Vis enkel innførsel

dc.contributor.authorReistad, Jone Petereng
dc.contributor.authorØstgaard, Nikolaieng
dc.contributor.authorLaundal, Karl Magnuseng
dc.contributor.authorHaaland, Steineng
dc.contributor.authorTenfjord, Pauleng
dc.contributor.authorSnekvik, Kristianeng
dc.contributor.authorOksavik, Kjellmareng
dc.contributor.authorMilan, Steveeng
dc.date.accessioned2015-09-03T11:35:49Z
dc.date.available2015-09-03T11:35:49Z
dc.date.issued2014-12
dc.identifier.issn2169-9402en_US
dc.identifier.issn2169-9380en_US
dc.identifier.urihttps://hdl.handle.net/1956/10386
dc.description.abstractIn the exploration of global-scale features of the Earth's aurora, little attention has been given to the radial component of the Interplanetary Magnetic Field (IMF). This study investigates the global auroral response in both hemispheres when the IMF is southward and lies in the xz plane. We present a statistical study of the average auroral response in the 12–24 magnetic local time (MLT) sector to an x component in the IMF. Maps of auroral intensity in both hemispheres for two IMF Bx dominated conditions (± IMF Bx) are shown during periods of negative IMF Bz, small IMF By, and local winter. This is obtained by using global imaging from the Wideband Imaging Camera on the IMAGE satellite. The analysis indicates a significant asymmetry between the two IMF Bx dominated conditions in both hemispheres. In the Northern Hemisphere the aurora is brighter in the 15–19 MLT region during negative IMF Bx. In the Southern Hemisphere the aurora is brighter in the 16–20 MLT sector during positive IMF Bx. We interpret the results in the context of a more efficient solar wind dynamo in one hemisphere. Both the intensity asymmetry and its location are consistent with this idea. This has earlier been suggested from case studies of simultaneous observations of the aurora in both hemispheres, but hitherto never been observed to have a general impact on global auroral brightness in both hemispheres from a statistical study. The observed asymmetries between the two IMF Bx cases are not large; however, the difference is significant with a 95% confidence level. As the solar wind conditions examined in the study are rather common (37% of the time) the accumulative effect of this small influence may be important for the total energy budget.en_US
dc.language.isoengeng
dc.publisherAmerican Geophysical Unionen_US
dc.publisherWileyen_US
dc.relation.ispartof<a href="http://hdl.handle.net/1956/12121" target="blank">Mechanisms responsible for asymmetric aurora between the conjugate hemispheres</a>en_US
dc.rightsAttribution CC BY-NC-NDeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.titleIntensity asymmetries in the dusk sector of the poleward auroral oval due to IMF Bxen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2015-06-29T09:15:20Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2014 The Authorsen_US
dc.identifier.doihttps://doi.org/10.1002/2014ja020216
dc.identifier.cristin1170351
dc.source.journalJournal of Geophysical Research - Space Physics
dc.source.40119
dc.source.1412
dc.source.pagenumber9497-9507
dc.relation.projectNorges forskningsråd: 223252
dc.relation.projectNorges forskningsråd: 212014
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400::Fysikk: 430
dc.subject.nsiVDP::Mathematics and natural scienses: 400::Physics: 430


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY-NC-ND
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY-NC-ND