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High-accuracy and high-throughput proteomic methods have completely changed the way
we can identify and characterize proteins. MS-based proteomics can now provide a unique
supplement to genomic data and add a new level of information to the interpretation of
genomic sequences. Proteomics-driven genome annotation has become especially relevant in
microbiology where genomes are sequenced on a daily basis and limitations of an in silico driven
annotation process are well recognized. In this review paper, we outline different strategies
on how one can design a proteogenomic experiment, for example on genome-sequenced
(synonymous proteogenomics) versus unsequenced organisms (ortho-proteogenomics) or with
the aid of other “omic” data such as RNA-seq. We touch upon many challenges that are
encountered during a typical proteogenomic study, mostly concerning bioinformatics methods
and downstream data analysis, but also related to creation and use of sequence databases. A
large list of proteogenomic case studies of different microorganisms is provided to illustrate the
mapping of MS/MS-derived peptide spectra to genomic DNA sequences. These investigations
have led to accurate determination of translational initiation sites, pointed out eventual read-
throughs or programmed frameshifts, detected signal peptide processing or other protein
maturation events, removed questionable annotation assignments, and provided evidence for
predicted hypothetical proteins.
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1 From top-down to bottom-up analysis

Before MS-based methods were developed for large-scale pro-
tein analysis, protein characterization was dependent on pu-
rification of single protein species from complex samples.
This could require substantial quantities of starting material
and a method to monitor the protein amount and/or its ac-
tivity through various purification steps. Once a pure protein
was obtained, one could accurately determine the protein
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sequence using the traditional, but nevertheless laborious,
N-terminal Edman degradation method. Two-dimensional
PAGE represented a major improvement for proteomic in-
vestigations. It is a technique with efficient separation of pro-
teins based on differences in isoelectric points in the first
dimension and molecular mass in the second dimension [1].
Individual protein spots from the gel can be picked for diges-
tion by a protease and subsequent measurement of peptide
masses by MS. MALDI-TOF instruments were initially used
for the mass measurements. Over the years it has been recog-
nized that 2D-PAGE performs quite poorly in the analysis of
hydrophobic proteins and the reproducibility of experiments
is often compromised. On the other hand, the technique is
relatively robust and can also be used to analyze intact pro-
teins at high resolution.

The use of two mass spectrometers in tandem (MS/MS)
introduced a new dimension to the field by employing two
stages of mass analysis [2]. From the mass spectrum that is
produced by using the first MS, a single (precursor) mass
of a given compound can be selected. These mass-selected
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ions are next fragmented and the resulting fragment (prod-
uct) ions are analyzed in the second MS. Such setup allows
for obtaining more accurate chemical structure related in-
formation and for more selective quantitation of target com-
pounds in complex mixtures. The mass of a peptide can then
be determined with very high accuracy, down to 1 part per
million (ppm) or even better. The identification of a pep-
tide in MS/MS is based on subjecting the peptide to stress-
induced fragmentation and then using the measured mass
of fragments as a fingerprint for the peptide. In a bottom-
up proteomic approach, trypsin is usually used to digest
a cell lysate. The resulting peptides are subsequently sepa-
rated on an LC column coupled to the MS/MS instrument.
The combined information of the tryptic peptide (from the
first MS) and the fragments masses (from the second MS)
gives reliable sequence information when matched against
a sequence database. Although comprehensive annotated
protein databases (e.g. National Center for Biotechnology
Information (NCBI) protein resources, UniProtKB/Swiss-
Prot, PROSITE) are reliable and frequently used sources, a
common approach in microbiology is to use custom-made
databases containing translated nucleotide sequences from
the genome of the investigated organism. The concept of
searching uninterpreted mass spectra against a translated nu-
cleotide database was first introduced in 1995 by Yates et al.
[3] and was quickly followed up by development of various
search engines to match the experimental data against tryptic
peptides generated in silico from entries in a database [4–8].

1.1 Proteogenomics versus de novo proteomics

Proteogenomics is often defined as using MS to identify
proteins predicted from genomic sequences and to use this
information to improve the genome annotation [9–11]. In
principle, most proteomic investigations in microbiology rely
heavily on genomic sequence information that acts as the
blueprint for protein production. Programs such as MASCOT
[5] and MaxQuant [8] used to interpret MS-derived experimen-
tal data do so in the context of translated genomic sequences.
As soon as a protein has been observed by one or more pep-
tides, this is of value for genomic annotations. Proteomic
analysis is therefore much more than just confirmatory and
can be used to both correct and add missing information
to the genomic annotations (see, e.g., case studies listed in
Table 1). From the above reasoning, it is inferred that bottom-
up proteomic investigations, which in some or another way
utilize and interact with genomic sequence data, are essen-
tially proteogenomic. Searching MS/MS data against a se-
quence database is the dominant method for peptide sequenc-
ing by MS; however, de novo sequencing of peptides by MS
can also be done [12, 13]. In the latter case, the sequencing
is performed without any prior knowledge of the amino acid
sequence and the observed mass spectra are used for direct re-
construction of the protein sequence without guidance from
information in protein sequence databases. Peptide de novo

sequencing is, for example, valuable for the identification of
proteins without any existing homolog in the database (e.g.
characterization of different protein isoforms [14]) and for
metaproteome analyses of microbial communities [15, 16].
For such top-down proteomics approaches, proper assembly
of de novo sequence data has been met with major challenges,
such as low protein sequence coverage. Nevertheless, the top-
down approach may be more widely applied in the future,
once the technical issues are resolved. Although this review
focuses primarily on the bottom-up MS approach, which is
the most common, there is an example of a relevant top-down
proteomic study [17].

1.2 Evaluation and validation of genomic

annotations

The progress in determination of DNA sequences since the
Sanger sequencing method was published in 1977 has been
breathtaking. Because of the technical advances in next-
generation sequencing technologies [18], the cost of sequenc-
ing for a bacterial genome is no longer a limiting factor. It
can be foreseen that within a few years, a semiautomatic se-
quencer will be used on a routine basis in many microbiolog-
ical laboratories [19]. Still, once the genome of an organism
is sequenced and assembled, the critical step lies in identifi-
cation of gene-coding regions and in establishing their anno-
tations [20]. The functional content of the genome is inferred
through computational analysis that usually involves recog-
nizing sequence similarity between an anonymous query
and characterized matching sequence [21]. Gene annotators
are typically based on Basic Local Alignment Search Tool
(BLAST) [22] (e.g. IMG [23] and RAST [24]) or probabilistic
models such as hidden Markov models (e.g. Glimmer [25],
GeneMark [26], and HMMer [27]). Recent evaluation of 54
methods for gene annotation identified a considerable need
for improvement of currently available tools [28]. The main
conclusion of the study was that second-generation annota-
tion tools that combine a variety of biological and compu-
tational concepts outperform the first-generation alignment-
based methods. There is also a common opinion that the use
of subsequent manual curation of the genome sequence can
provide the best annotations [29]. On the other hand, such
curation is often slower and more costly, and it has also been
considered as insufficient for genome annotation by some
[30].

According to the NCBI, the number of sequenced bacterial
genomes is currently over 27 thousand (August 2014). From
this large number, almost 3400 genomes are listed as
complete and the rest are in the draft stage (Fig. 1). This
disproportion indicates that the processing of large amounts
of sequencing data in order to yield useful results is a
rather complex and laborious task. Several in-depth genomic
and proteomic studies have evaluated the accuracy of in
silico annotation methods and pointed out their limitations
[29, 31–36]. For example, a comparison of gene annotations
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Figure 1. Number of prokary-
otic genomes deposited at En-
trez Genome database at NCBI.
Only assembled genomes de-
signed as complete or draft
(scaffolds or contigs) were con-
sidered. Data labels above bars
show the number of genomes
sequenced in the respective
year. Data were collected in
August 2014.

obtained either from the Sanger Institute or J. Craig Venter
Institute for the genomic sequence of Mycobacterium
tuberculosis H37Rv showed 15 and 50% difference in the
gene annotations and in the start codon assignments,
respectively [29]. Similarly, a comparison of three different
gene-calling platforms found that about half of almost 3000
predicted protein-coding regions of Halorhabdus utahensis
were inconsistent across the automatic annotations [36].

1.3 Proteogenomics of eukaryotes

Proteogenomic mapping has mainly been used for the valida-
tion (and improvement) of the structural annotation of small
prokaryotic genomes; nevertheless, the integration of large-
scale proteomics data is gaining popularity also in eukaryotic
genome annotation projects [37–43]. The larger number of
conducted proteogenomic studies of prokaryotes, when com-
pared to eukaryotes, is probably due to the differences in
genome complexity between eukaryotes and prokaryotes. Ge-
nomic organization of a prokaryote genome is much more
economical than that of a eukaryote. Prokaryotic genes are
tightly packed on a single chromosome leaving very little
space in between genes. Noncoding sequences account for
an average of 12% of a prokaryotic genome, while in a eu-
karyotic genome up to 98% of the genetic material might
not code for functional proteins [44]. The tight genome or-
ganization in prokaryotes is reflected in the arrangement of
most genes into polycistronic operons or clusters of genes
that are governed by a single promoter. The situation is more
complex for eukaryotes where the DNA sequence for a given
gene is organized into coding exons and noncoding introns.

Eukaryotic nascent pre-mRNA transcripts therefore must un-
dergo splicing where the introns are removed and exons join.
To correctly define gene boundaries and the respective pro-
tein products usually requires a great deal of effort in both
genome annotation and proteogenomic studies and an ac-
count of commonly encountered difficulties has been previ-
ously provided [45]. Events such as alternative splicing, exon
skipping, and truncation or extension at the introns 5′ or 3′

ends cannot be accurately predicted by bioinformatics meth-
ods and proteomics therefore has become invaluable for val-
idation and refinement of eukaryotic genome annotations.
However, in this review, we provide systematic account of
proteogenomic studies primarily in prokaryotes, with a few
exceptions of medically relevant single-cell eukaryotic model
organisms.

2 Proteomics-driven annotation in
microbiology

Ideally one may think that genome annotations should be
completely proteomics driven. Indeed, large-scale proteomics
data were early recognized as a potentially rich source for
validation and reevaluation of genome annotations [46]. Pro-
teomics technologies have now reached a level where they can
provide a platform for annotation of genomes that is mainly
proteomics driven combined with gap filling using theoreti-
cal interpretation. Using six-frame translational data, the en-
tire coding repertoire in a genome should in principle be
represented. However, the augmented nature of a six-frame
database brings certain difficulties for correct statistical in-
terpretation of the data. In such a database, for every target
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Figure 2. Strategies for a proteogenomic experiment. (A) In a synonymous proteogenomic study, genome sequencing and MS-based
proteomics is performed on the same isolate of a species. (B) The joint power of comparative genomics and proteomics can be employed
for annotation validation and refinement of several members of the same species. (C) Ortho-proteogenomics also utilize homology-
based searches against protein-coding genes from closely related organisms. This strategy allows for proteome characterization of an
unsequenced clinical or environmental isolate and investigation of multiple proteomes at once. (D) A comprehensive approach for genome
annotation refinement takes advantage of large–scale data from several omic fields.

protein sequence there exist five false targets, which in turn
leads to low S/N and reduced sensitivity under the search cri-
teria needed to maintain a low false discovery rate [47,48]. In
order to avoid too many entries, one can apply a size cut off,
for example excluding proteins of less than 20 amino acids.
In addition, redundancy removal guidelines have been pro-
posed in order to choose the most likely reading frame [49].
The idea of mapping peptides back to their source genome
in order to validate the existing annotation was introduced 10
years ago [50]. Since then different proteogenomic strategies
have been described and these are discussed below (Fig. 2).
A list of different microorganisms for which the mapping of
peptides onto the corresponding genome has been applied is
given in Table 1.

2.1 Synonymous proteogenomics

Synonymous proteogenomics may be defined as proteomics
performed on exactly the same isolate or strain that has been

sequenced (Fig. 2A). High-throughput sequencing of a bac-
terial genome has become quite efficient and the possibilities
to combine proteomic and genomic experiments are feasi-
ble [17, 51–56]. This will be the ideal approach for future
proteogenomics, as the likelihood of inconsistent character-
istics will be kept to a minimum. However, it is not always the
case that the genomic sequence matches exactly the sequence
present in the model organism chosen for a proteomics study.
Some bacteria are more prone to genomic changes than other
bacteria, specifically, Neisseria meningitidis and Helicobacter
pylori are examples of bacteria that tend to change frequently
through rearrangements of genetic elements and mutations
[57]. Moreover, bacterial strains tend to change when sub-
cultured in the laboratory, and strain collections have rig-
orous routines to keep such changes at a minimal level. It
basically implies using the seed-lot system where a batch is
frozen down in numerous aliquots, and there are rules as to
how many passages one may apply until it is necessary to go
back to the seed-lot for a new sample. When working with

C© 2014 The Authors. PROTEOMICS Published by WILEY-VCH Verlag GmbH & Co. KGaA www.proteomics-journal.com



2666 V. Kucharova and H. G. Wiker Proteomics 2014, 14, 2660–2675

proteogenomics, it is in principal necessary to know the his-
tory of the sequenced strain as well as the sample one is
working with to create the proteomic data. Historical records
of bacterial strains are therefore invaluable, but are not al-
ways available. For example, when working on the proteome
of M. tuberculosis H37Rv, it became clear that the original
genomic sequence was performed on a sample of this strain,
suggesting that the strain was not recently acquired from a
repository. When searching our proteomic data obtained us-
ing the American Type Culture Collection (ATCC) strain of
M. tuberculosis H37Rv against other genomic sequences of
M. tuberculosis, protein products that were not encoded in
the H37Rv genome but present in the other genomes were
discovered [58]. The most likely explanation would be that a
genetic element had been lost from the sequenced sample
of H37Rv. This shows that one needs to have a focus on the
origin of the genomic sequence as well as the sample being
studied for proteomics.

2.2 Comparative proteogenomics

The ever-growing collection of sequenced prokaryotic
genomes is giving the opportunity for comparative genomic
and proteomic analysis of related species (i.e. sharing high
level of sequence similarity) (Fig. 2B). As demonstrated in a
study of exoproteomes of the Roseobacter clade (marine bacte-
ria) and proteogenomic analysis of three Shewanella bacteria
[59, 60], such comparative approaches allow for annotation
of multiple genomes at once. Moreover, the simultaneous
analysis of genomes containing orthologous genes has been
used for more reliable interpretation of protein identifications
based only on a single peptide hit. Such “one-hit-wonders”
usually need manual validations otherwise they are discarded
by the publication guidelines of proteomics journals. In a typi-
cal proteomic analysis, the percentage of one-hit-wonders can
be as high as 30% [60] and using the “two peptide per protein”
inference rule for protein identification might result in loss
of a large number of protein identifications [61].

2.3 Nonsynonymous (ortho-) proteogenomics

In this case, there is no genomic sequence that matches the
proteomic data exactly. This approach is relevant for bottom-
up proteomic investigations performed on clinical and en-
vironmental isolates (Fig. 2C). Initially one needs to assess
which genomic sequence(s) is/are the most relevant for data
interpretation. The first step would be to identify the bacterial
isolate at species level or better, and then to identify the pep-
tides using the most closely matching genome. The disadvan-
tage of such approach is that sequence differences between
the available genome and the proteins being studied result
in lost identifications. There may be more than one genome
available for one species and in that case it will be of value to
use a database that includes all relevant genomes. Building

and the use of a species-specific custom-made database has
been shown as an effective way to improve annotation of
members of the same species [58, 62]. Collated genome se-
quences can also be used to identify variants in positions with
single nucleotide/amino acid polymorphism. In this case, it
is useful to apply a database with tagged sequences for more
convenient identification of such differentiating peptides
[58].

Nonsynonymous proteogenomic strategies have also been
used for mapping the proteomes of unsequenced pathogens
[58, 63]. Similarly, a combination of proteomics and compar-
ative genomics has used only one member of a group of
organisms for the proteomic analysis and extrapolated the
findings on orthologous genes to other members of the clade
[64–67].

2.4 Integration of multiple omics datasets

An emerging trend in the functional annotation of genome-
scale data is the integration of various omics datasets
(Fig. 2D). Transciptome profiling by the means of
high-density tilling arrays or RNA-seq technology (high-
throughput RNA sequencing using next-generation sequenc-
ing technologies) enables identification and also quantifica-
tion of both rare and common transcripts with over five orders
of magnitude of dynamic range [68]. Although transcriptional
information does not confirm the protein expression, it can
provide necessary supporting evidence in cases of protein
identifications based on a single peptide hit. Studies inte-
grating transcriptomic and proteomic analyses can be found,
for example, for Escherichia coli and pathogenic bacteria
Bartonella henselae and Yersiniae spp. [69–71]. In the case of the
intracellular pathogen B. henselae, an endpoint estimate of the
number of actively transcribed protein coding genes based on
mRNA-seq data was shown to better represent the expressed
protein catalog than considering all annotated protein-coding
genes [70]. RNA-seq analysis was also complemented with
proteomics for the radiation-tolerant bacterium Deinococcus
deserti [72]. An interesting finding of that study was a very
high number and proportion of leaderless mRNA in D. deserti
(60%), an exceptionally high number for a bacterial species.
An illustrative multi-omics approach was used to functionally
reannotate the genome of a model actinomycetes and an im-
portant antibiotic producer Saccharopolyspora erythraea [73].
The authors integrated data from proteomics, RNA sequenc-
ing, and previously determined genome-scale metabolic re-
construction [74] to experimentally validate and improve the
annotation of this model G+C rich genome. An outlook to the
future of genome annotation studies can be a very thorough
functional genome description of a hyperthermophilic bac-
terium, Thermotoga maritime [56]. Proteomic profiling was
one part of an all-inclusive combination of whole-genome
resequencing, transcriptome profiling, and various bioinfor-
matics tools, which resulted in a more accurate genome
annotation.
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2.5 Functional protein annotation

In any newly sequenced bacterial genome annotated through
the computational methods of functional and comparative
genomics, proteins with unknown functions account for
30–40% of all encoded proteins [75–77]. There are two ma-
jor bioinformatic approaches for predicting protein function
of uncharacterized genes: (1) structural analysis based on ho-
mologous proteins [78] and (2) comparative analysis aiming to
identify conserved coexpressed genes [79, 80]. Activity-based
protein profiling (ABPP) is a functional proteomic technique
to label and enrich various enzymatic activities [81, 82]. The
contribution of ABPP to functional annotation of genomes
lies in its ability to specifically detect active enzymes in a sam-
ple through activity-based probes. Several comprehensive re-
views have addressed various designs and applications of the
activity-based probes [83–85]. Practically any enzyme with an
active catalytic site is amenable to study through ABPP, how-
ever, most of the research has focused on the diverse class
of enzymes able to catalyze the hydrolysis of biomolecules
(e.g. proteins, fats, oils, and carbohydrates) [86–88]. Prote-
olytic enzymes play a crucial part in the course of bacterial
infection and the overall pathogenic process [89, 90], and the
ABPP method can be of a value to scientists investigating, for
example, proteins with unknown function but with a link to
pathogenesis (e.g. confirmed expression in the presence of
an antibiotic).

An ABPP approach that targets enzymes facilitating the
hydrolysis of the �-lactam ring of penicillin antibiotics has
been successfully applied to several pathogenic microbes.
A library composed of antibiotic-inspired synthetic �-lactam
probes was first utilized in a screen against proteomes of the
Pseudomonas putida, Listeria welshimeri, and Bacillus
licheniformis [91]. The study identified a number of �-
lactam-binding enzymes under in vivo and in vitro condi-
tions. Interestingly, in addition to expected penicillin binding
proteins, several bacterial resistance- and virulence-
associated enzymes were also detected and characterized. In a
follow-up study, the �-lactam probe library was employed in
a comparative analysis of antibiotic-sensitive Staphylococcus
aureus and methicillin-resistant S. aureus to identify
resistance-associated enzymes [92]. An example of proteome-
wide application of ABPP was recently provided by Deng
et al., who performed global profiling of reactive cysteines
in Pseudomonas aeruginosa and S. aureus [93]. Modifica-
tion of cysteines by reactive species (e.g. superoxide, hydro-
gen peroxide, and other reactive molecules containing oxy-
gen) is a widespread regulatory PTM and bacteria use this
modification as a part of complex responses to oxidative-
stress challenges [94]. The proteomic study identified 200
proteins containing hydrogen peroxide sensitive cysteines
across diverse classes of proteins, including metabolic en-
zymes, transcription factors, and uncharacterized proteins.
Another recently reported chemical proteomics screen com-
bined ABPP with quantitative MS-based proteomics, and fa-
cilitated high-throughput experimental functional annotation

of ATP-binding proteins in the M. tuberculosis genome [95].
By using an ATP-based activity probe, Ansong and colleagues
identified about 600 ATP-binding proteins in the M. tuber-
culosis proteome, including approximately 120 hypothetical
proteins with unknown function.

3 Systematic genome annotation

Correct assignment of gene boundaries and various protein
PTMs, which are often prerequisite for correct biological func-
tion, is generally invaluable for functional studies. PTMs can
include chemical modifications of specific residues, process-
ing of precursors into mature proteins by proteolytic cleav-
age, or signal-peptide removal during translocation across
the cytoplasmic membrane. Protein modifications cannot be
computationally predicted from genomic data in a straightfor-
ward way. Mapping of protein modifications therefore adds
important details to the description of a proteome and to the
functional annotation of the respective genome.

3.1 Translational start sites

Incorrect predictions of translation initiation codons are com-
mon errors introduced during an in silico driven annotation
process [96] and in some prokaryotic genomes nearly 60%
of genes can have incorrectly assigned start sites [35]. Usu-
ally, there are many potential translational start sites (TSSs)
for a given gene. ATG coding for methionine is most fre-
quently used as start codon, but GTG or TTG are also pos-
sible start codons. In some organisms, TTG is the most fre-
quently used start codon [97]. Moreover, alternative TSSs both
downstream and upstream of the originally annotated site
are often observed [62, 98]. Identification of the N-terminal
peptide by MS may confirm a TSS if it does not coincide
with a peptide produced by the protease used for diges-
tion (e.g. containing a nontryptic N-terminus) and if it is
located at the protein N-terminus or in its close proxim-
ity [99]. This type of information is invaluable for genomic
annotation and some of the large-scale proteomic investiga-
tions have addressed this issue [66,67,100]. However, because
of the rather low sequence coverage in a typical bottom-
up approach (�30%), methods for specific enrichment of
N-terminal peptides are frequently employed [98, 101, 102].
Several reviews have provided expert views on the current
state of N- and C-terminal protein analysis by proteomics
[11, 103–105].

Profiling of N-terminally acetylated protein termini has
recently emerged as a powerful technique for determina-
tion of TSS [106]. N-terminal acetylation together with N-
terminal methionine excision is the most common pro-
tein PTM, which is widespread both in eukaryotes and
prokaryotes [107, 108]. Recent proteogenomic analysis of en-
capsulated yeast Cryptococcus neoformans, which is an op-
portunistic human pathogen capable of causing potentially
lethal disease cryptococcosis [109], described experimental
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validation of 52% of the predicted proteome [43]. By defin-
ing N-terminal acetylation of proteins as variable modifica-
tion in the MASCOT search engine, the authors of the study
identified 392 N-terminally acetylated peptides that subse-
quently lead to confirmation of TSSs for 329 proteins (63%
of all identified TSSs). In addition, the same proteogenomic
study determined two novel start sites by mapping N-terminal
acetylated peptides, identified from searching six-frame
genome translational database against the MS/MS data, onto
C. neoformans genome. First large-scale proteomic identifica-
tion of N-terminal peptides from prokaryotes was produced
for two archaea Halobacterium salinarum and Natronomonas
pharaonis [100]. By combining MS with two specific enrich-
ment methods, combined fractional diagonal chromatogra-
phy (COFRADIC) and strong cation exchange chromatogra-
phy [110], the authors were able to identify 606 N-terminal
peptides from H. salinarum and 328 from N. pharaonis (29
and 12% of the predicted proteome, respectively). N-terminal
COFRADIC is a well-established N-terminomics technology
based on a negative selection for N-terminal peptides, that is
removing non-N-terminal peptides [110, 111]. Helsens et al.
analyzed the proteome of Saccharomyces cerevisiae also by ap-
plying N-terminal COFRADIC [112]. The analysis identified
totally 706 TSSs out of which 89 represented potential alter-
nate TSSs.

The second category of current N-terminomics protocols
comprises positive selection procedures and includes chemi-
cal derivatization methods that allow for specific targeting of
the protein N-termini (reviewed in [103]), for example vari-
ations of trimethoxyphenyl phosphonium labeling approach
(N-TOP) [66, 67, 98, 101, 102]. The different studies showed,
for example, the correction of 19% of translation start sites
in M. smegmatis and 601 start sites in 16 other mycobacte-
rial species [66], the validation of 278 and the correction of
73 translation initiation codons in the D. deserti genome, the
annotation refinement of 534 proteins of the model marine
bacterium Roseobacter denitrificans [98,102], and the character-
ization of 447 proteins (13.6% of the predicted proteome) for
arsenite-oxidizing bacterium Herminiimonas arsenicoxydans
[101]. Moreover, targeting of N-terminal peptides has led to
recognition of rare noncanonical start codons. For example,
ATC and CTG start codons for translation of DnaA and RpsL,
respectively, were described in D. deserti [67] and an ultra-
rare start codon ATT for protein chain initiation factor IF-3
in Yersinia pestis [64].

3.2 Protein processing

Modifications of the protein N-terminal, such as N-
methionine excision and N-acetylation, are widespread
among bacteria, as discussed above [107,113], as well as the re-
moval of the N-terminal signal peptide [114]. Signal peptides
are cleaved by signal peptidase I or II after translocation of
the protein through the cytoplasmic membrane. Several algo-
rithms exist for prediction of such cleavage sites (e.g. SignalP
[115] and Phobius [116]), but more exact experimental result

confirming the cleavage site provides essential information
[117].

Putative signal peptides and proteolytic events can be de-
duced from MS raw data by observing spectra matching to
the peptides with nontryptic N-termini. In order to identify
true signal peptides, filtering based on peptide length, typical
structure (e.g. core hydrophobic patch), and signal peptidase
cleavage site has usually been applied [118, 119]. MS-based
proteomic techniques have accelerated the experimental ver-
ification of secretory proteins (and hence signal peptides),
for example in Salmonella enterica [17], Shewanella oneidensis
[99], Y. pestis [64], Novosphingobium aromaticivorans [120], and
a microbial biofilm community [121]. In H. pylori, 63 pre-
viously unknown signal peptide sequences could be anno-
tated by interpreting MS spectra with a search strategy al-
lowing for semispecifically cleaved peptides and revealed the
predominant recognition motif LXA for signal peptidases
[122]. A recent study evaluated how many signal peptides
can generally be identified in a single proteogenomic experi-
ment by using E. coli K-12 as an example of a well-annotated
model bacterium [119]. The paper by Ivankov et al. showed
that approximately one-third of all experimentally known
E. coli signal peptides could be validated. Moreover, in accor-
dance with predictions from the latest version of the SignalP
program, the authors of the study estimated that about 10%
of the E. coli genes contain signal peptides, half of previous
estimates.

3.3 PTMs of specific residues

Chemical modifications at specific residues such as phos-
phorylation, oxidation, methylation, etc. (therein referred to
as PTMs) are known to play a significant role in many bio-
logical functions [123]. PTMs identification by the bottom-up
MS approach is based on a change in the peptide fragmenta-
tion pattern (e.g. shifts in the masses of fragments containing
the modification). There are several challenges in analysis of
PTMs by MS (reviewed in detail in [124–127]). First, the detec-
tion of modified peptides is far from being straightforward
because of the labile nature of many modifications during
the peptide fragmentation. The modified peptides are usually
present in low amounts in the complex sample and there-
fore specific enrichment methods have become an essential
part of the proteomic workflow. Additionally, when several
possible PTMs are included as an optional parameter during
the sequence database search, there will be a combinatorial
explosion of the search space and subsequently a lower statis-
tical confidence in the search results. Nevertheless, bottom-
up proteomic analysis has been successful in identifying
some PTM sites, for example in bioremediation-relevant bac-
teria Shewanella [60, 99] and the sulfate-reducing bacterium
Desulfovibrio desulfuricans [128].

In bottom-up MS approach, the identified PTMs are re-
stricted to individual peptides. Multiple PTMs occurring
in a single protein represent multiple combinatorial possi-
bilities and hence such different proteoforms (i.e. specific
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molecular form of a protein product arising from a specific
gene) cannot be accurately defined. Consequently, by using
the bottom-up approach, it is not possible to obtain infor-
mation on how many protein isoforms there are or what
combinations of PTMs are present in a single proteoform.
A top-down proteomic approach (analysis of intact proteins)
offers advantages in accurately localizing PTMs. However,
throughput, sensitivity, and insufficient downstream bioin-
formatics tools have frequently been considered its major
limiting factors [129, 130]. Moreover, if the goal is to analyze
protein isoforms by top-down proteomics, there can arise is-
sues concerning their isolation and the purity of individual
isoforms. On account of advances in intact protein LC separa-
tions and MS instrumentation in recent years, top-down MS
has shifted from analyzing single proteins to investigating
multiple proteins (<50 kDa) in complex samples [131–133].
Top-down proteomic analysis of S. enterica Typhimurium
identified 563 unique proteins (40% of the predicted pro-
teome) corresponding to 1665 proteoforms and enabled dis-
covery of the differential utilization of the protein S-thiolation
forms, S-glutathionylation, and S-cysteinylation, in response
to infection-like conditions [17].

