Vis enkel innførsel

dc.contributor.authorTseng, Wan-Ling
dc.contributor.authorTsuang, Ben-Jei
dc.contributor.authorKeenlyside, Noel
dc.contributor.authorHsu, Huang-Hsiung
dc.contributor.authorTu, Chia-Ying
dc.date.accessioned2016-02-12T08:27:35Z
dc.date.available2016-02-12T08:27:35Z
dc.date.issued2014-09
dc.PublishedClimate Dynamics 2014, 44(5-6):1487-1503eng
dc.identifier.issn1432-0894en_US
dc.identifier.urihttps://hdl.handle.net/1956/11196
dc.description.abstractHere we show that coupling a high-resolution one-column ocean model to an atmospheric general circulation model dramatically improves simulation of the Madden–Julian oscillation (MJO) to have realistic strength, period, and propagation speed. The mechanism for the simulated MJO involves both frictional wave-convective conditional instability of the second kind (Frictional wave-CISK) and air–sea convective intraseasonal interaction (ASCII). In particular, better resolving the fine structure of upper ocean temperature, especially the warm layer, produces more vigorous atmosphere–ocean interaction and strengthens intraseasonal variations in both SST and atmospheric circulation. This helps organize and strengthen deep convection, inducing a stronger Kelvin-wave like perturbation and frictional near-surface convergence to the east. In addition, the warmer SST ahead of the MJO also acts to destabilize the boundary layer and enhance frictional convergence. These lead to a more realistic eastward-propagating MJO. A suite of sensitivity experiments were performed to show the robustness of the mechanisms and to demonstrate: (1) that mean state differences are not the main contributors to the improved simulation of our coupled model; (2) the role of SST variability in enhancing frictional convergence and intraseasonal variations in precipitation, and (3) that the simulation is significantly degraded when the first ocean model layer is thicker than 10 m. Our coupled model results are consistent with observations and demonstrate a simple but effective means to significantly improve MJO simulation and potentially also forecasts.en_US
dc.language.isoengeng
dc.publisherSpringeren_US
dc.subjectMJOeng
dc.subjectCouplingeng
dc.subjectWarm layereng
dc.subjectOne column ocean modeleng
dc.titleResolving the upper-ocean warm layer improves the simulation of the Madden-Julian oscillationen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2016-02-04T14:45:16Z
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright Springer-Verlag Berlin Heidelberg 2014.en_US
dc.identifier.doihttps://doi.org/10.1007/s00382-014-2315-1
dc.identifier.cristin1175777
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400::Geofag: 450::Meteorologi: 453
dc.subject.nsiVDP::Mathematics and natural scienses: 400::Geosciences: 450::Meteorology: 453
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400::Geofag: 450::Oseanografi: 452
dc.subject.nsiVDP::Mathematics and natural scienses: 400::Geosciences: 450::Oceanography: 452
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Petroleumsgeologi og -geofysikk: 464en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Geofag: 450::Oseanografi: 452en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel