skew-symmetric maps Jz1 = −C1 and Jz2 = −C2 satisfies the additional conditions
J2
zi
= − IdR4 and Jz1Jz2 = −Jz2Jz1 . Let us see if the Lie algebra n2,0 can be isomorphic

to a standard Lie algebra generated by another choice of Rp,q, p+ q = 4.
Cases R3,1

and R1,3
. We calculate D1 and D2 by using η3,1

D1 = C1η3,1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , D2 = C2η3,1 =

⎛⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ .

Since 〈Di , Dj〉so(3,1) = tr(η3,1(D
i)tη3,1D

j) = 0 the subspace D = span{D1, D2} ⊂
so(3, 1) is degenerate and, actually, the scalar product 〈· , ·〉so(3,1) vanishes on D and
therefore the Lie algebra n2,0 can not be realized as a standard pseudo-metric Lie algebra
in R3,1 ⊕D. Recall, that the index of the space so(3, 1) with respect to the trace metric
〈· , ·〉so(3,1) is (3, 3). The same calculations are valid for the case of R1,3 and we conclude
that the Lie algebra n2,0 can not be realized as a standard pseudo-metric Lie algebra
neither can R3,1 ⊕D, D ⊂ so(3, 1) nor R1,3 ⊕ D̃, D̃ ⊂ so(1, 3).

Case R2,2
. In this case we use the matrix η2,2 and get from the matrices in (5.10)

the following two matrices

D1 = C1η2,2 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , D2 = C2η2,2 =

⎛⎜⎜⎝
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ .

In this case 〈D1 , D1〉so(2,2) = −4, 〈D2 , D2〉so(2,2) = −4, 〈D1 , D2〉so(2,2) = 0. The sub-
space D = span = {D1, D2} ⊂ so(2, 2) is non-degenerate and has index (r, s) = (0, 2).
Therefore, the Lie algebra n2,0 can be realized as a standard metric Lie algebra R2,2⊕D,
D ⊂ so(2, 2), and it gives the pseudo H-type algebra n0,2 constructed above. The last
statement is valid due to the relations J2

zi
= IdR2,2 and Jz1Jz2 = −Jz2Jz1 .

Now we turn to the Lie algebra n1,1. Analogue calculations show that this Lie algebra
can be realized in R4 ⊕ C with C = span{C1, C2} ⊂ so(4) where C1, C2 are from (5.11),
but this is not an H-type algebra (with positive definite scalar product). The Lie
algebra cannot be realized neither in so(3, 1) nor in so(1, 3) due to the degeneracy of the
corresponding spaces D. In the case so(2, 2) the matrices

D1 = C1η2,2 =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ , D2 = C2η2,2 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠



96 Pseudo-metric 2-step nilpotent Lie algebras

are satisfying 〈D1 , D1〉so(2,2) = 4, 〈D2 , D2〉so(2,2) = −4, and 〈D1 , D2〉so(2,2) = 0 span a
two dimensional non-degenerate space of index (r, s) = (1, 1) in so(2, 2). Recall, that
the index of the space so(2, 2) is (2, 4). The standard metric Lie algebra R2,2 ⊕ D,
D ⊂ so(2, 2), in this case is the pseudo H-type algebra n1,1.

Finally we observe that Dk = Ckη2,2 = −η2,2ε
k(1, 1)Jzkη2,2. Thus, we also have that

(D1)t = −D1, (D2)t = D2 and D is closed under transposition.

5.3 Isomorphism properties

Isomorphism properties defined by skew-symmetric maps

Given a scalar product space (V, 〈· , ·〉V ) and the space o(V ) of skew-symmetric maps
with a scalar product given by the trace. Let J : U → o(V, 〈· , ·〉V ) be an injective map
and the space J(U) be a non-degenerate subspace in o(V, 〈· , ·〉V ). Then we can pull back
the trace metric from o(V ) to U . We write for any c �= 0

〈z , z′〉U,c = −c2 tr(JzJz′), for any z, z′ ∈ U. (5.12)

This scalar product has a signature, which we denote by (r, s), and it depends on the
choice of the map J : U → o(V ). The scalar product space (U, 〈· , ·〉U,c) is degenerate if
J(U) is degenerate with respect to the trace metric. Let us assume that

(
U, 〈· , ·〉U,c

)
is

a non-degenerate scalar product space and let [· , ·]c be the 2-step nilpotent Lie algebra
structure on g = V ⊕⊥U defined by the map J : U → o(V ) by means of (5.4). The spaces
V and U are orthogonal with respect to the scalar product 〈· , ·〉g = 〈· , ·〉V + 〈· , ·〉U,c.
Definition 5.3.1. The Lie algebra g = (V ⊕⊥U, [· , ·]c, 〈· , ·〉g = 〈· , ·〉V +〈· , ·〉U,c) described
above is called the standard pseudo-metric 2-step nilpotent Lie algebra induced by the map
J : U → o(V, 〈· , ·〉V ).

By diagonalizing the matrix of the scalar product 〈· , ·〉V , we get the matrix ηp,q =
diag(Ip,−Iq) defining the canonical scalar product 〈u , v〉p,q =

∑p
i=1 uivi −

∑p+q
i=p+1 uivi

for u = (u1, . . . , um), v = (v1, . . . , vm), m = p + q. The matrix of the skew-symmetric
map Jz will satisfy ηp,qJ

t
zηp,q = −Jz. Since the trace does not depend on the choice of

coordinates we get a symmetric bi-linear function defining a scalar product on U . This
can also be written as follows 〈z , z′〉U,c = c2 tr(ηp,qJ

t
zηp,qJz′) = −c2 tr(JzJz′).

Lemma 5.3.2. In the notation above if the scalar product 〈z , z′〉U,c is non-degenerate,
then the standard pseudo-metric Lie algebra g induced by J has no abelian factor. If
two scalar products 〈· , ·〉1V and 〈· , ·〉2V on V have equal signature and the sets of spacelike
(timelike and null) vectors are the same, then the commutator [· , ·]c does not depend on
the choice of scalar product 〈· , ·〉iV on V .

Proof. If the scalar product 〈z , z′〉U,c is non-degenerate and the map J : U → o(V ) is
injective, then the Lie algebra structure (g, [· , ·]c) is unique up to isomorphism and g
has trivial abelian factor by Lemma 5.2.2 and Corollary 5.2.6.
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Lemma 5.3.3. Let (V, 〈· , ·〉V ) be a scalar product space, U1, U2 two finite dimensional
vector spaces, and J1 : U1 → o(V, 〈· , ·〉V ), J2 : U2 → o(V, 〈· , ·〉V ) two injective skew-
symmetric linear maps such that J1(U1) = J2(U2) = W ⊆ o(V, 〈· , ·〉V ). Let g1 =
(V ⊕ U1, [· , ·]1) and g2 = (V ⊕ U2, [· , ·]2) be two pseudo-metric Lie algebras induced by
the maps J1 and J2. Then g1 and g2 are isomorphic as Lie algebras.

Proof. It suffices to construct an isomorphism between Lie algebras g1 and g2 for the
case when J1(U1) = W = U2 and J2 = ι : W ↪→ o(V, 〈· , ·〉V ) is the inclusion map.

Define scalar products on U1 and U2 by

〈ζ , ζ ′〉U1 = − tr(J1(ζ)J1(ζ
′)), ζ, ζ ′ ∈ U1

〈z , z′〉U2 = − tr
(
J2(z)J2(z

′)
)
= − tr(zz′), z, z′ ∈ U2 = W ⊆ o(V, 〈· , ·〉V ).

Denote by [· , ·]1, [· , ·]2 the commutators constructed by means of these scalar products,
correspondingly. Define the map ϕ : V ⊕ U1 → V ⊕ U2 = V ⊕W by

ϕ =

{
IdV on V,

J1 on U1.

Then we need to show that ϕ([v , w]1) = [ϕ(v) , ϕ(w)]2. Let v, w ∈ V , z ∈ W be arbitrary
and let ζ0 ∈ U1 be the unique element such that J1(ζ0) = z = J2(z). Then

〈ϕ([v , w]1) , z〉U2 = 〈J1([v , w]1) , J1(ζ0)〉U2 = − tr(J1([v , w]
1)J1(ζ0))

= 〈[v , w]1 , ζ0〉U1 = 〈J1(ζ0)v , w〉V
= 〈J2(z)v , w〉V = 〈[v , w]2 , z〉U2 = 〈[ϕ(v) , ϕ(w)]2 , z〉U2 ,

because ϕ = IdV . This finishes the proof since the scalar product is non-degenerate.

5.3.1 Action of GL(p+ q) and gl(p+ q) on the Lie algebra so(p, q)

Let ηp,q = diag(Ip,−Iq) and A ∈ GL(m). Define the action ρ of A on so(p, q) by

Z �→ ρ(A)Z = AZAηp,q , where Aηp,q = ηp,qA
tηp,q, Z ∈ so(p, q).

Indeed, if Zηp,q = −Z, then (AZAηp,q)ηp,q = AZηp,qAηp,q = −AZAηp,q . Recall that the
operation Aηp,q gives us the transpose matrix to A with respect to the scalar product
〈· , ·〉p,q. The action ρ is the left action on so(p, q). The map ρ(A) is invertible and its
inverse is given by (ρ(A))−1 = ρ(A−1) that shows that ρ(A) ∈ Aut(so(p, q)). Thus the
map

ρ : GL(m) → Aut(so(p, q))

defines a group homomorphism with kernel ± IdRm for m ≥ 3.
The differential dρ of the map ρ is the Lie algebra homomorphism

dρ : gl(m) → End(so(p, q))

defined by A �→ dρ(A)Z = AZ+ZAηp,q , with A ∈ gl(m), Z ∈ so(p, q). It is an injective
map for m ≥ 3. We prove some properties of the maps ρ and dρ.
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Lemma 5.3.4. Let A ∈ GL(m) and A ∈ gl(m) be any elements. Then

〈ρ(A)Z ,Z ′〉so(p,q) = 〈Z , ρ(Aηp,q)Z ′〉so(p,q),
〈dρ(A)Z ,Z ′〉so(p,q) = 〈Z , dρ(Aηp,q)Z ′〉so(p,q) (5.13)

for any Z,Z ′ ∈ so(p, q). We can reformulate (5.13) by the following(
ρ(A)
)ηp,q

= ρ(Aηp,q),
(
dρ(A)
)ηp,q

= dρ(Aηp,q).

Proof. We calculate

〈ρ(A)Z ,Z ′〉so(p,q) = − tr(AZAηp,qZ ′) = − tr(ZAηp,qZ ′A) = 〈Z , ρ(Aηp,q)Z ′〉so(p,q)
by the property of the trace of interchanging products. The other equality is obtained
similarly.

Lemma 5.3.5. All 2-step nilpotent free algebras F2(p, q) with p+q = m are isomorphic.

Proof. To prove Lemma 5.3.5 we show that any 2-step nilpotent Lie algebra F2(p, q) =
Rp,q ⊕ so(p, q) with p + q = m is isomorphic to F2(m) = Rm ⊕ so(m). Let vij =
−1

2
(Eij − Eji), i ≤ j = 1, . . . ,m, be the standard basis of the group so(m). Here Eij

is the (m × m)-matrix having 1 on the position (ij) and 0 everywhere else. Then the
matrices φij = −1

2
(Fij − Fji) = −1

2
(Eij − Eji)ηp,q, i ≤ j = 1, . . . ,m, form a basis of the

space so(p, q). We define the isomorphism f : so(m) → so(p, q) by f(vji) = φji. Then
we extend this isomorphism to the isomorphism F2(m) → F2(p, q) by

ek �→ ek, vij �→ φij, for 0 < k < m, 0 < i ≤ j ≤ m = p+ q.

It follows that

f([vjk , ei + vlr]F2(m)) = 0 = [φjk , ei + φlr]F2(p,q) = [f(vjk) , f(ei + vlr)]F2(p,q),

f([ei , ej]F2(m)) = f(vij) = φij = −1

2
(Eij − Eji)ηp,q = [ei , ej]F2(p,q)

= [f(ei) , f(ej)]F2(p,q).

Hence f is a Lie algebra isomorphism.
At the end of the proof we observe that the orthogonal basis of F2(m) is mapped to

the orthogonal basis of F2(p, q), p+ q = m under the isomorphism f . The equalities

〈Eij , Eαβ〉so(m) = − tr(EijEαβ) = δiαδjβ,

show that the basis −1
2
(Eij −Eji) is orthonormal with respect to the trace metric. And

the basis φij = −1
2
(Fij − Fji) of the space so(p, q) satisfies

〈φij , φαβ〉so(p,q) = − tr
(
φjiφαβ

)
= εijδiαδjβ,

where

εij =

{
1, if i < j ≤ p or i > p,

−1 if j > p and i ≤ p.
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Let us denote by Aut(F2(p, q)) the group of automorphisms of F2(p, q).

Lemma 5.3.6. For any φ ∈ Aut(F2(p, q)) there exists a unique element A ∈ GL(m),
m = p+ q and S ∈ Hom(Rp,q, so(p, q)) such that

a) φ(x) = Ax+ S(x) for all x ∈ Rp,q,

b) φ(Z) = AZAηp,q for all Z ∈ so(p, q).

Conversely, given (A, S) ∈ GL(m) × Hom(Rp,q, so(p, q)), m = p + q, there is a unique
automorphism φ ∈ Aut(F2(p, q)) that satisfies a) and b).

Proof. Eberlein proved Lemma 5.3.6 in [43] if we replace F2(p, q) with F2(m). Let f be
an isomorphism of F2(m) and F2(p, q), m = p+q which exists by Lemma 5.3.5. Then for
any ϕ ∈ Aut(F2(m)) the superposition φ = f ◦ ϕ ◦ f−1 is an automorphism of F2(p, q).
Thus for every automorphism φ ∈ Aut(F2(p, q)) there exists unique ϕ ∈ Aut(F2(m)),
m = p+q, with φ = f ◦ϕ◦f−1 and moreover unique A ∈ GL(m), S ′ ∈ Hom(Rm, so(m))
such that the properties a) and b) are satisfied with S := f ◦ S ′ ∈ Hom(Rp,q, so(p, q)).
The converse statement follows easily.

Let g be a 2-step nilpotent Lie algebra with dim([g , g]) = n and m-dimensional
complement V , such that g = V ⊕ [g , g]. A basis {w1, . . . , wm, Z1, . . . , Zn}, where
V = span{w1, . . . , wm}, [g , g] = span{Z1, . . . , Zn} is called adapted. If [wi , wj] =∑n

k=1 C
k
ijZk, then we call the space C = span{C1, . . . , Cn} ⊂ so(m), with Ck := (Ck

ij),
the structure space and the spaces Dp,q = span{C1ηp,q, . . . , C

nηp,q} ⊂ so(p, q) are called
structure ηp,q-spaces. We aim to show in the following propositions that structure ηp,q-
spaces of a 2-step nilpotent Lie algebra g are orbits in the Grassmann manifold.

Proposition 5.3.7. Let {w1, . . . , wm, Z1, . . . , Zn} and {ŵ1, . . . , ŵm, Ẑ1, . . . , Ẑn} be two
adapted bases of a 2-step nilpotent Lie algebra g with corresponding structure ηp,q-spaces

Dp,q = span{C1ηp,q, . . . , C
pηp,q} and D̂p,q = span{Ĉ1ηp,q, . . . , Ĉ

pηp,q}. Let A ∈ GL(m),

m = p+ q be such that ŵi =
∑m

j=1 Aijwj, then ADp,qA
ηp,q = D̂p,q.

Proof. The proposition follows from the definition of the action of GL(m) on so(p, q)
and the fact that under the given assumptions ACAηp,q = Ĉ by [43].

Proposition 5.3.8. Let d be an integer with 1 ≤ d ≤ dim(so(p, q)). Let W1,W2 ⊂
so(p, q) be two d-dimensional non-degenerate with respect to 〈 · , · 〉so(p,q) subspaces. Then
the following statements are equivalent:

1) The Lie algebra F2(p, q)/W1 is isomorphic to F2(p, q)/W2.

2) There exists an element A ∈ GL(m), m = p+ q such that AW1A
ηp,q = W2.

3) The Lie algebra F2(p, q)/W
⊥
1 is isomorphic to F2(p, q)/W

⊥
2 .
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Proof. First we show that items 1) and 2) are equivalent. Recall that for any pair (p, q)
with p + q = m and W1,W2 ⊂ so(p, q) we have W1ηp,q, W2ηp,q ⊂ so(m). It was shown
in [43] that the Lie algebras F2(m)/(W1ηp,q) and F2(m)/(W2ηp,q) are isomorphic if and
only if there exists A ∈ GL(m) such that AW1ηp,qA

t = W2ηp,q. The last equality can
be written as AW1A

ηp,q = W2. Let f be an isomorphism between F2(m) and F2(p, q).
Hence Wi = f(Wiηp,q) and F2(p, q)/Wi = f(F2(m)/(Wiηp,q)) for i = 1, 2. This implies
that F2(m)/(W1ηp,q) and F2(m)/(W2ηp,q) are isomorphic if and only if F2(p, q)/W1 is
isomorphic to F2(p, q)/W2.

Now we show that items 1) and 3) are equivalent. The arguments above illustrates
that F2(p, q)/W1 is isomorphic to F2(p, q)/W2 if and only if F2(m)/(W1ηp,q) is isomorphic
to F2(m)/(W2ηp,q). This is equivalent to the statement that F2(m)/(W1ηp,q)

⊥ is isomor-
phic to F2(m)/(W2ηp,q)

⊥ by [43]. Define the Lie algebra isomorphism f ∗ : F2(m) →
F2(p, q) by

ei �→
{
ei for 1 ≤ i ≤ p,

−ei for p+ 1 ≤ i ≤ p+ q,
, −1

2
(Eij − Eji) �→ ηp,q

(
−1

2
(Eij − Eji)

)
.

Then F2(m)/(W1ηp,q)
⊥ is isomorphic to the quotient F2(m)/(W2ηp,q)

⊥ if and only if
F2(p, q)/ηp,q(W1ηp,q)

⊥ is isomorphic to F2(p, q)/ηp,q(W2ηp,q)
⊥.

It only remains to prove that Wi, i = 1, 2 is orthogonal to ηp,q(Wiηp,q)
⊥ with respect

to the metric 〈 · , · 〉so(p,q). For any w ∈ Wi and any v ∈ (Wiηp,q)
⊥ it follows that

〈w , ηp,qv 〉so(p,q) = − tr(wηp,qv) = 〈wηp,q , v 〉so(m) = 0,

as wηp,q ∈ Wiηp,q and v ∈ (Wiηp,q)
⊥. Since dim(ηp,q(Wiηp,q)

⊥) = dim(so(p, q))−dim(Wi)
and Wi non-degenerate, it follows that ηp,q(Wiηp,q)

⊥ = W⊥
i .

Proposition 5.3.9. Let {w1, . . . , wm, Z1, . . . , Zn} be an adapted basis for a 2-step nilpo-
tent Lie algebra g with structure space C = span{C1, . . . , Cn} ⊂ so(m). Let ρ : F2(p, q) →
g, p + q = m, be the unique Lie algebra homomorphism defined by ρ(ei) = wi for
i = 1, . . . ,m.
Then ρ is surjective and if Cηp,q ⊂ so(p, q) is non-degenerate, then ker(ρ) = (Cηp,q)⊥ is
the orthogonal complement of Cηp,q in so(p, q) with respect to 〈 · , · 〉so(p,q).
Proof. It is known that the Lie algebra homomorphism ρ1 : F2(m) → g with ρ1(ei) = wi

for i = 1, . . . ,m is surjective and ker(ρ1) is the orthogonal complement to C in so(m)
with respect to 〈 · , · 〉so(m), see for instance [43]. Then we define the surjective linear map

ρ = ρ1◦(f ∗)−1 : F2(p, q) → g with f ∗ being the isomorphism between F2(m) and F2(p, q)
from the proof of Proposition 5.3.8. The same proof shows that if Cηp,q is non-degenerate
in so(p, q), then (Cηp,q)⊥ = ηp,q(C⊥). Since

(f ∗)−1((Cηp,q)⊥) = (f ∗)−1(ηp,q(C⊥)) = η2p,qC⊥ = C⊥ = ker(ρ1),

it follows that ker(ρ) = (Cηp,q)⊥.
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Corollary 5.3.10. Let W1 and W2 be two non-degenerate d-dimensional subspaces of
so(p, q), and let g1 = Rp,q⊕W1 and g2 = Rp,q⊕W2 be the corresponding standard pseudo-
metric 2-step nilpotent Lie algebras. Then the following statements are equivalent:

• The Lie algebra g1 is isomorphic to g2.

• There exists A ∈ GL(m) such that AW1A
ηp,q = W2, p+ q = m.

Proof. The Lie algebras gi are isomorphic to F2(p, q)/W
⊥
i for i = 1, 2 by Proposi-

tion 5.3.9. The statement of the corollary follows by using Proposition 5.3.8.

Assume that g is a 2-step nilpotent Lie algebra with a 1-dimensional commutator
ideal [g , g] and there exist positive integers p, q and a non-degenerate one dimensional
subspace W in so(p, q) such that g is isomorphic to Rp,q ⊕W with m = p + q ≥ 2. We
define the set Ap,q = {Z ∈ so(p, q)| rank Z is maximal}.

Corollary 5.3.11. The group O(m) acts transitively by ηp,q-conjugation on Ap,q, where
m = p+ q.

Proof. We define the set Am = {Z ∈ so(m)| rank Z is maximal} which is Zariski open
in so(m). The group O(m) acts transitively on it by conjugation, see [43]. Notice that
Amηp,q = Ap,q. For every Z, Y ∈ Am there exists an A ∈ O(m) such that Z = AY A−1 =
AY At. Then

Zηp,q = AY η2p,qA
−1ηp,q = AY η2p,qA

tηp,q = AY ηp,qA
ηp,q

with Zηp,q, Y ηp,q ∈ Ap,q. This finishes the proof.

5.4 Some useful facts about Lie triple systems

Definition 5.4.1. Let W be a subspace of so(p, q) such that [a , [b , c]] ∈ W for all
a, b, c ∈ W . The subspace W is called a Lie triple system in so(p, q).

Define the set

Z(W ) = {a ∈ W | [a , b] = 0 for all b ∈ W} (5.14)

and call it center of W and we say that Z(W ) is compact if exp(Z(W )) is a compact
subgroup of SO(p, q). Remind that SO(p) × SO(q) is a maximal compact subgroup of
SO(p, q).

Theorem 5.4.2. The set exp(Z(W )) is a connected abelian subgroup of SO(p, q) for
any Lie triple system W ⊂ so(p, q).
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Proof. First we prove that exp(Z(W )) is a subgroup of SO(p, q). Obviously, Id is an
element of exp(Z(W )) as 0 ∈ Z(W ). If a ∈ Z(W ), then −a ∈ Z(W ), such that for any
element exp(a) in Z(W ), its inverse exp(−a) also lies in Z(W ). Now we want to prove
that exp(a) exp(b) ∈ Z(W ) and exp(a) exp(b) = exp(b) exp(a) for any a, b ∈ Z(W ).
As the elements of Z(W ) commute, i.e. [a , b] = 0, we conclude that exp(a + b) =
exp(a) exp(b) = exp(b) exp(a). We note that by linearity of the Lie bracket we receive
[t1a + t2b , c] = t1[a , c] + t2[b , c] = 0 for any a, b, c ∈ Z(W ) and any t1, t2 ∈ R. Thus
a+ b ∈ Z(W ) and so exp(a+ b) ∈ exp(Z(W )).

We claim that the set exp(Z(W )) is path connected. For any a, b ∈ Z(W ) we define
the path γa,b : [0, 1] → exp(Z(W )) from exp(a) to exp(b) by γa,b(t) = exp(tb+ (1− t)a).
This is a path as γa,b(0) = exp(a), γa,b(1) = exp(b) and as we proved before tb+(1−t)a ∈
Z(W ) for any t ∈ [0, 1].

Example 5.4.3. Recall Example 5.2.11, where the subspace W ⊂ so(l, l) was defined
by the Clifford algebra representations on Rl,l. The case s = 0 was studied in [42]. We
state as an example of Lie triple systems the following proposition.

Proposition 5.4.4. The space W is a Lie triple system of so(l, l) with trivial center.

Proof. First we show that the vector spaceW is a Lie triple system. For anyX1, X2, X3 ∈
W , withXi =

∑r+s
j=1 λijJ(Zj) with λij ∈ R, where {Z1, . . . , Zr+s} is an orthonormal basis

of Rr,s with 〈Zi , Zj 〉Rr,s = εi(r, s)δij. It follows that

[X1 , [X2 , X3]] =
r+s∑

j,k,l=1

λ1jλ2kλ3l[J(Zj) , [J(Zk) , J(Zl)]]. (5.15)

If we prove that [J(Zj) , [J(Zk) , J(Zl)]] ∈ W for all j, k, l ∈ {1, . . . , r+s}, then it follows
that [X1 , [X2 , X3]] ∈ W . We recall here that J(Zj)J(Zk) = −J(Zk)J(Zj) for all j �= k
and j, k ∈ {1, . . . , r + s}. If all indices j, k, l are different, then we get

[J(Zj) , [J(Zk) , J(Zl)]] = [J(Zj) , J(Zk)J(Zl)]− [J(Zj) , J(Zl)J(Zk)]

= J(Zj)J(Zk)J(Zl)− J(Zk)J(Zl)J(Zj)

− J(Zj)J(Zl)J(Zk) + J(Zl)J(Zk)J(Zj)

= J(Zj)J(Zk)J(Zl)− J(Zj)J(Zk)J(Zl)

+ J(Zj)J(Zk)J(Zl)− J(Zj)J(Zk)J(Zl) = 0 ∈ W.

If j = k, then [J(Zj) , [J(Zj) , J(Zl)]] = −4〈Zj , Zj〉UJ(Zl) ∈ W . If k = l or j = k = l,
then [J(Zj) , [J(Zk) , J(Zk)]] = 0 ∈ W . We conclude that W = J(Rr,s) is a Lie triple
system.

Let us show that the center of W defined by 5.14 is trivial. For any Z,Z
′ ∈ Rr,s we

obtain

[J(Z) , J(Z
′
)] = J(Z)J(Z

′
)− J(Z

′
)J(Z)

=

{
2J(Z)J(Z

′
) if 〈Z ,Z

′〉r,s = 0,

−2(J(Z
′
)J(Z) + 〈Z ,Z

′〉r,s IdV ) if 〈Z ,Z
′〉r,s �= 0.
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Let us assume that the center is non-trivial and there is Z ∈ Z(W ), Z �= 0, i. e.
[J(Z) , J(Z

′
)] = 0 for all Z

′ ∈ W . There are two possible cases: 〈Z ,Z〉r,s �= 0 and
〈Z ,Z〉r,s = 0.

Case 〈Z ,Z〉r,s �= 0. Then J(Z)2 = −〈Z ,Z〉r,s IdV , which implies that J(Z) is
invertible. The orthogonal complement to span{Z} is a non-degenerate scalar product
space and there is Z

′ ∈ W ∩ (span{Z})⊥ such that 〈Z ′
, Z

′〉r,s �= 0 and 〈Z ,Z
′〉r,s = 0.

Then J(Z
′
) is also invertible and so is J(Z)J(Z

′
), that yields J(Z)J(Z

′
) �= 0. It follows

that [J(Z) , J(Z
′
)] = 2J(Z)J(Z

′
) �= 0, which is a contradiction to the assumption that

Z ∈ Z(W ) with Z �= 0.
Case 〈Z ,Z〉r,s = 0. First we note that J(Z)2 = 0 and therefore, J(Z) can not be

invertible. Let Z
′
be an element of W such that 〈Z ,Z

′〉r,s �= 0, which exists because
〈· , ·〉r,s is non-degenerate. Then, since Z ∈ Z(W ), we obtain

[J(Z) , J(Z
′
)] = −2(J(Z

′
)J(Z) + 〈Z ,Z

′〉r,s IdV ) = 0,

which is equivalent to J(Z
′
)J(Z) = −〈Z ,Z

′〉r,s IdV . But this implies that J(Z) is
invertible with the inverse −(〈Z ,Z

′〉r,s)−1J(Z
′
). We obtain a contradiction.

Proposition 5.4.5. Let (g, [· , ·]) be a Lie algebra and W be its Lie triple system. Then
[W ,W ] and W + [W ,W ] are subalgebras of g.

Proof. To show that [W ,W ] is a subalgebra, we need to check[
[W ,W ] , [W ,W ]

] ⊂ [W ,W ].

Let w1, w2, w
′
1, w

′
2 ∈ W , then with the notation [w′

1 , w
′
2] = u we get by Jacobi identity[

[w1 , w2] , [w
′
1 , w

′
2]
]
=
[
[w1 , w2] , u

]
= −[[w2 , u] , w1]− [[u , w1] , w2] ∈ [W ,W ]

since [w2 , u], [u , w1] ∈ W by the definition of the Lie triple system: [W , [W ,W ]] ⊂ W .
To prove the second statement we choose arbitrary a, b, c, x, y, z ∈ W and obtain[
a+ [b , c] , x+ [y , z]

]
= [a , x] + [a , [y , z]] + [[b , c] , x] + [[b , c] , [y , z]] ∈ W + [W ,W ]

by the first statement and the definition of the Lie triple system.

Remark 5.4.6. Let us denote the Lie algebras in Proposition 5.4.5 by p = W , t =
[W ,W ], and L = W + [W ,W ]. Then Proposition 5.4.5 implies that the Lie algebra
L admits the decomposition L = t + p with Cartan pair t, p satisfying the following
properties:

[t , t] ⊆ t, [t , p] ⊆ p, [p , p] ⊆ t. (5.16)

Note that if a Lie algebra h admits a decomposition h = t + p satisfying (5.16), then
there is an involution θ : h → h (θ2 = Idh) possessing the following properties:

t ⊂ h is such that θ(t) = t, ∀ t ∈ t,

p ⊂ h is such that θ(p) = −p, ∀ p ∈ p.
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Given a Lie algebra (g, [· , ·]), we denote by adv : g → g the linear map defined by
adv(u) = [v , u]. The map ad: g → End(g) is a Lie algebra homomorphism, named the
adjoint representation of the Lie algebra g. The kernel of the adjoint map ad is the
center of the Lie algebra.

Definition 5.4.7. Let g be a Lie algebra. A scalar product 〈· , ·〉 on g is called ad-
invariant if

〈adv(u) , w〉 = −〈u , adv(w)〉. (5.17)

Equivalently, it can be stated that the map adv : g → g is skew-symmetric with
respect to the scalar product 〈· , ·〉.
Proposition 5.4.8. Let (g, [· , ·]) be a Lie algebra, W be its Lie triple system, and
L = W + [W ,W ]. Let Z(W ) be the center of W and (· , ·)L be an ad-invariant inner
product on L. Then the following is true.

1. Denote by Z(L) the center of L. Then the Lie algebra L is decomposed into the
direct sum of two ideals L = Z(L)⊕⊥ [L ,L], where the decomposition is orthogonal
with respect to (· , ·)L.

2. Z(W ) ⊆ Z(L).
3. The center Z([L ,L]) of [L ,L] is trivial.

4. If Z(L) �= 0, then Z(W ) �= 0.

5. If Z(W ) = 0, then L = [L ,L].
Proof. Proof of 1. Let Z(L) be the center of the algebra L. Let us show that

Z(L) = [L ,L]⊥ (5.18)

with respect to the ad-invariant inner product (· , ·)L. Let z ∈ [L ,L]⊥ and u, v ∈ L be
arbitrary. Then

([u , z] , v)L = −(z , [u , v])L = 0

since the inner product is ad-invariant. It shows that [u , z] = 0 and therefore z ∈ Z(L),
that implies Z(L) ⊃ [L ,L]⊥. Reversing the arguments we show the inverse inclusion
and conclude that L = Z(L)⊕⊥ [L ,L] by (5.18).

Proof of 2. Let z ∈ Z(W ) and u, v, w ∈ W be arbitrary. Then
[
z , u + [v , w]

]
=

[z , u]− [w , [z , v]]− [v , [w , z]] = 0 by the Jacobi identity. Thus z ∈ Z(L).
Proof of 3. Let z ∈ Z([L ,L]). Then for any u ∈ L and a ∈ [L ,L] we have

0 = (u , [z , a])L = (z , [u , a])L.

Therefore, z ∈ [L ,L]⊥ = Z(L) as [L ,L] = [L , [L ,L]] by item 1. Simultaneously
z ∈ Z([L ,L]) ⊂ [L ,L]. We conclude that z = 0 by item 1.
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Proof of 4. Let z ∈ Z(L) and z �= 0. Then

[L ,L] � L = W + [W ,W ] ([L ,L] is a proper subset of L by item 1).

Since [L ,L] = [W ,W ] + [W , [W ,W ]], we conclude that

[W , [W ,W ]] � W ([W , [W ,W ]] is a proper subset of W ).

Let [W , [W ,W ]]⊥ be the orthogonal complement to [W , [W ,W ]] in L with respect to
(· , ·)L. Then A = W ∩ [W , [W ,W ]]⊥ �= ∅. We claim that A ⊂ Z(W ). Let a, b, c ∈ W
and y ∈ A, y �= 0 be arbitrary. Then [c , [a , b]] ⊂ [W , [W ,W ]] and therefore

0 = (y , [c , [a , b]])L = ([y , c] , [a , b])L =⇒ [y ,W ] ⊂ [W ,W ]⊥.

From the other side [y ,W ] ⊂ [W ,W ], which implies [y ,W ] = 0 and thus y ∈ Z(W ).
We conclude that Z(W ) �= 0.

Proof of 5. If Z(W ) = 0, then we conclude that Z(L) = 0 by item 4 and so
L = [L ,L] by item 1.

Our next step is to study irreducible Lie triple systems in g. We recall some definitions
and properties.

Definition 5.4.9. The Killing form Bg on a Lie algebra g is the map Bg : g × g → R

defined by
Bg(u, v) := tr(adu ◦ adv).

The kernel of the Killing form Bg on a Lie algebra g is defined as

ker(Bg) = {x ∈ g | Bg(x, u) = 0 for all u ∈ g}.
Notice that the kernel of a Killing form is always an ideal of g due to the adjoint
invariance of the Killing form, i.e. Bg([x , y], z) = Bg(x, [y , z]) for any x, y, z ∈ g. Indeed
if x ∈ ker(Bg), then for any u, v ∈ g

Bg([x , v] , u) = Bg(x , [v , u]) = 0 =⇒ [ker(Bg) , g] ⊂ ker(Bg).

According to the Cartan criterion, a Lie algebra g is semisimple if and only if the Killing
form Bg is non-degenerate on g, or equivalently the kernel ker(Bg) is trivial. Particularly,
since the Lie algebra so(p, q) is simple the Killing form Bso(p,q) is non-degenerate.

Definition 5.4.10. Let g be a Lie algebra. A Lie triple system W of g is called irre-
ducible if there are no Lie triple systems W1 and W2 of g such that

W = W1 ⊕W2, [W1 ,W2] = {0}.
Proposition 5.4.11. Let W be a nonabelian Lie triple system of g, Z(W ) its center,
L = W + [W ,W ] and (· , ·)L an ad-invariant inner product on L. Then the following
properties hold:
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1. If Z(W ) �= 0 and W1 = Z(W )⊥ is the orthogonal complement in W with respect to
(· , ·)L, then W1 is a nonabelian Lie triple system and W = Z(W )⊕⊥ W1.

2. There are nonabelian irreducible Lie triple systems Wj with [Wi ,Wj] = 0, i �= j
such that W = Z(W )⊕ (⊕N

j=1 Wj

)
.

3. If L = W+[W ,W ] and W ∩[W ,W ] �= 0, then W is reducible and W = W1⊕⊥W2,
[W1 ,W2] = 0, where W1 = W ∩ [W ,W ], W2 is the orthogonal complement of W1

in W with respect to (· , ·)L.

If moreover W is an irreducible nonabelian Lie triple system of g, then

4. L = W = [W ,W ] or W ∩ [W ,W ] = 0 and L = W ⊕ [W ,W ]; furthermore, the
Lie algebra L has trivial center.

5. If L = W ⊕ [W ,W ], then BL(W, [W ,W ]) = 0. Thus the decomposition into the
direct sum is orthogonal with respect to the Killing form BL.

Proof. Proof of 1. Let a, b, c ∈ W1 and z ∈ Z(W ) be arbitrary. Then

([a , [b , c]] , z)L = −([a , z] , [b , c])L = 0 =⇒ [W1 , [W1 ,W1]] ⊂ Z(W )⊥ = W1

and we conclude that W1 is a Lie triple system.

Proof of 2. Since W is nonabelian it follows that Z(W ) �= W and we can write
W = Z(W )⊕⊥ W1, where W1 is the orthogonal complement of Z(W ) in W with respect
to (· , ·)L. The set Z(W ) is obviously a Lie triple system. The set W1 is also a Lie triple
system by arguments used in the proof of item 1.

If W1 is irreducible, then we are done. If W1 is reducible, then there exists a decom-
position of W1 by Definition 5.4.10 such that W1 = ⊕N

j=2Wj, where Wj is a irreducible
Lie triple system such that [Wi ,Wj] = 0, i �= j. To show that Wj for j = 2, . . . , N
is nonabelian, we prove by contradiction. Let Wj ⊂ W1 be abelian, i.e. [Wj ,Wj] = 0.
Then together with [Wi ,Wj] = 0, i �= j and [Wi ,Z(W )] = 0, it follows that Wj is a
subset of the center Z(W ), which contradicts Wj ⊂ W1 = Z(W )⊥.

Proof of 3. We need to prove that W1 and W2 are Lie triple systems of g such
that [W1 ,W2] = 0.

Claim 1: W1 is an ideal of L. Let a, b, c ∈ W and x ∈ W1 = W ∩ [W ,W ] be
arbitrary. Then [a + [b , c], x] = [a , x] + [[b , c] , x], and [a , x] ∈ W ∩ [W ,W ], since
x ∈ W ∩ [W ,W ]. Thus [a ,W1] ⊂ W1. Analogously [[b , c] , x] ∈ [[W ,W ] ,W ] ⊆ W by
x ∈ W and [[b , c] , x] ∈ [[W ,W ] , [W ,W ]] ⊂ [W ,W ] since x ∈ [W ,W ] and therefore
[[b , c] ,W1] ⊂ W1. This shows that [L ,W1] ⊂ W1.

Claim 2: W1 and W2 are ad[W ,W ] invariant. In the first claim we particularly re-
ceived that [[W ,W ] ,W1] ⊂ W1, that is ad[W ,W ] invariance of W1. We claim that
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ad[W ,W ](W2) ⊂ W2 and proof by contradiction. Assume that there exists x, y ∈ W ,
w1 ∈ W1 and w2 ∈ W2 such that ([[x , y] , w2] , w1)L �= 0. Then

0 = (w2 , [[x , y] , w1])L = ([[x , y] , w2] , w1)L �= 0

as [[W ,W ] ,W1] ⊂ W1. This is a contradiction and hence ad[W ,W ](W2) ⊥ W1, which
implies ad[W ,W ](W2) ⊂ W2.

Claim 3: W1 and W2 are Lie triple systems. Note that [W1 ,W1] ⊂ [W ,W ], since
W1 = W ∩ [W ,W ] and [W2 ,W2] ⊂ [W ,W ] by W2 ⊂ W . Then

[[W1 ,W1] ,W1] ⊆ [[W ,W ] ,W1] ⊆ W1

because W1 is ad[W ,W ] invariant. The same argument works for W2.
Claim 4: [W1 ,W2] = 0. Notice that

([W ,W ] , [W1 ,W2])L = ([[W ,W ] ,W1]︸ ︷︷ ︸
⊂W1

,W2)L = 0 by W1 = W⊥
2 .

Thus [W1 ,W2] ∈ [W ,W ]⊥ and from the other side [W1 ,W2] ⊂ [W ,W ], since both
W1,W2 are subsets of W . We conclude that [W1 ,W2] = 0.

Proof of 4. Let W1 = W ∩ [W ,W ] and W2 be the orthogonal complement to W1

in W with respect to the inner product (· , ·)L. Then the consideration is reduced to two
cases

(a) W1 = 0 or (b) W1 �= 0.

In the case (a) we get L = W⊕[W ,W ]. In the second case (b) we obtain W = W1⊕⊥W2

and by the assumption of the irreducibility we conclude that W2 = {0}. Thus
W1 = W =⇒ W = W1 = W ∩ [W ,W ] ⊆ [W ,W ].

By taking adW from both sides, we obtain [W ,W ] ⊆ [W , [W ,W ]] ⊆ W . We conclude
that W = [W ,W ] = L.

We show that the center Z(L) is trivial. If Z(L) �= 0, then Z(W ) �= 0 by item 4 of
Proposition 5.4.8. If Z(W ) �= 0, then W is reducible by the proofs of items 1 and 2 of
Proposition 5.4.11. Thus the center Z(L) is trivial.

Proof of 5. Let L = W ⊕ [W ,W ] and x ∈ W , y ∈ [W ,W ] be arbitrary. Then

ady adx([W ,W ]) ⊂ ady([W , [W ,W ]]) ⊂ ady(W ) ⊂ [[W ,W ] ,W ] ⊂ W

and
ady adx(W ) ⊂ ady([W ,W ]) ⊂ [[W ,W ] , [W ,W ]] = [W ,W ].

Thus the operator ady adx acts on L = W ⊕ [W ,W ] by interchanging the spaces W and
[W ,W ] in the direct sum W ⊕ [W ,W ], i.e. ady adx(W ⊕ [W ,W ]) = [W ,W ]⊕W and
therefore

0 = tr(ady adx) = BL(x, y) =⇒ BL(W , [W ,W ]) = 0.
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Proposition 5.4.12. Let W be a Lie triple system of g, Z(W ) be the center of W and
L = W + [W ,W ]. Then for any ad-invariant inner product (· , ·)L we have

1. Z(W ) = Z(L) and L = Z(W )⊕⊥ [L ,L];
2. Let W1 denote the orthogonal complement to Z(W ) in W with respect to the inner

product (· , ·)L. Then W1 is a Lie triple system of g and the ideal [L ,L] of L can
be written as [L ,L] = W1 + [W1 ,W1].

Proof. Proof of 1. If W is abelian, then it is nothing to prove. Let W be a nonabelian
Lie triple system of g. Then we can write

W = Z(W )⊕ ( N⊕
j=1

Wj

)
,

where the Wj’s are nonabelian irreducible Lie triple systems such that [Wi ,Wj] = 0, for
i �= j, by item 2 of Proposition 5.4.11. We denote by Lj = Wj + [Wj ,Wj], j = 1, . . . , N
Lie subalgebras of g. The algebras Lj have trivial centers by item 4 of Proposition 5.4.11.
Moreover, [Li ,Lj] = 0 for i �= j by the Jacobi identity and by [Wi ,Wj] = 0, for i �= j.

Thus L = W + [W ,W ] = Z(W )⊕ (⊕N
j=1 Lj

)
. The Lie algebra L0 = ⊕N

j=1Lj has trivial
center Z(L0) because each of the Lie algebras Lj has trivial center and they mutually
commute. Since we have Z(W ) ⊆ Z(L) by item 2 of Proposition 5.4.8 we conclude
Z(W ) = Z(L). Indeed, if we assume that there is an x ∈ Z(L) and x /∈ Z(W ), then
x ∈ L0 due to the decomposition L = Z(W ) ⊕ L0. But then [x , y] = 0 for any y ∈ L
and particularly [x , y0] = 0 for any y0 ∈ L0 ⊂ L. It follows that x ∈ Z(L0) and since
Z(L0) = {0} we conclude that x = 0.

Now we show that the decomposition L = Z(W )⊕ [L ,L] is orthogonal with respect
to the inner product (· , ·)L. From

L = Z(W )⊕ L0 = Z(L)⊕ L0

we deduce that [L ,L] = [L0 ,L0] = L0, since the Lie algebra L0 has trivial center. It is
also clear that L0 = [L ,L] is an ideal of L. Thus, the decomposition L = Z(W )⊕[L ,L] is
orthogonal with respect to any ad-invariant inner product by item 1 of Proposition 5.4.8.

Proof 2. If Z(W ) = 0, then there is nothing to prove. If Z(W ) �= 0, then the
orthogonal complement W1 to Z(W ) in W with respect to the inner product is a Lie
triple system by item 1 of Proposition 5.4.11. We only need to show that L0 = [L ,L] =
W1 + [W1 ,W1]. Denote L∗

0 = W1 + [W1 ,W1]. Since W = Z(W )⊕⊥ W1 we have

L = W + [W ,W ] = Z(W ) +W1 + [W1 ,W1] = Z(W ) + L∗
0.

Claim 1: L = Z(W )⊕⊥ L∗
0. Because [Z(W ) ,W1] = 0 we get

(Z(W ) , [W1 ,W1])L = (W1 , [W1 ,Z(W )])L = 0.

Together with (Z(W ),W1)L = 0 the latter equalities imply Claim 1.
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Claim 2: [Z(W ) ,L∗
0] = 0. This follows from [Z(W ) ,W1] = 0 and the Jacobi identity.

Now the chain of inclusions

L0 = [L ,L] = [(Z(W ) + L∗
0) , (Z(W ) + L∗

0)] = [L∗
0 ,L∗

0] ⊆ L∗
0 =⇒ L0 ⊆ L∗

0

follows from item 1 of Proposition 5.4.12, claim 2 and the fact that L∗
0 is a Lie algebra

constructed from a Lie triple system, see Proposition 5.4.5. Finally, we conclude

Z(W )⊕⊥ L∗
0 = L = Z(W )⊕⊥ L0 ⊆ Z(W )⊕⊥ L∗

0

by making use of Claim 1. This implies L∗
0 = L0, that finishes the proof.

Corollary 5.4.13. Let W be a Lie triple system of o(V ) defined by representations of
the Clifford algebras. Then

L = W + [W ,W ] = [L ,L].
Proof. It was shown in Proposition 5.4.4 of Example 5.4.3 that the center of W is trivial.
Then by applying item 1 of Proposition 5.4.12 we finish the proof.

Definition 5.4.14. We say that a Lie algebra g is reductive if to each ideal a in g
corresponds an ideal b in g with g = a⊕ b.

Recall the following statement: A Lie algebra g is semisimple if and only if g =
a1⊕. . .⊕aj with aj ideals that are each simple Lie algebras. In this case the decomposition
is unique, and the only ideals of g are the sum of various aj, see [62, Theorem 1.54].
Thus if a Lie algebra g is a direct sum of a semisimple Lie algebra and an abelian Lie
algebra, then g is reductive. The following proposition shows that there are no other
reductive Lie algebras.

Proposition 5.4.15. [62, Corollary 1.56] If g is reductive, then g = a(g) ⊕ [g , g] with
[g , g] semisimple and a(g) abelian.

An important example of reductive Lie algebras is given in the following statement.

Proposition 5.4.16. [62, Proposition 1.59] Let g be a real Lie algebra of matrices over
R, C or H that is closed under the operation conjugate transpose, then g is reductive.

Corollary 5.4.17. If W is a Lie triple system of so(m), then the Lie algebra L =
W + [W ,W ] is reductive.

Proof. Since Ct = −C for any C ∈ so(m), we conclude that C ∈ L implies Ct = −C ∈ L
and therefore the Lie algebra L is reductive.

Working with a subalgebra L of so(p, q) we use the following definition of the trans-
pose: Dt = −ηp,qDηp,q, ηp,q = diag(Ip,−Iq). It is not true in general that if D ∈ L, then
Dt ∈ L. Any vector subspace C ⊂ so(m) is closed under transposition, since if C ∈ C,
then Ct = −C ∈ C. This is not generally true for vector subspaces of so(p, q). In general
they are only closed under ηp,q-transposition: Dηp,q = ηp,qDtηp,q = −D.



110 Pseudo-metric 2-step nilpotent Lie algebras

Proposition 5.4.18. Let C ⊂ o(m) and ηp,q = diag(Ip,−Iq). Define

D1 = Cηp,q = {Cηp,q | C ∈ C} ⊂ so(p, q),

D2 = ηp,qC = {ηp,qC | C ∈ C} ⊂ so(p, q).

Then if the indefinite scalar product 〈· , ·〉so(p,q) is non-degenerates on D1, then it is
non-degenerate on D2 and on D1 + D2. Moreover the space D1 + D2 is closed under
transposition and it is invariant under the involution

θ : so(p, q) → so(p, q)
X �→ ηp,qXηp,q

Proof. We can show that the vectors Di = ηp,qCi ∈ D2, are linearly independent if the
vectors Ci ∈ C are linearly independent by the same arguments as in Lemma 5.2.12.
Note that

θ(D1) = ηp,qD1ηp,q = ηp,qCη2p,q = ηp,qC = D2

which implies Dt
1 = −θ(D1) = −D2. The space D1 + D2 is closed under transposition

and is invariant under the involution θ since

(D1 +D2)
t = −(D1 +D2), θ(D1 +D2) = D1 +D2.

If the metric 〈· , ·〉so(p,q) is non-degenerate on D1, then for any X ∈ D1 there is Y ∈ D1

such that
〈X , Y 〉so(p,q) = − tr(XY ) �= 0.

Then
〈ηp,qXηp,q , ηp,qY ηp,q〉so(p,q) = − tr(ηp,qXY ηp,q) = − tr(XY ) �= 0

and 〈· , ·〉so(p,q) is non-degenerate on D2.

Corollary 5.4.19. Under the assumption of Proposition 5.4.18 the subspaces D1 and
D2 are isometric.

Proof. Since θ(D1) = D2, then for D,D′ ∈ D1

− tr(DD′) = − tr(ηp,qDηp,qηp,qD
′ηp,q) = − tr(θ(D)θ(D′)).

Nevertheless, the Lie triple systems associated with a representation of Clifford al-
gebras form a subalgebra of so(l, l) respectively so(2l), which are reductive. Let Clr,s
be a Clifford algebra generated by Rr,s and J : Rr,s → so(l, l) ⊂ End(Rl,l) for s �= 0 and
J : Rr,s → so(2l) ⊂ End(R2l,0) for s = 0. Denote W = J(Rr,s) ⊂ so(l, l) respectively
W = J(Rr,0) ⊂ so(2l) and L = W + [W ,W ].

Theorem 5.4.20. The Lie algebra L is simple.
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Proof. Recall that the representation maps of a Clifford algebra satisfy the relation

JZJZ′ + JZ′JZ = −2 〈Z ,Z ′ 〉r,s IdR2l , Z, Z ′ ∈ Rr,s.

Let {Z1, . . . , Zn}, n = r + s, be an orthonormal basis of Rr,s. Then the following
commutation relations hold

[JZi
, JZj

] = 2JZi
JZj

, [JZi
, [JZi

, JZj
]] = −4 〈Zi , Zi 〉r,s JZj

.

Thus
L = W + [W ,W ] = span{JZk

, JZi
JZj

, i, j, k = 1, . . . , n}.
Let us assume that h ⊂ L is an ideal: [h ,L] ⊂ h. We aim to show that the only possible
ideals are the trivial and L itself. We consider several cases.

Case 1. Suppose that JZ ∈ h, with Z �= 0 and 〈Z ,Z 〉r,s �= 0. We assume with-
out loss of generality that Z is normalized. Then we can assume that there exists an
orthonormal basis {Z1, . . . , Zn} with Z = Z1. Thus

[JZ1 , JZj
] = 2JZ1JZj

∈ h, j = 2, . . . , n,
[JZ1 , [JZ1 , JZj

]] = −4 〈Z1 , Z1 〉r,s JZj
∈ h, j = 2, . . . , n,

[JZj
, JZi

] = 2JZj
JZi

∈ h i, j = 1, . . . , n, i �= j.

We see that all the generators of L are contained in h, which implies h = L.

Case 2. We assume now that JZ ∈ h, with Z �= 0 and 〈Z ,Z 〉r,s = 0. We choose an
orthonormal basis {Z1, . . . , Zn} such that Z = λ1Z1+Y with λ1 �= 0, where we also can
find Y such that 〈Z1 , Y 〉r,s = 0. We write Y =

∑n
k=2 λkZk and note that 〈Y , Y 〉r,s �= 0.

Then we calculate

h � 1

2
[JZ , JZ1 ] =

1

2
[JY , JZ1 ] =

n∑
k=2

λkJZk
JZ1 = JY JZ1 .

It follows that

h � 1

2
[JY JZ1 , JZ1 ] = J−〈Z1 ,Z1 〉r,s Y .

Thus J−〈Z1 ,Z1 〉r,s Y ∈ h and we reduce the problem to the previous case, concluding that
h = L.

In the rest of the proof we assume that the ideal h contains the product JZJZ′ with
different type of non-zero vectors Z and Z ′, We calculate

1

2
[JZ , JZJZ′ ] = (JZJZJZ′ − JZJZ′JZ)

= (−〈Z ,Z 〉z JZ′ − (−JZ′JZ − 2 〈Z ,Z
′ 〉z IdR2l)JZ)

= (−〈Z ,Z 〉z JZ′ − 〈Z ,Z 〉z JZ′ + 2 〈Z ,Z
′ 〉z JZ)

= (−〈Z ,Z 〉z JZ′ + 〈Z ,Z
′ 〉z JZ) = JX1 ,
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where X1 = −〈Z ,Z 〉z Z
′
+ 〈Z ,Z

′ 〉z Z and, equivalently,

1

2
[JZ′ , JZJZ′ ] = (JZ′JZJZ′ − JZJZ′JZ′ )

= (〈Z ′
, Z

′ 〉z JZ + (−JZJZ′ − 2 〈Z ,Z
′ 〉z Id)JZ′ )

= (〈Z ′
, Z

′ 〉z JZ + 〈Z ′
, Z

′ 〉z JZ − 2 〈Z ,Z
′ 〉z JZ′ )

= (〈Z ′
, Z

′ 〉z JZ − 〈Z ,Z
′ 〉z JZ′ ) = JX2 ,

where X2 = 〈Z ′
, Z

′ 〉z Z − 〈Z ,Z
′ 〉z Z

′
.

If one of the vectors X1 or X2 differs from zero, then we apply Case 1. or 2. and
conclude that h = L. We consider the remaining case: X1 = X2 = 0 in which

〈Z ,Z 〉z = 〈Z ′
, Z

′ 〉z = 〈Z ,Z
′ 〉z = 0.

Let us make the following observation: if Z = aZ ′ for some a �= 0, then JZJZ′ = aJ2
Z =

a 〈Z ,Z 〉r,s IdR2l = 0 and [JZJZ′ ,L] = [0 ,L] = 0, which implies h = 0. Thus we asume
that Z and Z ′ are not proportional. Choose an orthonormal basis {Z1, . . . , Zn} such that
Z = λZ1 + Y0 with λ �= 0, Z

′
= μZ1 + Y1 with some μ and Y0, Y1 ∈ span{Z2, . . . , Zn},

i.e. 〈Z1 , Yi 〉z = 0 for i = 0, 1. We calculate

JZJZ′ = (λJZ1 + JY0)(μJZ1 + JY1)

= −λμ 〈Z1 , Z1 〉z Id+λJZ1JY1 + μJY0JZ1 + JY0JY1 ,

such that

[JZJZ′ , JZ1 ] = [−λμ 〈Z1 , Z1 〉z Id+λJZ1JY1 + μJY0JZ1 + JY0JY1 , JZ1 ]

= 2 〈Z1 , Z1 〉z(λJY1 − μJY0) = 2 〈Z1 , Z1 〉z(JλY1−μY0).

We claim that λY1−μY0 �= 0. We prove by contradiction and assume that λY1−μY0 = 0,
which can happen if and only if Y1 =

μ
λ
Y0. If μ = 0, then Y1 = 0 and so Z

′
= 0, which

contradicts our assumption. Hence μ �= 0. It follows that

μ

λ
Z =

μ

λ
(λZ1 + Y0) = μZ1 +

μ

λ
Y0 = μZ1 + Y1 = Z

′
,

such that Z ∈ span{Z ′}, which is again a contradiction. Hence λY1 − μY0 �= 0 and we
can apply Cases 1. or 2. to show that h = L.

In all these cases the ideal h coincides with L, or is trivial and we conclude that the
Lie algebra L is simple.

Corollary 5.4.21. If W is a Lie triple system of a general H-type algebra g, then
L = W ⊕ [W ,W ] is reductive.

Proof. The proof follows directly by Theorem 5.4.20.

As a corollary we also obtain a new proof of Corollary 5.4.13.
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Definition 5.4.22. Let g be a real semisimple Lie algebra and let Bg be its Killing form.
An involution θ (θ2 = Idg) is called a Cartan involution on g if the form Cθ(X, Y ) :=
−Bg(X, θ(Y )) is a positive definite bilinear form.

As it was observed before the bilinear form

〈X , Y 〉so(p,q) = tr(Xηp,qY ) = − tr(XY ), Xηp,q = ηp,qX
tηp,q = −X,

on so(p, q) is a (positive) scalar multiple of the Killing form Bso(p,q) since the Lie algebra
so(p, q) is simple. Define the involution θ on so(p, q) by

X �→ θ(X) = ηp,qXηp,q. (5.19)

We claim that θ is the Cartan involution on so(p, q). Indeed, if X ∈ so(p, q) and X �= 0,
then

Cθ(X,X) := Bso(p,q)(X, θ(X)) = c 〈X , θ(X) 〉so(p,q) = −c tr(Xηp,qXηp,q)

= −c tr
(
(Xηp,q)

2
)
> 0

because if X ∈ so(p, q), then Xηp,q ∈ so(m), p+ q = m with tr
(
(Xηp,q)

2
)
< 0.

Previously we started with a Lie algebra g (for example g = so(p, q)), its Lie triple
system W and studied properties of the Lie subalgebra L = W + [W ,W ]. Now we ask
the opposite question: given a subalgebra L ⊂ so(p, q), can we find a Lie triple system
W of so(p, q) such that L = W⊕ [W ,W]. Unfortunately this is not always the case.

Proposition 5.4.23. Let L be a reductive Lie subalgebra of so(p, q). Then there is a
Lie triple system W of so(p, q) such that L ⊃ W⊕ [W ,W].

Proof. We write L = Z(L) ⊕ [L ,L] = Z(L) ⊕ L0, where L0 is semisimple. Thus the
Killing form BL0 is non-degenerate and there exists a Cartan involution θ : L0 → L0.
We set

p ⊂ L0 such that θ(p) = −p, ∀ p ∈ p,

t ⊂ L0 such that θ(t) = t, ∀ t ∈ t.

The Killing form BL0 is negative definite on t and is positive definite on p. Now we
establish several properties.

p is a Lie triple system of so(p, q). Let u, v, w ∈ p be arbitrary, then for
y = [u , [v , w]] ∈ [p , [p , p]] we obtain

θ(y) = θ[u , [v , w]] = [θ(u) , [θ(v) , θ(w)]] = −[u , [v , w]] = −y

which shows that y ∈ p. Furthermore, we remind that t ⊃ [p , p].
It is obvious that [L ,L] = p⊕ t.
The set W = Z(L)⊕p is a Lie triple system of so(p, q). We deduce [W ,W] =

[p , p] ⊂ t and
[W , [W ,W]] = [p , t] = [p , [p , p]] ⊆ p ⊆ W.

Moreover, W⊕ [W ,W] = Z(L)⊕ p⊕ [p , p] ⊂ Z(L)⊕ [L ,L] = L.
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5.5 The Lie triple system W of so(p, q) is a rational

subspace of L in the case of trivial center Z(W )

Let us assume that L = W + [W ,W ] is reductive. Thus if Z(W ) = 0, then L = [L ,L]
is a semisimple Lie algebra. As we saw in the previous section it is the case when the
Lie triple system is defined by the Clifford algebra representations.

For any real semisimple Lie algebra g0 it is possible to explicitly construct a basis with
integer structure constants by [58]. In the following we give an idea of the construction,
for more details see [58].

Let g0 be a real semisimple real algebra with Cartan decomposition g0 = t ⊕ p
determined by a Cartan involution θ. We choose a maximal abelian subalgebra a :=
h0 ∩ p, where h0 is a maximal abelian θ-stable subalgebra of g0. Recall that the choice
of h0 is unique up to conjugation.

Let g be the complexification of g0 and h = h0C a Cartan subalgebra. This determines
the set of roots Φ(g, h) ⊆ h∗. The following diagram gives an overview over all relevant
inclusions

a
k

����
��
��
��

��

i
��

g0

l

��
hR

j �� h �� g .

We denote by σ and τ the complex conjugations of g with respect to g0 respectively
the real compact form u ⊂ g. Apparently θ = l∗(στ) such that στ is the unique complex
linear extension of θ from g0 to g which we want to denote by θ as well. The set of
simple roots will be denoted by Δ(g, h) ⊂ Φ+(g, h), where Φ+(g, h) is the set of positive
roots such that i∗Φ+(g, h) = Φ+(g0, h) ∪ {0}. For α ∈ Φ(g, h) let hα = 2tα

B(tα,tα)
, where B

is the Killing form of g and tα a root vector. Furthermore, set hi := hαi
for the simple

roots αi ∈ Δ(g, h). We define the roots ασ, ατ , αθ by ασ(h) = α(σ(h)), ατ (h) = α(τ(h))
and αθ(h) = α(θ(h)) where α ∈ Φ(g, h), h ∈ h. We establish the terminology and call a
root α ∈ Φ(g, h) real if it is fixed by σ, imaginary if it is fixed by θ and complex in all
remaining cases. For intuition we note that a real root vanishes on h0∩ t, thus takes only
real values on h0, an imaginary root vanishes on a, thus takes purely imaginary values
on h0 and a complex root takes mixed complex values on h0.

Now we define a decomposition of the roots. Let Σ = {α ∈ Φ(g, h)|i∗α �= 0} be the
set of all roots which do not vanish everywhere on a. This can be decomposed into the
set of complex roots ΦC and the set of real roots ΦR, i.e. Σ = ΦC ∪ ΦR, which restricts
to the root system i∗Σ = Φ(g0, a). Furthermore, let Δ0 = Δ(g, h) ∩ ΦiR be the set of
simple imaginary roots and let Δ1 = Δ(g, h) ∩ Σ be the set of simple complex or real
roots.

Now there exists a Chevalley basis C = {xα, hi|α ∈ Φ(g, h)} of (g, h) such that

(i) τ(xα) = xατ = x−α for each α ∈ Φ(g, h),

(ii) σ(xα) = ±xασ for each α ∈ Φ(g, h),
σ(xα) = xασ for each α ∈ ΦiR ∪Δ1.
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Now we use this basis to construct our desired basis. Set Xα := xα + σ(xα), Yα :=
i(xα − σ(xα)), H

1
α := hα + hασ , H0

α := i(hα − hασ) and Zα := Xα + Yα for α ∈ Φ(g, h).
We note that Xα and H1

α are twice the real part and Yα and H0
α are twice the negative

imaginary part of xα and hα in the complex vector space g with respect to the real
structure σ. We define the set Φ+∗

C ⊂ Φ+
C such that for all α ∈ Φ+

C the following is true:

{α, ασ} �⊂ Φ+∗
C and Φ+∗

C ∩ {α, ασ} �= ∅.
Analogously we define the set Δ∗

1 ⊂ Δ1 such that for all α ∈ Δ1 the following is true:

{α, ω(α)} �⊂ Δ∗
1 and Δ∗

1 ∩ {α, ω(α)} �= ∅,
where ω : Δ1 → Δ1 is a unique involutive permutation with unique nonnegative integers
nαβ with α ∈ Δ1 and β ∈ Δ0 such that for each α:

(i) αθ = −ω(α)−∑β∈Δ0
nβαβ,

(ii) nβω(α) = nβα,

(iii) ω extends to a Dynkin diagram automorphism ω : Δ(g, h) → Δ(g, h).

We defined these two sets to obtain the following basis B, which is the union of:

BR := {Zα|α ∈ ΦR}, BiR := {Xα, Yα|α ∈ Φ+
iR}, BC := {Xα, Yα|α ∈ Φ∗

iC},
H1 := {H1

α|α ∈ Δ1 \Δ∗
1}, H0 := {H0

α|α ∈ Δ0 ∪Δ∗
1}.

Then the basis 2B has integer structure constants by [58]. Let us denote this special
basis by CL.
Definition 5.5.1. Let g be a Lie algebra such that with respect to a basis Bg the Lie
algebra g has rational structure constants. Then the set spanQ{Bg} is called the rational
structure of the Lie algebra g. A subspace U of g is called rational subspace with respect
to the rational structure spanQ{Bg} if there is a basis BU such that BU ⊂ spanQ{Bg}.
Proposition 5.5.2. If W is a Lie triple system of so(p, q), and L = W ⊕ [W ,W ] =
[L ,L] is semisimple, then W is a rational subspace of L with respect to the rational
structure spanQ{CL}.
Proof. We choose the basis CL. Then it is obvious that there is a basis of W and [W ,W ]
contained in spanZ{CL} ⊂ spanQ{CL}.

Now let us assume that L1 = W ∩ [W ,W ] �= {0}. We need to show that W has a
basis in the rational structure spanQ{CL}.

Note that L1 is an ideal of L = [W ,W ] +W since L1 is adW and ad[W ,W ] invariant,
see proof of item 3 of Proposition 5.4.11. Let L2 be the orthogonal complement of L1

with respect to any ad-invariant inner product (· , ·)L on L. Then L2 is also an ideal of
L. Indeed

([X ,L2] ,L1)L = −(L2 , [X ,L1])L = 0,
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as −(L2,L1)L = 0. Thus we have two ideals L1, L2 of L, such that L1 ∩L2 = {0}. This
implies that they are also orthogonal with respect to the Killing form BL and therefore
BL is non-degenerate on both L1 and L2. (If it would be degenerate on one of it, then it
would be degenerate on the other one too and then it would be degenerate on L, which
would be a contradiction.) Moreover, the restrictions of BL on ideals L1 and L2 define
the Killing forms BL1 and BL2 of them.

Proposition 5.5.3. The Lie triple system W of so(p, q) is a rational subspace of L =
W + [W ,W ] = [L ,L] with respect to the rational structure spanQ{CL1} ⊕ spanQ{CL2}.
Proof. First we observe that the semisimple Lie algebra L2 admits a decomposition
L2 = W2 ⊕ [W2 ,W2], where W2 is a Lie triple system of so(p, q), see proof of item 3 of
Proposition 5.4.11. Moreover there is the basis CL2 such that W2 is a rational subspace
of L2 with respect to spanQ{CL2} by Proposition 5.5.2.

As a semisimple Lie algebra L1 admits the basis CL1 . Then the basis C = CL1 ∪CL2 is
the (Chevalley) basis of the Lie algebra L = L1 ⊕ L2. We define the rational structure
of L by

spanQ{C} = spanQ{CL1} ⊕ spanQ{CL2}.
Now W = L1 ⊕W2 is a rational subspace of L with respect to spanQ{C}.



Chapter 6

The sub-Riemannian geodesic
equation in the octonionic H-type
group

In the present chapter we study sub-Riemannian geodesics in the octonionic H-type
group G1

7, which is a nilpotent group of step two and, as a manifold, diffeomorphic to
R15.

The Lie group structure of G1
7, obtained via the Cayley-Dickson construction of real

division algebras, induces a natural Riemannian metric and a bracket-generating distri-
bution H of rank eight and step two on G1

7. Restricting the metric to H we obtain a
sub-Riemannian structure on G1

7.
The class of curves we are interested in are horizontal with respect toH and, most im-

portantly, critical points of the natural sub-Riemannian length functional. We present a
characterization of these critical points via a differential equation, similar to the geodesic
equation in Riemannian geometry, which states that for critical points of the length func-
tional the intrinsic acceleration ∇γ̇ γ̇ is a linear combination with constant coefficients
of some special rotations of the velocity γ̇.

This chapter is the result of a productive cooperation between Godoy Molina and
me. The main results are accepted and will be published in Springer Proceedings in
Mathematics & Statistics [10]. Finally, we would like to mention that Prof. Fabrice
Baudoin informed us that our main theorem is contained as a special case in the non-
published manuscript [14].

6.1 Introduction

TheH(eisenberg)-type algebras were introduced by A. Kaplan in his foundational work [59].
Their Lie algebra structure is intimately related to the existence of a Clifford algebra
representation over a certain inner product space. To make this claim more precise,
recall that a composition of two positive definite real quadratic forms ϕ and λ on two
vector spaces H and U , respectively, is a bilinear map μ : H ×U → H such that for any
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h ∈ H, u ∈ U
ϕ(h)λ(u) = ϕ(μ(h, u)).

One can always assume there exists a vector u0 ∈ U such that μ(h, u0) = h for all h ∈ H.
Setting V as the orthogonal complement of Ru0 in U , one can introduce a Lie bracket
[· , ·] : H ×H → V that induces a Lie algebra structure of step 2 on H ⊕V . The Clifford
algebra representation mentioned before refers to the fact that

μ(μ(h, v), v) = −λ(v)h,

i.e., the existence of μ induces an H-representation of the Clifford algebra C�(V,−λ).
Among the plethora of H-type algebras, one can distinguish the class of those sat-

isfying the so-called J2-condition, which is Clifford-algebraic in its very nature. This
family of algebras was introduced in [39], and has been the subject of intense study by
analysts for the past twenty years. A major result, obtained in the previous reference,
is the fact that the nilpotent, connected and simply connected groups corresponding to
H-type algebras can be singled out as those appearing in Iwasawa decompositions of
real rank one simple Lie groups, and thus, there are but a few classes of H-type algebras
satisfying the J2-condition. These families of H-type algebras are the trivial Euclidean
spaces Rn, the Heisenberg Lie algebras g2n+1

1 , the quaternionic H-type algebras g4n+3
3

and the octonionic H-type algebra g17. Note that, although there are nontrivial H-type
algebras with centers of arbitrary dimension [59, Corollary 1], those that satisfy the
J2-condition are either abelian or have centers of dimension 1, 3 and 7.

There is a natural connection between H-type algebras and sub-Riemannian geom-
etry, which we proceed to explain. Recall that a sub-Riemannian manifold is a triplet
(M,H, 〈· , ·〉), where H ↪→ TM is a distribution, i.e., a subbundle of the tangent bundle
of M , and 〈· , ·〉 is a fiber inner product defined on H called the sub-Riemannian metric.
For most applications, it is assumed that the distribution H is bracket-generating, that
is,

LieH = Lie algebra generated by sections of H = Γ(TM),

where Γ(TM) denotes the space of vector fields on M . The step of H is, by convention,
the minimal length of brackets needed to generate all the vector fields on M plus one.
Associated to an H-type algebra g = H ⊕ V there is a unique (up to isomorphism)
connected and simply connected Lie group G with Lie algebra g. By left-translating the
subspace H of g, we obtain a bracket-generating distribution H ↪→ TG of step 2. The
quadratic form ϕ induces a sub-Riemannian metric on H.

From now on, we focus our attention on the sub-Riemannian octonionic H-type
group, that is, the sub-Riemannian structure defined on the connected and simply con-
nected Lie group G1

7 with Lie algebra g17. The main purpose of this note is to give a
variational description of the critical points of the length functional

L(γ) =

∫ √
ϕ(γ̇(t)) dt

defined for horizontal curves in G1
7, that is, piecewise smooth curves γ whose velocity

vector satisfies the constraint γ̇(t) ∈ Hγ(t), whenever γ̇ is defined. We will refer to these
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critical points as sub-Riemannian geodesics. An alternative description of these curves,
from a Hamiltonian point of view, has been obtained in [28]. Let us stress the fact
that we use their model of the group G1

7, which is obtained from the Cayley-Dickson
construction of division algebras, instead of the Clifford algebraic model defined in [39].

This chapter is organized as follows. In Section 6.2, we recall briefly the definition
and main properties of the octonionic H-type group and its natural sub-Riemannian
structure, following [28]. In Section 6.3, we prove the main result of this chapter, follow-
ing the lines of [50, 81]. The two major difficulties to overcome when dealing with G1

7 are
the fact that as a manifold it is 15-dimensional and that underlying its structure we are
using the octonions, the only normed division algebra which is non-associative. Finally
we conclude with two appendices, where we collect all the formulas that are too large
to be displayed in an aesthetically pleasing way within the main line of argumentation.

6.2 The Octonionic H-type group G1
7

In this section, we give a short introduction to the octonionic H-type algebra g17 and the
sub-Riemannian geometry of its (unique connected and simply connected) Lie group G1

7,
both concretely realized in R15. For a deeper study, and some interesting facts about its
horizontal curves, we recommend [28].

Let us start by giving a description of g17 through vector fields defined on R15 =
R8 ⊕ R7, with coordinates x1, . . . , x8, z1, . . . , z7. Consider the 8× 8 matrices J1, . . . ,J7

with real coefficients given in Appendix 1. The horizontal space H = span{X1, . . . , X8}
corresponds to the distribution generated by the vector fields

Xl(x, z) = ∂xl
+

1

2

7∑
m=1

(xJm)l∂zm , l ∈ {1, . . . , 8},

where x = (x1, . . . , x8) and (xJm)l denotes the l-th coordinate of the row vector xJm.
Explicitly, these vector fields are given by

X1(x, z) = ∂x1 +
1

2
(−x2∂z1 − x3∂z2 − x4∂z3 − x5∂z4 − x6∂z5 − x7∂z6 − x8∂z7),

X2(x, z) = ∂x2 +
1

2
(x1∂z1 + x4∂z2 − x3∂z3 + x6∂z4 − x5∂z5 − x8∂z6 + x7∂z7),

X3(x, z) = ∂x3 +
1

2
(−x4∂z1 + x1∂z2 + x2∂z3 + x7∂z4 + x8∂z5 − x5∂z6 − x6∂z7),

X4(x, z) = ∂x4 +
1

2
(x3∂z1 − x2∂z2 + x1∂z3 + x8∂z4 − x7∂z5 + x6∂z6 − x5∂z7),

X5(x, z) = ∂x5 +
1

2
(−x6∂z1 − x7∂z2 − x8∂z3 + x1∂z4 + x2∂z5 + x3∂z6 + x4∂z7),

X6(x, z) = ∂x6 +
1

2
(x5∂z1 − x8∂z2 + x7∂z3 − x2∂z4 + x1∂z5 − x4∂z6 + x3∂z7),

X7(x, z) = ∂x7 +
1

2
(x8∂z1 + x5∂z2 − x6∂z3 − x3∂z4 + x4∂z5 + x1∂z6 − x2∂z7),

X8(x, z) = ∂x8 +
1

2
(−x7∂z1 + x6∂z2 + x5∂z3 − x4∂z4 − x3∂z5 + x2∂z6 + x1∂z7).
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Table 6.1: Nontrivial Lie bracket relations in g17.

[row , col.] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 Z1 Z2 Z3 Z4 Z5 Z6 Z7

X2 −Z1 0 Z3 −Z2 Z5 −Z4 −Z7 Z6

X3 −Z2 −Z3 0 Z1 Z6 Z7 −Z4 −Z5

X4 −Z3 Z2 −Z1 0 Z7 −Z6 Z5 −Z4

X5 −Z4 −Z5 −Z6 −Z7 0 Z1 Z2 Z3

X6 −Z5 Z4 −Z7 Z6 −Z1 0 −Z3 Z2

X7 −Z6 Z7 Z4 −Z5 −Z2 Z3 0 −Z1

X8 −Z7 −Z6 Z5 Z4 −Z3 −Z2 Z1 0

The vertical distribution V , i.e., the center of the Lie algebra g17, is defined by

V = span{Z1, . . . , Z7},
where Zi(x, z) = ∂zi . The Lie algebra g17 is the algebra spanned by the vector fields
X1, . . . , X8, Z1, . . . , Z7 with the usual commutator of vector fields in R15, see Table 6.1.

The Lie group G1
7 is the nilpotent Lie group structure on R15 of step 2 induced by

the Lie algebra g17 via the Baker-Campbell-Hausdorff formula. An explicit expression
for the product rule can be found in [28, Equation (3.7)].

We define an inner product 〈· , ·〉 on g17 such that the vector fields X1, . . . , X8,
Z1, . . . , Z7 form an orthonormal frame. The left-invariant distribution

H := span{X1, . . . , X8},
and the restriction of 〈· , ·〉 to H give us the sub-Riemannian structure on G1

7 we want to
study further. The group G1

7 with the structure introduced before is called the octonionic
H-type group, since the map

adX : ker(adX)
⊥ ⊂ H → V,

is a surjective isometry for any X ∈ H of norm one, see [59]. From this definition, it
follows immediately that the distribution H is strongly bracket generating and, thus, all
length-minimizing curves are normal, i.e., they all solve a natural Hamiltonian equation,
see [71, Chapter 1]. Explicit solutions to this equation in the case of the octonionic
H-type group can be found in [28]. The method employed to find these solutions in [28]
uses explicitly the coordinates of R15, instead our approach is entirely coordinate-free.

With all these ingredients at hand, we can compute explicitly the Levi-Civita con-
nection of the metric 〈· , ·〉. To do this, we employ the well-known Koszul formula

〈Z ,∇YX〉 =
1

2
(X〈Y , Z〉+ Y 〈Z ,X〉 − Z〈X , Y 〉

−〈[X ,Z] , Y 〉 − 〈[Y , Z] , X〉 − 〈[X , Y ] , Z〉),
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and we immediately notice that the following equations

〈Xb ,∇XaZr〉 = −1

2
〈[Xa , Xb] , Zr〉, 〈Zs ,∇XaZr〉 = 0,

hold, for all a, b ∈ {1, . . . , 8}, r, s ∈ {1, . . . , 7}. We conclude that ∇XaZr has trivial
vertical part, and thus

∇XaZr = −1

2

8∑
b=1

〈[Xa , Xb] , Zr〉Xb.

From this and the information in Table 6.1, we can deduce the expressions found in
Appendix 2. From these, it is natural to define the operators Jr : H → H, r ∈ {1, . . . , 7},
by

Jr(X) := 2∇XZr, r ∈ {1, . . . , 7}.
These are almost complex structures on H, i.e., J2

r = −Id|H, with the property that

〈Jr(X) , Y 〉+ 〈X , Jr(Y )〉 = 0, (6.1)

for every r ∈ {1, . . . , 7} and all X, Y ∈ H. Furthermore, we note that this equation
implies that 〈X , Jr(X)〉 = 0, for all X ∈ H.

6.3 Geodesic equation on G1
7

In this section we follow the arguments in [50, 80, 81] to find an intrinsic differential equa-
tion for the sub-Riemannian geodesics of G1

7 with respect to the sub-Riemannian struc-
ture introduced in Section 6.2. An earlier attempt to this problem can be found in [82],
where the author obtained a differential equation for geodesics in CR sub-Riemannian
3-manifolds using the Tanaka-Webster connection. We conclude with some examples
and interpretations.

6.3.1 Main result

Recall that a piecewise smooth curve γ : [a, b] → G1
7 is called horizontal if γ̇(s) ∈ Hγ(s),

whenever γ̇ is defined. A variation of a curve γ : [a, b] → G1
7 is a C2-map γ̃ : [a, b]× I →

G1
7, where I is an open interval containing 0 and γ̃(s, 0) = γ(s). As customary, we will

denote γ̃(s, ε) = γε(s). If γ is horizontal, we say that γ̃ is an admissible variation if all
curves γε : [a, b] → G1

7 are horizontal, γε(a) = γ(a) and γε(b) = γ(b). As an abuse of
notation, we call γε an admissible variation of γ.

Given a vector v ∈ g17, we write vH for its orthogonal projection to the horizontal
space H. We will use the same notation for the horizontal components of vector fields,
vector fields along curves, etc.
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Lemma 6.3.1. Let γ : [a, b] → G1
7 be a horizontal curve parameterized by arc length,

and let W be any C1 vector field along γ such that W (γ(a)) = W (γ(b)) = 0 satisfying

0 = γ̇〈W ,Zr〉 − 2〈WH , Jr(γ̇)〉, r ∈ {1, . . . , 7}. (6.2)

Then there exists an admissible variation γε of γ such that ∂
∂ε

∣∣
ε=0

γε(s) = W.

Proof. Note that there exists a vector field W̃ along γ, orthogonal to γ̇, such that we
can write W = fγ̇ + W̃ for some smooth function f satisfying f(a) = f(b) = 0. From
the choice of W̃ , the definition of the almost complex structures Jr, the arc length
parameterization and horizontality of γ we can immediately see that

〈W , γ̇〉 = f〈γ̇ , γ̇〉+ 〈W̃ , γ̇〉 = f,

〈W ,Jr(γ̇)〉 = f〈γ̇ , Jr(γ̇)〉+ 〈W̃ , Jr(γ̇)〉 = 〈W̃ , Jr(γ̇)〉,
〈W ,Zr〉 = f〈γ̇ , Zr〉+ 〈W̃ , Zr〉 = 〈W̃ , Zr〉,

for all r ∈ {1, . . . , 7}.
It is easy to see that if there exists a (not necessarily admissible) variation γ(s, ε) for

which ∂
∂ε

∣∣
ε=0

γ(s, ε) = W̃ , then there exists γ1(s, ε) satisfying
∂
∂ε

∣∣
ε=0

γ1(s, ε) = W . This
implies that, without loss of generality, we can and will assume that W ⊥ γ̇.

We have to distinguish the cases in which the vector field W is horizontal or not. Let
us first examine the case when W is horizontal on some non-empty interval I0 ⊂ [a, b].
By definition, we have that W = WH for all s ∈ I0, and since we are assuming that W
satisfies condition (6.2), we have the equalities

〈WH , Jr(γ̇)〉 = 〈W ,Jr(γ̇)〉 = 1

2
γ̇〈WH , Zr〉 = 0,

for all r ∈ {1, . . . , 7}. This implies that WH ∈ span{γ̇}, and since WH is also orthogonal
to γ̇, we can conclude that WH = 0.

The non-horizontal case requires more care. If exp is the exponential map associated
to the (Riemannian) metric 〈· , ·〉 on G1

7, we can define the mapping

F (s, ε) = expγ(s)(εW (s))

for sufficiently small ε > 0 and s ∈ [a, b]. Let us assume there exists s0 ∈ [a, b] such that
W (s0) /∈ Hγ(s0). We note that F (s, ε) defines locally a surface, which is transverse to the
horizontal space Hγ(s0), as it contains curves in non-horizontal directions by definition.
Furthermore, it is foliated by horizontal curves. These two facts together imply that
there exists a function g(s, ε) of class C2 such that we can define a family of horizontal
curves

γε(s) = expγ(s)(g(s, ε)W (s)).

If we choose g such that ∂
∂ε

∣∣
ε=0

g(s0, ε) = 1, it follows that γε is an admissible variation
of γ with associated vector field W .
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Simple computations show that the converse of Lemma 6.3.1 also holds. For com-
pleteness, we include it here. Given an admissible variation γε of a horizontal curve γ
with variational vector field W , then

0 = γ̇〈W ,Zr〉 − 2〈WH , Jr(γ̇)〉, r ∈ {1, . . . , 7}.

Since 〈γ̇ε , Zr〉 = 0, for all r ∈ {1, . . . , 7}, it follows trivially that d
dε

∣∣
ε=0

〈γ̇ε , Zr〉 = 0.
From this equality, the fact that ∇Zl

Zr = 0 for all r, l ∈ {1, . . . , 7}, and equation (6.1),
we deduce that

0 =
d

dε

∣∣∣
ε=0

〈γ̇ε , Zr〉 = 〈∇W γ̇ , Zr〉+ 〈γ̇ ,∇WZr〉
= 〈∇γ̇W ,Zr〉+ 〈γ̇ ,∇WH

Zr〉
= γ̇〈W ,Zr〉 − 〈W ,∇γ̇Zr〉+ 〈γ̇ , Jr(WH)〉
= γ̇〈W ,Zr〉 − 〈WH , Jr(γ̇)〉 − 〈Jr(γ̇) ,WH〉
= γ̇〈W ,Zr〉 − 2〈WH , Jr(γ̇)〉.

Now we have all tools to prove the main theorem.

Theorem 6.3.2. Let γ : [a, b] → G1
7 be a horizontal curve of class C2, parametrized by

arc length. Then γ is a critical point of the length functional (with respect to admissible
variations) if, and only if, there exist constants λ1, . . . , λ7 ∈ R such that γ satisfies the
second order differential equation

∇γ̇ γ̇ − 2
7∑

r=1

λrJr(γ̇) = 0. (6.3)

Proof. Let us first assume that γ : [a, b] → G1
7 is a horizontal curve, parametrized by

arc length, satisfying equation (6.3) for some constants λ1, . . . , λ7 ∈ R. We consider a
C1-smooth vector field W , vanishing at the endpoints of γ and satisfying

γ̇〈W ,Zr〉 = 2〈WH , Jr(γ̇)〉, (6.4)

for all r ∈ {1, . . . , 7}. It is well-known, see [32], that the length functional L satisfies

d

dε

∣∣∣∣
ε=0

L(γε) = −
∫ b

a

〈∇γ̇ γ̇ ,W 〉,

therefore, to prove that γ is a critical point of L with respect to admissible variations,
we need to show that

∫ b
a
〈∇γ̇ γ̇ ,W 〉 = 0. Decompose W = WH+WV in its horizontal and

vertical parts, where WV =
∑7

r=1 grZr for some smooth functions g1, . . . , g7 satisfying
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gr(a) = gr(b) = 0. Then∫ b

a

〈∇γ̇ γ̇ ,W 〉 (6.3)
= 2

7∑
r=1

λr

∫ b

a

〈Jr(γ̇) ,W 〉 Jr(γ̇)∈H
= 2

7∑
r=1

λr

∫ b

a

〈Jr(γ̇) ,WH〉

(6.4)
=

7∑
r=1

λr

∫ b

a

γ̇〈W ,Zr〉 Zr∈V=
7∑

r=1

λr

∫ b

a

γ̇〈WV , Zr〉

=
7∑

r=1

λr

∫ b

a

γ̇

〈
7∑

l=1

glZl , Zr

〉
=

7∑
r=1

λr

∫ b

a

γ̇(gr)

=
7∑

r=1

λr

∫ b

a

d

dt
(gr(t))

gr(a)=gr(b)=0
= 0.

For the converse, let γ be a critical point of the length functional, which is horizontal
and parametrized by arc length. This implies that

0 =
d

dε

∣∣∣
ε=0

L(γε) = −
∫ b

a

〈∇γ̇ γ̇ ,W 〉,

where W is the vector field of the variation γε.
We know that the condition ‖γ̇‖2 = 〈γ̇ , γ̇〉 = 1 implies

〈∇γ̇ γ̇ , γ̇〉 = 1

2

d

dt
〈γ̇ , γ̇〉 = 1

2

d

dt
1 = 0.

Furthermore, since γ is horizontal, then 〈γ̇ , Zr〉 = 0 for all r ∈ {1, . . . , 7}, and thus

0
〈γ̇ ,Zr〉=0

= γ̇〈γ̇ , Zr〉 = 〈∇γ̇ γ̇ , Zr〉+ 〈γ̇ ,∇γ̇Zr〉 = 〈∇γ̇ γ̇ , Zr〉+ 〈γ̇ , Jr(γ̇)〉
〈X ,Jr(X)〉=0

= 〈∇γ̇ γ̇ , Zr〉,
for all r ∈ {1, . . . , 7}. In summary, we have shown that ∇γ̇ γ̇ ⊥ γ̇ and ∇γ̇ γ̇ ⊥ Zr for
all r ∈ {1, . . . , 7}. Therefore the vector field ∇γ̇ γ̇ has to be contained in the seven
dimensional subspace span{J1(γ̇), . . . , J7(γ̇)}, that is

∇γ̇ γ̇ =
7∑

r=1

grJr(γ̇).

It remains to show that the functions gr are in fact constant. We fix fr : [a, b] → R

for r ∈ {1, . . . , 7} such that fr(a) = fr(b) = 0 and
∫ b
a
fr = 0. Furthermore, we consider

a vector field W̃ such that its horizontal part satisfies W̃H =
∑7

r=1 frJr(γ̇) and satisfies
〈W̃ , Zr〉(s) = 2

∫ s
a
fr(t)dt.

The last condition for the vertical part of W̃ yields

γ̇〈W̃ , Zr〉 = d

ds

(
2

∫ s

a

fr(t)dt

)
= 2fr(s),
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for all r ∈ {1, . . . , 7}. The horizontal condition and the orthonormality of the family
{J1(γ̇), . . . , J7(γ̇)}, see Appendix 2, imply

〈W̃H , Jr(γ̇)〉 =
〈

7∑
l=1

flJl(γ̇) , Jr(γ̇)

〉
= fr(s),

for all r ∈ {1, . . . , 7}. These two equations together imply the condition (6.2) of
Lemma 6.3.1, which reads

γ̇〈W̃ , Zr〉 = 2〈W̃H , Jr(γ̇)〉,
for all r ∈ {1, . . . , 7}. Using Lemma 6.3.1 we conclude that W̃ is a vector field for an
admissible variation of γ. We obtain

0 =

∫ b

a

〈∇γ̇ γ̇ , W̃ 〉 =
7∑

r=1

∫ b

a

fr〈∇γ̇ γ̇ , Jr(γ̇)〉,

which is valid for any seven functions with mean zero, which implies that 〈∇γ̇ γ̇ , Jr(γ̇)〉
is constant for all r ∈ {1, . . . , 7}. We obtain equation (6.3) for suitable constants
λ1, . . . , λ7 ∈ R.

6.3.2 Interpretations and examples

Similar equations to the one in our main theorem can be found in the literature in
different guises, and with various geometric and physical interpretations.

As mentioned in [55], when studying the case of the natural CR sub-Riemannian
structure on the three dimensional sphere S3, the admissible C2 critical points of the
length functional satisfy the equation

∇γ̇ γ̇ + 2λJ(γ̇) = 0, (6.5)

where J is the almost complex structure on the horizontal distribution of S3 induced
by the CR structure. In that case, the constant λ corresponds to a curvature in the
following sense: if γ solves the equation (6.5) with parameter λ, then the projection of γ
to S2 via the Hopf fibration produces a piece of a geodesic circle with constant geodesic
curvature λ (see [55, Lemma 3.2]).

In the case of Theorem 6.3.2, after a rather tedious computation, we can show that
the curves in G1

7 starting from the origin and satisfying equation (6.3) with λ1 = · · · =
λ7 = 0 are straight lines in R15 contained in the 8-plane z1 = · · · = z7 = 0. This fact
indicates that we can again interpret the constants as curvatures. In a sense, the values
of λ1, . . . , λ7 measure how far are the curves solving (6.3) from being a Riemannian
geodesic. We are currently working on making this claim precise and applying it to all
the similar cases known to us.

Finally, it is of worth mentioning this equation has a very similar structure to the
so-called Wong’s equation, see [71, Chapter 12], which corresponds to a nonabelian
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version of Lorentz equations for the dynamics of a particle. In that case, the parameter
λ corresponds to the charge of the particle which satisfies an additional restriction in
the form of an evolution equation. It would be of interest to study the precise relation
between Wong’s equation and the general formulation of critical points of length in
sub-Riemannian manifolds with transverse symmetries, see [14].

6.4 Appendix

We present the matrices J1, . . . ,J7 used in Section 6.2 to define the vector fieldsX1, . . . , X8.

J1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 −1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Here we present the components of the Levi-Civita connection for the Riemannian
metric on G1

7 defined in Section 6.2.

∇X1Z1 = −1

2
X2, ∇X2Z1 =

1

2
X1, ∇X3Z1 = −1

2
X4, ∇X4Z1 =

1

2
X3,

∇X5Z1 = −1

2
X6, ∇X6Z1 =

1

2
X5, ∇X7Z1 =

1

2
X8, ∇X8Z1 = −1

2
X7,

∇X1Z2 = −1

2
X3, ∇X2Z2 =

1

2
X4, ∇X3Z2 =

1

2
X1, ∇X4Z2 = −1

2
X2,

∇X5Z2 = −1

2
X7, ∇X6Z2 = −1

2
X8, ∇X7Z2 =

1

2
X5, ∇X8Z2 =

1
2X6,

∇X1Z3 = −1

2
X4, ∇X2Z3 = −1

2
X3, ∇X3Z3 =

1

2
X2, ∇X4Z3 =

1
2X1,

∇X5Z3 = −1

2
X8, ∇X6Z3 =

1

2
X7, ∇X7Z3 = −1

2
X6, ∇X8Z3 =

1

2
X5,

∇X1Z4 = −1

2
X5, ∇X2Z4 =

1

2
X6, ∇X3Z4 =

1

2
X7, ∇X4Z4 =

1

2
X8,

∇X5Z4 =
1

2
X1, ∇X6Z4 = −1

2
X2, ∇X7Z4 = −1

2
X3, ∇X8Z4 = −1

2
X4,

∇X1Z5 = −1

2
X6, ∇X2Z5 = −1

2
X5, ∇X3Z5 =

1

2
X8, ∇X4Z5 = −1

2
X7,

∇X5Z5 =
1

2
X2, ∇X6Z5 =

1

2
X1, ∇X7Z5 =

1

2
X4, ∇X8Z5 = −1

2
X3,

∇X1Z6 = −1

2
X7, ∇X2Z6 = −1

2
X8, ∇X3Z6 = −1

2
X5, ∇X4Z6 =

1

2
X6,

∇X5Z6 =
1

2
X3, ∇X6Z6 = −1

2
X4, ∇X7Z6 =

1

2
X1, ∇X8Z6 =

1

2
X2,

∇X1Z7 = −1

2
X8, ∇X2Z7 =

1

2
X7, ∇X3Z7 = −1

2
X6, ∇X4Z7 = −1

2
X5,

∇X5Z7 =
1

2
X4, ∇X6Z7 =

1

2
X3, ∇X7Z7 = −1

2
X2, ∇X8Z7 =

1

2
X1.
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Part III

Sub-Riemannian Cut-locus





Chapter 7

The Sub-Riemannian cut locus of
H-type groups

In the present chapter we present a proof of the fact that the sub-Riemannian cut locus of
a wide class of nilpotent groups of step two, called H-type groups, starting from the origin
corresponds to the center of the group. We obtain this result by completely describing the
sub-Riemannian geodesics in the group, and using these to obtain three disjoint sets of points
in the group determined by the number of geodesics joining them to the origin.

7.1 Introduction

The H(eisenberg)-type algebras, which are one of the most important examples of nilpotent
Lie algebras of step 2, were introduced by A. Kaplan in his foundational work [59]. Their Lie
algebra structure is intimately related to the existence of certain Clifford algebra representa-
tions, which we will introduce carefully later on. These Lie algebras have a deep connection
to sub-Riemannian geometry, which we will proceed to explain.

It is well-known that for a nilpotent algebra n = v⊕z there is a unique (up to isomorphism)
connected and simply connected Lie group N with Lie algebra n. Applying this idea to an
H-type algebra, and by left-translating the subspace v of n, we obtain a bracket-generating
distribution H ↪→ TN of step 2. Any inner product defined on v induces a sub-Riemannian
metric on H. Explicit equations for the sub-Riemannian geodesics in H-type groups can be
found in [51].

A fundamental tool in the analysis of sub-Riemannian manifolds is the so-called cut locus.
Recall that the (sub-Riemannian) cut locus of (Q,H, 〈· , ·〉), with respect to a point p ∈ Q is
defined as the set of points q ∈ Q such that there is more than one minimizing sub-Riemannian
geodesic connecting p to q, for details see Definition 1.2.8. One of the most relevant applications
where knowledge of this set plays an important part, is to describe the short-time asymptotic
behavior of the heat kernel associated to a naturally defined sub-elliptic operator, see [12]. The
aim of this chapter is to give a complete characterization of the sub-Riemannian cut locus for
the H-type groups.

This chapter is organized as follows. In Section 7.2, we briefly recall some necessary def-
initions and give a precise form of the sub-Riemannian geodesics on an H-type group. In
Section 7.3, we prove the main result of this chapter, which follows from studying carefully
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three different sets of points in the group. In order to understand these sets completely, we
need to obtain results similar to those in [28], but valid in the full generality of H-type groups.

7.2 Sub-Riemannian geodesics on H-type groups

7.2.1 Sub-Riemannian H-type groups

Let us first recall the construction of the H-type algebras nr,0. In what follows, all inner
products are positive definite and Clr,0 is the Clifford algebra generated by the vector space
zr,0 = Rr,0 with inner product 〈 · , · 〉zr,0 .

Consider a Clr,0-module vr,0, where J : zr,0 → End(vr,0) is the corresponding Clifford
algebra representation. If 〈 · , · 〉vr,0 is an inner product on vr,0, we can define a Lie bracket by

〈JZv , w〉vr,0 = 〈Z , [v , w]〉zr,0 , for all v, w ∈ vr,0 .

We set all brackets with elements in zr,0 to be zero. This induces a Lie algebra structure of
step 2 on nr,0 = vr,0 ⊕ zr,0. We define the inner product 〈 · , · 〉 := 〈 · , · 〉vr,0 + 〈 · , · 〉zr,0 on nr,0.

Then
JZ′JZ + JZJZ′ = −2〈Z ,Z ′〉zr,0 Idvr,0 for all Z ∈ zr,0 .

As it is usual in the literature, we call vr,0 the horizontal space and the center zr,0 the vertical
space.

Let {v1, . . . , vm} and {Z1, . . . , Zn} be orthonormal bases of vr,0 and zr,0 respectively. The

structure constants Ck
ij and the coefficients Bk

ij of the representation J are defined by

[vi , vj ] =
n∑

k=1

Ck
ijZk and JZk

vi =
m∑
j=1

Bk
ijvj .

It is easy to see that Bk
ij = Ck

ij , and we will use this fact freely throughout many of the
forthcoming computations.

It follows that the structure matrices {C1, . . . , Cn} ⊂ so(m) defined by Ck = (Ck
ij)ij for

all k = 1, . . . , n satisfy the relations

CkCp = −CpCk, for k �= p,

and (Ck)2 = − Idvr,0 . Furthermore, we note that CkCp ∈ so(m) for k �= p, since

(CkCp)T = (Cp)T (Ck)T = (−Cp)(−Ck) = CpCk = −CkCp,

where (Ck)T is the transposed matrix of Ck.
The H-type group Nr,0 is the unique (up to isomorphism) connected and simply connected

Lie group with Lie algebra nr,0. The subspace vr,0 defines a bracket generating distribution of
step 2 over Nr,0 by left-translation, and the translations of the inner product 〈 · , · 〉vr,0 makes
Nr,0 into a sub-Riemannian manifold.

Recall that for a simply connected nilpotent Lie group, the exponential map is a diffeo-
morphism, see for example [40]. Therefore we can identify Nr,0 with vr,0⊕ zr,0. We will use
this identification through this chapter. Under this identification, we denote by Vr,0 and Zr,0

the image of vr,0 and zr,0 respectively.
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7.2.2 Sub-Riemannian geodesics on Nr,0

From now on, we write a horizontal sub-Riemannian geodesic c : [0, 1] → Nr,0 by c(t) =
(x(t), z(t)), where x(t) is in Vr,0 and z(t) = (z1(t), . . . , zn(t)) is in Zr,0. From [51, Theorem 2],
we have the following formulas:

x(t) =
sin(t|θ|)

|θ| ẋ(0) +
(1− cos(t|θ|))

|θ|2 Ωẋ(0), (7.1)

żk(t) =
1

2
ẋ(0)T

[
Ck

|θ| cos(t|θ|) sin(t|θ|) +
CkΩ

|θ|2 cos(t|θ|)(1− cos(t|θ|)) (7.2)

+
ΩTCk

|θ|2 sin2(t|θ|) + ΩTCkΩ

|θ|3 sin(t|θ|)(1− cos(t|θ|))
]
ẋ(0),

where θ = (θ1, . . . , θn) �= (0, . . . , 0) is a vector of parameters coming from the Hamiltonian

formulation, Ω =
∑n

k=1C
kθk, θ = (θ1, . . . , θn) �= (0, . . . , 0) and |θ| = (∑n

k=1 θ
2
k

)1/2
.

For θ = (0, . . . , 0) the sub-Riemannian geodesics are straight lines, i.e., the geodesic starting
at the point (0, 0) and reaching the point (x, 0) at time t = 1 is given by c(t) = (tx, 0).

Proposition 7.2.1. The vertical part z(t) of a horizontal geodesic c(t) for the H-type group
Nr,0, corresponding to θ = (θ1, . . . , θn) �= (0, . . . , 0), is given by

z(t) =
|ẋ(0)|2
2|θ|2
(
t− sin(t|θ|)

|θ|
)
θ. (7.3)

Proof. First we note that given a skew-symmetric matrix A ∈ so(m), i.e. AT = −A, then
vTAv = 0 for any vector v ∈ Rm as

R � vTAv = (vTAv)T = vTAT v = −vTAv.

Now we calculate the matrices CkΩ, ΩTCk and ΩTCkΩ.

CkΩ = Ck
n∑

l=1

C lθl =
n∑

l=1

CkC lθl = −θk Idvr +
n∑

l =k

CkC lθl,

ΩTCk = −ΩCk = −
n∑

l=1

C lCkθl = θk Idvr −
n∑

l =k

C lCkθl

= θk Idvr +
n∑

l =k

CkC lθl
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ΩTCkΩ =

⎛⎝θk Idvr + n∑
l =k

CkC lθl

⎞⎠Ω = θkΩ+

n∑
l =k

n∑
p=1

CkC lCpθlθp

= θkΩ+
n∑

l =k

n∑
p =k

CkC lCpθlθp +
n∑

l =k

CkC lCkθlθp

= θkΩ+
n∑

l =k

n∑
p =k

CkC lCpθlθp +
n∑

l =k

C lθlθp

= θkΩ+
n∑

l =k

−Ckθ2l +
n∑

l =k

C lθlθp,

where the last equation is obtained as C lCp = −CpC l for p �= l. As Ω, Cp, CpC l are skew-
symmetric for any p �= l, we obtain that

ẋ(0)TCkẋ(0) = 0,

ẋ(0)TCkΩẋ(0) = −θk|ẋ(0)|2 +
n∑

l =k

ẋ(0)TCkC lẋ(0)θl = −θk|ẋ(0)|2,

ẋ(0)TΩTCkẋ(0) = θk|ẋ(0)|2 +
n∑

l =k

ẋ(0)TCkC lẋ(0)θl = θk|ẋ(0)|2,

ẋ(0)TΩTCkΩẋ(0) = θkẋ(0)
TΩẋ(0) +

n∑
l =k

−ẋ(0)TCkẋ(0)θ2l

+
n∑

l =k

ẋ(0)TC lẋ(0)θlθp = 0.

It follows that for any k = 1, . . . , n

żk(t) = θk|ẋ(0)|2− cos(t|θ|)(1− cos(t|θ|)) + sin2(t|θ|)
2|θ|2

= θk|ẋ(0)|2 1− cos(t|θ|)
2|θ|2 ,

zk(t) =
θk|ẋ(0)|2
2|θ|2

(
t− sin(t|θ|)

|θ|
)
.

This simplification will allow us to determine concretely the points in any H-type group
where minimizing sub-Riemannian geodesics starting from the origin stop being unique.

7.3 Sub-Riemannian cut locus of H-type groups

In this section, we give a precise description of the sub-Riemannian cut locus of curves starting
from the identity (0, 0) in the H-type groups introduced previously. More precisely, we want
to prove the following
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Theorem 7.3.1. The cut locus K(0,0) of the H-type group Nr,0 is given by the points of the
form (0, z).

This result will be achieved in three steps: points of the form (0, z) are in K(0,0); points of
the form (x, z), with x �= 0 and z �= 0, are not in K(0,0); and neither are the points of the form
(x, 0).

7.3.1 The vertical space is contained in the cut locus

As a first step, we show that the points (0, z) ∈ Nr,0 are in the cut locus. The geodesics
connecting the origin (0, 0) and (0, z) and their length are given by the following Theorem
which generalizes [28, Theorem 6.3] to arbitrary H-type groups.

Theorem 7.3.2. For each natural number k ∈ N, there exists a sub-Riemannian geodesic
ck(t) = (xk(t), zk(t)) in Nr,0 joining the origin with the point (0, z). These curves have lengths
l1, l2, . . . , where l2k = 4kπ|z|, k ∈ N, and their equations are

xk(t) = 4
sin2(kπt)

|ẋ(0)|2 Zẋ(0) +
sin(2kπt)

2kπ
ẋ(0), k ∈ N,

where Z =
∑n

r=1 z
rCr and

zk(t) =

(
t− sin(2πkt)

2πk

)
z, k ∈ N.

Proof. We follow a similar scheme as in [28]. Evaluating equation (7.1) at t = 1, and after
some simple computations, we see that

0 = |x(1)|2 = 4|ẋ(0)|2
|θ|2 sin2

( |θ|
2

)
.

Since we can assume that |ẋ(0)| �= 0, it follows that |θ| = 2kπ, for k ∈ N. This, in turn, implies
that

z = z(1) =
|ẋ(0)|2
8k2π2

θ,

thus |ẋ(0)|2 = 4kπ|z|. We immediately obtain the geodesic equations.
The length of the geodesics follows easily, since

l2k = l(ck)
2 =

(∫ 1

0

√
|ẋ(t)|dt

)2
= |ẋ(0)|2 = 4kπ|z|.

Suppose c(t) is the minimizing geodesic between the origin and (0, z) with length 4π|z| and
with initial vector ẋ(0) �= 0. We define the geodesic c̃(t) = (x̃(t), z̃(t)) with initial vector −ẋ(0)
by

x̃(t) = −4
sin2(πmt)

|ẋ(0)|2 Zẋ(0)− sin(2πt)

2π
ẋ(0),

z̃(t) =

(
t− sin(2πt)

2π

)
z.

This geodesic is minimizing between the origin and (0, z) as it has length 4π|z| and clearly
c �= c̃. It follows that (0, z) is an element of the cut locus of the origin.
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7.3.2 If x �= 0 and z �= 0, then (x, z) is not in the cut locus

Theorem 7.3.1 will follow after proving that points not contained in the vertical space are not
elements in the cut locus. We start the analysis by proving the following extension of [28,
Theorem 6.5].

Theorem 7.3.3. Given a point (x, z) ∈ Nr,0 with x �= 0, z �= 0, there are finitely many sub-
Riemannian geodesics joining the origin (0, 0) with (x, z). Let |θ|1, . . . , |θ|N be solutions of the
equation

4|z|
|x|2 = μ(|θ|/2),

where μ(α) = α
sin2(α)

−cot(α). Then the equation of the geodesic ck(t) = (xk(t), zk(t)), t ∈ [0, 1],

corresponding to |θ|k, is

xk(t) = sin

(
t|θ|k
2

)
cos

(
t|θ|k
2

)⎛⎝8 sin2
( |θ|k

2

)(
tan
(
t|θ|k
2

)
cot
( |θ|k

2

)
− 1
)

|x|2(|θ|k − sin(|θ|k)) Zx

+

(
tan

(
t|θ|k
2

)
+ cot

( |θ|k
2

))
x

)
,

zk(t) =
t|θ|k − sin(t|θ|k)
|θ|k − sin(|θ|k) z

with Z =
∑n

r=1 z
rCr and k = 1, 2, . . . , N . The lengths of these geodesics are l2k = ν(|θ|k)(|x|2+

4|z|), where
ν(α) =

α2

2(1 + α− cos(α)− sin(α))
.

Proof. Putting s = 1 into equations (7.1) and (7.3), we see that

|x|2 = |x(1)|2 = 4 sin2(|θ|/2)
|θ|2 |ẋ(0)|2, (7.4)

z = z(1) =
|x|2

8 sin2(|θ|/2)
(
1− sin(|θ|)

|θ|
)
θ =

|x|2μ(|θ|/2)
4|θ| θ. (7.5)

It follows that |z| = 1
4 |x|2μ(|θ|/2). Let |θ|1, . . . , |θ|N be the solutions of this equation. We fix

a solution |θ|k and obtain by the use of equation (7.4) in (7.5) that

θ =
2|θ|3k z

|ẋ(0)|2(|θ|k − sin(|θ|k)) , (7.6)

and therefore we have that

zk(t) =
t|θ|k − sin(t|θ|k)
|θ|k − sin(|θ|k) z.

To find the expression for xk(t), let us first observe that( |θ|k
2

cot

( |θ|k
2

)
Idvr −

Ω

2

)(
sin(|θ|k)

|θ|k Idvr +
1− cos(|θ|k)

|θ|2k
Ω

)
= Idvr ,
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which follows from simple trigonometric identities and the fact that choosing the corresponding
covector θ, we have that Ω2 = −|θ|2k Idvr . Since equation (7.1) can be written as

x =

(
sin(|θ|k)

|θ|k Idvr +
(1− cos(|θ|k))

|θ|2k
Ω

)
ẋ(0),

then ẋ(0) =
( |θ|k

2 cot
( |θ|k

2

)
Idvr −Ω

2

)
x, and therefore

xk(t) =

(
sin(t|θ|k)

|θ|k Idvr +
(1− cos(t|θ|k))

|θ|2k
Ω

)
ẋ(0)

=

(
sin(t|θ|k)

|θ|k Idvr +
(1− cos(t|θ|k))

|θ|2k
Ω

)( |θ|k
2

cot

( |θ|k
2

)
Idvr −

Ω

2

)
x.

The equation for xk(t) in the statement follows from a simple computation, using the formula
above and equation (7.6).

We calculate the length of our obtained geodesics. For a fixed solution |θ|k we obtain

ẋk(t) =
1

2

((
− cos(t|θ|k) + cot

( |θ|k
2

)
sin(t|θ|k)

)
Ωx

+ |θ|k
(
cos(t|θ|k) cot

( |θ|k
2

)
+ sin(t|θ|k)

)
x
)
,

such that

〈ẋk(t) , ẋk(t)〉 = 〈Ωx ,Ωx〉1
4

(
− cos(t|θ|k) + cot

( |θ|k
2

)
sin(t|θ|k)

)2
+ 〈x , x〉1

4
|θ|2k
(
cos(t|θ|k) cot

( |θ|k
2

)
+ sin(t|θ|k)

)2
= 〈x , x〉1

4
|θ|2k
((

− cos(t|θ|k) + cot

( |θ|k
2

)
sin(t|θ|k)

)2
+
(
cos(t|θ|k) cot

( |θ|k
2

)
+ sin(t|θ|k)

)2)
= 〈x , x〉 |θ|2k

2− 2 cos(|θ|k) .

Hence l2k = ν(|θ|k)(|x|2 + 4|z|), as 4|z| = |x|2μ(|θ|k/2).
Given a point (x, z) with x �= 0, z �= 0. Then there exists N solutions |θ|1, . . . , |θ|N of the

equation

4|z|
|x|2 = μ

( |θ|
2

)
.

If N = 1, then there does not exist a second minimizing geodesic. Hence (x, z) is not in the
cut locus.
For N > 1, we have to examine the solutions |θ|k in detail. Without loss of generality, we
assume that |θ|k < |θ|k+1. We know that μ is an increasing diffeomorphism on the interval
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(−2π , 2π) onto R such that |θ|1 < 2π and |θ|k > 2π for all 1 < k ≤ N , see Figure 7.1. In
Figure 7.2, we see that ν(2π) = π and that ν(x) < ν(y) for all x ∈ [0, π), y ∈ (π,∞). Hence

ν(|θ|1) < ν(|θ|k), for 1 < k ≤ N.

This implies that the geodesics ck(t) = (xk(t), zk(t)) cannot be minimizing for 1 < k ≤ N .
This implies that the only minimizing geodesic between the origin and (x, z) with x �= 0, z �= 0
is given by c1(t) = (x1(t), z1(t)), hence (x, z) is not in the cut locus.
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Figure 7.1: μ
(
α
2

)
=

(α
2 )

2

sin2(α
2 )

− cot
(
α
2

)
on the interval [0 , 16π] with vertical lines at the

points 2nπ, n ∈ N.
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Figure 7.2: α2

2(1+α−cos(α)−sin(α))
on the interval [0 , 30] with vertical line at the point 2π

and horizontal line at the point π.

7.3.3 Points of the form (x, 0) are not in the cut locus

To conclude the proof of Theorem 7.3.1, we prove the following result.

Theorem 7.3.4. A sub-Riemannian geodesic c(t) in Nr,0 is horizontal with constant z-coordinate
z0 ∈ Zr,0 if and only if c(t) = (at, z0) for some vector a ∈ Vr,0 such that |a| �= 0.
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Proof. Since z(t) = z0 is constant, then 0 = ż(t). If we assume |θ| �= 0, then we can apply
Proposition 7.2.1, to see that

0 = ż(t) =
|ẋ(0)|2(1− cos(t|θ|))

2|θ|2 θ.

Since |ẋ(0)|2 �= 0 and (1− cos(t|θ|)) �= 0 for all t ∈ [0, 1], we obtain a contradiction. It follows
that θ must vanish, and thus

x(t) = t ẋ(0),

from the characterization of geodesics in Subsection 7.2.2. Setting a = ẋ(0), the result is
proved.

It remains to show that there is no geodesic connecting the origin (0, 0) with (x, 0) with
non-constant vertical component z(t). Let assume that there exist such a geodesic which
reaches (x, 0) at time t0 = 1, then the non-constant part z(t) is given by

z(t) =
|ẋ(0)|2
4|θ|2
(
t− sin(2t|θ|)

2|θ|
)
θ.

It follows that 1 = sin(2|θ|)
2|θ| if and only if |θ| = 0, see Figure 7.3, which implies that z(t) is

constant. This is a contradiction to our assumption, hence there does not exist a geodesic
connecting the origin (0, 0) with (x, 0) with non-constant vertical component z(t). Hence the
geodesic given in Theorem 7.3.4 is the unique geodesic connecting (0, 0) with (x, 0).

2 4 6 8 10

�1.0

�0.5

0.5

1.0

Figure 7.3: sin(2α)
2α

on the interval [0 , 10].
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Chapter 8

Sub-Riemannian geometry of Stiefel
manifolds

In this chapter we consider the Stiefel manifold Vn,k in the real and complex case as a principal
U(k)-bundle over the Grassmann manifold and study the cut locus from the unit element. We
give the complete description of this cut locus on Vn,1 and present a sufficient condition on the
general case. At the end, we study the complement to the cut locus of V2k,k and extend our
results to the real case.

The main results of this chapter are summarized and published in the paper [9].

8.1 Introduction

One of the main objects of interest in sub-Riemannian geometry are normal and abnormal
geodesics which are two different but not mutually disjoint families. Contrary to the Rie-
mannian geometry, the exponential map is not a local diffeomorphism. Nevertheless, the
singularities of the exponential map, as in Riemannian geometry, are closely related to the cut
locus and failure of the optimality for geodesics. The cut locus in sub-Riemannian geometry
is an object which is of great interest, but rather poorly studied. There exist very few results
concerning the global and local structure of it and most of them are restricted to low dimen-
sional manifolds. The work [74] studies the one dimensional Heisenberg group, and the results
easily can be extended to higher dimensions. A full description of the global structure of the
cut locus for the groups SU(2), SO(3), SL(2), and lens spaces is given in [24]. For the groups
SO(3), SL(2), and lens spaces the cut locus is a stratified set, whereas in SU(2) it is a maximal
circle S1 without one point. The reader will find similar structures to those that have been
obtained in the present chapter. The global structure of the exponential map and the cut locus
of the identity on the group SE(2) is completely presented in [83]. The nature of normal and
abnormal geodesics and complexity of the cut locus structure in sub-Riemannian geometry on
the example of the Martinet manifold is pointed out in the work [2]. More interesting results
can be found also in [13, 72, 73].

In the present chapter we consider the Stiefel manifold Vn,k as a principal U(k)-bundle
with the Grassmann manifold as a base space. We completely describe the cut locus from the
unit element for the case Vn,1. Technical difficulties do not allow to extend these results to the
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general case Vn,k. Nevertheless, we present a partial description of the cut locus, which is to
our knowledge an almost unique example for manifolds of higher dimensions.

The structure of the chapter is the following. In Section 8.2, we define the Stiefel and
Grassmann manifolds embedded in U(n), their metrics of constant bi-invariant type and their
normal geodesics based on the general Theorem 1.2.18 that can be found in [71]. In Section 8.3,
we describe the cut locus for the equivalence class of the unit element on the principal U(1)-
bundle structure on the Stiefel manifold Vn,1. Since the considered manifold is homogeneous it
gives the structure of the cut locus for any point. Section 8.4 is dedicated to the cut locus for
the general case of the Stiefel manifold Vn,k. In Section 8.5, we briefly review some particular
cases of the Stiefel manifold embedded in SO(n).

8.2 Stiefel and Grassmann manifolds embedded in

U(n)

We use the following notation in the present section. Let Cn denote the n-dimensional complex
vector space and Cm×n the set of (m × n)-matrices with complex entries. We want to apply
Theorem 1.2.18 to the submersion π : Vn,k(C

n) → Gn,k(C
n), where Vn,k(C

n) = Vn.k is the Stiefel
manifold and Gn,k(C

n) = Gn,k is the Grassmann manifold for n ∈ N and k ∈ {1, . . . , n}.
We start from the description of a general construction. Given a group G with an invariant

inner product on its Lie algebra g and two subgroups H,K ⊂ G, we form the quotient spaces
G/H and G/(H × K). The submersion G/H → G/(H × K) is a principal K-bundle, with
Riemannian metrics on G/H and G/(H×K) induced from the bi-invariant Riemannian metric
on G generated by an invariant inner product. The Riemannian metrics are induced by the
projections G → G/H and G → G/(H × K). Both manifolds in the submersion G/H →
G/(H × K) are homogeneous manifolds, where the group G acts transitively. The induced
Riemannian metric on G/H is also bi-invariant under the action of the group G. The geodesics
on G/H are the projections from G of one-parameter subgroups exp(tξ) with ξ orthogonal to
the Lie algebra h ⊂ g of H. We introduce the specific subgroups of U(n):

Uup
n (k) :=

{(
Uk 0
0 In−k

) ∣∣∣ Uk ∈ U(k)

}
⊂ U(n) and

U l
n(k) :=

{(
In−k 0
0 Uk

) ∣∣∣Uk ∈ U(k)

}
⊂ U(n).

Note that we use the notation Uup
n (k) and U l

n(k) with the lower subscript n in the current
section to emphasize that the elements of these subgroups are written as (n × n)-matrices
and the upper-script indicates that the subgroups U(k) are given by matrices in upper left
or lower right angle in the (n × n) matrices. The subgroups Uup

n (k) and U l
n(k) are different,

but isomorphic. Set G = U(n), H = U l
n(n − k), K = Uup

n (k). Then the quotient G/H =
U(n)/U l

n(n − k) is isomorphic to the Stiefel manifold Vn,k and G/(H × K) = U(n)/(U l
n(n −

k)× Uup
n (k)) is isomorphic to the Grassmann manifold Gn,k.
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8.2.1 Unitary group and bi-invariant metric

Before giving a detailed definition of the Stiefel and Grassmann manifolds, we remind that the
unitary group U(n) is a matrix Lie group, whose elements X satisfy the condition

U(n) = {X ∈ Cn×n| X̄TX = XX̄T = In}.
Here In is the unit (n × n)-matrix and X̄T is the complex conjugate and transposed of the
matrix X. The Lie algebra u(n) consists of all skew-Hermitian matrices:

u(n) = {X ∈ Cn×n| X = −X̄ T }.
We remind that a matrix X ∈ U(n) is of full rank, its columns and rows are orthonormal
with respect to the standard Hermitian product in Cn and that the main diagonal of the skew-
Hermitian matrices are purely imaginary. Moreover, the Hermitian product in Cn is invariant
under the action of U(n), that particularly means that the orthogonality is preserved under this
action. The Lie algebra u(n) can be endowed with the inner product (X ,Y)u(n) := − 1

n tr(XY),
X ,Y ∈ u(n). Considering U(n) as a real analytic manifold, we denote its points by q and the
metric at this point by 〈· , ·〉U(n)(q) or, if it is clear from the context, simply by gq. Then a
left-invariant metric on U(n) with respect to the group action of U(n) is given by

〈· , ·〉U(n)(q) : TqU(n)× TqU(n) ∼= qu(n)× qu(n) → R

(qX , qY) �→ − 1
n tr(XY)

q ∈ U(n), X ,Y ∈ u(n). We claim, that this metric is actually bi-invariant, which follows from
the observation that can be found, for instance, in [47] and [68]. We present some details.

Definition 8.2.1. Let g be the Lie algebra of a Lie group G endowed with an inner prod-
uct (· , ·)g. An inner product (· , ·)g is called invariant if it is invariant under the adjoint action
of G, i. e. (q−1ηq, q−1ξq)g = (η, ξ)g for all η, ξ ∈ g and q ∈ G.

Then it is well known, see for instance [62], that an invariant inner product (· , ·)g on a Lie
algebra g determines a bi-invariant metric 〈· , ·〉G on the group G via

〈η , ξ〉G(q) := (q−1η, q−1ξ)g = (ηq−1, ξq−1)g

for all η, ξ ∈ TqG.
We only need to check that the inner product (X ,Y)u(n) = − 1

n tr(XY) on u(n) is invariant.
Indeed,

(q−1X q, q−1Yq)u(n) = −n−1 tr(q−1X qq−1Yq) = −n−1 tr(q−1XYq)

= −n−1 tr(Yqq−1X ) = −n−1 tr(XY) = (X ,Y)u(n)

for all X ,Y ∈ u(n) and q ∈ U(n).