Protein phosphorylation is one of the most extensively
studied PTMs, not only because of its general importance in
signal transduction in a living cell but also because of its rel-
evance for bacterial virulence and pathogenesis [134–136]. A
comprehensive list of phosphoproteomic studies performed
on various bacterial species up to year 2013 can be found in
[123]. Studies published later that are worth mentioning are,
for example, a description of the phosphoproteome of the

human pathogen S. aureus [137] and quantitative phospho-
proteome analysis of B. subtilis [138].

4 Software for proteogenomics

Searching large spectral datasets against large sequence
databases would not be possible without computational sup-
port. Computational proteomics has become a dynamically
growing field. Bioinformaticians designing proteomics soft-
ware tools have to tackle substantial challenges associated
with the assignment of peptide sequences to MS/MS spec-
tra and correct protein identifications [139]. Because of that,
methods for assessing the quality of the match between an
MS/MS spectrum and a theorized peptide sequence have
been proposed. A popular approach is to simultaneously
search the spectra against the target and decoy databases,
the latter being of equal or known size and similar redun-
dancy as the former [140]. Peptides identified using the de-
coy are then regarded as spurious and can be used to es-
timate false discovery rate. Altogether, the computational
reconstruction of protein identities from proteomic data is
nontrivial task and several excellent reviews described in
detail the various problems commonly encountered and
their current solutions [45, 141, 142]. Several automated soft-
ware pipelines have been developed for integration of MS-
based proteomic evidence into genome databases, as well
as a number of visualization and database-building tools
(Table 2 provides a list of these approaches with correspond-
ing references).

Table 2. List of various open-source tools for proteogenomic research

Software namea) Description Reference

customProDB Software package for generation of customized protein databases from RNA-Seq data. [155]
GFS Mapping of protein-derived MS data directly to genomic and/or transcript sequences. [156]
Genosuite Integrated proteogenomic pipeline for annotating prokaryotic genomes. [143]
InsPecT Identification of posttranslationally modified peptides from MS/MS spectra. [157]
iPiG Visualization of peptide identifications in genome browsers. [158]
MINOMICS Visualization of prokaryotic transcriptomic and proteomic data in conjunction with

genomic data.
[159]

MSMSpdbb Merging and clustering of protein sequences inferred from multiple genomic sequences. [62]
PG Nexus with IGV Covisualization of peptides in the context of genomes, genomic contigs or RNA-seq

reads.
[160]

PepLine Mapping of MS/MS fragmentation spectra of trypsic peptides to genomic DNA
sequences.

[161]

Peppy Integrated software package for proteogenomic analysis. [162]
PGP Proteogenomic annotation pipeline for improving existing genomic annotations. [163]
PMT Mapping of MS identified peptides to a target genome for structural genome annotation. [164]
Protter Web-based application for protein feature visualization and integration with

experimental data.
[165]

TopFIND Knowledgebase for protein termini, terminus modifications and underlying proteolytic
processing.

[166]

VESPA Visual analysis software integrating proteomics and transcriptomics data into a genomic
context.

[167]

a)Abbreviations not defined by description: GFS: genome fingerprint scanning; IPiG: integrating peptide spectrum matches into genome
browser visualizations; IGV: integrated genome viewer; MSMSpdbb: multistrain MS prokaryotic database builder; PMT: Proteogenomic
Mapping Tool
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5 Concluding remarks

Proteogenomic methods are still facing several key challenges
that stand in the way of large-scale application of proteomics
to genome annotation. One of the main concerns for nearly
all MS-based proteomic studies is low sequence coverage. In
addition, there is a notorious need for improved data mining
methods and bioinformatics tools. Finally, in order to obtain
high proteome coverage, one often needs to apply multiple
growth conditions together with several separation and/or
fractionation techniques prior to MS/MS analysis. Despite
all of its shortcomings, proteogenomics analysis provides the
ultimate validation of expressed gene products on a large scale
and leads to correct interpretation of genomic sequences. Ex-
perimental verification of predicted hypothetical proteins and
discovery of novel coding regions can be considered as one
of the most important outcomes of proteogenomic studies.
Moreover, specific applications designed to characterize var-
ious protein-processing events and PTMs are invaluable in
deciphering the actual biological function.
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