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Abstract

Formal generalized sketches is a graph-based specification format that borrows its main ideas from cate-
gorical and ordinary first-order logic, and adapts them to software engineering needs. In the engineering
jargon, it is a modeling language design pattern that combines mathematical rigor and appealing graphical
appearance. The paper presents a careful motivation and justification of the applicability of generalized
sketches for formalizing practical modeling notations. We extend the sketch formalism by dependencies
between predicate symbols and develop new semantic notions based on the Instances-as-typed-structures
idea. We show that this new framework fits in the general patterns of the institution theory and is well
amenable to algebraic manipulations.

Keywords: Diagrammatic modeling, model management, generic logic, categorical logic, diagram
predicate, categorical sketch

1 Introduction

People like drawing pictures to explain something to others or to themselves. When
they do it for software system design, they call these pictures diagrams or diagram-
matic models and the very notation for them a modeling language. Syntax of dia-
grams is accurately specified in the so called metamodel but the intended meaning
or semantics of diagrammatic constructs often remains intuitive and approximate.
Sometimes it is so fuzzy that the construct becomes close to be meaningless at all,
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in which case the experts advise to consider it as a modeling placebo (for exam-
ple, this is how the construct of aggregation is treated in [23]). Until recently, this
state of the art did not bother the modeling community too much: diagrammatic
models were mainly used as a communication medium between business experts,
software architects and programmers, and their precision was (although desirable)
not a must.

The situation has dramatically changed a few years ago with the rapid invasion
of the model-centric trends in software industry. Model-Driven Engineering (MDE),
Model-Driven Development (MDD), Model-Driven Architecture (MDA) are differ-
ent names of basically the same movement aimed at making models rather than
code the primary artifacts of software development with code to be generated di-
rectly from models [24]. Needless to say that for MDD it is extremely important to
have a precise formal semantics for diagrammatic notations. The industrial demand
greatly energized building formal semantics for diagrammatic languages in use, and
an overwhelming amount of them was proposed. A majority of them employ the
familiar first-order (FO) logic patterns and string-based formulas, and result in
bulky and somewhat unwieldy specifications. It is caused by the unfortunate mis-
match between the string-based logical machineries and the internal logics of the
domains to be formalized. Roughly, the latter are conceptually two-dimensional
(graph-based) and class-oriented (are “sortwise”) while the former are string-based
and element-oriented (are “elementwise”).

In the next section we discuss these problems in more detail and argue that the
machinery of the so called generalized sketches proposed in [21,7,12], or the Diagram
Predicate logic (DP-logic), offers just that apparatus which industry needs because
it is inherently sortwise and graph-based (see also the discussion in [9]). We believe
that as soon as modeling and modeling language design are becoming common
tasks in software industry, DP-logic may become a practical logic for diagrammatic
modeling in software engineering. That is why a clear presentation of DP-logic
suitable for an engineer becomes an important task.

This paper has three main goals.
(a) The first is to motivate the applicability of the DP-logic pattern for formal-

izing practical diagrammatic notations used in software modeling. We show that
generalized (rather than classical categorical) sketches appear on the scene quite
naturally. In addition, it is very convenient to record some logical rules right in the
signature of predicate symbols by introducing dependencies between the predicates
[28].

(b) The second is to carefully define and explain this pattern in a way close
to how a software engineer thinks of diagrammatic modeling. Particularly, it is
important to “switch” from viewing semantics as a structure-preserving mapping
from a specification to some predefined universe (the indexed view as it is customary
in categorical logic) to the dual view of semantics as a structure-preserving mapping
to a specification (the fibrational view). This is nothing but the idea of typing, which
is ubiquitous in software engineering, and we will refer to this semantics as IATS
(Instances As Typed Structures) (see [10] for the role of IATS in database metadata
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management). Mathematically, this switch is a special instance of the well-known
duality between indexed and fibred categories.

As for the syntactic side of DP-logic, we tried to present it in a way parallel to
how the syntactic basics of the ordinary FOL are usually presented. A corner-stone
of this parallelism is a simple observation that a labeled diagram is nothing but a
graph-based analog of a formula. More accurately, the notion of labeled diagram
is quite generic and an ordinary logical formula P (x1...xn) is just a specific syntax
for a labeled diagram whose shape is the arity set α(P ) of predicate P and the
list x1...xn encodes a mapping from α(P ) to the set of variables used for building
formulas. Then the notion of sketch naturally appears as a set of graph-based
atomic formulas over a fixed set of names (variables). Table 1 below presents this
and other parallels.

(c) Building DP-logic along the lines of (a,b) leads to a (quite natural yet)
somewhat unusual logical formalism. It is not clear a priori whether it fits in the
standard framework for “logic management” offered by the institution theory [17].
Thus, our third goal is to investigate whether DP-logic gives rise to an institution.
In the IATS semantics, forgetful functors are defined by pullbacks and semantics
becomes functorial only “up to isomorphisms”. That is, in the fibred semantics
setting, we cannot expect more than that the forgetful functors between categories
of models constitute an overall lax (or pseudo) “model functor”. We will indeed
show that DP-logic provides a pseudo institution for any fixed signature of diagram
predicates ΠΠΠ. We will also show that ΠΠΠ-sketches and their instance semantics form
a lax specification frame [14].

In more detail, the contents of the paper is as follows. In section 2 we carefully
motivate essential features of the machinery we are going to define: what are the
benefits of classical categorical sketches, why we need their modification to general-
ized sketches, and why it is convenient to introduce dependencies between predicate
symbols. In addition, we argue for IATS semantics as opposed to indexed seman-
tics. In section 3 we first consider and discuss two simple examples of modeling
with sketches, and then (subsection 3.2) discuss how to specify systems of mod-
els/sketches in the institution framework. These two sections aim mainly at goals
(a) and (b). Section 4 presents a framework of accurate definitions and immediate
results based on them, and culminates in Theorem 4.16 and 4.19 stating the main
results described in (c) above.

2 A quest for logic convenient for diagrammatic mod-
eling

2.1 Categorical sketches vs. first-order logic.

A key feature of universes modeled in software engineering is their fundamental
conceptual two-dimensionality (further referred to as 2D): entities and relation-
ships, objects and links, states and transitions, events and messages, agents and
interactions; the row can be prolonged. Each of these conceptual arrangements is
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quite naturally represented by a graph – a 2D-structure of nodes and edges; the
latter are usually directed and appear as arrows. In addition, these 2D-structures
capture/model different aspects of the same whole system and hence are somehow
interrelated between themselves. (For example, events happen to objects when the
latter send and receive messages over dynamic links connecting them. These events
trigger transitions over objects, which change their states). Thus, we come to an-
other graph-based structure on the metalevel: nodes are graphs that model different
aspects of the system and arrows are relations and interactions between them. The
specificational system of aspects, views and refinements can be quite involved and
results in a conceptually multi-dimensional structure. However complicated it may
seem, this is the reality modern software engineers are dealing with (and languages
like UML try to specify).

Describing this multidimensional universe in terms of FO or similar logics, which
are based on string-based formulas talking about elements of the domains rather
than their relationships, flattens the multi-level structure and hides the connections
between the levels. This results in bulky and unwieldy specifications, which are
difficult (if at all possible) to understand, validate, and use.

A radically different approach to specifying structures, which focuses on relation-
ships between domains rather then their internal contents and is essentially graph-
based, was found in category theory (CT). It was originated by Charles Ehresmann
in the 60s, who invented the so called sketches (see [26] for a survey); later sketches
were promoted for applications in computer science by Barr and Wells [2] and ap-
plied to data modeling problems by Johnson and Rosebrugh [19]. The essence of
the classical sketch approach to specifying data is demonstrated by Fig. 1.

Figure 1(a1) shows a simple ER-diagram, whose meaning is clear from the names
of its elements: we have a binary relation O(wner)ship over the sets House and
Person, which also has an attribute date. In addition, the double frame of the node
House denotes a so called weak entity [25]: there are no House-objects besides those
participating in the relationship. A sample of another notation for data modeling,
the now widely spread UML class diagrams, is shown in Fig. 1(a2). The edge
between classes House and Person is called an association; labels 0..* and 1 near
association ends are multiplicity constraints. They say that a Person(-object) can
own any number of House-s including zero, and any House is owned by exactly one
Person.

Evidently, data described by models can be seen as a configuration of sets and
mappings between them. In the classical Ehresmann’s sketch framework, this can
be specified as shown in column (b) of Fig. 1. The upper sketch (b1) graphically
consists of three pieces (above and below the dashed line) but actually consists of
the carrier graph (the graph above the line) and a few labeled diagrams. The label
“limit” is hung on the arrow span (H × P, p, o) (note the double arc) and declares
the span to possess a special limit property. This property makes the set H × P

the Cartesian product of House and Person (see, e.g., [2] for details). Similarly,
the set Date is declared to be the Cartesian cube of the set Integer of natural
numbers. Two additional diagrams below the dashed line force the arrows in and
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Fig. 1. A sample of sketching diagrammatic notations

pro to be, respectively, injective and surjective by standard categorical arguments
[2]. Particularly, it implies that the set Oship is a subset of Cartesian product and
hence is a relation. In other words, an Oship-object is uniquely determined by a
House-object and a Person-object. Finally, two labels [=] declare the corresponding
diagrams of mappings to be commutative so that mappings pro and own are indeed
projections of the relation Oship. In the lower sketch (b2), the lower arrow is the
identity mapping of set Person (the label “id” is a predicate rather than an arrow
name), and hence the label “limit” declares the set owns with two projections to be
the graph of mapping isOwned. This is basically the meaning of the UML diagram
(a2): mapping isOwned is total and single-valued (the default property of arrows
in column (b)) while mapping owns is a relation inverse to isOwned.

The limit and colimit predicates are amongst the family of the universal proper-
ties of sets-and-mappings diagrams. This family of predicates is extremely expres-
sive and allows us to specify arbitrary properties of arbitrary sets-and-mappings
configurations. 3 Particularly, if the configuration in question specifies the seman-
tics of a diagrammatic model D (say, a ER or UML diagram), the corresponding
sketch S(D) appears as a precise formal counterpart of D. We will call this pro-
cedure sketching the diagrammatic models. It provides a powerful mathematical
framework for formalization and analysis of their semantics, see for example [19,22]
for several useful results about ER-diagrams.

3 In fact, since formal set theories can be encoded by universal predicates (by mapping them into toposes),
we can say that any formalizable property of sets-and-mappings configurations can be expressed by universal
diagram predicates and thus represented in the sketch language.
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2.2 Why generalized sketches?

Although mathematically elegant, the classical sketch approach has several inherent
drawbacks in engineering applications. For instance, in order to declare a simple fact
that O(wner)ship is a binary relation, we were forced to introduce a few auxiliary
elements into our specification. A similar complication occurred for specifying a
simple surjectivity property. Note also that while extensions of nodes House and
Person are to be stored in the database implementing the specification, extension
of node H × P is (fortunately!) not stored. Similarly, classical sketch (b2) looks
much more complicated than the original UML diagram. Thus, before we assign a
precise semantic meaning to ER- or UML-diagrams, we need to apply to them some
non-trivial transformations, and only after that the patterns of categorical logic can
be used. From the view point of a software engineer, these transformations look
artificial, unnecessary, and misleading.

Fortunately, the deficiency of the classical sketch framework mentioned above
can be fixed while preserving the benefits that algebraic logic brings to the subject.
The idea is demonstrated in column (c) of Fig. 1. Consider the upper specification
(c1). We still want to specify the type of O(wner)ship-elements externally via
mappings rather than internally (as is done in FOL), but we do not want to introduce
the Cartesian product H × P into the specification. The crucial observation that
allows us to accomplish the task is well-known: for a given span of mappings, e.g.,
O = (Oship, property, owner), its head Oship is isomorphic to a relation iff the legs
(projection mappings) possess a special property of being jointly injective or jointly
monic. The latter means that for any two different objects of type Oship, at least
one of the leg mappings gives two different values (see [16] for details of an abstract
formulation). This property of a family of mappings/attributes is well known in
database theory under the name of key. Thus, we declare the span O to be a key
and come to the specification shown in Fig. 1(c1).

Note also that label [Integer] is not the name of the node but a predicate label
declaring the extension of the node to be the set of integers. Thus, the specification
in Fig. 1(c1) presents a graph G, in which four diagrams are marked by predicate
labels taken from a predefined signature. If Π denotes the signature, we will call such
specifications generalized Π-sketches or just (Π-)sketches. The semantic meaning of
such a sketch can be given by a graph morphism [[ ... ]] : G → Set into the graph Set
of sets and mappings, which is compatible with the predicate labels in the sense
outlined above. For example, the span ([[ property ]],[[ owner ]]) is a key.

Similarly, specification (c2) presents another graph G with two labeled diagrams:
arrow isOwned is labeled with its multiplicity constraint, and the pair of arrows is
labeled with predicate [inverse] declaring the corresponding mappings to be mutu-
ally inverse. The semantics of such a specification is given by a graph morphism
[[ ... ]] : G → Rel into the graph Rel of sets and partial multi-valued mappings (bi-
nary relations), which is compatible with the predicate labels. That is, mapping
[[ isOwned ]] is totally defined and single-valued (because of the multiplicity [1]) and
mapping [[ owns ]] is inverse to it. From now on, the term sketch will mean generalized
sketch, that is, a graph-based object endowed with diagrams labeled by predicate
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symbols. Sometimes, when we want to remind that our sketches are formal objects
rather than informal pictures, we will write formal sketches.

2.3 Semantics for generalized sketches, engineeringly

The passage from classical to generalized sketches does not finish our quest for
specification machinery suitable for the modern software modeling. The point is that
viewing semantics of a sketch as a mapping into Set or another semantic universe is
not customary for a software engineer. In more detail, this view works well for the
value-type part of the model, in our example, the part consisting of nodes Integer
and Date and arrows between them. The primitive types (Integer in our case) have
a special predefined semantics, and it has a fixed implementation in the computer
system. The situation with the class part of the models (the Oship-span in our
example) is different. This part can be considered as a UML class diagram G with
a span of directed associations, see Fig. 2(b). UML defines a semantic instance
of a class diagram to be a graph O of objects (nodes) and links (arrows) between
them, which are typed/classified by class and association names respectively, see
Fig. 2(c), where type labels are shown after colon (and in violet with a color display).
Mathematically, labeling amounts to a graph mapping τ : O → G (with G being
the graph presenting the class diagram), which must satisfy diagram predicates
attached to G. For example, the upper instance is not valid because two different
Oship-objects have the same value (property,owner) (predicate [key] is violated),
and object MarbleVilla is not in the range of mapping property (predicate [cov] is
violated too). Note that by inverting the mapping τ we come to mapping G → Rel
rather than Set. Indeed, if f : A → B is an arrow in graph G, the set of arrows τ−1(f)
in O represents, in general, a relation between the sets of nodes τ−1(A) and τ−1(B)
in O rather than a single-valued mapping between them. For example, for the lower
instance in Fig. 2(c2), τ−1(property) = {p12, p22, p31, p32} is a binary relation from
τ−1(Oship) = {O1, O2, O3} to τ−1(House) = {HillHouse, MarbleVilla} .

Semantics as IATS (Instances As Typed Structures) is ubiquitous in software en-
gineering. For a software engineer it is customary to think of an instance of a model
G (a graph or another structure) as a structure O similar to G, which amounts to a
structure preserving mapping τ : O → G. Note also an unfortunate mismatch with
use of the term “model” in logic and engineering. In software engineering, a model
normally refers to a syntactic concept while a corresponding semantic concept is
called a model’s instance. In mathematical logic, syntactic constructs are normally
called specifications or theories while models are their semantic counterparts, “a
model of a theory”. In the paper we will use the terms models and instance in the
engineering sense.

2.4 Dependencies (arrows) between predicate symbols

For the relational interpretation of arrows, being a single-valued or/and a totally de-
fined relation become special properties to be explicitly declared rather than taken
for granted like in the Set-valued semantics. Hence, we need to include the cor-
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responding predicates into our signatures for everyday modeling. However, single-
valued and total mappings still play a special role, and some diagram predicates
like, e.g., [key], assume that all the participating arrows are such. In other words,
if a span is declared to be a key, all its legs are automatically assumed satisfying
the predicates of being single-valued and total. We say that there are dependencies
[key] � [tot] and [key] � [s-val]. Of course, less trivial dependencies between predi-
cates are also possible. It follows then that a signature is a graph, whose nodes are
predicate symbols and edges are dependencies between them. A simple example in
Fig. 2(a) demonstrates the idea.

The signature consists of three predicate symbols of arity shape “arrow” and
one predicate symbol of arity “binary span”. In addition, there are four arrows ri,
i = sk1, sk2, tk1, tk2 between the predicates, whose arities are mappings between
the arity shapes. For example, the arrow rsk1 : [s-val] → [key] denotes dependency
[key] �rsk1

[s-val] and its arity ααα(rsk1) is the graph mapping sending the only arrow
of [s-val]’s arity to the left leg of [key]’s arity span. It means that if a span of arrows
is declared to be a [key], then its left leg must satisfy the predicate [s-val]. To ensure
this for the right leg, we introduce another dependency [key] �rsk2

[s-val] with arity
mapping sending the arrow in [s-val]’s arity to the right leg of [key]’s arity span.
The same situation is for the predicate of being totally defined relation.

Declaring a span of arrows in graph G as a [key], for example, means to define
a graph mapping d : ααα[key] → G from the arity shape of [key] into G. The de-
pendency [key] � [s-val] entails then that any declaration d : ααα[key] → G causes a
corresponding declaration ααα(rsk1); d : ααα[s-val] → G of an [s-val] arrow. Note that,
due to pre-composition, the direction of arity mapping becomes opposite to the
direction of dependency. We have chosen here to formalize dependencies by arrows
between predicate symbols going in the direction of arity mappings. A convenient
mnemonics for this is to use a special arrow-head for arrows between predicate sym-
bols as shown in Fig. 2(a). Thus, a signature is a graph (category) ΠΠΠ of predicate
symbols and dependencies between them, which are endowed with arities: a graph
ααα(P ) for a node/predicate P ∈ ΠΠΠ and a graph mapping ααα(r) : ααα(P ) → ααα(Q) for an
arrow/dependency r : P Q. In the next section we will see an example of how
such a signature could work.

3 Modeling via sketches.

In this section we first consider two simple examples of modeling with sketches, each
one using sketches over a different base category, Set and Graph, where the arities
of predicate symbols live, and then outline their generalization (section 3.3). The
reader may find it helpful to look at the upper part of Table 1 while reading the
examples. In section 3.4, we discuss how to specify systems of models in the sketch
framework.
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Graph-based logic String-based logic

Diagrams/Formulas and Substitutions

Arity shape of a predicate P , αP ∈ Graph Arity set, αP ∈ Set. Elements of this set are
usually named by natural numbers

Carrier object/structure, graph G ∈ Graph Set of variables/context, Γ ⊂ Var ∈ Set

Structural element (node or arrow), e ∈ G Variable, x ∈ Γ

Mapping of carriers, s : G → G′ Variable substitution, s : Γ → Γ′

Labeled diagram, G � P (d), with d : αP → G Atomic formula in a fixed context, Γ � P (x),
where x = x1...xn, i.e., x : αP → Γ

Set of labeled diagrams over a carrier G, Set of atomic formulas in a fixed context,

Fm(ΠΠΠ,G) Fm(Π,Γ)

Dependencies and Derivations

Predicate dependency, r : Q P
with arity substitution rα : αQ → αP

(Meta-)inference rule r :
P (a,b,c)
Q(b,b)

with

(metavariables) a, b, c ranging over Γ

Derivation/labeled sequent, r : Q(rα; d) P (d) Labeled sequent P (x7, x3, x4) �r Q(x3, x3)

Graph of all labeled diagrams and all labeled
sequents over the carrier G, FmFmFm(ΠΠΠ,G)

Graph of all atomic formulas and all labeled se-
quents in a fixed context Γ

Sketch = Structure + Constrains, G = (G,TTT )
with TTT a subgraph of FmFmFm(ΠΠΠ,G) closed w.r.t.
derivations

Theory, Γ � T or �Γ T , where T ⊂ Fm(Π, Γ)
and is closed w.r.t. all applications of the infer-
ence rules

Table 1
String-based logics as “graph-based” logic based on sets rather than graphs: Syntax

3.1 DP-logic over Set: Painting objects (or business modeling for dummies :)

A typical situation one encounters in modeling is categorization of objects into
classes or types. We have a set of objects O, a set of types T (which are just
names/symbols) and a typing mapping τ : O → T . For example, if T consists of
four labels red, blue, black, and white, then a typing mapping would classify the
set of objects into “red”, “blue”, “black”, and “white” instances. In the modern
jargon, the set {red, blue, black, white} is called the model and any mapping τ as
above is its instance.

So far, any mapping τ : O → {red, blue, black,white} is considered to be a legal
instance of our model. Suppose however that by some business rule, the number of
red objects must be always less than the number of blue objects, and the number
of black objects is less than that of white ones. To specify this requirement, we first
introduce into our specification language a binary predicate P , and then add to our
model two predicate declaration or formulas P (red, blue) and P (black,white).

In more detail, the predicate symbol P has the arity set consisting of two el-
ements (placeholders), for example, 1 and 2. A typing mapping ω : Ω → {1, 2}
is considered to be compatible with P iff |ω−1(1)| < |ω−1(2)|. Formally, se-
mantics of our predicate symbol P is the set [[P ]] of ω’s satisfying the require-
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ment, i.e., we set [[P ]] def=
{
ω : Ω → {1, 2} ∣

∣ |ω−1(1)| < |ω−1(2)|}. In predicate
declaration P (red, blue), the bracketed part denotes the mapping d : {1, 2} → T ,
T = {red, blue, black, white}, with d(1) = red, d(2) = blue. Now, an instance
τ : O → T satisfies the declaration P (d) if its part over the range of d is an ele-
ment of [[P ]].

The business logic of our colored objects may require other predicates. For exam-
ple, we may need a ternary predicate Q(1, 2, 3) such that a mapping ω : Ω → {1, 2, 3}
satisfies Q iff |ω−1(1)|+ |ω−1(2)| ≤ |ω−1(3)|. If we now add to our model the decla-
ration Q(red, blue, black), any model’s instance τ in which the total of red and blue
objects is greater than the number of black objects will be invalid/illegal.

Our business logic may be even more complicated in that the rule Q(1, 2, 3) can
be enforced only if the conditions |ω−1(1)| > 10 and |ω−1(2)| > 10 hold. In more
precise terms, we introduce a unary predicate U with semantics |ω−1(1)| > 10,
and then define the arity of predicate Q to be the set {1,2,3} endowed with two
declaration U(1) and U(2). Thus, having a declaration Q(red, blue, black) in our
model automatically means that declarations U(red) and U(blue) are also included.

The description above can be summarized as follows. We have a set of predicate
symbols {U,P,Q}, each assigned with its arity set ααα(..): ααα(U) = {1},ααα(P ) =
{1, 2},ααα(Q) = {1, 2, 3}. In addition, we have two predicate dependencies or rules
r, r′ : U Q, whose arities are mappings ααα(r),ααα(r′) : ααα(U) → ααα(Q) between arity
sets: rα(1) = 1 and r′α(1) = 2, where we write rα for ααα(r). Dependencies serve as
inference rules for formulas in the following way. Having a formula Q(a, b, c) with
variables a, b, c ranging over T = {red, blue,white, black}, we infer from it formulas
U(a) and U(b) by applying dependencies r, r′, in fact, their arity mappings rα, r′α.
We will write r : U(a) Q(a, b, c) and r′ : U(b) Q(a, b, c).

Thus, our logic for “painting objects” is based on the category Set of sets in the
following sense. A signature is a graph (category) ΠΠΠ of predicate and dependency
symbols, endowed with an arity graph mapping (functor) ααα : ΠΠΠ → Set. Simultane-
ously, our models were sets of types, and instances are sets of objects together with
typing as set mappings. Note that specifying simple cardinality constraints (like
those considered above) in terms of classical sketches would be very bulky.

3.2 DP-logic over Graph: Real estate via sketches

We continue our discussion of the upper example in Fig. 1. The semantics of classes
in the diagrams is specified by the formal sketch in the right column of Fig. 2: cell
(a) presents the signature and cell (b) shows the sketch itself. The latter is a graph
containing also three labeled diagrams:

[key](Oship, property, owner), [cov](property) and [s-val](date). (1)

We consider them as predicate declarations or formulas, whose round-bracketed
parts actually encode the following mappings: d1 : ααα[key] → G with d1(01) =

Z. Diskin, U. Wolter / Electronic Notes in Theoretical Computer Science 203 (2008) 19–4128



Fig. 2. Object instances as typed graphs

property, d1(02) = owner 4 ; d2 : ααα[cov] → G with d2(12) = property and
d3 : ααα[s-val] → G with d3(12) = date, where ααα denotes the arity assignment and
G denotes the carrier graph of the diagram (b) (that is, diagram (b) without la-
bels). In addition, other four labeled diagrams are implicitly assumed in the sketch:
they can be inferred by applying dependencies from the signature. For example,
the sketch contains also the diagrams [s-val](property) and [tot](property).

An instance of the sketch is a graph O of objects and links typed by elements
of the sketch so that the incidence between nodes and edges is preserved. A few
samples of such typed graphs are presented in Fig. 2(c1,c2). Their elements are
pairs (e : t) with e denoting an element of O and t denoting its type (shown in
violet with color display). In this way a typing mapping τ : O → G is defined, and
it is easy to verify that it is a graph morphism. In addition, this graph morphism
must satisfy diagram predicates attached to G (and making it a sketch): τ |= P (d)
for all diagrams P (d) in the sketch.

Roughly, this means the following. The semantics of the label [cov] with arity

4 Arrows in the arity graphs are named by the respective pairs of nodes, for example, 01 and 02. Note that
the string-based notation used above in declaration (1) is ambigious and does not say whether d1(01) =
property or d1(01) = owner but in this case it does not matter: the predicate [key] is symmetric.
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ααα[cov] = 1 → 2 is a set of instances ω : Ω → 1 → 2 such that

ω−1(12) : ω−1(1) → ω−1(2) is a covering relation (surjection). The semantics of the

label [key] is a set of instances ω : Ω →
0

1 ← 2
→ such that (i) relations ω−1(01)

and ω−1(02) are totally defined and single-valued, and (ii) the pair of mappings
〈ω−1(01), ω−1(02)〉 is a key. With this semantics of predicate labels, Fig. 2 presents
a valid (c1) and two invalid (c2) instances of the sketch in Fig. 2(b). 5

Remark. We have used the inverse mapping τ−1 for the only sake to shorten
the wording of elementwise specification. Our semantic definition is essentially el-
ementwise rather than setwise. Nevertheless, after all our predicates speak about
sets and mappings, and hence our logic is a logic of sorts, which is however imple-
mented via elementwise specifications. An element-free specification is also possible
via universal properties as it is done with Ehresmann’s sketches, but a concrete
implementation goes via elements.

3.3 Discussion: From models to formal sketches

We have considered examples of diagrammatic logical specifications over categories
Set and Graph. Formalization of other diagrammatic notations used in software
modeling leads to similar logical specifications based on these or similar graph-
based structures. For example, a popular behavioral model, message sequence charts
(MSCs) or close to them UML sequence diagrams, can be formally seen as mappings
between graphs or 2-graphs (having arrows between arrows), see [11] for details. To
manage this variety in a uniform way, we need a generic specification logic, whose
syntactical apparatus is based on an arbitrary category Base from a wide class
encompassing all interesting cases. For example, a good candidate for this class
could be to consider Base to be an arbitrary presheaf topos. We call such a generic
logic a diagram predicate logic over Base, and its specifications/theories are called
(Base-) sketches.

A remarkable feature of the sketch in Fig. 1(c1) is its visual similarity to the
original ER-diagram. We can even consider this diagram as nothing but a specific
visual representation of the sketch, in which the diamond node in ER is just syntactic
sugar for declaring the [key] predicate and in which the [cover] predicate for arrow
property is visualized (in a somewhat misleading way) by double framing the target
of the arrow. In the same way, the sketch in Fig. 1(c2) makes just explicit that the
UML class diagram in (a2) declares actually two opposite multi-valued mappings
representing the same binary relation.

In this way the generalized sketches treatment (sketching the diagrams) offers
both (i) a precise formalization of their semantics and (ii) a framework that is
visually appealing and transparent; as our experience shows, it can be readily un-
derstood by a software engineer. This is also true for the sketch formalization of

5 The lower instance in (c2) is twice invalid: τ−1(property) is not surjective and the pair
〈τ−1(property), τ−1(owner)〉 is not a key.
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UML sequence diagrams [11], and to a lesser extent for sketching UML activity
diagrams (a related discussion can be also found in [9]). These considerations and
our practical experiments with sketching diagrammatic notations in [12,8,11] give
rise to an ambitious thesis: a majority of diagrammatic notations really used in
software engineering can be naturally seen as specific visualizations of the universal
sketch specification pattern.

3.4 From systems of models to institutions built from sketches

Software development process normally results in a complex system of heterogenous
models/specifications. Given a particular modeling language L, e.g., that of ER-
diagrams, or relational database schemas, or a sublanguage X of UML, we form the
corresponding signature of diagram predicates ΠΠΠL like it was shown above for ER-
diagrams. Thus, we have signatures ΠΠΠER, ΠΠΠRel, ΠΠΠUML[X] and so on. Then L-models
can be formalized as ΠΠΠL-sketches, and their mappings as ΠΠΠL-sketch morphisms (de-
fined below in Def. 4.6). Systems of similar models form so called horizontal sections
of the entire model system. Various sorts of model translation, for example, gen-
erating logical relational schemas from ER-diagrams and physical schemas from
logical ones, or Java code from high- through middle- and low-level UML-diagrams
diagrams form the vertical dimension. In the sketch framework, this is formalized
by mappings between sketches in different signatures. Clearly, design of these syn-
tactical mappings and transformation should be based on their semantics. 6 Thus,
we need to relate model mappings and transformations with models’ instances and
arrange it in a coherent mathematical framework. A standard pattern for such
an arrangement is the notion of institution [17]. However, its application to the
DP-logic, that is, relating institution’s ingredients to DP-logic ingredients, is not
straightforward.

In the context of the present informal discussion, it is convenient to call and
denote the institution ingredients in the following way. What is usually called sig-
natures, we will call structure specifications, or i-signatures to distinguish them from
diagrammatic predicate signatures considered above. Correspondingly, i-sentences
are called constraints and i-models are called instances. Thus, an institution is a
quadruple I = (Str, ctrctrctr, instinstinst, |=) with Str a category of structure specifications,
ctrctrctr : Str → Set and instinstinst : Strop → Cat are functors and |= a family of binary
satisfaction relations (|=S : S ∈ Str) satisfying the translation axiom

instinstinst(σ)(m2) |=S1 c1 iff m2 |=S2 ctrctrctr(σ)(c1)

for all σ : S1 → S2 in Str and all c1 ∈ Str(S1), m2 ∈ ctrctrctr(S2). A specifica-
tion/theory/model is a pair S = (S, C) with S ∈ Str the structural part (an
i-signature) and C ⊂ ctrctrctr(S) a set of constraints (i-sentences).

In applications we discussed above, the structural part of models is given by
graphs, Str = Graph or, in general, some category Base of graph-like objects (we

6 Unfortunately, in the current state of the art of software development, models’ semantics is implicit, which
makes model management a very error-prone procedure [3]. It is one of our goals to build a sketch-based
semantics for model management [13].
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may think of Base as a presheaf topos). Constraints are diagrams labeled by pred-
icate symbols from a predefined signature ΠΠΠL. Choosing a semantics interpretation
for predicate symbols (see Def. 4.7 below) provides instances (Def. 4.12), which
should complete this structure to an institution-like formalism (we will show it in the
next section). Thus, an interpreted predicate signature determines an institution. 7

Correspondingly, sortwise signature morphisms are better to be considered together
with their intended semantics interpretations and hence as institution morphisms.
In this way, homogeneous (horizontal) model systems are arranged as institutions
– each one generated by its own interpreted predicate signature ΠΠΠ, while verti-
cal model transformations are based on morphisms of ΠΠΠ-signatures formalized as
institutions morphisms.

In the present paper we deal only with horizontal model mappings and do not
consider (vertical) signature morphisms. One reason is space limitations. Another
reason is that it is appropriate to treat signature morphisms within a more ad-
vanced categorical presentation of the DP-logic than we are going to develop here
(but will address in a forthcoming paper). Thus, in the next section we will build
an institution for the DP-logic over fixed interpreted predicate signature ΠΠΠ and
with Base-objects in the role of i-signatures, Str=Base. It can be done in a
rather straightforward way similar to any other institution built for a functorial
semantics logic, where the reduction, or forgetful, functors are simply defined by
pre-composition. The only point that needs caution is that for our fibred semantics
forgetful functors are defined by pullbacks rather than composition. Since pull-
backs are determined only up to isomorphism, the i-model functor is lax, i.e., is a
pseudo-functor.

4 Generalized sketches as a logical machinery

4.1 Syntax

This subsection presents the syntactic side of the DP-logic. The terminology is
motivated mainly by the case of the base category being Graph, the category of di-
rected (multi)graphs. However, to show parallels with ordinary string-based logics,
we sometimes introduce two names for the same notion: graph-based and string-
based logic motivated. Table 1 makes these parallels explicit. The reader is advised
to consult with this Table while reading definitions below.

Let Base be some base category, arbitrary but fixed throughout the rest of the
paper.

Definition 4.1 [Signatures] A signature over Base is given by a category ΠΠΠ of
predicate and dependency symbols and a functor ααα : ΠΠΠ → Base. For an object P ∈
ΠΠΠ, the Base-object ααα(P ) is called the arity (shape) of P , and for a dependency

7 We say that a signature is interpreted if it has some fixed predefined semantics in the sense of Def.4.7.
Considering predicate signatures appearing in practice as interpreted is quite natural. For example, the
predicate symbol [key] is like a predicate constant of arity “span” with predefined semantics of being jointly-
monic.
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arrow r : Q P in ΠΠΠ, ααα(r) : ααα(Q) → ααα(P ) is called an arity substitution. We will
often write αP for ααα(P ) and rα for ααα(r).

We shall never deal with the situation of a few arity mappings defined on the
same ΠΠΠ, neither we will deal with signature morphisms in this paper. Hence, we can
safely follow the terminological tradition of ordinary FOL and refer to a signature
by the domain of the arity mapping.

Formulas in our generic logic are defined for a fixed context that is chosen inde-
pendently of a given signature.

Definition 4.2 [Formulas and derivations] Let G be an object in Base to be
thought of as the structural base/carrier graph of the specification.

(i) A labeled diagram or a formula over G is a pair ϕ = (P, d) with P a predicate
symbol and d : αP → G a morphism (usually called a diagram of shape αP in the
categorical jargon). Following notational traditions of string-based logics, we will
denote formulas by expressions P (d), and write G � P (d) if we want to make the
context/carrier object explicit. Let

Fm(ΠΠΠ,G) = {P (d) | P ∈ ΠΠΠ, d ∈ Base(αP, G)}

denote the set of all ΠΠΠ-labeled diagrams/formulas over G.
(ii) A derivation over G is a triple 〈r, Q(rα; d), P (d)〉 with r : Q P a predi-

cate dependency in ΠΠΠ, and P (d) a formula over G. We will write such a derivation
as a labeled sequent, r : Q(rα; d) P (d) and say that it is produced by apply-
ing the dependency/rule r : Q P to P (d). In this way, predicate dependencies
serve as inference rules.

In general, the same formula Q(rα; d) can be derived with another depen-
dency r′ : Q P if rα; d = r′α; d. Identical dependencies provide identi-
cal sequents since (idQ)α = idαQ for all predicate symbols Q. Moreover, we
have qα; pα = (q; p)α for all composable dependencies q : Q R, p : R P ,
and the associativity of composition in Base ensures that labeled sequents
q : Q(qα; (pα; d)) R(pα; d) and p : R(pα; d) P (d) compose to a labeled se-
quent q; p : Q((q; p)α; d)) P (d). In such a way, the set of formulas together
with the set of labeled sequents defines a category FmFmFm(ΠΠΠ, G) (note the bold font).

As most of specification formalisms, DP-logic offers translations of formulas
caused by variable substitution. Let s : G → G′ be a morphism in Base, which
we may think of as a substitution of names/variables. The translation of formulas
is based on the functor s∗s∗s∗ : Base↓G → Base↓G′ defined by s∗s∗s∗(A, d) def= (A, d; s)
for all objects (A, d : A → G) in Base↓G and by s∗s∗s∗(f) def= f for all morphisms
f : (A, d) → (B, e) in Base↓G. 8

Construction 4.3 (Formula substitutions) Given s : G → G′ and formula ϕ =
P (d), we define s∗s∗s∗(ϕ) def= P (s∗s∗s∗(d)) = P (d; s). Substitution preserves derivations in

8 We remind that the slice category Base↓G has pairs (A, d) with d : A → G as objects, and arrows
f : A → B in Base such that f ; e = d as morphisms.
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the following sense. Given a derivation

G � Q(rα; d)
r

P (d),

we translate P (d) to s∗s∗s∗(P (d)) = P (d; s) and Q(rα; d) to s∗s∗s∗(Q(rα; d)) = Q[(rα; d); s].
By associativity of composition in Base, the latter formula can be rewritten as
Q[rα; (d; s)] and hence we have a derivation

G′ � s∗s∗s∗(Q(rα; d))
r

s∗s∗s∗(P (d)).

It is easy to check that in this way a substitution s : G → G′ gives rise to a
functor FmFmFm(s) : FmFmFm(ΠΠΠ, G) → FmFmFm(ΠΠΠ, G′) between formula categories.

Corollary 4.4 (Formula functor) The assignments G �→ FmFmFm(ΠΠΠ, G) and s �→
FmFmFm(s) define a formula functor FmFmFmΠΠΠ : Base → Cat. 9

We call specifications or theories in DP-logic sketches.

Definition 4.5 [Sketches] A sketch over a signature ΠΠΠ is a pair G = (G,T ) with G

the carrier graph (an object in Base) and T ⊂ Fm(ΠΠΠ, G) a set of diagrams/formulas
over G. In addition, for any arrow r : Q P in ΠΠΠ the following inference condi-
tion must hold:

(Inf) if formula P (d) ∈ T then Q(rα; d) ∈ T as well.

In other words, the formula set T is closed under inference rules recorded in the
signature and can be called a ΠΠΠ-theory (hence, the letter T ).

By taking the full category generated by T in the category FmFmFm(ΠΠΠ, G), we come
to a theory category TTT . Thus, a sketch can be considered as a pair G = (G,TTT ) with
TTT a subcategory of FmFmFm(ΠΠΠ, G) closed under all derivations (and hence being a full
subcategory).

The usual requirement for a morphism between specifications that the target
specification has to entail the translated source specification is reflected in DP-logic
by the existence of functors.

Definition 4.6 [Sketch morphisms] A morphism s : G → G′ between sketches G =

(G,TTT ) and G′ = (G′,TTT ′) is a substitution s : G → G′ such that the translation of
formulas FmFmFm(s) : FmFmFm(ΠΠΠ, G) → FmFmFm(ΠΠΠ, G′) restricts to a functor 〈〈sss〉〉 : TTT → TTT ′.

The category of sketches and their morphisms over a fixed signature ΠΠΠ will be
denoted by Ske(ΠΠΠ).

4.2 Semantics of a sketch

Consider an object G ∈ Base as a model (in the engineering sense). Then, in the
fibred (IATS) view of semantics, any morphism τ : O → G is an instance of/over G,

9 Note, that in contrast to most institutions presented in the literature, the formula functor is a functor
into Cat and not only into Set.
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Fig. 3. Semantic notions

thus the category of all instances over G is given by the slice category Base↓G.
We will denote isomorphisms in this category by ∼=.

An object G is a purely structural model without any constraints. In the DP-
logic, the latter are diagrams in G, and we need to define the notion of satisfiability
of diagrams by instances. We do this below via the operation of pullback, and hence
we assume that Base has pullbacks. In more detail, for every arrow cospan (x, y)
in Base, we choose a fixed pullback span (x∗, y∗) = PB(x, y) with the following
notational agreement. If x∗, y∗ are “parallel” to x, y respectively, we write x∗ def=
PBy(x) and y∗ def= PBx(y). Then the familiar lemma that composition of pullbacks

is again a pullback takes the following form: PBx1;x2(y)
i∼= PBx1 [PBx2(y)] with

i = i(x1, x2, y) a canonical isomorphism satisfying the corresponding coherence
conditions.

Clearly, before defining the next ingredient for an institution, namely, the satis-
faction relation between G-instances and diagrams over G, we have to fix a semantic
interpretation for the predicate symbols in our signature.

Definition 4.7 [Semantics of Signatures] Given a signature ααα : ΠΠΠ → Base, its se-
mantic interpretation is a mapping [[ .. ]], which assigns to each predicate symbol
P a set [[P ]] ⊂ {τ ∈ Base | codτ = αP } of valid instances, where [[P ]] is assumed
to be closed under isomorphisms: τ ∈ [[P ]] implies i; τ ∈ [[P ]] for any isomor-
phism i : O′ → O in Base. The semantic interpretation is consistent if for any
dependency r : Q P in ΠΠΠ and any valid instance τ : O → αP of P , the induced
instance τ∗ def= PBrα(τ) is a valid instance of Q (Fig. 3a). Below we will assume
consistency by default (see Remark 4.11).

Example 4.8 Consider the signature specified in Fig. 2. For a graph mapping
τ : O → G, we form another graph mapping τ−1 : G → Rel into the category of sets
and binary relations. For the predicates P = [s-val], [tot], [cov], τ ∈ [[P ]] iff, re-
spectively, τ−1(12) is a single-valued, totally defined, covering relation, where 12 is
the only arrow of the arity graph of these predicates. For the predicate P = [key],
τ ∈ [[P ]] iff (a) the legs of the span (τ−1(01), τ−1(02)) are totally defined single-
valued mappings and (b) the span is jointly monic (i.e., is a key to the set τ−1(0)).
Condition (a) ensures consistency.
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Now we define satisfiability of formulas in semantic instances.

Definition 4.9 [Satisfaction relation] Let G be an object in Base and τ : O → G

its instance. We say that this instance satisfies a labeled diagram/formula P (d)
over G and write τ |=G P (d), iff τ∗ def= PBd(τ) ∈ [[P ]] (see Fig. 3b).

In other words, an instance of some model satisfies a labeled diagram/formula
over this model if the part of this instance over the diagram is a valid instance of
its label. The consistency assumption ensures soundness w.r.t. derivations.

Proposition 4.10 (Soundness) If τ |=G P (d) and r : Q(rα; d) P (d) is a
derivation, then τ |=G Q(rα; d).

Proof. τ |=G P (d) iff τ∗ = PBd(τ) ∈ [[P ]] and this implies τ∗∗ = PBrα(τ∗) ∈ [[Q ]]
due to consistency (see Fig. 3b). Morphisms τ∗∗ and PBrα;d(τ) are isomorphic in
Base↓G since the composition of two pullbacks is again a pullback. By assumption,
[[Q ]] is closed under isomorphisms, and thus we obtain PBrα;d(τ) ∈ [[Q ]], i.e.,
τ |=G Q(rα; d). �

Remark 4.11 (Consistency) Following the tradition of functorial semantics, the
original definitions of semantics for generalized sketches have been based on indexed
concepts. The obvious idea is to transform a chosen semantic universe U given by
a category like Set, Par, Graph or Cat into a “semantic ΠΠΠ-sketch” U = (U,UUU) by
defining for each predicate symbol P in ΠΠΠ its semantic meaning, that is, the set of
“all valid diagrams” d : αP → U . A model (in the logical sense, i.e., i-model in
terms of section 3.2) of a ΠΠΠ-sketch G is then given by a sketch morphism from G
into U (see [6,7,27,28]).

Such an indexed semantics can be transformed into a fibred semantics, as
presented here, if the underlying category allows for a variant of the so-called
Grothendieck construction [18]. 10 The Grothendieck construction turns composition
into pullbacks, and Proposition 4.10 makes apparent that the consistency condition
in Def. 4.7 is just the “fibred counterpart” of the requirement that U = (U,UUU) has
to be a ΠΠΠ-sketch, i.e., that UUU has to be closed under inference rules recorded in the
signature (compare Def. 4.5). In other words, any indexed semantics, where the
underlying category allows for a variant of the Grothendieck construction, provides
a consistent fibred semantics for predicate signature in the sense of Def. 4.7.

Definition 4.12 [Instances of a sketch] Let G = (G,TTT ) be a sketch. Its instance
is an instance τ : O → G of the structural base, such that all formulas of the sketch
are satisfied: τ |= P (d) for all P (d) ∈ TTT . It gives us the set of all instances Inst(G)
of sketch G.

Let Inst(G) denote the full subcategory of category Inst(G) = Base↓G gener-
ated by the set Inst(G) of all instances of sketch G.

10 In [27], we have analyzed the variant for the category Graph.
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4.3 Semantics of a system of sketches: An institution arrangement

We have already built the syntactic part of the institution with Corollary 4.4 (take
formulas/diagrams as i-sentences). As for semantics, we begin with the following
old result [15, p.16].

Lemma 4.13 (Forgetful Functor) Any morphism s : G′ → G in Base in-
duces a functor s∗s∗s∗ : Base↓G → Base↓G′ right-adjoint to the functor
s∗s∗s∗ : Base↓G′ → Base↓G, s∗s∗s∗  s∗s∗s∗, where s∗s∗s∗(τ) def= PBs(τ) for any instance
τ : O → G of G (see Fig. 3(c)).

Since pullbacks are only determined up to isomorphism, we cannot obtain that
for any morphisms s′ : G′′ → G′, s : G′ → G, the functors (s′; s)∗(s′; s)∗(s′; s)∗ and s∗s∗s∗;s′∗s′∗s′∗ are equal.
We can, however, prove that the functors (s′; s)∗(s′; s)∗(s′; s)∗ and s∗s∗s∗;s′∗s′∗s′∗ are naturally isomorphic.
Moreover, we can prove that the family of those natural isomorphisms satisfies the
corresponding coherence conditions that give rise to

Proposition 4.14 (Instance functor) The assignments G �→ Base↓G and s �→
s∗s∗s∗ define an instance pseudo functor InstInstInst : Baseop → Cat.

The last ingredient of an institution, the so-called satisfaction condition, is ensured
for the fibred semantics by the fact that pullbacks are closed under composition and
decomposition, respectively.

Corollary 4.15 (Satisfaction Condition) For any morphism s : G′ → G in
Base, any instance τ : O → G of the structural base G, and any formula P (d′)
over the structural base G′ we have

τ∗ |=G′ P (d′) iff τ |=G P (d′; s).

Proof. (⇒) τ∗ |= P (d′) means, due to Definition 4.9 and Lemma 4.13, that
τ∗∗ = PBd′(τ∗) = PBd′(PBs(τ)) ∈ [[P ]] (see Fig. 3(c)). The composition of
two pullbacks is again a pullback thus PBd′;s(τ) and τ∗∗ are isomorphic. This
means that PBd′;s(τ) ∈ [[P ]] since [[P ]] is closed under isomorphisms, and thus
τ |=G P (d′; s) due to Definition 4.9.
(⇐) τ |=G P (d′; s) means that PBd′;s(τ) ∈ [[P ]]. We know, however, that the
pullback PBd′;s(τ) can be factored through the pullback τ∗ = PBs(τ), meaning
that we have an isomorphims between PBd′(τ∗) = PBd′(PBs(τ)) and PBd′;s(τ).
This entails PBd′(τ∗) ∈ [[P ]], since [[P ]] is closed under isomorphisms, and thus
τ∗ |= P (d′). �

Summarizing the development so far, we can formulate

Theorem 4.16 ((Pseudo) Institution) Let Base be a category with an opera-
tion of pullback, and ααα : ΠΠΠ → Base be a signature over Base. Then the formula
functor FmFmFmΠΠΠ : Base → Cat, the instance pseudo functor InstInstInst : Baseop → Cat and
the family (|=G| G ∈ Base) of satisfaction relations constitute a pseudo institution.
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One of the insights of the theory of institutions is that the satisfaction condition
allows to extend i-model functors to “generalized i-model functors” for specifica-
tions. For the DP-logic, the standard argumentation instantiates as follows.

Corollary 4.17 If s : G′ → G is a morphism between sketches G′ = (G′,TTT ′) and
G = (G,TTT ) and τ : O → G is an instance of G, then s∗s∗s∗(τ : O → G) = τ∗ : O∗ → G′

is an instance of G′ (see Fig. 3(c)).

Proof. For any formula P (d′) in TTT ′ we have τ |=G′ P (d′; s) = 〈〈sss〉〉(P (d′)) since
s is a sketch morphism and (O, τ) is an instance of G. This, however, implies
τ∗ |=G′ P (d′) due to (one direction of) the satisfaction condition. �

Since Inst(G′) and Inst(G) are full subcategories of Base↓G′ and Base↓G,
respectively, Corollary 4.17 ensures that the forgetful functor restricts to instances.

Proposition 4.18 (Forgetful functor for sketches) For any sketch morphism
s : G′ → G, the forgetful functor s∗s∗s∗ : Base↓G → Base↓G′ restricts to a functor
[[ s ]] : Inst(G) → Inst(G′).

Finally, we can summarize Propositions 4.18 and 4.14 with our second main result.

Theorem 4.19 (Generalized instance functor) For any base category Base
with pullbacks and any signature ααα : ΠΠΠ → Base over Base, the assignments G �→
Inst(G) and (s : G′ → G) �→ [[ s ]] define a pseudo functor InstInstInst : Ske(ΠΠΠ)op → Cat.

5 Historical remarks, relation to other and future work

5.1 Historical remarks.

An early attempt to apply categorical ideas to data modeling can be found in [20].
A real application of categorical logic to data modeling was described in [5], with
a major emphasis on commutative diagrams and less on the universal properties.
In the same context of data modeling, the machinery of generalized sketches was
developed and applied in a few industrial projects in Latvia in 1993-94 [4], and
the corresponding logic presented at Logic Colloquium’95 [7]. Even earlier, Michael
Makkai came to the need to generalize the notion of Ehresmann’s sketches from
his work on an abstract formulation of Completeness Theorems in logic. Makkai
attributed the immediate impetus for him to work out these ideas to Charles Well’s
talk at the Montreal Category Theory Meeting in 1992. Well’s own work went
in a somewhat different direction [1] while Makkai’s work resulted in the notion
(and the very term) of generalized sketch. Makkai also developed a corresponding
mathematical theory that was first presented in his several preprints circulated in
1993-94, and summarized and published later in [21].

Relations between generalized sketches as they are understood by Makkai and
other generalization of the Ehresmann’s concept are discussed in the introduction
to [21]. The “Latvian” version of the definition of ordinary sketches coincides with
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Makkai’s definition (but emphasizes the parallelism between sketches and sets of
atomic formulas in FOL). In addition, the Latvian version defines sketches over
signatures with operation symbols [6], which we do not consider in this paper.

The original definitions of sketch semantics [7,6,21] are based on the “indexed
view” in the sense that semantics of sketches is given by morphisms from specifica-
tions into a semantic universe. Semantic notions based on the “fibrational view”,
i.e., the Instances-as-typed-structures idea, are developed in the present paper for
the first time. An ongoing research project at University of Bergen and Bergen
University College aiming at practical applications of generalized sketches made
apparent instantly the need for dependencies. The corresponding formal concepts
and results have been presented first at LSFA’06 (see [28]).

5.2 Future work

We see the present paper as a common root of two lines (in fact, trees) of future
work. One is to adopt the sketch formalism for formalizing modeling languages
actively used in software engineering practice and specified in the corresponding
industrial standards. Especially intriguing is to try to adapt the sketch patterns for
behavior modeling. We also plan to explore how naturally can sketches be used for
addressing real practical problems.

On the other hand, the formalism poses many interesting and non-trivial math-
ematical problems. (A) Makkai has introduced “multisketches” in [21] and shown
that the category of multisketches is isomorphic to a certain presheaf topos in all
cases, where the base category is a presheaf topos itself (for example, the category
Graph). This result is important for application and implementation of sketches,
and we are going to extend Makkai’s constructions and results to signatures with de-
pendencies. (B) A fully fledged sketch logic going beyond dependencies is still to be
developed. (C) “Sketch operations” are the key to formalize model transformations
and other aspects in Model Driven Development. A full exposition of these opera-
tions has to be given where especially the relation to Graph Transformations and
to the concept of axioms in [21] will be of interest. (D) Finally, there are different
ways to reformulate the definitions and results in this paper in a more categorical
way. An investigation in this direction seems to be not only of theoretical interest.
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