Show simple item record

dc.contributor.authorVincent, Flora
dc.contributor.authorGralka, Matti
dc.contributor.authorSchleyer, Guy
dc.contributor.authorSchatz, Daniella
dc.contributor.authorCabrera-Brufau, Miguel
dc.contributor.authorKuhlisch, Constanze
dc.contributor.authorSichert, Andreas
dc.contributor.authorVidal-Melgosa, Silvia
dc.contributor.authorMayers, Kyle
dc.contributor.authorBarak-Gavish, Noa
dc.contributor.authorFlores, J. Michel
dc.contributor.authorMasdeu-Navarro, Marta
dc.contributor.authorEgge, Jorun Karin
dc.contributor.authorLarsen, Aud
dc.contributor.authorHehemann, Jan-Hendrik
dc.contributor.authorMarrasé, Celia
dc.contributor.authorSimó, Rafel
dc.contributor.authorCordero, Otto X.
dc.contributor.authorVardi, Assaf
dc.date.accessioned2023-07-10T09:53:05Z
dc.date.available2023-07-10T09:53:05Z
dc.date.created2023-02-08T16:14:28Z
dc.date.issued2023
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/11250/3077450
dc.description.abstractAlgal blooms are hotspots of marine primary production and play central roles in microbial ecology and global elemental cycling. Upon demise of the bloom, organic carbon is partly respired and partly transferred to either higher trophic levels, bacterial biomass production or sinking. Viral infection can lead to bloom termination, but its impact on the fate of carbon remains largely unquantified. Here, we characterize the interplay between viral infection and the composition of a bloom-associated microbiome and consequently the evolving biogeochemical landscape, by conducting a large-scale mesocosm experiment where we monitor seven induced coccolithophore blooms. The blooms show different degrees of viral infection and reveal that only high levels of viral infection are followed by significant shifts in the composition of free-living bacterial and eukaryotic assemblages. Intriguingly, upon viral infection the biomass of eukaryotic heterotrophs (thraustochytrids) rivals that of bacteria as potential recyclers of organic matter. By combining modeling and quantification of active viral infection at a single-cell resolution, we estimate that viral infection causes a 2–4 fold increase in per-cell rates of extracellular carbon release in the form of acidic polysaccharides and particulate inorganic carbon, two major contributors to carbon sinking into the deep ocean. These results reveal the impact of viral infection on the fate of carbon through microbial recyclers of organic matter in large-scale coccolithophore blooms.en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleViral infection switches the balance between bacterial and eukaryotic recyclers of organic matter during coccolithophore bloomsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright The Author(s) 2023en_US
dc.source.articlenumber510en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1038/s41467-023-36049-3
dc.identifier.cristin2124247
dc.source.journalNature Communicationsen_US
dc.identifier.citationNature Communications. 2023, 14, 510.en_US
dc.source.volume14en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal