Vis enkel innførsel

dc.contributor.authorHaaland, Magnus Mathisen
dc.contributor.authorFriesem, David
dc.contributor.authorMiller, Christopher
dc.contributor.authorHenshilwood, Christopher
dc.date.accessioned2017-11-08T11:49:28Z
dc.date.available2017-11-08T11:49:28Z
dc.date.issued2017-10
dc.PublishedHaaland MM, Friesem D, Miller C, Henshilwood C. Heat-induced alteration of glauconitic minerals in the Middle Stone Age levels of Blombos Cave, South Africa: Implications for evaluating site structure and burning events. Journal of Archaeological Science. 2017;86:81-100eng
dc.identifier.issn1095-9238
dc.identifier.issn0305-4403
dc.identifier.urihttps://hdl.handle.net/1956/16911
dc.description.abstractIn this paper we conduct geochemical and colourimetric measurements of glauconite grains in micromorphological thin sections from the Middle Stone Age site of Blombos Cave, South Africa, to investigate the formation, internal structure and reworking of heat-exposed cave deposits that are related to prehistoric burning events. Controlled heating experiments were first carried out on glauconite-rich loose sediments and block samples, both of which were collected from the Blombos Cave bedrock. The control samples were then subjected to Fourier transform infrared spectrometry (FTIR), microscopic Fourier transform infrared spectrometry (micro-FTIR) and petrographic-colourimetric analyses. The control experiment shows that glauconitic minerals undergo a gradual and systematic colour change when temperatures reach higher than c. 300–400 °C, primarily due to dehydration and iron oxidation. They also undergo clear structural changes when temperatures reach higher than c. 550 °C due to dehydroxylation and mineral transformation. By assessing the nature and degree of heat-induced optical and molecular alteration in glauconitic minerals, we demonstrate how glauconite grains in thin sections can be classified by the temperature to which they were exposed (20–400 °C, >400 °C, >600 °C and >800 °C). To assess the archaeological relevance of our controlled heating experiment, we applied this glauconite classification scheme to >200 grains found in three micromorphological thin sections of a Middle Stone Age (MSA) combustion feature. These grains were individually geo-referenced within the local coordinate system of Blombos Cave, through a thin-section-based GIS mapping procedure. With improved spatial control, we were able to study both the general distribution of non-altered and heat-altered glauconite grains in their original sedimentary context, as well as to calculate heat distribution models that cover the entire sampled section. This combined geo-chemical, optical and spatio-contextual approach provides insights into more elusive aspects of MSA site structure and burning events, such as heat intensity, burning frequency, temperature distribution, internal hearth structure and post-depositional reworking. The workflow we propose may easily be implemented and adapted to other archaeological contexts and to analogous sedimentary materials that show comparable heat-induced alteration patterns.en_US
dc.language.isoengeng
dc.publisherElseviereng
dc.rightsAttribution CC BYeng
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/eng
dc.subjectMiddle Stone Ageeng
dc.subjectSite structureeng
dc.subjectHeartheng
dc.subjectCombustion featureeng
dc.subjectFire proxyeng
dc.subjectFire experimenteng
dc.subjectFTIReng
dc.subjectMicro-FTIReng
dc.subjectSpatial analysiseng
dc.subjectGISeng
dc.subjectColourimetryeng
dc.subjectMicromorphologyeng
dc.titleHeat-induced alteration of glauconitic minerals in the Middle Stone Age levels of Blombos Cave, South Africa: Implications for evaluating site structure and burning eventseng
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2017-09-08T14:38:35Z
dc.description.versionpublishedVersion
dc.rights.holderCopyright 2017 The Author(s)eng
dc.identifier.doihttps://doi.org/10.1016/j.jas.2017.06.008
dc.identifier.cristin1492254
dc.source.journalJournal of Archaeological Science


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY