
Fast Method for Maximum-Flow Problem with
Minimum-Lot Sizes

Submitted by

Vithya Ganeshan

In partial fulfillment of Master of Science
in Informatics

University of Bergen,
Bergen, Norway

March 3, 2015

Supervised by

Prof. Dag Haugland

Acknowledgements

I would like to express my deepest thanks to my supervisor Professor Dag Haug-
land for his support and patience. His guidance helped me in many ways in
shaping up the thesis work. I thank Mari Garaas Lochen, student advisor, for
her help especially in getting the test system up in the critical times, I am also
thankful to the system staffs who are involved in fixing the CPLEX problems in
the test system. I am also indebted to the members of the Algorithms and Op-
timization groups with whom I have interacted during the course of my studies,
particularly Professor Jan Arne Telle and Professor Fredrik Manne. Most im-
portantly, none of this would have been possible without the love and patience
of my family.

Abstract

In transportation networks, such as pipeline networks for transporting natural
gas, it is often impractical to send across amounts of flow below a certain thresh-
old. Such lower threshold is referred as the minimum-lot size. The network flow
is semi-continuous when a network has minimum-lot sizes. In other terms, the
flow can be either zero or within the limits of minimum-lot and maximum ca-
pacity of the network. When a network includes minimum-lot constraints, the
problem of finding maximum-flow becomes complex and exact methods tend
to be too time consuming. Since it is not generally required that the solution
methods provide the optimal solution, this master thesis proposes a fast (in-
exact) method to find near-optimum solution. Also, the proposed fast method
is experimentally validated and compared with the other relevant approaches
available in the literature, and the results are analyzed in detail.

2

Contents

1 Introduction 1
1.1 Background . 1
1.2 Natural Gas Transportation: An Application 1
1.3 Maximum-Flow Problem with Minimum-lot Sizes 2
1.4 Organization . 4

2 Problem 5
2.1 Description . 5
2.2 Formal Definition . 5

3 Literature Survey 7

4 Mathematical Formulation 9
4.1 Computational Complexity . 9
4.2 Theoretical Properties . 9
4.3 MIP Formulation . 9
4.4 Relaxation . 10

4.4.1 Continuous Relaxation . 11
4.4.2 Lagrangian Relaxation . 12

5 Proposed Fast Method 13
5.1 Construction Method: Constrained Edmonds-Karp Algorithm . . 13
5.2 Improvement Method . 14

6 Experimentation 16
6.1 Purpose . 16
6.2 Input . 16
6.3 Software . 17
6.4 Hardware . 17
6.5 Implementation . 17
6.6 Results and Analysis . 18

6.6.1 Proposed and Existing Methods 18
6.6.2 Performance and Execution Stability 21

7 Conclusion 24

3

List of Figures

1.1 A graph showing maximum-flow problem with minimum-lot sizes 3
1.2 Solutions to the maximum-flow problem given in Figure 1.1. (a)

Without minimum-lot, and (b) With minimum-lot 3

6.1 Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of
GW graph. 19

6.2 Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of
GL graph. 19

6.3 Percentage of Minimum-lot sizes Vs. CPU time in seconds, in
the case of GW graph . 20

6.4 Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of
GL1 graph. 21

6.5 Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of
GW1 graph. 22

6.6 Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of
GL2 graph. 23

4

List of Tables

6.1 Base Graphs . 16
6.2 Instances, and its optimal flow, LP-bound, and flow produced by

existing and proposed fast method 18
6.3 CPU time taken by the exact and the proposed method 20
6.4 Instances, and its optimal flow, LP-bound, and flow produced by

the proposed fast method . 21
6.5 Instances, and its maximum-flow, and flow produced by the pro-

posed fast method. Here, the optimal bound computation re-
sulted in “out of memory” exception. 22

5

List of Algorithms

1 Constrained-Edmonds-Karp (G,s,t) 14
2 Improved-and-Constrained-Edmonds-Karp (G,s,t) 15

6

Chapter 1

Introduction

1.1 Background

Network optimization makes a large part of combinatorial optimization, and
presents a model often used for a large number of real-world applications in
communications, informatics, transportation, construction projects, water re-
sources management and supply chain management [1]. Linear Programming
(LP) models exhibit a special structure that can be exploited in the construction
of efficient algorithms to solve a problem. Historically, the first of these special
structures to be analyzed was the transportation problem, which is a particular
type of network problem. The development of an efficient solution procedure
for this problem resulted in the first widespread application of LP to problems
of industrial logistics [2]. A common scenario of a network-flow problem arising
in industrial logistics concerns the distribution of a single homogeneous product
from plant (source) to consumer market (terminal). The product need not be
sent directly from source to destination, but may be routed through intermedi-
ary points reflecting warehouses or distribution centers. Further, there may be
capacity restrictions that limit some of the shipping links.

1.2 Natural Gas Transportation: An Applica-
tion

Norway being the largest natural gas producer in the Western Europe1, the gas
produced is taken first from the reserves using several pipelines and brought
to the shore to be distributed in Norway or to be exported to other countries.
Installing and maintaining pipelines involves huge amount of costs2. Subse-
quently, using those pipes incurs cost for the industry. Oil and gas industry is

1http://www.eia.gov/countries/country-data.cfm?fips=no
2http://www.ogj.com/articles/print/volume-111/issue-02/special-report–worldwide-

pipeline-construction/worldwide-pipeline-construction-crude-products.html

1

CHAPTER 1. INTRODUCTION 2

no exception in trying to reduce the cost of production to keep up the profit
margins. This involves optimizing the usage of pipes in such a way that the cost
incurred is low without compromising the amount of oil transferred. In other
words, the revenue generated should be maximum while having the production
costs at minimum.

Optimum route calculations should obey the capacity constraints of the net-
work, which defines the maximum amount of gas flow allowed between two
points that are connected by a pipe. In gas transportation networks, it is often
impractical to send across amounts of flow below a certain threshold. In other
terms, the amount of gas to be transported should be between the amounts
of lower and upper thresholds allowed. Some of the reasons for setting lower
threshold limits are (i) operations might require lots to be large in order to be
cost effective, (ii) the products appear only in batches of a minimum size, and
(iii) underlying mechanical and chemical processes require a minimum level of
operation. That is, either the quantity that can be shipped must be zero, or
it must be between the minimum threshold and maximum capacity. In other
terms, minimum threshold shows the minimum quantity that must be trans-
ported to enable a flow network to function. Otherwise the respective path has
to be closed. Such a minimum threshold is referred as minimum-lot sizes in this
paper.

Finding an optimum route to transfer the desired amount (often, as maxi-
mum as possible) of gas between source and terminal is a challenge. It is because
the pipeline structure is a complex network and its constraints are dynamic in
its nature, i.e., the network has different capacity constraints in different places,
some parts have minimum-lot sizes and some parts do not have and it varies
from time to time. Since the business requirements vary, finding such optimum
routes is a frequent task in the gas transportation industry.

1.3 Maximum-Flow Problem with Minimum-lot
Sizes

In the context of transportation, maximum-flow problem aims to maximize the
flow of a network from a given source to a given terminal with maximum capac-
ity constraints. Maximum-flow problem with minimum-lot sizes is a variation
of maximum-flow problem, which includes minimum-lot size (i.e., minimum ca-
pacity) constraints in addition to the capacity constraints. For the sake of illus-
tration, a directed graph is shown in Figure 1.1 with capacity and minimum-lot
constraints. The sources, destinations, and intermediate points are collectively
called as nodes of the network, and the transportation links connecting nodes
are called as arcs.

In this work, we consider a directed graph, where a minimum lot size and
a flow capacity are defined for each arc, and study the problem of maximizing
the flow from a given source to a given terminal. The nodes are represented by
numbered circles and the arcs by arrows. A generic arc is denoted as (i, j), in

CHAPTER 1. INTRODUCTION 3

Figure 1.1: A graph showing maximum-flow problem with minimum-lot sizes

which the arc connects the nodes i and j and it has a flow from the node i to the
node j. Note that some pairs of nodes, for example s and t, are not connected
directly by an arc. The graph also includes some additional characteristics and
these are exhibited in the figure, i.e., minimum-lot size and capacity constraints
are assigned to each arc. These characteristics are shown next to each arc. Thus,
the flow on arc (a, b) must be between 6 and 12 units or zero. In this case, node
s is the source node and node t is the terminal node. The remaining nodes
have no net supply or demand; they are intermediate points, often referred to
as transshipment nodes. It is a property that the intermediate nodes must not
store or leak any flow, i.e., the material that is received by an intermediate
node must be sent out from that node. It is called conservation property of the
network.

Figure 1.2: Solutions to the maximum-flow problem given in Figure 1.1. (a)
Without minimum-lot, and (b) With minimum-lot

Figure 1.2(a) shows the solution to the maximum-flow problem given in
Figure 1.1 without considering the minimum-lot sizes. The maximum-flow is
23 units, in this case. (s, a) transports 12 units, (a, b) transports 12 units, (b, t)
transports 19 units, arc (s, c) transports 11 units, arc (c, d) transports 4 units,
arc (c, b) transports 7 units, and arc (d, t) transports 4 units. The remaining
arcs, i.e., (a, c) and (d, b), are not used.

Figure 1.2(b) shows the solution to the maximum-flow problem given in
Figure 1.1 with the minimum-lot sizes. The maximum-flow is 22 units, in this

CHAPTER 1. INTRODUCTION 4

case. (s, a) transports 12 units, (a, b) transports 12 units, (b, t) transports 18
units, arc (s, c) transports 10 units, arc (c, d) transports 10 units, arc (d, b)
transports 6 units, and arc (d, t) transports 4 units. The remaining arcs, i.e.,
(a, c) and (c, b), are not used. From this, it can be noticed that the minimum-lot
size constraint influences the maximum-flow, in terms of total number of units
that can be transferred from a given source to a given terminal and the path to
be used in order to achieve it.

1.4 Organization

This thesis is organized as follows. Section 2 describes and defines maximum-
flow problem with minimum-lot sizes. The literature survey of the problem is
given in Section 3. The computational complexity, theoretical properties, MIP
formulation, and relaxation are given in Section 4. Following that, the proposed
fast method is described in Section 5. The details of the experiments conducted
are reported and the results are analyzed in Section 6.6. Finally, the conclusion
is drawn in Section 7.

Chapter 2

Problem

2.1 Description

In transportation networks, it is often impractical to send across amounts of
flow below a lower threshold, which is referred as minimum-lot sizes. Maximum-
flow problem in directed graphs with minimum lot size constraints on the arcs
imposes either zero flow or flow between the lower and upper capacity. In
such instances, the problem becomes much more difficult to solve, and exact
methods tend to be too time consuming for practical use. In practice, it is
not generally required to find the optimal solution. So, fast (inexact) methods
that can provide near-optimum solutions are sufficient to the said problem.
This thesis proposes an efficient computational method that can produce near
optimal solutions with modest computational effort, despite the intractability
of the problem.

2.2 Formal Definition

A formal definition of the maximum-flow problem with minimum-lot sizes is as
follows:

Let G = (N,A) be a directed graph with node set N and arc set A, and
nonnegative integer vectors l and u representing lower and upper flow bounds,
respectively.

Here, we assume that G contains a unique source s ∈ N and a unique
terminal t ∈ N , and that A contains a circulation arc (t, s) with lts = 0 and
uts =∞ from the terminal to the source.

Further, we consider the problem of maximizing the flow from the source
through the network to the terminal, such that the flow at each arc is either
zero or between the two bounds. This is equivalent to maximizing the flow
recycled along arc (t, s). By defining the set of circulations in G as,

5

CHAPTER 2. PROBLEM 6

F (G)=

{
x ∈ RA+:

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A
xji ∀i ∈ N

}
,

The problem is expressed as:
max xts, (2.1)

x ∈ F (G), (2.2)

xij ∈ {0} ∪ [lij , uij] (i, j) ∈ A. (2.3)

Henceforth, we say that arc (i, j) is closed if xij = 0, and open otherwise. We
let X ⊆ A be the set of open arcs, and let X = A \X be the set of closed arcs.
Let GX denote the subgraph with node set N and arc set X. We say that X is
feasible if there exists some flow vector x ∈ F (G) satisfying lij ≤ xij ≤ uij for
all (i, j) ∈ X, and xij = 0 for all (i, j) ∈ X . Let z(X) denote the maximum
value xts can take under these conditions, and let z(X) = −∞ if X is infeasible.
Observe that the empty set is feasible with z(∅) = 0.

Chapter 3

Literature Survey

Haugland et al. introduced the maximum-flow problem with minimum lot
size constraints in [3]. The authors have shown how the problem can be ap-
proached using Lagrangean relaxation [4], based on Mixed Integer Programming
(MIP) formulation. This approach involves a method for computing strong up-
per bounds on the maximum-flow, and a method for fixing binary variables
based on the upper bounds. Also, the authors suggested a construction heuris-
tic for the problem and presented results obtained from some computational
experiments. In that, it is shown that the minimum-lot size constraints do not
affect the maximum-flow when the percentage of arcs with nonzero minimum-
lot is below 50% in a network. Maximum-flow drops below LP bound when the
percentage of nonzero minimum-lot is between 50% to 70% in a graph. The
suggested heuristics provides the trivial zero solution when the percentage of
nonzero minimum-lot is above 70%. In other terms, the given construction
heuristics struggles to provide a useful solution when the percentage of nonzero
minimum-lot is above 70% in a graph. It is mentioned that it is due to the
greedy nature of the heuristics that were used to start finding the path. Since
the intension of developing this heuristics is close to the aim of this thesis work,
we considered this as an alternative method that can be compared with the
method proposed in this thesis work in addition to exact method and LP.

In [5], Eleyat et al. has shown that most of the execution time is spent
on solving a series of regular maximum-flow problems and developed a parallel
augmenting path algorithm to accelerate the heuristics by an average factor
of 1.25. This suggested a near optimal solution and investigated a way to
parallelize the method, to reduce the time spent on finding the maximum-flow
in a network with capacity and minimum-lot size constraints on each pipe [6].
Both the heuristic and its parallelization were implemented and tested on the
2∗6 core AMD Opteron processor. Since this thesis work is not concerned about
developing parallel algorithms, the experimental results obtained by Eleyat et
al. are not comparable in this thesis work.

Thielen et al. came up with the maximum-flow problem with minimum quan-

7

CHAPTER 3. LITERATURE SURVEY 8

tities in [7], and applied it for Generalized Assignment Problem (GAP) [8, 9],
network flow problem [7], and packing problem [10]. Since formally both min-
imum quantities and minimum-lot sizes require two bounds (lower and upper)
on an arc, minimum quantities are just another name for minimum-lot sizes and
that is relevant in terms of the application the authors considered in the paper
(i.e., in a wastewater system, a used pipe will get clogged unless at least a min-
imum amount of water runs through it). As expected, Thielen et al. has shown
the problem is strongly NP hard to approximate on general graphs (and even bi-
partite graphs) within any positive factor. However, the authors have presented
a pseudo-polynomial time dynamic programming algorithm for the problem, on
series parallel graphs. Also the authors show that the problem is still weakly
NP-complete when the minimum quantity is same for each arc in the network.
(2− 1

λ) approximation algorithm is presented for this case, where λ ≥ 2 denotes
the common minimum quantity of all arcs (for λ ∈ {0, 1}, the problem can
be solved optimally in strongly polynomial time as a standard maximum-flow
problem without minimum quantities). Further, it is shown that the problem
on series-parallel graphs can be solved in strongly polynomial time when the
minimum quantity is the same for each arc in the network. Although minimum
quantities and minimum-lot sizes are same in terms of maximum-flow prob-
lem, this thesis work could not consider the computational results given in [7]
or [8] or [9] as a reference because these papers considered series parallel graphs
and/or approximation algorithm to find solution to the problem. Whereas, this
thesis work considers heuristics to provide solution to the maximum-flow prob-
lem with minimum-lot sizes, and do not consider the specific cases like series
parallel graph and/or approximation techniques.

Nobibon et al. [11] considered resource loading decision problem with no
upper bounds (i.e., capacity constraints) and shown that as a special variation
of maximum-flow problem with minimum-lots in a bipartite networks. Since it
has considered only bipartite networks and did not include capacity constraints,
the results obtained in this paper could not be compared directly in this thesis.

Chapter 4

Mathematical Formulation

4.1 Computational Complexity

Minimum-lot size is a new constraint to maximum-flow problem. The con-
straint, minimum-lot size, imposes either zero flow or flow between the minimum
and maximum capacity of a network. The distinctive nature of this constraint
makes the problem NP-hard and it is proven by Haugland et al. in [3]. Fur-
ther, Eleyat et al. proven the maximum-flow problem with minimum-lot sizes
is strongly NP hard in [5].

4.2 Theoretical Properties

The NP-hardness shows that exact methods are unlikely to solve big instances of
the problem in practical time. This means that exact solutions to the instances
of realistic sizes of the problem are computationally infeasible. Hence, inexact
solutions that are fast and correct but may not be optimal are the practical ones
to the problem.

4.3 MIP Formulation

Mixed Integer Programming (MIP) deals with optimization techniques in
which an objective function is optimized subject to both equality and inequality
constraints, where two types of variables can be specified: continuous variables
which can take any real value within given bounds, and binary variables which
can take only 0 or 1 values. The unique feature of MIP is precisely the capability
of handling the latter type of variables which in application problems will be

9

CHAPTER 4. MATHEMATICAL FORMULATION 10

associated to discrete decisions in combinatorial problems. The three major
features that can be accomplished with the mixed integer formulation [12] are:

(i) structural and parameter optimization can be performed simultaneously,

(ii) discrete and logical constraints can be handled explicitly with the binary
variables, and

(iii) the mathematical representation provides a general systematic framework
since one can formulate a variety of different synthesis problems with the
same mathematical tool.

Since the maximum-flow problem with minimum-lot sizes has a semi contin-
uous variable to represent the flow in an arc (i.e., Equation 2.3 in Section 2),
we choose to go with MIP to solve the problem. MIP formulation follows.

The objective of the problem is to maximize the flow in the recycling arc
from terminal to source.

max xts , (4.1)

The material that comes to an intermediate node must be sent out from that
node, as per the conservation property. In other terms, sum of all the inflow of
an intermediate node should be equal to the sum of all the outflow of that node.

x ∈ F (G), (4.2)

The arcs have a minimum-lot lij and a maximum capacity uij , where the
maximum capacity is more than or equal to minimum-lot, i.e., uij ≥ lij . The flow
in an arc xij could be either zero or between the minimum-lot and the maximum
capacity. We introduce a new binary variable, yij , to indicate whether the arc,
(i, j), is open or not. Hence, if the arc, (i, j), is closed then the binary variable
yij = 0, indicating that the arc’s flow xij = 0.

y ∈ {0 , 1}A, (4.3)

Here, yij = 1 if and only if xij 6= 0. In addition to that, if the arc is open
(i.e., yij = 1) then the value of xij should be greater than lij , i.e.,

xij − lij yij ≥ 0 , (i , j) ∈ A, (4.4)

Similarly, if the arc is open then the flow xij should be less than the capacity
uij .

xij − uij yij ≤ 0 , (i , j) ∈ A, (4.5)

4.4 Relaxation

An essential task in designing any solution algorithm for a problem is to derive
an optimal condition or a stopping criterion to terminate the algorithm, i.e.,
to judge if the current solution is optimal to the problem or to conclude that

CHAPTER 4. MATHEMATICAL FORMULATION 11

there is no feasible solution to the problem. An upper bound of the problem can
be used as a stopping criterion in a solution algorithm, in branch and bound
algorithms1.

Relaxation extends the feasible region of the original problem. In the ex-
tended feasible region, the objective function has a value that is at least as big
as the objective function of the original problem. So, the optimal answer of
the relaxed problem is an upper bound of the original problem. For example,
consider the following optimization problem2 where f : Rn → R and S ⊆ Rn:

Maximize f(x)
subject to x ∈ S

A relaxation of the above problem has the following form:

Maximize fR(x)
subject to x ∈ SR

where fR : Rn → R is such that fR(x) ≥ f(x) for any x ∈ S and S ⊆ SR. It
is clear that the optimal solution f∗R of the relaxation is an upper bound of the
optimal solution of the initial problem.

4.4.1 Continuous Relaxation

Continuous relaxation allows variables that are constrained to take only inte-
ger values to take non-integer values, in an arbitrary problem, . For example,
consider the model given in Section 4.3. In Equation 4.3, the variable y is con-
strained to take discrete values, i.e., either 0 or 1, which is formally represented
as y ∈ {0, 1}. Applying continuous relaxation to the variable y, the variable y
can take any value between 0 and 1, which is formally represented as y ∈ [0, 1].
The continuous relaxation increases the feasible region of a variable, without
affecting the objective function of the problem.

The following is the continuous relaxed form of the model given in Sec-
tion 4.3.

max xts , (4.6)

x ∈ F (G), (4.7)

y ∈ [0 , 1]
A
, (4.8)

xij − lij yij ≥ 0 , (i , j) ∈ A, (4.9)

xij − uij yij ≤ 0 , (i , j) ∈ A, (4.10)

From the continuously relaxed model, it can be observed that the objective
function is not changed. However, the problem now becomes a polynomially
solvable linear program. By solving this, we can arrive at an upper bound for
the model explained in the Section 4.3.

1http://support.sas.com/documentation/cdl/en/ormpug/63352/HTML/default/viewer.htm#ormpug optmilp sect010.htm
2http://www.ens-lyon.fr/DI/wp-content/uploads/2012/01/LagrangianRelax.pdf

CHAPTER 4. MATHEMATICAL FORMULATION 12

4.4.2 Lagrangian Relaxation

Lagrangian relaxation approximates a difficult problem of constrained optimiza-
tion by a simpler problem. A solution to the relaxed problem is an approximate
solution to the original problem, and provides useful information. Lagrangian
relaxation involves removing one or more constraints from a problem. Such
removal is penalized with a penalty variable, i.e., each constraint is dualized
and then added to the objective function. The penalty variable is referred as
the dual variable or Lagrange multiplier. Since one or more constraints may be
dualized it is possible to generate as many as 2k−1 subproblems, where k is the
number of constraints. The subprograms differ, depending on the constraints
that got dualized. In practice, this relaxed problem can often be solved more
easily than the original problem.

Lagrangian relaxation for the maximum-flow problem with minimum-lot
sizes is follows.

First, the minimum-lot size constraints should be removed from MIP formu-
lation (Section 4.3) of the problem,

xij − lij yij ≥ 0 , (i , j) ∈ A, (4.11)

Next, penalty, Lagrangian multiplier (λij ∈ RA+), should be added to the
objective function of the problem,

max xts + λij(xij − lijyij), (4.12)

x ∈ F (G), (4.13)

y ∈ {0 , 1}A, (4.14)

xij − uij yij ≤ 0 , (i , j) ∈ A, (4.15)

Similar to minimum-lot size constraints, if we remove capacity constraints
and add penalty, Lagrangian multiplier (µij ∈ RA+), then the objective function
becomes,

max xts + µij(uijyij − xij), (4.16)

x ∈ F (G), (4.17)

y ∈ {0 , 1}A, (4.18)

xij − lij yij ≥ 0 , (i , j) ∈ A, (4.19)

We reach the following by making a formulation without the capacity and the
minimum-lot size constraints,

max xts + µij(uijyij − xij) + λij(xij − lijyij), (4.20)

By assumption, we can efficiently compute the optimal value for the relaxed
problem with a fixed vector λ.

Chapter 5

Proposed Fast Method

5.1 Construction Method: Constrained Edmonds-
Karp Algorithm

The Edmonds-Karp Algorithm [13] finds the maximum flow of a network
when the capacities are given, using Breadth First Search (BFS) [13] to or-
der the paths from a given source to a given terminal. To find the maximum
flow with minimum-lot sizes, we have added minimum-lot constraints to the
Edmonds-Karp Algorithm, and it is given in the Algorithm 1.

The algorithm functions as follows. It uses BFS to find path p ∈ G from the
source s to the terminal t (line 1). The possible maximum-flow of the path
cf (p) is calculated by finding the minimum of the (remaining) capacities of each
arc, i.e., cf (u, v) : (u, v) is in p (line 2). For each path, the maximum of all
the minimum-lots of arcs (mf (u, v) : (u, v) is in p) is calculated and it is set as
the minimum-lot of the path mf (p) (line 3). The feasible flow ff (p) is found
from cf (p)−mf (p) (line 4). If any of the arcs do not satisfy the minimum-lot
constraints of the path, the flag sendFlow is set to False (lines 5-7). If the
path has all edges satisfying the minimum-lot constraints, the flag sendFlow is
set to True (line 8). After that, the flow is sent through that path and the
feasible flow ff (p) is applied to each arc in the same path, and the minimum
flow of each arc in the path is reduced by the feasible flow (lines 9-12). And
then, this path is added to Gr (line 14). The same procedure is followed for
each of the path returned by the BFS. The resulting graph is Gr returned after
processing all the paths .

Since the Edmonds-Karp algorithm finds the maximum-flow of a network
in O(V E2), the maximum-flow with minimum-lot sizes can also be found in
O(V E2). However, optimality of the solution returned by this algorithm may

13

CHAPTER 5. PROPOSED FAST METHOD 14

Algorithm 1: Constrained-Edmonds-Karp (G,s,t)

Input: Graph G, Source s, and Terminal t
Output: Graph containing only feasible paths Gr

1 while there exists a path p from s to t from BFS (G,s,t)) do
2 cf (p) = min{cf (u, v) : (u, v) is in p)}
3 mf (p) = max{mf (u, v) : (u, v) is in p)}
4 ff (p) = (cf (p)−mf (p))
5 if ff (p) < 0 then
6 sendF low = False

7 if sendF low = True then
8 for each arc (u, v)in p do
9 (u, v).f = (u, v).f + ff (p)

10 mf (u, v) = mf (u, v)− ff (p)
11 cf (u, v) = cf (u, v)− (u, v).f

12 add p to Gr

13 return Gr

vary depending on the order in which paths are picked and it might not be
optimal.

Proposition 5.1.1. This algorithm provides a feasible flow.

Proof. In first step, the flow sent throw each arc is at least as much as the
minimum-lot of that arc, and in each subsequent iterations adds flow. Hence,
(u, v).f ≥ mf (u, v) ∀ (u, v) ∈ A

5.2 Improvement Method

The construction method given in the Section 5.1 could not add a path in the
final solution when the path do not fulfill the minimum-lot constraint. How-
ever, it might as well be part of the optimal solution based on accumulation
of flow passing through from other paths and by that fulfilling the minimum
lot constraints. This is particularly the case when a path includes a very high
minimum-lot constraint while all or most of its neighboring inflow and out-
flow arcs have smaller capacity. Considering this, we improve the construction
method by adding all the flow that could not be added to construction method
into a reservoir network and then we run the construction method (lines 7 and

17 in Algorithm 2). If all the arcs of a path fulfill the minimum-lot constraints
then that path is added to the result.

Since the improved method uses the construction algorithm, the running
time of this algorithm changes by a linear factor. So, the complexity still remains
at O(V E2).

CHAPTER 5. PROPOSED FAST METHOD 15

Algorithm 2: Improved-and-Constrained-Edmonds-Karp (G,s,t)

Input: Graph G, Source s, and Terminal t
Output: Graph containing only feasible paths Gr

1 while there exists a path p from s to t from BFS (G,s,t)) do
2 cf (p) = min{cf (u, v) : (u, v) is in p)}
3 mf (p) = max{mf (u, v) : (u, v) is in p)}
4 ff (p) = cf (p)−mf (p)
5 if ff (p) < 0 then
6 sendF low = False
7 add p to Greserve

8 if sendF low = True then
9 for each arc (u, v)in p do

10 (u, v).f = (u, v).f + ff (p)
11 mf (u, v) = mf (u, v)− ff (p)
12 cf (u, v) = cf (u, v)− (u, v).f

13 add p to Gr

14 Gr = Gr ∪ Constrained-Edmonds-Karp(Greserve,s,t)
15 return Gr

Chapter 6

Experimentation

6.1 Purpose

The purpose of this experimentation was to compare the fast method proposed
in this thesis (Section 5) with the methods given by Haugland et al. in [3] and
to analyze its performance including the execution stability.

6.2 Input

Table 6.1: Base Graphs

Graph
Parameters

a b c1 c2 |N | |A|

GL 15 5 2000 10,000 1,125 5,100
GL1 6 31 1 10,000 1,116 4,800
GL2 9 100 1 10,000 8,100 36,819
GW 5 15 2000 10,000 112 432
GW1 16 4 1 10,000 1,024 4,608
GW2 37 6 1 10,000 8,214 38,813

Two graphs, namely GW and GL, used to conduct experiments in [3], used
to evaluate the proposed fast method given in Section 5 in comparison with the
methods proposed by Haugland et al. Four graphs, namely GL1, GL2, GW1, and
GW2, used to test the proposed method further. Those graphs were generated
using RMFGEN-generator of Goldfarb and Grigoriadis [14], by supplying four
parameter values, namely a, b, c1, and c2, as the input. The parameter details
and the sizes of the graphs are shown in Table 6.2. To generate the capacities

16

CHAPTER 6. EXPERIMENTATION 17

of in-frame arcs randomly, the generator was modified to produce capacities in
the range of [c2, c2a

2]. Eight instances were generated for two graphs and four
instances were generated for other six graphs, by changing the percentage of
arcs which has minimum-lot sizes. The percentage range varies from is 30%
to 100%. For example, the graph GL-30 has 30% arcs with minimum-lot size
constraints. These arcs were selected randomly by drawing from the entire arc
set A, and for each of them, lij was randomly generated in the range [uij/4, uij]

6.3 Software

• ILOG CPLEX1 (Version 12.51) is used as the solver to solve LP problem.

• Java2 Version 1.7 is used with an Application Programming Interface
(API) provided by ILOG CPLEX to call CPLEX directly via the Java
Native Interface3 (JNI). The Java interface is built on top of ILOG Con-
cert Technology4.

• Eclipse5 is used as an Integrated Development Environment (IDE) for
developing the proposed fast method as a Java application.

• Ubuntu release 12.04 is used as the operating system.

6.4 Hardware

A standalone computer was used for all the development and experimentation
purposes. It had two 64-bit cores (Intel x86 64 architecture), each core’s speed
is 2GHz, and 8GB RAM.

6.5 Implementation

The following are implemented for this experimentation purposes.

(i) The fast method proposed in Section 5,

(i) The optimal flow was produced by supplying MIP formulation given in
the Section 4.3, and

(iii) Upper bound was computed by using the LP-relaxation of the model given
in the Section 4.4.1.

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
2https://www.java.com/en/
3http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
4http://www-01.ibm.com/software/commerce/optimization/interfaces/
5https://eclipse.org/

CHAPTER 6. EXPERIMENTATION 18

6.6 Results and Analysis

6.6.1 Proposed and Existing Methods

Table 6.2 shows the instances of the graphs used as the input in this test, the
optimum flow, LP-bound, the flow obtained by Haugland et al. in [3], and the
flow generated by the method proposed in this thesis, i.e., the Algorithm 2 given
in Section 5.2 (hereinafter referred to as proposed method).

Table 6.2: Instances, and its optimal flow, LP-bound, and flow produced by
existing and proposed fast method

Instance Optimal LP-bound
Fast Methods

Haugland et al. Proposed

H1 H2 H3 V1

GW-30 130,587 130,587 130,587 130,587 130,587 55,837
GW-40 130,587 130,587 130,587 130,587 130,587 48,775
GW-50 130,587 130,587 34,714 34,714 20,563 37,205
GW-60 96,971 130,587 12,255 17,394 0 27,903
GW-70 77,587 130,587 0 0 0 19,892
GW-80 47,639 130,587 0 0 0 15,603
GW-90 47,639 130,587 0 0 0 11,735
GW-100 47,639 130,587 0 0 0 8,474

GL-30 1,338,057 1,338,057 1,338,057 1,338,057 1,338,057 608,761
GL-40 1,338,057 1,338,057 1,338,057 1,338,057 1,338,057 465,149
GL-50 1,338,057 1,338,057 1,046,717 3111 123,895 378,240
GL-60 1,335,045 1,338,057 0 0 0 283,816
GL-70 1,335,045 1,338,057 0 0 0 187,869
GL-80 1,335,045 1,338,057 0 0 0 142,759
GL-90 1,335,045 1,338,057 0 0 0 74,462
GL-100 1,335,045 1,338,057 0 0 0 44,145

In the practical situations, it is expected that almost all the arcs has minimum-
lot size constraints in a network. In such situation, the methods (i.e., H1, H2,
and H3) proposed by Haugland et al. could not generate a flow when the per-
centage of minimum-lot size constraints are more than 60% in the case of GL
graph and more than 70% in the case of GW graph, which can be observed from
the Table 6.2. The method proposed in this thesis performs better and could
produce flow even when a network has 100% minimum-lot size constraints. For
example, our method (V1) produced the flow of 283, 816 units in the graph GL-
60, whereas the Haugland et al. methods can produce only 0 as the possible
flow. Promisingly, the proposed method functioned in all the graphs that are
taken in this experimentation. When there were 100% minimum-lot size con-
straints, the method proposed produced the flow of 44, 145 units in the graph

CHAPTER 6. EXPERIMENTATION 19

GL-100, and 8, 474 units in the graph GW-100.