Remark 8.2.2. The left and right action of any subgroup Uup
n (k), U l

n(k), 1 ≤ k ≤ n on the
group U(n) and on the Lie algebra u(n) are defined as a matrix multiplication from the left
or from the right. The inner product (· , ·)g = − 1

n tr(· , ·) on the Lie algebra u(n) is invariant
under the adjoint action of Uup

n (k) or U l
n(k) and therefore the metric 〈· , ·〉U(n), defined by left

or right translations by the action of Uup
n (k) or U l

n(k), is bi-invariant under this action.
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8.2.2 Stiefel manifold and metric of constant bi-invariant type

The Stiefel manifold Vn,k is the set of all k-tuples (q1, . . . , qk) of vectors qi ∈ Cn, i ∈ {1, . . . , k},
which are orthonormal with respect to the standard Hermitian metric. This is a compact real
analytic manifold which can be equivalently defined as

Vn,k := {X ∈ Cn×k| X̄TX = Ik}.

The condition X̄TX = Ik is equivalent to the orthonormality of columns in X. These k
orthonormal columns can be considered as arbitrary k columns in a matrix X ∈ U(n). This
allows us to realize the Stiefel manifold as a quotient set of U(n) by the subgroup U l

n(n− k).
To do this we introduce the equivalence relation �1 on U(n) by

q �1 p ⇐⇒ q = p

(
Ik 0
0 Un−k

)
, q, p ∈ U(n), Un−k ∈ U(n− k).

This yields to the equivalence class for q ∈ U(n)

[q]�1 =

{
q

(
Ik 0
0 Un−k

) ∣∣∣Un−k ∈ U(n− k)

}
∈ U(n)/U l

n(n− k), q ∈ U(n).

The quotient U(n)/U l
n(n − k) is a real analytic manifold with the quotient topology and we

denote by π1 the natural projection from U(n) to the quotient U(n)/U l
n(n − k). We identify

the equivalence class [q]�1 with a point in the Stiefel manifold and write [q]Vn,k
∈ Vn,k instead

of [q]�1 to emphasize that the point belongs to the Stiefel manifold. The real dimension of
Vn,k is 2nk − k2.

The tangent space to the Stiefel manifold is the quotient of the tangent space to U(n) by the
tangent space of the equivalence classes. To obtain it we differentiate the curves c(t) ∈ [q]Vn,k

at t = 0 for a fixed q ∈ U(n) and receive the space R =
{
q

(
0 0
0 C
)
| C ∈ u(n−k)

}
. Intuitively,

movements in the direction R make no change in the quotient space. It follows that the tangent
space T[q]Vn,k

Vn,k to the Stiefel manifold at [q]Vn,k
∈ Vn,k is given by the quotient of the tangent

space TqU(n), which is isomorphic to qu(n), by R:

T[q]Vn,k
Vn,k =

{
[q]Vn,k

(
X1 −X̄2

T

X2 0

) ∣∣∣ X1 ∈ u(k),X2 ∈ C(n−k)×k

}
.

Similar results can be found in [44, 67].

Now we define a metric 〈· , ·〉Vn,k
on Vn,k by〈

[q]Vn,k

(
X1 −X̄2

T

X2 0

)
, [q]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

(
[q]Vn,k

)
:=

〈
q

(
X1 −X̄2

T

X2 0

)
, q

(
Y1 −Ȳ2

T

Y2 0

)〉
U(n)

(
q
)
=

((
X1 −X̄2

T

X2 0

)
,

(
Y1 −Ȳ2

T

Y2 0

))
u(n)

,

where q ∈ [q]Vn,k
is any representative of the equivalence class [q]Vn,k

. It is clear from this
definition that the metric 〈· , ·〉Vn,k

is independent of the choice of a representative.
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Since Uk[q]Vn,k
= [Ukq]Vn,k

and [q]Vn,k
Uk = [qUk]Vn,k

, Uk ∈ Uup
n (k), it follows directly from

the definition of the metric on T[q]Vn,k
Vn,k and the bi-invariance of the metric 〈· , ·〉U(n) with

respect to Uup
n (k) that〈

[Ukq]Vn,k

(
X1 −X̄2

T

X2 0

)
, [Ukq]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

=

((
X1 −X̄2

T

X2 0

)
,

(
Y1 −Ȳ2

T

Y2 0

))
u(n)

=

〈
[q]Vn,k

(
X1 −X̄2

T

X2 0

)
, [q]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

and 〈
[qUk]Vn,k

(
X1 −X̄2

T

X2 0

)
, [qUk]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

=

((
X1 −X̄2

T

X2 0

)
,

(
Y1 −Ȳ2

T

Y2 0

))
u(n)

=

〈
[q]Vn,k

(
X1 −X̄2

T

X2 0

)
, [q]Vn,k

(
Y1 −Ȳ2

T

Y2 0

)〉
Vn,k

,

where Uk is any element in Uup
n (k) ⊂ U(n). So the metric of 〈· , ·〉Vn,k

is invariant under the
action of Uup

n (k).

Now we show that the metric 〈· , ·〉Vn,k
on Vn,k is of constant bi-invariant type with respect

to the right group action of Uup
n (k), i. e. satisfies Definition 1.2.16. To prove it we recall

that the infinitesimal generator σ[q]Vn,k
: uupn (k) → T[q]Vn,k

Vn,k is given by σ[q]Vn,k
(ξ) = [q]Vn,k

ξ,

where uupn (k) is the Lie algebra of Uup
n (k). It follows that

I[q]Vn,k
(ξ, η) = 〈[q]Vn,k

ξ , [q]Vn,k
η〉Vn,k

= −n−1 tr(ξη), where [q]Vn,k
∈ Vn,k.

This implies that I[q]Vn,k
(ξ, η) is independent of [q]Vn,k

.

8.2.3 Grassmann manifold

The Grassmann manifold Gn,k is defined as a collection of all k-dimensional subspaces Λ of
Cn. Equivalently, an element Λ of Gn,k can be written as an (n × k)-matrix with columns
e1, . . . , ek, such that span(e1, . . . , ek) = Λ. We are interested in the representation of Gn,k

as a quotient of U(n) by some subgroup. As in the previous case of the Stiefel manifold, we
quotient U(n) by U l

n(n− k), but moreover, since the definition of Gn,k does not depend on the
choice of an orthonormal basis e1, . . . , ek for Λ, but only on its span, we also quotient U(n) by
the group Uup

n (k) that leaves span{e1, . . . , ek} invariant. Therefore, we define the equivalence
relation �2 in U(n) by

m1 �2 m2 ⇐⇒ m1 = m2

(
Uk 0
0 Un−k

)
, m1,m2 ∈ U(n),
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where Uk ∈ U(k), Un−k ∈ U(n− k). This leads to the equivalence class

[m]�2 =

{
m

(
Uk 0
0 Un−k

) ∣∣∣ Uk ∈ U(k), Un−k ∈ U(n− k)

}
⊂ U(n), m ∈ U(n),

which is isomorphic to U(k) × U(n − k) ∼= Uup
n (k) × U l

n(n − k). We identify Gn,k with the
quotient space U(n)/(Uup

n (k)×U l
n(n−k)) and use the notation [m]Gn,k

for [m]�2 in the present
Section 8.2.

Furthermore, we obtain that the tangent space to the equivalence class [m]Gn,k
is{

m

(X1 0
0 X4

) ∣∣∣ X1 ∈ u(k), X4 ∈ u(n− k)

}
, m ∈ U(n),

and it implies that the tangent space of Gn,k at the point [m]Gn,k
is given by

T[m]Gn,k
Gn,k =

{
[m]Gn,k

(
0 X2

−X̄2
T

0

) ∣∣∣ X2 ∈ Ck×(n−k)

}
.

It has real dimension 2k(n− k) that defines the real dimension of Gn,k, see also [44, 67].

We define a metric 〈· , ·〉Gn,k
on Gn,k by〈

[m]Gn,k

(
0 X2

−X̄2
T

0

)
, [m]Gn,k

(
0 Y2

−Ȳ2
T

0

)〉
Gn,k

(
[m]Gn,k

)
:=

〈
m

(
0 X2

−X̄2
T

0

)
,m

(
0 Y2

−Ȳ2
T

0

)〉
U(n)

(
m
)

=

((
0 X2

−X̄2
T

0

)
,

(
0 Y2

−Ȳ2
T

0

))
u(n)

,

where m ∈ U(n) is any representative of [m]Gn,k
.

8.2.4 Submersion π : Vn,k → Gn,k and sub-Riemannian geodesics.

Starting from now, we consider the matrices q and m as elements in U(n) and define the
submersion

π : Vn,k → Gn,k,

[q]Vn,k
�→ [m]Gn,k

.

The projection π sends the equivalence class [q]Vn,k
to the equivalence class [m]Gn,k

, where
m ∈ U(n) can be any matrix from the set{

q

(
Uk 0
0 Un−k

) ∣∣∣ Uk ∈ U(k), Un−k ∈ U(n− k)

}
.

Note that the latter set consists of all unitary matrices whose first k columns from the left
span the same space as the first left k columns of q. This implies that a fibre over a point
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[m]Gn,k
∈ Gn,k is given by

π−1([m]Gn,k
) =

{[
m

(
Uk 0
0 In−k

)]
Vn,k

∣∣∣ Uk ∈ U(k)

}

=

{
[m]Vn,k

(
Uk 0
0 In−k

) ∣∣∣ Uk ∈ U(k)

}
, m ∈ U(n),

which is homeomorphic to Uup
n (k) ∼= U(k).

The submersion π is also a principal Uup
n (k)-bundle, where the right group action is defined

by the multiplication from the right by an element from Uup
n (k). It remains to show that the

right action of Uup
n (k) is continuous, preserves the fibre and acts freely and transitively on the

fibre.
The multiplication of [q]Vn,k

∈ Vn,k from the right by an element U0
k ∈ U(k) is given by

q

(
Ik 0
0 Un−k

)(
U0
k 0
0 In−k

)
= q

(
U0
k 0
0 Un−k

)
, q ∈ U(n),

where Un−k is an arbitrary element of U(n−k) and U0
k is a fixed element of U(k). It follows that

the right multiplication is well defined and continuous. It can also be seen, that it preserves the
fibre π−1(π([q]Vn,k

)). By definition of the fibre it is clear that [q]Vn,k
Uup
n (k) = π−1(π([q]Vn,k

))
and this implies the transitivity of the Uup

n (k) action.

To show that Uup
n (k) acts freely, we assume that Ũ1 =

(
U1 0
0 In−k

)
∈ Uup

n (k),

Ũ2 =

(
U2 0
0 In−k

)
∈ Uup

n (k) and [q]Vn,k
Ũ1 = [q]Vn,k

Ũ2 with [q]Vn,k
=

(
q1 q2
q3 q4

)
, q1 ∈ Ck×k,

q2 ∈ Ck×(n−k), q3 ∈ C(n−k)×k and q4 ∈ C(n−k)×(n−k). Then we get the equations

q1U1 = q1U2 ⇐⇒ q1 = q1U2U
−1
1 = q1U1U

−1
2 ,

q3U1 = q3U2 ⇐⇒ q3 = q3U2U
−1
1 = q3U1U

−1
2 ,

which leads to U1 = U2 and so Ũ1 = Ũ2. Thus, we have shown that π : Vn,k → Gn,k is a
principal Uup

n (k)-bundle.
The differential of π defines the vertical and horizontal spaces. The differential d[q]Vn,k

π at

[q]Vn,k
acts as

[q]Vn,k

( X1 X2

−X̄2
T

0

)
�→ [m]Gn,k

(
0 X2

−X̄2
T

0

)
,

where m is defined as above for π. So, the kernel of d[q]Vn,k
π or the vertical space V[q]Vn,k

is

given by

V[q]Vn,k
=

{
[q]Vn,k

(X1 0
0 0

) ∣∣∣ X1 ∈ u(k)

}
, q ∈ U(n).

We choose the horizontal space of Vn,k by setting

H[q]Vn,k
=

{
[q]Vn,k

(
0 X2

−X̄2
T

0

) ∣∣∣ X2 ∈ Ck×(n−k)

}
, q ∈ U(n). (8.1)
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It is clear that dπ : TVn,k → TGn,k is a linear isometry if we restrict it to the horizontal space,
H[q]Vn,k

→ Tπ([q]Vn,k
)Gn,k for each [q]Vn,k

∈ Vn,k, therefore π is a Riemannian submersion.

The uupn (k)-valued connection one-form A[q]Vn,k
: T[q]Vn,k

Vn,k → uupn (k) is given by

A[q]Vn,k

(
[q]Vn,k

( X1 X2

−X̄2
T

0

))
:=

(X1 0
0 0

)
∈ uupn (k), X2 ∈ Ck×(n−k).

Now we can write precisely the normal sub-Riemannian geodesic on Vn,k starting from a
point [q]Vn,k

with initial velocity v ∈ T[q]Vn,k
Vn,k by using Theorem 1.2.18. It is given by

γv(t) = expR(tv) expUn(k)(−tA(v))

= π1

(
q expU(n)

(
t

( X1 X2

−X̄2
T

0

)))
expUn(k)

(
−t

(X1 0
0 0

))
, (8.2)

where q ∈ U(n), v = [q]Vn,k

( X1 X2

−X̄2
T

0

)
∈ T[q]Vn,k

Vn,k with

( X1 X2

−X̄2
T

0

)
∈ u(n).

We simplify notation and write q ∈ Vn,k, m ∈ Gn,k, U(k) for Uup
n (k), U(n−k) for U l

n(n−k),
and g for a Riemannian metric of constant bi-invariant type.

8.2.5 The group SO(n), Stiefel and Grassmann manifolds

We recall that the special orthogonal group SO(n) is the set of matrices

SO(n) := {X ∈ Rn×n| XTX = XXT = In , det(X) = 1}.

This is a compact Lie group with the Lie algebra so(n) given by

so(n) := {X ∈ Rn×n| X = −X T }.

Every entry on the diagonal of X ∈ so(n) is zero and the real dimension of the manifold is
1
2n(n− 1).

We define a bi-invariant Riemannian metric on SO(n) by

〈· , ·〉 : qso(n)× qso(n) → R

〈qX , qY〉 := − tr(XY)

with X ,Y ∈ so(n).
The Stiefel manifold Vn,k for k < n is the set of all k-tuples (q1, . . . , qk) of vectors qi ∈ Rn,

i ∈ {1, . . . , k}, which are orthonormal with respect to the standard Euclidean metric. This
compact manifold can be equivalently defined as

Vn,k := {X ∈ Rn×k| XTX = Ik}.

Another way to define the Stiefel manifold Vn,k is to introduce the equivalence relation �1 in
SO(n) by

q �1 p ⇐⇒ q = p

(
Ik 0
0 Sn−k

)
, q, p ∈ SO(n), Sn−k ∈ SO(n− k),
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such that the equivalence class [q]�1 of a point q ∈ SO(n) is given by

[q]�1 =

{
q

(
Ik 0
0 Sn−k

) ∣∣∣Sn−k ∈ SO(n− k)

}
∈ SO(n)/SOn(n− k).

The Stiefel manifold Vn,k can be identified with SO(n)/SOn(n−k). We use the notation [q]Vn,k

for [q]�1 in the present subsection.
The tangent space at a point [q]Vn,k

∈ Vn,k is given by

T[q]Vn,k
Vn,k =

{
[q]Vn,k

(X1 −X T
2

X2 0

) ∣∣∣ X1 ∈ so(k),X2 ∈ R(n−k)×k

}
.

The induced metric 〈· , ·〉Vn,k
on Vn,k is given by〈

[q]Vn,k

(X1 −X T
2

X2 0

)
, [q]Vn,k

(Y1 −YT
2

Y2 0

)〉
Vn,k

(
[q]Vn,k

)
:=

〈
q

(X1 −X T
2

X2 0

)
, q

(Y1 −YT
2

Y2 0

)〉
SO(n)

(
q
)

= − tr

((X1 −X T
2

X2 0

)(Y1 −YT
2

Y2 0

))
,

where q ∈ [q]Vn,k
is any representative of the equivalence class [q]Vn,k

.
The Grassmann manifold Gn,k is defined as a collection of all k-dimensional subspaces Λ

of Rn. Equivalently, an element Λ of Gn,k can be written as an (n × k)-matrix with columns
w1, . . . , wk ∈ Rn, such that span{w1, . . . , wk} = Λ, or, it can be defined as a quotient space in
SO(n) with respect to the following equivalence relation

m1 �2 m2 ⇐⇒ m1 = m2

(
Sk 0
0 Sn−k

)
, m1,m2 ∈ SO(n),

where Sk ∈ O(k), Sn−k ∈ O(n − k), such that det(Sk) = det(Sn−k) ∈ {−1, 1}. This leads to
the equivalence classes

[m]�2 =

{
m

(
Sk 0
0 Sn−k

) ∣∣∣ Sk ∈ O(k), Sn−k ∈ O(n− k) , det(Sk) = det(Sn−k)

}
,

m ∈ SO(n), which is isomorphic to O(k)× SO(n− k) ∼= On(k)× SOn(n− k), as

m

(
Sk 0
0 Sn−k

)
�→
(
Sk, Sn−k

(
det(Sk) 0

0 Idn−1

))
∈ O(k)× SO(n− k).

We identify Gn,k with the quotient space SO(n)/(On(k) × SOn(n− k)) and use the notation
[m]Gn,k

for [m]�2 in the current subsection and again in Section 8.5.
The tangent space of Gn,k at the point [m]Gn,k

is given by

T[m]Gn,k
Gn,k =

{
[m]Gn,k

(
0 X2

−X T
2 0

) ∣∣∣ X2 ∈ Rk×(n−k)

}
.
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It has real dimension k(n− k) that gives the real dimension of Gn,k.
The induced metric 〈· , ·〉Gn,k

on Gn,k is given by〈
[m]Gn,k

(
0 X2

−X T
2 0

)
, [m]Gn,k

(
0 Y2

−YT
2 0

)〉
Gn,k

(
[m]Gn,k

)
:=

〈
m

(
0 X2

−X T
2 0

)
,m

(
0 Y2

−YT
2 0

)〉
SO(n)

(
m
)

= − tr

((
0 X2

−X̄2
T

0

)(
0 Y2

−Ȳ2
T

0

))
,

where m ∈ SO(n) is any representative of [m]Gn,k
.

A normal sub-Riemannian geodesic on Vn,k starting from [q]Vn,k
is given by the formula

similar to (8.2) presented in Subsection 8.2.4.

γ(t) = expVn,k
(tv) expOn(k)(−tA(v))

= π1

[
q expSO(n)

(
t

( X1 X2

−X̄2
T

0

))]
expOn(k)

(
−t

(X1 0
0 0

))
, (8.3)

where q ∈ SO(n), v = [q]Vn,k

( X1 X2

−X̄2
T

0

)
∈ T[q]Vn,k

Vn,k with

( X1 X2

−X̄2
T

0

)
∈ so(n), π1 : SO(n) →

SO(n)/SOn(n−k) is the natural projection from SO(n) to the quotient space, and A : TVn,k →
son(k) is the son(k)-valued connection one form.

8.3 The cut-locus of Vn,1

In this section we study the cut locus of the complex Stiefel manifold Vn,1 considered as a
sub-Riemannian manifold by making use of the normal sub-Riemannian geodesics (8.2). We
recall that the definition of the cut locus is given by 1.2.8.

As a motivation for studying this problem we mention that Vn,1 is also an example of a
contact manifold, which was studied, for instance, in [15, 31, 50, 71]. To present the contact
structure, we note that the submersion U(1) → Vn,1 → Gn,1 can be written as U(1) → S2n−1 →
CPn−1. In [50], it is shown that for submersion S2n−1 → CPn−1 the vertical vector space is
spanned by

V (q) = −y0∂x0 + x0∂y0 − . . .− yn−1∂xn−1 + xn−1∂yn−1 , q ∈ S2n−1.

The horizontal distribution D on S2n−1 is defined as the orthogonal complement to span{V } in
TS2n−1 with respect to the Euclidean metric in R2n ∼= Cn. At the point (1, 0, . . . , 0) ∈ S2n−1

the vertical vector V = (i, 0, . . . , 0) coincides with the generator ξ =

(
i 0
0 0

)
of the Lie

algebra un(1) and the horizontal distributionD = V ⊥ coincides with the horizontal distribution

H =

{(
0 B

−B̄T 0

) ∣∣∣ B ∈ C1×(n−1)

}
, which is orthogonal to ξ with respect to the trace metric.

Since trace metric and Euclidean metric, vertical and horizontal distributions are invariant
under the action of U(n) we conclude that the sub-Riemannian geometries are essentially the
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same. It is shown in [50], that the distribution D coincides with the holomorphic tangent
space HS2n−1 of the sphere S2n−1 considered as an embedded CR-manifold and that it also
coincides with the contact distribution given by ker(ω) with respect to the contact form

ω = −y0dx0 + x0dy0 − . . .− yn−1dxn−1 + xn−1dyn−1.

Thus the contact and CR structures can be transferred to the Stiefel manifold Vn,1.

We note that we write Id for the equivalence class [In]Vn,k
∈ Vn,k. The main theorem is

stated as follows.

Theorem 8.3.1. The cut locus KId on Vn,1 is given by

Ln,1 :=

{[(
C 0
0 D

)]
Vn,1

∣∣∣ C ∈ U(1), D ∈ U(n− 1)

}
\ {Id} .

Proof. We only need to show the inclusion KId ⊂ Ln,1 since the converse inclusion Ln,1 ⊂ KId

will be proved in Theorem 8.4.4 for the more general case Vn,k.

First of all we claim that in the case of Vn,1 there are no abnormal minimizing geodesics
because the distribution is strongly bracket generating. Remind that a smooth distribution H
on a manifold is strongly bracket generating if for any non-zero section Z of H, the tangent
bundle of the manifold is generated by H and [Z ,H]. We actually mentioned at the beginning
of the section that Vn,1 can be considered as a contact manifold and therefore it is strongly
bracket generating, see for instance [71].

Thus all the possible minimizers are normal and they are given by Theorem 1.2.18. We
calculate the precise form of the geodesic γv, paying special attention to the components
γ1v and γ3v , where v is the initial vector of the Riemannian geodesic in formula (1.9), see
also Remark 1.2.19. The forthcoming calculations are well defined since the sub-Riemannian

Stiefel manifold is analytic. Let v =

(
ix B

−B̄T 0

)
, where x ∈ R and B ∈ C1×(n−1). Recall

that exp(tv) =
∑∞

n=0
tn

n!v
n. First we will calculate the two upper parts of the n-th power

of v, vn := v(n) =

(
v1(n) v2(n)
v3(n) v4(n)

)
, namely v1(n) and v2(n). From the recursion formula

vn = vn−1v it follows that

v1(n) = v1(n− 1)ix− v2(n− 1)B̄T = v1(n− 1)ix− v1(n− 2)BB̄T ,

as v2(n) = v1(n− 1)B. Furthermore, as vn = vvn−1 we deduce v3(n) = −B̄T v1(n− 1). Having
the initial values v1(0) = 1, v1(1) = ix, and v3(0) = 0 we obtain that

v1(n) =
2−n−1

i
√
x2 + 4BB̄T

(
ix((i
√
x2 + 4BB̄T + ix)n − (ix− i

√
x2 + 4BB̄T )n

)
+ i
√
x2 + 4BB̄T

(
(ix− i
√
x2 + 4BB̄T )n + (i

√
x2 + 4BB̄T + ix)n)

)
,
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which implies for exp(tv) :=

(
exp(tv)1 exp(tv)2
exp(tv)3 exp(tv)4

)
that

exp(tv)1 =
∞∑
n=0

tn

n!
v1(n) =

1

2i
√
x2 + 4BB̄T

(
e−

it
2
(
√

x2+4BB̄T−x

)
×
(
i
√
x2 + 4BB̄T

(
eit

√
x2+4BB̄T

+ 1
)
+ ix
(
eit

√
x2+4BB̄T − 1)

)
=

1

2
√
x2 + 4BB̄T

(
e−

it
2
(
√

x2+4BB̄T−x

)
×
(√

x2 + 4BB̄T
(
eit

√
x2+4BB̄T

+ 1
)
+ x
(
eit

√
x2+4BB̄T − 1)

)
.

The first component γ1v(t) of the normal geodesic γv(t) =

(
γ1v(t) γ2v(t)
γ3v(t) γ4v(t)

)
is written as

γ1v(t) = expU(n)(tv)1 expU(1)(−tix) =
1

2
√
x2 + 4BB̄T

e−
it
2
(
√

x2+4BB̄T+x)

×
(√

x2 + 4BB̄T (eit
√

x2+4BB̄T
+ 1
)
+ x(eit

√
x2+4BB̄T − 1)

)
. (8.4)

The second important component of the geodesic γv is

exp(tv)3 =
∞∑
n=0

tn

n!
v3(n) =

∞∑
n=1

tn

n!
v3(n)

=
∞∑
n=0

tn+1

(n+ 1)!
v3(n+ 1) =

∞∑
n=0

tn+1

(n+ 1)!

(− B̄T v1(n)
)

= −B̄T 1

i
√
x2 + 4BB̄T

e−
ti
2
(
√

x2+4BB̄T−x)

(
eti

√
x2+4BB̄T − 1

)
,

γ3v(t) = expU(n)(tv)3 expU(1)(−tix)

= −B̄T 1

i
√
x2 + 4BB̄T

e−
ti
2
(
√

x2+4BB̄T+x)

(
eti

√
x2+4BB̄T − 1

)
. (8.5)

It follows that γ3v(t) = 0 first at the time t0 =
2π√

x2+4BB̄T
. That implies that the geodesic γv(t)

reaches the set Ln,1 first at the time t0. Since Ln,1 ⊂ KId, γv(t) reaches the cut locus at the
time t0, it follows that the geodesic γv(t) loses its optimality at the latest t0.

Having exact formulas for the coordinates of the geodesics we proceed to the core of the
proof. Suppose q ∈ Vn,1 \ Ln,1 but q ∈ KId, and there exist two different minimizing normal

geodesics γv1 and γv2 with γv1(0) = γv2(0) = Id, γv1(T
∗) = γv2(T

∗) = q and v1 =

(
ix1 B
−B̄T 0

)
,

v2 =

(
ix2 E
−ĒT 0

)
and xj ∈ R, j = 1, 2 and B,E ∈ C1×(n−1).

Claim. Under the above assumptions, we claim that BB̄T = EĒT . Since both geodesics
are minimizing, they have equal length at time T ∗. Then Proposition 8.4.3 implies

T ∗
√

2n−1 tr(BB̄T ) = l(γv1 , T
∗) = l(γv2 , T

∗) = T ∗
√
2n−1 tr(EĒT ).
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It proves the claim since B and E are complex vectors and BB̄T = tr(BB̄T ) = tr(EĒT ) =
EĒT .

The consideration of the following two cases will finish the proof.
Case 1. Suppose x1 = x2 and BB̄T = EĒT . Since q /∈ Ln,1, we know that γ3v1(T

∗) =
γ3v2(T

∗) �= 0. Then γ3v1(T
∗) = γ3v2(T

∗) ⇐⇒

− B̄T 1

i
√
x21 + 4BB̄T

e−
iT∗
2

(
√

x2
1+4BB̄T+x1)(eiT

∗√x2
1+4BB̄T − 1)

= − ĒT 1

i
√

x22 + 4EĒT
e−

iT∗
2

(
√

x2
2+4EĒT+x2)(eiT

∗√x2
2+4EĒT − 1).

Hence B̄T = ĒT and so B = E, which leads to the equality v1 = v2. Thus γv1(t) = γv2(t)
for all t according to formulas (8.4) and (8.5) of geodesics. This contradicts to the assumption
that the geodesics are different.

Case 2. Let now x1 �= x2 and BB̄T = EĒT . Since q /∈ Ln,1, we know that γ3v1(T
∗) =

γ3v2(T
∗) �= 0. The assumption q ∈ KId implies γ3v1(T

∗) = γ3v2(T
∗), which yields ‖γ3v1(T ∗)‖ =

‖γ3v2(T ∗)‖ �= 0. Thus

‖B‖√
x21 + 4BB̄T

∣∣∣eT ∗√x2
1+4BB̄T − 1

∣∣∣ = ‖E‖√
x22 + 4EĒT

∣∣∣eT ∗√x2
2+4EĒT − 1

∣∣∣,
and

sin(T
∗
2

√
x21 + 4BB̄T )

T ∗
2

√
x21 + 4BB̄T

=
sin(T

∗
2

√
x22 + 4BB̄T )

T ∗
2

√
x22 + 4BB̄T

. (8.6)

Note that 0 < T ∗ ≤ min
{

2π√
x2
1+4BB̄T

, 2π√
x2
2+4BB̄T

}
by assumption q ∈ KId and therefore

sin(T
∗
2

√
x2j + 4BB̄T ) > 0 for j = 1, 2. Since the function sinx

x is injective on the interval

(0, π], we obtain x1 = x2 or x1 = −x2. In the first case we already get a contradiction. In the
case of the assumption x1 = −x2 we turn our attention to the first component of the geodesics.
Then the equality

γ1v1(T
∗) = γ1v2(T

∗), (8.7)

implies

tan(T
∗
2

√
x21 + 4BB̄T )√

x21 + 4BB̄T
=

tan(T
∗x1
2 )

x1
. (8.8)

Since 0 < T ∗x1
2 < T ∗

2

√
x21 + 4BB̄T < π equality (8.8) is not true, which is equivalent to say

that equality (8.7) is not true.
Figure 8.1 illustrates that λ1 < λ2 implies tanλ1

λ1
�= tanλ2

λ2
. Similar arguments can be found

in [24, p. 1871].

8.4 The cut locus of Vn,k

In the present section we show that some of the properties of the cut locus of Vn,1 are pre-
served in the case Vn,k. In general, we are not able to describe the total cut locus, since the
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Figure 8.1: tan(x)
x

on the interval [0 , π].

exact formulas of the geodesics are very complicated. Additionally, we have the problem that
the distribution is, in general, not strongly bracket generating, which follows from Proposi-
tion 1.2.22. The conditions of Proposition 1.2.22 are obviously not always fulfilled for Vn,k,
where m = 2nk − k2 and l = 2nk − 2k2 and therefore the distribution on an arbitrary Vn,k is
not necessarily strongly bracket generating. But it is always bracket generating of step 2, as
stated in the following proposition.

8.4.1 Partial description of the cut locus of Vn,k

Proposition 8.4.1. The distribution H on Vn,k is bracket generating of step 2.

Proof. First we note that the commutator [H ,H] is given by[(
0 B

−B̄T 0

)
,

(
0 C

−C̄T 0

)]
=

(−BC̄T + CB̄T 0
0 −C̄TB + B̄TC

)
.

It is sufficient to show that for every upper triangular (k×k)-matrix Dlm, m > l with an entry
dlm �= 0 on the intersection of l-th row and m-th column and all other entries vanish we can
find B,C ∈ Ck×(n−k) such that Dlm = −BC̄T . For instance, if we choose

B =
(
bαβ
)

by bαβ =

{
dlm for α = l, β = min{m,n− k},
0 otherwise,

and

−CT = (cαβ) by cαβ =

{
1 for α = min{m,n− k}, β = m,

0 otherwise,

then we deduce that Dlm = −BC̄T .
We also need to construct diagonal (k × k)-matrices Dj with i ∈ C on the intersection of

j-th row and j-th column and all other entries vanish and show that there are B,C ∈ Ck×(n−k)

such that Dj = −BC̄T . In this case we choose

B = (bαβ) by bαβ =

{
i for α = j, β = min{j, n− k},
0 otherwise,

and
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−C̄T = (cαβ) by cαβ =

{
1 for α = min{j, n− k}, β = j,

0 otherwise.

Then we obtain that Dj = −BC̄T . It implies that H is bracket generating of step 2.

Before we proceed further we note recent results about the existence of normal and ab-
normal geodesics on sub-Riemannian manifolds with a bracket generating distribution of step
2.

Proposition 8.4.2. [69, Theorem 4] On a sub-Riemannian manifold (Q,H, gH) with bracket
generating distribution H of step 2, any length minimizing curve is C∞-smooth, or in other
words there are no strictly abnormal minimizing geodesics in this case.

Thus, if a minimizing geodesic is abnormal on the sub-Riemannian Stiefel manifold, then
its projection to the manifold coincides with the projection of some normal geodesic by Propo-
sition 8.4.2, and we can use the precise formula (1.9) for all minimizing geodesics.

Proposition 8.4.3. Suppose γv(t) is a sub-Riemannian geodesic, which connects the identity

Id with a point q ∈ Vn,k, q �= Id, at the time T > 0, and v =

(
A B

−B̄T 0

)
. The length of γv is

given by l(γv, T ) = T
√

2
n tr(BB̄T ).

Proof. First we calculate the velocity vector γ̇v(t) at γv(t). The velocity vector will have the
form γ̇v(t) = γv(t)wH(t), where wH(t) ∈ u(n) for each t and wH(t) has to be of the form(

0 X (t)

− ¯X (t)
T

0

)
. We omit the subscript U(n) or U(k) from exp(·), since it is clear which one

we use from the context. By the chain rule we get that

γ̇v(t) = dp(t)π1

[(
exp

{
t

(
A B

−B̄T 0

)})(
A B

−B̄T 0

)(
exp

{
t

(−A 0
0 0

)})
+

(
exp

{
t

(
A B

−B̄T 0

)})(
exp

{
t

(−A 0
0 0

)})(−A 0
0 0

)]
,

where p(t) := exp

(
t

(
A B

−B̄T 0

))
exp

(
t

(−A 0
0 0

))
. We note that(

A B
−B̄T 0

)
exp

{
t

(−A 0
0 0

)}
=

(
A exp(−tA) B

−B̄T exp(−tA) 0

)
= exp

{
t

(−A 0
0 0

)}(
exp(tA)A exp(−tA) exp(tA)B
−B̄T exp(−tA) 0

)
= exp

{
t

(−A 0
0 0

)}(
A exp(tA)B

−B̄T exp(−tA) 0

)
.

Thus

γ̇v(t) = dp(t)π1

[
exp

{
t

(
A B

−B̄T 0

)}
exp

{
t

(−A 0
0 0

)}
×
((

A exp(tA)B
−B̄T exp(−tA) 0

)
+

(−A 0
0 0

))]
= γv(t)

(
0 exp(tA)B

−B̄T exp(−tA) 0

)
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and

wH =

(
0 exp(tA)B

−B̄T exp(−tA) 0

)
.

It follows that

g(γ̇v(t), γ̇v(t)) = −n−1 tr(w2
H) = −n−1 tr

((− exp(tA)BB̄T exp(−tA) 0
0 −B̄TB

))
= −n−1

(
− tr
(
exp(tA)BB̄T exp(−tA)

)− tr(B̄TB)
)
= 2n−1 tr(BB̄T ).

In the last equation we used tr(XY ) = tr(Y X) and tr(−X) = − tr(X).

We conclude that the length of γv does not depend on A, but depends on the final time T
and the trace of the matrix BB̄T .

Theorem 8.4.4. The set

Ln,k =

{[(
C 0
0 D

)]
Vn,k

∣∣∣ C ∈ U(k), D ∈ U(n− k)} \ Id
}

belongs to the cut locus KId on Vn,k.

Proof. Suppose the point [g]Vn,k
=

[(
C 0
0 D

)]
Vn,k

∈ Ln,k. Then there exists a minimizing

geodesic γv of the form (1.9) with v =

(
A B

−B̄T 0

)
∈ u(n) connecting Id with [g]Vn,k

= γv(T )

at some time T by Propositions 1.2.7 and 8.4.2 . We write

γv(t) = π1

(
exp

{
t

(
A B

−B̄T 0

)}
exp

{
t

(−A 0
0 0

)})
=

[(
γ1v(t) γ2v(t)
γ3v(t) γ4v(t)

)]
Vn,k

and see how γjv, j = 1, 2, 3, 4, depend on A and B. We calculate

exp

(
t

(
A B

−B̄T 0

))
=

(
v1(t) v2(t)
v3(t) v4(t)

)
. Using the notation

(
A B

−B̄T 0

)n
:=

(
v1(n) v2(n)
v3(n) v4(n)

)
,

we receive that v1(n) = v1(n − 1)A − v1(n − 2)BB̄T , n ≥ 2, for initial values v1(0) = Id and
v1(1) = A. This implies that v1 as a function of t depends on A and BB̄T . Furthermore, we
obtain the formulas v2(n) = v1(n− 1)B, v3(n) = −B̄T v1(n− 1) and v4(n) = −B̄T v1(n− 2)B.

Now we claim that the geodesic γv∗ with v∗ :=

(
A −B
B̄T 0

)
is also minimizing from Id to

[g]Vn,k
with γv∗(T ) = [g]Vn,k

. Indeed, since (−B)(−B̄T ) = BB̄T and (−B̄T )(−B) = B̄TB the
length of both geodesics coincides. It remains to show that γv∗(T ) = [g]Vn,k

. Observe, that the

value v1(t) depends on A, BB̄T and t, and therefore γ1v∗(T ) = γ1v(T ). Finally γ2v(T ) = γ3v(T ) =
0 implies γ2v∗(T ) = −γ2v(T ) = 0 = γ2v(T ) and γ3v∗(T ) = −γ3v(T ) = 0 = γ3v(T ). We conclude
that γv∗(T ) = γv(T ). Furthermore, it follows from γ3v∗(t) = −γ3v(t) �= 0 for t ∈ (0, T ), that
γv∗(t) �= γv(t) for t ∈ (0, t), i.e. γv∗ �= γv. We conclude that Ln,k ⊂ KId.

Corollary 8.4.5. There are infinitely many minimizing geodesics connecting Id with any point
q ∈ Ln,k.
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Proof. The geodesic γv∗ in the proof of Theorem 8.4.4 can be replaced by γv̂ with

v̂ =

(
A −BU

(BU)T 0

)
for all U ∈ U(n−k). This is also a minimizing geodesic from Id to [g]Vn,k

, with γv̂(T ) = [g]Vn,k
,

as the length just depends on the final time T and BB̄T .

8.4.2 Uniqueness results for minimizing geodesics on V2k,k

Since the description of the cut locus for general Stiefel manifolds is very complicated we focus
on the Stiefel manifolds Vn,k with n = 2k and present some additional information in this case.
The main result of this section is stated in Theorem 8.4.8.

Lemma 8.4.6. The points

[(
0 D
C 0

)]
G2k,k

∈ G2k,k are reached by Riemannian geodesics

starting from [In]G2k,k
only if the initial velocity vector v has the form v =

(
0 B

−B̄T 0

)
,

B ∈ U(k). If we assume that tr(BB̄T ) = 1, then the condition B ∈ U(k) is changed to√
kB ∈ U(k).

Proof. Geodesics of the Grassmann manifold G2k,k are given by

γv(t) =

[
exp

(
t

(
0 B

−B̄T 0

))]
G2k,k

=

(
γ1v(t) γ2v(t)
γ3v(t) γ4v(t)

)
, (8.9)

where

γ1v(t) = cos(t
√

BB̄T ), γ3v(t) = −B̄T sin(t
√

BB̄T )(
√

BB̄T )−1.

We are looking for all geodesics for which there exists T0 > 0, such that γ1v(T0) = 0 and
γ3v(T0) = C. As C ∈ U(k) and particularly is invertible it follows from the form of γ3v(T0) that
B is invertible. Therefore, the matrix BB̄T is positive definite and diagonalizable: BB̄T =
PDP−1, where D = diag(d1, . . . , dk) is a diagonal matrix with di > 0 for i ∈ {1, . . . , k}. This
implies that

cos(t
√

BB̄T ) = P cos(t
√
D)P−1

and so γ1v(T0) = cos(T0

√
BB̄T ) = 0 if and only if cos(T0

√
d1) = . . . = cos(T0

√
dk) = 0.

If B ∈ U(k), then, using the normalization tr(BB̄T ) = 1, we get
√
kB ∈ U(k). Thus

BB̄T = 1
k Idk = diag( 1k , . . . ,

1
k ), and T0 := min{t > 0| cos(t

√
BB̄T ) = 0} = π

√
k

2 .
Now we claim that no other minimizing geodesics exist except for those with initial velocity

defined by matrices from U(k). Let B be an arbitrary invertible matrix, not necessarily
from U(k). If we again assume the normalization tr(BB̄T ) = 1, then we obtain that there
exist at least two eigenvalues 1

λ1
and 1

λ2
of BB̄T with 0 < 1

λ1
< 1

k < 1
λ2
. It follows that if

cos(T0

√
BB̄T ) = 0, then cos( T0√

λ1
) = 0. We conclude that T0 ≥ π

√
λ1
2 > π

√
k

2 . Thus the geodesic

with initial velocity defined by the matrix B and reaching the point

[(
0 D
C 0

)]
G2k,k

at time

T0 is not minimizing.
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Corollary 8.4.7. Let p =

[(
0 D
C 0

)]
V2k,k

∈ V2k,k with C,D ∈ U(k) and v =

(
0 B

−B̄T 0

)
with

√
kB ∈ U(k), tr(BB̄T ) = 1. Then sub-Riemannian geodesics γv(t) in V2k,k reaching the

points p at time T0 =
π
√
k

2 are minimizing. Furthermore, if B1 �= B2, then γ3v1(T0) �= γ3v2(T0).

Proof. First we note that geodesics inG2k,k defined by v satisfying the assumption of Lemma 8.4.6

are minimizing geodesics from [Id]G2k,k
to

[(
0 D
C 0

)]
G2k,k

by Lemma 8.4.6. The time of reach-

ing the points

[(
0 D
C 0

)]
G2k,k

is T0 =
π
√
k

2 . Furthermore,

γ3v(T0) = −B̄T diag

(
sin(

T0√
k
), . . . , sin(

T0√
k
)

)√
k = −

√
kB̄T ∈ U(k). (8.10)

The unique horizontal lift of (8.9) is a minimizing geodesic between fibers passing through
[Id]V2k,k

and p and moreover they are geodesics since they are horizontal lifts of geodesics. Fix
a point p0 at the fiber passing through [Id]V2k,k

. Then the unique horizontal lift γv(t)V2k,k
=

[exp(tv)]V2k,k
of (8.9) starting from p0 always reaches different points at the fiber

π−1

([(
0 D
C 0

)]
G2k,k

)

at the time T0 since γ3v(T0) depends on B̄T but not on BB̄T as shows (8.10).

Theorem 8.4.8. For any point s =

[(
0 D
C 0

)]
V2k,k

with C,D ∈ U(k) there is a unique

minimizing geodesic connecting Id with s.

Proof. Let us assume that a point s =

[(
0 D
C 0

)]
V2k,k

belongs to the cut locus from [Id]V2k,k
.

Let

γv∗(t) =

[
exp

(
t

(
A B

−B̄T 0

))]
V2k,k

exp

(
−t

(
A 0
0 0

))

be a minimizing normal geodesic from [Id]V2k,k
to s such that γ(T0) = s. Here v∗ =

(
A B

−B̄T 0

)
with A �= 0. Then its projection γ̃ to G2k,k is a minimizing geodesic from [Id]G2k,k

to[(
0 D
C 0

)]
G2k,k

. This implies that γ̃ has to coincide with a geodesic in G2k,k having form (8.9)

for some B1 satisfying
√
kB1 ∈ U(k). It is also clear that γv∗(t) is a horizontal lift of γ̃ starting

at the point [Id]V2k,k
. On the other hand the horizontal lift of a geodesic having form (8.9)

is equal to

[
exp

(
t

(
0 B1

−B̄T
1 0

))]
V2k,k

which is different from γv∗(t). This is a contradiction

to the fact that horizontal lift starting from the same point is unique. We conclude that the

points s =

[(
0 D
C 0

)]
V2k,k

can not belong to the cut locus and there is a unique minimizing

geodesic connecting [Id]V2k,k
with s.
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8.5 Stiefel and Grassmann manifold as embedded

into SO(n)

In this section we assume that the Stiefel and Grassmann manifolds are embedded into SO(n).
We use similar notation for the Stiefel and the Grassmann manifolds as in the previous sections.

We would like to emphasize that we do not input different sub-Riemannian structures on
the same Stiefel manifold in this section. We consider different Stiefel manifolds. One of them
arise from U(n) factorized by a subgroup of U(n) and others from SO(n), factorized by a
subgroup of SO(n). For example all manifolds Vn,1, related to U(n) group possess the CR
structure, but Vn,1 related to SO(n) does not possess any sub-Riemannian structure.

8.5.1 The cut locus of Vn,1, n ∈ N

In this case dim(Vn,1) = dim(Gn,1) = n− 1 and all sub-Riemannian geodesics are Riemannian
ones. For the reason of completeness we present the cut locus in this case, because it is strongly
related to the cut locus of Vn,1 embedded in U(n).

Two parts γ1v(t), γ
3
v(t) of the geodesic γv(t) =

[(
γ1(t) γ2(t)
γ3(t) γ4(t)

)]
Vn,1

for an initial velocity

v =

(
0 B

−BT 0

)
are given by

γ1v(t) =
1

4
√
BBT

e−it
√
BBT

2
√
BBT (e2it

√
BBT

+ 1)

=
1

2
e−it

√
BBT

(e2it
√
BBT

+ 1) = cos(t
√
BBT ),

γ3v(t) = −BT 1

i2
√
BBT

e−it
√
BBT

(e2it
√
BBT − 1)

=
−BT

√
BBT

sin(t
√
BBT ).

These formulas are a particular case of formulas (8.4) and (8.5) for the choice of the initial

velocity v =

(
0 B

−BT 0

)
∈
{(

xi E
−ĒT 0

) ∣∣∣ E ∈ C1×(n−1), x ∈ R

}
. Thus we can use arguments

of Theorem 8.3.1 and state that the cut locus of the Stiefel manifold Vn,1 embedded in SO(n)
consists of exactly one point:{[(

C 0
0 D

)]
Vn,k

∣∣∣ C ∈ O(1), D ∈ O(n− 1) :

(
C 0
0 D

)
∈ SO(n)

}
\
{
[Id]Vn,k

}
={[(±1 0

0 D

)]
Vn,k

∣∣∣ D ∈ O(n− 1) :

(±1 0
0 D

)
∈ SO(n)

}
\
{
[Id]Vn,k

}
={[(−1 0

0 D

)]
Vn,k

∣∣∣ D ∈ O(n− 1) :

(−1 0
0 D

)
∈ SO(n)

}
.
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8.5.2 Partial description of the cut locus of V2k,k

Inspired by the example of V4,2 embedded in SO(4), which can be found in the Appendix, we

will exclude the points

[(
0 D
C 0

)]
V2k,k

from the cut locus.

Proposition 8.5.1. All the points of the form

[(
0 D
C 0

)]
V2k,k

with C,D ∈ O(k) are not in

the normal cut locus of V2k,k.

For reasons of simplicity for the proof of this proposition, we will prove the following lemma.

Lemma 8.5.2. The point

[(
0 D
C 0

)]
G2k,k

in Gr2k,k is reached only by geodesics starting

from

[(
Idk 0
0 Idk

)]
G2k,k

with initial value v =

(
0 B

−BT 0

)
with B ∈ O(k). If we assume

tr(BBT ) = 1, then this condition will change to
√
kB ∈ O(k).

Proof. Geodesics of Gr2k,k are given by

γv(t) =

[
exp

(
t

(
0 B

−BT 0

))]
Gr2k,k

,

where

γ1v(t) = cos(t
√
BBT ),

γ3v(t) = −BT sin(t
√
BBT )(

√
BBT )−1.

We are looking for all geodesics for which there exists a T > 0, s.t. γ3v(T ) = C. As C ∈ O(k)
and so invertible it follows that γ3v(T ) have to be invertible, which directly implies that B
have to be invertible. This implies that the matrix BBT is positive definite. This together
with the fact that BBT is symmetric implies that BBT is diagonalizable with only positive
eigenvalues, i.e. BBT = PDP−1 where D = diag(d1, . . . , dk) is a diagonal matrix with di > 0
for i ∈ {1, . . . , k}. This implies that

cos(t
√
BBT ) = P cos(t

√
D)P−1

and so cos(T0

√
BBT ) = 0 if and only if cos(T0

√
D) = diag(cos(T0

√
d1), . . . , cos(T0

√
dk)) = 0

if and only if cos(T0

√
d1) = . . . = cos(T0

√
dk) = 0.

Let assume without loss of generality tr(BBT ) = 1 and
√
kB ∈ O(k). This implies that

BBT is a diagonal matrix of the form diag( 1k , . . . ,
1
k ). Which implies that cos(t

√
BBT ) =

diag(cos( t√
k
), . . . , cos( t√

k
)). This implies that min{t > 0| cos(t

√
BBT ) = 0} is T0 = π

√
k

2 .

Furthermore, for v defined by
√
kB ∈ O(k) it follows that

γ3v(t) = −BT diag(sin(
t√
k
), . . . , sin(

t√
k
))
√
kIdk,

which leads to γ3v(T0) = −√
kBT ∈ O(k). This implies that the unique horizontal lift

γv(t)V2k,k
= [exp(tv)]V2k,k

of γv(t) always reaches different points at T0.
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Now we want to show that no other minimizing geodesic exist. Let’s have a look at all invert-
ible B with

√
kB �∈ O(k) with tr(BBT ) = 1. It follows that there exist at least two eigenvalues

1
λ1

and 1
λ2

of BBT with λ1, λ2 > 0 with 1
λ1

< 1
k < 1

λ2
. It follows that if cos(T

√
BBT ) = 0,

then cos( T√
λ1
) = 0 which implies that T0 ≥ π

√
λ1
2 > π

√
k

2 . This implies that B can not define a

minimizing geodesic for the point

[(
0 D
C 0

)]
G2k,k

.

Corollary 8.5.3. The geodesics γv(t) with v =

(
0 B

−BT 0

)
,
√
kB ∈ O(k) and tr(BBT ) = 1

in V2k,k are reaching the points

[(
0 D
C 0

)]
V2k,k

with C,D ∈ O(k) at the length minimizing

time T0 =
π
√
k

2 . Furthermore, if B1 �= B2, then γ3v1(T0) �= γ3v2(T0).

Now we know that all geodesics in Gr2k,k defined by B with
√
kB ∈ O(k) and tr(BBT ) = 1

are minimizing geodesics for the point

[(
0 D
C 0

)]
G2k,k

starting from

[(
Idk 0
0 Idk

)]
G2k,k

.

They reach the point

[(
0 D
C 0

)]
G2k,k

at T0 = π
√
k

2 . We also know that the horizontal lifts

of geodesics starting at the point

[(
Idk 0
0 Idk

)]
V2k,k

are minimizing between the fibers of[(
Idk 0
0 Idk

)]
V2k,k

and

[(
0 D
C 0

)]
V2k,k

. As we can reach every point in the fiber

[(
0 D
C 0

)]
V2k,k

at time T0 by the horizontal lifts, we know that all the horizontal lifts are geodesics for dif-

ferent points in the fiber

[(
0 D
C 0

)]
V2k,k

. Furthermore, we know that our horizontal lifts are

minimizing between the points as they are minimizing between the fibers. Now we are able to
proof the proposition.

Proof. Let’s assume there exists a matrix

(
A B

−BT 0

)
with A �= 0 which defines a minimiz-

ing normal horizontal geodesic γ∗(t) =

[
exp

(
t

(
A B

−BT 0

))]
V2k,k

exp

(
−t

(
A 0
0 0

))
from[(

Idk 0
0 Idk

)]
V2k,k

to

[(
0 D
C 0

)]
V2k,k

at time T0. Then we know the length of it’s projection

in Gr2k,k is the same, s.t. it’s projection is a minimizing geodesic for

[(
0 D
C 0

)]
G2k,k

. This im-

plies that it have to coincide with a geodesic inGr2k,k which is defined byB1 with
√
kB1 ∈ O(k).

It is clear that γ∗(t) is a horizontal lift for this geodesic at the point

[(
Idk 0
0 Idk

)]
V2k,k

. But

we already know a horizontal lift of this geodesic, which is

[
exp

(
t

(
0 B1

−BT
1 0

))]
V2k,k

which

is clearly different of γ∗(t). This is a contradiction to the fact that a horizontal lift is unique.

We conclude that the points of the form

[(
0 D
C 0

)]
V2k,k

can not be in the cut locus.
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8.6 Appendix

In this Appendix we collect several particular examples of the cut locus in the complex and in
the real case.

8.6.1 The cut locus of V2,1 embedded in U(2) and its equivalence
to SU(2)

In this subsection we show that the results obtained in Section 8.3 recover the results obtained
in [24]. In particular, for the three dimensional manifold V2,1 we get the following simple
formulas. The tangent spaces at Id are given by

TIdV2,1 =

{
Id

(
ix b
−b̄ 0

) ∣∣∣ x ∈ R, b ∈ C

}
, TIdG2,1 =

{
Id

(
0 b
−b̄ 0

) ∣∣∣ b ∈ C

}
.

We obtain the following corollary from Theorem 8.3.1.

Corollary 8.6.1. The circle given by

L2,1 :=

{[(
eci 0
0 edi

)]
V2,1

∣∣∣ c, d ∈ R

}
\ {Id}

is the cut locus KId of V2,1.

An element q of V2,1 is an equivalence class which can be written as

[q]V2,1 =

{(
α exp(λi)β̄
β − exp(λi)ᾱ

) ∣∣∣λ ∈ (0, 2π)

}
.

Since

(
α exp(λi)β̄
β − exp(λi)ᾱ

)
is a unitary matrix, the norm ‖α‖2 + ‖β‖2 of the vector

(
α
β

)
is equal

one. Thus, points q ∈ V2,1 can be parametrized by the vector

(
α
β

)
. Recall the definition of

the group SU(2) =

{(
α β
−β̄ ᾱ

) ∣∣∣‖α‖2 + ‖β‖2 = 1

}
. So, it is clear that every element of SU(2)

can be represented by the vector

(
α
β

)
. It follows that the both manifolds are diffeomorphic

under the mapping f : V2,1 → SU(2), [g]V2,1 �→
(

α β
−β̄ ᾱ

)
. The metric in both cases is left

invariant, arising from an inner product on the Lie algebras making the basis of the Lie algebras
orthogonal. The horizontal distribution is orthogonal to the vertical one.

The set L2,1 as a subset of V2,1 depends only on c ∈ (0, 2π), since the part depending on d
is quotient out. This implies that the cut locus of SU(2), given by the circle {eci} without the
point 1 ∈ SU(2) [24], has a bijective relation under the map f to the cut locus of V2,1, given
in Corollary 8.6.1.
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8.6.2 The cut locus of V3,2 embedded in SO(3)

Since V3,2
∼= SO(3)/SO(1) and SO(1) is a normal subgroup of SO(3), one can identify the

sub-Riemannian structure of V3,2 with the sub-Riemannian structure on the group SO(3), that
was studied in [24]. In particular all equivalences classes contain exactly one matrix⎡⎣⎛⎝a11 a12 a13

a21 a22 a23
a31 a32 a33

⎞⎠⎤⎦
Vn,k

=

⎧⎨⎩
⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠(I2 0
0 S1

) ∣∣∣S1 ∈ S(1)

⎫⎬⎭
=

⎧⎨⎩
⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠⎫⎬⎭ ,

such that we can identify V3,2 with SO(3). Furthermore, the induced horizontal and vertical
space coincide with the horizontal and vertical space of the k ⊕ p problem on SO(3) stated in
[24].

8.6.3 Partial description of the cut locus of V4,2 embedded in
SO(4)

The normal geodesic γ(t) = (γij)i,j∈{1,... ,4} in this case is again given by the formula

γ(t) = [exp(tv)]V4,2 expSO(2)(−tA),

where v :=

(
A B

−BT 0

)
∈ so(4), A =

(
0 a
−a 0

)
∈ so(2), B =

(
b c
d e

)
∈ R2×2, a, b, c, d, e ∈ R.

We note that the dimension of V4,2 is 5, the dimension of the horizontal distribution is 4

and of the vertical distribution is 1. We define x := a2 + b2 + c2 + d2 + e2 = tr(vvT )
2 , r :=√

x2 − 4(cd− be)2 ≥ 0, which is well defined as

x2 − 4(cd− be)2 = (a2 + c2 + b2 − (d2 + e2))2 + 4(bd+ ce)2 + 4a2(d2 + e2) ≥ 0.

We further note that x ≥ r ≥ 0, s.t. it follows that x − r ≥ 0. The definition of x and r will
be of interest for the calculations of the eigenvalues and eigenvectors of v. The characteristic
polynomial of v is given by

pv(λ) = λ4 + xλ2 + det(B)2.

It follows that the eigenvalues are given by

λ1 = −i

√
x+ r

2
, λ2 = i

√
x+ r

2
, λ3 = −i

√
x− r

2
, λ4 = i

√
x− r

2
.

As v is a skew-symmetric matrix, hence normal, which implies that it is diagonizable by its
eigenvalues in the diagonal matrix, we can calculate the exponential by the help of decompo-
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sition:

γv(t) = O

⎛⎜⎜⎜⎜⎜⎜⎝
exp(−ti

√
x+r
2 ) 0 0 0

0 exp(ti
√

x+r
2 ) 0 0

0 0 exp(−ti
√

x−r
2 ) 0

0 0 0 exp(ti
√

x−r
2 )

⎞⎟⎟⎟⎟⎟⎟⎠OT ×

×

⎛⎜⎜⎝
cos(at) − sin(at) 0 0
sin(at) cos(at) 0 0

0 0 1 0
0 0 0 1

⎞⎟⎟⎠ ,

where O is an orthogonal matrix.
Without loss of generality we assume that tr(BBT ) = b2 + c2 + d2 + e2 = 1 and remind the
notation

BBT =

(
b2 + c2 bd+ ce
bd+ ce d2 + e2

)
.

Then the long calculations lead to the formulas for geodesics. For x2 − 4(cd − be)2 =: r2 �= 0
the geodesic is given by

γ11(t) =
1

2r
[cos(at)[cos

(
t

√
x+ r√
2

)
(x+ r − 2(d2 + e2))

− cos

(
t

√
x− r√
2

)
(x− r − 2(d2 + e2))] + 2 sin(at)[(bd+ ce)(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
) + a(

√
x+ r√
2

sin

(
t

√
x+ r√
2

)
−

√
x− r√
2

sin

(
t

√
x− r√
2

)
)]],

γ12(t) =
1

2r
[sin(at)[cos

(
t

√
x− r√
2

)
(x− r − 2(d2 + e2))

− cos

(
t

√
x+ r√
2

)
(x+ r − 2(d2 + e2))] + 2 cos(at)[(bd+ ce)(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
) + a(

√
x+ r√
2

sin

(
t

√
x+ r√
2

)
−

√
x− r√
2

sin

(
t

√
x− r√
2

)
)]],
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γ21(t) =
1

2r
[sin(at)[− cos

(
t

√
x− r√
2

)
(x− r − 2(b2 + c2))

+ cos

(
t

√
x+ r√
2

)
(x+ r − 2(b2 + c2))] + 2 cos(at)[(bd+ ce)(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
) + a(−

√
x+ r√
2

sin

(
t

√
x+ r√
2

)
+

√
x− r√
2

sin

(
t

√
x− r√
2

)
)]],

γ22(t) =
1

2r
[cos(at)[− cos

(
t

√
x− r√
2

)
(x− r − 2(b2 + c2))

+ cos

(
t

√
x+ r√
2

)
(x+ r − 2(b2 + c2))]− 2 sin(at)[(bd+ ce)(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
) + a(−

√
x+ r√
2

sin

(
t

√
x+ r√
2

)
+

√
x− r√
2

sin

(
t

√
x− r√
2

)
)]].

We note that γ11, γ12, γ21, γ22 depend on t, BBT and a.

γ31(t) =
1√
2r

[cos(at)[− sin

(
t

√
x+ r√
2

)
b(x+ r) + 2e(cd− be)√

x+ r

+ sin

(
t

√
x− r√
2

)
b(x− r) + 2e(cd− be)√

x− r
+

√
2ad(cos

(
t

√
x− r√
2

)
− cos

(
t

√
x+ r√
2

)
)]

+ sin(at)[− sin

(
t

√
x+ r√
2

)
d(x+ r) + 2c(be− cd)√

x+ r

+ sin

(
t

√
x− r√
2

)
d(x− r) + 2c(be− cd)√

x− r
+

√
2ab(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
)]],

γ32(t) =
1√
2r

[cos(at)[− sin

(
t

√
x+ r√
2

)
d(x+ r) + 2c(be− cd)√

x+ r

+ sin

(
t

√
x− r√
2

)
d(x− r) + 2c(be− cd)√

x− r
+

√
2ab(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
)]

+ sin(at)[sin

(
t

√
x+ r√
2

)
b(x+ r) + 2e(cd− be)√

x+ r

− sin

(
t

√
x− r√
2

)
b(x− r) + 2e(cd− be)√

x− r
+

√
2ad(− cos

(
t

√
x− r√
2

)
+ cos

(
t

√
x+ r√
2

)
)]].

We note that γ31, γ32 depend on t, BBT , b, d and a, as

b(x+ r) + 2e(cd− be) = b(a2 + b2 + c2 − (d2 + e2)) + 2d(ce+ bd).
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γ41(t) =
1√
2r

[cos(at)[− sin

(
t

√
x+ r√
2

)
c(x+ r) + 2d(be− cd)√

x+ r

+ sin

(
t

√
x− r√
2

)
c(x− r) + 2d(be− cd)√

x− r
+

√
2ae(cos

(
t

√
x− r√
2

)
− cos

(
t

√
x+ r√
2

)
)]

+ sin(at)[− sin

(
t

√
x+ r√
2

)
e(x+ r) + 2b(cd− be)√

x+ r

+ sin

(
t

√
x− r√
2

)
e(x− r) + 2b(cd− be)√

x− r
+

√
2ac(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
)]],

γ42(t) =
1√
2r

[cos(at)[− sin

(
t

√
x+ r√
2

)
e(x+ r) + 2b(cd− be)√

x+ r

+ sin

(
t

√
x− r√
2

)
e(x− r) + 2b(cd− be)√

x− r
+

√
2ac(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
)]

+ sin(at)[sin

(
t

√
x+ r√
2

)
c(x+ r) + 2d(be− cd)√

x+ r

− sin

(
t

√
x− r√
2

)
c(x− r) + 2d(be− cd)√

x− r
+

√
2ae(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
)]].

We note that γ41, γ42 depend on t, BBT , c, e and a.
Furthermore, we note that r just depends on BBT and a as

x2 − 4(cd− be)2 = (a2 + c2 + b2 − (d2 + e2))2 + 4(bd+ ce)2 + 4a2(d2 + e2).

Now to the case that x2 − 4(cd − be)2 = r2 = 0. We first note that in this case a have to be
equal to 0. Furthermore, we get, together with the assumption that b2 + c2 + d2 + e2 = 1, just
the following four cases for − 1√

2
≤ b ≤ 1√

2
:

(I) e = b c = ±
√

1− 2b2

2
= −d,

(II) e = −b c = ±
√

1− 2b2

2
= d.

From this it follows the normal geodesic for e = b and c = ±
√

1−2b2

2 = −d:

γI(t) =

⎛⎜⎜⎜⎜⎜⎝
cos
(

t√
2

)
0

√
2b sin
(

t√
2

)
±√

1− 2b2 sin
(

t√
2

)
0 cos

(
t√
2

)
∓√

1− 2b2 sin
(

t√
2

) √
2b sin
(

t√
2

)
−√

2b sin
(

t√
2

)
±√

1− 2b2 sin
(

t√
2

)
cos
(

t√
2

)
0

∓√
1− 2b2 sin

(
t√
2

)
−√

2b sin
(

t√
2

)
0 cos

(
t√
2

)

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎝ cos
(

t√
2

)
Id2 sin

(
t√
2

)( √
2b ±√

1− 2b2

∓√
1− 2b2

√
2b

)
sin
(

t√
2

)( −√
2b ±√

1− 2b2

∓√
1− 2b2 −√

2b

)
cos
(

t√
2

)
Id2

⎞⎟⎟⎠ .
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Furthermore, it follows the normal geodesic for e = −b and c = ±
√

1−2b2

2 = d:

γII(t) =

⎛⎜⎜⎜⎜⎜⎝
cos
(

t√
2

)
0

√
2b sin
(

t√
2

)
±√

1− 2b2 sin
(

t√
2

)
0 cos

(
t√
2

)
±√

1− 2b2 sin
(

t√
2

)
−√

2b sin
(

t√
2

)
−√

2b sin
(

t√
2

)
∓√

1− 2b2 sin
(

t√
2

)
cos
(

t√
2

)
0

∓√
1− 2b2 sin

(
t√
2

) √
2b sin
(

t√
2

)
0 cos

(
t√
2

)

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎝ cos
(

t√
2

)
Id2 sin

(
t√
2

)( √
2b ±√

1− 2b2

∓√
1− 2b2 −√

2b

)
sin
(

t√
2

)( −√
2b ∓√

1− 2b2

∓√
1− 2b2

√
2b

)
cos
(

t√
2

)
Id2

⎞⎟⎟⎠ .

It is clear, that these two geodesics just can reach the same points if

sin

(
t√
2

)( −√
2b ±√

1− 2b2

∓√
1− 2b2 −√

2b

)
= sin

(
t√
2

)( −√
2b ∓√

1− 2b2

∓√
1− 2b2

√
2b

)
= 0.

It follows that we just have to check if points which are reached by this two geodesics can be
reached at the same time of geodesics with r �= 0.

Proposition 8.6.2. The points of the form

[(
0 Y
X 0

)]
V4,2

where X,Y ∈ O(2), s.t.

(
0 Y
X 0

)
∈

SO(4) are not in the normal cut locus.

Proof. First we are interested in the geodesics starting from the identity and reaching the points

of the form

[(
0 Y
X 0

)]
V4,2

where X,Y ∈ O(2). We will call such kind of points matrices with

”upper zeros”. We already noticed that the geodesics with the restriction that r = 0 are equal
if and only if

sin

(
t√
2

)( −√
2b ±√

1− 2b2

∓√
1− 2b2 −√

2b

)
= sin

(
t√
2

)( −√
2b ∓√

1− 2b2

∓√
1− 2b2

√
2b

)
= 0.

It follows as γ3v(t) �= 0 that we just have to check if there exists a minimizing geodesic with
r �= 0 and one with r = 0 .

For geodesics with r = 0, we reach a point of the form

[(
0 Y
X 0

)]
V4,2

for T0 = π√
2
. If

we are now able to show that for r �= 0, T0, the minimal time where the geodesic reaches[(
0 Y
X 0

)]
V4,2

, is strictly bigger than π√
2
, then we are done.

First we note that the geodesic γ(t) = exp

(
t

(
A B

−BT 0

))
exp

(
−t

(
A 0
0 0

))
has ”upper

zeros” if and only if the matrix exp

(
t

(
A B

−BT 0

))
has ”upper zeros”, as the exponential of

A is invertible, i.e. γ11(T0) = γ12(T0) = γ21(T0) = γ22(T0) = 0. This implies the following
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system of equations:

cos
(
T0

√
x+r√
2

)
2r

(x+ r − 2(d2 + e2))−
cos
(
T0

√
x−r√
2

)
2r

(x− r − 2(d2 + e2)) = 0, (8.11)

1

2r
((bd+ ce)(cos

(
T0

√
x+ r√
2

)
− cos

(
T0

√
x− r√
2

)
) + (8.12)

a(

√
x+ r√
2

sin

(
T0

√
x+ r√
2

)
−

√
x− r√
2

sin

(
T0

√
x− r√
2

)
)]) = 0,

−
cos
(
T0

√
x−r√
2

)
2r

(x− r − 2(b2 + c2)) +
cos
(
T0

√
x+r√
2

)
2r

(x+ r − 2(b2 + c2)) = 0, (8.13)

1

2r
((bd+ ce)(cos

(
T0

√
x+ r√
2

)
− cos

(
T0

√
x− r√
2

)
) + (8.14)

a(−
√
x+ r√
2

sin

(
T0

√
x+ r√
2

)
+

√
x− r√
2

sin

(
T0

√
x− r√
2

)
)]) = 0.

As equation (8.12) = (8.14) and (8.11) = (8.13) are equal, it follows that

a(−
√
x+ r√
2

sin

(
t

√
x+ r√
2

)
+

√
x− r√
2

sin

(
t

√
x− r√
2

)
)] = 0,

(b2 + c2 − (d2 + e2))(cos

(
t

√
x+ r

2

)
− cos

(
t

√
x− r

2

)
)) = 0,

(bd+ ce)(cos

(
t

√
x+ r√
2

)
− cos

(
t

√
x− r√
2

)
= 0.

If we assume that cos
(
T0

√
x+r√
2

)
= cos
(
T0

√
x−r√
2

)
and put it into equation (8.11) we will get

that cos
(
T0

√
x+r√
2

)
= cos
(
T0

√
x−r√
2

)
= 0 and as

√
x− r < 1 it follows that T0 > π√

2
, which

tells us that it can not be a minimizing geodesic for our points (as the minimizing time for the
minimizing geodesics was π√

2
).

So we can assume that bd+ ce = 0 and b2 + c2 = d2 + e2 ⇔ b2 + c2 = 1
2 , which gives us

e = b c = ±
√

1− 2b2

2
= −d,

e = −b c = ±
√

1− 2b2

2
= d.

for − 1√
2
≤ b ≤ 1√

2
.

So now we just have to look at the two remaining cases with a = 0 or

−
√
x+ r√
2

sin

(
t

√
x+ r√
2

)
+

√
x− r√
2

sin

(
t

√
x− r√
2

)
= 0.
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If a = 0, then also r = 0. This would be a contradiction, as we assumed r �= 0, s.t. there is

just the case left with a �= 0 and −
√
x+r√
2

sin
(
t
√
x+r√
2

)
+

√
x−r√
2

sin
(
t
√
x−r√
2

)
= 0. It is enough to

check the conditions for one case as for our restrictions on b, c, d, e the matrix product BBT is
always equal, s.t. the first upper matrix is the same. So without limit of generality we observe
the case b = e and c = −d and get the following conditions:

(a2 +
√
a2(2 + a2 + 2b2)) cos

⎛⎝t
√

1 + a2 + b2 +
√

a2(2 + a2 + 2b2)
√
2

⎞⎠
+ (−a2 +

√
a2(2 + a2 + 2b2)) cos

⎛⎝t
√

1 + a2 + b2 −√a2(2 + a2 + 2b2)
√
2

⎞⎠ = 0,

−
√
1 + a2 + b2 +

√
a2(2 + a2 + 2b2) sin

⎛⎝t
√

1 + a2 + b2 +
√
a2(2 + a2 + 2b2)

√
2

⎞⎠
+

√
1 + a2 + b2 −

√
a2(2 + a2 + 2b2) sin

(
t
1 + a2 + b2 −√a2(2 + a2 + 2b2)√

2

)
= 0.

This can be generally formulated as

α1 sin(x)− β1 sin(y) = 0 ⇔ sin(x) =
β1
α1

sin(y),

α2 cos(x) + β2 cos(y) = 0 ⇔ cos(x) = −β2
α2

cos(y),

for fixed x, y ∈ R and fixed 0 < βi < αi, i ∈ {1, 2}. But this is not possible as

1 = cos2(x) + sin2(x) =
β2
2

α2
2

cos2(y) +
β2
1

α2
1

sin2(y)

< sin2(y) + cos2(y) = 1

for 0 < βi

αi
< 1, i ∈ {1, 2}.

This implies that all points of the form

[(
0 Y
X 0

)]
V4,2

can not be in the cut locus.



170 Sub-Riemannian geometry of Stiefel manifolds



Bibliography

[1] Agrachev, A. A,; Barilari, D.; Boscain, U., Introduction to Riemannian and
sub-Riemannian geometry. http://webusers.imj-prg.fr/ davide.barilari/ABB-SRnotes-
290514.pdf.

[2] Agrachev, A. A,; Bonnard, B.; Chyba, M.; Kupka, I., Sub-Riemannian sphere in
Martinet flat case. ESAIM Control, Optim. Calc. Var. 2 (1997), 377-448.

[3] Agrachev, A. A.; Gauthier, J. P., Sub-Riemannian metrics and isoperimetric prob-
lems in the contact case. (Russian) Geometric control theory (Russian) (Moscow, 1998),
5-48, Itogi Nauki Tekh. Ser. Sovrem. Mat. Prilozh. Temat. Obz., 64, Vseross. Inst. Nauchn.
i Tekhn. Inform. (VINITI), Moscow, 1999.

[4] Agrachev, A. A.; Sachkov, Y. L., Control theory from the geometric viewpoint. Ency-
clopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-
Verlag, Berlin, 2004. pp. 412.

[5] Agrachev, A. A.; Sarychev, A. V., Abnormal sub-Riemannian geodesics: Morse
index and rigidity. Ann. Inst. H. Poincaré Anal. Non Linéaire. 13 (1996), 635-690.
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