Vis enkel innførsel

dc.contributor.authorVan Damme, Petra
dc.contributor.authorOsberg, Camilla
dc.contributor.authorJonckheere, Veronique
dc.contributor.authorGlomnes, Nina
dc.contributor.authorGevaert, Kris
dc.contributor.authorArnesen, Thomas
dc.contributor.authorAksnes, Henriette
dc.date.accessioned2023-02-09T11:43:42Z
dc.date.available2023-02-09T11:43:42Z
dc.date.created2023-01-03T14:42:07Z
dc.date.issued2022
dc.identifier.issn0021-9258
dc.identifier.urihttps://hdl.handle.net/11250/3049645
dc.description.abstractN-terminal acetylation is a conserved protein modification among eukaryotes. The yeast Saccharomyces cerevisiae is a valuable model system for studying this modification. The bulk of protein N-terminal acetylation in S. cerevisiae is catalyzed by the N-terminal acetyltransferases NatA, NatB, and NatC. Thus far, proteome-wide identification of the in vivo protein substrates of yeast NatA and NatB has been performed by N-terminomics. Here, we used S. cerevisiae deleted for the NatC catalytic subunit Naa30 and identified 57 yeast NatC substrates by N-terminal combined fractional diagonal chromatography analysis. Interestingly, in addition to the canonical N-termini starting with ML, MI, MF, and MW, yeast NatC substrates also included MY, MK, MM, MA, MV, and MS. However, for some of these substrate types, such as MY, MK, MV, and MS, we also uncovered (residual) non-NatC NAT activity, most likely due to the previously established redundancy between yeast NatC and NatE/Naa50. Thus, we have revealed a complex interplay between different NATs in targeting methionine-starting N-termini in yeast. Furthermore, our results showed that ectopic expression of human NAA30 rescued known NatC phenotypes in naa30Δ yeast, as well as partially restored the yeast NatC Nt-acetylome. Thus, we demonstrate an evolutionary conservation of NatC from yeast to human thereby underpinning future disease models to study pathogenic NAA30 variants. Overall, this work offers increased biochemical and functional insights into NatC-mediated N-terminal acetylation and provides a basis for future work to pinpoint the specific molecular mechanisms that link the lack of NatC-mediated N-terminal acetylation to phenotypes of NatC deletion yeast.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExpanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatCen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumber102824en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1016/j.jbc.2022.102824
dc.identifier.cristin2099849
dc.source.journalJournal of Biological Chemistryen_US
dc.relation.projectKreftforeningen: 171752—PR-2009-0222en_US
dc.relation.projectNorges forskningsråd: 249843en_US
dc.relation.projectHelse Vest RHF: F-12540en_US
dc.relation.projectEgen institusjon: PRIME-XS-0000051en_US
dc.identifier.citationJournal of Biological Chemistry. 2022, 299 (2), 102824.en_US
dc.source.volume299en_US
dc.source.issue2en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal