Vis enkel innførsel

dc.contributor.authorMyklebust, Line Merethe
dc.contributor.authorVan Damme, Petra
dc.contributor.authorStøve, Svein Isungset
dc.contributor.authorDörfel, Max J
dc.contributor.authorAbboud, Angèle
dc.contributor.authorKalvik, Thomas Vikestad
dc.contributor.authorGrauffel, Cédric
dc.contributor.authorJonckheere, Veronique
dc.contributor.authorWu, Yiyang
dc.contributor.authorSwensen, Jeffrey
dc.contributor.authorKaasa, Hanna
dc.contributor.authorLiszczak, Glen
dc.contributor.authorMarmorstein, Ronen
dc.contributor.authorReuter, Nathalie
dc.contributor.authorLyon, Gholson J
dc.contributor.authorGevaert, Kris
dc.contributor.authorArnesen, Thomas
dc.date.accessioned2016-04-14T12:05:15Z
dc.date.available2016-04-14T12:05:15Z
dc.date.issued2014-12-03
dc.PublishedHuman Molecular Genetics 2015, 24(7):1956-1976eng
dc.identifier.issn1460-2083en_US
dc.identifier.urihttps://hdl.handle.net/1956/11908
dc.description.abstractThe X-linked lethal Ogden syndrome was the first reported human genetic disorder associated with a mutation in an N-terminal acetyltransferase (NAT) gene. The affected males harbor an Ser37Pro (S37P) mutation in the gene encoding Naa10, the catalytic subunit of NatA, the major human NAT involved in the co-translational acetylation of proteins. Structural models and molecular dynamics simulations of the human NatA and its S37P mutant highlight differences in regions involved in catalysis and at the interface between Naa10 and the auxiliary subunit hNaa15. Biochemical data further demonstrate a reduced catalytic capacity and an impaired interaction between hNaa10 S37P and Naa15 as well as Naa50 (NatE), another interactor of the NatA complex. N-Terminal acetylome analyses revealed a decreased acetylation of a subset of NatA and NatE substrates in Ogden syndrome cells, supporting the genetic findings and our hypothesis regarding reduced Nt-acetylation of a subset of NatA/NatE-type substrates as one etiology for Ogden syndrome. Furthermore, Ogden syndrome fibroblasts display abnormal cell migration and proliferation capacity, possibly linked to a perturbed retinoblastoma pathway. N-Terminal acetylation clearly plays a role in Ogden syndrome, thus revealing the in vivo importance of N-terminal acetylation in human physiology and disease.en_US
dc.language.isoengeng
dc.publisherOxford University Pressen_US
dc.rightsAttribution CC BY-NCeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/eng
dc.titleBiochemical and cellular analysis of Ogden syndrome reveals downstream Nt-acetylation defectsen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2016-03-17T12:15:18Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2014 the authorsen_US
dc.identifier.doihttps://doi.org/10.1093/hmg/ddu611
dc.identifier.cristin1312345
dc.relation.projectBergens forskningsstiftelse: xx
dc.relation.projectNotur/NorStore: nn4700k


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY-NC
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY-NC