Show simple item record

dc.contributor.authorÆsøy, Mathias S.
dc.contributor.authorJones, Charles Patrick Warburton
dc.contributor.authorBeisland, Christian
dc.contributor.authorUlvik, Øyvind
dc.date.accessioned2022-10-28T11:58:13Z
dc.date.available2022-10-28T11:58:13Z
dc.date.created2022-10-24T13:27:33Z
dc.date.issued2022
dc.identifier.issn2168-1805
dc.identifier.urihttps://hdl.handle.net/11250/3028870
dc.description.abstractObjective The aim of this study was to investigate temperature profiles in both the renal pelvis and parenchyma during Thulium Fiber Laser (TFL) and Holmium:yttrium-aluminium-garnet (Ho:YAG) laser activation in an ex-vivo porcine model. Methods Three porcine kidneys with intact renal pelvis and proximal ureters were used in the study. A temperature sensor was inserted through a nephrostomy tube into the renal pelvis and a second sensor was inserted directly into the renal parenchyma. Temperatures were recorded during continuous laser activation for 180 s, and for an additional 60 s after deactivation. TFL (150 μm and 200 μm) and Ho:YAG (270 μm) laser delivered power at settings of 2.4 W, 8 W, 20 W and 30 W. Results Intrapelvic temperatures correlated directly to power settings. Higher power produced higher temperatures. For example, using a 150 μm fiber at 2.4 W resulted in a 2.6 °C rise from baseline (p = 0.008), whereas using the same fiber at 20 W produced a rise in temperature of 19.9 °C (p = 0.02). Larger laser fibers caused significantly higher temperatures compared to smaller fibers using equivalent power settings, e.g. mean temperature at 20 W using 150 μm was 39.6 °C compared to 44.9 °C using 200 μm, p < 0.001. There was a significant increase in parenchymal temperatures when applying 20 W and 30 W of laser power with the two larger fibers. Conclusion In this ex-vivo study, renal temperatures correlated directly to power settings. Higher power produced higher temperatures. Furthermore, larger laser fibers caused higher temperatures. These findings could help guide selection of safe power settings for ureteroscopic lithotripsy, but future clinical studies are needed for confirmation.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francisen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleTemperature profiles during ureteroscopy with thulium fiber laser and holmium:YAG laser: Findings from a pre-clinical studyen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1080/21681805.2022.2104367
dc.identifier.cristin2064423
dc.source.journalScandinavian Journal of Urologyen_US
dc.source.pagenumber313-319en_US
dc.identifier.citationScandinavian Journal of Urology. 2022, 56 (4), 313-319.en_US
dc.source.volume56en_US
dc.source.issue4en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal