Vis enkel innførsel

dc.contributor.authorEriksen, Nina Kristine
dc.contributor.authorLorentzen, Dag Arne
dc.contributor.authorOksavik, Kjellmar
dc.contributor.authorBaddeley, Lisa
dc.contributor.authorHosokawa, Keisuke
dc.contributor.authorShiokawa, Kazuo
dc.contributor.authorBland, Emma
dc.contributor.authorPaxton, Larry
dc.contributor.authorZhang, Yongliang
dc.contributor.authorMcWilliams, Kathryn
dc.contributor.authorYeoman, Tim
dc.contributor.authorThemens, David R.
dc.date.accessioned2024-05-03T11:04:34Z
dc.date.available2024-05-03T11:04:34Z
dc.date.created2023-12-20T08:50:39Z
dc.date.issued2023
dc.identifier.issn2169-9380
dc.identifier.urihttps://hdl.handle.net/11250/3129009
dc.description.abstractIonospheric convection patterns from the Super Dual Auroral Radar Network are used to determine the trajectories, transit times, and decay rates of three polar cap patches from their creation in the dayside polar cap ionosphere to their end of life on the nightside. The first two polar cap patches were created within 12 min of each other and traveled through the dayside convection throat, before entering the nightside auroral oval after 104 and 92 min, respectively. When the patches approached the nightside auroral oval, an intensification in the poleward auroral boundary occurred close to their exit point, followed by a decrease in the transit velocity. The last patch (patch 3) decayed completely within the polar cap and had a lifetime of only 78 min. After a change in drift direction, patch 3 had a radar backscatter power half-life of 4.23 min, which reduced to 1.80 min after a stagnation, indicating a variable decay rate. 28 minutes after the change in direction, and 16 min after coming to a halt within the Clyde River radar field-of-view, patch 3 appeared to reach its end of life. We relate this rapid decay to increased frictional heating, which speeds up the recombination rate. Therefore, we suggest that the slowed patch motion within the polar cap convection pattern is a major factor in determining whether the patch survives as a recognizable density enhancement by the time the flux tubes comprising the initial patch cross into the nightside auroral oval.en_US
dc.language.isoengen_US
dc.publisherAGUen_US
dc.relation.urihttps://doi.org/10.1029/2023JA031739
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleOn the Creation, Depletion, and End of Life of Polar Cap Patchesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.source.articlenumbere2023JA031739en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2023JA031739
dc.identifier.cristin2215976
dc.source.journalJournal of Geophysical Research (JGR): Space Physicsen_US
dc.relation.projectNorges forskningsråd: 223252en_US
dc.relation.projectNorges forskningsråd: 245683en_US
dc.identifier.citationJournal of Geophysical Research (JGR): Space Physics. 2023, 128 (12), e2023JA031739.en_US
dc.source.volume128en_US
dc.source.issue12en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal