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Abstract We study a family of problems where the goal is to make a graph Eule-
rian, i.e., connected and with all the vertices having even degrees, by a minimum
number of deletions. We completely classify the parameterized complexity of vari-
ous versions: undirected or directed graphs, vertex or edge deletions, with or with-
out the requirement of connectivity, etc. The collection of results shows an interest-
ing contrast: while the node-deletion variants remain intractable, i.e., W[1]-hard for
all the studied cases, edge-deletion problems are either fixed-parameter tractable or
polynomial-time solvable. Of particular interest is a randomized FPT algorithm for
making an undirected graph Eulerian by deleting the minimum number of edges,
based on a novel application of the color coding technique. For versions that re-
main NP-complete but fixed-parameter tractable we consider also possibilities of
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polynomial kernelization; unfortunately, we prove that this is not possible unless
NP ⊆ coNP/poly.

Keywords Fixed-parameter tractability · Kernelization · Eulerian graph · Deletion
distance

1 Introduction

An undirected graph is Eulerian if it is connected and every vertex has even degree;
a directed graph is Eulerian if it is strongly connected and every vertex is balanced
(i.e., the indegree equals the outdegree). The class of Eulerian graphs is a well-studied
and classical notion in the graph theory. We investigate several algorithmic problems
related to the question of how to make a graph Eulerian. We focus on deletion prob-
lems, where either vertices or edges can be deleted from the input graph to make it
Eulerian, using as few deletions as possible. What makes these problems interesting
is the interplay of two different type of constraints: each vertex locally prescribes
the constraint that it has to be even/balanced, while retaining connectivity is a global
requirement. For comparison, we also investigate the variant of the problem where
we have only the local constraints (i.e., the task is to delete the minimum number of
edges or nodes to make every vertex even/balanced). As many of the studied prob-
lems turn out to be NP-hard, we apply the framework of parameterized complexity to
get a more detailed insight.

The investigation of these problems was initiated by Cai and Yang [9] who pre-
sented parameterized results for some cases. We complement their work by answering
several open questions raised in [9]. Another motivation for our work comes from an
observation of Cechlárová and Schlotter [10]: computing the deficiency for a certain
type of housing market is equivalent to finding the minimum number of arcs whose
deletion makes every strongly connected component of the graph balanced. While we
are not able to determine the parameterized complexity of this problem, our results
shed light on the complexity of several related ones.

Related Work Subgraph problems have been widely studied in the literature. To
name a few examples, Lewis and Yannakakis [21] investigated the complexity of
the node-deletion problem for hereditary properties, Alon et al. [2] examined edge-
deletion problems for monotone properties, while Natanzon et al. [28] and Burzyn
et al. [6] studied the classical complexity of edge modification problems for various
graph classes.

Subgraph problems have also been looked at from the parameterized perspective.
The most extensively studied variants are the node-deletion problems for hereditary
properties: the results by Cai [8], and Khot and Raman [18], yield a complete char-
acterization of the fixed-parameter tractable cases. Apart from hereditary properties,
FPT algorithms are known for node-deletion problems where the task is to obtain
a regular graph [26], a chordal graph [23], a grid [12], etc. Parameterized hardness
results have been obtained in numerous cases as well [22, 24]. Recently, researchers
focused on the issue of kernelization, yielding both positive [4, 17, 29] and negative
results [20].



Algorithmica (2014) 68:41–61 43

There is much less known about directed graphs. Raman and Sikdar [32] inves-
tigated the parameterized complexity of hereditary node-deletion problems in di-
graphs, while Raman and Saurabh [31] examined feedback set problems in tour-
naments. The FPT algorithm by Chen et al. for finding a feedback vertex set in a
directed graph [11] resolved a long-standing open question.

Work related to the class of Eulerian graphs mainly concentrated on the extension
problem, where the task is to add a minimum number of edges or arcs in order to
make the given graph Eulerian. FPT algorithms were given for various settings by
Dorn et al. [13] and by Sorge [33]. Eulerian deletion problems were studied by Cai
and Yang [9].

Our Contribution To settle the classical complexity of the examined problems, first
we observe (Theorems 1 and 2) that classical results imply polynomial-time algo-
rithms for the edge-deletion problems where the task is to make the given graph
even/balanced: in the undirected case, this is essentially a T -join problem, while the
directed case can be reduced to a flow problem. These observations answer a question
raised by Cai and Yang [9], who observed that the analogous node-deletion problems
are NP-hard. Moreover, the aforementioned algorithms are used as subroutines in our
FPT results.

By contrast to the polynomial time algorithms, we show that the seemingly similar
edge- (or arc-) deletion problems where we aim for an Eulerian graph are NP-hard,
even in the extremely restricted case when the input is a cubic planar graph and the
number of deletions can be arbitrary (Theorem 3). We investigate both the undirected
and the directed cases of Eulerian edge-deletion problem thoroughly from the pa-
rameterized point of view: we present a fixed-parameter tractable algorithm for both
cases where the parameter is the number of deletions allowed (Theorem 4), and prove
that these problems do not admit a polynomial-size kernel unless NP ⊆ coNP/poly
(Theorem 5), which is known to imply a collapse of the polynomial hierarchy to its
third level [7, 34]. The FPT results use a novel argument that might be of independent
interest. Intuitively, we need to find a solution S to a T -join problem and a witness
(disjoint from S) certifying that the graph remains connected after the removal of S.
Using a random coloring, we partition the edges into two types: each edge can con-
tribute either to the solution or to the witness of the solution. This partition ensures
that the solution and the witness are disjoint. While the use of random colorings is
a standard technique for finding a solution consisting of disjoint objects [3], we use
this technique to separate the solution from its proof of feasibility.

The undirected node-deletion problems, where the task is to obtain an Eulerian or
an even graph, were already handled by Cai and Yang [9] who proved their W[1]-
hardness. We complemented these results by showing W[1]-hardness for the directed
cases as well in Theorem 7. Additionally, we also focus on a slight modification
of the node-deletion problems where certain forbidden vertices are not allowed to
be deleted. Theorem 8 shows that each of the four node-deletion problems remains
W[1]-hard, even if we are only allowed to delete vertices of degree at most 4. This
contrasts the easy FPT algorithm applicable if the parameter is not only the number
of deletions but also the maximum degree of the graph (Theorem 11).

Table 1 shows a summary of our main results.
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Table 1 Summary of the main results. Parameterized results only appear when the corresponding problem
is NP-hard; the parameter considered is the number of deletions allowed

Undirected
even

Undirected
Eulerian

Directed
balanced

Directed
Eulerian

Vertex
deletion:

W[1]-hard
[9]

W[1]-hard
[9]

W[1]-hard
Theorem 7

W[1]-hard
Theorem 7

Edge
deletion:

P
Theorem 1

FPT, no poly kernel
Theorems 3, 4, 5

P
Theorem 2

FPT, no poly kernel
Theorems 3, 4, 5

Organization of the Paper Section 2 describes our notation, and provides basic
concepts of parameterized complexity. Section 3 discusses polynomial-time solvable
edge-deletion problems. We deal with the NP-hard Eulerian edge-deletion problems
in Sect. 4, first covering the issue of NP-completeness, and then fixed-parameter
tractability and kernelization. Node-deletion problems are discussed in Sect. 5. We
summarize our results and draw conclusions in Sect. 6.

2 Notation and Preliminaries

Given a graph G, let V (G) denote its vertex set and E(G) denote its edge set (or,
in the directed case, its arc set). The degree of a vertex v in an undirected graph G

is denoted by dG(v); we say that v is even, if dG(v) is even. For a vertex v in a
directed graph G, we denote by din

G (v) and dout
G (v) its indegree and its outdegree,

respectively. We say that v is balanced, if din
G (v) = dout

G (v). We define the degree
of v in G (where G is directed), as dG(v) = din

G (v) + dout
G (v); whenever we discuss

the maximum degree of a directed graph, we refer to this notion. If G is clear from
the context, we might omit the subscript. A directed graph is weakly connected if the
underlying undirected graph is connected. A directed graph is strongly connected if
for every two vertices v,w there is a path from v to w. An even (balanced) graph is
an undirected (directed) graph where each vertex is even (balanced). An undirected
Eulerian graph is a connected even graph, and a directed Eulerian graph is a strongly
connected balanced graph.1 A straightforward degree counting argument shows that
a balanced directed graph is weakly connected if and only if it is strongly connected.

Given a path P in a (directed or undirected) graph, the internal vertices of P are
the vertices lying on P except for the two end-vertices. If dG(v) = 2 holds (meaning
din
G (v) = dout

G (v) = 1 in the directed case) for each internal vertex v of P , then we
say that the path P is an unattached path. In a directed graph, a pair of twin arcs is
two arcs (a, b) and (b, a).

Given a set X of vertices, edges, or arcs in a graph G, let G \ X denote the graph
obtained by deleting X from G. When X has only one element x, we might also write
G \ x instead of G \ {x}.

1Strictly speaking, the usual definition of being Eulerian requires only that the graph is connected after
removing the isolated vertices. However, we feel that requiring connectivity instead leads to more natural
and fundamental problems.
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Parameterized Complexity In the parameterized complexity setting, an instance
comes with an integer parameter k—formally, a parameterized problem Q is a subset
of Σ∗ × N for some finite alphabet Σ . We say that the problem is fixed-parameter
tractable (FPT) if there exists an algorithm solving any instance (x, k) in time
f (k)poly(|x|) for some (usually exponential) computable function f . It is known
that a problem is FPT if and only if it is kernelizable: a kernelization algorithm for
a problem Q takes an instance (x, k) and in time polynomial in |x| + k produces
an equivalent instance (x′, k′) (i.e., (x, k) ∈ Q if and only if (x′, k′) ∈ Q) such that
|x′| + k′ ≤ g(k) for some computable function g. The function g is the size of the
kernel, and if it is polynomial, we say that Q admits a polynomial kernel.

3 Polynomial-Time Solvable Cases

First, we give a simple polynomial time algorithm for the following problem:

UNDIRECTED EVEN EDGE DELETION Parameter: k

Input: An undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges in G such that G \ S is
even?

It turns out that this problem is strongly connected to the concept of a T -join. If we
define T to be the set of vertices having odd degree, then UNDIRECTED EVEN EDGE

DELETION is equivalent with the following classical problem of finding a T -join of
minimum size:

MINIMUM T-JOIN

Input: A graph G = (V ,E) and a set T ⊆ V of even size.
Question: Find a minimum T -join, i.e., a set S ⊆ E of minimum size such that
T is exactly the set of vertices of odd degree in the graph H = (V ,S).

Since MINIMUM T-JOIN can be solved in cubic time by the algorithm of Edmonds
and Johnson [14], we obtain the following consequence:

Theorem 1 UNDIRECTED EVEN EDGE DELETION can be solved in O(n3) time for
an n-vertex graph.

Now we turn our attention to the directed version of the problem:

DIRECTED BALANCED EDGE DELETION Parameter: k

Input: A directed graph G and an integer k.
Question: Does there exist a set S of at most k arcs in G such that G \ S is
balanced?

This problem can be formulated as a minimum cost flow problem with unit costs as
follows. We create a digraph G′ by taking G and adding two vertices s, t (source and
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sink). Each edge of E(G) has unit capacity and unit cost. For each vertex v ∈ V (G)

such that din(v) < dout (v) we add to G′ an arc (s, v) of capacity dout (v) − din(v)

and cost zero. Similarly, for each vertex v ∈ V (G) such that din(v) > dout (v) we add
to G′ an arc (v, t) of capacity din(v) − dout (v) and cost zero. Let f ∗ denote the total
capacity of the added arcs (s, v). In a solvable instance we know that f ∗ ≤ k.

It is straightforward to see that a flow of size f ∗ and cost at most k corresponds
to a set S of at most k arcs for which G \ S is balanced, and vice versa. Firstly
assume that we are given a flow of size f ∗ and cost at most k. As the capacities are
integral, the flow is integral as well. Let S be the set of arcs of G through which a
unit flow flows. Clearly, |S| ≤ k. As the flow has size f ∗, for every vertex v with
din(v) < dout (v) there is exactly dout (v) − din(v) flow incoming via the arc from s,
and for every vertex v with din(v) > dout (v) there is exactly din(v) − dout (v) flow
leaving via the arc to t . Hence, every vertex v with din(v) < dout (v) has exactly
dout (v)− din(v) more outgoing arcs from S than incoming arcs from S, every vertex
v with din(v) > dout (v) has exactly din(v)−dout (v) more incoming arcs from S than
outgoing arcs from S, while for all the vertices with din(v) = dout (v) the numbers of
incoming and outgoing arcs from S are equal. This implies that if we remove all the
arcs of S from the graph, we end with a balanced graph. On the other hand, if S is
such that G \ S is balanced, then setting unit flow on S, zero flow on the other arcs
of G, and maximum flow on arcs adjacent to the source and the sink yields a correct
flow between s and t of size f ∗ and cost |S|.

Therefore, in order to find a solution of minimum size it suffices to find a minimum
cost flow of size f ∗. As f ∗ ≤ k and each arc has unit cost, this can be done in
O(nm logn log log k) time [1], where n = |V (G)| and m = |E(G)|. Note that the
above argument also handles an annotated case, where we require that S ⊆ Ea for a
set Ea ⊆ E given in the input, as we can put zero capacities on E \ Ea . This yields
the following:

Theorem 2 DIRECTED BALANCED EDGE DELETION can be solved in time com-
plexity O(nm logn log logk) for an input graph with n vertices and m edges, even in
an annotated case where some edges are forbidden to delete.

4 Eulerian Edge-Deletion Problems

In this section we examine the following problems:

UNDIRECTED EULERIAN EDGE DELETION Parameter: k

Input: A connected undirected graph G and an integer k.
Question: Does there exist a set S of at most k edges of G such that G \ S is
Eulerian, i.e., even and connected?

DIRECTED EULERIAN EDGE DELETION Parameter: k

Input: A strongly connected directed graph G and an integer k.
Question: Does there exist a set S of at most k arcs of G such that G \ S is
Eulerian, i.e., balanced and strongly connected?
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The undirected problem can be easily seen to be NP-hard by observing that a
cubic graph contains a Hamiltonian cycle if and only if it can be made Eulerian by
edge deletions. Indeed, if deleting a set of edges from a cubic graph G results in
an Eulerian graph G′, then each vertex in G′ must have degree 2, so G′ must be
a Hamiltonian cycle of G. Since the HAMILTONIAN CYCLE problem restricted to
cubic planar graphs is NP-hard [16] the result follows. The directed version can be
treated in a similar way using NP-hardness from [30].

Theorem 3 The UNDIRECTED and DIRECTED EULERIAN EDGE DELETION prob-
lems are NP-hard, even when restricted to inputs (G, k) where G is a planar (di-
rected) graph with maximum degree at most 3, and k = |E(G)|.

In Sect. 4.1, we show that both versions of the problem are FPT and can be solved
in time 2O(k log k)nO(1). The algorithm is based on a novel randomized selection ar-
gument. In Sect. 4.3, we sharpen Theorem 3 by showing that the problems do not
admit a polynomial kernel. In some sense, the nonexistence of polynomial kernels
suggests that randomized selection or a similar technique is inherently required for
the problems, as they cannot be solved by simple reduction rules.

4.1 FPT Algorithms

We have seen in Sect. 3 that removing edges to make all the vertices even can be ex-
pressed as a T -join problem, where T is the set of odd vertices. Thus UNDIRECTED

EULERIAN EDGE DELETION requires us to find a T -join S such that G \ S is con-
nected. Observe that if G is connected, and G \ S has a connected subgraph W con-
taining the endpoints of every edge in S, then G \S is connected as well. We will call
such a subgraph W a witness of S. Therefore, the right way to look at the problem is
that we need to find a pair (S,W), where is S is a T -join and W is the witness of S.
It is clear that the problem has a solution if and only if such a pair exists.

Our approach for finding a pair (S,W) is the following. We randomly color the
edges of the graph red and blue, and try to find a pair (S,W) where S uses only red
edges and the subgraph W uses only blue edges. We would like to ensure that if a
suitable pair (S,W) exists, then it is correctly colored red and blue with probability
at least 2−O(k log k). However, in general the size of W can be very large (unbounded
in k; an example is provided in Sect. 4.2) and therefore the probability of a correct
coloring can be very small. We get around this problem by observing that edges “far”
from T can be always colored blue, and there is a witness W that uses only a bounded
number of edges “close” to T . Formally, we say that an edge e is close if at least one
endpoint of e is at distance at most k from T ; otherwise, e is far. The following two
lemmas contain the crucial combinatorial ideas of the algorithm:

Lemma 1 If S is an optimum solution of size at most k, then each edge of S is close.

Proof As removing a cycle from S would still yield a solution, H = (V ,S) has to be
a forest for an optimum solution S. Each connected component of H that is not an
isolated vertex contains a vertex from T , as each tree contains vertices of odd degree
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(for example, leaves). Since |S| ≤ k, each vertex in such a connected component is at
distance at most k from T , and thus each edge in S is close. �

Lemma 2 If S is an optimum solution of size at most k, then S has a witness W

having at most (2k − 1)(2k + 2) close edges.

Proof Let X be the set of endpoints of the edges in S. Note that T ⊆ X and |X| ≤
2|S| ≤ 2k. Let i be the smallest integer such that G \ S has a subgraph W containing
X, having exactly i connected components and at most (|X|− i)(2k + 2) close edges
(such i and W always exist as for i = |X| we can take W = (X,∅)). If i = 1, then
we are done. Otherwise, we can assume that each component of W contains a vertex
of X; let P be a shortest path in G \ S that connects two different components of W .
Denote these components K1 and K2.

We claim that only the first k + 1 and the last k + 1 edges of P may be close. If
this is true, then adding P to W decreases the number of components and increases
the number of close edges by at most 2k + 2, contradicting the minimality of i.

Suppose that an edge e is close, but it is not among the first or last k + 1 edges,
i.e., both of its endpoints are at distance greater than k from both K1 and K2 on P .
As e is close, it has an endpoint v such that there is a path P ′ of length at most k

connecting v and T . As T ⊆ X, the path P ′ connects v to a component K ′ of W .
Assuming without loss of generality that K ′ �= K1, the concatenation of P ′ and the
subpath of P between K1 and v is a walk P ′′ connecting two different components
of W . As the distance of v from K2 on P is more than k, the walk P ′′ is shorter
than P , contradicting the minimality of P . �

We observe that even though the number of close edges in the witness can be
bounded polynomially in k, the whole witness can be arbitrarily large. An example
of such a situation is described in Sect. 4.2.

Now, we are ready to state our algorithm, working as follows:

1. Determine which edges are close and which are far.
2. Make each close edge independently with probability 1/k2 red; every edge that is

not red becomes blue.
3. If there is more than one connected component of the blue edges containing a

vertex from T , return NO; otherwise let KB be this unique component.
4. Solve MINIMUM T-JOIN instance (GR,T ), where GR is the graph induced by the

red edges with both endpoints in KB . If the solution is of size at most k, return it,
otherwise return NO.

Lemma 3 If the algorithm returns a solution S, then S is a proper solution to UNDI-
RECTED EULERIAN EDGE DELETION.

Proof By the definition of MINIMUM T-JOIN, G \ S is even. The component KB of
blue edges ensures that the endpoints of S are in the same component of G \ S, i.e.,
G \ S is connected. �

Lemma 4 If the UNDIRECTED EULERIAN EDGE DELETION instance (G, k) was a
YES-instance, the algorithm returns a solution with probability at least 1/2O(k log k).
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Proof Let S be an optimum solution to (G, k), and let W be a witness having at most
(2k − 1)(2k + 2) close edges, guaranteed by Lemma 2. In the algorithm:

1. With probability at least (1/k2)k = 1/22k log k each edge of S becomes red.
2. With probability at least (1 − 1/k2)(2k−1)(2k+2) = Ω(1) each close edge of W

becomes blue (and hence every edge of W is blue).

The above events are independent, since S and W do not share edges. Furthermore,
if both events happen, then W will connect all the endpoints of the edges from S.
Therefore, all of these endpoints will be contained in one connected component KB

of the graph induced by blue edges, which in particular connects all the vertices
from T . Thus, with probability 1/2O(k log k), every edge of S appears in GR in the
last step of the algorithm and the MINIMUM T-JOIN instance has a solution of size at
most k. �

Theorem 4 Both the UNDIRECTED and DIRECTED EULERIAN EDGE DELETION

problems are fixed-parameter tractable with parameter k.

Proof By Lemmas 3 and 4, the presented algorithm for UNDIRECTED EULERIAN

EDGE DELETION finds a solution with probability 1/2O(k log k), and never produces a
wrong output, that is removal of the returned set of edges always makes the graph Eu-
lerian. Since the algorithm runs in O(n3) time for an n-vertex graph, we immediately
obtain a randomized FPT Monte-Carlo algorithm, running in 2O(k log k)n3 time.

We present how to derandomize the described algorithm using the standard tech-
nique of splitters. An (m, r, r2)-splitter is a family of functions from {1,2, . . . ,m} to
{1,2, . . . , r2}, such that for any subset X ⊆ {1,2, . . . ,m} of size r , one of the func-
tions in the family is injective on X. Naor et al. [27] gave an explicit construction of
an (m, r, r2)-splitter of size O(r6 log r logm).

In Step 3 of the algorithm we want to separate the solution S (of size at most k)
from the set of close edges of the witness W (of size at most � = (2k − 1)(2k + 2)).
Let m be the cardinality of the set of close edges in the graph, we may identify
{1,2, . . . ,m} with this set. Instead of the random coloring process, we can try every
function f in a (m, k + �, (k + �)2)-splitter and every set F ⊆ {1,2, . . . , (k + �)2} of
size k. For a particular choice of f and F , we color red those close edges e for which
f (e) ∈ F . By the definition of the splitter, if there exists a solution S with a witness
W , there will be a function f that is injective on the set of close edges of S ∪ W and
a subset F such that f (e) ∈ F if e ∈ S and f (e) /∈ F if e is a close edge in W . Note
that the size of (m, k + �, (k + �)2)-splitter is bounded polynomially in the input size,
whereas there are 2O(k log k) choices for the set F .

Regarding DIRECTED EULERIAN EDGE DELETION, we can use a slightly modi-
fied version of our randomized algorithm, which then can be derandomized in exactly
the same manner. After defining the set T of terminals to contain the unbalanced
vertices, we forget about the orientation of the arcs, and perform Steps 1–3 of the
algorithm. We adjust Step 4 by solving an annotated DIRECTED BALANCED EDGE

DELETION instance (G, k) where only red arcs can be deleted. Observe that this al-
gorithm in fact looks for a set of edges S of size at most k such that G \S is balanced
and weakly connected. However, every graph that is weakly connected and balanced
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is Eulerian, thus the algorithm returns the solution to DIRECTED BALANCED EDGE

DELETION with high probability, if one exists. �

4.2 An Example of a Large Witness Set W

In this section we give a simple example that the witness graph W , considered in the
FPT algorithms in Sect. 4.1, may be arbitrarily large and may contain Ω(k2) close
edges. This lower bound on the number of close edges matches the upper bound
given by Lemma 2. We construct a graph G as follows. First take a cycle of length
2kM for some M > 2k and let v0, v1, . . . , v2k−1 be a sequence of evenly distributed
vertices on this cycle, i.e., vi = wiM , where w0,w1, . . . ,w2kM−1 are vertices of the
cycle, lying in this order. Moreover, for each 0 ≤ i < k we connect the vertices v2i

and v2i+1. Note that S = {v2iv2i+1 : 0 ≤ i < k} is the only feasible solution of size k

to the UNDIRECTED EULERIAN EDGE DELETION problem in the graph G, but any
witness W of S needs to contain a path of length (2k − 1)M . Moreover, such a path
contains roughly 2k(2k − 1) = Ω(k2) close edges.

Note that in the above construction it is not crucial to start from a long cycle, as
any Eulerian graph of large diameter would suffice. In such a graph we simply take
the vertices {vi : 0 ≤ i < 2k} to be any set of vertices that are pairwise distant.

4.3 Non-existence of a Polynomial Kernel for UNDIRECTED and DIRECTED

EULERIAN EDGE DELETION

The aim of this subsection is to prove the following theorem.

Theorem 5 If NP �⊆ coNP/poly, then there is no polynomial kernel for the UNDI-
RECTED and DIRECTED EULERIAN EDGE DELETION problems with parameter k,
even if the input graph has maximum degree at most 4.

We use the cross-composition technique introduced by Bodlaender et al. [5]. Let
us recall the crucial definitions.

Definition 1 (Polynomial equivalence relation [5]) An equivalence relation R on
Σ∗ is called a polynomial equivalence relation if (1) there is an algorithm that given
two strings x, y ∈ Σ∗ decides whether R(x, y) in (|x| + |y|)O(1) time; (2) for any
finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 2 (Cross-composition [5]) Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N be a pa-
rameterized problem. We say that L cross-composes into Q if there is a polynomial
equivalence relation R and an algorithm which, given p strings x1, x2, . . . , xp be-
longing to the same equivalence class of R, computes an instance (x∗, k∗) ∈ Σ∗ × N

in time polynomial in
∑p

i=1 |xi | such that (1) (x∗, k∗) ∈ Q if and only if xi ∈ L for
some 1 ≤ i ≤ p; (2) k∗ is bounded polynomially in maxp

i=1 |xi | + logp.
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Theorem 6 ([5], Theorem 9) If L ⊆ Σ∗ is NP-hard under Karp reductions and L

cross-composes into the parameterized problem Q that has a polynomial kernel, then
NP ⊆ coNP/poly.

We apply Theorem 6 on the following language L:

UNDIRECTED or DIRECTED s–t PATH WITH FORBIDDEN PAIRS OF EDGES

Input: An undirected or directed graph G = (V ,E), two vertices s, t ∈ V , and a
set C ⊆ E × E called the constraints.
Question: Does there exist an s–t path P in G such that from each constraint
(e1, e2) ∈ C at least one edge (arc) does not lie on P ?

The undirected version of this problem with forbidden pairs of vertices was proven
to be NP-hard by Kolman and Pangrác [19] and their proof can be easily modified to
handle our case as well.

Lemma 5 UNDIRECTED and DIRECTED s–t PATH WITH FORBIDDEN PAIRS OF

EDGES are NP-hard under Karp reductions, even in the case where each vertex has
maximum degree three, s and t have degree one, and, in the directed case, each vertex
has maximum in- and outdegree two.

Proof We first provide a Karp reduction from the CLIQUE problem to our problems
without the degree condition. Let (H, k) be a CLIQUE instance. We construct an
UNDIRECTED or DIRECTED s–t PATH WITH FORBIDDEN PAIRS OF EDGES in-
stance (G, s, t, C) as follows. To construct the graph G, we start by adding vertices
s, t and pi for 0 ≤ i ≤ k and edges sp0 and pkt (arcs (s,p0) and (pk, t)). Then
for each 1 ≤ i ≤ k and v ∈ V (H) we introduce a vertex xv

i and edges pi−1x
v
i and

xv
i pi (arcs (pi−1, x

v
i ) and (xv

i ,pi)). Finally, for each 1 ≤ i, j ≤ k and u,v ∈ V (H)

such that uv /∈ E(H) (possibly u = v), we introduce constraints (xu
i pi, x

v
j pj ) and

(xu
j pj , x

v
i pi).

Let us now verify the correctness of the above reduction. If {v1, v2, . . . , vk} ⊆
V (H) is a vertex set of a k-clique in H , then a path consisting of edges (or corre-
sponding arcs) sp0, pkt and pi−1x

vi

i , x
vi

i pi for 1 ≤ i ≤ k is a feasible solution to the
instance (G, s, t, C). In the other direction, note that any simple path from s to t visits
for each 1 ≤ i ≤ k exactly one vertex from the set {xv

i : v ∈ V (H)}, say x
vi

i . We claim
that {v1, v2, . . . , vk} induces a k-clique in H . To see this note that the introduced
constraints imply that if i �= j then vi �= vj and vivj ∈ E(H).

To obtain the degree bounds, note that each vertex v ∈ V (G) with dG(v) ≥ 3 can
be replaced with a (directed) cycle of length dG(v), where each edge (arc) previously
incident to v is now connected to a different vertex on the cycle. �

To finish the proof of Theorem 5 we need to show a cross-composition algorithm.
This is done in the following lemma.

Lemma 6 UNDIRECTED (DIRECTED) s–t PATH WITH FORBIDDEN PAIRS OF

EDGES cross-composes to UNDIRECTED (DIRECTED) EULERIAN EDGE DELE-
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TION. If the input instances have degrees bounded as in Lemma 5 then the output
instance can be made to have maximum degree 4.

Proof For the equivalence relation R we take an almost trivial relation that sorts
all malformed instances into one equivalence class and all well-formed into another
one. If we are given malformed instances, we simply output a trivial NO-instance.
Thus in the rest of the proof we assume we are given a sequence (Gi, si , ti , Ci )

p

i=1
of UNDIRECTED or DIRECTED s–t PATH WITH FORBIDDEN PAIRS OF EDGES in-
stances.

We now construct an UNDIRECTED or DIRECTED EULERIAN EDGE DELE-
TION instance (G, k). We start by obtaining a graph G′

i for each 1 ≤ i ≤ p as
follows. First we subdivide each edge e ∈ E(Gi) with new vertices xC

e , one for
each constraint C ∈ Ci that contains e. Then for each constraint C = (e1, e2) ∈ Ci

we introduce vertices zC
1 and zC

2 and create a (directed) cycle xC
e1

, zC
1 , xC

e2
, zC

2 . By
V (Gi) we denote the subset of V (G′

i ) containing vertices different than xC
e and

zC
α . To construct the graph G, we first take the union of all graphs G′

i and iden-
tify all vertices si into one vertex s∗ and all vertices ti into one vertex t∗. Let
V 0 = {s∗, t∗} ∪ ⋃p

i=1 V (Gi) \ {si, ti}. Second, we introduce a new vertex r and
connect it to the rest of the graph as follows. In the undirected case for each
v ∈ V 0 \ {s∗, t∗} we connect r and v with one or two unattached paths of length 2,
so that in G the vertex v is even. In the directed case, we connect r and v with
some positive number of unattached directed paths of length 2, so that in G the ver-
tex v is balanced. We do almost the same construction to connect s∗ and t∗ to r ,
but we ensure that the degrees of s∗ and t∗ are odd (in the undirected case) or that
din
G (s∗) + 1 = dout

G (s∗) and din
G (t∗) = dout

G (t∗) + 1 (in the directed case). Note that r

is even (balanced). Finally, we set k = maxp

i=1 |V (G′
i )| − 1 = O(maxp

i=1 |V (Gi)| +
|Ci |).

It is clear that the above construction can be done in polynomial time and that the
parameter k is bounded polynomially in the maximum size of the input instances.
We now verify the correctness of the construction, i.e., (G, k) is a YES-instance of
UNDIRECTED or DIRECTED EULERIAN EDGE DELETION if and only if at least one
of the instances (Gi, si , ti , Ci )

p

i=1 of UNDIRECTED or DIRECTED s–t PATH WITH

FORBIDDEN PAIRS OF EDGES is a YES-instance. Then, we discuss how we can
modify the construction so that all the vertices of the resulting graph have degree
bounded by 4.

Correctness First, let P be a simple path that is a feasible solution to (Gj , sj , tj , Cj )

for some 1 ≤ j ≤ p. The path P naturally defines a simple path P ′ in G′
j and in

G. We claim that the edge set S of P ′ is a feasible solution to the constructed DI-
RECTED or UNDIRECTED EULERIAN EDGE DELETION instance. As it is contained
in G′

j , we have |S| ≤ k. Since in G the only odd (unbalanced) vertices were s∗ and
t∗, G \ S is even (balanced). We now verify that each vertex v ∈ V (G) is (weakly)
connected to the vertex r in G \ S. It is clear for each v ∈ V 0, since Er ∩ S = ∅,
where Er denotes the set of edges in the paths between V 0 and r (note that each
v ∈ V 0 is connected to r by a positive number of paths). For the other vertices,
note that if C = (e1, e2) ∈ ⋃p

i=1 Ci , then either e1 or e2 does not belong to P (say
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e1 /∈ P ) and the cycle xC
e1

, zC
1 , xC

e2
, zC

2 is connected to r via subdivided edge e1 and
its endpoints. Note that in the directed case it is sufficient to ensure only weak con-
nectivity, as a balanced graph is weakly connected if and only if it is strongly con-
nected.

In the opposite direction, let S be a solution to the constructed DIRECTED or
UNDIRECTED EULERIAN EDGE DELETION instance. We assume that |S| is mini-
mum possible. It is easy to see that since G \S is even (balanced) and |S| is minimal,
S needs to induce a simple path P ′ from s∗ to t∗. This path cannot contain a neigh-
bor r ′ of r , since otherwise r ′ becomes isolated in G \ S. Thus P ′ is contained in
graph G′

j for some 1 ≤ j ≤ p. Moreover, note that P ′ cannot contain any vertex

zC
α , as otherwise zC

α becomes isolated in G \ S. Thus P ′ naturally defines a path P
in Gj with endpoints sj and tj . Observe that if for some C = (e1, e2) ∈ Cj the path P
contained both e1 and e2, then in G \ S the cycle xC

e1
, zC

1 , xC
e2

, zC
2 would be unreach-

able from the rest of the graph G. Thus, P is a feasible solution to the instance
(Gj , sj , tj , Cj ).

Degree Reduction We now show how to modify the presented construction to obtain
an instance with maximum degree 4. First note that if v ∈ V (G) \ (V 0 ∪ {r}) we
clearly have dG(v) ≤ 4. Moreover, if the degrees in (Gi, si, ti , Ci ) are bounded as in
Lemma 5, then for any v ∈ V 0 \ {s∗, t∗} the number of unattached paths connecting
v and r can be chosen so that v is even (balanced) and we have dG(v) ≤ 4 in the
undirected case and din

G (v), dout
G (v) ≤ 2 in the directed one. Thus, we are left with

the vertices s∗, t∗ and r .
We first reduce the degree of vertices s∗ and t∗. By duplicating some input in-

stances we may ensure that their number is a power of two, p = 2�. We replace s∗
and t∗ with full binary trees Ts and Tt of height �, rooted at sr and t r . In the di-
rected case, the edges in the tree Ts are directed towards the leaves, whereas the
edges in the tree Tt are directed towards the root t r . For each instance (Gj , sj , tj , Cj )

we identify sj with one leaf in Ts and tj with one leaf in Tt , so that each instance
is assigned to different leaves in Ts and Tt . Finally, we connect each vertex of the
trees Ts and Tt with r using one or two unattached paths of length two, so that
dG(sr ) = dG(tr ) = 3 (dout

G (sr ) = 2 = 1 + din
G (sr ) and din

G (tr ) = 2 = 1 + dout
G (tr )

in the directed case) and each other vertex in Ts and Tt is of degree 4 and, in the
directed case, balanced.

As for the vertex r , we replace it with a (directed) cycle of length dG(r)/2,
with each vertex on the cycle adjacent to exactly two edges previously incident
to r (one incoming arc and one outgoing arc in the directed case). Finally, we set
k = 2� + maxp

i=1 |V (G′
i )| − 1 = O(logp + maxp

i=1 |V (Gi)| + |Ci |). Note that now
a minimum solution S to the constructed DIRECTED or UNDIRECTED EULERIAN

EDGE DELETION instance needs to induce a simple path P ′ from sr to t r that first
goes down the tree Ts to a leaf sj (for some 1 ≤ j ≤ p), then traverses the graph G′

j ,
inducing a solution P to the instance (Gj , sj , tj , Cj ), and finally goes up the tree Tt

starting at the leaf tj . �
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5 Node-Deletion Problems

We first consider the following two node-deletion problems:

DIRECTED BALANCED (or EULERIAN) NODE DELETION Parameter: k

Input: A directed graph G and an integer k

Question: Does there exist a set of at most k vertices S ⊆ V (G) such that G \ S

is balanced (or Eulerian)?

The undirected versions of these problems, namely UNDIRECTED EVEN and
UNDIRECTED EULERIAN NODE DELETION, are defined analogously. While these
undirected variants were already shown to be W[1]-hard with parameter k by Cai
and Yang [9], the complexity of the directed versions has not been studied yet. The
following theorem shows that they are intractable as well.

Theorem 7 DIRECTED BALANCED NODE DELETION and DIRECTED EULERIAN

NODE DELETION are NP-hard and W[1]-hard with parameter k.

Proof We firstly treat the balanced case, then we proceed to the Eulerian case.

Balanced Case We present an FPT-reduction from the DISJOINT SET COVER prob-
lem to DIRECTED BALANCED NODE DELETION. The input of this problem is a
triple (U, F , k) where U is some universe, F = {F1, . . . ,Fn} is a family of subsets
of U , and k is an integer. The task is to decide whether there is a collection H ⊆ F
with |H| ≤ k that covers each element of U exactly once, i.e., such that the sets in
H are pairwise disjoint and their union is U . Given such an input, we are going to
construct a directed graph G such that (G, k) is a YES-instance of DIRECTED BAL-
ANCED NODE DELETION if and only if (U, F , k) is a YES-instance of DISJOINT

SET COVER. Moreover, the presented reduction will be polynomial-time computable.
As DISJOINT SET COVER is NP-hard, and also W[1]-hard with parameter k [25], this
suffices to prove the theorem.

Given (U, F , k), for any u ∈ U , let n(u) denote the number of sets in F that
contain u. For each u ∈ U , we introduce two vertices u1 and u2 in G, and connect
them by n(u)− 1 unattached paths of length k + 2, each starting from u1 and leading
to u2. We denote by D the set of all internal vertices on these paths, each having
degree 2 in G. Furthermore, for each Fi ∈ F we introduce a vertex fi , and add the
arcs (fi, u

1) and (u2, fi) for each u ∈ Fi . This finishes the construction of G. It is
not hard to see that the reduction is indeed polynomial.

Now, suppose that G \ S is balanced for some S ⊆ V (G), |S| ≤ k. Note that if S

contains any vertex d on a path of length k + 2 leading from some u1 to u2 (allowing
d = u1 or d = u2), then all k + 1 internal vertices of this path should be in S, which
contradicts |S| ≤ k. Thus, we get that S ⊆ {fi | Fi ∈ F }. Observe also that for each
u ∈ U , we get din

G (u1) = dout
G (u1) + 1 = dout

G\S(u1) + 1, hence the deletion of S must

decrease the indegree of each vertex u1 (u ∈ U ) by exactly one. By the definition
of G, this means that the sets Fi for fi ∈ S form a family of at most k pairwise
disjoint sets together covering U , as required.
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For the other direction, it is straightforward to see that if S ⊆ F is a solution for
the DISJOINT SET COVER instance, then deleting the vertex set {fi | Fi ∈ S} from
G results in a balanced graph. This observation relies on the fact that din

G (u1) =
dout
G (u1) + 1 and din

G (u2) = dout
G (u2) − 1 hold for each u ∈ U , and that din(v) =

dout (v) holds for each remaining vertex v. This proves our statement for DIRECTED

BALANCED NODE DELETION.

Eulerian Case Now, we give a reduction from DIRECTED BALANCED NODE

DELETION problem to DIRECTED EULERIAN NODE DELETION. Given an input
(G, k) we construct (G′, k) in polynomial time such that there is a set S ⊆ V (G)

with |S| ≤ k for which G \ S is balanced if and only if there is a set S′ ⊆ V (G′) with
|S′| ≤ k for which G′ \ S′ is Eulerian.

To construct G′, we simply add to G a new vertex r , and connect each vertex to r

by a pair of twin arcs. On one hand, if G′ \ S′ is Eulerian for some S′ ⊆ V (G′), then
G \ (S′ \ {r}) must be balanced, as deleting r from the balanced graph G′ \ S′ still
yields a balanced graph. On the other hand, if G \ S is balanced for some S ⊆ V (G),
then observe that G′ \ S is balanced as well. Furthermore, since each vertex in G′ \ S

is connected by a pair of twin arcs to r , G′ \ S is Eulerian as well, finishing the
proof. �

As Table 1 shows, the node-deletion variant is W[1]-hard in all four cases, while
the edge-deletion version is FPT or even polynomial-time solvable. What makes the
node-deletion versions harder? One obvious difference is that in the edge-deletion
problem the answer is trivially no if there are more than 2k odd/unbalanced vertices,
but the node-deletion versions can have a solution even if the number of such nodes
is unbounded. This suggests that the higher complexity comes from the ability of
affecting the degree of many vertices by a single vertex deletion. Indeed, if every
vertex has degree bounded by Δ, then we can solve all of the above defined node-
deletion problems in O((Δ + 1)k(|V (G)| + |E(G)|)) time by a simple branching
algorithm. However, this interpretation is not fully correct: as we shall show, the
node-deletion problems are hard even if we are allowed to delete only vertices of
constant degree.

To this end, we define the following variation of the four different node-deletion
problems, where α can be UNDIRECTED EVEN, UNDIRECTED EULERIAN, DI-
RECTED BALANCED, or DIRECTED EULERIAN:

α NODE DELETION WITH FORBIDDEN NODES Parameter: k

Input: A graph G, a set F ⊆ V (G) of forbidden nodes, and an integer k.
Question: Does there exist a solution S ⊆ V (G) for (G, k) with respect to the
corresponding α NODE DELETION problem such that S ∩ F = ∅ and |S| ≤ k?

In other words, we require the solution to be disjoint from a set of forbidden ver-
tices. A vertex is allowed, if it is not forbidden. For each of the four node-deletion
problems, the above variant is at least as hard as the original problem, and in fact has
the same complexity: this variant can easily be reduced to the original version, by at-
taching long unattached cycles to every forbidden vertex. Furthermore, we show that
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allowing only the deletion of bounded-degree vertices does not make the problem
easier:

Theorem 8 Each of the problems α NODE DELETION WITH FORBIDDEN NODES

where α is UNDIRECTED EVEN, UNDIRECTED EULERIAN, DIRECTED BAL-
ANCED, or DIRECTED EULERIAN remains W[1]-hard with parameter k, even if each
allowed vertex has degree at most 4.

We prove Theorem 8 in two steps. Theorem 9 deals with the cases where we aim
for an even or a balanced graph, while Theorem 10 handles the two Eulerian cases.
Let Δa be the maximum degree taken over all allowed vertices.

Theorem 9 UNDIRECTED EVEN and DIRECTED BALANCED NODE DELETION

WITH FORBIDDEN NODES remain W[1]-hard with parameter k, even if Δa = 4.

Proof We firstly describe the undirected case, then we present how the construction
can be refined for the directed case.

Undirected Case We present a parameterized reduction from the W[1]-hard MUL-
TICOLOURED CLIQUE problem [15] to UNDIRECTED EVEN NODE DELETION

WITH FORBIDDEN NODES with Δa = 4. The input of MULTICOLOURED CLIQUE

is a graph G = (V ,E) and an integer k together with a partition V1,V2, . . . , Vk of V

where each Vi is an independent set; the task is to find a clique of size k in G. W.l.o.g.
we assume that k ≥ 3, as otherwise the instance can be solved via brute-force.

Firstly, we claim that one can assume that for each vertex v and for each Vj it
holds that |N(v) ∩ Vj | is even. This can be achieved without changing the answer
to our instance in the following manner. For each pair i, j (1 ≤ i, j ≤ k, i �= j ) we
introduce a new vertex ai,j into Vj and connect it with all the vertices of Vi having an
odd number of neighbors in Vj . Consider the graph induced by Vi ∪ Vj ∪ {ai,j , aj,i}.
By the definition of ai,j , aj,i we know that all the vertices of Vi and Vj have even
degrees in this graph. As the sum of degrees in every graph is even, ai,j has odd
degree if and only if aj,i has. Therefore, we introduce an edge ai,j aj,i if the degree
of ai,j is odd. From the construction we infer that the claimed property holds, i.e., for
each vertex v and for each Vj we have that |N(v) ∩ Vj | is even. Note that vertex ai,j

cannot be contained in any k-clique in G, as N(ai,j ) ⊆ Vi (recall that aj,i has been
introduced into Vi ). This ensures the correctness of the construction.

We are going to construct an instance (G′,F, k′) of UNDIRECTED EVEN NODE

DELETION WITH FORBIDDEN NODES with k′ = k2 + k. For each vertex v ∈ Vi ,
we build a node gadget Gv as follows. We introduce vertices vj for each 0 ≤ j ≤
k + 1 and a vertex ev,z for each z ∈ NG(v). For each z ∈ NG(v) ∩ Vj where j < i

we connect ev,z with vj and vj+1, and for each z ∈ NG(v) ∩ Vj where j > i we
connect ev,z with vj−1 and vj . For each j ∈ {1,2, . . . , k}\{i} we denote by Aj(v) the
vertices connected to both vj and vj+1. Furthermore, we introduce edges v0v1, v1vk ,
and vkvk+1; this finishes the definition of Gv . Notice that each vertex in V (Gv) \
{v0, vk+1} has even degree, due to the property ensured in the previous paragraph.
Moreover, the union of all the sets Aj(v) forms an independent set, and every member
of this set has degree exactly 2. See Fig. 1 for reference.
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Fig. 1 Vertex gadget Gv for v ∈ Vi

Let G′ contain the disjoint union of graphs Gv for v ∈ V , and let us add the vertex
sets P = {si , ti | 1 ≤ i ≤ k} and D = {dx,y, dy,x | xy ∈ E} to G′. We connect each si
with the vertices v0 where v ∈ Vi , and similarly, each ti with the vertices vk+1 where
v ∈ Vi . In addition, for each edge xy in G we connect the vertices ex,y, dx,y, ey,x, dy,x

in this order via a cycle of length 4. To finish the construction of G′, we add the edge
si ti in case si (and hence ti ) would have an even degree otherwise. Notice that the odd
degree vertices in G′ are exactly the vertices of P . Finally, we let the set of forbidden
vertices to be F = {vj | v ∈ V,1 ≤ j ≤ k} ∪ D ∪ P . As the allowed vertices are only
the vertices of the form v0, vk+1, or ex,y , the claimed property Δa = 4 indeed holds.

First suppose that X = {x1, . . . , xk} is a clique in G with each xi ∈ Vi . We
prove that S = {x0, xk+1 | x ∈ X} ∪ {ex,y, ey,x | x, y ∈ X,x �= y} is a solution for
(G′,F, k′). Clearly, |S| = k2 + k = k′ and S ∩ F = ∅ hold, so it suffices to show
that G′ \ S is an even graph. As X contains exactly one vertex from each partition
Vi , each vertex in P has one neighbor in S, so the vertices of P will become even
in G′ \ S. Regarding D, only those vertices dx,y and dy,x have a neighbor in S, for
which x, y ∈ X holds, and these vertices will lose exactly two neighbors, namely ex,y

and ey,x , when deleting S. A vertex vj can only have a neighbor in S if v ∈ X, and
in such a case it is not hard to verify that vj will have exactly two neighbors in S.
Vertices ex,y /∈ S do not have neighbors in S, so they stay even. This shows that the
first direction of the reduction is sound.

For the other direction, suppose that S is a solution for (G′,F, k′). For each i, the
vertex si must have at least one neighbor in S; suppose that v0 is such a vertex. Then,
since v1 is connected to v0 and N(v1) \ {v0} = A1(v), we know that |A1(v) ∩ S| is
odd. Using that N(vj )\Aj−1(v) = Aj(v) for each 2 ≤ j ≤ k −1, and that v1, . . . , vk

are forbidden vertices, we can deduce for each j = 2, . . . , k −1 that |Aj(v)∩S| must
be odd as well. Hence, vk+1 ∈ S follows. Therefore, if S contains a vertex v0, then it
must contain altogether at least k+1 vertices from the node gadget Gv . By our bound
on the size of S, we obtain that S contains vertices from exactly k node gadgets, and
if S contains a vertex from Gv , then it contains v0, vk+1, and one vertex from each of
the sets A1(v), . . . ,Ak−1(v). Let X contain those vertices x in G for which x0 ∈ S,
and let Y contain those pairs (x, y) for which ex,y ∈ S. By the previous observations,
we know |Y | = k(k − 1) and |X| = k. Suppose that (x, y) ∈ Y . Note that x ∈ X and
y ∈ NG(x) are immediate from the definition of Gv . By looking at the forbidden



58 Algorithmica (2014) 68:41–61

vertices dx,y and dy,x , we get ey,x ∈ S, yielding (y, x) ∈ Y . Therefore, y ∈ X as
well, and thus each pair in Y must contain the end-vertices of an edge connecting
two vertices of X. By the size of X and Y we get that X must be a clique of size k,
finishing the proof for the undirected case.

Directed Case The reduction for the directed case is very similar to the one used
in the undirected case, and hence we only describe the differences. First, we direct
the edges of each cycle ex,y, dx,y, ey,x, dy,x in a way that they span a directed cycle.
Then for each set Vi of the partition and for each v ∈ Vi , we direct every edge e

incident to a vertex of Gv , except for the edge v1vk , in the direction in which e is
traversed when going from si to ti through e via a shortest path through Gv \ {v1vk}.
We remove the edge v1vk , but for each vj with 1 ≤ j ≤ k − 1 we introduce a certain
number of parallel arcs from vj+1 to vj in order to ensure each vertex of Gv to be
balanced; this means |A1(v)| − 1 arcs from v2 to v1, |Ak−1(v)| − 1 arcs from vk

to vk−1, and |Aj (v)| arcs from vj+1 to vj for each remaining j . As a result, each
vertex of V (G) \ P becomes balanced. Finally, we add |Vi | − 1 arcs from ti to si ,
for each i. The set of forbidden vertices F and the parameter k′ remains unchanged.
Also, Δa = 4 remains true.

Clearly, each si must lose an outgoing arc and each vertex ti must lose an incoming
arc in a solution. Arguing along similar thoughts as above, one can show that the
constructed instance is equivalent with the original one.

In case we want to get rid of parallel arcs, we can simply subdivide each arc
contained in a set of parallel arcs with a newly introduced forbidden vertex of de-
gree 2. �

Theorem 10 UNDIRECTED and DIRECTED EULERIAN NODE DELETION WITH

FORBIDDEN NODES remain W[1]-hard with parameter k, even if Δa = 4.

Proof Considering the directed version of the problem, the theorem follows from the
proof of Theorem 9.

Consider the construction given in the proof of Theorem 9. Observe that each al-
lowed vertex is only connected to forbidden vertices. Thus, if we ensure that the for-
bidden vertices remain in one connected component of G after deleting an arbitrary
set of allowed vertices, then we also ensure that the whole graph remains connected.
This can be done by introducing a new forbidden vertex r , and connecting r to each
forbidden vertex by a pair of twin arcs. As each allowed vertex has the same degree
as originally, we can conclude that Δa = 4 will still hold in the transformed instance.

For the undirected version we can use the modified version of the reduction above,
by connecting each forbidden vertex to r using a pair of parallel edges (or two
unattached paths of length 2 with middle vertices forbidden) instead of the twin
arcs. �

Now we prove that if every vertex has bounded degree, then we can solve all of
the α NODE DELETION WITH FORBIDDEN NODES problems, even with forbidden
nodes, efficiently. The following simple algorithm works:

1. If the parameter k is negative, or we aim for an Eulerian induced subgraph and G

is disconnected, then stop and return NO.
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2. If the given graph G is already balanced/even/Eulerian, then stop and return the
solution collected so far.

3. Otherwise, choose an arbitrary vertex v that is not balanced/even, and branch on
removing from G either v or one of its neighbors. In case the deleted vertex x

was forbidden, stop and return NO in the corresponding branch. Otherwise, put
the deleted vertex x into the solution, decrease the value of the parameter to k − 1,
and go to Step 1.

The above algorithm can clearly be implemented to run in O((Δ + 1)k(|V (G)| +
|E(G)|)) time. Its soundness can be proven easily by induction w.r.t. the size of the
solution, using the simple observation that if v is a vertex that is not balanced/even,
then either v or at least one of its neighbors must be in the solution. Thus, we can
conclude:

Theorem 11 There is an O((Δ + 1)k(|V (G)| + |E(G)|)) time algorithm that solves
the α NODE DELETION WITH FORBIDDEN NODES problem, where α can be UNDI-
RECTED EVEN, UNDIRECTED EULERIAN, DIRECTED BALANCED, or DIRECTED

EULERIAN.

6 Conclusion

We completed the analysis of the complexity of making a graph Eulerian via edge or
vertex deletions. There are two open problems that we would like to emphasize here.

First, do there exist FPT algorithms for the edge-deletions problems running in
time cknO(1)? It seems hard to obtain such algorithms using our techniques, mainly
due to the fact that the witness subgraph W may contain Ω(k2) close edges, as was
discussed in Sect. 4.2.

Second, Cechlárová and Schlotter in [10] asked for the parameterized complexity
of a related problem, where the task is to delete at most k arcs from a directed graph to
obtain a graph where each strongly connected component is Eulerian. This problem
seems to be significantly different than the problems considered in this paper, as for
example it includes DIRECTED FEEDBACK VERTEX SET [10], and, to the best of
our knowledge, the question of its parameterized complexity still remains open.
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