Figure 6.1: Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of GW graph.

Figure 6.2: Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of GL graph.

Figures 6.1 and 6.2 show the performance trend of the fast methods given
by Haugland et al. and the method proposed in this thesis, in a graphical
manner. In that, Figure 6.1 shows the case of GW graph, and Figure 6.2 shows
the case of GL graph. From these figures, it can be observed that the proposed
method linearly drops the maximum-flow when the percentages of minimum-lot
sizes increases. Also, the flow never touches zero. Whereas, Haugland et al’s
methods drops suddenly when the percentage of minimum-lot sizes touches 40%
(GL graph) to 50% (GW graph) and reaches zero after 60% (GL graph) to 70%
(GW graph). However for 30% to 50% of constraints, Haugland et al’s methods

CHAPTER 6. EXPERIMENTATION 20

perform better than the method proposed in this thesis. It shows that Haugland
et al’s methods are better suited when a network’s minimum-lot constraints are
up to 50% or 60%, and the proposed method is well suited when the constraints
percentage goes more beyond 50 to 60%.

Table 6.3: CPU time taken by the exact and the proposed method

Instance
CPU Time (Seconds)

Exact Proposed

GW 30 1.16 0.05
GW 40 1.27 0.051
GW 50 1.41 0.076
GW 60 2.0 0.076
GW 70 3.5 0.076
GW 80 39.52 0.075
GW 90 7870 0.076
GW 100 5623 0.076

Figure 6.3: Percentage of Minimum-lot sizes Vs. CPU time in seconds, in the
case of GW graph

The CPU time required to find a solution to different instances of GW graph
is shown in the Table 6.3 and it is plotted in Figure 6.3. From that, it can be
observed that the proposed method consumed much lesser time than the exact
method. For example in the case of GW 90, the proposed method took only
0.076 seconds, whereas the exact method took 7870 seconds. Interestingly, the
proposed method did not vary the computation time in terms of the percentage
of minimum-lot size constraints in the graph. Whereas, the exact method expo-
nentially increased the time required to process the graph when the percentage

CHAPTER 6. EXPERIMENTATION 21

of minimum-lot size constraints increased, especially when it goes above 70%.

6.6.2 Performance and Execution Stability

To make sure that the method proposed can perform and produce a flow even
when there are 100% minimum-lot constraints in a network, we tested the
method with some more graphs and those results are reported in Table 6.4
and 6.5. Since none other than us have tested these graphs before, we com-
pared the flow that was generated by the proposed method with the optimal
flow and LP-bound. From the Table 6.4, it can be observed that the proposed
method generated the flow of 8, 127 units in the graph GL1-100 and 78, 480 units
in the graph GW1-100.

Table 6.4: Instances, and its optimal flow, LP-bound, and flow produced by the
proposed fast method

Instance Optimal LP-bound Proposed Method

GL1-25 135,671 135,671 74,425
GL1-50 135,671 135,671 43,931
GL1-75 135,671 135,671 26,738
GL1-100 135,671 135,671 8,127

GW1-25 1,249,160 1,249,160 629,191
GW1-50 1,249,160 1,249,160 350,611
GW1-75 1,249,160 1,249,160 162,680
GW1-100 1,249,160 1,249,160 78,480

Figure 6.4: Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of GL1 graph.

Performance trends observed from the Figures 6.4 and 6.5 continued to show
the similar trend that we observed in the Figures 6.2 and 6.1, i.e., the flow

CHAPTER 6. EXPERIMENTATION 22

Figure 6.5: Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of GW1 graph.

drops linearly when the minimum-lot constraints increases in a network and the
proposed method can generate flow up to 100%.

Table 6.5: Instances, and its maximum-flow, and flow produced by the proposed
fast method. Here, the optimal bound computation resulted in “out of memory”
exception.

Instance maximum-flow Proposed Method

GL2-25 334,028 201,736
GL2-50 334,028 121950
GL2-75 334,028 70,366
GL2-100 334,028 35,296

GW2-25 6,785,136 3,532,798
GW2-50 6,785,136 1,670,138
GW2-75 6,785,136 893,033
GW2-100 6,785,136 0

The last test results, i.e., Table 6.5, 35, 296 units are generated as the flow for
the graph GL2-100, and the performance trend continued (in Figure 6.6) showing
the similar trend that we observed in the Figures 6.2, 6.1, 6.4, and 6.5. Due to
the “out of memory” error, neither the optimum value nor the LP-bound were
calculated using CPLEX. Instead, we used maximum-flow algorithms to find the
bound. So were are not able to show the optimum value for this graph. However,
an interesting point here is that the proposed method requires much lesser
amount of system memory than the method meant for finding optimum value.
The resulting zero flow of the graph GW2-100 raises an interesting question
whether the proposed method fails to find the flow or the optimal flow itself is

CHAPTER 6. EXPERIMENTATION 23

zero for this graph. Hence, the result of GW2-100 is inconclusive in this regard.

Figure 6.6: Performance trend of the fast methods available and proposed in
comparison with the optimal flow and LP-bound, in the case of GL2 graph.

Chapter 7

Conclusion

It is observed that it is often impractical to send across amount of flow be-
low a certain threshold, such as in pipeline networks for transporting natural
gas. Some of the reasons identified are operations require lots to be large in
order to be cost effective, products appear only in batches of a minimum size,
and underlying mechanical and chemical processes require a minimum level of
operation. Thus, either the quantity that can be shipped must be zero or it
must be between the minimum threshold (lot sizes) and maximum capacity.
In such instances, the problem of finding maximum-flow becomes much more
difficult to solve, and the exact methods tend to be too time consuming for
practical use. The level of difficultly is strongly NP-hard and it is proven in
the literature. Since in practice it is not generally required to use the optimal
solution, few fast (inexact) methods are suggested in the literature to produce
near-optimum solutions. In this thesis, we have proposed a fast method by in-
troducing minimum-lot constraints to Edmonds-Karp Algorithm, and tested it
with six different graphs generated using RMFGEN-generator of Goldfarb and
Grigoriadis. Eight instances were created from two graphs (GL and GW) by dif-
fering the percentage of minimum-lot constraints, ranging from 30% to 100%.
Similarly, four instances are created from the remaining six graphs ranging from
25% to 100%. Unfortunately, there was only one paper (Haugland et al’s) in
the literature that is close to the aim of this thesis work and had results that
can be comparable with the input samples that we had for testing.

The results comparison show that the Haugland et al’s methods could not
generate a flow when the percentage of minimum-lot constraints are more than
60% in the case of GL graph and more than 70% in the case of GW graph. The
method proposed in this thesis performs and could produce flow even in such
cases, i.e., even when a network has 100% minimum-lot size constraints. For
example, our method produced the flow of 283, 816 units in the graph GL-60,
whereas the Haugland et al. methods can produce only 0 as the possible flow.
Promisingly, the proposed method functioned in all the graphs that are taken
in this experimentation. When there were 100% minimum-lot size constraints,
the method proposed produced the flow of 44, 145 units in the graph GL-100,

24

CHAPTER 7. CONCLUSION 25

and 8, 474 units in the graph GW-100. It is observed that the proposed method
linearly drops the maximum-flow when the percentages of minimum-lot sizes in-
creases, whereas Haugland et al’s methods drops suddenly when the percentage
of minimum-lot sizes touches 40% (GL graph) to 50% (GW graph) and reaches
zero after 60% (GL graph) to 70% (GW graph). However for 30% to 50% of
constraints, Haugland et al’s methods perform better than the method proposed
in this thesis. It shows that Haugland et al’s methods are better suitable when
a network’s minimum-lot constraints are up to 50% or 60%, and the proposed
method is well suitable when the constraints percentage goes more beyond 50
to 60%.

Although the fast method proposed in this thesis can produce a flow even
when the percentage of minimum-lot constraints is 100% in a graph, the differ-
ence between the flow produced by the proposed method and the optimum flow
is considerable. Improving the proposed fast method to give results more close
to the optimum value is a potential direction to go further and that could be
considered as a future work.

Bibliography

[1] A. Sifaleras. Minimum cost network flows: Problems, algorithms, and
software. Operations Research, 23(1):3–17, 2013.

[2] A. Schrijver. On the history of the transportation and maximum flow
problems. Mathematical Programming, 91(3):437–445, 2002.

[3] D. Haugland, M. Eleyat, and M. L. Hetland. The maximum flow problem
with minimum lot sizes. In International Conference on Computational
Logistics, volume 6971, pages 170–82, Hamburg, Germany, 2011.

[4] J. E. Beasley. Modern heuristic techniques for combinatorial problems.
chapter Lagrangian Relaxation, pages 243–303. John Wiley & Sons, Inc.,
1993.

[5] M. Eleyat, D. Haugland, M. L. Hetland, and L. Natvig. Parallel algorithms
for the maximum flow problem with minimum lot sizes. In Operations Re-
search Proceedings, volume 6971, pages 183–88, Zurich, Switzerland, 2011.
Springer.

[6] M. Eleyat. Accelerating the Regina Network Flow Simulator on Multi-core
Systems. PhD thesis, Norwegian University of Science and Technology,
Trondheim, Norway, 2014.

[7] C. Thielen and S. Westphal. Complexity and approximability of the maxi-
mum flow problem with minimum quantities. Networks: An International
Journal, 62(2):125–131, 2013.

[8] S. O. Krumke and C. Thielen. The generalized assignment problem with
minimum quantities. European Journal of Operations Research, 228(1):46–
55, 2013.

[9] M. Bender, C. Thielen, and S. Westphal. Mathematical foundations of
computer science. volume 8087, chapter A Constant Factor Approximation
for the Generalized Assignment Problem with Minimum Quantities and
Unit Size Items, pages 135–145. Springer, 2013.

[10] C. Thielen. Using minimum quantities to guarantee resource efficiency
in combinatorial optimization problems. In International Conference on

26

BIBLIOGRAPHY 27

Resource Efficiency in Interorganizational Networks, pages 233–235, Got-
tingen, Germany, 2013.

[11] F. T. Nobibon, R. Leus, K. Nip, and Z. Wang. Resource loading with
time windows. European Journal of Operations Research, 13(1):1–13, 2015
(In-Press).

[12] I. E. Grossmann. Mixed-integer programming approach for the synthesis of
integrated process flowsheets. Papers from 25th CONICET International
Conference, 9:463–482, 1985.

[13] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to
Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[14] D. Goldfarb and M. D. Grigoriadis. A computational comparison of the
dinic and network simplex methods for maximum flow. Annals of Opera-
tions Research, 13(1):81–123, 1988.

