Vis enkel innførsel

dc.contributor.authorStefansson, Ivar
dc.contributor.authorKeilegavlen, Eirik
dc.date.accessioned2023-11-01T14:39:29Z
dc.date.available2023-11-01T14:39:29Z
dc.date.created2023-10-03T12:22:51Z
dc.date.issued2023
dc.identifier.issn0043-1397
dc.identifier.urihttps://hdl.handle.net/11250/3100075
dc.description.abstractConstitutive laws relating fluid potentials and fluxes in a nonlinear manner are common in several porous media applications, including biological and reactive flows, poromechanics, and fracture deformation. Compared to the standard, linear Darcy's law, such enhanced flux relations increase both the degree of nonlinearity, and, in the case of multiphysics simulations, coupling strength between processes. While incorporating the nonlinearities into simulation models is thus paramount for computational efficiency, correct linearization, as is needed for incorporation in Newton's method, is challenging from a practical perspective. The standard approach is therefore to ignore nonlinearities in the permeability during linearization. For finite volume methods, which are popular in porous media applications, complete linearization is feasible only for the simplest flux discretization, namely the two-point flux approximation. We introduce an approximated linearization scheme for finite volume methods that is exact for the two-point scheme and can be applied to more advanced and accurate discretizations, exemplified herein by a multi-point flux stencil. We test the new method for both nonlinear porous media flow and several multiphysics simulations. Our results show that the new linearization consistently outperforms the standard approach. Moreover our scheme achieves asymptotic second order convergence of the Newton iterations, in contrast to the linear convergence obtained with the standard approach.en_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleNumerical Treatment of State-Dependent Permeability in Multiphysics Problemsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 the authorsen_US
dc.source.articlenumbere2023WR034686en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1029/2023WR034686
dc.identifier.cristin2181289
dc.source.journalWater Resources Researchen_US
dc.identifier.citationWater Resources Research. 2023, 59 (8), e2023WR034686.en_US
dc.source.volume59en_US
dc.source.issue8en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal