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In this paper, we introduce a novel framework for the compositing of interactively rendered 3D layers

tailored to the needs of scientific illustration. Currently, traditional scientific illustrations are produced

in a series of composition stages, combining different pictorial elements using 2D digital layering. Our

approach extends the layer metaphor into 3D without giving up the advantages of 2D methods. The

new compositing approach allows for effects such as selective transparency, occlusion overrides, and

soft depth buffering. Furthermore, we show how common manipulation techniques such as masking

can be integrated into this concept. These tools behave just like in 2D, but their influence extends

beyond a single viewpoint. Since the presented approach makes no assumptions about the underlying

rendering algorithms, layers can be generated based on polygonal geometry, volumetric data, point-

based representations, or others. Our implementation exploits current graphics hardware and permits

real-time interaction and rendering.

& 2010 Elsevier Ltd. Open access under CC BY-NC-ND license.
1. Introduction

Digital compositing was arguably one of computer graphics’
first mainstream commercial applications. Areas such as motion
picture post-production greatly benefited from automated pro-
cessing. The ability to flexibly combine multiple sources ulti-
mately lead to the widespread adoption of digital special effects
which are now ubiquitous in the film industry. Today, virtually
every image editing software package has the ability to arrange
elements in layers, modify alpha channels, control blending, and
apply effects to individual layers.

In this paper, we focus on the compositing of dynamic 3D
content. Instead of combining static elements such as images,
movie sequences, or pre-rendered 3D animations, an interactive
environment allows the modification of properties such as the
viewpoint for individual layers which are rendered on-the-fly.
Common software tools such as Adobe Photoshop have recently
introduced the ability to embed dynamically generated layers
based on 3D models. However, for the purpose of composing, the
layer content is still treated as a 2D image even though additional
information would be available. One reason for this choice is the
fact that the conventional layered compositing approach, which
assumes 2D layers, is deeply incorporated into these software
packages and the workflow of their users. In this paper, we
present a concept for the integration of 3D layers which preserves
ax: +43 1 58801 18698.
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this intuitive notion, but allows artists to take advantage of 3D
information by extending the operator set of traditional compo-
siting approaches. We deliberately make minimal assumptions
about the algorithms and data structures used to generate layer
content to facilitate non-invasive integration into conventional
image manipulation software.

One of our target applications is the generation of technical,
medical, and scientific illustrations which frequently make use of
selective occlusion overrides and blending in order to produce an
expressive image. Using our approach, an illustrator can modify 3D
properties of the content layers without having to go through the
entire compositing process again. However, the presented approach
is general and not restricted to this particular scenario. While recent
work in illustrative visualization has put special emphasis on the
role of methods employed by graphics artists and illustrators, many
approaches are limited to specific types of scientific data (e.g., scalar
volume data) and/or application domains. Although our approach
can handle dynamically changing 3D layers, it does not require
knowledge about the underlying rendering algorithms. This enables
the flexible integration of different data representations such as
polygonal meshes, volumetric-, and point-based data as well as
different rendering algorithms such as painterly, photorealistic, or
illustrative rendering.

The remainder of this paper is structured as follows: Section 2
reviews related work. In Section 3, we discuss the concepts
behind our hybrid visibility compositing approach. Section 4
presents a technique for masking of dynamic 3D layers. Section 5
details our implementation and Section 6 presents further results.
We discuss our approach in Section 7 and conclude the paper in
Section 8.
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2. Related work

The work presented in this paper is related to several fields.
Our approach is based on the large body of research in the area of
digital compositing. Masking of 3D layers is related to image-
based rendering techniques which attempt to generate novel
views of 3D objects based on partial information. Furthermore, we
were also inspired by illustrative and non-photorealistic render-
ing techniques which aim to reproduce the aesthetic quality of
manually generated artwork using computer graphics.

Digital compositing: Digital compositing dates back to the early
days of computer graphics as a scientific discipline. Alvy Ray
Smith and Ed Catmull combined two images using a third image
of coverage values which subsequently lead to the notion of the
alpha channel [1]. Wallace [2] extended the approach to recursive
blending allowing layers to be composited in any order that obeys
associativity. Porter and Duff [3] introduced the concept of pre-
multiplied alpha and formulated the compositing algebra which is
in widespread use today. For the purpose of anti-aliased
combination of 3D rendering results, Duff [4] proposed the
rgbaz representation which, in addition to color and alpha
channels, also includes a depth value for every pixel. Recent work
by McCann and Pollard [5] extends the flexibility of traditional
compositing by enabling stacking decisions on a per-overlap
basis. However, their approach is designed to provide more
control over the compositing of 2D layers, while the concept
presented in this paper aims at facilitating the integration of 3D
content in a consistent manner.

Image-based rendering: The idea of avoiding expensive render-
ing passes by using compositing to combine parts of a scene gave
rise to the area of image-based rendering. Image-based rendering
approaches attempt to synthesize novel views which closely
approximate correct visibility from information captured during
the generation of a single image. Lengyel and Snyder [6] proposed
a factorization of 3D scenes into independent 2D sprites which
could have different update rates. While their approach attempts
to identify independent 2D layers, our method makes use of the
available depth information and therefore allows full control over
intersecting objects. Nailboards additionally store a depth value
for every pixel of a sprite to enable the rendering of interpene-
trating 3D objects with correct visibility [7]. Layered depth images
contain multiple pixels along each line of sight to enable the
generation of novel views with higher fidelity [8]. These
approaches use layers with additional spatial information to
combine parts of a scene with correct visibility. However, the
focus of our work is different: we want to provide the user with
the ability to selectively override occlusion relationships as it is
common in technical, medical, and scientific illustrations.

Illustrative rendering: Several systems for the generation of
illustrations using computer graphics have been developed.
Dooley and Cohen [9,10] presented approaches for the automatic
generation of semi-transparent line and surface illustrations from
3D models. Pioneering work by Seligman and Feiner [11–13] first
treated the topic of visibility constraints. Their work employed
cutaways and ghosting to resolve visibility conflicts. Preim et al.
[14] presented Zoom Illustrator, a semi-interactive tool for
illustrating anatomic models. Their approach focuses on the
integration of three-dimensional graphics and textual representa-
tions. Diepstraten et al. [15,16] proposed rendering algorithms for
ghosting and cutaway effects. Owada et al. [17,18] developed a
system for modeling and illustrating volumetric objects. They
semi-automatically generate artificial cutting textures based on
surface models. Viola et al. [19] introduced the notion of
importance-based rendering for improved visualization of fea-
tures in volume data. Extending this approach, Bruckner and
Gröller [20] presented a flexible interactive direct volume
illustration system. Rautek et al. [21,22] proposed the use of
semantic layers defined using a fuzzy logic rule base. Cole et al.
[23] proposed a technique for generating architectural illustra-
tions featuring a stylized focus area through local variations in
shading effects and line qualities. Kalkofen et al. [24] used stylized
overlays for focus+context visualization in augmented reality
applications. Li et al. [25,26] presented geometric methods for
generating high-quality cutaway and exploded view diagrams.
Raman et al. [27] discussed a system which uses layer-based
effects to enhance the visualization of volume data. Similar to our
approach, the ClearView system presented by Krüger et al. [28]
uses layered rendering to generate a number of different
transparency effects inspired by traditional illustrations. How-
ever, their approach relies on a globally defined layer order, for
instance nested isosurfaces of a volume dataset. Furthermore,
their method only allows the use of a single spherical focus
region.

In this paper we contribute with a new approach to combining
interactively rendered 3D output based on the communication
goals and stylization requirements of technical, medical and
scientific illustrations. We introduce the notion of hybrid visibility
compositing which allows integration of layered 2D compositing
with 3D visibility operations in a flexible and intuitive manner.
Additionally, we propose a new method for performing common
masking operations based on this concept. The resulting frame-
work enables the interactive generation of 3D illustrations
featuring effects and techniques typically only available in 2D
compositing software.
3. Compositing

Duff [4] was the first to propose the rgbaz representation for
compositing 3D rendered images. In such a representation each
pixel stores, in addition to its color and alpha value, a depth value.
In a way, such an rgbaz image is a generalization of a 2D sprite
[29]—points with color, transparency, and depth, but without any
thickness information. Even though rgbaz layers are not a
complete description of a general 3D object, they are a useful
extension of conventional 2D layers. One of the main reasons why
we choose this representation is that it requires minimal
information about the actual data structures and algorithms used
to provide layer content. A layer may be generated through ray
tracing, rasterization of polygonal models, point-based rendering,
or virtually any other technique capable of producing color and
depth information.

We therefore choose this representation as one of the basic
building blocks of our compositing framework. Each 3D layer is
bound to a renderer instance and captures its output as an rgbaz
image at any time. The content of such a layer may change
dynamically, e.g., due to user interaction or animation. The
compositing engine then decides how these layers are combined
to form the final image. Since current graphics hardware allows us
to easily access its color and depth buffers, one advantage of
employing an rgbaz representation is that no modifications to the
rendering stage are required. This means that the compositing
engine can be used to combine layers produced by a variety of
different rendering algorithms.

3.1. Implicit visibility

In contrast to 2D compositing where the stacking order of
layers is solely specified by the user, rgbaz layers have an implicit

visibility defined by the relative depth values of their pixels. The
general technique for compositing multiple rgbaz layers with
correct visibility is through a per-pixel application of the painter’s
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algorithm: for each pixel, the corresponding depth values of all
layers are sorted and then blended together using the over

operator, i.e., each layer overdraws the layers located behind to a
degree specified by its alpha channel. While such a compositing
algorithm permits the combination of many different rendering
techniques, it does not provide the same level of flexibility as 2D
compositing in which the user has full control over layer order
and blending operators.

3.2. Explicit visibility

Another approach to compositing rgbaz layers is to employ
explicit visibility by ignoring the per-pixel depth values and
defining a stacking order in which blending operators are applied.
This means that the layers are treated as flat images. Their
operators are applied in the same order for all pixels. Employing
explicit visibility for 3D content can be useful for creating
illustrations when a particular layer should be emphasized by
overlaying over layers depicting occluding structures. However, it
also completely discards the additional information provided by
the depth values.

3.3. Hybrid visibility

One of the main complications of implicit visibility composit-
ing is that there is no consistent layer order. Using explicit
visibility, layers can be moved in the stacking order to control
which structures appear in front of each other and this relation-
ship remains true for all pixels of an image. For implicit visibility,
however, there is an inherent layer order which may be different
for each pixel. Ignoring the depth information sacrifices all the
advantages of 3D layers while relying on the implicit visibility
severely limits the range of possible operations. In order to
provide the user with a more intuitive interface based on familiar
2D compositing metaphors while preserving the ability to render
with correct occlusion, we use a hybrid visibility approach which
represents a flexible combination between implicit and explicit
visibility.

As illustrated in Fig. 1, our framework allows the user to
specify a stacking order for the input layers and group them
hierarchically. Just like in conventional 2D approaches, each layer
and group can be assigned a blending operator. Additionally, an
optional layer mask, discussed in detail in Section 4, can be
specified. Compositing is performed by traversing the layer
hierarchy starting with the bottommost layer and blending the
layers using their associated operator. The depth value of an
intermediate image pixel always corresponds to the last layer
which makes a visible contribution to it. For the purpose of
integrating hybrid visibility into this familiar setup we provide a
special set of blending operators which take into account spatial
relationships.
layer hierarchy

Fig. 1. Conceptual overview of our compositing setup. A layer definition is comprised

associated blending operator. Layers are arranged in a hierarchical blending tree as ex

sublayers and the lower highlighted layer consists of five sublayers one of which is its
Fig. 2 illustrates the advantages of hybrid visibility for the
generation of illustrations. In the first row, a manually generated
illustration of a sports car is depicted in the left column. The
center column shows the implicit visibility of a similar 3D model.
In the right column, four individual layers of the car (chassis, tires,
interior, and details) are shown. The second row shows an
example of explicit visibility using the following stacking order
from bottom to top: chassis, tires, interior, details. Even though a
result similar to the manual illustration can be generated by
employing explicit visibility, it does not translate to other
viewpoints. The third row depicts results generated using our
hybrid visibility approach which allows us to closely mimic the
essential features of the manually generated image. Interior and
tires form a visibility chain which uses implicit visibility. The result
is combined with the chassis and the details using occlusion-based

blending. These concepts are discussed in detail in the following
sections.

3.3.1. Visibility chains

A visibility chain is simply a group of layers where, for each
pixel, compositing is performed with implicit visibility. It is
specified using the visibility operator. The chain starts with a layer
that has its operator set to visibility and ends with the first
subsequent layer in stacking order which uses a different
operator—this layer terminates the chain. The compositing result
of the visibility chain is combined with the intermediate image
using the operator specified for the terminating layer. Composit-
ing then proceeds normally with the next layer. The advantage of
visibility chains is that they allow groups of layers to exhibit
correct occlusion relationships among themselves while still
being embedded in the specified layer hierarchy.

For each pixel within a visibility chain, our algorithm first
performs a depth sort of its input layers. Compositing is then
performed by blending the individual layers in visibility order
using the over operator. For additional control, we use a smooth
distance-based weight similar to the blurred z-buffering approach
proposed by Luft et al. [30]. The color rgba used for compositing a
layer Li is a distance-weighted sum of the color of all layers in the
visibility chain:

rgba¼ Li � a
P

jð1�DzðLi � z,Lj � z,Lj �oÞÞLj � rgbaP
jð1�DzðLi � z,Lj � z,Lj �oÞÞLj � a

ð1Þ

Note that in Eq. (1) each layer’s color is pre-multiplied by its alpha
value and that the result will also be an opacity-weighted color.
The function Dzðz0,z1,oÞA ½0,1� is a user-selectable function which
controls the nature of the depth transition. We require the
function to be monotonically increasing with the absolute
difference between its first two arguments. The third argument
oA ½0,1� allows additional control over the particular shape of this
function—increasing o should lead to a sharper transition.
Different types of such transition functions are possible, similar
layer
content

layer
mask

operator

output of a renderer instance

user-brushed masking channel

associated blending operator
conventional operator
occlusion-based operator
visibility operator

of the layer content in form of an rgbaz image, an additional layer mask, and an

emplified in the figure: the upper highlighted layer in the stack consists of three

elf composed of two sublayers.



Fig. 2. Comparison of implicit, explicit, and hybrid visibility approaches to compositing. Top row: Left—manually generated illustration of a sports car. Center—implicit

visibility of a similar 3D model. Right—four individual layers of the model. Middle row: Explicit visibility of the layers from three different viewpoints. Bottom row: Hybrid

visibility of the layers from three different viewpoints. While implicit visibility alone does not capture the subtle effects used in the manual illustration, explicit visibility

leads to distracting results when changing the viewpoint. Hybrid visibility avoids the drawbacks of both approaches. Manual illustration courtesy of &Kevin Hulsey

Illustration, Inc.
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Fig. 3. Graphs of the Dz- function for different values of o.
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to easing curves in animation. In our current implementation, we
use the following definition:

Dzðz0,z1,oÞ ¼ 1�ðsmoothstepðo,1,1�jz1�z0jÞÞ
o

ð2Þ

where smoothstep (a,b,x) is OpenGL’s smoothstep function
typically implemented as u2(3�2u) with u ¼ clamp(0,1,(x�a)/
(b�a)).

If o¼ 0, the value of Dz is always zero. For o¼ 1, the function
value is zero only if z0 ¼ z1 and one otherwise. Fig. 3 depicts
graphs of the Dz-function for different values of o.

If a pixel has the same depth in two layers, the resulting color
will be the opacity-weighted average of the two layers’ colors.
Conversely, if the depth of the pixel in both layers is sufficiently
different, their influence on each other will be zero. The user can
control the distance weighting for each layer in a visibility chain
by modifying its o parameter. The approach can be used to
effectively combat z-fighting, but it also offers an additional
degree of artistic freedom. For instance, the weight may be altered
on a per-layer basis to give a better indication of spatial
relationships or to suggest the softness of a particular object.
Fig. 4 shows an example. The teapot’s body, handle, lid, and spout
are rendered into separate layers and o is globally set to 1, 0.5,
0.25, and 0.
3.3.2. Occlusion-based blending

In addition to the visibility operator, we provide a simple but
powerful extension of conventional blending operators which
allows them to make use of the additional spatial information.
This includes the operators of the Porter–Duff algebra, such as
over, atop, in, and out, as well as further operators typically
present in image manipulation software (e.g., multiply, screen, or
overlay). Our framework allows the use of all these operators in
combination with a blending weight based on the distance
between the layer’s depth z and the current depth of the
intermediate composite zf. The layer’s opacity is multiplied by
the blending weight wo which is computed by

wo ¼
1 if bzobzf

1�Dzðz,zf ,jbjÞ otherwise

(
ð3Þ

where bA ½�1,1� is a user-controlled parameter of the operator. If
b is zero (the default value), the operator will behave exactly like
its two-dimensional counterpart. If b40, the parts in front of the
intermediate image will be shown and parts behind it will
decrease in opacity with increasing distance. Conversely, if bo0
parts behind the current depth of the intermediate composite will
be shown with full opacity and parts in front of it will decrease in
opacity with increasing distance. This enables smooth fading of
layers based on occlusion relationships. For instance, two layers
containing different representations of the same object can be
used to make it shine through an occluding layer with a different
appearance. This effect is demonstrated in Fig. 10 where an
occlusion-based plus operator is used to show an X-ray style
representation of the hand where it is occluded by the lens of the
magnifying glass.



Fig. 4. Soft depth compositing using different values for o: (a) o¼ 1; (b) o¼ 0:5; (c) o¼ 0:25; and (d) o¼ 0.
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4. Masking

A common technique frequently employed for the compositing
of 2D images is masking. A layer mask enables the artist to modify
visibility independent of layer content. It can be utilized to make
structures semi-transparent using smooth transitions, give selec-
tive emphasis to certain objects, or to remove unwanted parts.
Common software packages feature flexible brushing tools to
perform these manipulations (e.g., Adobe Photoshop’s eraser).

When dealing with 3D layers which are generated on-the-fly
and allow interactive modification of the viewpoint, however, the
extension of such tools is not straight-forward. A purely 2D
approach would be invariant to any camera changes and therefore
frequently lead to undesired results when the viewpoint is
modified. When we attempt to operate in object-space, on the
other hand, we face the problem that a rgbaz layer is not a
complete representation of a 3D object. The only 3D information
available is the first visible surface of the object for the current
viewpoint. While the renderer has complete information about
the structure of the object, leaving the task of masking to each
renderer would be prone to much duplication and potential
inconsistencies as well as requiring modification of each render-
ing algorithm. For instance, a layer generated using volume
rendering would need to handle masking operations in an entirely
different manner than a layer generated by rendering polygonal
geometry.

Our approach for masking represents a hybrid image-space/
object-space approach which does not require additional in-
formation other than that provided by rgbaz layers. It can
therefore be used for any kind of layer, irrespective of layer
content. The user simply selects the target layer for the masking
operation and can then paint on it to establish the mask. As soon
as a stroke is placed by brushing over an area, the depth value of
the layer is read. Together with the image-space position this
gives us the 3D location of the stroke under the current viewing
transformation. Applying the inverse viewing transformation
transforms the stroke location into object space. This position,
together with the current brush settings, is stored in a list
associated with the selected layer. Whenever a layer has been
updated by the corresponding renderer (e.g., due to a change of
the viewing transformation) the list of strokes for the layer is
traversed and rendered using splatting [31]. Each stroke is
rasterized as a view-aligned impostor under the current viewing
transformation. For each fragment of the stroke, we now have its
intensity i and depth z. The intensity i is determined by the brush
parameters and can be, for example, a 2D Gaussian with its peak
centered at the stroke’s image-space position. The depth z is
simply the depth of the impostor fragment.

Then, for each fragment of the stroke, the depth zl of the layer
at the fragment’s position is read. As this value is the first
intersection of the viewing ray with the three-dimensional object
represented by the layer, we can use it to estimate how much
influence this fragment of the stroke should have for the current
viewpoint. For instance, if the surface point we originally placed
our stroke on is now occluded by another part of the surface, the
difference between z and zl will be high. Conversely, if the same
point on the surface we placed the stroke on is still visible in the
novel viewpoint, the difference will be zero at that location. Fig. 5
illustrates this behavior. It depicts two stroke centers rendered
from two different viewpoints. From view 1, both stroke centers
lie on the surface, i.e., z¼zl. For view 2, stroke 2 still lies on the
visible surface. The position of stroke 1, however, is occluded by
another part of the object, i.e., the difference between z and zl is
large.

As we want our strokes to vary smoothly in intensity when the
view is changed, we choose to modulate the stroke intensity i

using a weight wb based on the difference between z and zl. This
weight is computed using the previously discussed Dz-function:

wb ¼ 1�Dzðz,zl,gÞ ð4Þ

where gA ½0,1� is a user-controlled parameter of the brush. An
intuitive feature of this approach is that the brush is sensitive to
the properties of the visible surface. If a large brush is chosen the
rendered imposter will be a large flat disc centered at the stroke
position. As the distance between the disc’s depth and the surface
depth modifies the brush intensity, depth discontinuities will
tend to be preserved. Since we store brush strokes using a point-
based representation there are other advantages of our approach:
as the brush strokes are rasterized for every novel view, aliasing is
avoided. Furthermore, parameters such as brush intensity, size, or
shape can be modified after the strokes have been placed.

Typically, the masking channel is used to modulate layer
opacity, i.e., it is multiplied with the a value of the corresponding
layer pixel. To enable further control over the effect of masking,
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Fig. 5. Example of distance-based weighting for brush strokes. Two brush strokes

(stroke 1, stroke 2) generated from the viewpoint view 1 are shown. In view 1,

z¼zl for both strokes, i.e., both strokes receive the maximum weight. When a novel

viewpoint (view 2) is chosen, stroke 1 has zazl due to occlusion, i.e., it receives a

lower weight, while stroke 2 remains visible.
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we provide an additional parameter s in the range [�1,1] which
the user can modify independently for each layer. If sZ0, the a
value for each pixel is additionally multiplied by 1�si, where i is
the brushed intensity for the layer pixel. If s is negative, a is
multiplied by 1�si+s. If s is positive, the layer becomes more
transparent with higher brush intensity. Negative values of s

invert the effect: the layer is transparent where the brush
intensity is zero and becomes more opaque with increasing
values. Setting s to zero disables any effect of masking.
5. Implementation

The techniques described in this paper were implemented as
an extension to an existing rendering framework written in C++
and OpenGL/GLSL. In order to make use of all available renderers
of the framework, the basic display routine was modified to
supply each renderer instance (which represents a layer) with an
offscreen buffer for color and depth instead of the visible
framebuffer. This is possible using the EXT_framebuffer_object
OpenGL extension. For the renderers, this change was completely
transparent—the rendering code did not require any changes. In
fact, the framework now allows the compositing engine to be
switched at runtime. The offscreen buffers are allocated as an
array texture (an array of 2D textures which can be accessed
similar to a 3D texture) provided by the EXT_texture_array
extension. When a renderer instance needs to update itself, it
simply renders a new image into its offscreen buffer–all other
images are left unmodified. This also means that when a user
interaction occurs, only those renderers which are affected by the
change need to re-execute.

The compositing algorithm then uses the current values stored
in the array texture. It is executed for every frame. The significant
improvements concerning conditionals and loops introduced by
the latest generation of graphics hardware allowed us to
implement the whole compositing algorithm in a single-pass
fragment program. This fragment program first reads colors,
depth values, and masking information for every layer. Comple-
tely transparent pixels can be culled during this early stage which
serves as a great source for performance improvement as they do
not have to be considered in the subsequent steps. Compositing is
then performed corresponding to the specified stacking order and
grouping hierarchy. For visibility chains, depth sorting is per-
formed in the fragment program. An additional offscreen buffer is
kept for each layer where masking has been applied. When the
appropriate input event occurs, the current masking parameters
together with the determined object-space stroke locations are
stored in a list associated with the selected layer. Every time a
renderer has updated itself, this information is used to execute
the algorithm described in Section 4. For rendering the strokes as
imposters, we employ OpenGL’s ARB_point_sprite extension
which allows for textured as well as analytically defined brush
tips. One advantage of having the result of several renderers
available as separate layers is that different effects can be applied
selectively. Again, we draw inspiration from 2D image manipula-
tion software which offers a wide variety of layer effects. As our
layers also store depth information even more options are
available. Our framework provides a flexible interface for
integrating these effects. For example, we employ the depth-
based image enhancement approach presented by Luft et al. [32]
which has proven to be a natural extension of common two-
dimensional glow or drop shadow filters.

Although the current implementation of our compositing
algorithm was not optimized for performance, it performs at
frame rates above 20 frames/s for up to eight layers with a
window size of 800�600 pixels on a GeForce 8800 GTX GPU. The
overall performance is heavily dependent on the algorithms and
models used to generate the layer content. For all the results
shown in this paper the frame rate was over 5 frames/s for re-
rendering all layers and effects. As the modification of a layer
mask only requires a re-execution of the compositing pass, it is
independent of layer content.
6. Results

In order to evaluate the utility of the presented techniques, we
consulted a professional medical illustrator with over 25 years of
experience in the field. We attempted to recreate effects and
techniques commonly found in scientific and technical illustra-
tions using 3D models.

The illustration shown in Fig. 6(a) depicts the female
reproductive system. The purpose of the illustration was to clearly
show internal reproductive organs while indicating their placement
within the body. The illustrator used 2D renditions of the individual
elements which were combined in Adobe Photoshop. First, the body
contours were placed on the bottommost layer and a drop shadow
was added to lift the image off the background. The pelvis was then
added as a second layer, its opacity was lowered, and a drop
shadow filter was applied. Additionally, a mask layer was added to
preserve the contour of the body around the genital area.
Reproductive organs were added as a third layer and a layer mask
was employed to lower the opacity of the uterus as it passes behind
the pelvis. Instead of completely masking out the structures behind
the pubic symphysis, the artist chose to keep this area slightly
visible while still indicating to the viewer that these regions are
located behind the pelvis.

Using our approach the process of creating a similar illustra-
tion, as shown in Fig. 6(b), is analogous. Given a suitable 3D
model, the user assigns the respective objects to individual layers.
The same three layers are used: body contours, pelvis, and
internal reproductive organs. The opacity of the pelvis layer is
adjusted and our masking tool is applied, just like in the 2D
workflow. However, instead of manually specifying a mask to
achieve the desired see-through effect for the internal structures,
pelvis and reproductive organs simply form a visibility chain



Fig. 6. Female reproductive system: (a) 2D illustration generated using Adobe Photoshop; (b) 3D illustration generated using our compositing approach; and (c) different

viewpoint of the 3D illustration. Illustrations courtesy of &Kari C. Toverud, MS, CMI.

Fig. 7. Upper gastrointestinal tract: (a) 2D illustration generated using Adobe Photoshop; (b) 3D illustration generated using our compositing approach; and (c) different

viewpoint of the 3D illustration. Illustrations courtesy of &Kari C. Toverud, MS, CMI.

Fig. 8. Generation of a 3D illustration of the human heart: (a) line drawing layer; (b) combination with muscle layer; (c) applying masking; and (d) after rotation.
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which is combined with the body layer using the over operator.
This enables the generation of novel views without requiring any
changes, as shown in Fig. 6(c). Fig. 7 depicts a further example of
how our approach allows the user to employ the same effects as
in 2D illustrations (see Fig. 7(a) and (b)), but enables the easy
generation of novel views with the same hybrid visibility order.
Additional illustrations showing the same topic are therefore
easily created, as demonstrated in Fig. 7(c).

In Fig. 8(a), we show an example of a human heart model
rendered as a line drawing. Then, in Fig. 8(b), a layer depicting the
pericardium (heart muscle) is added. In Fig. 8(c), additional layers
depicting arterial and venous system are enabled. As no visibility
overrides are required, all heart layers form a visibility chain
which terminates with the over operator. The o parameter of the
pericardium is adjusted to make the inner structures of the heart
close to the surface shine through. Masking is then applied to the
line drawing and vascular layers making them fade into the
background. Fig. 8(d) demonstrates that the brushed mask
smoothly translates to other viewpoints.
Fig. 9 depicts an illustration of the human vascular system.
There are five layers: background, skin, skeleton, arterial system,
and venous system. The background layer resides at the bottom,
the skin layer uses the over operator. Skeleton, arteries, and veins
form a visibility chain. The vein layer terminates the chain using
the over operator. Masking has been applied to make these layers
smoothly fade into the skin. Additionally, the o parameter of the
skeleton layer has been adjusted to show blood vessels passing
closely behind bones.

The illustration depicted in Fig. 10 demonstrates that our
approach can also be used to easily generate interactive effects
such as magic lenses. This setup contains two layers generated by
volume rendering of a human hand CT dataset. The first one uses
non-photorealistic isosurface rendering of the skin while the second
one uses maximum intensity projection to achieve an X-ray effect.
The magnifying glass model is split into two layers: lens and body.
The X-ray layer resides in a separate layer group with the lens and
uses the plus operator and a negative b parameter so only the parts
of the layer located behind the lens are added. The result forms a
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visibility chain with skin and body which is combined with the
background layer using the over operator.
7. Discussion

One goal of the work discussed in this paper was to provide a
practical way of incorporating illustrative rendering techniques
into the workflow of illustrators and artists. Many high-quality
illustrative techniques have been presented in recent years.
Fig. 9. Interactively generated 3D illustration of the human vascular system.

Fig. 10. Two viewpoints for a magic lens effect g
However, these methods frequently rely on particular data
structures and algorithms which makes their integration into
professional software tools difficult. While it is possible to
generate many of the effects presented in this paper using
specialized algorithms, our contribution is a general concept
which allows seamless integration of 3D layers into 2D software.
Traditional compositing tools see the increasing need to provide
3D integration. The demand for this kind of functionality is
evidenced by its recent incorporation into widely popular
applications such as Adobe Photoshop. However, in current
implementations 3D layers behave as 2D images with respect to
other layers—there is no way to make use of the visibility
information between two 3D layers. Using our approach, this
functionality could be greatly extended in a non-invasive manner
while still covering the full range of 2D operations.

In a 2D workflow, artists frequently employ manually drawn
layer masks to emulate visibility information for the generation of
see-through and ghosting effects. Visibility chains and occlusion-
based blending have shown to be effective tools to reduce the
number and complexity of manually specified layer masks by
taking advantage of the existing spatial information. Based on the
artist’s intent, however, additional masking is still useful in many
cases. Our hybrid image-space/object-space method for brushing
layer masks closes this gap by also exploiting spatial information
for this operation. During experiments we found that our masking
approach is very similar in behavior to analogous tools in 2D
applications. One has the impression to be manipulating an
image, but masking information smoothly transfers to nearby
viewpoints in a consistent manner. However, it is impossible to
predict the intent of the user in all cases. For example, if a user
paints on one side of a radially symmetric object, it might be
desirable to automatically have the object appear transparent
from all viewing directions along the axis of symmetry. As our
system is completely interactive, these cases can be easily
resolved by rotating the object and placing new strokes. Our
general approach also allows easy integration of additional
specialized tools for this purpose.

We received positive feedback on the utility of our prototype
implementation and the general concept of hybrid visibility for
generating illustrations. As shown in the examples in Section 6,
our approach is capable of closely mimicking the traditional 2D
compositing workflow. The ability of being able to alter an
enerated using our compositing framework.
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existing illustration by modifying the viewpoint was greatly
appreciated and, given the availability of suitable 3D models,
considered to have a high potential of speeding up the production
process. However, as our research prototype does not encompass
the full range of functionality featured in standard software
packages, only the integration of the proposed concepts into a
commercial product is likely to facilitate widespread adoption.
8. Conclusion

In this paper we presented a simple concept for illustrative
compositing of dynamic 3D layers in an interactive environment.
Our approach enables a wide variety of different effects such as
selective occlusion overrides commonly employed in the genera-
tion of scientific and technical illustrations. With our method
these operations can be performed in 3D using an extension of the
familiar layer metaphor. We also proposed a novel technique for
masking of 3D layers. It enables the generation of opacity
transitions which smoothly extend beyond a single viewpoint.
The presented framework makes minimal assumptions about the
underlying algorithms used for rendering the individual layers. By
exploiting the performance of current graphics hardware, high-
quality illustrations of 3D objects can be generated interactively.
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