Vis enkel innførsel

dc.contributor.authorHong, Yu
dc.contributor.authorKristiansen, Cecilie Katrin
dc.contributor.authorChen, Anbin
dc.contributor.authorSanchez Nido, Gonzalo
dc.contributor.authorHøyland, Lena Elise
dc.contributor.authorZiegler, Mathias
dc.contributor.authorSullivan, Gareth John
dc.contributor.authorBindoff, Laurence Albert
dc.contributor.authorLiang, Xiao
dc.date.accessioned2023-06-30T11:03:34Z
dc.date.available2023-06-30T11:03:34Z
dc.date.created2023-06-22T11:12:34Z
dc.date.issued2023
dc.identifier.issn0014-4886
dc.identifier.urihttps://hdl.handle.net/11250/3074710
dc.description.abstractDiseases caused by POLG mutations are the most common form of mitochondrial diseases and associated with phenotypes of varying severity. Clinical studies have shown that patients with compound heterozygous POLG mutations have a lower survival rate than patients with homozygous mutations, but the molecular mechanisms behind this remain unexplored. Using an induced pluripotent stem cell (iPSC) model, we investigate differences between homozygous and compound heterozygous genotypes in different cell types, including patient-specific fibroblasts, iPSCs, and iPSC-derived neural stem cells (NSCs) and astrocytes. We found that compound heterozygous lines exhibited greater impairment of mitochondrial function in NSCs than homozygous NSCs, but not in fibroblasts, iPSCs, or astrocytes. Compared with homozygous NSCs, compound heterozygous NSCs exhibited more severe functional defects, including reduced ATP production, loss of mitochondrial DNA (mtDNA) copy number and complex I expression, disturbance of NAD+ metabolism, and higher ROS levels, which further led to cellular senescence and activation of mitophagy. RNA sequencing analysis revealed greater downregulation of mitochondrial and metabolic pathways, including the citric acid cycle and oxidative phosphorylation, in compound heterozygous NSCs. Our iPSC-based disease model can be widely used to understand the genotype-phenotype relationship of affected brain cells in mitochondrial diseases, and further drug discovery applications.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePOLG genotype influences degree of mitochondrial dysfunction in iPSC derived neural progenitors, but not the parent iPSC or derived gliaen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 the authorsen_US
dc.source.articlenumber114429en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1016/j.expneurol.2023.114429
dc.identifier.cristin2156988
dc.source.journalExperimental Neurologyen_US
dc.identifier.citationExperimental Neurology. 2023, 365, 114429.en_US
dc.source.volume365en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal